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Abstract

Passenger safety is a key aspect during the development of a new vehicle. However,
designing for safety is a very complicated task that results in high costs. The
extensive use of finite element (FE) simulations helps accelerate development and
contain the overall costs. Nevertheless, recent developments in data science can
further help obtain the desired information at a fraction of the current costs.

In this thesis, I propose a method to test a component in the early stage of
development. This method considers the effects of development uncertainties to
study how they affect the behavior of a component. For this purpose, I propose a
simplified FE model that couples 1D elements with the full mesh of a component
to be studied. Surrogate models are then used to predict the behavior of the other
components. The solution space method is used in combination with the surrogate
models to characterize the performance of the 1D element under the development
uncertainties. To propagate the uncertainty, I finally run multiple samples. This
confirms the capability of the method I propose to capture how a component is
affected by the variations of the design parameters of the other components. This
information provides an indication of the robustness of the design of the studied
component.

My method offers a tool for engineers to quickly test early-stage designs of a
component, identifying which could work in the full model. This strategy reduces
the cost of the overall development.
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Chapter 1

Introduction

Vehicle safety represents a key factor in the development of automobiles in the mod-
ern era. It is approximated that 1.19 million people die each year due to road traffic
crashes. Additionally, 20 to 50 million people suffer non-fatal injuries, with many
facing disabilities after the crash [1]. These data highlight the importance of the
focus on further improvements in road and vehicle safety. Designing a frontal crash
structure, however, is a costly procedure, both in terms of time and computational
resources. A common workflow is to design independently each component. The
safety standards are verified at the component level by performing a traditional drop
tower test. These tests allow to capture the dynamic effects of a crash. However, as
the components are tested independently, a traditional drop tower test is not able
to highlight the interactions between components in a crash.

The cost of the development of a new crash structure can be substantial. The solu-
tion space method introduced by Zimmermann et al. [2] offers a process to reduce
the development cost. The methodology proposed allows to define a set of feasi-
ble possible designs for each component of the structure. The application in the
automotive field is based on the Geometry Space Models (GSM) and Deformation
Space Models (DSM) introduced by Fender et al. [3]. The paper by Lange et al. [4]
presents an iterative process to evaluate the DSM of any complex structure, allowing
the introduction of connecting elements between load paths or inclined elements in
general. The thesis by Chaudhry Taimoor Niaz [5] explores a mathematical model
adaptation for the connecting elements. This model allows us to link the solution
space method with a Deformation Space Model that includes connecting elements.
These studies focus on the performance of the entire crash structure. Ascia et al. [6]
present a new vehicle model adapted to the analysis of the effect of each component
on a component represented with a 2D mesh. The methodology applied takes ad-
vantage of surrogate models to predict the behavior of 1D components. This process
allows the reduction of the computational cost of each FE simulation.

In this thesis, I implement the DSM proposed by Chaudhry Taimoor Niaz [5],
which is composed of 2 parallel load paths and a connecting element. A lumped
mass is implemented in the model. The relative solution spaces are computed taking
advantage of the python script developed by Paolo Ascia. The performance of the
simplified 1D FE model is verified, paying specific attention to data that confirm
the satisfaction of the imposed constraints. The model is then coupled with the 2D
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mesh of one component. The component defined with a 2D mesh is designed based
on an early assumption of the performance desired. The effect on the solution space
of the system is then evaluated. As a last step, the uncertainty on the designs of
each component of the structure is propagated to evaluate their effect on the 2D
mesh implemented.

The goal of this workflow is to provide a methodology suitable to fully analyze the
performance of an early-phase design. This methodology allows the study of the
robustness of a design, providing information on the dependency of the performance
of a component on the changing designs of other components in the entire system.

The thesis is structured as follows:
e Chapter 2 provides an overview of the Aims and Objectives of the thesis;

e Chapter 3 presents an overview of the relevant research papers. Studies
regarding the solution space method and its application in the automotive
field are reviewed. Relevant research on uncertainty quantification and the
development of surrogate models are presented;

e Chapter 4 presents the methodology applied to implement a simplified 1D
Finite Element model and evaluate the relative solution space. The model
is then coupled with the 2D mesh of one component. A surrogate model is
designed to predict the behavior of 1D components. The uncertainties of the
1D components are propagated and their effect is tested on the 2D mesh;

e Chapter 5 discuss the results obtained. The solution space corridors are
shown, and relevant data to ensure the satisfaction of the imposed constraints
is presented. The performance of the surrogate models, the design of compo-
nent 2, and the effect of the uncertainties on the 2D mesh are discussed.

e Chapter 6 offers a detailed analysis of the key choices adopted for the imple-
mentation of the model. A further analysis of the results previously presented
is provided.

e Chapter 7 offers an overview of the key findings of the work presented and
suggests relevant topics for future research.






Chapter 2

Aims and Objectives

In the first stages of development of new vehicles, it is important to meet the desired
design targets in a vast range of variations of the parameters of a component, with-
out immediately fixing their design or testing multiple different combinations. This
is possible through the solution space method. However, variations in a component
design affect how other components in the system behave, differences that are not
highlighted in a conventional drop tower test.

The goal of this thesis is to create a simplified FE model and test the effect of the
variations of the parameters of each component, effect measured through the forces
acting on a selected component. The work is divided into different objectives:

1. Create a new Geometry Space Model (GSM) and the relative Deformation
Space Model (DSM);

2. Adapt an existing mathematical model to our DSM, and solve the linear system
of equations to obtain the solution space corridors;

3. Create a simplified 1D FE model in LS-Dyna;

4. Verify the accuracy of the mathematical model implemented on the 1D FE
model with an FE simulation of a frontal crash. The performance of the
structure in compression is studied;

5. Replace one monodimensional component in our model with a 2D mesh;

6. Create a surrogate model of each component, using various drop tower test
results as training data;

7. Fix an early design for the component with the 2D mesh, and modify the
relative solution space model;

8. Evaluate the effect of the variations of the parameters of each component on
the component studied.






Chapter 3

Literature review

3.1 Solution space method

The main concern during the design of a new vehicle is the safety of the occupants.
The focus of the design strategy is to increase the protection of the occupants to
reduce the number of fatal and serious injuries. Frontal crashes account for the
majority of injuries and fatalities. However, designing for safety is a very complicated
task that results in high costs. Designing and testing different solutions, aiming
to obtain the best performance, leads to time loss due to the sensitivity of the
components to small variations in the entire system. Designs that would be ideal in
the initial stages of development could return poor performance in later stages. This
causes continuous redesigns of components and extensive testing. An alternative to
this methodology was first proposed by Zimmermann et al. [2], introducing the
solution space method. The solution space method is based on identifying a wide
range of feasible designs. Compared to optimization methods that search for the
best performance, the goal of the solution space method is to obtain robust designs.
Each design is identified by a vector x = (xi, X, ..., Xp), where p is the number
of design parameters. The set of all possible designs defines the design space. The
solution space method proposes to first subdivide the entire design space into good
and bad regions. The good regions contain the set of design points that fulfill a set
of imposed constraints. Then, the goal is to find the solution box with the largest
volume, with the following characteristics:

e The required system performance is guaranteed if the design of each component
is within the solution box;

e Each component is decoupled from each other. The permissible range of each
component is independent of the behavior of other components. This char-
acteristic allows the modification of the design of each component without
compromising the entire system.

