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Summary

In recent years, the popularity of online platforms for home exercise programs,
particularly yoga, has increased significantly. Yoga involves various poses, known
as ‘asanas’, where small differences can change the name and nature of the exercise.
However, many video tutorials do not have accurate names or descriptions for these
poses, which presents a challenge for beginners. Automated tools for identifying
yoga poses offer critical support for users approaching these sessions. Although
there is a vast literature on understanding videos, there is a significant gap in the
recognition of specific exercises in yoga videos, largely due to a lack of adequate
datasets. To solve this problem, we introduced a new dataset to identify and segment
yoga poses using skeletal data. In fact, skeletal data are much less affected by
changes in viewpoint and background than traditional RGB data, providing a more
stable and reliable basis for analysis. We designed a linear interpolation process
to merge the videos, creating a dataset that supports both action recognition and
segmentation. In total, we collected 2115 videos from YouTube covering 58 different
asanas, with an average of 34 sequences per pose and an average duration of 13
seconds per video. The skeletal sequences were extracted with the BlazePose model
provided by Mediapipe, an open-source tool developed by Google for computer
vision tasks. In our research, using the MS-GCN network-which combines the
convolution on graphs of ST-GCN and the temporal segmentation capabilities
of MS-TCN-we conducted an ablation study to analyze the performance impact
of dataset features constructed by interpolation. In particular, we analyzed the
impact of the number of exercise per video, the possibility of having an exercise
repeated multiple times in the same video, and the number of transition frames
used to connect two clips. The experiments showed that a dataset built with videos
with contain fewer non-repeated exercises linked by a high number of transition
frames helps to increase the frame-level accuracy of MS-GCN. We believe that
using linear interpolation to join videos can be a solid starting point to further
explore the conversion of datasets used for activity recognition task into datasets
suitable for the task of temporal segmentation of videos.
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Chapter 1

Introduction

In recent years, the efficiency and power of deep learning models have significantly
increased due to the vast amount of data available. While the concept of neural
networks dates back to the 1960s, it was not until the era of Big Data that algorithms
capable of achieving human-comparable or even superior performance in terms of
speed and accuracy became feasible.

The Perceptron, developed by Rosenblatt in 1957, was the first mathematical
model to simulate a biological neuron. It is a binary linear classifier that divides
samples into two half-planes based on linear comparability. However, to overcome
the limitations of linear classification, artificial neural networks (ANNs) were
introduced. ANNs consist of multiple neurons organized into layers, allowing for
the learning of complex relationships between inputs and outputs. The training
phase involves a feedforward pass, where predictions are generated, followed by
backpropagation to update the weights based on prediction errors.

Convolutional Neural Networks (CNNs) were developed to process non-one-
dimensional data such as images while preserving spatial information. In CNNs,
neurons are organized in three dimensions: width, height, and depth. Convolu-
tional layers apply filters to input data using the convolution operator to generate
activation maps. The hierarchical features extracted by successive convolutional
layers capture information from increasingly distant pixels in the original image.

Graph Neural Networks (GNNs) have gained popularity for processing graph-
structured data, which is prevalent in various fields like social sciences and chemistry.
Unlike images, graphs are non-Euclidean data structures and cannot directly apply
conventional convolutions. GNNs address this challenge by iteratively exchanging
information between nodes through aggregation and combination steps.

The application of Graph Convolutional Networks (GCNs) extends to various
domains and tasks. In our work, we focus on their use in Skeleton-based Human
Action Recognition (HAR) and Temporal Action Segmentation (TAS) tasks. HAR
involves identifying and categorizing activities based on skeletal data, while TAS

1



Introduction

entails segmenting temporally untrimmed video sequences and labeling each segment
with predefined action labels. Both tasks find applications in video surveillance,
human-computer interaction, and beyond.

Sports, like many other fields, are increasingly utilizing deep learning analysis
methodologies to enhance athlete performance. At the professional level, data
analysis is employed to optimize training loads and streamline scouting processes.
Moreover, the availability of lightweight and efficient models on mobile devices has
extended these capabilities to a wider range of users, including amateur athletes
seeking to enhance their training experiences. Particularly, during lockdown
periods due to COVID-19, there has been a surge in the popularity of home
workout applications, many of which integrate AI to offer personalized feedback
and guidance to users, simulating the experience of having a personal trainer.

Yoga, originating in India, is one such practice that has gained popularity as a
home workout routine. It blends physical and spiritual well-being through various
poses, known as ’asanas’, which vary in difficulty. For beginners, learning these
poses can be challenging. Automated AI tools that recognize yoga poses in videos
offer two main benefits: they aid practitioners in memorizing poses and provide
real-time feedback on posture correctness. The growing interest in AI applications
for sports has led to the availability of more datasets in the yoga sector. However,
many existing datasets have limitations, such as a restricted number of asanas or
focusing solely on pose recognition in images rather than videos.

Our research has made significant contributions to the field of Human Action
Recognition (HAR) by presenting a new dataset called 3DYogSeg. Unlike existing
datasets, ours features both RGB videos and skeletal sequences and includes a
comprehensive collection of 58 yoga asanas. Additionally, our study stands out
as the first to delve into the segmentation of yoga videos, offering a pioneering
method to repurpose datasets for Temporal Action Segmentation (TAS) from those
originally designed for HAR. Furthermore, to evaluate the dataset’s quality, we
conducted extensive experiments on both the HAR and TAS tasks using state-of-
the-art networks.

1.1 Objectives and motivations for the project
Our work focuses on addressing the tasks of Skeleton-based Human Activity
Recognition (HAR) and Temporal Action Segmentation (TAS) within the domain
of Yoga. We propose a novel dataset and a pipeline to create pseudo-lessons from
videos containing single exercises.

The key aspects of these tasks involve the utilization of graphs, representing
data with a non-Euclidean structure, and the handling of skeletal sequences, which
contain both spatial and temporal information. Graphs are chosen due to their
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ability to represent the human body as interconnected nodes, reflecting physical
relationships such as bone connections and interactions between body parts in
various poses. Additionally, skeletal sequences are represented as spatial-temporal
graphs, where spatial features are captured within individual frames and temporal
features are encoded in relations between frames.

The motivation for exploring these tasks in the context of yoga arises from the
lack of datasets specifically designed for segmenting yoga video lessons based on
timestamps. We believe that developing a tool capable of accurately segmenting
video lessons can enhance the training experience for practitioners. For instance,
providing users with information about the sequence and duration of exercises
beforehand can help them prepare their training space effectively. Moreover,
offering real-time feedback on pose execution during practice can improve technique.
Additionally, categorizing video lessons into different levels of difficulty based
on exercises, duration, and sequence can guide practitioners in their training
progression.

Collecting a bespoke dataset for the TAS task, however, is time-consuming
due to the diverse range of yoga poses. To overcome this challenge, we initially
gathered videos from YouTube containing single yoga poses and extracted skeletal
sequences. Subsequently, we evaluated the quality of our HAR dataset, 3DYogSeg,
through benchmarking on four different Graph Convolutional Network (GCN)-
based networks. We then developed a pipeline to concatenate clips of different poses
using linear interpolation, thus creating pseudo-lessons. Using this approach, we
constructed datasets for the TAS task by varying parameters such as the number of
activities per video, transition frames between clips, and the inclusion of repeated
exercises. Finally, we conducted segmentation experiments on real yoga video
lessons obtained from YouTube. To demonstrate the versatility of our pipeline, we
generated pseudo-lessons using another recent dataset, 3Dyoga90, and evaluated
the performance of the MS-GCN network trained on this dataset.

1.2 Contributions
With this thesis, we introduce 3DYogSeg, a novel dataset containing 3D skeletal
sequences for pose recognition. Our dataset comprises YouTube videos, identified
using pose names in Italian, English, and Sanskrit (the official language of Yoga).
We collected a total of 2115 videos, representing 58 distinct yoga asanas. On
average, each exercise includes 34 clips, with an average duration of 12.91 seconds
per clip. We extracted 3D skeletal sequences from these videos using the BlazePose
model, which were further refined to include 15 joints. Compared to existing
datasets in the Yoga domain, 3DYogSeg stands out as one of the first to provide
publicly available skeletal sequences extracted from videos, rather than static
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images. Moreover, our dataset exclusively contains clips showcasing the yoga poses,
thereby minimizing extraneous movements such as preparation or exit phases.
This deliberate curation choice simplifies the Human Action Recognition (HAR)
task, as models are not exposed to patterns from similar asanas that might be
performed in sequence. Moreover, in this thesis, we propose a pipeline to convert
3DYogSeg into a Temporal Action Segmentation (TAS) dataset. Leveraging linear
interpolation, we demonstrate a method to concatenate two skeletal sequences, C1
and C2, into a new sequence, C3, by iteratively adding transition frames. This
approach allows us to create pseudo-video lessons characterized by parameters
such as the number of activities per video (apv), the number of transition frames
between clips (tf), and the presence or absence of repeated exercises (ar). We
conducted experiments to establish benchmarks for the HAR task using four Graph
Convolutional Network (GCN)-based networks [1, 2, 3, 4]. Despite the challenge
posed by the task due to the high similarity between some poses, our results
illustrate how our dataset can serve as an effective training resource for GCNs in
yoga pose recognition. For the TAS task, we trained the MS-GCN [5] network on
datasets generated using our proposed pipeline with various parameter settings.
Both quantitative and qualitative analyses demonstrate that our methodology offers
a strong baseline and is significantly less time-consuming than creating a bespoke
dataset for segmentation. To our knowledge, this is the first study to address
the segmentation of yoga video lessons. Finally, we compared the performance of
our dataset with that of the 3Dyoga90 dataset, which shares similar construction
methods, across both HAR and TAS tasks.
In summary, our work offers the following contributions:

• We introduce a novel dataset, 3DYogSeg, tailored for the Human Action Recog-
nition (HAR) task within the domain of Yoga. This dataset comprises skeletal
sequences extracted from YouTube videos, providing a valuable resource for
researchers and practitioners interested in yoga pose recognition.

• We present a robust pipeline to convert a skeletal sequence dataset designed for
HAR into a dataset suitable for the Temporal Action Segmentation (TAS) task.
This methodology enables the generation of pseudo-video lessons, bypassing
the need for labor-intensive dataset creation specific to segmentation.

• Our work includes benchmarks for the HAR task using four Graph Convolu-
tional Network (GCN)-based networks. These benchmarks serve as a valuable
reference point for evaluating the performance of GCNs in recognizing yoga
poses using our dataset.

• We provide both quantitative and qualitative results of using the pseudo-
lessons dataset for segmenting real video lessons. Our findings highlight the
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efficacy of our methodology in segmenting yoga video content accurately and
efficiently.

• We compare the performance of our 3DYogSeg dataset with that of 3Dyoga90,
which shares similarities in construction methods. This comparison sheds light
on the strengths and weaknesses of each dataset, providing insights for future
research endeavors.

Overall, our work contributes to advancing research in both yoga pose recognition
and temporal action segmentation, offering valuable resources and methodologies
for researchers in these domains.

1.3 Thesis structure
The thesis is organized as follows:

• DeepLearning: from Perceptron to Graph Convolution Neural Net-
works: This chapter provides a historical overview of Deep Learning, tracing
its evolution from the perceptron to graph convolutional neural networks. It
introduces fundamental concepts essential for understanding our work.

• Skeleton-Based Human Activity Recognition: Chapter 3 introduces
the Human Action Recognition task, with a focus on strategies based on
skeletal sequences. It covers pose estimation techniques and the Blaze Pose
architecture. Additionally, it describes four networks used for benchmarking
on our dataset: ST-GCN, MS-AAGCN, CTR-GCN, and DG-STGCN.

• Temporal Action Segmentation: Chapter 4 delves into the Temporal
Action Segmentation task, providing an overview of supervision methodologies,
core techniques, and related tasks. It introduces the MS-GCN network utilized
in our experiments.

• 3DYogSeg: a new dataset for 3D yoga pose recognition and seg-
mentation: The fifth chapter details the creation of the 3DYogSeg dataset
and outlines the pipeline used to adapt it for Temporal Action Segmentation.
It covers previous yoga datasets, video collection, skeleton extraction, data
transformation, and dataset conversion.

• Benchmark and experiments: Chapter 6 presents benchmarks for activity
recognition obtained using the aforementioned networks. It also showcases
quantitative and qualitative results for the Temporal Action Segmentation task.
Additionally, a comparison with similar existing yoga datasets is provided.
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• Conclusions and future developments: The final chapter summarizes the
key findings of our work and discusses potential future directions and areas
for further research.
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Chapter 2

DeepLearning: from
Perceptron to Graph
Convolution Neural
Networks

This chapter presents the basic concepts of artificial neural networks and deep
learning. Starting with the first form of a machine learning algorithm, the Per-
ceptron, we will then go on to introduce the fundamental notions behind Neural
Networks, and then discuss Convolutional Neural Networks. The last part of the
chapter will focus on the use of non-Euclidean data and the networks used for their
analysis, Graph Neural Networks, which are closely related to our work.

2.1 The Perceptron

The artificial neuron, called Perceptron, is a mathematical model that aims to
replicate the behavior of the biological neuron (figure 2.1).
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Figure 2.1: Biological neuron. Image from [6]

First introduced by Rosenblatt in 1957 [7], the perceptron receives numerical
values instead of electrical signals. This input is then processed through the ‘weights’
obtaining a weighted sum also called the activation value. In the biological neuron,
the processed input is then propagated through the axon if it reaches a minimum
power. In the perceptron, this verification is done via the activation function. As
in the human brain, the output of one neuron becomes the input of the next. The
all process is represented by the figure below.

x2 w2 Σ f

Activation
function

ŷ

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Figure 2.2: Artificial Neuron. Image from [8]

At a mathematical level, given an input xi, with i = 1, ..., N , the perceptron
produces the output:

ŷ = g(w0 +
N∑

i=1
xiwi) (2.1)

In 2.1 wi, for i = 1, ..., N , are the weights, the activation values or weigthed sum is
represented by ∑N

i=1 xiwi, the bias b is equal to w0 ∗−1 and the activation function,
that could be a step function, a linear function or a sigmoid is g.
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In case the activation function is a step function, the output can be rewritten
as:

ŷ(x1, ..., xN) =
{

+1, if w0 + w1x1 + ...+ wNxN ≥ 0.
−1, otherwise.

(2.2)

As can be understood from 2.2, the perceptron divides space into two halves being
a Linear Binary Classifier.

