
POLITECNICO DI TORINO

Master’s Degree in Data Science & Engineering

Master’s Degree Thesis

Centralized Monitoring Infrastructure on

Cloud: An Open Source Approach.

Supervisors

Prof. Daniele APILETTI

Eng. Davide BURDESE

Eng. Alessandro TEDESCO

Candidate

Niccolò DIMONTE

April 2024

Summary

Navigating the contemporary digital landscape requires adept management of
vast data volumes, prompting the need for robust architectures and innovative
solutions. This challenge is particularly evident in establishing a compre-
hensive monitoring system for seamless operations and service optimization.
Systematic monitoring processes are indispensable for timely issue detection,
minimizing downtime, and bolstering overall system reliability.

The broader challenge encompasses tracking and analyzing resource utiliza-
tion for effective cost management strategies. Crucial metrics, such as resource
consumption, play a pivotal role in judiciously using client investments, op-
timizing both operational efficiency and fiscal responsibility. Comprehensive
monitoring protocols contribute to efficient resource management by anticipat-
ing and addressing capacity requirements, facilitating informed decisions in
resource provisioning, and fostering a scalable and adaptive infrastructure.

Within this context, collaboration with Mediamente Consulting, a con-
sultancy firm specializing in Oracle technologies, has been invaluable. Their
commitment to monitoring extends beyond issue detection, cost management,
and resource optimization, forming the cornerstone of dedication to delivering
reliable, high-quality services. The firm leverages cutting-edge monitoring
technologies to proactively address challenges, ensuring unparalleled support
for clients. Insights gleaned from monitoring practices serve as a foundation
for issue resolution and empower the consultancy team to make informed

ii

recommendations, driving continuous improvement and innovation. This
thesis focuses on revolutionizing incident monitoring systems within a firm
specializing in Oracle database management. The existing challenge lies in the
cumbersome process of connecting via VPN to individual customer networks
when incidents are reported, especially given the multitude of clients and
targets. The proposed solution involves a Proof of Concept (PoC) centered
around a centralized architecture with Prometheus Agents installed on cus-
tomer targets. These agents utilize remote-write to send real-time data to a
centralized time-series database.

The detailed thesis activities involve several key steps, starting with carefully
designing the architecture. This includes not just outlining the structure but
also the detailed process of setting up Prometheus. Another important aspect
is developing a flexible Python exporter for custom queries, adding adaptability
to the overall solution.

Furthermore, the implementation phase incorporates the setup of Grafana
Mimir, where special attention is given to configuring remote write capabilities.
This integration aims to facilitate seamless data transfer, enabling efficient
collaboration and real-time incident monitoring across distributed components.
In the pursuit of a scalable and efficient solution, the thesis underscores the
development of customized Grafana dashboards tailored for each customer.
Noteworthy is the optimization strategy employed, wherein these dashboards
are designed to load only the essential data, ensuring a streamlined and client-
specific incident monitoring experience. This meticulous approach seeks to
provide not just a functional but a highly tailored and user-friendly solution
for effective data visualization and incident management. In summary, the
evolving landscape of technology and data management necessitates the devel-
opment of alternative open-source solutions to efficiently handle complexities
in monitoring resources and detecting potential problems. The collaboration
with Mediamente Consulting underlines the commitment to provide optimal

iii

value and satisfaction to customers in relation to these challenges.

iv

Acknowledgements

ACKNOWLEDGMENTS

Volevo ringraziare la mia famiglia, i miei amici, i miei colleghi e me stesso.

v

Table of Contents

List of Tables x

List of Figures xi

Acronyms xiv

1 Introduction 1

1.1 Company . 2
1.2 Case Study . 3
1.3 Project Structure and Workflow 4

2 Background 7

2.1 Time Series and Database Timeseries 7
2.2 Oracle Database . 9

2.2.1 Database and Instance 9
2.2.2 Data Storage and Architecture 10

2.3 Oracle Enterprise Manager (EM) 12
2.3.1 Monitoring Utilities . 12
2.3.2 Oracle Enterprise Manager Tables for Metrics 13

2.4 Prometheus . 13
2.4.1 Prometheus remote write 15

2.5 Grafana . 17

vii

2.6 Mimir . 18

3 Methodology 21
3.1 Architecture . 21

3.1.1 General Architecture 21
3.1.2 Subnet structure . 22
3.1.3 Role of the Container 23
3.1.4 Architecture Objectives 23
3.1.5 Role of Prometheus and Mimir in the Architecture . . 23
3.1.6 Using Grafana for Data Visualisation 24

3.2 Configuration . 24
3.2.1 Problem of Access to the Oracle Database and Enterprise

Manager . 24
3.2.2 Solution: Python Exporter for Oracle DB 25
3.2.3 Custom Python Exporter for Oracle DB 25
3.2.4 The configuration file 27

4 Proposed Solution 30
4.1 How Prometheus works and how Node Exporter interact with 30

4.1.1 How Prometheus Scraping Works 31
4.1.2 Target Selection . 31
4.1.3 Scraping process for Node Exporter 32

4.2 Remote Write and Mimir . 33
4.2.1 Mimir object storage and ring configuration 34

4.3 Data Manipulation and Visualization with Grafana 35
4.3.1 Data Source . 36
4.3.2 PromQL and metrics 36
4.3.3 Dashboard and global variables 37

5 Visualization and Results 41
5.1 Visualization . 41

viii

5.2 Results . 44

6 Conclusions 48
6.1 Future Works . 49

A Node Exporter 50

Bibliography 57

ix

List of Tables

4.1 Labels extracted with SELECT in metrics’ query 32

x

List of Figures

2.1 Oracle Database Architecture [1] 10
2.2 Oracle Database Instance Architecture [2] 11
2.3 Prometheus Time Series structure [5] 15

3.1 The architecture of proposed solution. 22
3.2 A config.yml snapshot . 28

4.1 Example of different timeseries 31
4.2 An example of metrics configuration for monitoring 33
4.3 Data-source on Grafana . 36
4.4 Example of cpu% timeseries 37
4.5 Global Variables for ’Host’ dashboard. 38
4.6 Example of global variables. 39
4.7 Variables selection on dashboard. 39

5.1 Timeseries and stats visualization example. 42
5.2 Different colors can be used to alert a critical threshold. 42
5.3 Table visualization example. 43
5.4 Filesystems monitoring panels. 44
5.5 Panels for health’s device monitoring. 44
5.6 Disk Group Usage info. 45
5.7 Tablespaces info. 45

xi

5.8 Datafiles path info. 46

xii

Acronyms

DB

Database

EM

Enterprise Manager

IT

Information Technology

PoC

Proof of Concept

xiv

Chapter 1

Introduction

In the digital age in which we live, Information Technology (IT) plays a funda-
mental role in every aspect of our daily lives, both personal and professional.
IT environments have become complex and interconnected, with networks,
systems and applications supporting a wide range of activities.
In this context, systems monitoring emerges as an essential practice to ensure
the proper functioning, security and efficiency of IT infrastructures. Systems
monitoring, or simply ’monitoring’, refers to the process of continuously super-
vising and evaluating the performance, status and behaviour of the components
of an IT system. These components may include servers, networks, databases,
applications and other hardware and software devices critical to business
operations. In this thesis work, we will mainly discuss database monitoring.
Through the use of specialised tools, monitoring collects real-time or near
real-time data, analysing key metrics and reporting any anomalies or problems.
The importance of systems monitoring in IT is evident on several fronts. First,
monitoring provides complete visibility into the IT environment, enabling
system administrators and network operators to quickly identify and resolve
any malfunctions or problems before they can cause disruptions or data loss.

