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Abstract

Femoral fractures pose a significant challenge to public health, especially in light
of the increasing number of elderly subjects affected by osteoporosis worldwide.
In this context, when aiming to predict femoral fracture in silico, it is still not
clear whether muscles actions have a protective effect on the fracture risk or,
on the contrary, those increase the fracture risk. Hence, aiming to evaluate the
contribution of muscles forces in this context, this thesis focused on exploring
various approaches described in the literature to transfer muscles forces from a
multibody model to a finite element (FE) model of the femur. In particular, several
methods to constrain the FE model were analysed. An Opensim-derived simplified
musculoskeletal model was used to simulate a static pose and calculate the muscle
forces directly acting on the femur. These forces were then applied to a femur’s
FE model simulating a fall on the side, by constraining the femur in five different
ways based on literature studies. The FE model comprised a force applied on the
centre of the femoral head with a frictionless contact defined between the greater
trochanter and a rigid plane. Distally, the following five constraint cases were
considered: 1) the reference case boundary conditions, where the diaphysis nodes
were linked to the knee centre, modelled as a hinge, through beams elements; 2)
all the nodes in the distal portion of the femur were fully constrained; 3) three
nodes in the mid-diaphysis were fully constrained; 4) one node near the patella
groove was constrained in antero-posterior displacements, the most distal node of
the medial condyle was fully constrained, and the most distal node at the lateral
condyle was constrained in antero-posterior and cranio-caudal displacements; 5)
the node on the femoral head’s surface, referred to as the hip contact node, was
constrained in antero-posterior and cranio-caudal displacements; additionally, one
node near the patella groove was fully constrained, and a node on the distal lateral
epicondyle was constrained in antero-posterior displacement. All these models
were also compared to the reference model, where case 1) boundary conditions
were applied but without any muscles forces applied. Principal strains represented
the references biomechanical variables considered to perform the comparisons.
The five cases considered with applied muscle forces showed 0.247%(£0.343%),
0.248%(40.341%), 0.232%(+£0.313%), 0.285%(+0.390%), 0.085%(+0.207%) average
values for the maximum principal strain, and -0.253%(4-0.346%), -0.254%(=£0.343%),
-0.238%(+0.313%), -0.290%(£0.392%), -0.087%(40.130%) average values for the
minimum principal strains. The FE model without muscles forces instead showed
0.248%(£0.333%) and -0.253%(+£0.335%) average values for the maximum and
minimum principal strains, respectively.






Table of Contents

List of Tables 11
List of Figures v
Acronyms VII
1 Introduction 1
1.1 Multibody model . . . . . . ... 2
1.2 Finite Element model . . . . . . . ... ... 4
1.3 MB and FE model integration . . . . . . ... .. .. ... .. ... D

2 Material and methods 12
2.1 Implementation of Multibody model . . . . . . .. ... ... ... 12
2.1.1  Muscle and Joint Reaction forces calculation . . . . . . . .. 14

2.1.2  Resultant Forces and Moments calculation . . . . . . . . .. 15

2.2 FE model: Boundary and Load conditions . . . .. .. .. ... .. 16
2.2.1 Simulation cases . . . . .. ..o 18

3 Results and discussion 22
3.1 Analysis of Principal Strains . . . . . ... ... ... ... ... .. 22
3.2 Visual and Statistical Analysis . . . . .. ... ... ... ... ... 24

4 Conclusion 36
Bibliography 37

11



List of Tables

2.1

2.2

3.1
3.2
3.3

3.4

3.5

3.6

The twelve selected muscles with their relative maximum isometric
force (MIF) that the fiber can generate. . . . . . . . . ... ... ..
Simulation cases. . . . . . . ..

Strain Mean and Standard Deviation of maximum strains (el). . . .
Strain Mean and Standard Deviation of minimum strains (e3). . . .
p-values obtained from the Kolmogorov-Smirnov test comparing the
maximum strains (el) and the fitted distribution of the study cases
with the reference case. p-values in the first column were derived
directly from the distribution data, while p-values in the second
column were derived from fitted distribution data. . . . . . . . . ..
p-values obtained from the Kolmogorov-Smirnov test comparing
Case 0 with cases 1, 2, 3, and 4 for the maximum strains (el) and
the fitted distribution. p-values in the first column were derived
directly from the distribution data, while p-values in the second
column were derived from fitted distribution data. . . . . . . . . ..
p-values obtained from the Kolmogorov-Smirnov test comparing the
minimum strains (e3) and the fitted distribution of the study cases
with the reference case. p-values in the first column were derived
directly from the distribution data, while p-values in the second
column were derived from fitted distribution data. . . . . . . . . ..
p-values obtained from the Kolmogorov-Smirnov test comparing
Case 0 with cases 1, 2, 3, and 4 for the minimum strains (e3) and the
fitted distribution. p-values in the first column were derived directly
from the distribution data, while p-values in the second column were
derived from fitted distribution data. . . . . . . . ... ... ..

II1



List of Figures

1.1

1.2

1.3

1.4
1.5
1.6

1.7

1.8

1.9

2.1

2.2
2.3

OpenSim’s basic multibody model of the musculoskeletal system in
the lower limbs [6]. . . . . . . . ...
In a walking OpenSim[9] model, markers (shown in pink) serve as
virtual reference points, allowing for the identification and tracking
of specific positions on the human body, which allows for motion
capture. . . . ... Lo e e e
Example: stresses in a plate with a hole solved using various element

Color map visualization of the FE model’s strains [5]. . . . . . . ..
Applying the muscle and joint forces to the finite element model [5].
Muscle and joint forces of musculoskeletal model (left) transferred
to finite element model (right) [15]. . . . . . . .. .. ... ...
The entire finite element model with muscles as single straight lines.
Shaded elements represent the four element levels used in the detailed
strain analysis [13]. . . . . . . ... Lo
Contributions of individual muscles to strain in the middle portion
of the femoral neck, calculated for different tasks for a representative
subject [16]. . . . . . .
Top: muscle sets included in the analysis. Bottom: oblique view of
the femur solid model showing the location of node constraints for
each configuration. [17]. . . . . .. ... ... .00

Representation of muscles that were directly in contact with the
femur. Global coordinate system: X(Red), Y(Green), Z(Blue). (A.)
On the left, the complete model with all muscles. On the right the
same model but with the selected twelve muscles. (B.) On the right,
the complete model with all muscles. On the left the same model
but with the selected twelve muscles. . . . . . ... ... ... ...
Local coordinate system. X(Red), Y(Green), Z(Blue) . . . . . . ..
Output from OpenSim utilized in the MATLAB script. . . . . . ..

v

8

9



24

2.5

2.6

2.7

2.8

2.9

2.10

2.11

3.1

3.2

Load condition for the reference case: load force applied to the
centre of femoral head (green arrow). . . . . . ... ... ... ...

Load condition for all the cases except for the reference case. Muscle
forces applied to the FE model surface (red arrows). For all the
muscle forces, the three component (x,y,z) were considered. Load
force applied to the centre of femoral head (green arrow). . . . . . .