Figure 3.1 shows the subdivision of the design space for a generic problem. The goal
of the solution space method is to define the solution box with the largest volume.
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Figure 3.1: Solution box for a general problem [2]

The solution box is derived through an iterative process, proposed by Zimmer-
mann et al. [2]. The solution box is first enlarged as much as possible while main-
taining the fractions of bad design points below a specified threshold. Then, all bad
regions are removed, based on the results of a few sampling points selected with
a Monte Carlo algorithm. Figure 3.2 shows the iterative process implemented to
define the solution box.

® good sample point <& bad sample point -+ before step A — afterstep A --- afterstep B

Figure 3.2: Evolution of the candidate box in phase I (steps 1-20) and phase II
(steps 21-40). The result is shown at step 40. [2]

Geometry Space Model and Deformation Space Model The Geometry
Space Model (GSM) and Deformation Space Model (DSM) representation of the
crash structure was first presented by Fender et al. [3]. The GSM represents the
actual geometry of the front structure. Each component is represented by a de-
formable part and an undeformable part. This representation allows to reproduce
the behavior of a real component. It is assumed that a real component would have
a specific maximum deformation length and act like a rigid body when fully com-

>
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pressed. Lumped masses can be included between different components. The model
proposed by Fender et al. [3] is composed of only parallel load paths. The load
paths are defined by the crash load case considered. The load paths are defined
at the beginning of the design phase. The GSM is divided into multiple sections,
based on the order of deformation. Each section can contain multiple components
and each component can be divided into different sections. This condition indicates
each section must deform its entire length before the next section can start deform-
ing. Components parts that deform simultaneously are grouped in the same section.
However, in the GSM is possible that those parts do not lie in parallel.

1 I
-~ | 1
- l Fyq my Fa :
I |
/ 1 | __,.-""'J
- 1 I -
1 I -
- I | ]
- F. ' F m F,
31 32 2 41
-~ I| : |
-~ : dy : dy | | ds
i

Figure 3.3: Geometry Space Model with 4 components, 3 different sections and
lumped masses. [3]

The Deformation Space Model (DSM) is derived directly from the GSM. The
non-deformarble parts and gaps are removed. Each deformable section is evaluated
simulating a frontal crash. A new section starts when one component is deformed
for its entire length. The sections that deform simultaneously lie in parallel. Figure

3.4 shows the DSM derived from the previous GSM.

I | i
e |
] Fi m F21 : Fy,
ol |
i |
-~ 1 | msy
- : '
- T : :
F3; | F3; pm; Fyy
-~ i
I | v
it 1 d g b dy e—]
| L =y bl |

Figure 3.4: Deformation Space Model of the system. Component parts that deform
simultaneously lie in parallel, undeformable parts are removed. [3]

This methodology was further analyzed by Lange et al. [4], presenting a more
complex model. Lange et al. first introduced components that connect different
load paths. Moreover, it presents a step-by-step methodology to derive the DSM
from its related GSM.
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Figure 3.5: Deformation progress in both GSM (left) and DSM (right) [4]
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Figure 3.5 shows the process followed to derive the DSM of the relative GSM,
which includes 2 parallel load paths and 1 connecting element. The DSM is derived
by simulating a frontal crash. The gaps in the structure, included due to the avail-
able free crash space, are removed in the first step. Each section is defined by the
component parts that deform simultaneously. A section ends when one component
has completely deformed or when a new component starts deforming. In step 2
of Figure 3.5, it is possible to note how a new section is defined due to the initial
deformation of the component in the lower load path. In step 3, instead, a new
section is defined as the same component has completed its deformation. The DSM
is completely defined when each component has deformed for their entire length.

Mathematical model The iterative process of the solution space method ini-
tially explored by Zimmermann et al. [2] requires a full FE simulation for each
sampling point analyzed. This approach is computationally and time-expensive. A
new methodology was first analyzed by Fender et al. [3], and later by Daub et al. [7].
Fender proposes to simplify the solution space problem to a set of linear equations.
These equations are derived from the requirements of the USNCAP crash load case
[8]. The approach proposed is based on three constraints on the system:

e Energy absorption: the kinetic energy of the impact needs to be entirely ab-
sorbed by the structure. This results in a complete stop of the vehicle during
the deformation. It must be true that sum of the energy that can be absorbed
by each component is higher than the kinetic energy of the impact:

. 1
Z/L Fi(u;)du; < —§mvg (3.1)
i=0 7 Li

The absorbed energy is evaluated as the sum of the integral of the crushing
force F; over the deformation u;, where i indicates the i-th component of the
structure.

e Maximum acceleration: a critical acceleration has to be imposed to limit se-
rious crash-related injuries. Specifically, the sum of the crashing forces of the
M simultaneously deforming components over the acting mass m*:

1

*
mi -

M
F’ivj S ac7u (3'2)
J=1
e Progressive order of deformation: The front of the car must be the first part to
deform in a crash. It must be true that the collapse force of each component

is higher than the force at any point of deformation of a previously deforming
component:

F, < Fig (3.3)

This constraint is extremely important for low-speed crashes, as the front part
of the crash structure can be more easily replaced.
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This set of equations returns an optimization problem related to the dimensions of
the solution box. Fender et al. [3] propose to solve the optimization problem using
the objective function:

B = AP = ming (_) (3.4)
Wi

where F, and F; indicate the upper and lower limits of the force interval related to
the component i. The variable w; represents the weight assigned at each individual
interval. This variable is fundamental as an increase of one force interval always
causes a decrease in the other intervals. Setting up the weight of each interval
permits to define the most important design parameters in the structure. Given the
set of equations and the objective function provided, it is possible to derive a linear
system of equations to solve the solution space problem:

B ﬂ d2 d3 i — - 'v2 -
0 m;  m3 mj 0 0 0 AFw ?0
wi -1 0 0 1 0 0 Fr, 0
wy 0 -1 0 0 1 0]/[F, 0
ws 0 0 -1 0 0 1 Fyl=10 (3.5)
0 0 0 0 n;{ 0 0| |F, a,
0O 0 0 0 O ﬂ% 0 |Fs, a,
(00 0 0 0 0 5Ll la

The system of equations 3.5 is referred to the Deformation Space Model presented
in Figure 3.4 The mathematical model proposed by Fender et al. [3] is based on
parallel and independent load paths. In this thesis, we will focus on the model
proposed by Chaudhry Taimoor Niaz [5]. In the new model, an angular correction
is considered to allow the implementation of a connecting element between two load
paths. The modified mathematical model with the angular correction is presented
in Section 4.1.