1

Introduction

In addition, monitoring helps optimise IT resources, identifying inefficien-
cies and opportunities for performance improvement. In summary, systems
monitoring is a fundamental component of modern IT management, offering
crucial benefits in terms of performance, security and reliability. This thesis
aims to explore in detail the importance of systems monitoring, examining its
various applications, best practices and related challenges, in order to provide
a comprehensive view of this essential aspect of contemporary IT management.

1.1 Company

The focal point of this thesis revolves around the endeavors of Mediamente Con-
sulting S.r.l., a prominent entity within the IT consultancy sector renowned for
its specialization in advanced business analytics. Originating as an innovative
startup within the i3P incubator of Politecnico di Torino back in 2013, the
company swiftly gained traction, culminating in its exit from the incubator in
2016. Today, it stands as an integral component of Var Group (SeSa S.p.A.
group), seamlessly integrated into its Data Science business unit.

Mediamente Consulting prides itself on a diverse portfolio structured around
five distinct business units: Corporate Performance Management, Advanced
Analytics, Business Intelligence, Data Integration and Management, and Tech-
nological Infrastructure. Particularly noteworthy is the pivotal role played by
the Technological Infrastructure unit, serving as the linchpin of the company’s
operations.
This unit spearheads a wide array of activities, ranging from consultancy
services tailored to various Oracle technologies, including engineered systems,
to the evaluation and optimization of architectural performance, to the ongo-
ing management and modernization of technological infrastructure, whether
on-premise or in the cloud.

2

Introduction

The research for this thesis is closely connected to the work done in the
Technological Infrastructure business unit. This close relationship highlights a
joint effort to enhance the company’s skills and capabilities in the important
field of IT consultancy.

1.2 Mediamente Consulting Case Study

The systems monitoring performed by Mediamente Consulting, although a
vital component of its services, faces a number of significant challenges that
undermine the efficiency and effectiveness of the entire process. These include
three main issues that require careful consideration and resolution: the ob-
solescence of the system in use, the complexity of the client’s network access
process, and security concerns.

Firstly, the current monitoring system employed by Mediamente Consulting
is based on PHP scripts that update detected incidents via events. However,
this solution is plagued by obsolescence, as the scripts may not be up to
modern system monitoring requirements. Lack of updates and reliance on
outdated technologies could compromise the effectiveness of monitoring and
limit Mediamente Consulting’s ability to detect and resolve client issues in a
timely manner.

Secondly, the process of accessing the client’s network is a maze of complex-
ity and cumbersomeness. To carry out monitoring, Mediamente Consulting’s
consultants have to overcome several hurdles, including obtaining remote shell
keys, access via VPN and connection to the client’s Enterprise Manager. These
procedures require considerable time and resources, slowing down Mediamente
Consulting’s ability to provide quick and efficient support to its clients.

3

Introduction

Finally, there are security concerns that gravitate around the client’s net-
work access process. Each client has its own security keys, but there is no
guarantee that all consultants in the company have access to all the necessary
keys. This disparity can lead to delays and interruptions in the monitoring
process, as consultants may find themselves in the position of having to request
missing keys every time there is a client alert.

In summary, the problems in Mediamente Consulting’s current monitoring
system pose a significant challenge to the overall effectiveness of its services.
Tackling these problems requires a holistic and innovative approach aimed
at modernising the existing infrastructure, simplifying access processes and
ensuring high security in customer interaction.

1.3 Project Structure and Workflow

The project structure was outlined through several consecutive phases, each
aimed at achieving a specific goal in the development process of the multi-
target monitoring system. Initially, we conducted an in-depth study of the
current state of monitoring technologies and available open source tools, as well
as the architecture of the Oracle Enterprise Manager and the data structure
for queries.

Subsequently, we divided the project into several parts, each of which
explored a key aspect of the development process. In the following chapters,
we addressed the following areas:

1. Background: This chapter provided an in-depth overview of the concepts
and technologies relevant to understanding the solutions adopted in the
project. This included fundamental monitoring concepts, the analysis of
customer requirements and an overview of the open source technologies

4

Introduction

available for system monitoring.

2. Network infrastructure development: In this phase, we focused
on the implementation of the network infrastructure required for the
operation of the monitoring system. This included the configuration of
VPNs for remote access to customer systems and the creation of a secure
network for the transfer of monitoring data.

3. Configuration and data retrieval from the Oracle Enterprise
Manager (EM): We devoted a chapter to analysing the configuration
and retrieval of data via queries from the Oracle Enterprise Manager.
This included the definition of the queries needed to extract the relevant
information from the monitored systems.

4. Manipulation of data into time series: This phase involved the
manipulation of data obtained from Oracle Enterprise Manager queries
into time series that could be used for analysis and visualisation. We
explored techniques to transform and process the raw data into formats
suitable for analysis.

5. Dashboard creation: Finally, we developed customised dashboards for
visualising monitoring data. This included the design and implementa-
tion of charts and tables to clearly represent the metrics of interest to
customers.

Through these steps, we were able to develop a comprehensive and scalable
monitoring system that meets our customers’ needs, providing them with an
effective solution for monitoring their systems.

5

Chapter 2

Background

2.1 Time Series and Database Timeseries

Time Series and Time Series-Based Data
Time series are a type of data that record observations sequentially over

time. These observations may be collected at regular or irregular intervals, and
represent variations or measurements of phenomena over time. For example,
they may include data such as the temperature recorded every hour, share
prices recorded every day, the number of visitors to a website every minute,
and so on.

These data are widely used in a wide range of industries and applications.
Examples include:

1. Prediction and Analysis: Time series can be used to predict the future
behaviour of a phenomenon, such as share price, traffic on a network, or
demand for a product.

2. Monitoring and Control: They can be used to continuously monitor
systems and identify any anomalies or changes in data behaviour, such as
in monitoring the performance of a computer system or analysing sensor
data.

7

Background

3. Anomaly Detection: Can be used to identify anomalous patterns in the
data, signalling situations outside the norm that require human attention
or intervention.

4. Process Optimisation: Time series can be analysed to identify trends
and patterns that can be used to optimise processes and improve perfor-
mance.

Time Series Databases

Time series databases are specially designed to manage and store large
volumes of time series-based data efficiently. These databases are optimised
to support operations such as inserting, updating, retrieving and analysing
time series data.

Typically, time series databases use a timestamp-value based data model
(key-value timestamp-value). In this model, each data point is associated with
a timestamp indicating when it was recorded and a value representing the
observation or measurement made at that time. This data is organised and
indexed in a way that allows quick and efficient access based on the timestamp.

The use of time series databases offers several advantages:

1. Archive Efficiency: Time series databases are optimised to store large
volumes of time data efficiently, reducing data storage and management
costs.

2. Query Speed: Thanks to their optimised structure, time series databases
enable fast queries and real-time analysis of temporal data, supporting
immediate and responsive decisions.

3. Scalability: These databases are designed to handle large volumes of
data and can scale horizontally to handle increasing workloads and data
volumes.

8

Background

4. Advanced Analysis: They offer advanced tools and functionality for
time series analysis, including forecasting algorithms, anomaly detection
and trend analysis.