Boundary conditions for case 0: hinge at the knee node (in orange)
linked to a selection of diaphysis nodes through beams elements (in
black). Black arrows represent biomechanical length [22][23][24]. . .

Boundary conditions for Case 1: all the nodes (selection in yellow)
in the distal portion of the femur were fully constrained (in pink)

IS« o o o oo e

Boundary conditions for Case 2: three selected nodes from the
femur’s mid-diaphysis are shown in the top image (in red); the three
selected nodes were fully constrained (in pink), shown in the bottom
image [17]. . . . . .

Boundary conditions for Case 3. Three selected nodes: in purple the
most distal node at the lateral condyle, in red the most distal node
of the medial condyle and in blue the patella groove node in the top
image. The most lateral node (purple) was constrained in X and Y
displacements, the most medial node (red) was fully constrained and
the patella groove node (blue) was constrained in X displacements,
shown in the bottom image [5]. . . . .. ... ... ... ... ...

Boundary conditions for Case 4: Three nodes selected: node on the
femoral head’s surface, referred to as the hip contact node (red), a
node on the distal lateral epicondyle (purple) and one node near the
patella groove (blue). . . . . . . ... oo

On the left: the node on the distal lateral epicondyle was constrained
in X displacement and the node near the patella groove was fully
constrained. On the right: The node on the femoral head’s surface,
referred to as the hip contact node, was constrained in X and Y
displacements [17]. . . . . . . ... Lo

Region of interest for the analysis of the results. The lateral part of
the greater trochanter is excluded due to boundary conditions effect,
with the biomechanical length indicated by the black arrow.

Maximum strains distribution within the region of interest. Strains
are shown for all the cases. It is shown the isometric view of the
femur. . ...

16

18

18

22



3.3

3.4

3.5

3.6

3.7

3.8

3.9

Minimum strains distribution within the region of interest. Strains
are shown for all the cases. It is shown the isometric view of the
femur. . ...
Comparison of strain distributions in various cases. The reference
case is shown in purple, with the other five cases in the following
order: blue, green, yellow, red, and aquamarine. The figure shows
the boxplots of the maximum strains (el). . . .. ... .. ... ..
Comparison of strain distributions in various cases. The reference
case is shown in purple, with the other five cases in the following
order: blue, green, yellow, red, and aquamarine. The figure shows
the boxplots of the minimum strains (e3). . . ... ... ... ...
Comparison of strain distributions in various cases. The reference
case is shown in purple, with the other five cases in the following
order: blue, green, yellow, red, and aquamarine. The figure shows
the histograms of the maximum strains (el). . . . . . ... ... ..
Comparison of strain distributions in various scenarios. The reference
case is shown in purple, and the other five cases are in the following
order: blue, green, yellow, red, and aquamarine. The figure depicts
the histograms of the minimum strains (e3). The absolute value of
the data was taken. . . . . . . . ..o Lo
Histograms of deformation data overlaid with fitted gamma distribu-
tion curves. The y-axis represents the probability density function
(PDF), while the x-axis shows pe values. The fitted curves closely
match the observed data distribution for maximum strains (e1) across
all analyzed cases. . . . . . . .. ..o
Histograms of deformation data overlaid with fitted gamma distribu-
tion curves. The y-axis represents the probability density function
(PDF), while the x-axis shows pe values. The fitted curves closely
match the observed data distribution for minimum strains (e3) across
all analyzed cases. . . . . . . .. ..o

VI

29



Acronyms

BC

Boundary Conditions

CT
Computed Tomography

DOF
Degrees Of Freedom

FE

Finite Element

JCF

Joint Contact Force

MB
Multibody

MIF

Max Isometric Force

MRI

Magnetic Resonance Imaging

PDF
Probability Density Function

SD

Standard Deviation

VII



Chapter 1

Introduction

The relationship between muscle strength and the risk of bone fracture is emerging
as a fundamental field of study, especially considering the increasingly high incidence
of fractures. Furthermore, femoral fractures are a significant public health challenge,
especially in elderly populations with osteoporosis. Skeletal integrity is essential
for these people in order to keep their bones healthy and avoid fractures. Muscles
not only provide structural support and stability to bones, but their contractility
and ability to absorb impacts can play a crucial role in fracture prevention and
in maintaining skeletal integrity. This aspect is influenced by the musculature, in
particular low muscle strength is considered a major predictor of fragility fractures
and that the musculature plays a crucial role in maintaining skeletal integrity [1].
Muscle strength play a protective role in reducing the risk of falls and related
injuries, including fractures of the femoral neck, in particular Harvey et al.[2]
findings highlight the importance of considering muscle density as an independent
risk factor for fractures. Osteoporosis is closely related to sarcopenia, with bone
weakening associated with muscle aging in terms of fiber atrophy and physical
activity reduction. Sarcopenia is considered one of the major responsible factors
for functional limitations and motor dependency in elderly osteoporotic individuals.
Physical activity should be strongly recommended in osteoporotic patients at
diagnosis.

This thesis represents a preliminary investigation aimed at understanding the
role of the muscles in femoral fracture prediction. Specifically, the focus has been
on testing various methods outlined in the literature to transition from a multibody
(MB) model to a finite element (FE) model. In conclusion, a comparison of the
different methods is carried out with an emphasis on the principal strains produced
by muscle forces on the surface of the femur.
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Introduction

1.1 Multibody model

A multibody model is a computational representation of a system consisting of
multiple interconnected bodies, such as bones, joints, and muscles, to simulate their
motion and interactions. Multibody models describe the behavior of the system
using kinematic relations and equations derived from Newton’s second law, which
determine the motion based on applied forces and changes in momentum [3].

These models are particularly useful for simulating musculoskeletal systems, as
they can capture large translational and rotational displacements, making them
ideal for studying movements and forces in the human body. Infact they are
mathematical models that describes the motion and interaction of multiple bodies,
taking into account their mass, geometry, and constraints [4]. Multibody models
are frequently used to study changes in motion and their effects on important
internal structures, such as the femur. These models also incorporate personalized
gait data and muscle forces [5]. Anatomical reference locations and positions
are obtained from imaging techniques such as computed tomography (CT) and
magnetic resonance imaging (MRI).

Rigid Bodies Cepmety
Inertial Properties

Connected by Actuated by

Musculotendon
Actuators

Joints

Joint Reference Frames
Geometry Paths

Kinematic Constraints (Lines of Action)

Parameters for
Muscle Contraction Dynamics

Figure 1.1: OpenSim’s basic multibody model of the musculoskeletal system in
the lower limbs [6].