3.2 Uncertainty Quantification

During the development of a new vehicle, the uncertainties in the design of each
component need to be considered. As expressed previously, the goal of the solution
space method is to obtain a robust design. The robustness of a component is defined
by its sensitivity to the variable conditions of the system. The uncertainty in the
engineering field is classified as aleatory and epistemic uncertainty, depending on the
nature of the uncertainty. Uncertainties are referred to as aleatory if it is caused by
variability of fluctuations of the system. This type of uncertainty is irreducible and
is described by probabilistic models. Epistemic uncertainties are, instead, caused by
a lack of or imprecise knowledge. This kind of uncertainty is reducible, by improving
the model used to describe the phenomenon. A case study of the quantification of
uncertainties in the early stage of development was presented by Ascia et al. [9,
6]. In this thesis, we focus on the epistemic uncertainties derived from the lack
of information on the characteristics of each component of the model. We will use
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surrogate models to describe the behavior of each component, and we will propagate
the uncertainties of the design of each component to analyze the robustness of our
design.

3.2.1 Swurrogate Model

An analysis of the robustness of the design of one component, based on the uncer-
tainty of the system, requires extensive FE testing. An accurate simulation model
requires high computational resources and is typically time-consuming. Surrogate
models are introduced to reduce the time and computational cost of this procedure.
A surrogate model is an engineering method implemented when an outcome cannot
be measured or computed, so an approximated mathematical model is used. Sur-
rogate models approximate the target function as closely as possible, in order to
predict the behavior of the model while requiring less computational resources. The
surrogate model is built on data obtained from high-fidelity simulations. Fender
et al. [10] proposed a substitute model to predict the force-deformation curve of a
component under compression. The substitute model is built starting from a math-
ematical description of the physics involved. The unknown parameters are then
determined through an optimization process. Common surrogate models are radial
basis models and kriging [11].

Radial Basis Models The radial basis function (RBF) surrogate model repre-
sents the interpolating function as a linear combination of basis functions, one for
each training point. The basis function depends on the distance between the pre-
diction and the training point. The coefficients of the basis functions are computed
during the training stage. The RBF model is defined by the equation:

y = p(x)w, + Z o(z, xt;)w, (3.6)

where x is the input vector, xt; is the input vector for the i-th training point, p(x)
is the polynomial basis function, ¢(z, xt; is the radial basis function, w, is the vector
of polynomial coefficients, and w, is the vector of radial basis function coefficients.
The RBF is able to fit many different functions, but it returns a poor performance
for a Design of Experiments (DoE) analysis.

Kriging (KRG) model Kriging is an interpolating model that combines a
known function f(x) and a stochastic process Z(x):

y = f(z)+ Z(z) (3.7)

7 Z(z) is a realization of a stochastic process with mean zero and spatial covariance
function given by: ' . o
cov[Z(x"), Z(27)] = o*R(a", 27) (3.8)

where o2 is the process variance, and R is the correlation.” [11]
The Kriging model has a good performance working with less than 50 variables.
In the case of a single design variable, it reduces to a simple line-fitting model, as

10
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Figure 3.6: Line-fitting model obtained through Kriging [11]

shown in Figure 3.6. In this thesis, we focus on building a surrogate model based
on data collected from FE drop-tower tests. Considering that each component will
be defined by 2 to 4 design variables, the Kriging model is optimal for the case study.

Sampling strategy The main challenge in surrogate model training is the def-
inition of the training samples. The accuracy of the model highly depends on the
location and the number of samples in the design space. Komeilizadeh et al. [12]
presented a comparative study between different sampling strategies. The sampling
strategies can be divided into two categories, one-shot and sequential sampling.
One-shot sampling strategies are based on a one-time definition of the location of
the sample points. The most common strategies are (Quasi) Monte Carlo ((Q)MC)
and full-factorial. Sequential sampling refers to methods in which the selection of
sample points depends on the information derived from previous samples. The most
common strategy is Latin-Hypercube sampling (LHS). Figure 3.7 shows an example
of sampling using these three different strategies.

11
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(a) Monte Carlo sampling [11] (b) Full-factorial sampling [11]
X
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(¢) Latin-Hypercube sampling [13]

Figure 3.7: Different sampling strategy to define the training points.

The MC sampling strategy is based on a pseudo-random choice of samples in
the design space. The simplicity of the approach leads to a high popularity of the
method. However, a strategy of this type could lead to a low uniformity of the
sample distribution in the design space. More efficient methods, the Quasi Monte
Carlo (QMC) strategies, were developed The QMC sampling strategies use a low-
discrepancy sequence to guarantee a faster rate of convergence. Full-factorial strate-
gies create samples equidistant in the design space in each dimension. This method
guarantees a uniform distribution of the sample points. However, the absence of
randomness in the location of the samples could cause a loss of information on the
component behavior. The Latin-Hypercube strategy offers a chess-like approach to
the choice of the sample points. Each dimension of design space is first divided into
N sections of equal probability, with N being the number of samples required. For
a case study with d dimension, the design space is divided into N¢ cells. N cells are
randomly selected, limiting the number of samples in each section to one. Referring
to Figure 3.7, this strategy can be compared to a chess board in which N rooks
(sample points) are not threatening each other.

Training and validation strategy Validation of the surrogate model is a key

factor in identifying the capability of the substitute model to predict the behavior
of the component. A common strategy for validation is the subdivision of the entire

12
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data set into two branches, a training set and a test set. This strategy is possible with
a large data set. In engineering problems, obtaining data from simulations could be
proved to be computationally and time-expensive. Validation strategies suitable for
small data sets have been proposed, under the name of k-fold cross-validation. K-
fold cross-validation proposes to split the data set into k consecutive folds. Each fold
is then used once as validation while the k-1 remaining folds constitute the training
set. Leave-one-out is a particular case of k-fold cross-validation, with the parameter
k equal to 1. Cross-validation returns a biased estimate of the performance of the
model due to the reduced training data set. The performance of the model is esti-
mated on a training set of 1OOU€T_1% of the available data, rather than on 100%. So,
a model with its performance estimated through k-fold cross-validation, and then
trained on all of the data for operational use, will perform slightly better than the
cross-validation estimate suggests. Leave-one-out cross-validation is approximately
unbiased due to the small difference between the training set used in each fold and
the entire data set [14]. A decrease in the parameter k provides a better estimation
of the model performance. However, a low value of k means a higher number of
iterations required for the estimation of the performance. So, the cross-validation
can be computationally costly. It is fundamental to balance the increased bias, due
to the difference in the dimension of the training set, and the computational cost
required by each iteration.