In summary, time series databases are essential tools for managing and
analysing time series data, enabling organisations to derive value from these
important sources of information in the modern data world.

2.2 Oracle Database

The Oracle Database, developed by Oracle Corporation, stands as one of
the globe’s preeminent relational database management systems (RDBMS).
It is meticulously crafted to efficiently store and manage vast data sets,
furnishing advanced functionalities for data organization, retrieval, analysis,
and administration. Operating on a client-server architecture, Oracle Database
entails at least two pivotal components: the database itself, constituting
a structured collection of data housed in physical files, and the instance,
encompassing memory areas and background processes essential for system
functionality.

2.2.1 Database and Instance

While the database comprises the actual data and metadata, the instance acts
as an interface enabling client applications to access the database. Notably,
an instance must be associated with a physical database to enable data access,
and while multiple instances can concurrently access the same database, each
instance can only access one database at a time.

9

Background

2.2.2 Data Storage and Architecture

Within the Oracle Database architecture, data is stored following both physical
and logical schemas. The physical schema delineates the actual data storage
structure, encompassing data files, control files, and online redo log files,
while the logical schema facilitates granular disk space management through
data blocks, extents, segments, and tablespaces. The instance, serving as
the gateway for client connections, comprises the System Global Area (SGA),
Program Global Area (PGA), and background processes, collectively ensuring
seamless database operations.

For further insights and a visual representation of the Oracle Database
architecture, reference Figure 2.3.

Figure 2.1: Oracle Database Architecture [1]

10

Background

Figure 2.2: Oracle Database Instance Architecture [2]

11

Background

2.3 Oracle Enterprise Manager (EM)

Oracle Enterprise Manager (EM) [3] is a database and application management
platform provided by Oracle Corporation. It offers a comprehensive set of
tools for monitoring, managing, and automating IT environments, enabling
organizations to optimize performance, ensure availability, and manage IT
service costs.

2.3.1 Monitoring Utilities

Oracle Enterprise Manager is particularly useful for monitoring systems, offer-
ing:

1. Performance Monitoring: EM continuously monitors database, ap-
plication, and server performance, allowing administrators to view and
analyze performance metrics in real time. This helps to quickly identify
and resolve any performance issues that could affect business operations.

2. Anomaly Detection: EM uses advanced algorithms to automatically
detect anomalies in systems performance, alerting administrators to any
problems or abnormal patterns that require attention.

3. Event Management: EM collects and analyzes system events in real
time, enabling administrators to monitor system activity and respond
promptly to critical events or emergency situations.

4. Reporting and Analysis: EM provides tools to generate detailed
reports on system performance, enabling administrators to analyze trends
over time and identify areas for improvement.

12

Background

2.3.2 Oracle Enterprise Manager Tables for Metrics

Within Oracle Enterprise Manager, you can find several tables that store
metrics and monitoring information. Some of the most useful tables include:

1. MGMT$ALERT_CURRENT: This table displays current informa-
tion for any alerts logged in the Management Repository that are in a
non-clear state. It shows only the most recent open alert in a non-clear
status for a given metric.

2. MGMT$AVAILABILITY_CURRENT: This table displays infor-
mation about the most recent target availability information stored in
the Management Repository.

3. MGMT$METRIC_CURRENT: This table displays information on
the most recent metric values that have been loaded into the Management
Repository.

These tables, along with others in Oracle Enterprise Manager, provide a wide
range of useful data for performance monitoring and IT systems management.

2.4 Prometheus

Prometheus is a sophisticated open source tool designed for monitoring and
analysing the performance of IT systems. Its origin dates back to SoundCloud
in 2012, where it was developed to address the monitoring needs of a complex
and growing cloud infrastructure. Since then, Prometheus has gained popular-
ity and widespread adoption in the developer community due to its flexible
architecture and numerous advanced features [4].

Prometheus collects a wide range of metrics that can be used to monitor
and analyse system performance. Metrics are numerical indicators that repre-
sent specific aspects of system resources and services, such as CPU, memory,

13

Background

network, disk utilisation and HTTP requests. Each metric is identified by a
unique name and may include a series of labels that provide further context
and information on the collected data.

The structure of metrics in Prometheus is hierarchical and organised to
allow easy navigation and aggregation of data. Each combination of metrics
and labels creates a unique timeseries. Labels are key-value pairs associated
with a metric and allow data to be distinguished and grouped according to
specific criteria. They can provide additional information such as the method
of the request, the path to the requested resource and the status code of the
response in an HTTP request tracking context.

Labels play a key role in enabling users to perform targeted queries and
analyses on the monitoring data. They can be used to filter, aggregate and
group data according to specific criteria, allowing operators to gain a detailed
view of system performance and identify any problems or anomalies.

For example, using PromQL, it is possible to run queries that select only
data related to certain labels or aggregate data according to certain labels.
This gives users a high degree of flexibility and control in analysing monitoring
data and enables them to obtain detailed information on system performance.

In summary, Prometheus is a powerful open source tool that offers a wide
range of functionalities for monitoring and analysing the performance of IT
systems. Thanks to its flexible architecture, powerful PromQL query language
and efficient data management, Prometheus has established itself as one of
the leading tools in the modern IT infrastructure monitoring landscape. It
plays a key role in enabling operators to effectively monitor the performance
of their systems and detect operational problems.

14

Background

Figure 2.3: Prometheus Time Series structure [5]

2.4.1 Prometheus remote write

Prometheus remote write is a feature that allows Prometheus to send collected
metrics data to a remote endpoint instead of storing it locally. This is particu-
larly useful in distributed scenarios or where there are multiple instances of
Prometheus, allowing monitoring data to be aggregated and stored in a single
location.

In the context of our architecture, the use of Prometheus’ remote write will
prove invaluable in centralising and aggregating monitoring data from several
distributed instances. This will provide a comprehensive and global view of
system performance, facilitating the identification of trends and anomalies on
a global scale.

In addition, sending monitoring data to a long-term storage database will
allow us to retain historical data for future analysis and generate retrospective
reports on system performance. This will help improve our ability to monitor
performance trends over time and analyse any past operational problems.

15

Background

Ultimately, the use of Prometheus’ remote write will optimise the manage-
ment of monitoring data on a global scale, allowing a more comprehensive view
of system performance and providing useful information for the continuous
improvement of operations.

16

Background

2.5 Grafana

Grafana is a versatile and powerful platform for data visualisation and anal-
ysis, widely used in the monitoring and performance analysis of IT systems,
but also in many other areas such as business data analysis and application
observability. One of its most outstanding features is the ability to make
certain dashboards standard, allowing users to easily share layouts, settings
and views between different Grafana installations or with other team members.
This facilitates greater consistency in data analysis and simplifies collaboration
between teams, facilitating the sharing of best practices and collaborative
problem solving. [6]

One of the most important aspects for which Grafana is known is its effi-
ciency in loading and processing data, which allows users to visualise large
amounts of information in real time without compromising system perfor-
mance. This feature is particularly important in monitoring contexts, where
it is essential to have rapid and continuous access to data in order to make
informed decisions and respond promptly to any problems. Grafana’s ability
to effectively manage large volumes of data contributes significantly to its
usefulness and adoptability in complex operational environments.