The analysis of kinematics, kinetics, and the effects of outside forces is made
possible by these models, which incorporate the concepts of rigid body dynamics
and can simulate the motion and forces experienced by each body in the system

2



Introduction

(figure 1.1 taken by Valente et al. study [6]). Infact multibody modeling, that can
be applied to model the musculoskeletal system, enabling estimations of muscle and
joint reaction forces that are difficult to measure experimentally. Motion capture-
based musculoskeletal models can be created using measured marker trajectories
(Figure 1.2) and ground reaction forces, allowing for analysis of gait modifications
on the specific joint compressive forces [7]. Thus, these models can be used to
better understand how particular movements or situations affect the musculoskeletal
system, which can help, for instance, with the creation of injury prevention plans
and rehabilitation plans. However, these models are occasionally oversimplified in
order to accelerate simulations, which prevents any clinically meaningful conclusions
to be derived. In simply, a multibody model by itself might not be adequate to
faithfully capture the physiological activities of a particular mechanism [8]. Software
tools for musculoskeletal modeling have aided in the growth of such applications.
OpenSim [9], an open-source software platform, has been increasingly used as a
reference tool for musculoskeletal simulations of movement. It also allows for the
sharing and distribution of models. As personalized medicine has become more
popular, there has been an increase in subject-specific musculoskeletal modeling
with varying levels of customization [10][11].

Figure 1.2: In a walking OpenSim[9] model, markers (shown in pink) serve as
virtual reference points, allowing for the identification and tracking of specific
positions on the human body, which allows for motion capture.
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1.2 Finite Element model

A finite element model is a computational representation of a physical system or
structure and its basic concept is the discretisation (division) of complex mechanical
structures into finite numbers of separate components with simple geometry called
elements [8], to simulate its behavior under various conditions [4]. Individual
elements in the FE method are connected together by a topological map known as a
mesh, and the fields within the element are represented using a local polynomial. The
solution obtained is a function of mesh quality (Figure 1.3), with the fundamental
requirement that the mesh conform to the geometry [12]. The FE method was first
developed to solve elasticity and structural analysis problems in 1940s.

Figure 1.3: Example: stresses in a plate with a hole solved using various element
sizes.

In this way, complex nonlinear problems become solvable numerically. Nowadays,
the FE method has been widely used in different engineering fields for system design
and analysis. Over the past decades, the FE method has also been increasingly
used for investigating a large range of problems in biomechanics and orthopaedics
to analyze stress, strain, deformation, and other physical phenomena in structures,
fluids, and materials. The techniques of finite element analysis are utilized to
determine how the system will react to applied loads or boundary conditions (BC).
In fact, the FE methods’s main advantage is that it can easily handle complex BCs.

For instance, the finite element model was used by Altai et al.[5] for the prediction
of principal strains, which represent the deformation and stress distribution within
the femoral neck during different phases of the gait cycle [5] (Figure 1.4). Accurate
estimation of strain distribution using the finite element model is important for
understanding the loading patterns and potential risks to the femoral neck during
daily activities. In another study [13], the FE model was used to evaluate the
different distributions on the surface of the femur, specifically comparing the load
with all thigh muscles included to the simplified load regimes at 30% of the gait
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Tensile strain (%)
0.35

0.20

0.05

Figure 1.4: Color map visualization of the FE model’s strains [5].

cycle for four levels along the femoral shaft. Thus, using a FE model provides a
significant advantage in understanding the biomechanical behavior of the human
femur under different loading conditions, allowing for a detailed assessment of
strains, deformations, and muscle interactions.

1.3 MB and FE model integration

A combined musculoskeletal-finite element modeling approach can provide a more
accurate picture of the mechanical response of the femur during daily activities,
which can help optimize clinical decision making. Accurate estimation of physio-
logical strain distribution can also help predict patient-specific parameters, such as
bone strength and joint load, using non-invasive medical imaging and gait data [5].
This information can be valuable in improving treatment outcomes and developing
personalized interventions for individuals with bone and joint conditions.

A pipeline for a fully customized multiscale model was created by Altai et al.[5]
to study the strain levels at the femoral neck during a typical walking cycle. They
collected CT and MRI scans of the lower limb, as well as gait data, were collected
for all participants. Body level musculoskeletal models were used to derive muscle
forces. Finite element femur models were constructed to analyze the strain levels at
the femoral neck. BC on the finite element femur models were implemented using
muscle forces obtained from the musculoskeletal models. Because the FE model’s
deflections alter the moment arm of applied forces and prevent the force set from
being entirely equilibrated, BCs are required to bring the model into equilibrium
[14]. Making sure the model is statically definite is one crucial rule. In other
words, the FE model cannot be allowed to freely spin or move. Errors accumulated

5
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in both the musculoskeletal model and the finite element model, as well as the
assumption to conduct quasi-static analysis through the gait cycle [5]. Altai et
al. refer to these computational errors as residual forces. In this study [5], forces
were applied at the surface mesh node that was closest to the point of application
that the musculoskeletal model estimated; the location of the attachment point of
each muscle was specifically estimated by the musculoskeletal model. The distance
varied between 0.1 and 1.6 mm between the closest nodes in the finite element
model and the point of application of the forces. The finite element models were
kinematically constrained at the distal end of the femur to prevent rigid body
motion. These constrains were chosen to get the residual values as small as possible
or close to zero. Two different boundary conditions for the finite element model
were tested:

a. The distal end of the femur was totally fixed;
b. Three selected nodes were constrained (Figure 1.5) as follow:

e The most distal node of the medial condyle was completely fixed;

e The displacement of the most distal node at the lateral condyle was
constrained in the anterior-posterior and craniocaudal directions;

e The node in the patella groove was constrained antero-posteriorly.

A4

AAA

Figure 1.5: Applying the muscle and joint forces to the finite element model [5].

These boundary conditions (b) were chosen with the goal of simulating the
fundamental gait patterns of walking: abduction-adduction primarily at the hip
joint, flexion-extension, and rotation at the knee and ankle joints.
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The current study aimed to investigate the mechanical response of the femur during
a normal walking cycle using a fully personalized coupled body-organ modeling
method. Multibody dynamics models were used to calculate muscular and joint
contact forces, while the finite element method was used to predict deformations in
the femoral neck during flat terrain walking. This study included five participants
to investigate the interindividual variability of predicted deformation patterns.

In another study, S. Martelli examined femoral neck strain during maximal
isometric contraction of the hip-spanning muscles using verified musculoskeletal and
finite element models [15]. The study tried to investigate femoral neck strain during
maximal isometric contraction of the hip-spanning muscles. The musculoskeletal
and femur finite-element models from an elderly white woman were derived from
previous studies. Hip-spanning muscles were divided into six groups based on their
function. The femoral neck strain was calculated by fully activating the agonist
muscles at fourteen physiological joint angles. Using an internal procedure, S.
Martelli applied muscle and joint reaction forces to the finite element model; this
transfer is shown in Figure 1.6 below.

The finite element model of the femur was distally fully constrained. The force
vector was expressed in the femoral coordinate system.

Adductor longus (1)
Adductor brevis (2)
Adductor magnus prox. (3) o
Adductor magnus mid (4) " &
Adductor magus distal (5°)

18,000
l 14,000
10,000
6,000
4,000

0

Bone Young modulus
(MPa)

. &)

’5. Hip Contact Force ~ /

Hip Contact Force

Figure 1.6: Muscle and joint forces of musculoskeletal model (left) transferred to
finite element model (right) [15].