Optimization strategy Studying the effects of the uncertainties in the design
of a frontal crash structure introduces an optimization problem. The optimization
normally requires many evaluations of a black-box function, which connects the in-
puts of our system (the design parameters of the structure) with the desired output
(force-deformation curve or energy absorbed by a component). Each evaluation, in
the engineering field, requires an expensive FE simulation. While the introduced
surrogate models can partially relieve the high computational cost required, an op-
timization of the output will still present a challenge. This is due to the difficulty of
fine-tuning the parameters of the approximating function. So, optimization meth-
ods based on machine learning algorithms have been presented. The use of machine
learning algorithms allows an automatic procedure to define the hyper-parameters
of the optimizer. An optimization method based on machine learning can be imple-
mented through [15], based on Bayesian Optimization. The Bayesian Optimization
is a common algorithm thanks to its performance in numerous challenging bench-
mark functions.

13
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Figure 3.8: Gaussian Process (GP) and utility function after 9 steps [15]

Bayesian Optimization [16] works assuming that the unknown function can be
sampled from a Gaussian process. The algorithm constructs a posterior distribution
of functions that best describes the function to optimize. The algorithm identifies
the regions of the parameters space that are worth exploring, based on the results of
each observation point. At each iteration, the algorithm decides between exploiting
the results obtained and exploring new regions, based on the information on the
target function. The Gaussian Process is fitted to the sample points at each itera-
tion, and the posterior distribution is used to identify the next sample point. This
process allows the minimization of the sample points required to optimize the target
function.
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Chapter 4

Methodology

In this section, the methodology followed to study the effect of the uncertainties
in a frontal crash structure on an early design of one component is presented. It is
first introduced a simplified 1D FE model of a frontal crash structure, composed of 2
parallel load paths and a connecting element. Then, one component is replaced with
a 2D mesh, and the process followed to measure the effect of the uncertainties in
terms of force and deformation measured is presented. A few examples of keyword
files used to implement the model in LS-Dyna and the code written to run the
uncertainty quantification are provided in the Appendix.

4.1 FE Model

Creating a simplified 1D Finite Element model that can be used for Solution Space
analysis requires multiple steps, from the generation of a new GSM and the relative
DSM to the computation of the Solution Space and its implementation.

This thesis focuses on the implementation of a simplified model on a software for
FE Simulation, LS-Dyna. It aims to gradually reduce the initial assumptions and
perform an Uncertainty Quantification analysis on the model. An existing GSM
and DSM, and the methodology to compute the relative Solution Spaces [5], will be
slightly modified and used for the following analysis.

Figure 4.1 shows the existing Geometry Space Model used as a starting point for the
following work. The model represents the crash-relevant component of the Honda
Accord. Only the left side of the frontal crash structure is considered. FEach com-
ponent is divided into two sections, an undeformable part and a deformable one. A
connecting element is present between the two longitudinal beams, and a lumped
mass m; is added between components 5 and 6. A brief explanation of the mathe-
matical model for the Solution Space method will be presented in this section. For
a more in-depth analysis, refer to the Chaudhry Taimoor Niaz thesis [5].
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Figure 4.1: Existing Geometry Space Model [5]

Mathematical Model. The mathematical model of the components, funda-
mental to derive the Solution Space of our system, is built while keeping into account
the three constraints as stated in [2, 3, 17]. The approach stated by [3], which aims
to obtain a linear set of equations, is used. The constraints imposed on the system
are as follows, as already presented in Section 3.1:

e Minimum energy absorption: the main objective of the front structure of a
vehicle is to protect the passengers by absorbing the kinetic energy of a crash
in its entirety.

e Maximum acceleration: a critical acceleration has to be imposed to limit seri-
ous crash-related injuries. A cautious threshold of 0.3 mm/ms? is applied for
this model.

e Progressive order of deformation: the front of the car must be the first part
to deform in a crash. This criterion is imposed to increase the repairability of
the vehicle in case of a low-speed crash.

In addition to the requirements just presented, particular attention must be paid
to component 7. The solution space method allows the study of a linear system
derived from different load paths. However, the mathematical model proposed by
Fender et al. [3] is based on parallel load paths. For this reason, the implementation
of component 7, which connects the two load paths, needs to be revised. We use
the analytical approach proposed by Chaudhry Taimoor Niaz [5] in his thesis work.
An angular correction approach is followed, creating a third independent load path.
This correction aims to define the horizontal force of component 7 with a simple
trigonometric formulation:

Fyor = cosa - Fr (4.1)

The constraints applied to our system are arranged in an equation of the form:

Az <b (4.2)

The matrix A is composed of m rows and n columns of coefficients, derived from
the equations of the constraints. Equation 4.3 shows the expanded matrices, with
the coeflicients referred to the existing GSM presented in Figure 4.1. Each row indi-
cates an equation needed to apply the constraints on the system, while each column
refers to a different section of the model.

16



CHAPTER 4. METHODOLOGY
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Figure 4.2: Component 7 connecting the load paths, and the correcting angle [5]
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Equation 4.3 shows the effect of the lumped mass between components 5 and 6,
causing a variation of the acting mass in each section. The value o implements the
angular correction for component 7. The values # and ~, instead, are mass correc-
tion factors introduced due to the discrete mass point between components 5 and 6.
A detailed analysis of the equations required to derive the matrices showed in 4.3 is
provided by [5].

Setting up the FE Model. The next step is to implement the model in a
software suitable for Finite Element simulations, LS-Dyna, through keyword files.
This type of file allows one to quickly modify any characteristic of the model in a
notepad, avoiding the loss of time caused by interacting with the software interface.
The components are defined by their nodes, the material of the undeformable and
deformable parts, and the boundary conditions.

Figure 4.3 shows the FE model built into the software. Few alterations have been
implemented with respect to the existing model presented previously: the connec-
tion of component 7 on the lower load path has been moved between components 4
and 5, avoiding a direct connection to the lumped mass, and the upper load path
has been shortened, to recover the inclination of component 7 that has been lost
with the first adjustment.