The weights, which are learned during training, are the component that causes
the output to fall into the positive or negative semi-plane. During learning, the
weights are updated according to this scheme:

• At the beginning, they are set with random values.

• Iteratively, given a set of desired inputs and outputs, the weights are maintained
if the prediction is correct; otherwise, they are modified according to the
Hebbian Rule (equation 2.3) where η is the learning rate, ŷ is the predicted
output, and y is the desired output.

wi = wi + η(y − ŷ)xi (2.3)

As just described, a single perceptron is a linear binary classifier, so its main
limitation is the inability to solve nonlinear problems such as XOR (figure 2.3)
due to the convergence theorem [9]: the perceptron learning rule will converge to
a set of weights that correctly represents the examples, as long as the examples
represent a “linearly separable” function and η is sufficiently small. To be able to
separate nonlinear domains, it is possible to combine multiple perceptrons into
neural networks.

2.2 From neuron to "brain"

2.2.1 Multi-layer perceptron or Feed Forward Neural Net-
work

A Multi-layer Perceptron, or MLP, is a set of neurons organized according to
topology. In fact, a neural network is divided into layers, i.e., neurons placed at
the same distance from the input. The neural network (NN) can be divided into 3
main parts:

• Input layer : the neurons that receive the input;

• Output layer : the neurons that process the final result;

9
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x1

x2

Figure 2.3: Non-linearly separable domain of the logical operator XOR. Image
from [8]

Input
layer

Hidden
layer

Output
layer

x1

x2

x3

xn

H1

Hh

H1

Hh

H1

Hh

H1

Hh

y1y1

yoyo

Figure 2.4: Artificial Neural Network with a single hidden layer and multiple
outputs. Image from [8]

• Hidden layers: layers of neurons that process data between the input and
output layers;

Figure 2.4 shows an example of a MLP with a single hidden layer, whose neurons
are indicated with Hi, for i = 1, ..., h , n input neurons and o output neurons.

In an MLP, each output ŷ can be defined as:

ŷ = g

 J∑
j=1

Wj + h

(
I∑

i=1
wjixi

) (2.4)
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where Wj is the weight for the connection of neuron j of the hidden layer to the
output, and wji is the weight of input i that goes from neuron i to neuron j of
the hidden layer. The functions g and h represent the activation functions which
must have two important properties: i) not be linear so as to allow the generation
of non-linear mappings between input and output, ii) they must be differentiable,
a necessary condition for the learning strategy defined as backpropagation
(section 2.2.2) and iii) they should be bounded in order to have a more stable
gradient.

The propagation from the input to the output layer is defined as the forwarding
process, from which the name Feed-Forward neural network is taken.

2.2.2 Backpropagation
As for the perceptron, in which the weights are updated according to 2.3, also in
FNNs the learning rule, called backpropagation, aims to minimize the error or loss.

The basic idea is that the network learns from a set of inputs and the relative
desidered outputs based on the difference between the latter and the predictions
produced. The error is then propagated back through the network to indicate
which weights need to be changed.

Once the feedforward step is finished, the network generates outputs ŷ which are
compared with the real outputs y. The algorithm then calculates the derivatives of
the error L, which indicates how much each weight impacts the error. Subsequently,
through the update step, the weights are modified proportionally to the negative
of the gradient as indicated in the equation 2.5, called the gradient descent rule.

wt+1 ← wt + ∆w

∆w = −η · δL
δw

(2.5)

By iteratively repeating this process with multiple inputs, weights assume the
values that minimize the error.

w∗ = arg min
w

L(w) (2.6)

As indicated by 2.5, the ∆w is calculated separately for each w, so the updating
of each weight depends only on its importance in the error.

2.2.3 Learning Rate
The learning rate, η in 2.5, is a hyperparameter that controls the step size at
which the weights are updated during training. A higher learning rate leads to
larger updates, resulting in faster convergence but can also cause instability or
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overshooting. On the contrary, a lower learning rate leads to slower convergence
but can result in stable training and better generalization ability. During training,
various strategies can be used to determine the appropriate learning rate:

• Fixed learning rate: use a constant learning rate throughout the training.
It is the simplest and easiest approach to implement but requires precise
fine-tuning.

• Learning rate schedules: the learning rate is modified according to a linear or
exponential schedule. This approach can strike a good balance between fast
initial convergence and stabilization.

• Adaptive learning rate: some algorithms such as AdaGrad [10] and Adam [11]
adapt the learning rate based on the feedback from the optimization process,
taking into account previous gradients and second moments.

The choice of the learning rate or the strategy is often considered a fundamental
and difficult step given its dependence on the dataset, model, and objectives.

2.2.4 Weight Initialization
Another fundamental aspect of training is the initialization of the weights. Incorrect
initialization can lead to vanishing gradient, i.e., the gradient disappears and
therefore the parameters are no longer updated, or exploding gradient, which can
lead to divergence in the minimization of the loss. Two very common techniques as
initialization strategies are:

• Xavier Initialization [12]: Through Xavier initialization, the variance of the
gradient between the various layers of the network is kept almost constant.
Once the number of input connections, nin, and output connections, nout, is
fixed for each layer, the weights can be initialized via a uniform distribution
(eq. 2.7) or via normalization with µ = 0 and σ which depends on nin and
nout (eq. 2.8).

W ∼ U(−
√

6√
nin + nout

,

√
6√

nin + nout

) (2.7)

W ∼ N (0, 2
nin + nout

) (2.8)

• He initialization [13]: Designed especially for activation functions that have
rectified linear units (ReLU) [14] or its variations. In order to properly account
for the features of ReLU activations, it sets the initial weights bigger than
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those of Xavier initialization. In this case, the weight distribution follows a
normal with zero mean and variance equal to 2

nin
(eq. 2.9).

W ∼ N (0, 2
nin

) (2.9)

2.2.5 Error Functions
The error function, or loss function, quantifies the difference between the predicted
output and the actual targets, providing a measure of how well the model performs
on the training data. During training, the model aims to optimize the parameters
so that the predictions are as similar as possible to the desired outputs. In general,
we can represent the loss as L(ŷ, y), where ŷ is the prediction and y is the desired
output. Below, we describe two examples of loss functions used for classification
and regression tasks.

Mean Squared Error (MSE) The mean squared error, or MSE, is a loss used
for the regression task where the target variable Y ∈ R. MSE calculates the mean
square of the differences between ŷi and yi:

MSE = 1
N

N∑
i=1

(ŷi − yi)2 (2.10)

Here, N is the number of samples in the dataset, and ŷi and yi represent the
prediction and ground truth of the i-th sample respectively. MSE penalizes large
deviations more than small ones, making it sensitive to outliers.

Cross-Entropy Loss Cross-entropy loss is one of the most common losses used in
classification tasks such as Skeleton Based Human Activity Recognition (chapter 3),
where the target variable Y assumes only discrete values.

CrossEntropyLoss = − 1
N

N∑
i=1

C∑
j=1

yij log(ŷij) (2.11)

In this equation, N is the number of training samples, C is the number of
classes, ŷij is the predicted probability for the i-th sample to belong to class cj,
and yij is the real probability that xi belongs to cj. This loss function encourages
the model to assign higher probabilities to the correct classes. Cross-entropy loss
is commonly used with the softmax activation function in the output layer of
multiclass classification tasks.
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2.2.6 Activation Function
Activation functions, as described in section 2.2.1, are the components of neural net-
works that enable the generation of mappings between input and output. Through
these mappings, the model can learn complex relationships and representations of
the input. As we anticipated in section 2.2.1 they should be bounded, differentiable
and non-linear. Below, we describe some of the most common activation functions
used.

Sigmoid Activation Function The sigmoid function, also known as the logistic
function, squashes the input values into the range (0, 1). It is given by the formula:

Sigmoid(x) = 1
1 + e−x

(2.12)

The sigmoid function is commonly used in the output layer of binary classification
tasks, where it interprets the output as a probability of belonging to one of the
two classes.

ReLU (Rectified Linear Unit) Activation Function [14] The ReLU acti-
vation function is defined as the positive part of its argument, returning zero for
negative inputs and the input value for positive inputs. It is given by the formula:

ReLU(x) = max(0, x) (2.13)

ReLU is one of the most widely used activation functions in deep learning due to
its simplicity and effectiveness. It helps alleviate the vanishing gradient problem
and accelerates convergence in deep neural networks.

Softmax Activation Function The softmax function is used in the output layer
of multi-class classification tasks to convert raw scores or logits into probability
distributions over multiple classes. It computes the probability of each class as a
normalized exponential function of the input values. The formula for softmax is
given by:

Softmax(xi) = exi∑C
j=1 e

xj
(2.14)

Activation functions play a crucial role in determining the learning capacity
of neural networks. Choosing an appropriate activation function depends on the
specific characteristics of the task and the network architecture.
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2.2.7 Overfitting & Underfitting
During the training of a network, the available data is usually divided into three
subsets: training data, validation data, and test data. The training data is the
subset through which the model learns, the validation set is the set of data used to
verify performance and fine-tune the hyperparameters, while the test set simulates
the use of the model in a real context where the data was never seen by the network.
In the testing phase, to evaluate the generalization ability compared to training,
the performances in training and testing are compared. If there is a very significant
drop between training and testing performance or both are very low, it means that
you have stumbled upon overfitting or underfitting, respectively.

Overfitting occurs when the network has adapted too much to the training
data, also capturing noise and outliers, but without being able to generalize to new
samples. This can happen when the model is too complex compared to the data
available to train the network.

On the other hand, underfitting occurs when the model is too simple or the
amount of data available is too little compared to the required task.

If in the first case we have high variability when training on different datasets,
in underfitting the model presents a bias, i.e., it appears incapable of capturing
the real relationships that exist between input and output. To obtain an optimal
model that does not present either of the two problems, various methods such as
Regularization, Dropout, Early stopping can be used.

Regularization Regularization involves the insertion of a term, called regular-
ization, within the loss function, preventing the model from becoming too complex.
In general, the loss function therefore becomes:

Lreg(θ) = L(θ) + λ · Ω(θ) (2.15)
where θ are the model parameters, L(θ) is the original loss function, Ω(θ) is

the regularization term, and λ adjusts the intensity of the latter. This strategy
is called weight decay and two examples are Lasso regularization, called L1, and
Ridge regularization, called L2.

Lasso Regularization adds a regularization term equal to the sum of the absolute
values of the parameters:

Lasso Regularization term:
n∑

i=1
|θi| (2.16)

Through this strategy, the model is pushed to have parameters with high sparsity,
causing some of them to vanish.

Ridge regularization, on the other hand, adds a term proportional to the squared
L2 norm of the parameters. The penalty term is given by:
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Ridge Regularization term:
n∑

i=1
θ2

i (2.17)

Unlike Lasso, Ridge penalizes parameters that are too high without bringing them
completely to zero.

Dropout Another technique that can be used to prevent the model from becoming
too complex is Dropout. The idea, presented in [15], involves randomly deactivating
some neurons at each training iteration. This reduces the interdependence that
can be generated between the neurons, forcing the network to generalize better
and be more robust. The neurons of the hidden layers are deactivated according to
a Bernoulli distribution with probability p, called the dropout rate. Specifically, at
each training iteration, a mask is generated according to this distribution, which is
then applied to the activation values. This sets the activation values of the neurons
to be deactivated to 0. The modified activation values are then propagated up to
the output layer, allowing them to be included in the calculation of the loss and
in the backpropagation of the gradients. At inference time, dropout is disabled
so that the entire network can contribute to generating predictions. The choice
of the value to assign to the drop out rate p is arbitrary and can be optimized
through fine-tuning. However, in many cases a value of 0.5 has proven to be a valid
solution.

Early Stopping Early Stopping is a third option to prevent overfitting. In this
case, during training, the performance on the validation set is monitored iteratively.
The moment these performances begin to worsen, indicating that further training
could lead to overfitting, training is stopped. However, this strategy must be
carefully balanced, as early stopping too anticipated can lead to the opposite
problem, underfitting, resulting in a model still incapable of recognizing the real
patterns between input and output.

2.3 Convolutional Neural Networks
A particular family of feedforward nerural netowrks (FFNNs) are convolutional
neural networks (CNNs), introduced for the first time in [16] and designed to better
manage images. In fact, the layers of a CNN do not have neurons placed on a
one-dimensional layer as represented in figure 2.4, but are organized in width (W),
height (H), and depth (C). In this way, CNNs have two advantages compared to
classic FNNs: they have a reduced number of parameters, and they manage to
preserve the spatial information of the input.
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2.3.1 Convolutional Layer
The convolutional layer is the fundamental part in which most of the computation
is carried out within a convolutional neural network (CNN).

Each convolutional layer (ConvLayer) operates on the input through a set of
learnable filters of size F × F × C, where F indicates the receptive fields of the
filter and C the depth of the input. At each forward pass, the filters are spatially
slid over the entire input. Through the convolution operation, the filter obtains
a 2-D activation map. As can be understood from equation 2.18, the convolution
operation replaces the elements of the input on which the filter is applied with the
dot product between the latter and the filter parameters.

conv(p, q) =
∑

i

∑
j

F(i,j)x(i+p,i+q) (2.18)

Ideally, each filter extracts a local feature, and for this reason, a ConvLayer can
have multiple filters. Consequently, the final output will also be three-dimensional,
with depth Cout, where Cout is the number of filters in the layer. The height
and width of the activation maps can be managed via two other parameters: the
padding (P ), which indicates how many zeros are inserted around the edge of the
original input, and the stride (S), or the number of pixels by which the filter must
shift between one convolution and another. The final dimensions will therefore be
Hout ×Wout × Cout, where Hout and Wout, for an input H ×W × C, are:

Hout =
⌊
H + 2× (P )− F

(S) + 1
⌋

(2.19)

Wout =
⌊
W + 2× (P )− F

(S) + 1
⌋

(2.20)

2.3.2 Pooling Layer
The second layer that characterizes a convolutional neural network (CNN) is the
pooling layer (PoolLayer). Often inserted between two convolutional layers, the
pooling layer is exploited to perform downsampling on the generated activation
maps.

The pooling layer operates via a filter similar to a ConvLayer. This time,
however, the operator applied is not the convolution, but rather the Max operator
or the Average operator. In the first case, for example, if the filter is 2 × 2 in
size, for each passage of the filter, the four elements involved are replaced at the
output by a single element containing the maximum value of the four. In the case
of the average operator, the same four elements are replaced with a new element
containing the average of the four values.
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2.3.3 Fully Connected Layer
Downstream of the ConvLayer and the PoolLayer, one or more fully connected
layers (FCL), i.e. the standard layers of a multi-layer perceptron, are inserted into
a CNN, with the softmax as activation function. The purpose of this layer is to
generate the probabilities of membership of each class for the general input based
on the high-level features extracted from the convolutional layers and from the
pooling layers.