The purpose of this study of S. Martelli was to investigate the hypothesis that
7
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the muscles crossing the hip could cause a specific distribution of muscle and
postural tensions in the proximal femur. To accomplish this, stress models of
the femoral neck were calculated during maximal isometric contractions of the
hip-crossing muscles across a physiological range of motion for an average elderly
Caucasian woman. The main maps of tensile and compressive stress were compared
in terms of magnitude and regional distribution, which are known to influence the
extent and spatial location of bone mechanical adaptation.

A crucial aspect of studying the interface between multibody and FE models is
achieving force equilibrium also after applying the forces in the FE model. This
point is highlighted in the Duda et al. study case [13]. In particular, in this
study, the equilibrium of loads was disturbed by scaling the muscle attachment
data to the Standardized Femur. The tibio-femoral contact force was increased
by roughly 3% of its initial value in order to reestablish force equilibrium. The
tibio-femoral contact force was distributed to nodes on the lateral and medial
condyles. The equilibrium of moments was achieved by distributing the magnitude
of these contact forces unequally between both condyles and by slightly increasing
the gluteus maximus (force 1.14 times its original value).

Intertrochanteric
subtrochanteric

proximal
dlaphyseal

distal
dlaphyseal

Figure 1.7: The entire finite element model with muscles as single straight lines.
Shaded elements represent the four element levels used in the detailed strain analysis
[13].
Since the model was completely balanced, also for this study, only rigid body
8
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motions were restricted by fixing three nodes on the distal end of the bone. In
regard to muscle attachment data, force magnitudes and orientations, they were
derived from the literature [13] and scaled to the Standardized Femur model [13].
Only those muscles attaching to the femur were included as single straight lines
and made to match appropriate node coordinates (Figure 1.7). In particular, a
single force vector that was applied to the ventral groove between the femoral
condyles was formed by combining the forces of the vasti, rectus femoris, and
patellar ligament.

The study’s goal was to determine strain distribution during walking while taking
into account the load on all thigh muscle groups. It aimed to compare these
distributions to those obtained with simplified loads and determine which muscles
should be included in simulations to accurately represent loading conditions on the
proximal femur with the greatest physiological relevance.

As seen in the previous studies, combining multibody models and FE models can
be very useful, another proof of that is given by the study conducted by M.E.Kersh
et al. [16]. They used them to investigate the femoral neck loading condition in
order to find the answer for this question which muscles are important for loading
areas of bone that are prone to fracture?’. In particular, they wanted to identify
the specific muscles loading the femoral neck during five different activities.

Gluteus Cluteus
minimus Medius
/- Gluteus
r 4 maximus

-,‘ 1
o

[ :
;. lliopsoas

4 ’
[ 4
Vasti

Figure 1.8: Contributions of individual muscles to strain in the middle portion of
the femoral neck, calculated for different tasks for a representative subject [16].

Experimental data were recorder thanks to bipolar surface electrodes, for the
activity of 11 muscles, and by reflective markers, for collecting kinematic data. All
the analysis to the multibody scaled model were performed using OpenSim [9].
The muscle forces and hip joint reaction force from each subject’s musculoskeletal
model were applied as boundary conditions to the individualized finite element

9
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models. The hip joint force was applied as a point vector at the femoral head
surface defined by the hip contact force vector passing through the hip joint center.
The muscle force components were then applied at the node closest to the muscle
attachment point in the finite element model (Figure 1.8). Also for this study the
distal end of the femur was fully constrained to prevent any displacement.

The choice of boundary conditions influence both the strain magnitudes and
the mode of deflection of the intact femur, this is the conclusion reached by Speirs
et al. in their study [17]. In this study the purpose was to show the influence of
various commonly used boundary conditions and to propose a physiologically based
constraint configuration that minimises reaction forces at the constrained nodes in
force balanced models of the femur. In particular three different load cases were
considered in this study (Figure 1.9, top):

a. All of the joint and muscle forces from the musculoskeletal model formed a
complex set.;

b. A simplified load case including a hip contact and abductor force;

c. The case b additionally including the vastus lateralis, medialis and intermedius
muscle forces.

Abductor Abductor + Vasti

Diaphysis Condyles joint

Figure 1.9: Top: muscle sets included in the analysis. Bottom: oblique view of the
femur solid model showing the location of node constraints for each configuration.
[17].
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While regarding the BCs, three methods were considered for preventing rigid
body motion by applying displacement constraints at three nodes (Figure 1.9,
bottom):

a. All three nodes were fully constrained at the mid-diaphysis part of the femur.
b. All three nodes were fully constrained at distal condyles of the femur.

c. A node in the center of the knee was limited in three translational degrees of
freedom (DOF). The node at the hip contact position, where the hip contact
force was applied, was constrained in two degrees of freedom, allowing it to
bend only along an axis towards the center of the knee. The sixth DOF was
constrained at a node on the distal lateral epicondyle to prevent anteroposterior
movement, effectively inhibiting rotation of the model’s rigid body around the
hip-knee axis.

These methods and load conditions were used in combination in 5 different
studying cases: (A) diaphyseally constrained with hip contact and abductor forces;
(B) case A plus vasti forces; (C) case A with complete set of muscle forces; (D)
distally constrained with all muscle forces; (E) physiological constraints with all
muscle forces. For the first time, a method has been proposed for constraining
the femur in numerical models, allowing for physiological deflection of the femoral
head under complex loading conditions. The application of nonphysiological
constraints resulted in nonphysiological deflections and altered stress patterns on
the femur. Only by applying physiologic constraints was it possible to reproduce
physiological deflections under difficult loading conditions. This approach will not
only influence the results of finite element studies by providing a standardized
method for constraining models, but it may also serve as a benchmark for studying
all long bones in the body.

11



Chapter 2

Material and methods

In this chapter there will be an analysis of how the multibody model was imple-
mented and what parameters were chosen in order to obtain muscle and joint
reaction forces. Following a section explaining the calculation that was used to
obtain resultant forces and moments. The process of transferring the joint and
muscle forces to the FE model, in addition to the appropriate FE parameters
selected, will be discussed in the final section.

2.1 Implementation of Multibody model

Muscle and joint contact forces were calculated for a static pose using a simplified
musculoskeletal model from OpenSim’s [9] default folder. In particular, starting
from ’Gait2392.0sim’ model [18], it was scaled to match the experimental data
of the a subject with body weight of 750 N and it was simplified by reducing the
number of muscles that were directly in contact with the femur of the right leg
(Figure 2.1). More specifically, 12 muscles were selected and listed in the Table
2.1. The maximum isometric forces (MIF) of the twelve selected muscles were
also listed. The choice of the 12 selected muscles was made in order to reduce
the complexity of the model, selecting a significant representation of the muscles
directly in contact with the femur. In particular, the muscles with a higher force
contribution for each muscle group were selected.

The global coordinate system was set as shown in the figure 2.1, in particular,
the antero-posterior axis (X-axis) was defined with its positive direction pointing
towards the anterior aspect, representing the front of the subject, while the negative
direction extends towards the posterior. Concurrently, the longitudinal axis (Y-axis)
was aligned with the positive direction directed towards the head of the subject,
emphasizing cephalic orientation, and the negative direction extending towards
the feet, indicative of a caudal position. Lastly, the medio-lateral axis (Z-axis)

12
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completes the triad, where the positive direction was extended laterally, marking
the side of the subject, and the negative direction was converged medially, signifying
the central aspect.