Each component is composed of a deformable part, highlighted in red and defined by

17



CHAPTER 4. METHODOLOGY

the material card MAT 068 Non-Linear-Plastic-dicrete-beam, and an undeformable
part, identified by the black sections and characterized by the material MAT66 that
simulates a spring with high translational stiffness. An exception is seen in compo-
nent 7, which contains a single deformable section. This solution is implemented to
avoid undesirable global bending. A more in-depth analysis of the phenomenon can
be found in the Discussions section 6.1.

| Compoent 1 | Component 2 | Component 3 |

Vo @o‘«
S $
(P&

Firewall

Mass

| Component4 | | Component 5 | Component 6 |
Figure 4.3: FE model implemented in LS-Dyna

The model is composed of 3 different load paths, following the methodology
proposed by [5]:

e the 1st load path includes components 1, 2, and 3. This load path refers to
the upper longitudinal beam;

e the 2nd load path includes components 4, 5, and 6. This load path refers to
the lower longitudinal beam;

e the 3rd load path includes component 7. This load path refers only to the
connecting element.

To define the different sections of the model, 3 different nodes have been assigned
to each component, while only 2 for component 7. Table 4.1 shows the different
nodes that define the model, while Tables 4.2, 4.3 highlights their position. In each
component, the nodes n; and ny delimit the deformable part, while nodes ny and
n3 define the undeformable part. The absence of ns in component 7 reminds us
that the component is defined by a single deformable section. Table 4.4 includes
the position of the nodes 9000001 and 9000002. The node 9000001 indicates the
starting location of the moving rigid wall, while node 9000002 refers to the position
of the firewall, on which the structure is constrained.

Table 4.1: Node ID of each component

Component ID 1 2 3 4 5 6 7
n; 1000000 | 1000002 | 2000003 | 4000000 | 4000002 | 5000003 | 4000002
no 1000001 | 2000002 | 3000002 | 4000001 | 5000003 | 6000002 | 1000002
ng 1000002 | 2000003 | 3000003 | 4000002 | 5000003 | 6000003
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Table 4.2: Node coordinates for components in 1st load path

Node ID | 1000000 | 1000001 | 1000002 | 2000001 | 2000002 | 2000003 | 3000001 | 3000002 | 3000003
X -1600.0 | -1400.0 | -1200.0 | -1000.0 -800.0 -600.0 -400.0 -200.0 0.0
y 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Z 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Table 4.3: Node coordinates for components in 2nd load path
Node ID | 4000000 | 4000001 | 4000002 | 5000001 | 5000002 | 5000003 | 6000001 | 6000002 | 6000003 | 6000004
1800.0 | -1600.0 | -1400.0 | -1200.0 | -1000.0 | -800.0 | -600.0 | -400.0 | -200.0 0.0
200.0 | -200.0 | -200.0 | -200.0 | -200.0 | -200.0 | -200.0 | -200.0 | -200.0 | -200.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 4.4: Node coordinates for rigid wall (9000001) and firewall (9000002)

Node ID | 9000001 | 9000002
X “1956.0 | 0.0
y ~200.0 0.0
z 0.0 0.0
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The model implemented is composed of 12 different deformable sections:
e 1 section each in components 1, 4 and 7,

e 2 sections in components 2, 3 and 5;

e 3 sections in component 6.

Referring to the mathematical model in matricial form, applied to the model studied,
we obtain a 13x12 A matrix. Figure 4.4 shows the coefficients of the matrix A and
vector b relative to the FE model implemented in LS-Dyna.

configuration[ ‘vehicle_3"]={}

configuration[ ‘vehicle_3"][ 'A"]=np.matrix([[-©.129,-0.

]
>
>
>
>
>
>

[e
[1
[o
[o
[o
[o
[1
[e,

[@,-0.129,0,0,0,0,0,0.871,-1,0,0,0]])
configuration[ "vehicle 3'1[ 'b']=np.array([-121.68,465,465,465,405,405,405,0,0,0,0,0,0])
configuration[ ‘vehicle_3"][ 'dsL ']=np.array([0,0,100,0,0,0,0,0,0,0,0,0])
configuration[ ‘vehicle_3"][ 'dsU']=np.array([200,200,200,200,200,400,400,400,400,400,400,200])
configuration[ ‘vehicle_3"][ '‘plotInfo']={}
configuration[ ‘vehicle_3"][ 'plotInfo'][ 'sections ']=[1,2,3,
configuration[ ‘vehicle_3"][ 'plotInfo Loadpath']=[1,1,1,1,1,2,2,2,2,2,2,3]
configuration[ ‘vehicle_3"][ 'plotInfo section_begin']=[200,400,600,800,1000,0,200,400,600,800,1000,200]

,5,6,7,8,9,10,11,12]
‘10 s
‘10
configuration[ ‘vehicle_3'][ 'plotInfo'][ 'section_end']=[400,600,800,1000,1200,200,400,600,800,1000,1200,400]
‘10
10
i

4
! 1
! ]
configuration[ ‘vehicle_3'][ ‘plotInfo ‘component ']=[1,2,2,3,3,4,5,5,6,6,6,7]
'x_ticks']=[200,400,600,800,1000,1200,0,200,400,600,800,1000,1200]
'x_ticks_Label']=['s1','s2",'600", 's3"','1600", 1200, 's4"', 's5"', 400", 's6", 800", '1000",'1200", 's7", '400"]

configuration[ ‘'vehicle_3'][ 'plotInfo
configuration[ ‘vehicle_3'][ 'plotInfo

Figure 4.4: Configuration of the model implemented in Python

Other relevant pieces of information provided by the configuration are the limits
imposed on the solution space corridors, expressed in kN. The limits of the solution
space corridors are chosen arbitrarily, based on the results expected. Due to the
nature of the model, higher forces are expected on the 2nd load path, up to double
the values measured on the 1st load path. Tables 4.5 and 4.6 summarise the relevant
information provided by the configuration. Additionally, the initial velocity of the
rigid wall and the value of the lumped mass and of the rigid wall are provided. The
limits of the design space parameters are provided referring to the different load
paths.

Table 4.5: Limit of the design space parameters

Load path 1st 2nd 3rd
Upper Limit [kN] | 200.0 | 400.0 | 200.0
Lower Limit [kN] | 0.0 0.0 0.0
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Table 4.6: Model parameters

Quantity Vo Qe m Mo S
Value | 15.6 mm/ms | 0.3 mm/ms? | 1350 kg | 200 kg | 200 mm

The linear system can be implemented in a Python script, written by Ascia
Paolo, that allows the resolution of the system and the derivation of the corridors
of each section of the model.

200

100

o

200

100

400 1000

Figure 4.5: Solution Space corridors of the model. Each graph refers to one load
path, from 1st to 3rd (up to bottom).