In conclusion, a CNN is made up of the three layers just described. As writ-
ten at the beginning of the section, CNNs, in addition to maintaining spatial
information, use fewer parameters than a FFNN for the same input. This is
possible due to the different topology of the two networks. In an FFNN, in fact,
each neuron of the l layer is connected with all the neurons of the l− 1 layer, while
in a CNN, a neuron at the l layer receives only a small part of the input of the
l − 1 layer based on the size of the latter’s filters.

Among the most famous CNNs, we find LeNet [16], AlexNet [17], and ResNet [18],
the first network capable of improving the human error rate on ImageNet [19].

2.4 Graph Convolutional Neural Network
If convolutional neural networks (CNNs) were introduced for a type of data, images,
for which feedforward nerual networks (FFNNs) are inefficient, in the same way,
Gori et al. [20] and subsequently Scarselli et al. [21] created Graph Neural Networks
(GNNs), a family of neural networks suitable for managing data with non-Euclidean
structures, graphs.

Graphs are used in many fields, from social sciences for the analysis of social
networks to chemistry for the representation of molecules. Each graph can contain
an unordered number of nodes, and therefore operators such as convolution, which
are shift-invariant and designed for the regularity of structured data, are no longer
directly applicable.

The idea that Gori et al. [20] and a year later Scarselli et al. [21] based GNNs
on is that each node represents an object or concept, while the relationships are
represented by the edges. Starting from the works cited above, Bruna et al. [22]
introduced the concept of convolution on GNNs by proposing a spatial construction,
where some properties of classical convolution are generalized on the graphs, and a
spectral construction, which is designed based on the properties of convolution in
the Fourier domain. If the second has shown limitations, also investigated in [23]
and [24], spatial construction has proven to be a valid option, so much so that it is
the technique on which the networks that are currently applied in human activity
recognition and more are based.
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In this section, we will describe how information is represented in graphs, then
we will illustrate in more depth the theory behind GNNs, and finally, we will delve
into spatial-based convolution.

2.4.1 Representation Learning on Graph
The main problem of deep learning applied to graphs is to identify a strategy for
incorporating information on their structure. It is therefore necessary to identify
a method to create an embedding of a node, or a (sub)graph, in which to insert
the features of interest. In their work, Hamilton et al. [25] report an overview of
some of the most recent strategies such as the shallow embedding approach and
the more performing deep encoding method.

Before delving into the description of the strategies, it is necessary to define
what a graph is at a mathematical level. A graph G = (V,E) is composed of a set
of nodes V = {vi, i = 1, ..., N} which are connected to each other via the edge set
E = {eij = (vi, vj) | vi and vj ∈ V}. For each node vi, we can define the set of its
neighbors N(vi) = {vj ∈ V | ∃eij ∈ E}. If the edges have a direction, the graph is
called directed. For each graph G = (V,E), with |V | = n and |E| = m.

Shallow Embedding

Node embedding aims to map the position of the node vi in the graph and its
neighborhood N(vi) into a low-dimensional vector. The obtained embeddings can
either be seen as projections of the nodes into a latent space where the edges are
represented by geometric relations [26].

Most algorithms that work with node embedding are based on what is called
shallow embedding, where an encoder and a decoder are combined to generate
a node similarity measure. In particular, starting from an embedding function
(equation 2.21), which maps each node into a vector zi ∈ Rd, a decoding function
(equation 2.22) maps each pair of embeddings (zi, zj) into a measure of similarity.
The target function in these contexts is defined by the equation 2.23:

ENC : V → Rd (2.21)

DEC : Rd × Rd → R+ (2.22)

L =
∑

(vi,vj∈V )
ℓ(DEC(zi, zj)− sG(vi, vj)) (2.23)

where ℓ evaluates the quality of the pairwise reconstruction.
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If usually the encoding function is simply an ‘embedding lookup’, ENC = Zvi,
where Z ∈ Rd×|V | is a matrix containing the embeddings of each node and vi ∈ IV

is a one-hot indicator vector that identifies the column of Z corresponding to vi,
the decoding function varies based on the approach used:

• Factorization-based approach: The decoding function exploits matrix factoriza-
tion. This family includes the Laplacian eigenmaps [27] and the inner product
method [28, 29, 30].

• Random walk approach: This method aims to generate similar embeddings for
two nodes if they co-occur in a short random walk. The difference with the
factorization-based approach, methods like DeepWalk [31] and node2vec [32]
use a stochastic node similarity.

The approaches mentioned above, however, lead to some disadvantages:

1. There are no shared parameters between nodes in the encoder and this is both
computationally and statistically inefficient;

2. The node attributes are not exploited as the embeddings only consider the
position of vi and N(vi);

3. They are transductive [33], the embeddings are generated only for the nodes
seen in training. This can be problematic in scenarios where graphs can evolve.

Deep encoding approaches

Deep encoding approaches, unlike the methods just described, replace the encoder
with a deep neural network. These autoencoders generate node embeddings by
aggregating neighborhood information. Furthermore, when provided, node feature
vectors can be exploited directly. These methods are called convolutional as the
node is represented as a function of the neighbors similarly to what is done in
CNNs through the receptive fields of the filters. An algorithm that falls into this
family involves two main steps:

1. AGGREGATION : during the encoding phase, at the k-th iteration for each
node v in V an encoding hk

N(v) is generated as:

hk
v = AGGk({hk−1

u ,∀u ∈ N(v)}) (2.24)

where hk−1
u is the embedding of node u in the previous loop. For k = 0 the

embedding h0
v = xv, where xv is the node feature vector.
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2. COMBINATION : once the aggregation has been carried out, the final embed-
ding for node v at iteration k is defined as:

hk
v ← σ(W k · COMB(hk−1

v , hk
N(v)) (2.25)

where {W k,∀k ∈ [1, K]} is the set of weight matrices for each iteration and σ
an activation function.

The entire process can be repeated K times in an arbitrary manner.
Among the networks that follow this method there are the GNNs of which

some examples are the GraphSAGE [33] and the Graph Convolutional Neural
Networks [34, 35, 36] which are distinguished from each other by the operators
used in the aggregation phase.

In summary, the deep encoding approach overcomes the three main limitations
of shallow encoding as there is a split division of the parameters, W k, and uses the
same aggregation function to generate node embeddings. This ensures a reduction
in the parameters to be learned, provides regularization, and allows generating
embeddings for nodes not observed in training.

2.4.2 Graph Convolutional Neural Netoworks
Graph Neural Networks, or GNNs, are a family of networks that exploit the deep
encoding approach using a message-passing algorithm as an aggregation function [8].
The first to formulate a version of GNN were Gori et al. [20], whose work was
further developed by Scarselli et al. [21]. In their model, the network had to learn
a state embedding hv that incorporated the information from N(v). This state
embedding is calculated as:

hv =
∑

u∈N(v)
f(ht−1

u , xv, xu) (2.26)

where f is a differentiable mapping that generates a single vector from a set of
vectors, while xv and xu are the feature vectors of v and u respectively. In [21], the
function is defined as a contraction map, aiming to bring the nodes closer in the
latent space into which they are projected. After an arbitrary number of iterations,
the final embedding is defined as:

zv = g(hk
v) (2.27)

where g is also a differentiable function. During training, the network learns
the parameters of the two mapping functions f and g, and to do this, it uses a
gradient-descent-based approach.

The iterative nature of this type of network, hence the name RecGNN, entails
some limitations:
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• Learning is inefficient as iterations continue until a point of convergence is
reached.

• The network is unable to learn a hierarchy in the features, which is very useful
in CNNs, as at each iteration the same set of parameters is used.

Although the GNNs just described operate directly on the feature matrix X ∈ RN×d,
the information contained in the edge feature vectors is not exploited.

To deal with the convergence problem, networks such as GatedGNN [37] exploit
GRUs as an aggregation operator by creating embeddings such as:

hv = GRU(ht−1
v ,

∑
u∈N(v)

Wht−1
u ) (2.28)

GCNs or Graph Convolutional Neural Networks [34, 35, 36], on the other
hand, deal with the problem of hierarchical features. In fact, these networks use
a fixed number of layers, each of which has its own set of weights. As already
mentioned, two categories of convolution have been introduced, spectral-based and
spatial-based. The latter is explored in greater detail in the following section.

2.4.3 Spatial-based GCN
Given a graph G = (V,E) with N nodes, a spatial-based graph convolutional
network (GCN) attempts to mimic what a classical convolutional neural network
(CNN) does on an image. On the other hand, a grid of

√
N ×

√
N pixels is nothing

more than a graph with a well-defined structure, and the convolution operated
through the filter is an aggregation function which, given a central node and its
neighbors, maps the first with a new value containing the second’s information.
However, we cannot apply the same convolution as in CNNs in GCNs since in a
graph, for each node v, we cannot be sure that N(v) has a fixed cardinality, and
furthermore, it is not possible to ensure the local invariance of CNNs.

With a view to overcoming these limits, some algorithms adapt the neighborhood
aggregation function using the same Wk parameters for both node v and N(v),
generating the encoding hk

v as:

hk
v = σ

Wk

∑
u∈N(v)∪{v}

hk−1
u

 (2.29)

Generalizing 2.29, we can define a GCN as a network whose input is the feature
matrix X ∈ RN×d, where d is the number of initial features associated with each
node, and the adjacency matrix A ∈ RN×N . Therefore, each hidden layer can be
defined as H l = f(H l−1, A), and the relative output will be a new feature matrix

22



DeepLearning: from Perceptron to Graph Convolution Neural Networks

of size N × dl. The equations (2.30) to (2.34) represent the propagation rule in
layer l:

H l = [hl
1, ..., h

l
N ] (2.30)

H l+1 = σ(AH lW l) (2.31)

A = D−1/2(Ã)D−1/2 (2.32)

Ã = A+ IN (2.33)

Dij =
∑

j

(Aij) (2.34)

where Ã is the adjacency matrix to which the identity matrix IN is added,
generating a graph in which the self-connections are included, D is the matrix with
the degrees of each node, W l is the matrix of the weights of the l-th layer, and
finally, σ represents the activation function. At the initial interaction, as was also
underlined in the previous section, we have H0 = [x1, ..., xN ].

Based on the spatial-based method, Yan et al. [1] proposed the ST-GCN network,
or Spatial-Temporal GCN, in 2018, which is the basis of many networks used in
the context of skeleton-based human activity recognition.
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Chapter 3

Skeleton-Based Human
Activity Recognition

Human action recognition aims (HAR) to develop automatic systems for the
recognition of activities carried out by people within images or videos [38]. Thanks
to the development and diffusion of Deep Learning, these systems are increasingly
applied in various fields, from video surveillance to sports.

The first versions of models capable of recognizing activity were based on the
use of RGB images or combined the latter with depth data (RGB+D) [17, 39, 40].
However, the use of this type of data involves a high computational cost, but above
all, it makes networks sensitive to noise. In fact, by processing the entire image,
the network can create biases related to the background, for example. In recent
years, thanks also to the development of technologies for pose estimation [41, 42],
new architectures capable of working with skeletal data have been proposed.

The first algorithms based on skeletal data operated on hand-crafted features,
which described the dynamism and statistical characteristics of the sequence [43,
44, 45, 46]. As can be easily understood, these techniques are expensive at the
pre-processing level and are linked to the researcher’s prior knowledge and the
type of dataset used. Lately, architectures based on recurrent neural networks
(RNNs) [47, 48], convolutional neural networks (CNN) [49, 50, 51], and graph
convolutional neural networks (GCN) [1, 2, 3, 4] have been proposed, capable of
extracting the relevant features autonomously.

In this chapter, we will retrace the salient stages of skeleton-based human action
recognition and then delve deeper into the networks we used in our experiments.
For a complete overview related to the topic of HAR, we recommend reading [38]
from which passages have been extracted for the drafting of the next sections.
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3.1 Skeleton-Based HAR
The use of skeletal data instead of images or RGB+D data is now preferred by
researchers as it offers the possibility of training networks that are more focused
on the movement and pose of the imaged subjects. Furthermore, the models at the
computational level are more efficient. The explosion of their use has gone hand
in hand with the development of hardware and software solutions that guarantee
high accuracy in the extraction of skeletal sequences.

3.1.1 Pose estimation
The reconstruction of the skeleton is carried out starting from the estimate of the
positions of the individual joints and defining the connections that exist between
them. If initially the coordinates of the joints were obtained through manual
labeling [52], thanks to Deep Learning this process is now automated.

2D pose estimation 2D human pose estimation can be divided into two cate-
gories:

• Direct regression approach [53, 54]: regressing body keypoints directly from
frames.

• Heatmap-based approach [55, 56]: the joint coordinates are obtained from
heatmaps of the subject.

In case it is necessary to estimate the poses of several people at the same time,
some algorithms [57] first identify all the people and then estimate their poses
(top-down approach), while others [41] first detect all the joints in the image and
then group them using clustering (bottom-up approach).

3D pose estimation Li et al. [58] were the first to apply Deep Learning to directly
extract the 3D coordinates of the joints from the individual frames. Subsequent
research [56] has shown how obtaining the coordinates of the joints starting from
their heatmaps is a valid option even in the three-dimensional scenario. Other
studies [59] have explored the possibility of extracting 3D skeleton sequences
starting from 2D sequences with the aim of optimizing models based on direct
regression and making them applicable to the real-time contest.

Mediapipe & BlazePose In our work, we took advantage of a framework
developed by Google, Mediapipe [60]. Mediapipe offers a set of Machine Learning
and Deep Learning solutions that can also be used on mobile devices. In addition to
image segmentation, object detection, and image segmentation tasks, in Mediapipe,
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we find models capable of returning hand, face, and body landmark coordinates.
To construct the sequences in our dataset, we exploited the BlazePose-based
solution [42].