Figure 2.1: Representation of muscles that were directly in contact with the
femur. Global coordinate system: X(Red), Y(Green), Z(Blue). (A.) On the left,
the complete model with all muscles. On the right the same model but with the
selected twelve muscles. (B.) On the right, the complete model with all muscles.
On the left the same model but with the selected twelve muscles.

The femoral head becomes the centre of the local coordinate system used in all
of the data that were subsequently obtained (Figure 2.2).
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Muscle MIF
Glu medl | 819 N
Glu min3 | 323 N

Bifemsh 804 N
Add brev | 429 N
Add mag3 | 488 N
Glu max2 | 819 N

Psoas 1113 N
Quad fem | 381 N

Vas med | 1294 N

Vas int 1365 N

Vas lat 1871 N
Med gas | 1558 N

Table 2.1: The twelve selected muscles with their relative maximum isometric
force (MIF) that the fiber can generate.

Figure 2.2: Local coordinate system. X(Red), Y(Green), Z(Blue)

2.1.1 Muscle and Joint Reaction forces calculation

The analysis concentrated on a static trial, specifically gathering data from a
subject in a static pose. Consequently, the marker set applied to anatomical points
remained relatively consistent with the initial position throughout the trial. The
collected data served as input for OpenSim’s Static Optimization tool. This tool
was employed to estimate muscle forces by minimizing the sum of squared muscle
activations for each frame in the kinematic data, while respecting to constraints
such as joint moment equilibrium and physiological limits for muscle forces. Finally,
joint contact forces (JCFs) were calculated at the hip and the knee joint.
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All musculoskeletal simulations were performed in OpenSim [9]. All loads acting
on the femur were determined with respect to the segment reference system in
order to be applied to the FE model. The inertial load and the gravitational force
were calculated at the thigh centre of mass based on the segment kinetics, the joint
contact forces were calculated at the joint centres using the JointReactionAnalysis
tool available in OpenSim [19], while the femoral attachment point coordinates of
each muscle actuator, together with the direction and magnitude of the muscle
force, were extracted using the plugin, MuscleDirectionForce, developed by the
authors Van Arkel et al. [20].

In the following analyses, a single frame from the full cinematic recording
was examined. Every frame was selectable because the analysis in question was
performed on a subject in a static pose.

2.1.2 Resultant Forces and Moments calculation

All the data acquired from OpenSim (Figure 2.3) were utilized in a in-house
MATLAB [21] script in order to calculate the resultant force and moment acting
on the femur.

Tools: Useful outputs:

Static Optimization —» | Muscle forces module

Joint Reaction Analysis —— | Joint reaction forces

OpenSim

Attachment point of muscle forces (x, y, z)

Muscle Direction Force » | Direction vector of muscle forces (X,V,2)

Figure 2.3: Output from OpenSim utilized in the MATLAB script.

Specifically, the following formula provides the resultant forces’ calculation:

) Udir(ﬁﬁz‘, Yi, Zz)
||vdir(xi7 Yi, ZZ) ||

Fres(2,y, 2) = Fy + Fuip(2,9, 2) + Finee(T, y, 2) + Z|F(z)]
i=1

Where Fies(x,y, z) represents the resultant force vector, |F'(i)| represents the
module of ith muscle force and ||vgir(x;, ys, z;)|| represents the norm of the direction
vector of the ith muscle force. While n represents the number of muscle forces. The
first two terms, respectively Fiip(2,y, 2) and Finee(2,y, 2), represent the contribute
of joint reaction forces. Finally, F,, which is the femur’s weight, was used in this
calculation.
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The following formula explains how to determine the resultant moment:

n

Myes = Miip(2, Y, 2) + Migee(, 4, 2) + D (1F@)] - N[vaie (@i, yir 20) | X 7(2, 93, i)

=1

Where M,e(x,y, z) represents the resultant moment of all the muscle forces in
relation to the centre of the reference system, the femoral head, plus My, (z,y, 2)
and Mypee(,y, 2), that represent the moment referred to the head of the femur by
the joint reaction forces.

Verifying that all the forces acting on the femur are in equilibrium with each
other is crucial for the simulations with the FE model to converge towards a
solution. Therefore it is necessary to verify that the result of the forces applied to
the femur is theoretically zero, or at least is as close as possible to zero. For this
reason these calculations were done.

2.2 FE model: Boundary and Load conditions

From the geometry file extracted from OpenSim [9], femur_r.vtp, Ansys® ICEM
CFD was used to create a mesh of the femur with 287,548 elements. In particular,
SOLID187 (from Ansys® element library) was used as element. The mesh was
exported as an Ansys® MAPDL (ANSYS Mechanical APDL, Ansys Inc., PA, USA)
input file, MeshedFemur.cdb. In order to simplify the simulation one material
property was chosen for the femur, in particular the young modulus of the cortical
bone was chosen (E=17,000MPa) and the Poisson coefficient was set to v=0.33, as
reported in the study of Duda et al. [13]. The purpose of the FE analysis was to
evaluate the deformations on the external surface of the femur, subjected to muscle
forces.

Figure 2.4: Load condition for the reference case: load force applied to the centre
of femoral head (green arrow).

For FE analysis an in-house MAPDL code was used in order to apply certain
conditions. In particular, all the cases were analyzed in the FE model simulating a
fall on the side. A concentrated point load of 1kN was applied at the centre of the
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femoral head. The diaphysis nodes were linked to the knee centre, modelled as a
hinge, through beams elements. At the greater trochanter, a non-linear surface-
to-surface contact using augmented-Lagrange algorithm was employed, where the
surface area of the greater trochanter was in contact with an infinitely rigid plane.
These information were reported in detail in the case studies of Bhattacharya et
al.[22], Altai et al.[23] and Aldieri et al.[24]. A simulation was launched with the
model containing the conditions mentioned above, with the hinge at the center
of the knee linked to the diaphysis nodes serving as boundary condition and the
loading force applied at the centre of the femoral head as the loading condition
(Figure 2.4). This became the reference case, allowing for comparison with other
cases involving muscle forces and varying boundary conditions.

In this thesis study, five simulation cases were analysed. Every muscle force
derived from OpenSim was applied for each case study in addition to the force load
(Figure 2.5); in particular, muscle forces were applied to the node closest to the
OpenSim-determined muscle attachment points. What differentiates the various
cases were the constraints applied to the FE model, choosing them in reference
to previous studies, which were analyzed in the introduction. The five cases are
summarized in Table 2.2.

Cases Constraints Authors
0 Diaphysis nodes linked to hinge node at the knee Altai et al.[23]
1 Distally fully constrained Altai et al.[5], Martelli[15]
2 Three nodes fully constrained at mid-diaphysis Speirs et al.[17]
3 Three nodes with specific constraints at distal end Altai et al.[5]
4 Physiological constraints Speirs et al.[17]

Table 2.2: Simulation cases.