Table 4.7: Solution space corridor relative to 1st load path

Section 1 2 3 4 5t
Component 1 2 2 3 3
Upper limit [kN] | 57.13 | 158.12 | 152.03 | 200.00 | 181.13
Lower limit [kN] | 0.00 | 110.03 | 100.00 | 158.13 | 10.25
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Table 4.8: Solution space corridor relative to 2nd load path

Section 6 7 8 9 10 11
Component 4 5 5) 6 6 6
Upper limit [kN] | 138.83 | 230.68 | 246.98 | 252.96 | 205.00 | 223.86
Lower limit [kN] | 0.00 | 138.83 | 55.65 | 200.93 | 34.11 | 52.97

Table 4.9: Solution space corridor relative to 3rd load path

Section

12

Component

7

Upper limit [kN] | 78.80

Lower limit [kN] | 0.00

Figure 4.5 is divided into three different plots, one for each load path considered.
The x-axis of the plot represents the deformation of each load path in millimeters,
while the y-axis the force values measured in kN. The white box represents the
solution space for each section, indicating the range of acceptable forces on the com-
ponent. The limits of the solution space corridors are summarized in Tables 4.7, 4.8

and 4.9.

The energy absorbed by each component can be imposed through the material key-
word. Figure 4.6 and 4.7 shows an example of the force-deformation curve imposed
on one component, and how it is implemented in the keyword file.
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Figure 4.6: Force-deformation curve imposed on component 5
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Figure 4.7: Material keyword referred to component 5 implemented in LS-Dyna

It is important to highlight a characteristic of the force-deformation curve shown.
We impose a limit on the deformation of the component by requesting a force of
several orders of magnitude, not achievable in a real scenario, to obtain higher
deformations than the one desired by the model. This limit is imposed in order to
give information to the software on how the component behaves after it is completely
compressed. A more detailed analysis of the phenomenon, and the reasons why this
limit has to be imposed, is provided in Section 6.2.

The model is tested by implementing in the material card the lower limit of
each corridor, to verify that the model is able to absorb the kinetic energy of the
impact. This constraint is verified if the rigid wall velocity is 0 m/s at the end of the
impact. An additional test is performed imposing the upper limit of the solution
space corridors, verifying that the critical acceleration is not exceeded during the
impact. Figures 4.8 and 4.9 show the rigid wall velocity and acceleration during the
impact. The rigid wall velocity reaches 0 m/s, indicating that the kinetic energy of
the impact has been absorbed. However, the velocity stabilizes at a negative velocity
of -0.2 m/s. This effect is caused by the relaxation of the crash structure, which
pushes the rigid wall away from the vehicle. This phenomenon reproduces the small
bouncing effect of a real vehicle after an impact. The acceleration registers a peak
higher of 0.3 mm/ms® for a short period of time but stabilizes to values close to the
critical acceleration.

Additional results obtained in the simulations are discussed in Section 5.1 to better
understand the behavior of the model.
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Figure 4.8: Rigid wall velocity during the impact

a |

0.05— —

Resultant Acceleration [mm/s*2] (E+6)

Time [s]

Figure 4.9: Acceleration-time curve during the impact

4.2 Uncertainty Quantification

The model shown in the previous section is based on multiple assumptions that allow
the implementation of each component as a 1D element. However, the simplified
model is not able to perfectly replicate the behavior of the components in a real
environment and the effect that each component has on the entire system. In this
section, we will describe how we can measure the effect that different designs of
the components have on the system. In order to perform this analysis, we will first
replace one component in the model with a 2D mesh. Then, we will describe the
behavior of each 1D component with a surrogate model. The surrogate model will
be able to connect the design characteristics of the component to the force absorbed
and the resultant deformation. We will fix the design of the component studied,
analyzing the effect of the design choices on the solution space of the model. In
the end, we will propagate the design uncertainty of the system and analyze the
robustness of the design chosen. The analysis will be performed by studying the
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range of variation of the force measured on the component studied.

4.2.1 Implementing the 2D mesh of a component

The simplified 1D FE model just presented can be expanded by implementing the 2D
mesh of a component. This is useful for analyzing the behavior of a real component
in the system by measuring the compression forces and understanding the effect of
the entire system on it. Figure 4.10 shows an example of a component implemented
in LS-Dyna. The component is defined by a linear order mesh with quadrilateral
elements. This type of element is chosen thanks to its performance compared to
triangular elements. Each color identifies a different section, reflecting the simplified
1D model implemented previously. The differentiation of the sections allows setting
a different thickness in each section, obtaining a variable capability to absorb energy
along the component. The component is characterized by a rectangular cross-section
of dimension 120x70 mm.

Figure 4.10: Implementation of a 2D mesh of component 6

The capability of the component to absorb energy is defined by the material,
implemented through the material card MAT 024 Mat-Piecewise-Linear-Plasticity.
This keyword defines an elastoplastic material ”"with an arbitrary stress as a function
of strain curve and arbitrary strain rate dependency” [18]. Figure 4.11 shows the
stress-strain curve implemented in the model, that will be applied to every 3D
component used for the following analysis.
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Figure 4.11: Stress-strain curve implemented in the material card

The component is connected to the model through a rigid connection, applied
with the keyword ”Constrained nodal rigid body”, as shown in Figure 4.12. The
keyword imposes a master-slave connection between the node that delimits the 1D
component and each node of the mesh selected in the node-set.

Figure 4.12: Rigid connection between the 3D component and the 1D FE model

The connection between the 2D component and the monodimensional elements
is verified by running an FE simulation. Figure 4.14 shows the model during the im-
pact at different time steps. In the simulation performed, we tested the connection
between the 2D mesh of component 6 and the undeformable section of component
5. The purpose of the simulation is that monodimensional elements can correctly
transfer the forces to the mesh. Component 6 correctly deforms, reaching a maxi-
mum deformation of around 600 mm and leaving an undeformable section of almost
200 mm. However, it is possible to highlight that not every monodimensional com-
ponent is fully compressed. While it can be partially attributed to a not-optimized
design of component 6, this phenomenon is caused by the force-deformation curves
implemented in the 1D elements. Differently from the curve shown in section 4.1
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a force-deformation curve without the implementation of the limit on the deforma-
tion, shown in Figure 4.13, is tested. This type of curve caused an interpenetration
between the different elements of the components. However, as the goal of the sim-
ulation is to simply verify the connection between the 2D component and the 1D
elements, the result is considered positive.