(a) Vitruvian man aligned via BlazePose
detector vs. face detection bounding box. (b) BlazePose architecture

Figure 3.1: On the left the vitruvian man to which is aligned the BlazePose
detector, while on the right the architecture of the BlazePose pose tracker. Images
from [42]

To compute the 3D positions of the joints, BlazePose first applies a pose detector
to locate the subject within the image and then a pose tracker to follow its movement
over time. The pose detector locates the person starting with the location of the
face and then calculates other parameters such as the point at the center of the fags,
the size of the circle that circumscribes the person, and the incline (i.e., the angle
between the lines connecting the two mid-shoulder and mid-hip points). Unlike
networks such as YoloV7 [61], BlazePose activates the pose detector only when
the person is not detected in the next frame. This strategem allows it not only to
process at a higher fps, but also to decrease jittering. Once the person is identified,
the pose tracker comes into play. The architecture consists of a combination of
heatmap, offset, and regression approach. Losses from the first two are used only in
the training phase to supervise the embeddings used by the regressor to calculate
coordinates. During network training, it makes use of skip connections, but the
regressor gradients are not extended in the heatmap trained features. It has been
observed that this strategy improves the accuracy of both heatmaps and regression.

3.1.2 Handcrafted based meathods
The handcrafted methods for Skeleton-based HAR consist of two steps: feature
extraction and feature representation. Downstream of these two phases, a classifier,
such as the SVM [43], is applied to generate the final predictions. Below is a
short list of some research done in the field. Yang et al. in [44] proposed a Depth
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Motion Map (DMM) which is obtained from depth information. Three motion
history maps are generated by DMM by processing the spatio-temporal depth
structure from the front, side, and top points of view and then describing the action
through the concatenation of the extracted features. Vemulapalli et al. in [45],
once having modeled the geometric connections, represent the movement through
curves in the Lie group where each skeleton of the sequence represents a point of
the curve. Papadopoulos et al. [46] through the analysis of the spherical angles
between joints manage to obtain a real-time tracking system. In their work, the
action is recognized with the help of a Hidden Markov Model (HMM) [62].

3.1.3 Deep Learning based methods
The methods based on deep learning are divided into 3 macro-categories: RNN-
based, CNN-based and GCN-based. We describe these three in the following
sections.

RNN Recurrent Neural Netowrks (RNNs) are networks widely used in natural
language processing (NLP) or time-series analysis. Du et al., in [47], divided the
skeleton into S parts, the 4 limbs plus the trunk and the head. Each of these
sections is passed as input to bidirectional RNN units whose outputs are then fed
to other bidirectional RNN units. The final structure of the model is a hierarchical
RNN. Lee et al. [48] addressed the theme of feature representation by transforming
the skeleton into another coordinate system to obtain robustness with respect
to scaling, rotation, and translation. The model they proposed provides LSTMs
with various time-step sizes to consider not only long-term dependencies but also
medium- and short-term ones. In their work, Liu et al. [63] investigated how
insignificant joints impact the deterioration of performance, suggesting a circular
attention mechanism. Zhu et al. in [64] proposed a fully connected LSTM to
structure the co-occurring features and improve the expressiveness of the network.
Despite the evolution of various RNN-based models, this family of algorithms is
limited in learning joint relations along the spatial dimension.

CNN The use of convolutional neural networks (CNN), whose operation is fully
explained in Section 2.3, involves the reorganization of the skeleton sequences
into pseudo-images. In [49], Du et al. use a CNN to which an image created by
concatenating the joint coordinates rearranged in chronological order is passed
and then normalized to handle sequences of variable lengths. Subsequently, Het et
al. [50] proposed to organize the sequences into 3 grayscale images, one for each
coordinate. Research such as that of Li et al. [65] have explored the possibility
of exploiting a multi-stream CNN. In this case, the network is not only presented
with the coordinates of the joints but also with the variation that this coordinate
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undergoes between one frame and the next. Caetano et al. in [51] and [66]
proposed further methods of skeleton representation: SkeletonMotion [51] encodes
the temporal dynamics by explicitly calculating the magnitude and orientation
of values of skeleton joints, TSRJI [66] (tree structure reference image) combines
the use of reference joints and a tree structure skeleton. [67, 68] focused on using
3DCNN to find a solution to the long-time dependency problem as classical CNNs
are not able to capture distant dependencies in time. Duan et al. proposed
PoseConv3D [40] which manages to outperform even some GCN-based architectures.
This network exploits 3D heatmap values guaranteeing more robustness of the GCN,
and furthermore, the hierarchical features can be integrated with other modalities
to further improve performance.

GCN Graph convolutional neural networks (GCN)-based methods, as they are
designed for graphs, were found to be the most effective for the HAR task. In
fact, a human skeleton can be seen as an undirected graph where the joints are the
nodes and the edges are the ‘bones’ that join them. The first to propose a GCN for
human action recognition (HAR) were Yan et al. [1]. In this algorithm, a space-time
graph is constructed where the edges along the spatial dimension represent the
intra-frame relationships, and those along the temporal dimension represent the
inter-frame relationships. By combining multiple blocks that alternate GCN and
temporal convolutional network (TCN), the network is able to process high-level
features which are exploited by a softmax classifier to generate the final predictions.
ST-GCN relies on a static and pre-defined adjacency matrix to describe the topology
of the skeleton. Shi et al. [69] showed that if the matrix is left to be learned in a
data-driven way by the network, the latter’s performance improves. Furthermore,
with their study Shi et al. also explored the use of second-order features such as
connection length. In a following work, with the MS-AAGCN network [2], the same
authors introduced a multi-stream attention module to further improve performance.
Realizing that the key to obtaining better predictions lies in the flexibility of being
able to automatically learn the topology of the skeleton, Ye et al. [70] proposed
Dynamic-GCN. In this model, each block for spatial modeling receives two inputs:
Gstatic, a graph whose topology represents the physical connections, and Gi, a
topology called dynamic and predicted by a context-encoding network. The latter
is a convolutional neural network that learns in a data-driven way the dependencies
between joints while also incorporating the contextual features coming from other
joints. Other works have explored the possibility of developing a data-driven
channel-specific refinement for the graphical structure. Inspired by the decoupling
operation of CNNs, Cheng et al. [71] have proposed Decoupling-GCN, which divides
the channels into decoupling groups, each of which has a trainable adjacency matrix,
increasing the expressiveness of the network. Chen et al. [3] instead suggested the
use of an architecture called CTR-GCN, which, starting from a shared topology,
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learns a channel-specific adjacency matrix based on channel correlations. Duan
et al., in [4], instead proposed two new modules: DG-GCN and DG-TCN. The
first uses learned affinity matrices to capture dynamic graphical structures, while
the other performs group-wise temporal convolution with varying receptive fields
and incorporates a dynamic joint skeleton fusion module for adaptive multi-level
temporal modeling. More recent work has explored possibilities of ‘assisting’ GCNs
with LLM [72], or of adapting the transformer architecture to operate on graphs [73].
In the next sections, we will delve into the ST-GCN, MS-AAGCN, CTR-CGN, and
DG-STGCN networks, which were used in the experiments to define benchmarks
on our dataset.

3.2 ST-GCN
Yan et al. proposed ST-GCN to go beyond the limitations shown by RNN- and CNN-
based models. Their network aims to capture both spatial and temporal information
by operating directly on graphs. In this section we discuss the implementation of
the architecture.

3.2.1 Graph Construction
In their work, Yan et al. defined a spatial-temporal graph. In particular, the graph
G = (V,E) built on a skeleton sequence with N joints and T frames contains
both the intra-frame and inter-frame connections (see figure 3.2). The node set
V = {vti|t = 1, ..., T and i = 1, ..., N} contains all the joints of the sequence, and
for each node, the feature vector F (vti) contains coordinates and the estimation
confidence. The network is capable of operating both with sequences extracted
from 2D pose estimators and from three-dimensional sequences. The graph is
constructed by first uniting all the joints within a single frame, i.e., once the frame
t is fixed, the physical connections between the joints vti are defined for i = 1, ..., N .
Subsequently, each joint is connected with itself along the time dimension. Once
the graph is completed, the set of edges is defined as E = Es ∪ EF where Es are
the intra-frame connections and EF are the inter-frame ones.

3.2.2 Spatial Graph convolution and temporal modeling
TGCN

Starting from the convolution operation (equation 3.1) on a 2D grid

fout(x) =
K∑

h=1

K∑
w=1

fin(p(x, h, w)) ·w(h,w) (3.1)
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Figure 3.2: The spatial temporal graph of a skeleton sequence used in ST-GCN.
Blue dots denote the body joints. The intra-body edges (light-blue) between body
joints are defined based on the natural connections in human bodies. The inter-
frame edges (green) connect the same joints between consecutive frames. Image
from [1]

where fin is the input feature map, p is a sampling function Z2×Z2 → Z2, h and w
are the column and row indicies of the kernel, and w is a weight function Z2 → Rc,
Yan et al. proposed an extension of the same equation for graphs. First of all,
we must redefine the feature map f t

in as a function Vt → Rc, i.e., a function that
maps each node into a c-dimensional vector. Subsequently, the sampling function,
which in CNNs is defined on the pixels around a central pixel x, was reformulated
considering the neighbors of a node B(vti) = {vtj|d(vti, vtj) ≤ D}, where d(·) is
a distance measure indicating how many edges there are between the two nodes,
while D is a threshold. Finally, for the weight function, the authors were inspired
by the work of Niepert et al. [74] partitioning B(vti) into K subsets where each
subset has a numeric label. By mapping each node of B(vti) with the label of
the relevant subset, we obtain the labeling function lti : B(vti) → {0, ..., K − 1}
and the weight function w(vti, vtj) = w′(lti(vti)). Three solutions (figure 3.3) are
proposed for the partitioning of B(vti):

• Uni-labeling: B(vti) is composed of only a subset, itself. So we have that for
each vtj ∈ B(vti), lti(vtj) = 0.

• Distance partitioning: B(vti) is divided based on the distance between vti and
vtj, therefore the labeling function is defined as lti(vtj) = d(vti, vtj).

• Spatial-configuration: B(vti) is divided into three subsets: the root-node vti,
the centripetal group composed of the nodes closest to the center of gravity
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Figure 3.3: Partion strategies. (a) An example of input skeleton with joints
connections in blue and receptive filed with red dashed dots. (b) Uni-labeling, (c)
Distance partitioning and (d) Spatial configuration. Image from [1]

with respect to vti, and centrifugal group composed of the nodes further away
from the center of gravity than vti. The labeling function assigns a value of 0,
1, and 2 respectively to the three subsets.

At this point, we can rewrite equation 3.1 as:

fout(vti) =
∑

vtj∈B(vti)

1
Zti(vtj)

fin(vtj) ·w(lti(vtj)) (3.2)

where Zti(vtj) is the cardinality of the subset to which vtj belongs.
Given the way in which the graph is constructed, for the convolution on the

temporal dimension, it is sufficient to redefine B(vti) = {vqi|d(vtj, vti) ≤ K, |q− t| ≤
⌊Γ/2⌋} where Γ controls the time range to include, q and t are the temporal indexes
of the nodes and K is the temporal distance between the two nodes. The weight
function becomes lST (vqi) = lti(vtj) + (q − t+ ⌊Γ/2⌋)×K.

3.2.3 Architecture
ST-GCN is made up of 9 layers divided into 3 groups with 64, 128, and 256 output
channels respectively. The stride of the fourth and seventh blocks is set to 2 as the
pooling layer. After the last block, a global average pooling is performed whose
output is passed to a softmax classifier. The ResNet mechanism is applied to
each block. Each ST-GCN block first performs a spatial convolution and then a
temporal one. The spatial convolution is operated using the formulation proposed
by Kipf and Welly [34]:

fout = D− 1
2 (A+I)D− 1

2finW (3.3)
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Dii =
∑

j

(Aij + Iij) (3.4)

where A is the adjacency matrix of the undirected graph representing intra-body
connections, W is a trainable weight matrix, I is the identity matrix and D is the
matrix containing the degree of the nodes.

The spatial convolution is nothing more than a 1x1 2D standard convolution to
aggregate the node and the features of its neighbors through multiplication with
the normalized adjacency matrix. To include partitioning strategies, 3.3 can be
changed to 3.5 where A is dismantled into Aj adjacency matrices defined such that
A+ I = ∑

j Aj e D−1/2
j = ∑

k A
ik
j + α.

fout =
∑

j

D− 1
2

j AjD
− 1

2
j finWj (3.5)

Yan et al. also propose to define a learnable edge importance matrix to multiply
element-wise to the adjacency matrices.

The temporal convolution, on the other hand, is operated as a standard 1xF
convolution on the dimensions (V,T) where V is the number of nodes, T is the
number of frames and F is the receptive field, i.e., the number of frames to be
considered.

3.3 MS-AAGCN
Given the static and pre-defined nature of ST-GCN adjacency matrices, Shi et
al. [69, 2] proposed to replace it with topologies learned in a data-driven manner.
They also suggested creating a multi-stream architecture so as to be able to also
exploit second-order information such as the length of the edges between joints.
Finally, in [2], they introduced an attention mechanism that operates on multiple
levels. In this section, we will describe the MS-AAGCN architecture in detail as it
also includes the previous version described in [69].

3.3.1 Adaptive Graph convolutional Layer
The proposed adaptive graph convolutional layer aims to make the network more
flexible by deriving the adjacency matrix from the data.

fout =
∑

j

Wj(finĀj) (3.6)

Starting from the equation 3.5, which can be rewritten as reported in equation 3.6,
where Āj = D−1/2

j AjD−1/2
j , Shi et al. inserted two new matrices, obtaining the

following convolution:
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fout =
∑

j

Wjfin(Bj + αCj) (3.7)

The first subgraph, Bj, is the global graph learned from the data. Initialized
with Aj, during training the matrix is updated without any constraints. Bj is
unique for each layer. The second subgraph, Cj, however, is a graph that learns
a unique topology for each sample. In particular, through a Gaussian function
(equation 3.8) for each pair (vi, vj), a similarity measure is calculated, verifying
whether a connection exists between them and how strong this is.

f(vi, vj) = eθ(vi)T ϕ(vj)∑N
j=1 e

θ(vi)T ϕ(vj) (3.8)

In detail, given fin ∈ RCin×T ×N , fin is first embedded into the space RCe×T ×N

with two functions θ and ϕ represented by Wθj and Wϕj . The embeddings obtained
are reshuffled into Mθj ∈ RN×CeT and Mϕj ∈ RCeT ×N , and subsequently multiplied
together to obtain Cj, which is finally normalized via SoftMax in the range [0,1].
The Cj equation can therefore be summarized as:

Cj = SoftMax(fT
inWT

θjWϕjfin) (3.9)
The matrix Cj obtained with equation 3.9 is multiplied with a learnable param-

eter γ, unique for each layer, as it has been observed that this matrix is required
with different intensities along the various layers.