Although there are tools similar to Grafana (such as Kibana), its strong
compatibility with Prometheus is a key advantage. Grafana offers a number of
Prometheus-specific features, such as the ability to execute PromQL queries
directly from dashboards and the visualisation of metrics and time charts in
an intuitive and effective manner. This tight integration with Prometheus
makes Grafana a natural choice for visualising data collected by Prometheus
and allows users to take full advantage of the capabilities of both platforms.

In addition, Grafana is extremely flexible and offers numerous possibilities

17

Background

for extension and integration with other platforms and monitoring systems.
This allows users to customise and adapt Grafana to their specific needs,
integrating it with alerting systems, data analysis tools and other data sources
beyond Prometheus, such as InfluxDB, Elasticsearch and many others. The
wide range of available functionalities and integrations makes Grafana a valu-
able resource for a variety of use cases and operational contexts. We will look
in more detail at these integrations in the [Future Works] section.

Finally, the active and supportive community surrounding Grafana further
contributes to its value as a data monitoring and analysis platform. Thanks to
the large community of developers and users who constantly contribute to the
improvement of the platform, Grafana is able to offer continuous support, quick
bug fixes and constant development of new features and improvements. This
provides Grafana users with a dynamic and constantly evolving environment,
with access to a wide range of resources and support to address the challenges
of monitoring and analysing data effectively and efficiently.

2.6 Mimir

Mimir is a fundamental tool for the architecture we adopt in our work, offering
a complete and scalable solution for managing monitoring data and creating
a consolidated view of system performance. Its compatibility with Grafana
makes it particularly valuable, enabling seamless integration between data
collection from Prometheus and visualisation through Grafana. [7]

What sets Mimir apart is its ability to facilitate the implementation of
Prometheus’ remote write. This functionality allows Prometheus to send
collected metrics data to a remote endpoint instead of storing it locally, greatly

18

Background

enhancing data management and analysis at scale and in distributed environ-
ments. Mimir acts as a bridge between Prometheus and the remote storage
system, enabling reliable and efficient transmission of monitoring data and
long-term archiving for future analysis.

In addition, Mimir offers a number of advanced features that further en-
hance the management of monitoring data. For example, data compression
and deduplication help optimise storage space and reduce costs, while data
replication ensures greater system reliability and availability.

Although there are other tools similar to Mimir on the market, such as
Thanos, its native compatibility with Grafana makes it a preferred choice for
many. This integration simplifies the creation of interactive dashboards and
visualisation of monitoring data, allowing users to easily gain a comprehensive
and detailed view of system performance. Ultimately, Mimir is an essential
component of our architecture, providing the functionality required for effi-
cient and scalable management of monitoring data and ensuring reliable and
comprehensive monitoring of our IT infrastructure.

19

Chapter 3

Methodology

3.1 Architecture

In this chapter, we will explore the methodology adopted to implement and
evaluate the client-server architecture, supported by the various tools discussed
above. We will begin by analysing the context in which the idea for this
architecture was born and how a Proof of Concept (PoC) was developed to
simulate its operation.

3.1.1 General Architecture

The proposed architecture (Fig.3.1) is designed to simulate a distributed client-
server environment, with an infrastructure composed of a single container and
two separate subnets. This subdivision makes it possible to faithfully reflect
the dynamics of a private network of the client and the company, with its
interactions and security requirements.

21

Methodology

Figure 3.1: The architecture of proposed solution.

3.1.2 Subnet structure

Each subnet consists of two virtual machines (VMs): one to simulate the
private network of the customer and the company, and a bastion to expose
the public IP address for both networks. This setup reflects a typical network
architecture, where the bastion acts as an external access point to the private
network, providing an additional layer of security and access controls.

22

Methodology

3.1.3 Role of the Container

The container plays a crucial role in the architecture, acting as a central point
for the execution and management of the various services and applications.
Within the container, the various tools, including Prometheus, Grafana, Mimir
and others, are executed and orchestrated to enable the collection, storage,
analysis and visualisation of monitoring data.

3.1.4 Architecture Objectives

The main objective of the architecture is to provide a flexible, scalable and
secure environment for monitoring and analysing the performance of IT sys-
tems. The division into separate subnets makes it possible to isolate and
manage customer and company networks separately, while ensuring secure
and controlled communication between them. Furthermore, the architecture
is designed to be easily scalable, allowing new resources and services to be
added in accordance with the evolving needs of the organisation.

Through this architecture, we aim to provide a robust and reliable envi-
ronment for monitoring data management, enabling operators to effectively
monitor systems performance and respond promptly to any problems or anoma-
lies.

3.1.5 Role of Prometheus and Mimir in the Architecture

Prometheus is installed in agent mode on the customer’s private VM, con-
figured in a lighter version with basic functionality, including remote write.
This configuration allows Prometheus to collect and send monitoring data
to the enterprise VM via remote write, ensuring efficient and scalable data

23

Methodology

management on a large scale.

Once the data is received, Mimir takes care of the storage, ensuring that
the data is stored in a reliable and accessible manner. Mimir manages the
storage not only locally, but can also be configured to utilise remote storage
solutions, enabling data to be stored on a large scale and for long periods of
time. In the current PoC, the integration of remote storage is ignored.

3.1.6 Using Grafana for Data Visualisation

Grafana uses Mimir as a datasource to access archived monitoring data. Using
PromQL, the Prometheus query language, Grafana allows complete manip-
ulation of the data to visualise it in a way that best suits the business case.
PromQL allows users to perform advanced queries and data analysis, includ-
ing aggregation, filtering and temporal manipulation operations to obtain a
detailed and customised view of system performance. With Grafana, users
can create interactive dashboards and customised visualisations to effectively
and intuitively monitor and analyse data.

3.2 Configuration

3.2.1 Problem of Access to the Oracle Database and
Enterprise Manager

A major challenge in this project is access to the Oracle database and the
Enterprise Manager (EM). This issue arises both for practical reasons, given
the vast amount of data generated by these platforms, and for security issues,
since access to certain Metric Extensions of the EM requires authentication

24

Methodology

by administrators.

3.2.2 Solution: Python Exporter for Oracle DB

To overcome these challenges, a Node Exporter written from scratch in Python
was developed. Although an Oracle DB Exporter exists in its version 1.0.0, I
preferred to create a custom implementation in Python. This approach allows
for complete customization of queries and security, allowing more control and
flexibility in accessing monitoring data. We will see later the configuration in
YAML of the exporter for both DB access and metrics query.

3.2.3 Custom Python Exporter for Oracle DB

The Python Exporter for Oracle DB is designed to connect to the Ora-
cle database and retrieve specific data through custom queries. Using the
cx_Oracle [8] module to connect to the database and execute queries, the ex-
porter is able to collect a wide range of monitoring metrics, including database
performance data, resource utilization, and system information.

Because of the flexibility offered by Python, it was possible to implement
additional security measures, such as managing credentials securely via yaml
configurations for access to the Enterprise Manager’s Metric Extension. This
ensures that only authorized users can access sensitive and critical system data,
while ensuring the security and integrity of monitoring information. From
a real-world perspective, it enables credential management directly on the
client side, which then does not have to worry about sharing passwords and
authentications with the enterprise.