Figure 2.5: Load condition for all the cases except for the reference case. Muscle
forces applied to the FE model surface (red arrows). For all the muscle forces,
the three component (x,y,z) were considered. Load force applied to the centre of
femoral head (green arrow).
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2.2.1 Simulation cases

The boundary conditions for the case 0 were the same boundary conditions of the
reference case [22][23][24], where the diaphysis nodes were linked to the knee centre,
modelled as a hinge, through beams elements (Figure 2.6). All the muscle forces
were applied on the surface of the femur in addition to the force load applied in
the centre of the femoral head.

Figure 2.6: Boundary conditions for case 0: hinge at the knee node (in orange)
linked to a selection of diaphysis nodes through beams elements (in black). Black
arrows represent biomechanical length [22][23][24].

The Altai et al. [5] and Martelli [15] studies provide the reference resources for
the case 1. As highlighted in the first chapter, these studies had set a determinated
condition, that represents the most constrained condition that can produce the
highest reaction forces [5]. Using Ansys® MAPDL, the same constraints were set
on the studying FE model. The nodes in the distal part of the femur were all
selected (Figure 2.7). The displacements of the selected nodes were constrained in
all the directions.

Figure 2.7: Boundary conditions for Case 1: all the nodes (selection in yellow) in
the distal portion of the femur were fully constrained (in pink) [5][15].

Similar to the case 1, with the difference that in this second case only three nodes
were fully constrained in the mid-diaphysis of the femur. This condition was shown
in the study of Speirs et al. [17]. In order to simulate this instance with Ansys®
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MAPDL, a few nodes were chosen from the femur’s mid-diaphysis. Subsequently,

only three nodes of that selection were constrained along all directions. (Figure
2.8).

=

Figure 2.8: Boundary conditions for Case 2: three selected nodes from the femur’s
mid-diaphysis are shown in the top image (in red); the three selected nodes were
fully constrained (in pink), shown in the bottom image [17].

In the case 3 was replicated the conditions shown in the study Altai et al. [5].
In particular, three nodes were chosen as more relaxed BCs:

1. The most distal node of the medial condyle was fully constrained.

2. The most distal node at the lateral condyle was constrained in along X and Y
displacements.

3. One node near the patella groove was constrained along X displacements.

Three zones in the distal portion of the femur were chosen using Ansys® MAPDL,
each of them close to the corresponding node to be chosen. For the zone of the
medial condyle, a distal node was chosen searching for the nodes with the minimum
value of the Y component. The same operation was done for the distal lateral zone
and the zone of the patella groove. In the figure 2.9 were shown the three selected
nodes with the respective constraint conditions.
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Figure 2.9: Boundary conditions for Case 3. Three selected nodes: in purple the
most distal node at the lateral condyle, in red the most distal node of the medial
condyle and in blue the patella groove node in the top image. The most lateral
node (purple) was constrained in X and Y displacements, the most medial node
(red) was fully constrained and the patella groove node (blue) was constrained in
X displacements, shown in the bottom image [5].

For the case 4, Speirs et al’s [17] article was used as reference. In that study
node constraints were selected to approximate physiological constraints at the knee
and hip, precisely:

1. The node on the femoral head’s surface, referred to as the hip contact node,
was constrained in X and Y displacements.

2. One node near the patella groove was fully constrained.
3. A node on the distal lateral epicondyle was constrained in X displacement.

Ansys® MAPDL was used to select three zones on the femur surface, each of
that was close to the corresponding node that was required to be selected. In
the figure 2.10 was shown the three nodes selected: the hip contact node was
chosen by starting at the head femoral node and looking for the node that had the
lowest values for the Z and Y components; while the distal lateral epicondyle node
was chosen by starting by the knee centre node and searching the node with the
maximum value for the Z component (z). The respective constrained was shown in
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the figure 2.11.

Figure 2.10: Boundary conditions for Case 4: Three nodes selected: node on the
femoral head’s surface, referred to as the hip contact node (red), a node on the
distal lateral epicondyle (purple) and one node near the patella groove (blue).

Figure 2.11: On the left: the node on the distal lateral epicondyle was constrained
in X displacement and the node near the patella groove was fully constrained. On
the right: The node on the femoral head’s surface, referred to as the hip contact
node, was constrained in X and Y displacements [17].
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Chapter 3
Results and discussion

This chapter provides a comprehensive review of the mechanical results obtained
for each case in a specific region of interest under different boundary conditions.
This chapter examines the principal strains (el and €3), providing insights into
their distribution and statistical significance.

The analysis begins with a description of the region of interest, as well as the data
collection and analysis methods. The results are then presented, including average
and standard deviation (SD) calculations for the principal strains.

3.1 Analysis of Principal Strains

The findings from the analysis of principal strains (el and €3) in a specific region
of interest (Figure 3.1) were investigated. This region includes the proximal part
of the femur, the lateral portion of the greater trochanter is not included in the
selection process because of the boundary conditions effect. All external nodes in
this area were chosen, and the data linked to the principal strains of these nodes
represented the distribution of the data used in the following analyses.

Figure 3.1: Region of interest for the analysis of the results. The lateral part
of the greater trochanter is excluded due to boundary conditions effect, with the
biomechanical length indicated by the black arrow.
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The analysis focused on the maximum and minimum strains, with mean and
standard deviation calculations performed for each case, where the average values
represent the central tendency of the principal strains for each case, while the
standard deviations (SD) represent the dispersion or variability of the principal
strains around the mean value for each case. These values are summarized in the
tables (3.1 and 3.2), which shows that the average value of the principal strains
for all cases is similar to the average value of the reference case, in which muscle
forces were not considered.

Table 3.1: Strain Mean and Standard Deviation of maximum strains (el).

Case Mean €l (%) SD el (%)
Reference case 0.248 +0.333
Case 0 0.247 +0.343
Case 1 0.248 +0.341
Case 2 0.232 +0.313
Case 3 0.285 +0.390
Case 4 0.085 +0.207

Table 3.2: Strain Mean and Standard Deviation of minimum strains (e3).

Case Mean €3 (%) SD €3 (%)
Reference case -0.253 +0.335
Case 0 -0.253 + 0.346
Case 1 -0.254 +0.343
Case 2 -0.238 +0.313
Case 3 -0.290 +0.392
Case 4 -0.087 +0.130

Maximum strains with applied muscle forces show average values ranging from
0.085% to 0.285%. The reference case without muscle forces has an average value
of approximately 0.248%. For minimum principal strains, applied muscle forces
produce average values ranging from -0.087% to -0.290%. Instead, the reference
case without muscle forces show an average value of approximately -0.253%. For
the cases with applied muscle forces, the SD values vary among cases but generally
range from approximately 0.207% to 0.390% for the maximum principal strains and
from approximately 0.130% to 0.392% for the minimum principal strains. The case
without muscle forces has slightly lower SD values, ranging from approximately
0.333% to 0.335% for the maximum and minimum principal strains, respectively.
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Case 3 has the highest average strain value (0.285%). However, it is consistent
with the average values of previous cases. This case has also the highest standard
deviation (£0.390%), as shown in the table (3.1). Case 3 has the highest average
minimum strain value, 0.290% (modulus), with an SD value of +0.392%, which is
similar to the SD value for maximum strains.