3.3.2 STC - Attention module
Through the STC-attention module, the network is able to give different importance
at joint, frame, and channel levels:

• Spatial attention module (SAM) allows the model to pay different levels
of attention to joints. It computes the following Ms ∈ R1×1×N as Ms =
σ(gs(AvgPool(fin))), where gs is a 1 × 1 convolution and σ is the sigmoid
function.

• Temporal attention module (TAM) is similar to SAM and derives the matrix
Mt ∈ R1×T ×1 as Mt = σ(gt(AvgPool(fin))).

• Channel attention module helps the model strengthen the discriminative
features with the matrix Mc ∈ RC×1×1 as Mc = σ(W2(δ(W1(AvgPool(fin))))),
where δ is a ReLU.

Through experiments, it has been noticed that concatenating the modules sequen-
tially leads to better performance than their sum.
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Figure 3.4: Illustration of the adaptive graph convolutional layer (AGCL). There
are two kinds of graphs in each layer, i.e., Bk and Ck. The orange box indicates
that the part is the parameter of the network and is updated during the training
process. θ and ϕ are two embedding functions whose kernel size is (1 × 1). Kv

denotes the number of subsets. ⊕ denotes the element-wise addition. ⊗ denotes
the matirx multiplication. G is the gate that controls the importance of the two
kinds of graphs. The residual box (dotted line) is only needed when Cin is not the
same as Cout. Image from [2].

Figure 3.5: Illustration of the STC-attention module. Three sub-modules are
arranged sequentially in the orders of SAM, TAM and CAM. ⊗ denotes the element-
wise multiplication. ⊕ denotes the element-wise addition. Image from [2].

3.3.3 Architecture
The architecture used follows the ST-GCN setting with 9 layers divided into 3
groups per output channel and a global average pooling at the end to obtain the
final output to be passed to the softmax classifier. Each layer of the network
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(see figure 3.6) is made up of a spatial GCN module and TCN module followed
by a Batch Normalization layer and a ReLU layer. The STC-module is inserted
between the two modules. In the multi-stream scenario, the softmax scores are
added together to obtain the final predictions.

ReluBNConvtReluConvs BN

Residual connection

STC

Figure 3.6: Illustration of the MS-AAGCN basic block. Convs represents the
spatial adaptive grpah convolutional layer (AGCL), and Convt represents the
temporal AGCL, both of which are followed by a BN layer and a ReLU layer. STC
represents the STC-attention module. Moreover, a residual connection is added for
each block. Image from [2].

3.4 CTR-GCN
To further increase the flexibility of the network Chen et al. with CTR-GCN they
proposed a network which, starting from a common topology, creates a specific one
for each channel by exploiting channel-specific correlations.

3.4.1 Channel-wise Topology Refinement Graph Convolu-
tion

The CTR-GC module framework, shown in figure 3.7, is divided into three parts.
We describe those three in the following.

Feature transformation This module aims to transform the input into high-level
features via a simple linear transformation.

T (X) = XW = X̃ (3.10)

where X ∈ RN×C is the transformed feature and W ∈ RC×C is the weight matrix.
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Figure 3.7: Framework of the channel-wise topology refinement graph convolution
proposed in [3]. The channel-wise topology modeling refines the trainable shared
topology with inferred channel-specific correlations. The feature transformation
aims at transforming input features into high-level representations. Eventually, the
output feature is obtained by channel-wise aggregation. Image from [3].

Channel-wise topology modeling Here, the adjacency matrix A is used as
topology shared between all channels and is approximated via backpropagation.
In addition to this matrix, the matrix Q ∈ RNxN containing the channel-specific
correlations is learned. To obtain it, two linear transformations ψ and ϕ are applied
to the input X to reduce its dimensions before sending the input features intoM(·).
Given a pair of vertices (vi, vj) and the corresponding features (xi, xj), the authors
designed two correlation functions. The first, 3.11, calculates the distance between
ψ(xi) and ϕ(xj) and then applies a non-linear function. The second, 3.12, instead
concatenates the results of ϕ and ψ and then applies a multi-layer perceptron.

M1(ψ(xi), ϕ(xj)) = σ(ψ(xi)− φ(xj)) (3.11)

M2(ψ(xi), ϕ(xj)) = MLP(ψ(xi)||φ(xj)) (3.12)

For each pair (vi, vj), the corresponding vector qij ∈ RC′ representing the channel-
specific relationship between the two is calculated as:

qij = ξ(M(ψ(xi), ϕ(xj))) (3.13)

where ξ is a linear transformation. The final channel-wise topology is calculated as
R = R(Q,A) = A + α ·Q, where α is an hyperparameter to control the strength
of Q.
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Figure 3.8: (a) The basic block of CTR-GCN. (b) CTR-GC with correlation
modeling function M1(·) or M2(·). Image from [3].

Channel-wise aggregation Given R and X̃, CTR-GC aggregates the features
in a channel-wise manner and the final output is formulated as:

Z = A(X̃,R) = [R1x̃:,1||...||RC′x̃:,C′ ] (3.14)

where || indicates concatenation.

3.4.2 Architecture
The network consists of 10 blocks divided similarly to what was done in ST-GCN
with the first 4 blocks having output channels equal to 64, the following 3 with
output channels 128, and the last 3 with 256 output features. Each block (figure 3.8),
along the time dimension, applies the CTR-GC module just described in parallel 3
times and sums the outputs obtained. To fit a skeletal sequence of size S ∈ RT ×N×C ,
pooling along the time dimension is applied. To model actions with variable length,
a multi-scale temporal module has been implemented in which different receptive
fields are applied, and the results are chained together.

3.5 DG-STGCN
Duan et al. proposed the DG-STGCN architecture, comprising two modules: DG-
GCN and DG-TCN, responsible for spatial and temporal convolutions, respectively.

37



Skeleton-Based Human Activity Recognition

𝐗:  [𝑇 × 𝑉 × 𝐶]

T-Pooling

𝐗ഥ:  [𝑉 × 𝐶]

1 × 1 Conv

𝐗: [𝑉 × 𝐶] 𝐗: [𝑉 × 𝐶]

𝐗

𝐗

𝐃𝐀𝐢: [𝑉 × 𝑉]
𝐗

𝐗

Pair-wise
Subtract

Tanh

𝐂𝐀𝐢: [C × 𝑉 × 𝑉]

𝐏𝐀𝐢

⨁

⨁

𝛼 × 𝐃𝐀𝐢

𝛽 × 𝐂𝐀𝐢

𝐀𝐢

1 × 1 Conv

=

(b) Three components of 𝐀𝐢

Dot Product
+ Normalize

DG-GCN
Input

𝐶

1
×

1
 C

o
n

v

𝐶

𝐾

𝐶

𝐾

𝐶

𝐾

𝐾  groups

𝑉

𝑇

……

C
o

n
ca

t
+

 1
×

1
 C

o
n

v

𝑇

𝐶

DG-GCN
Output

𝐀𝟏

𝐀𝟐

𝐀𝐊

(a) DG-GCN Architecture

𝑇
𝑉

𝑉

Figure 3.9: The architecture of the dynamic group GCN (DG-GCN). Image
from [4].

Both modules segment the input into subgroups, which are processed independently
before being merged at the output. Unlike [2] and [3], the key distinction lies
in DG-GCN, which learns the adjacency matrix Ak entirely without any prior
assumptions. In this section we will look in detail at the two modules and the
pre-processing strategy proposed by the authors.

3.5.1 DG-GCN
As mentioned earlier, while in [2] and [3], the network learns a refinement δA from
an adjacency matrix A, Duan et al. opted to make A fully learnable by initializing
it with a normal distribution. Once A ∈ RK×V ×V has been initialized, where V is
the number of nodes comprising the skeleton, the input of dimensions (C, V, T ) is
divided into K groups via a 1× 1 convolution. Then, spatial modeling is carried
out by multiplying the k-th group with Ak, which is defined as:

Ak = PAk + α×DAk + β × CAk (3.15)

where PAk is referred to as the dataset-wise parameter and is a static element
learned during training and also α and β are learnable paraemters. The terms DAk

(the channel-agnostic component, equation 3.16) and CAk (the channel-specific
component, equation 3.17) are obtained from the input X, to which a temporal
pooling operation is applied to remove the temporal component, followed by two
1× 1 convolutions.

DAk = Softmax(XaX
T
b , dim = 0) (3.16)

CAk = Tanh(Xa −Xb) (3.17)
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3.5.2 DG-TCN
The DG-TCN module 3.10 operates temporal modeling at both joint and skeleton
levels simultaneously. To achieve this, an average pooling layer is applied to the
input of the module along the V dimension to obtain the skeleton level features
S. Afterward, S is concatenated to the X input along the V dimension. At this
point, the input is divided into N groups, where N is the number of branches in
the multi-group TCN, which generates the outputs X ′ and S ′. The latter are fed
to the D-JSF module, which generates the final output. Inside D-JSF, a learnable
parameter γ ∈ RV is used to calculate the i-th feature joint as X ′

i + γS ′
i.

3.5.3 Uniform sampling
The uniform sampling technique allows generating more diverse samples than
random cropping [3] or padding [75], while guaranteeing their integrity. To generate
samples of N frames, the initial sequence of length T is divided into N non-
overlapping windows, and then one frame is randomly selected for each window.

3.5.4 Architecure
In the DG-STGCN architecture, which builds upon the fundamental design of
ST-GCN, a total of 10 GCN blocks are employed. Each GCN block comprises a
DG-GCN (Dynamic Graph Convolutional Network) and a DG-TCN (Dynamic
Graph Temporal Convolutional Network). The base channel width is set to 64.
Notably, at the 5th and 8th GCN blocks, temporal pooling is applied to reduce the
temporal length by half and simultaneously double the channel width.
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Chapter 4

Temporal Action
Segmentation

In computer vision, action recognition is a fundamental task for video understanding,
wherein pre-trimmed video clips are classified with single semantic labels. While
state-of-the-art methods can distinguish hundreds of classes, this approach is
limiting as real-world video streams, such as surveillance feeds and autonomous
vehicle data, are continuous and may contain actions spanning longer durations.
Standard action recognition methods designed for short clips are not directly
applicable to these scenarios. Temporal Action Segmentation (TAS) involves
segmenting temporally untrimmed video sequences by labeling each segment with
one of several predefined action labels. This task parallels semantic segmentation
but operates in the temporal domain, replacing pixel-wise semantic labels with
frame-wise action labels. By automatically segmenting untrimmed videos, it aids in
understanding actions’ timing, progression, environmental impact, and predicting
future actions, facilitating various applications like assistive technologies, video
surveillance, and human-robot interactions. In this chapter we give on overview
based on ‘Temporal Action Segmentation: An Analysis of Modern Techniques’ [76],
a survey published by Ding et al., whose reading is strongly recommended for those
who want to delve deeper into the topic.

The chapter is divided in related task (section 4.1), core techniques (section 4.2),
level of supervision (section 4.3) and finally we describe the MS-GCN [5] network
(section 4.4) which is used in the experiments

4.1 Related task
Formally, given a video or a sequence x = (x1, . . . , xT ) of length T with N actions,
Temporal Action Segmentation (TAS) produces the following output:
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s1:N = {(c1, l1), . . . , (cN , lN)} (4.1)

where sN = (cN , lN) represents a segment with length lN to which a label cN is
assigned. The same task can be reformulated as frame-wise action segmentation:

y1:T = {y1, . . . , yT} (4.2)

where yi is the label assigned to the i-th frame. Similarly to TAS, other tasks fall
under the video understanding domains:

• Temporal Action Detection & Localization (TAD\L) [77, 78], detects start and
end of actions and predicts labels simultaneously. In contrast, TAS produces
labels at the frame-wise level.

• Sequence Segmentation (SS), popular in motion capture domain, aims to
segment one [79] or more sequences at the same time [80].

• Keyframe Detection (KFD), for each action, detects some key frames [81, 82].

• Complex Activity Classification (CAC) [83, 84], classifies procedural activity
videos at the complexity activity level.

• Generic Event Boundary Detection (GEBD) [85], unlike TAS, it does not
provide semantic labels but detects just the action changes.

4.2 Core techniques
Temporal action segmentation (TAS) leverages two fundamental techniques for
its effectiveness: frame-wise representations, which extract informative features at
the level of individual frames to capture both spatial and motion information, and
temporal and sequential modeling, which integrates temporal dependencies and
sequential context to enhance TAS accuracy.

4.2.1 Frame-Wise Representations
In TAS it is usual to use precomputed frame-wise features as input, rather than
preferring end-to-end learning, mainly because of the substantial computational
resources required for learning video features. Tow most common frame-wise
representations:

• Fihser Vector Encoded IDT : Before the rise of deep learning, Improved Dense
Trajectories (IDTs) were commonly employed. Initially, IDTs comprised
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spatiotemporal features derived from optical flow. The introduction of the
Fish vector [86] enhanced IDTs by capturing both first- and second-order
statistics of trajectories.

• Inflated 3D ConvNets: I3D [87] represent a state-of-the-art architecture for
extracting features in video comprehension tasks. Pre-trained on the Kinetics
dataset [88], the I3D model processes both optical flow and RGB video inputs,
generating 2048D representations.

4.2.2 Temporal and sequential modeling
Temporal modeling at the frame-wise level extends the receptive fields over time
and aggregates frame features, facilitating information exchange between frames.
Various architectures have been employed for temporal modeling:

• Recurrent Neural Networks (RNNs) [89, 90, 37]: RNNs capture temporal
dependencies using shared parameters, recursively processing input features
in their temporal order. However, RNNs suffer from memory limitations when
analyzing long time series and cannot process sequential data in parallel.

• Temporal Convolutional Networks (TCNs): TCNs utilize 1x1 convolutions
to extract temporal relationships in both causal and acausal modes. Two
paradigms exist: encoder-decoder [91, 92] and multi-stage [93]. The latter
maintains full temporal resolution and forms the foundation of MS-GCN.

• Transformers: Transformers leverage attention mechanisms [94] as their core
technique. While some research demonstrates their suitability for TAS, their
adoption is limited due to the extensive data requirements for training.

Sequential modeling is particularly effective at capturing features at the segment
level, especially when actions exhibit a specific order or sequence. Several studies,
such as [95, 96, 97], have explored the application of Hidden Markov Models and
Mallows Models for sequential modeling. However, as our focus is on temporal
modeling in this work, we do not delve into sequential modeling in detail in this
section. For those interested in further exploration, we recommend referring to [76]
for more comprehensive insights.