25

Methodology

Algorithm 1 Connecting to Oracle Database and Fetching Metrics
1: Read configuration from a YAML file config.yml
2: Save authentication variables from configuration
3: Read queries and metric names from file default-metrics.yml
4: while true do
5: Open a connection with Oracle Database
6: for all queries in metrics do
7: Execute the query
8: Fetch the result
9: Save the SELECT statement of the query as labels

10: Add the values fetched along with their respective labels to the
Prometheus metric

11: Close the connection
12: Depending on log level, write [INFO|ERROR|WARNING]
13: end for
14: Wait for a certain period of time
15: end while

26

Methodology

3.2.4 The configuration file

The configuration file (config.yml) contains essential information for accessing
the Oracle database, ensuring secure management of sensitive credentials.
Among the main fields are:

• Username: This field specifies the username required for authentica-
tion to the Oracle database. You can configure it with the appropriate
credentials for authorized access to the database.

• Password: This field specifies the password associated with the username
for authentication to the Oracle database. It is critical to maintain the
security of this information and to avoid sharing it in an insecure manner.

• Connection String: The connection string defines the path and details
required to establish a connection to the Oracle database. This includes
the database name, server IP address, port, and other system-specific
configuration information.

• ORACLE_HOME: This environment variable specifies the path to
the root Oracle installation directory on the system. It is essential for
correctly locating the executable files and libraries required for proper
operation of Oracle applications.

• ORACLE_SID: This environment variable specifies the system identifier
(SID) of the Oracle database to which you want to connect. Each Oracle
database running on the system will have a unique SID that uniquely
identifies the database in the context of the operating system.

27

Methodology

Figure 3.2: A config.yml snapshot

In the next chapter we will see how this tools will interact between.

28

Chapter 4

Proposed Solution

In this chapter, we will explore the details of the steps, choices and motivations
that guided our implementation. Furthermore, we will analyse how the tools
mentioned in the previous chapter interact with each other to ensure effective
and comprehensive monitoring of the system.

4.1 How Prometheus works and how Node
Exporter interact with

First of all, we will elaborate on how Prometheus handles the structure of the
collected data, organising it in a hierarchical manner.

Prometheus Data Structure Prometheus manages data using a key concept
called Metrics. Each metric can be provided with various labels, which allow
context and detail to be added to the measurements. It is important to note
that each unique combination of labels within a metric creates a distinct
timeseries.
Prometheus metrics can take many forms, ranging from basic metrics such as
counters and meters, which provide information on trends and the state of the

30

Proposed Solution

system over time, to more complex metrics such as histograms and summaries,
which allow you to analyse the distribution of data and identify any anomalies
or performance issues. After examining the data structure of Prometheus, it
is essential to understand the scraping process, i.e. the mechanism by which
Prometheus collects data from the various monitoring sources.

4.1.1 How Prometheus Scraping Works

Prometheus uses a scraping model to collect data from its monitoring targets.
This approach is based on a pull-type architecture, in which Prometheus itself
makes periodic requests to the services it wishes to monitor, called ’targets’.

4.1.2 Target Selection

Target selection is done via the Prometheus configuration. Users can specify
the desired targets in the Prometheus configuration file, indicating the address
of the service to be monitored and other relevant information such as the
path of the exposed endpoint and any security options. Once the targets
are configured, Prometheus begins making regular requests to each target
to collect monitoring data. This data is then processed and stored within
Prometheus for analysis and visualisation.

In the example shown in Figure 4.1, we can see how the value of a label
within a metric generates two separate timeseries, each of which scrapes the
target at regular intervals.

Figure 4.1: Example of different timeseries

31

Proposed Solution

4.1.3 Scraping process for Node Exporter

The exporter is the essential part for retrieving the monitoring data. As ex-
plained in the previous chapter, the node exporter connects to the database on
the client’s virtual machine using the credentials specified in the configuration
file.

Once the connection is established, the node exporter retrieves the name
of the metrics, the queries to be executed and their labels from a file called
default-metrics.yml (as shown in the Figure 4.2). The configuration file also
specifies the scraping interval and the HTTP port on which to write the data.

Next, Prometheus scrapes the exporter port to retrieve all available metrics.
This solution allows you to have several exporters active at the same time,
allowing you to differentiate between different monitoring operations on the
same or different targets. Furthermore, new metrics can be added easily and
flexibly by editing the default metrics file.

The queries used in the PoC exporters include a SELECT of the labels
shown in the table below (4.1).

LABEL NAME DESCRIPTION
target_type The type of target (i.e. Pluggable, Container or RAC database)
target_name The name of the target
metric_name The name of metric class (i.e. Load, Memory, CPU, MetricExtension)

metric_column The name of the metric associated with class (i.e. ’UsedPct’ for Memory)
line_of_bus Name of the customer

lifecycle The group of target (i.e. ’Production’, ’MissionCritical’, ’Test’)
key_val Typically additional information about metrics

availability_status_code Info about target’s availability status

Table 4.1: Labels extracted with SELECT in metrics’ query

32

Proposed Solution

Figure 4.2: An example of metrics configuration for monitoring

4.2 Remote Write and Mimir

Once Prometheus has retrieved the data via the node exporter, it proceeds to
push for Remote Write. In this PoC, we did not focus on security for sending
packets between VMs, so for ease of use we only allowed pushing on certain
ports.

In the Prometheus configuration, we entered the IP address of the com-
pany’s VM-bastion, on which Mimir and Grafana are installed. Using the
Prometheus API, metrics are sent to Mimir’s listening port.

This approach allows Prometheus to efficiently send the collected data to
Mimir for storage and subsequent analysis, without having to store the data

33

Proposed Solution

locally and ensuring centralised and scalable management of the metrics. Con-
figuring the IP address and port where Mimir is listening allows Prometheus to
reliably send data to its destination, enabling Mimir to efficiently and securely
manage and analyse monitoring data.

4.2.1 Mimir object storage and ring configuration

When configuring Mimir to receive the remote write from a Prometheus on a
different VM, several variables were considered to ensure optimal operation
and effective management of monitoring data.

Configuring the Remote Write

To configure Mimir for remote write from a Prometheus on a different VM,
the listening interface and port on which Mimir accepts remote write requests
was specified. This allows Prometheus to send monitoring data to Mimir via
a secure and reliable connection.

Ring

Mimir uses a distributed data structure called a ’ring’ to store and manage
monitoring data. The ring is a node structure that allows data to be dis-
tributed over multiple nodes and offers greater scalability and reliability than
a single node. In addition, the ring provides fault tolerance, allowing Mimir
to maintain data accessibility even if one or more nodes fail.

34

Proposed Solution

Local Storage

In addition to the distributed ring, Mimir also uses local storage to temporarily
store monitoring data before it is distributed in the ring. Local storage allows
for fast writing and reading of data and offers greater resilience in the event
of connectivity problems or node failures. Once the data has been written to
the local storage, it is then distributed in the ring for long-term persistence
and analysis.

Other Details

In addition to the configuration of the remote write, ring and local stor-
age, other configurations and optimisations were considered to ensure the
performance and stability of Mimir. These may include data replication con-
figuration, capacity management, backup configuration and data retention
policy management.

Overall, the configuration of Mimir for remote write from a Prometheus
on a different VM was designed to provide a robust and scalable solution for
storing and analysing monitoring data, enabling users to obtain useful and
meaningful information on system performance.

4.3 Data Manipulation and Visualization with
Grafana

After configuring and populating Mimir with monitoring data from Prometheus,
the next step is to connect Mimir to Grafana to create meaningful and
informative visualisations of the data. This section will explore the process of
configuring data sources on Grafana and manipulating data using PromQL to

35

Proposed Solution

create effective visualisations of monitoring metrics.