400

0 50 100 150 200 250 300 350 400

Deformation [mm]

Figure 4.13: Example of force-deformation curve without imposing the limit on the
maximum deformation.
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Figure 4.14: Frontal impact simulation of the FE model with the 2D mesh of com-

ponent 6.
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4.2.2 Creating a surrogate model

In the simplified 1D FE model presented in section 4.1, the behavior of the com-
ponents was reduced to a constant force absorbed during the entire length of each
section. This assumption can be reduced by introducing surrogate models. The sur-
rogate model aims to predict the force-deformation curve relative to the components.
The model can be trained on data from drop tower tests performed individually on
each component in a FE simulation. The procedure of the drop tower test is pre-
sented by van Mierlo et al. [19]. These tests consist of a compression due to the
impact of a rigid wall, that simulates the mass dropped in a real test. Figure 4.15
shows an example of a drop tower test implemented in LS-Dyna.

I

Figure 4.15: Drop tower test performed on component 1

One edge of the component is fixed. This constraint on every DOF is applied
on each node of the edge. The energy absorbed by the component can be chosen
by variating the mass and velocity of the rigid wall. The compression forces are
measured at a cross-section set 10 mm from the component base. As we expect the
measured force to act mainly along the axis of the component, we measure only
the force contribution on the x-axis. Figure 4.16 shows the constraints applied on
the nodes and the cross-section used to measure the force. The opposite edge of
the component is connected to a node with a rigid connection, applied with the
keyword ”Constrained modal rigid body”. The node is created at the intersection
between the frontal plane of the component and its axis. The central node has 5
DOF constrained, allowing only translation along the x-axis. Figure 4.17 shows the
rigid connection and the central node implemented to apply the constraints (Node
1100000 for component 1).
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Figure 4.16: Cross section for force measurement and constraints on each node of
the edge of the component

. 1100000

Figure 4.17: Rigid connection between the 3D component and the 1D FE model

Component 7 specifics. Component 7 needs particular attention due to the
nature of its deformation. As the component faces not only compression forces but
also tangential forces that allow its axis to rotate in the global reference frame, we
need to measure both the x and y forces and evaluate the total force at each timestep.
The model used for the drop tower test presents also many differences, to reflect its
behavior in the entire system. Figure 6.3 shows the model implemented for the
test on component 7. In this test, the rigid wall collides with a longitudinal beam
composed of 2 undeformable sections (black segments) and 1 deformable section
(red segment). The energy absorbed by the monodimensional deformable section is
imposed to 0 J, in order to avoid any effect on the component. Its length is equal
to the distance on the x-axis between the center node of each edge of component 7,
200 mm.
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Figure 4.18: Drop tower test performed on component 7

The length of the component at each time step is measured through the Pythagorean

theorem, and shown in the following equation:

l7 = /(200 — dr100000)? + 2002 (4.4)

where [7 is the length of component 7, d71000000 i the deformation of the central
node along the x-axis and 200 mm is the distance between the two edges of the
component. Following this equation, the deformation of component 7 is evaluated
as:

d7 =l — U7 (4.5)

where d; is the deformation of the component and l;, is the initial length of compo-
nent 7, 282.84 mm.

Similar to the deformation, the force along the axis of deformation has to be eval-
uated at each time step from the x and y forces measured at the cross-section.
The contribution of each force to the compression of the component varies at each
time step. As a first step, we need to compute the angle between the axis of the
component and the cross-section, already shown in Figure 4.2 and evaluated as:

200

i 4.6
200 — d7100000> (4.6)

a = arctan(
Then, the axial force can be computed as the sum of the contribution of the x and
y forces:

F=F, -sina+F, cosa (4.7)

Generating the surrogate model. The inputs of the drop tower test are the
mass of the rigid wall and the thickness of each section of the component, while the
velocity of the rigid wall is kept constant at 5.56 m/s for components 1 and 7, and
11.1 m/s for components 3 and 6. The range of the DoE on the mass of the rigid
wall is chosen to reflect the limits imposed on the design space shown in Table 4.5.
The limits in the thickness of each section, instead, are imposed by the available
manufacturing technology [6]. The input is randomized in the selected range through
a DoE, implemented with the library SciPy [20]. The sampling strategy applied for
generating the DoE is the Latin hypercube sampling (LHS), allowing the reduction
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of the number of samples needed. Table 4.10 shows the range of variations of the
parameters and the number of points of the DoE relative to each component. Figure
4.19 shows the DoE obtained through an LHS strategy for the surrogate models of
component 1. The DoE referred to other components are not shown due to the
higher number of dimensions, making their representation difficult in this thesis.

Table 4.10: DoE for drop tower tests

Component 1 3 6 7
Velocity of rigid wall[m/s] 5.56 11.1 11.1 5.56
Mass [ton] [0.013, 5.184] | [0.006, 2.593] | [0.009, 3.889] | [0.005, 1.072]
Thickness section 1 [mm] [0.7, 4.5] (0.7, 4.5] (0.7, 4.5] [0.7, 4.5]
Thickness section 2 [mm] - [0.7, 4.5] (0.7, 4.5] -
Thickness section 3 [mml] - - 0.7, 4.5] -
Number of points 60 60 80 60
as X x x Taining points
X X
40 XX X
X X x X
35 X >8<
X X
X X
sl X X X
E X X XX
x X
£ 25 w = % X
e % X X
X X
X X
20 x x
X X
< X
15 X X X
* X
X % X
X X
10 ><
>S< K

Mass [ton]
Figure 4.19: DoE for the surrogate models of component 1.
The surrogate model is trained only on components 1, 3, 6, and 7 as the com-
ponents with the same number of sections are equivalent. The output provided by

the drop tower tests consists of two vectors, the force absorbed and the deforma-
tion. The two vectors are combined to obtain a force-deformation curve, which is
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interpolated with a b-spline through the Python library SciPy [20]. The interpola-
tion is performed on a different number of points, based on the complexity of the
component, and so of the force-deformation curve generated:

e 15 points for component 7;
e 20 points for components 1 and 3;

e 25 points for component 6.

The b-spline was chosen as interpolating curve due to the parameters that are gen-
erated as outputs, the knots and the coefficients. The knots provide information
on the deformation of the components, while the coefficients provide information
on the curve dependent on the deformation. Using the information provided by the
knots, it is possible to quickly identify the inputs that generate the desired deforma-
tion. Figure 4.20 shows a force-deformation curve obtained with an FE simulation
of a drop tower test on component 1 and the interpolating curve used to train the
surrogate models. The crashing force has been filtered to reduce the number of
interpolating points needed to generate the curve, resulting in a reduced number
of knots and coefficients of the b-spline. This solution can be implemented as the
reduction in energy absorbed is negligible.