4.2.3 Over-segmentation
In procedural actions, local continuity is crucial, implying that actions should change
only at their boundaries. Researchers have aimed to refine resulting segments at
these boundaries to enhance performance. Boundary refinement techniques, such as
those proposed by Wang et al. [98], utilize local barrier pooling operations to smooth
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boundary predictions, reducing ambiguity and over-segmentation. Additionally,
some approaches supplement segmentation outputs with detected boundaries from
separate network structures [99]. Gaussian smoothing, achieved through Gaussian
kernel operations, enhances action continuity within narrow temporal windows,
effectively improving segmentation metrics. While some methods directly apply
smoothing to frame-wise action probabilities [100], others utilize sequential similarity
scores between consecutive frames for more robust boundary detection [101]. Some
studies suggest that soft action boundaries may enhance TAS performance compared
to hard transitions [102, 103]. Variants of soft action boundaries, including linear
and sigmoidal transitions, have been proposed and compared in terms of their
effectiveness.

4.3 Level of supervision
In temporal action segmentation (TAS), various forms of supervision have been ex-
plored. The fully-supervised setting, as exemplified by works such as [93] and [104],
involves dense action labels for every frame in training video sequences. However,
this approach is labor-intensive, requiring annotators to view the entire video se-
quence. Semi-supervised methods, as discussed in [105] and [102], reduce annotation
effort by densely annotating a subset of videos while treating others as unlabeled
samples. Weak labels, requiring less annotation effort than dense video labels,
encompass different forms such as time-stamped annotations [106], [107], action lists
or transcripts [95], [108], and action sets [109], [110], [111], [112]. Recently, [100]
proposed using complex activity labels at the video level, eliminating the need
for action-level annotations altogether. In contrast, the unsupervised setting, as
explored in works like [96], [113], [101], considers collections of videos performing
the same activity. Although not label-free, this approach requires activity labels to
form video collections. It is comparable to weak activity label supervision [100]
in terms of label information, but differs in how video collections are processed
during training. Specifically, unsupervised methods typically work with one group
of same-activity videos at a time, while activity label supervision involves videos
from all activities simultaneously.

4.4 MS-GCN
MS-GCN was proposed by Filtjens et al. [5] to address the Temporal Action
Segmentation task. The basic idea is to combine the abilities to operate on
graphs, exploit the spatial hierarchy between joints, of ST-GCN [1] and the over-
segmentation error reduction capabilities of MS-TCN [93]. First, they modified
ST-GCN blocks by including dilation in temporal graph convolution. Next, they

43



Temporal Action Segmentation

Input

L1

Ls

P
re

di
ct

io
n 

ge
ne

ra
ti

on

T x N x Cin

1 x 1

Spatial poolingT x C 

BN

1 x 1

1 x 1

T x C 

T x O 

R
ef

in
em

en
t s

ta
ge

1 x 1T x N x C

ST-GCN

TCN

T x O 

Input

L1

Ls

P
re

di
ct

io
n 

ge
ne

ra
ti

on

T x Cin

1 x 1

BN

1 x 1

1 x 1

T x C 

T x O 

R
ef

in
em

en
t s

ta
ge

1 x 1T  x C

TCN

TCN

T x O 

Input

L1

T x Cin

1 x 1

BN

1 x 1T x C

TCN

T x O 

Input

L1

Prediction

T x N x Cin

1 x 1

Spatial poolingT x C 

BN

1 x 1T x N x C

ST-GCN

T x O 

Input

L1

T x Cin

1 x 1

BN

T x C LSTM

T x O 

d)

Prediction e)

Prediction c)

Prediction b)

Prediction a)

Figure 4.1: (a) a long short-term memory network (LSTM), (b) a temporal
convolutional neural network (TCN), (c) a multi-stage temporal convolutional
neural network (MS-TCN), (d) a spatial-temporal graph convolutional neural
network (STGCN), and (e) a multi-stage spatial-temporal graph convolutional
neural network (MS-GCN). Image from [5].

leveraged the decoupled prediction and refinement stages of MS-TCN by replacing
the TCN blocks of the prediction stage with the modified ST-GCN blocks.

4.4.1 TCN
The authors, while presenting the structure of their proposed model, introduced
the TCN-based model, which is a fundamental component of MS-TCN.

In a TCN-based model, the first layer consists of a 1x1 convolution that maps
fin ∈ RT ×Cin to fadj ∈ RT ×C , where fin represents a MoCap sequence. Subsequently,
fadj is processed by multiple TCN blocks. Each block comprises a dilated temporal
convolution [114], followed by batch normalization (BN) and a ReLU layer, and
finally, a residual connection with the input. The final hidden output is defined as:

fout = ReLU (BN (W ∗d fadj + b)) + fadj (4.3)

where ∗d represents the dilated convolution.

4.4.2 Multi-stage models
Both TCN-based models and ST-GCN map an input sequence fin to a hidden rep-
resentation fout. To obtain the final predictions, both models use a 1x1 convolution
followed by a softmax:

Ŷ = SoftMax(W1 ∗ fout + b), (4.4)
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where Ŷ ∈ RT ×L encapsulates the probabilities for each frame to belong to class
l ∈ L, ∗ the convolution operator, b ∈ RC the bias term, and W1 ∈ R1×Cin×C

the weights of the 1 × 1 convolution filter with Cin input feature channels and
C equal to the number of feature channels. In multi-stage models, Ŷ obtained
through ST-GCN or TCN is then used as input to refinement stages. Each stage
s, consisting of multiple TCN blocks described in section 4.4.1, operates on the
output of the previous stage according to the equation:

Ŷ s = Γ(Ŷ s−1) (4.5)

where Γ denotes the single-stage TCN. If in MS-TCN the prediction stage to
generate Ŷ is also composed of TCN blocks, in MS-GCN the ST-GCN blocks are
exploited.

4.4.3 Architecture
The architecture of MS-GCN (figure 4.1e) follows the same settings as MS-TCN
(figure 4.1c): one prediction stage and 3 refinement stages. Each stage consists of
10 layers with 64 filters and temporal kernel size of 3. The dilated receptive field of
the i-th layer is equal to 2i, with i = 0, . . . , 9.

The model is trained by minimizing a combination of cross-entropy loss (4.6)
and MSE (4.7). This combination (4.8), suggested in [93], aims to minimize the
over-segmentation error by means of the MSE, which casts the mean squared error
over the sample-wise log probabilities.

Lcls = 1
T

∑
t

−yt,llog(ŷt,l) (4.6)

LT −MSE = 1
TL

∑
t,l

∆̂2
t,l (4.7)

L =
S∑

s=1
Ls,cls + λLs,T −MSE (4.8)

where ytl and ŷtl the ground truth label and predicted probability for class l at
sample t, respectively.
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Chapter 5

3DYogSeg: a new dataset for
pose recognition and
segmentation

Given the lack of public datasets with 3D skeleton sequences for the task of activity
recognition and video segmentation in the world of yoga, starting from summer
2023 we started collecting videos to build our personal dataset, 3DYogSeg. In
this chapter we retrace the steps that led to the definition of the sequences and
how we build a syntetic dataset for video action recognition from. In particular
the chatper is divide as following: section 5.1 lists the yoga dataset available,
section 5.2 illustrates how we collect the video, section 5.3 explain how we extracted
the skeleton sequences, section 5.4 includes all the trasformation we perform to
the row sequences, in 5.5 is described how the training and test are built, and
finally in section 5.6 we describe the pipeline to assemble the synthetic dataset
some statistics about the final dataset.

5.1 Yoga datasets
Thanks to the growing interest in health and physical well-being, in recent years
there have been more and more studies linked to the world of sport and fitness. In
parallel with this, the number and variety of yoga-related datasets is also growing
(table 5.1). Yoga82 [115] provides RGB images for 82 types of exercises distributed
on a hierarchy of 3 levels based on the position the body takes. On average,
approximately 347 samples per asana were collected via the Bing search engine,
totaling more than 28.4K images. YAR (Yoga Asana Recognition) [116]
was developed to train the YogNet network. The dataset contains videos of 16
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participants who were filmed via a 2D web camera from 4 angles: frontal, from the
back, and sideways. In total, 1206 videos were collected. 3D-Yoga [117] consists
of 3.8K action samples and 16,668 RGB-D keyframes. The dataset was constructed
by filming 22 subjects from two different angles at the same time. Starting from
the skeletons extracted from the two angles, the final skeletons were reconstructed.
In total, there are 117 asanas for which a hierarchical annotation similar to Yoga82
is provided. YogaTube [118] consists of 5284 videos for 82 different exercises.
The RGB videos were collected via Youtube and other search engines such as Bing.
3DYoga90 [119], built at the same time as our dataset and released at the end of
2023. It was designed starting from the Yoga82 hierarchy. For the same asanas
plus 8 others, 6177 videos were collected from Youtube from which 5526 skeletal
sequences were then extracted. Our dataset, like 3DYoga90, consists of skeletal
sequences extracted from YouTube videos. What differentiates us from 3DYoga90
is that in our clips the poses are held for the entire duration without including
the preparation for the pose and the exit. Also there are some poses that are not
present in 3DYoga90.

Dataset Asana Samples Type Source available
Yoga-82 82 28,478 RGB-image Images
YAR 20 1,206 RGB-video Video
3D-Yoga 117 3,782 RGB-video\Skeleton -
YogaTube 82 5,484 RGB-video -
3DYoga90 90 6,177/5,526 RGB-video\Skeleton Video url
3DYogSeg 58 2,115/2027 RGB-video\Skeleton Video url

Table 5.1: Yoga lesson statistics. For each lesson, the video id, the duration in
minutes and seconds, the number of tags within the lesson, the average length of a
tag in seconds, and what are the available raw data sources are reported.

5.2 Video Collection
The dataset we proposed is composed of sequences extracted from videos on
YouTube. Starting from the most common asanas, videos were searched for by
names in English, Italian and Sanskrit, the ‘official’ language of yoga. Given the
difficulty of identifying videos for which the pose was maintained for the entire
duration of the video, we extracted clips which had to respect the following criteria
to be considered valid:

1. Only one person must be filmed in the frame since in a video lesson usually
only the teacher is filmed
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2. The instructor mantains the pose throughout the clip, with minimal movement
of non-essential body parts for demonstrating the asana. Given the breadth of
variations that a pose can have is based on the position of a limb for example,
it is important that during the training there is as little noise as possible with
respect to the asana that the net is to learn.

3. All joints must be visible, with possible occlusion by the instructor’s body. In
this way, the BlazePose model is able to determine with more certainty the
true coordinates of the joints.

Low-lunge Forward Fold Facing downdog Tree pose Happy baby

Table 5.2: Dataset examples of 3DYogSeg. For each pose indicated in the header
we reported both the RGB image and the relative skeletal representation.

Regarding the minimum or maximum duration of the clip, no stakes have been
set since the same asana during a flow can be held for a few seconds or for several
minutes. Furthermore, given that the ultimate objective is to segment video lessons
during which the viewpoint is not always fixed, for each exercise we have collected
some clips during which the point of view changes. Each collected clip is associated
with a start and end time (in minute-second format) alogn with the video URL for
downloading purposes, for a total of 2115 videos spanning 58 asanas were identified,
with an average duration of approximately 12.91 seconds per clip. Figure 5.1 reports
the distribution of the number of clips by class. The asana with the most clips
collected is number 49 (sphinx) with 49 clips, followed by number 9 (downward
facing dog) with 46 clips and number 1 (reverse warrior) with 45 clips. The poses
with the least saved clips are 106 (revolved high lunge), 25 (locust) and 41 (yogi
squat) with 12,19 and 20 samples respectively. From figure 5.2, instead, the average
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Figure 5.1: Number of clips for each class.

duration of the clips for each class can be analyzed. From this point of view, classes
67 (staff pose), 95 (yogis bycicle) and 13 (standing forward fold) have the longest
durations ranging from 25 to 36 seconds, while asanas 20 (chaturanga), 85 (eagle)
and 51 (thread the needle) whose average ni clips vary between 3.5 and 4.5 seconds
close the ranking. Table 5.2 shows some examples of poses included within the
dataset with the relative RGB-frame and the skeleton.

5.3 Skeleton extraction
After acquiring the videos, we utilized the Mediapipe [60] library to extract skeletal
data, a powerful open-source tool developed by Google for various computer vision
tasks. Specifically, we employed BlazePose [42], a model tailored for real-time pose
estimation. BlazePose provides 33 joints per frame, with their coordinates reported
in two formats:

• Pose landmarks: The x and y coordinates are normalized to [0.0, 1.0] based
on the image width and height respectively. The z coordinate represents the
landmark depth, with the depth at the midpoint of hips serving as the origin.
A smaller z value indicates closer proximity to the camera. The magnitude of
z roughly aligns with the scale of x.
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Figure 5.2: Average duration of clips per class.

• Pose world landmarks: These are real-world 3D coordinates in meters,
with the origin positioned at the center between the hips.

In both cases, to each joint is assigned a visibility level in range [0.0,1.0] which
indicates the likelihood of the landmark being visible (present and not occluded)
in the image. For our experiments, we opted for the pose world landmark format.
BlazePose offers customization options to adjust precision levels through three
parameters:

• min_detection_confidence: This sets the minimum confidence value
(ranging from 0.0 to 1.0) from the person-detection model for successful
detection.

• min_tracking_confidence: This establishes the minimum confidence value
(ranging from 0.0 to 1.0) from the landmark-tracking model for successful
tracking of pose landmarks. Failure to meet this confidence threshold triggers
automatic person detection on the subsequent input image. Setting a higher
value enhances solution robustness but may increase latency.

• model_complexity: This parameter determines the complexity of the pose
landmark model, with options of 0, 1, or 2. Higher model complexities generally
yield greater landmark accuracy but may also increase inference latency.

50



3DYogSeg: a new dataset for pose recognition and segmentation

Observing the quality of the sequences extracted with various combinations of
parameters and the time needed to obtain them, we decided to set the three
parameters mentioned above to 0.8, 0.8 and 2 respectively. In this way we have
more reliable sequences, where jittering is reduced, and which do not require too
long times (around 7 fps).