4.3.1 Data Source

To enable Grafana to display data from Prometheus and the node exporter, it
is necessary to configure the data sources. Via the administration panel, we
can connect Grafana to Mimir, which allows us to access Prometheus without
having to know the IP address of the VM from which the data comes (Fig. 4.3).

Figure 4.3: Data-source on Grafana

At this point, we are ready to proceed with the manipulation of the time
series.

4.3.2 PromQL and metrics

As discussed in previous chapters, Prometheus organises time series within a
data structure called a metric. Metrics can contain a wide range of different
time series, and to select the data of interest, we use PromQL, a powerful
and flexible query language that allows us to perform complex operations on
the collected data.

Using the extracted labels (see Table 4.1), we can easily derive the time series
of our interest. Similar to the WHERE clauses in SQL, we can set conditions
for the labels to filter the data. For example, the label ’line_of_business’
allows us to easily select the desired customer.

36

Proposed Solution

The following figure shows an example of monitoring the CPU utilisation
percentage for all hosts on the Mediamente server. [4.4]

Figure 4.4: Example of cpu% timeseries

4.3.3 Dashboard and global variables

Grafana uses the concept of a Dashboard as a fundamental tool for organizing
and displaying multiple visualizations in a single interface. A Dashboard
can contain a series of panels, each representing a specific data visualization.
This approach is extremely useful because it allows users to group related
visualizations into a single screen, making it easier to analyze and understand
the data.

One of the most powerful features of Dashboards in Grafana is the ability
to use Global Variables. Global Variables are dynamic variables that can be
used within queries and panel settings to allow dynamic interaction with the
data. This is particularly useful when you want to create visualizations that
depend on specific parameters or filter conditions.

In the context of our project, the use of Dashboards and Global Variables

37

Proposed Solution

allows us to group certain related queries and visualization settings within a
single Dashboard. For example, we can create a Dashboard specifically for
monitoring hosts, which includes a series of panels showing CPU, memory, and
disk usage metrics for each host. In addition, we can create another Dashboard
dedicated to monitoring tablespaces, which displays disk space usage metrics
for various database tables.

The use of Dashboards and Global Variables thus allows us to effectively
organize and visualize monitoring information, enabling users to explore and
analyze data more efficiently and intuitively. This approach contributes greatly
to the creation of a comprehensive and highly functional monitoring system
that meets the specific needs of our project.

Some examples of the work are showned in following figures [Fig. 4.5, 4.6,
4.7]

Figure 4.5: Global Variables for ’Host’ dashboard.

38

Proposed Solution

Figure 4.6: Example of global variables.

Figure 4.7: Variables selection on dashboard.

39

Chapter 5

Visualization and Results

5.1 Visualization

We will now explore the types of views used to monitor key metrics related
to Filesystems and Tablespaces, which play a crucial role in the context of
database monitoring.

Tablespaces are storage spaces within Oracle databases where data is stored.
It is essential to constantly monitor the available space within tablespaces to
avoid capacity problems and ensure efficient database operation. Total occu-
pancy of disk storage, where instances reside, can cause significant slowdowns
or even temporary disruptions. Constant monitoring is therefore a key tool
for planning scaling and optimization operations.

The most commonly used views include TimeSeries, which allow you to
view the history of parameters such as %Used, %Free, %Cpu, and so on, and
Table, which provide an overview of monitoring, including Filesystems and
disks. Using these views, trends and anomalies in the monitoring data can
be easily identified, enabling timely interventions to ensure proper system

41

Visualization and Results

operation.

Below are some snapshots of the dashboard (Fig. 5.1, 5.2, 5.3).

Figure 5.1: Timeseries and stats visualization example.

Figure 5.2: Different colors can be used to alert a critical threshold.

42

Visualization and Results

Figure 5.3: Table visualization example.

43

Visualization and Results

5.2 Results

We will now explore the final dashboards of this project, examining the choices
that guided the use of specific metrics and the visualization methods adopted.

The dedicated Hosts dashboard presents a number of visualizations crucial
for quick and effective system analysis. Tables and time series showing trends
in available space on different mount points are of critical importance in disk
space management.
In addition, the panels devoted to CPU and RAM utilization provide essential

Figure 5.4: Filesystems monitoring panels.

information on the health of the target, allowing any spikes or anomalies in
system performance to be quickly identified (Fig. 5.5).
Finally, the Disk Group utilization table provides a detailed analysis of the
storage resources used (Fig. 5.6).

Figure 5.5: Panels for health’s device monitoring.

In the dashboard dedicated to databases, we find a series of tables useful

44

Visualization and Results

Figure 5.6: Disk Group Usage info.

for visualizing the tablespaces present on each target and their utilization in
percent and gigabytes of storage.
Time-series views of these values provide an in-depth analysis of the memory
usage trend and database fill rate, enabling optimal management of available
space (Fig. 5.7).
A crucial element of this dashboard are the tables that associate the Datafile

Figure 5.7: Tablespaces info.

Path with each tablespace, allowing direct identification of the disk on which

45

Visualization and Results

the data is stored and facilitating troubleshooting or operational needs (Fig.
5.8).

Figure 5.8: Datafiles path info.

46

Chapter 6

Conclusions

In this concluding chapter, we will examine the key elements that made possi-
ble the success of the solution adopted for multi-target monitoring. During
the development of this project, we adopted a highly efficient and versatile ar-
chitecture that proved extremely suitable for our multi-target monitoring needs.

A key element of this architecture was the Node Exporter, a highly customiz-
able component that allowed us to collect a wide range of metrics from our
systems, adapting perfectly to the specific needs of each client. Its versatility
allowed us to obtain detailed and reliable data on CPU, memory, network and
more, without compromising system resources.

In addition, using Prometheus with the Remote Write feature allowed
us to centralize the storage of monitoring data on a single infrastructure,
minimizing the deployment and management of monitoring servers. This
greatly simplified the data management and analysis process, ensuring an
efficient and secure flow of information between the various system components.

The dashboards created in Grafana have played a key role in providing

48

Conclusions

effective and immediate visualization of the data of greatest interest to our
clients. Thanks to their intuitive design and customization capabilities, we
were able to provide our clients with a tailored monitoring experience tailored
to their specific needs.

6.1 Future Works

Looking to the future, the design provides a solid foundation on which to
build further enhancements and expansions. The architecture was designed
with flexibility in mind, enabling dashboard additions and changes to be made
quickly and easily to meet specific customer needs. This adaptability will
ensure that the monitoring system can continue to grow and evolve with the
changing needs of the company and its customers over time.
In particular, it is planned to implement a critical event alert system, integrated
with the Prometheus AlertManager. This will enable immediate notifications
in case of anomalies or major problems in the monitored systems. In addition,
it is planned to further enhance this alerting system using GrafanaOnCall,
which will allow emergency calls to employees to be handled in a timely and
effective manner, ensuring immediate response to critical monitoring situations.

49

Appendix A

Node Exporter

1 import argparse
2 import os
3 import yaml
4 import cx_Oracle
5 import time
6 import prometheus_cl ient
7 from prometheus_cl ient import start_http_server , Gauge , Counter ,

Histogram , C o l l e c t o r R e g i s t r y
8 import l ogg ing
9

10

11 de f read_yaml_config (f i l e_path) :
12 t ry :
13 with open (f i l e_path , ’ r ’) as c o n f i g _ f i l e :
14 conf ig_data = yaml . sa fe_load (c o n f i g _ f i l e)
15

16 # Check i f the r equ i r ed v a r i a b l e s are pre sent in the
c o n f i g u r a t i o n data .