However, the strains’ mean values differ minimal between cases within the ana-

lyzed region of interest. This suggests that the inclusion of muscular contributions
and variations in boundary conditions may not have a significant impact on causing
important variations in the various simulations performed. Despite the addition of
muscle forces and changes in boundary conditions between cases, average strain
values remain relatively stable. This implies that other factors, rather than the
specific conditions under investigation, may have a greater impact on the mechani-
cal response of the system.
An analysis of the contour plots generated by Ansys APDL will provide visual
confirmation of the above observations. In addition, the findings will be supported
by a statistical analysis using histograms and distributions in the following sections.
Nonetheless, the consistency in mean strain values across simulations provides
useful information about the model and the region’s relative insensitivity to changes
in muscle forces and boundary conditions.

3.2 Visual and Statistical Analysis

For a deeper understanding of the data, contour plots were generated to visualize
the distribution of strains in different cases. Subsequently, the focus shifted to the
region of interest to visually compare differences between cases.

The contour plots of the principal strains of the entire femur, highlight the various
boundary conditions used in the five study cases. For both the distribution of €l
and €3, the color map varies only in the distal part, where the constraint conditions
have changed. In fact, case 3, with only three nodes constrained in the distal
part, has higher deformation values than the others in this area. The other cases,
which have more restrictive constraint conditions, have lower deformations in the
distal part than case 3. Although case 2 has three constrained nodes, like case 3,
the deformations in the distal part of the femur are comparable to cases where a
selected group of nodes are constrained, as in cases 0 and 1. This is because the
three constrained nodes in case 2 were chosen in the mid-diaphysis region.
Although the differences between the various cases in the distal part are minor,
they do not exist in the proximal part, which is the focus of this thesis’s case study.
In other words, the distribution of principal strains in the region of interest remains
largely unchanged for both €l and €3. Figures 3.2 and 3.3 show an isometric view of
the femur region of interest, along with the corresponding contour plots of €1 and €3.
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These figures demonstrate how the distribution of principal strains remains largely
unchanged. Figure 3.2 shows that the areas with the highest values, highlighted in
red, are the same in all cases. The same situation occurs for the minimum values
in figure 3.3, showing the €3 strains, in which the areas with the minimum values
are substantially the same.

First principal strain distribution

Case 0

ase 2

I I
.956E-13 .150E-04 .450E-04 .300E-03 .003
.100E-04 .300E-04 .100E-03 .0015

Figure 3.2: Maximum strains distribution within the region of interest. Strains
are shown for all the cases. It is shown the isometric view of the femur.

Case 4 stands apart from the others. As expected, the strain distribution in the
proximal part differs from previous cases due to the constraint condition imposed
there. This condition is highlighted in figures 3.2, and 3.3. Figures 3.2, and 3.3
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Third principal strain distribution

Reference case Case 1

Case 2 Case 4

— I
-.015288 -.300E-03 -.800E-04 -.100E-04 -.100E-11
-.100E-02 -.100E-03 -.300E-04 -.500E-05

Figure 3.3: Minimum strains distribution within the region of interest. Strains
are shown for all the cases. It is shown the isometric view of the femur.
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demonstrate how the distribution of case 4 differs from the other cases, with minor
strains for both €1 and €3.

1000 Maximum strain boxplot
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Figure 3.4: Comparison of strain distributions in various cases. The reference
case is shown in purple, with the other five cases in the following order: blue,
green, yellow, red, and aquamarine. The figure shows the boxplots of the maximum
strains (el).

The visualization of results using contour plots allows for an immediate compari-
son of the various cases, highlighting the regions subject to the greatest deformations.
Boxplots were used to obtain a visual distribution of the data within each case
(Figures 3.4 and 3.5), allowing for an immediate evaluation of the data’s variability
and dispersion. Figure 3.4, which shows the maximum deformation values of the
various cases, shows that the data distributions are similar across the cases. In
particular, 75% of the deformations assume values less than 500 ue in all cases,
with peak values exceeding 800 pe.

The median value is closer to the first quartile, indicating that the majority of the
data is concentrated at the lower end of the distribution. This indicates that the
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Minimum strain boxplot
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Figure 3.5: Comparison of strain distributions in various cases. The reference
case is shown in purple, with the other five cases in the following order: blue, green,
yellow, red, and aquamarine. The figure shows the boxplots of the minimum strains

(€3).

data distribution is asymmetric, with a longer tail pointing to higher deformation
values. The majority of the deformations are on the order of hundreds of pe,
and the median value supports this trend. There are no important variations
between the various cases, and their distributions are similar. In particular, cases
where muscular forces act on the femur result in a strain distribution similar to
that produced in the reference case, where muscular forces are not applied. The
imposed boundary conditions did not result in important variations in the strain
distributions. However, this argument changes only for case 4, which confirms
a different distribution compared to the other case studies, precisely because it
presents the boundary condition in the proximal part. Therefore, as expected, the
distribution of the data differs from the other cases, showing lower deformation
values and low variability.

The analysis performed on the maximum strains is also applicable to the minimum
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strains. Figure 3.5 shows a boxplot for the minimum strains, with all values being
negative, indicating a general compressive stress on the surface.

Maximum Strain Distribution
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Figure 3.6: Comparison of strain distributions in various cases. The reference
case is shown in purple, with the other five cases in the following order: blue, green,
yellow, red, and aquamarine. The figure shows the histograms of the maximum

strains (el).

To investigate the consistency of the observed results across different cases, a
more detailed analysis was performed using histograms and distribution curve
fittings. This allowed for a more in-depth examination of the data distribution
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Minimum Strain Distribution

Minimum Strain Distribution
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Figure 3.7: Comparison of strain distributions in various scenarios. The reference
case is shown in purple, and the other five cases are in the following order: blue,
green, yellow, red, and aquamarine. The figure depicts the histograms of the
minimum strains (e3). The absolute value of the data was taken.

within each case, as well as comparisons of distribution characteristics.

After generating histograms of deformation data for each case, a significant similarity
in distribution shapes was discovered (Figures 3.6 and 3.7). A consistent trend
towards lower deformation values is observed across all cases, as evidenced by the
fact that the majority of the high-frequency bins are located at the beginning of
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the graph. The y-axis represents the Probability and the x-axis represents the ue
values in both figures.

The distribution of strains is not symmetric, as expected from the boxplot analysis.
Indeed, the majority of strains occur at low deformation values and are concentrated
in the first part of the histogram, with few in the latter part of the graph, highlighting
a long right tail. The distribution shape is the same for maximum and minimum
strains, as shown in the figures 3.6 and 3.7.