5.4 Data transformation
Subsequently, to address frames where the skeleton was not identified, we imple-
mented linear interpolation to estimate the joint coordinates. Specifically, when
encountering an interval of empty frames, we calculated interpolation starting
from the last frame before the interval and proceeding to the frame immediately
following it according to the functions:

def linear_interpolation(frame1, frame2, alpha):
interpolated_frame = (1 - alpha) * frame1 + alpha * frame2
return interpolated_frame

def create_transition_frames(frame1, frame2, num_transition_frames):
transition_frames = []
for alpha in np.linspace(0, 1, num_transition_frames):

interpolated_frame = linear_interpolation(frame1, frame2, alpha)
transition_frames.append(interpolated_frame)

return np.array(transition_frames)

where num_transition_frames is the number of empty frames detected, frame1
and frame2 are the last frame before the empty interval and the first one after
the interval respectively, and alpha is the interpolation factor in [0,1]. In cases
where the empty range occurred at the beginning or end of the dataframe, we
simply removed the affected frames. The final data transformation step involved
reducing the number of joints from 33 (figure 5.3a) to 15 (figure 5.3b) to reduce
the use of useless joints (such as those of the face) with respect to pose recognition.
Specifically, we:

• Derived the Head joint by averaging facial landmarks.

• Computed the Neck and Pelvis joints by determining the midpoints of the
shoulders and hips respectively.

• Excluded all hand and foot joints except for the wrists and ankles.
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(a) Mediapipe Skeleton (b) Our Skeleton

Figure 5.3: Skeleton comparison. On the left the original skeleton returned by
BlazePose, on the right our skeleton where only relevent joints are kept.

5.5 Training & test sets
To create the training and testing splits in our dataset, we utilized YouTube video
IDs. Specifically, we ensured that, for each asana, if there were multiple sequences
extracted from the same video, they were all included in the same split. To achieve
a 70/30 proportion between training and testing, we followed these steps:

1. Counted the sequences by video ID grouped by label.

2. Within each label, we sorted the video IDs in descending order by sequence
count.

3. Calculated the cumulative sum of sequences.

4. Inserted into training the sequences of video IDs for which the cumulative sum
was less than 70% of the total number of sequences associated with the label.

5.6 Synthetic dataset pipeline
The idea of adapting a dataset for human action recognition (HAR) into a dataset
for the Temporal Action Segmentation (TAS) task was developed based on the
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Figure 5.4: Synthetic dataset pipeline. Starting two RGB video we extract the 3D
skeletal sequences C1 (red) and C2 (blue). Then, given the last frame of C1 and the
first frame of C2 we reconstruct the transition frames trough linear interpolation.

strategy used in section 5.4 to reconstruct skeletons in frames where BlazePose failed
to detect them. Given two clips C1 = {f1i, i = 1, ..., n} and C2 = {f2j, j = 1, ...,m},
we can create a new clip C3 = C1 ∪ {f1, ..., fk} ∪ C2 , where frames f1, ..., fk are k
frames calculated via linear interpolation starting from fc1n and fc21 (figure 5.4).
By repeating this operation, we can concatenate multiple videos sequentially,
generating complete video lessons.
To build our datasets, we utilized three parameters whose values are reported in
table 5.3:

• activity_repeated (ar): indicates whether an exercise can be repeated in a
video lesson;

• activity_per_video (apv): number of exercises within the video lesson;

• transition_frames (tf): number of frames inserted between two clips via
interpolation.

in the experiments section the impact of all the individual components on the
performance of the segmentation network is studied.
Utilizing the training and testing split described in section 5.5, we constructed the
video lessons according to the following steps:

1. Select the apv classes among those available with reinsertion if ar = True or
without if ar = False.

2. For each apv class chosen, select a video ID and then a sequence associated
with that video ID.
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3. Concatenate the selected sequences via interpolation by inserting tf frames.

Each instance of the dataset consists of 1000 video lessons, with 700 built from the
training clips and 300 from the test ones.

Param Values
ar [True, False]

apv [5,10,15]
tf [0,10,20,50]

Table 5.3: Values parameters for synthetic dataset
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Chapter 6

Benchmark and experiments

To assess the effectiveness of our approach, we conducted numerous experiments
in both the realms of Human Activity Recognition (HAR) and Temporal Action
Segmentation (TAS). This chapter provides a detailed overview of our findings and
their implications.

6.1 Human Activity Recognition
In our activity recognition experiments, as described in section 3.1.3, we utilized four
networks: ST-GCN [1], MS-AAGCN [2], CTR-GCN [3], and DG-STGCN [4], to es-
tablish a benchmark on our dataset. In the following we explain the implementation
details and the results that we obtained.

6.1.1 Implementation detais
All experiments were conducted under identical conditions. Specifically, the net-
works were trained for 150 epochs using Stochastic Gradient Descent (SGD) with
momentum set to 0.9 and weight decay to 5e−4. The initial learning rate was
initialized to 0.1, and CosineAnnealing was employed as the scheduler.

6.1.2 Results
The results presented in Table 6.1 depict the performance achieved by training
and testing on all available classes within our 3DYogSeg dataset. As anticipated,
ST-GCN, often considered as the baseline in various works, exhibits the lowest
performance among the networks evaluated. However, it is noteworthy that MS-
AAGCN surprisingly outperforms the newer CTR-GCN and DG-STGCN models.
The unexpected superiority of MS-AAGCN over DG-STGCN, which places third,
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can be attributed to the dataset size. As discussed in [4], the advantage of the DG-
GCN module becomes evident with larger datasets, whereas for smaller datasets
(i.e., less than 1/4 of the NTU120-XSub training set), manually defined and refined
topologies prove beneficial for spatial modeling of skeleton data. The advantage
observed with MS-AAGCN over CTR-GCN may be attributed to the STC attention
module, which enables the network to discern importance levels for joints, frames,
and channels.

Model Acc_top1 Acc_top5 F1_weighted F1_macro
ST-GCN [1] 0.8558 0.9889 0.8380 0.8501

MS-AAGCN [2] 0.8986 0.9873 0.8850 0.8950
CTR-GCN [3] 0.8764 0.9937 0.8598 0.8760

DG-STGCN [4] 0.8685 0.9826 0.8520 0.8664

Table 6.1: 3DYogSeg activity recongition benchmarks. MS-AAGCN outperforms
the other sota entworks on our dataset.

6.1.3 Failure Cases
Among the poses that the network has the most difficulty in identifying are:

1. Eagle pose (85), which is classified 27% of the time as chair pose (2).

2. Table top pose (57), which is confused with the cat-cow (96) pose. This is
probably due to the lack of a joint that identifies the movement of the spine,
as the only difference between the two poses is in the movement of the head
and the arching of the spine itself

3. Mountain pose (48) and mountain pose straches (128). Here too the difference
is minimal, if in the first case the pose is completely static, in the second
dynamism is inserted perhaps with the rotation of the neck or with a slow
movement of the arms.

Case 1 and case 2 are reported in figures 6.2 and 6.3 respectively.

6.1.4 Comparison with 3DYoga90
The comparison between our dataset and the 3DYoga90 dataset revealed interesting
insights when training the best performing network, MS-AAGCN, on common
classes between the two datasets under four different scenarios. The results presented
in Table 6.2 illustrate these scenarios. When the training and testing sets are
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Figure 6.1: MS-AAGCN confusion matrix

(a) Eagle pose (b) Chair pose

Figure 6.2: Comparison between eagle and chair poses
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(a) Table top pose (b) Cat-cow pose

Figure 6.3: Comparison between table top and cat-cow poses

train test acc_top1 acc_top5 F1_weighted F1_macro
3DYogSeg 3DYogSeg 0.9390 0.9956 0.9185 0.9361
3Dyoga90 3Dyoga90 0.9146 0.9815 0.9032 0.9140
3DYogSeg 3Dyoga90 0.6097 0.8846 0.6786 0.6063
3Dyoga90 3DYogSeg 0.8597 0.9872 0.8566 0.8481

Table 6.2: Results comparison when MS-AAGCN is trained and tested on a
different combination of dataset. The experiments are made only on common
classes between the two datasets.

derived from the same dataset, we observe relatively similar performances, with
accuracy top_1 scores of 0.94 and 0.92, and F1 weighted scores of 0.92 and 0.90,
respectively, when trained on 3DYogSeg or 3DYoga90. However, notable differences
emerge when training and testing are conducted on opposite datasets. Specifically,
when the model is trained on 3DYoga90 and evaluated on 3DYogSeg samples,
although there is a slight degradation in performance, the results remain relatively
valid, with accuracy top1 and F1 weighted scores of 0.86. On the contrary, when the
datasets are inverted, the accuracy drops significantly to 0.61 in top1 and 0.68 in F1
weighted. Further analysis of the videos present in the test sets of the five asanas
with the largest drop in F1 score between the two scenarios revealed an interesting
pattern. In the 3DYoga90 clips, a substantial portion of the footage comprised
preparation for the pose, while our clips predominantly captured the person holding
the pose from start to finish, with minimal preparation. For instance, in the Wild
Things pose videos, MS-AAGCN predictions trained on 3DYogSeg and tested on
3DYoga90 were not entirely incorrect, considering the content of the video and the
duration of the Wild Things pose compared to the predicted pose, which was still
present in the video. This observation, coupled with the lower performances when
both training and testing were conducted on 3DYoga90, suggests that the latter
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dataset presents greater challenges compared to ours.

6.2 Temporal Action Segmentation
Through the Temporal Action Segmentation (TAS) experiments, we aimed to
verify: i) whether linear interpolation could be used to adapt a Human Action
Rcognition (HAR) dataset for the TAS task, ii) what is the best combination of
activity_repeated, activity_per_video, and transition_frames to build a synthetic
dataset for optimizing the performance of the segmentation network. This section
reports the experimental settings (section 6.2.1), quantitative and qualitative results
(section 6.2.2), the results mapped on the hierachy proposed by [115](section 6.2.3)
and finally the quantitave results obtained applying the same pipeline on 3DYoga90.

6.2.1 Experimantal settings
The network used for the Temporal Action Segmentation (TAS) task is the Multi-
stage Spatial-temporal graph convolutional neural network, or MS-GCN [5]. The
architecture, proposed by Filtjens et al. in 2022, combines the convolutional
capabilities of ST-GCN graphs with the segmentation capabilities of MS-TCN.
The model is divided into two modules: the first generates an initial prediction for
each frame by exploiting a modified version of ST-GCN blocks, while the second
redefines the detected segments to reduce oversegmentation errors.

For each experiment, we created an instance of a synthetic dataset constructed
according to the method described in the following section. As test videos, we
segmented 6 video lessons obtained from YouTube, with their duration, number of
poses, and average pose duration given in table 6.3.

Video id Duration Tags Avg length
j7rKKpwdXNE 12:16 17 42,00
W2hRlGrgoUQ 8:39 22 21,13
B4kNiCWTl7M 22:22 39 33,05
yetbSrCW1TQ 22:01 84 15,48

3zOWMzKV_gU 17:34 121 8,55
sOjXETbN32g 23:35 80 17,29

Table 6.3: Yoga lesson statistics. For each lesson the are reported the video id,
the duration in minute and seconds, the number of tags within the lesson and the
average lenght of a tag in seconds.
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Metrics Following the methodology outlined in [5], we adopt the practice of
quantitatively evaluating predictions against ground-truth annotations using a
single evaluation metric per sample and another per segment. The sample-wise
metric is the frame-wise accuracy and it is simply computed as the ratio of corrected
labeled frames over the total number of frames. The segment-wise metric, instead,
is the F1@k proposed by Lea et al. [104]. This metric has three characteristics:

1. it penalizes over-segmentation errors;

2. it does not penalize for minor temporal shifts between the predictions and
ground truth, which may have been caused by annotator variability;

3. scores are dependent on the number actions and not on the duration of each
action instance.

An action segment predicted by the model is first categorized as either a true
positive (TP) or false positive (FP) by comparing its intersection over union (IoU)
with the corresponding ground truth annotation. If the IoU surpasses a predefined
threshold, it is labeled as a true positive segment (TP); otherwise, it is considered
a false positive segment (FP). The count of false-negative segments (FN) in a trial
is computed by subtracting the number of correctly predicted segments from the
total number of segments marked by the experts. The final score is computed as:

F1 = 2× precision× recall
precision + recall (6.1)

The values reported in table 6.5 are computed as the average of the single metrics
across the video lessons.

6.2.2 Results
Table 5.3 reports the values used for each parameter, while figures 6.5 and 6.4
reports the frame-wise accuracy and the segment-wise F1@0.5. The quantitative
results are also reported in table 6.5. Below are some considerations on how the
individual parameters impact performance.

Activity repeated Figure 6.5 shows how for a low number of asanas per video
(apv=5), the network tends to prefer video lessons in which the poses are not
repeated. By increasing the number of activities within the video, however, this
difference tends to cancel out at the F1 level (figure 6.4, with apv=10 and apv=25)
or even reverse when apv=25. We can therefore assume that by increasing the
number of distinct exercises in the video lessons, performances tend to worsen.
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Figure 6.4: MS-GCN segment-wise F1@0.5 trained on 3DYogSeg. From left to
right each graph represents how the metric varies for with respect to transition
frames number with apv=5,10, and 25 respectively.
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Figure 6.5: MS-GCN frame-wise accuracy trained on 3DYogSeg. From left to
right each graph represents how the metric varies for with respect to transition
frames number with apv=5,10, and 25 respectively.

Transition frames Observing how the performances change as the number of
frames inserted between two clips varies, we can notice that:

• For apv=5, the graphs on the left in both Figure 6.5 and 6.4 show that
increasing the number of tf results in better accuracy and F1@0.5 if ar=False.
In particular, the highest metric values are reached for tf=20 and tf=50.

• For apv=10, the graphs in the center show that the model worsens in terms
of F1@0.5 as the tf increases for both ar=False and ar=True (figure 6.4). In
figure 6.5, however, we can see how for ar=False there is an initial improvement
and then a worsening when tf increases, while for ar=True there is an oscillation
between 0.37 and 0.32 (table 6.5).

• For apv=25, finally, it can be seen that in terms of F1@0.5, the performances
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tend to worsen as tf increases, while in terms of accuracy for both values
assumed by ar, the performances remain almost stable ( 0.35 for ar=False and
0.39 for ar=True).

From this analysis we can understand how the network tends to prefer frames of
smoother transitions for apv=5 and frames that immediately lead to the next asana
if the video lesson contains many poses.

Activities per video Looking at figure 6.5, fewer activities per video seem to
help the network achieve higher accuracy. In fact, once tf is fixed, we can see
that, from left to right, a higher altitude is reached, especially when ar=False. If
instead, we analyze figure 6.4, we can see that there is not a well-defined correlation
between apv and F1@0.5. In fact, for both ar=True and ar=False, given tf, the
performances do not have a monotonically increasing or decreasing trend. However,
as for accuracy, the highest peaks are reached for apv=5.