17 # In t h i s example , only ’ auth_conf ig ’ and ’ env_config ’
are checked

50

Node Exporter

18 auth_var iab les = [’DB_USER’ , ’DB_PASSWORD’ , ’DB_DSN’]
19 env_var iab les = [’ORACLE_HOME’ , ’ORACLE_SID ’]
20 f o r v a r i a b l e in auth_var iab les :
21 i f v a r i a b l e not in conf ig_data [’ auth_conf ig ’] :
22 r a i s e KeyError (f " Required v a r i a b l e ’{ v a r i a b l e } ’

i s miss ing in the c o n f i g u r a t i o n f i l e . ")
23

24 f o r v a r i a b l e in env_var iab les :
25 i f v a r i a b l e not in conf ig_data [’ env_config ’] :
26 r a i s e KeyError (f " Required v a r i a b l e ’{ v a r i a b l e } ’

i s miss ing in the c o n f i g u r a t i o n f i l e . ")
27

28 re turn conf ig_data
29 except FileNotFoundError :
30 pr in t (f " F i l e not found : { f i l e_path } ")
31 except KeyError as e :
32 pr in t (f " Con f igurat ion e r r o r : { s t r (e) } ")
33 except Exception as e :
34 pr in t (f "An e r r o r occurred whi l e read ing the YAML f i l e : {

s t r (e) } ")
35

36

37

38 de f get_conf ig_f i l e_path () :
39 # Check i f the −−conf i g −f i l e argument i s provided .
40 par s e r = argparse . ArgumentParser (d e s c r i p t i o n=" Read a YAML

c o n f i g u r a t i o n f i l e ")
41 par s e r . add_argument ("−−conf i g −f i l e " , he lp=" Path to the YAML

c o n f i g u r a t i o n f i l e ")
42 args = par s e r . parse_args ()
43

44 # I f −−conf i g −f i l e argument i s provided , use i t .
45 i f a rgs . c o n f i g _ f i l e :
46 re turn args . c o n f i g _ f i l e
47 e l s e :

51

Node Exporter

48 r a i s e FileNotFoundError ()
49

50

51

52 # Eventual ly add other va r i ab l e s , s e t environment v a r i a b l e s
ORACLE_HOME and ORACLE_SID

53 de f i n i t i a l i z e _ d b _ v a r i a b l e s (conf ig_data) :
54 db_user = conf ig_data [’ auth_conf ig ’] [’DB_USER’]
55 db_password = conf ig_data [’ auth_conf ig ’] [’DB_PASSWORD’]
56 db_dsn = conf ig_data [’ auth_conf ig ’] [’DB_DSN’]
57 t ry :
58 os . env i ron [’ORACLE_HOME’] = conf ig_data [’ env_config ’] [’

ORACLE_HOME’]
59 os . env i ron [’ORACLE_SID ’] = conf ig_data [’ env_config ’] [’

ORACLE_SID ’]
60 except Exception as e :
61 pr in t (f ’ Error s e t t i n g ORACLE_HOME and/ or ORACLE_SID: { s t r

(e) } ’)
62 re turn db_user , db_password , db_dsn
63

64 # Return two d i c t i o n a r i e s { metric_name : gauge/ counter / h i s t o } ;
{ metric_name : query } with a l l met r i c s and r eque s t s

s p e c i f i e d in de fau l t −met i r c s . yml
65 de f in i t i a l i z e_prometheus_metr i c s (c o n f i g _ f i l e) :
66 with open (c o n f i g _ f i l e , ’ r ’) as stream :
67 c o n f i g = yaml . sa fe_load (stream)
68 i f stream i s not None :
69 pr in t (" f i l e _ e x i s t ! ")
70 metr i c s = {}
71 r eque s t s = {}
72 # Retr i eve in fo rmat ion about metr ic and c r e a t e a new metr ic
73 f o r metr i c_conf ig in c o n f i g . get (’ met r i c s ’ , []) :
74 name = metr ic_conf ig [’name ’]
75 d e s c r i p t i o n = metr i c_conf ig [’ d e s c r i p t i o n ’]
76 metric_type = metr i c_conf ig [’ type ’]

52

Node Exporter

77 l a b e l s = metr i c_conf ig . get (’ l a b e l s ’ , [])
78 query = metr i c_conf ig [’ query ’]
79

80 i f metric_type == ’ gauge ’ :
81 metr i c s [name] = Gauge (name , d e s c r i p t i on , labelnames =[

l a b e l [’ label_name ’] f o r l a b e l in l a b e l s])
82 r eque s t s [name] = query
83 e l i f metric_type == ’ counter ’ :
84 metr i c s [name] = Counter (name , de s c r i p t i on , labelnames

=[l a b e l [’ label_name ’] f o r l a b e l in l a b e l s])
85 r eque s t s [name] = query
86 e l i f metric_type == ’ histogram ’ :
87 metr i c s [name] = Histogram (name , d e s c r i p t i on ,

labelnames =[l a b e l [’ label_name ’] f o r l a b e l in l a b e l s])
88 r eque s t s [name] = query
89 re turn metr ics , r eque s t s
90

91

92

93 de f c o l l e c t _ m e t r i c s (metric_query , config_data , logger , isUp) :
94 # metric_query i s a tup l e (metric , query)
95 db_user , db_password , db_dsn = i n i t i a l i z e _ d b _ v a r i a b l e s (

conf ig_data)
96 t ry :
97 connect ion = cx_Oracle . connect (db_user , db_password ,

db_dsn)
98 l o g g e r . debug (f " Connection e s t a b l i s h e d . \ n{ conf ig_data [’

auth_conf ig ’] } ")
99 cur so r = connect ion . cu r so r ()

100 cur so r . execute (metric_query [1])
101 rows = cur so r . f e t c h a l l ()
102

103 l a b e l s = metric_query [0] . _labelnames
104 l o g g e r . debug (" Query executed . ") # Commented f o r t e s t i n g .

Low scrape i n t e r v a l .

53

Node Exporter

105 f o r row in rows :
106

107 # We s t o r e in a d i c t the value o f each l a b e l {
label_name : l a b e l } and l a s t va lue o f ’ row ’ i s the ac tua l
va lue

108 l a b e l s _ d i c t = { l a b e l s [i] : row [i] f o r i in range (l en (
l a b e l s)) }

109 value = row [−1]
110 i f va lue i s None :
111 l o g g e r . debug (" Found a None value . ")
112 cont inue
113 metric_query [0] . l a b e l s (∗∗ l a b e l s _ d i c t) . s e t (va lue)
114 cur so r . c l o s e ()
115 connect ion . c l o s e ()
116 l o g g e r . debug (" Connection c l o s e d . ")
117 host = os . env i ron [’HOSTNAME’]
118 SID = conf ig_data [’ env_config ’] [’ORACLE_SID ’]
119

120 isUp . l a b e l s (host=host , SID=SID) . s e t (1)
121 except cx_Oracle . DatabaseError as e :
122 l o g g e r . e r r o r (f " Database e r r o r : {e} ")
123 isUp . l a b e l s (host=host , SID=SID) . s e t (0)
124 except Exception as e :
125 l o g g e r . e r r o r (f "An e r r o r occurred : {e} ")
126 isUp . l a b e l s (host=host , SID=SID) . s e t (−1)
127