The fitting distribution process was used to better identify and understand the
structure and characteristics of the data distribution, as well as generate parameter
estimates for modeling. Experimentally, the gamma model was chosen to describe
the data distribution because it was considered the most appropriate among those
considered. The gamma distribution is commonly used when data has a positively
skewed distribution with a longer tail towards higher values, as in the observed
cases. To visually assess and directly compare the analyzed deformation data to
the selected theoretical model, both maximum strains (e1) and minimum strains
(€3) were displayed in the same figure, 3.8 and 3.9 respectively. The y-axis in both
graphs represents the probability density function (PDF), while the x-axis plots pe
values. The figures clearly show that the observed data distribution is consistent
with the gamma model, confirming that the model accurately captures how the
data is organized.

After analyzing the histograms with the fitted distributions, we will use the
Kolmogorov-Smirnov test to compare the study cases to the reference case. This
statistical test evaluates the similarity between the distributions of the principal
strains (el and e3) and their fitted distributions. The obtained p-values provide
information on the degree of agreement between each study case and the reference
case, as well as the effectiveness of the applied muscle forces and boundary conditions
in influencing strain distribution patterns.

The tables 3.3, 3.4, 3.5, 3.6 report the p-values obtained from the Kolmogorov-
Smirnov (KS) test used to compare the data distributions between the reference
case and the other cases in tables 3.3 and 3.5, and the Case 0 with the study cases
1,2, 3, and 4 (in tables 3.4 and 3.6) for both the maximum strains (e¢l1) and the
minimum strains (e3), as well as the data obtained from the distribution fitting.

The tables show that, for both the maximum strains (el) and the minimum strains
(e3), the p-values are generally high, indicating significant similarity between the
distributions of the study cases and the reference case. This suggests that the study
cases do not show significant differences compared to the reference case regarding
the strains distribution. Also tables 3.4 and 3.6 show that there are no significant
differences between Case 0 and the other cases with varying boundary conditions.
As expected, the case with constraints on the proximal part (Case 4) showed a
significantly low p-value compared to the other cases, as it presents limitations
that affect the distribution of strains. This result was predictable and confirms
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Histograms with Fitting Distribution - Maximum Strain
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Figure 3.8: Histograms of deformation data overlaid with fitted gamma distribu-
tion curves. The y-axis represents the probability density function (PDF), while
the x-axis shows pe values. The fitted curves closely match the observed data
distribution for maximum strains (el) across all analyzed cases.

the validity of the model. For example, for the maximum strains (el) in Case 4,
the p-value is very low (0.003), suggesting that the strains distribution in this case
may be significantly different from the reference case. The same is observed for the
minimum strains (€3) in Case 4.
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Histograms with Fitting Distribution - Minimum Strain

0.016 . : ; 0.02 . . ‘
0014} [ Reference case| [ JCase0
0.012 —Gamma — 0.015 —Gamma |

001

L L

0 0.008 0O oo1f

o o
0.006 -

0.004 - - 0.005 -
0.002 - 1 iﬁ
0 = - [ = .
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400 1600
L€ e
0.02 — : ‘ . ‘ ‘ ‘ . . 0.016 ‘ ‘ ‘ ‘ . ‘ :
[ ICase1 0014 [ ]Case?2 |
0.015 | Gamma | 0.012 | —Gamma /!
001} 1

L L

0O oo1f f 0O 0.008

[a o

0.006 -
0.005 |- 1 0.004 |-
0.002 -
0 - 0o -
0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400
L€ e
0.02 ; 0.015 ‘ . .
[]Case 3 [ ICase4
0.015 1 —Gamma |- — Gamma
0.01 | 1

L L

0O oot )]

o o

0.005 |-
0.005 -
0 ke o M L L
0 500 1000 1500 0 500 1000 1500 2000 2500 3000
JLE e

Figure 3.9: Histograms of deformation data overlaid with fitted gamma distribu-
tion curves. The y-axis represents the probability density function (PDF), while
the x-axis shows pe values. The fitted curves closely match the observed data
distribution for minimum strains (€3) across all analyzed cases.
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Results and discussion

Table 3.3: p-values obtained from the Kolmogorov-Smirnov test comparing the
maximum strains (el) and the fitted distribution of the study cases with the reference
case. p-values in the first column were derived directly from the distribution data,
while p-values in the second column were derived from fitted distribution data.

Case  p-value (el) p-value (Fitted Distribution)

Case 0 0.965 1.000
Case 1 1.000 1.000
Case 2 0.750 1.000
Case 3 0.220 0.985
Case 4 0.003 0.0025

Table 3.4: p-values obtained from the Kolmogorov-Smirnov test comparing Case
0 with cases 1, 2, 3, and 4 for the maximum strains (e1) and the fitted distribution.
p-values in the first column were derived directly from the distribution data, while
p-values in the second column were derived from fitted distribution data.

Case  p-value (el) p-value (Fitted Distribution)

Case 1 1.000 1.000
Case 2 0.921 1.000
Case 3 0.082 0.985
Case 4 0.0032 0.0025

Table 3.5: p-values obtained from the Kolmogorov-Smirnov test comparing the
minimum strains (e3) and the fitted distribution of the study cases with the reference
case. p-values in the first column were derived directly from the distribution data,
while p-values in the second column were derived from fitted distribution data.

Case  p-value (e3) p-value (Fitted Distribution)

Case 0 0.988 1.000
Case 1 0.998 1.000
Case 2 0.720 1.000
Case 3 0.220 0.972
Case 4 0.0029 0.0017
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Results and discussion

Table 3.6: p-values obtained from the Kolmogorov-Smirnov test comparing Case
0 with cases 1, 2, 3, and 4 for the minimum strains (e3) and the fitted distribution.
p-values in the first column were derived directly from the distribution data, while
p-values in the second column were derived from fitted distribution data.

Case  p-value (e3) p-value (Fitted Distribution)

Case 1 1.000 1.000
Case 2 0.572 1.000
Case 3 0.137 0.972
Case 4 0.0036 0.0017
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Chapter 4

Conclusion

The prediction of femoral fractures using computational modeling raises important
questions about the role of muscle forces in determining fracture risk. This study
aimed to examine this issue in detail by exploring different approaches for transfer-
ring muscle forces from multibody models to finite element (FE) models. Using
data obtained from simulations of static pose and muscle forces generated by a
simplified musculoskeletal model, the influence of these forces on the femur was
evaluated through an FE model. Five different boundary conditions were tested,
and the results were compared to a reference model free of muscle forces.
Furthermore, conclusions were analyzed through detailed analyses of strain dis-
tributions using histograms and statistical testing with p-values. These analyses
provided strong insights into the effects of muscle forces on femoral strain patterns.
Particularly, the findings revealed that the presence or absence of muscle forces did
not result in significant differences in strain distribution across the femoral surface.
In conclusion, it is proposed that, for predictive purposes, the inclusion of muscle
forces may be unnecessary, reducing model computational complexity and possibly
improving simulation accuracy.

However, it is important to understand the current study’s limitations, which
include the use of a simplified model and the simulation of a static pose. Future
developments could include increasing the number of muscles included in the
analysis and simulating more dynamic activities to better understand the impact
of muscle forces on femoral fracture risk.
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