From our results and analyses, we observe that the optimal dataset configuration
consists of pseudo-lessons containing a reduced number of exercises, with some
degree of repetition, and an interval of transition frames ranging from 10 to 20.
This approach strikes a balance between maintaining realistic body movements and
simulating smooth transitions between poses, similar to those observed in actual
yoga classes. During yoga video lessons, poses are typically performed without
interruption, akin to a choreography. Additionally, YouTube fitness videos typically
have frame rates between 24 and 30 frames per second (fps). Therefore, inserting a
transition interval of 10 or 20 frames simulates a transition lasting approximately
0.4 or 0.8 tenths of a second, respectively. This duration captures semi-realistic
movements while ensuring smooth transitions between poses. Furthermore, we
analyzed the relationship between the number of unique exercises and the duration
of video lessons. Comparing ratios obtained for both real and pseudo-lessons, we
found that a smaller number of unique exercises within pseudo-lessons yields ratios
more similar to those observed in real yoga lessons. Overall, our pipeline enables
the creation of pseudo-lessons that closely resemble real yoga lessons. Consequently,
datasets generated using our methodology serve as a practical alternative for
the TAS task compared to datasets built entirely from scratch, which are time-
consuming and challenging to collect. Our pipeline can generate 1000 pseudo-lessons
in just half an hour, demonstrating its efficiency and scalability.

Figure 6.9 shows the qualitative results for each of the 6 test videolessons, whose
statistics are reporeted in table 6.3. In the image each label has been associated
with a unique color, while in red are the background or unknown exercises in
training. To make some considerations let us take in detail the lesson with id
B4kNiCWTl7M, the third one shown in the figure 6.9. The network seems to be
able to segment quite well where the poses are held for a long time for example
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Parameter Accuracy F1@0.5
ar 0.0010 -0.0311

apv -0.1526 0.0020
tf 0.1820 -0.4623

Table 6.4: Correlation matrix between syntethic dataset pararmeters and metrics.

at the beginning and end of the lesson. However, there are a few cases where the
segment is correctly identified but is associated with the wrong label. This is the
case for the last segment (real 86, predicted 108, figure 6.6) or to the segment
around frame 10,000 (real 61, predicted 99, figure 6.7). We can also find the same
error in other segments, such as in lesson j7rKKpwdXNE (the fourth one in the
figure) where from frame 10,000 to about frame 13,000 in ground truth we find
poses 126 and 96, while in predictions only pose 96 (figure 6.8). As described in
the next section, these are limiting cases since the poses are very similar to each
other by global skeleton pose.

(a) Corpse pose (b) Supine twist pose

Figure 6.6: Corpse and Supine twist pose
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(a) Low lunge pose (b) Twisted low lunge pose

Figure 6.7: Low lunge and twisted low lunge pose

(a) Low lunge pose (b) Twisted low lunge pose

Figure 6.8: Cat-cow and one legged table pose
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ar apv tf Accuracy F1@0.5
False 5 0 0.2308 0.0765
False 5 10 0.3951 0.1141
False 5 20 0.4347 0.1556
False 5 50 0.4478 0.1292
False 10 0 0.3853 0.1219
False 10 10 0.405 0.1236
False 10 20 0.4019 0.1071
False 10 50 0.345 0.0492
False 25 0 0.3670 0.1154
False 25 10 0.3326 0.1341
False 25 20 0.3309 0.1129
False 25 50 0.3458 0.0876
True 5 0 0.4196 0.1473
True 5 10 0.3853 0.1024
True 5 20 0.3280 0.0900
True 5 50 0.3897 0.0996
True 10 0 0.3291 0.1193
True 10 10 0.3759 0.1235
True 10 20 0.3248 0.1032
True 10 50 0.3762 0.0827
True 25 0 0.4249 0.1418
True 25 10 0.3089 0.0871
True 25 20 0.3751 0.1150
True 25 50 0.3955 0.0976

Table 6.5: MS-GCN quantitative results with syntethic dataset built on 3DYogSeg.
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Figure 6.9: MS-GCN qualitative results trained on 3DYogSeg with ar=False,
apv=5 and tf=20
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6.2.3 Hiearchical results
Based on the recommendations from [115], [117], and [119], we organized the
yoga exercises into macroclasses, which group poses based on their similarities.
Figures 6.11 and 6.10 present the metrics for all three levels of the hierarchy,
starting from the top down. Level 1 groups the poses in 6 classes [115]:

• Standing: The subject maintains an upright posture with either one or both
legs on the ground. When only one leg is grounded, the other may be lifted,
either held by one hand or freely in the air.

• Sitting: The subject is positioned on the ground with their hips resting on or
very close to the ground, such as in the garland pose.

• Balancing: The subject balances their body weight on their palms, with both
palms touching the ground and the rest of the body suspended in the air. The
body is not in an inverted position.

• Inverted: The subject’s body is positioned upside down, with the lower body
either lifted in the air or close to the ground, as seen in poses like the plow
pose.

• Reclining: The subject’s body is reclined on the ground, with either the spine
(upward-facing), stomach (downward-facing), or side of the body touching or
very close to the ground. Alternatively, the subject’s body may be positioned
at a 180° angle alongside the ground, such as in plank poses.

• Wheel: The subject’s body forms a half-circle or close to it on the ground. In
poses where the body is facing upwards or downwards, both the palms and
feet are in contact with the ground. In other variations, either only the hips
or the stomach touches the ground.

Level 2 specialized the exercises in subgroups, while level 3 is the pose-level. The
graphs depicted in Figures 6.10 and 6.11 illustrate the trend of F1@0.5 and accuracy
metrics, respectively, as we vary the parameters of the synthetic dataset. It is
evident that both metrics show an increasing trend as we move up the hierarchy. For
instance, considering the triplet (False, 5, 20), which represents the best performance
at the exercise level, we observe a notable improvement in accuracy from 0.44
to 0.62 and further to 0.73, while the F1@0.5 metric shows similar enhancement
from 0.16 to 0.22 and ultimately to 0.30 (see Table 6.6). This indicates that as
the dataset hierarchy becomes more refined, the model’s performance improves
accordingly. This observation suggests that even when the network misclassifies a
segment, it tends to assign it a label that is not entirely dissimilar to the ground
truth pose. This is consistent with the inherent similarity between yoga poses,
making the segmentation task more challenging.
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ar apv tf accuracy F1@0.5 level
False 5 20 0.730801 0.295597 1
False 5 20 0.618311 0.221597 2
False 5 20 0.434653 0.155561 3

Table 6.6: Hierarchical results for MS-GCN trained on a dataset built with
paremeters (False,5,20). The table shows how raising the hierarchy the performances
improve

Figure 6.10: MS-GCN segment-wise F1@0.5 trained on 3DYogSeg. From top to
bottom level 1, level 2 and exercise-level

68



Benchmark and experiments

Figure 6.11: MS-GCN frame-wise accuracy trained on 3DYogSeg. From top to
bottom level 1, level 2 and exercise-level
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6.2.4 Comparison with 3DYoga90

ar apv tf accuracy F1@0.5
False 5 0 0.2042 0.0610
False 5 10 0.2052 0.0342
False 5 20 0.2339 0.0402
False 5 50 0.2277 0.0523
False 10 0 0.1898 0.0331
False 10 10 0.2152 0.0307
False 10 20 0.2431 0.0521
False 10 50 0.2320 0.0682
False 25 0 0.2557 0.0587
False 25 10 0.1867 0.0535
False 25 20 0.1439 0.0564
False 25 50 0.1791 0.0428
True 5 0 0.2304 0.0593
True 5 10 0.3307 0.0770
True 5 20 0.2216 0.0600
True 5 50 0.2821 0.0778
True 10 0 0.258 0.0561
True 10 10 0.2047 0.0882
True 10 20 0.1783 0.0250
True 10 50 0.232 0.0682
True 25 0 0.2405 0.0477
True 25 10 0.2486 0.0463
True 25 20 0.1691 0.0465
True 25 50 0.1782 0.0287

Table 6.7: MS-GCN trained on 3Dyoga90

Due to the considerable resemblance between the datasets, we attempted to
apply the human activity recognition (HAR) adaptation pipeline to temporal
action segmentation (TAS) using the 3DYoga90 dataset. Table 6.7 presents results
for the same set of parameters. However, the results obtained generally show
lower performance compared to the synthetic datasets constructed from 3DYogSeg.
Notably, the metrics reported exclude unknown exercises, which are more prevalent
in 3DYoga90 compared to 3DYogSeg. This is attributed to the fact that 3DYogSeg
was specifically curated to encompass all poses featured in the six video lessons.
Moreover, it is important to consider that 3DYoga90 videos not only include the
labeled asana but also encompass a preparation phase (often involving another
exercise) and an exit phase. This additional complexity likely poses challenges for
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the network in accurately identifying the start and end timestamps of the target
exercise.

Nevertheless, it is interesting to observe that the highest accuracies and F1@0.5
scores are achieved with parameter sets aligned with the considerations outlined
in section 6.2.2 for the results obtained with 3DYoga90. For instance, the highest
accuracy is attained for the parameter triplet (True, 5, 10), where pseudo-video
lessons feature a small number of distinct exercises (up to 5) relative to the class
duration, interspersed with a limited number of transition frames (10). Similarly,
the highest F1@0.5 score is obtained for the parameter set (True, 10, 10), where
there are up to 10 distinct exercises, each separated by 10 frames.

These results, although inferior to those obtained with 3DYogSeg, suggest that
once the characteristics of untrimmed videos are understood, it is feasible to
construct reliable pseudo-videos using our approach. Additionally, the comparison
of results across the two datasets indicates that initiating from clips containing
only the reference pose facilitates the creation of synthetic datasets that enhance
the performance of the segmentation network.
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Conclusions and future
developments

With our research efforts, we have contributed to the field of Human Action
Recognition (HAR) by introducing a novel dataset, 3DYogSeg, which differs from
existing datasets in terms of data type (RGB video and skeletal sequences) and
the number of yoga asanas included (58). Moreover, our study is the first to focus
on the segmentation of yoga videos, proposing an innovative approach to create
datasets for Temporal Action Segmentation (TAS) from those intended for HAR.

We collected YouTube videos based on pose names in multiple languages, result-
ing in 2115 clips. These clips were meticulously curated to ensure visibility of all
joints, uninterrupted poses, and solitary individuals within the frame. Subsequently,
we employed BlazePose to extract 3D skeletal sequences, yielding data for 58 unique
asanas with an average clip duration of 12.91 seconds. Additionally, we compiled
a text file for each asana containing video links and pose timestamps, facilitating
independent image extraction and sequence creation.

Our pipeline for to adapt the HAR dataset to the TAS task involves linear
interpolation to concatenate clips, thereby forming pseudo-lessons for TAS. By itera-
tively applying this process and customizing parameters such as activity_per_video,
transition_frames, and activity_repeated, we can efficiently generate TAS datasets
without the labor-intensive manual segmentation of videos.

To assess the dataset quality, we perform extensive experiments on both the HAR
task and segmentation. As far as HAR, surprisingly, MS-AAGCN [2] outperformed
ST-CGN [1], CTR-GCN [3], and DG-STGCN [4], despite expectations of its
superiority over ST-GCN. We attribute these results to factors such as dataset size
and the STC attention module implemented in MS-AAGCN.

Furthermore, we compared MS-AAGCN’s performance across four scenarios
using exercises common to both 3DYogSeg and the recently published 3Dyoga90
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dataset. While comparable results were obtained when training and testing on the
same dataset, discrepancies arose when using different datasets, highlighting the
dataset’s influence on model performance.Indeed, in the scenario where the model
is trained on 3DYoga90 and tested on the same dataset, both accuracy and F1
weighted reach 0.86. However, there is a notable drop to 0.61 and 0.68, respectively,
when the model is trained on our dataset and tested on 3DYoga90. Upon analyzing
the videos from 3DYoga90, it was observed that, besides the labeled exercise,
in some cases, another exercise occupies a significant portion of the clip. This
discrepancy in labeling likely confuses the model trained on our dataset, leading it
to predict an incorrect exercise, albeit one present in the clip.

On the other hand, experiments in the TAS domain have demonstrated that, it
is feasible to construct synthetic datasets suitable for training a network, yielding
good performances compared to the time required for manual dataset creation.
Specifically, when employing a triplet of parameters that results in a few distinct
exercises per lesson and a moderate number of transition frames (between 10 and
20), the MS-GCN network achieves optimal performance with frame-wise accuracy
0.4347 and F1@0.5 0.1556. To comprehend why a small number of distinct exercises
and brief transitions yield superior results, we analyzed the traits of real video
lessons. It was noted that these lessons also exhibited the same characteristics.
Hence, it can be inferred that constructing the synthetic dataset to emulate the
traits of real videos may enhance segmentation.

However, qualitative results reveal that while trained on pseudo-lessons from
our dataset, the MS-GCN network occasionally correctly identifies the start and
end timestamps but fails to recognize the correct exercise due to the high similarity
between asanas.

In the following we suggest some possibile future developments of our work.

Improving Transition Frame Construction One area for potential expansion
involves enhancing the construction of transition frames within our adaptation
pipeline. Currently, our methodology does not consider factors such as differences
in body sizes between individuals when concatenating clips. To address this,
we could create a standard skeleton to simulate lessons performed by a single
person. Additionally, aligning all skeletons from individual clips with the same
orientation could further enhance the realism of pseudo-lessons. By making these
adjustments to closely mirror real scenarios, we anticipate potential improvements
in segmentation network performance.

Validation of Adaptation Pipeline with Diverse Datasets Another avenue
for further study is the validation of our adaptation pipeline using datasets from
different domains. By analyzing this, we can better understand optimal guidelines
for composing synthetic datasets. Moreover, if our methodology proves effective
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across various domains, it could offer a less time-consuming alternative to traditional
manual labeling. Additionally, testing our pipeline on domains where TAS datasets
already exist would enable us to compare the performance of networks trained on
original versus synthetic datasets.

Architecture Enhancement for MS-GCN A third variation of our work
could involve modifying the architecture of MS-GCN [5]. We propose replacing
blocks in the prediction stage, currently based on ST-GCN [1], with modules
from MS-AAGCN [2]. This change aims to leverage MS-AAGCN’s superior pose
recognition abilities, potentially leading to improved segmentation performance.
Additionally, we suggest exploring a multi-stream prediction stage that utilizes
not only first-order information such as joint coordinates but also connection
lengths and speeds. Leveraging hierarchical annotations during the learning phase
could further enhance segmentation performance, building upon the demonstrated
effectiveness of such annotations in related tasks [115, 117, 119]
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