128 de f main () :
129 # I n i t i a l i z e v a r i a b l e from c o n f i g . yml and c r e a t e a l og g e r ’

python_exporter . l og ’
130

131 # Get the d i r e c t o r y path o f the s c r i p t
132 path_dir = os . path . dirname (os . path . abspath (’ __file__ ’))
133

134 con f i g_f i l e_path = get_conf ig_f i l e_path ()
135 con f i g_f i l e_path = path_dir+’ / ’+con f i g_f i l e_path

54

Node Exporter

136

137 # Inte r rup t the code i f c o n f i g . yml i s not a v a i l a b l e (not
g iven by command l i n e or not pre sent in $PATH)

138 i f con f i g_f i l e_path i s not None :
139 conf ig_data = read_yaml_config (con f i g_f i l e_path)
140 i f conf ig_data :
141 pr in t (" Conf igurat ion data loaded . ")
142 e l s e :
143 pr in t ("No c o n f i g u r a t i o n data loaded . ")
144 re turn
145

146 # From here we s t a r t to c o l l e c t the metr i c s
147 # NOTE: gauge_name , gauge_desc , l a b e l s , port and time

durat ion in second f o r s l e e p can be s e t by c o n f i g . yml (in
fu tu r e)

148 #gauge_name = ’ python_test_exporter ’
149 #gauge_desc = ’ Test expor te r d e s c r i p t i o n . ’
150 #l a b e l s = [’ target_name ’ , ’ target_type ’ , ’ metric_name ’ , ’

metric_column ’ , ’ kv1 ’ , ’ kv2 ’ , ’ kv3 ’ , ’ kv4 ’ , ’ kv5 ’ , ’ kv6 ’ , ’ kv7
’]

151

152 port = conf ig_data [’ scrape_params ’] [’ port ’]
153 s c rape_ in t e rva l = conf ig_data [’ scrape_params ’] [’

s c r ape_ in t e rva l ’]
154

155 f i l ename = conf ig_data [’ l o g g e r ’] [’ l ogger_f i l ename ’]
156 l o g g e r _ l e v e l = conf ig_data [’ l o g g e r ’] [’ l o g g e r _ l e v e l ’]
157

158 l o gg ing . bas i cCon f i g (f i l ename=f ’ { path_dir }/{ f i l ename } . l og ’ ,
l e v e l=logge r_ l eve l , format=’%(asct ime) s − %(levelname) s : %(
message) s ’)

159 l o g g e r = logg ing . getLogger (f ’ { f i l ename } ’)
160

161 # Create a Prometheus gauge f o r isUp
162 #host = os . env i ron [’HOSTNAME ’]

55

Node Exporter

163 #SID = conf ig_data [’ env_config ’] [’ORACLE_SID ’]
164 l abe l s_isUp = [’ host ’ , ’ SID ’]
165 isUp = Gauge (’ isUp ’ , ’ Check i f connect ion i s e s t a b l i s h e d . ###

0 : Dead | 1 : Al ive | −1 : Unkown Status ’ , labe l s_isUp)
166

167 # Star t the Prometheus HTTP s e r v e r and i n i t i a l i z e
metrics_gauge

168 s tart_http_server (port=port)
169 metr ics , r e que s t s = in i t i a l i z e_prometheus_metr i c s (f ’ { path_dir

}/ de fau l t −metr i c s . yml ’)
170 whi le True :
171 f o r metric_name , query in r eque s t s . i tems () :
172 i f metric_name in metr i c s :
173 metr ic = metr i c s [metric_name]
174 c o l l e c t _ m e t r i c s ((metric , query) , config_data ,

logger , isUp=isUp)
175 time . s l e e p (s c rape_ in t e rva l ∗60) # sc rape_ in t e rva l i s in

minutes , check c o n f i g . yml
176

177

178

179

180 i f __name__ == "__main__" :
181 main ()

56

Bibliography

[1] Oracle. Oracle Database Architecture. Accessed: February 2024. 2024. url:
https://www.oracletutorial.com/oracle-administration/oracle-

database-architecture/ (cit. on p. 10).

[2] Oracle. Oracle Database Instance Architecture. Accessed: February 2024.
2024. url: https://www.oracletutorial.com/oracle-administrati

on/oracle-database-architecture/ (cit. on p. 11).

[3] Oracle. Oracle Enterprise Manager. Accessed: February 2024. 2024. url:
https://www.oracle.com/it/enterprise-manager/ (cit. on p. 12).

[4] Prometheus. Prometheus - Monitoring system & time series database.
Accessed: February 2024. 2024. url: https://prometheus.io/ (cit. on
p. 13).

[5] Prometheus. Prometheus TimeSeries structure. Accessed: February 2024.
2024. url: https://training.promlabs.com/training/introduction

-to-prometheus/prometheus-an-overview/time-series-data-model

(cit. on p. 15).

[6] Grafana Labs. Grafana Open Source documentation. Accessed: February
2024. 2024. url: https://grafana.com/docs/grafana/latest/ (cit. on
p. 17).

[7] Grafana Labs. Mimir Overview. Accessed: February 2024. 2024. url:
https://grafana.com/oss/mimir/ (cit. on p. 18).

57

https://www.oracletutorial.com/oracle-administration/oracle-database-architecture/
https://www.oracletutorial.com/oracle-administration/oracle-database-architecture/
https://www.oracletutorial.com/oracle-administration/oracle-database-architecture/
https://www.oracletutorial.com/oracle-administration/oracle-database-architecture/
https://www.oracle.com/it/enterprise-manager/
https://prometheus.io/
https://training.promlabs.com/training/introduction-to-prometheus/prometheus-an-overview/time-series-data-model
https://training.promlabs.com/training/introduction-to-prometheus/prometheus-an-overview/time-series-data-model
https://grafana.com/docs/grafana/latest/
https://grafana.com/oss/mimir/

BIBLIOGRAPHY

[8] Oracle. Python Cx Oracle Module. Accessed: February 2024. 2024. url:
https://pypi.org/project/cx-Oracle/ (cit. on p. 25).

58

https://pypi.org/project/cx-Oracle/

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Company
	Case Study
	Project Structure and Workflow

	Background
	Time Series and Database Timeseries
	Oracle Database
	Database and Instance
	Data Storage and Architecture

	Oracle Enterprise Manager (EM)
	Monitoring Utilities
	Oracle Enterprise Manager Tables for Metrics

	Prometheus
	Prometheus remote write

	Grafana
	Mimir

	Methodology
	Architecture
	General Architecture
	Subnet structure
	Role of the Container
	Architecture Objectives
	Role of Prometheus and Mimir in the Architecture
	Using Grafana for Data Visualisation

	Configuration
	Problem of Access to the Oracle Database and Enterprise Manager
	Solution: Python Exporter for Oracle DB
	Custom Python Exporter for Oracle DB
	The configuration file

	Proposed Solution
	How Prometheus works and how Node Exporter interact with
	How Prometheus Scraping Works
	Target Selection
	Scraping process for Node Exporter

	Remote Write and Mimir
	Mimir object storage and ring configuration

	Data Manipulation and Visualization with Grafana
	Data Source
	PromQL and metrics
	Dashboard and global variables

	Visualization and Results
	Visualization
	Results

	Conclusions
	Future Works

	Node Exporter
	Bibliography