350 —— FE Simulatien
—— Filtered curve

300

250

200

Force [kN]

150

100

0 0 10 &0 80 100 120 140
Deformation [mm]

Figure 4.20: Comparison between the F-def curve obtained in FE simulation and
the interpolating curve.

Two surrogate models for each component are trained on these sets of param-
eters, using the Kriging method implemented with the Python library SMT [11].
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Training and validation of the surrogate models are performed using the Leave-One-
Out cross-validation, implemented with the library scikit-learn [21]. This methodol-
ogy allows us to iteratively subdivide the results obtained from the DoE samples in
train and test sets. At each iteration, one sample is used to validate the model, while
the other samples are used for training. The error of the model is computed at each
iteration as the normalized root mean squared error (NRMSE) of the prediction.
The global error of the model is evaluated as the average of the NRMSE obtained
at each iteration:

pq}{A[SZ%.::yiﬁﬂﬁﬂ:;gﬁﬂz (4.8)
maz(Yj act)
N
" NMRSE.

NRMSE = 2= T (4.9)

where j indicates the current iteration, y,,eq and y, are the vectors of the predicted
and actual coefficients or knots, and N is the number of iterations performed. As
the methodology used for validation is leave-one-out, the number of iterations is
equal to the number of sample points for the component. This methodology for
training/validation is used due to the low sample size of the data set available.
Table 4.11 shows the performance obtained by each surrogate model trained. The
results are discussed in Section 5.2.

Table 4.11: Performance of surrogate models

Component 1 3 6 7
Knots NRMSE 0.226 | 0.244 | 0.060 | 0.279
Coefficient NRMSE | 0.177 | 0.261 | 0.381 | 0.229

4.2.3 Fixing an early design for component 2

The component selected for the purpose of our analysis is the component 2. The
choice made can be justified by the position and inclination of the connecting ele-
ment in the model, component 7. Looking at the characteristics of the model, we
expect that component 2 will be the element mainly affected by the deformation
of the connecting element and by the forces transmitted by the same, representing
so the best choice for the desired analysis. In the following, we present the Python
code implemented to derive the optimal design for component 2:

sampler = gmc.LatinHypercube(d=3)

test = sampler.random(n=10000)

1_bounds [0.00648, 0.7, 0.7]

u_bounds [2.59252, 4.5, 4.5]

test_scaled = gqmc.scale(test, 1_bounds, u_bounds)

~ [} wot S w [N =

y_c = skm_c.predict_values(test_scaled)
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y_k = skm_k.predict_values(test_scaled)
min_enl 1E20
min_en2 = 1E20
min_en 1E20
target_enl = 22000000
target_en2 = 22000000
best_des [0,0,0]
best_i = 0

% [N*mm]
7o [N*mm]

for i in range(10000):

if y_k[i1[24] > 390 and y_k[i] [24] < 410:

bspl.t = y_k[i,:]

bspl.c = y_cli,:]

if y_k[i,24] > 200:
testl
test2
energyl =
energy2 =

simps (bspl(testl),

simps (bspl(test2),

else:
testl
energyl = simps(bspl(testl),
energy2 = 0O

diff_enl

np.linspace(0,200,1000)
np.linspace(200, y_k[i,24],1000)

testl)
test?2)

np.linspace(0,y_k[i,24],1000)

testl)

abs(target_enl-energyl)

diff_en2 = abs(target_en2-energy2)

if diff_enl < min_enl and diff_en2 < min_en2 and diff_en <

diff_en = diff_enl + diff_en2
<~ min_en:
best_des = test_scaled[i,:]
best_enl = diff_enl
best_en2 = diff_en2

min_enl = diff_enl
min_en2 = diff_en2
diff_en

i

min_en
best_i

The design is chosen by running 10000 samples with the surrogate models pre-

viously trained. The 10000 samples are selected with a Latin-Hypercube sampling
strategy within the limits of the variables presented in Table 4.10. The energy
absorption required by the component is 22 kJ and 26 kJ in the first and second
sections respectively. This returns a constant force of 110 kN in the first section
and 130 kN in the second section. Of the 10000 samples tested, we select those
that return a deformation of 400 mm, within an error of 2.5%. For each feasible
sample point, the force-deformation curve is generated. The energy absorbed by
the component is evaluated as the integral of the curve. The design selected for
component 2 is the one that returns the smallest difference between the evaluated
absorbed energy and the requested one in each section. Figure 4.21 shows the force
deformation curve of the design chosen.
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Figure 4.21: Force-deformation curve of the fixed design for component 2

Table 4.12 shows the design of component 2, in terms of the thickness of each
section, selected to obtain a deformation of 400 mm and the difference in the energy
absorption to the desired one.

Table 4.12: Characteristic of component 2

Section 1 2
Thickness [mm] 3.33 3.47
Energy required [J] | 22000.0 | 26000.0
Energy difference [J] | 233.20 0.60
Energy difference [%] | 1.06 | 0.0027

4.2.4 Adapting the Solution Space model

Forcing the energy absorbed by component 2 has an effect on the Solution Space of
the model. This effect can be easily understood by analyzing the equation 4.3 pre-
sented previously. The values Fy and F3 indicate the forces absorbed by component
2 in sections 1 and 2, respectively. Following the values of energy imposed in Table
4.12, we can evaluate that the force absorbed by each section is 110 kN for section
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1 and 130 kN for section 2. Equation 4.3 showed the form of the matricial equation
of the system considering the 12 variables. However, fixing the forces Fy and Fj
allows us to reduce the number of variables to 10. This variation of the equation is
implemented by eliminating the columns of matrix A relative to sections 2 and 3.
The vector b is modified accordingly. Equation 4.10 shows the modified matricial

equation implemented:

[—0.129 —0.1481 —0.1481 —0.129 —0.129 —0.129 —0.1481 —0.1481 —0.1481 —0.053]

0 0 0 1 0 0 0 0 0 0 e
1 0 0 0 1 0 0 0 0 0.707 Fl
0 0 0 0 0 1 0 0 0 0 F‘*
0 0 0 0 0 0 1 0 0 0 F5
0 1 0 0 0 0 0 1 0 0 Fﬁ
0 0 1 0 0 0 0 0 1 0 F7
1 0 0 0 0 0 0 0 0 0.707 FS
0 —1 0 0 0 0 0 0 0 0 F"
0 -1 0 0 0 0 0 0 0 0 F‘”
0 0 0 1 -1 0 0 0 0 —0.707 F“
0 0 0 0 0.871 0 -1 0 0 0 Loz
0 0 0 0 0 0.871 —1 0 0 0

[—88.237]
465.0
465.0
355.0
275.0
405.0
405.0
110.0

—110.0
—130.0
0.0
0.0

| 1419 |

(4.10)

The matrix A and the vector b are implemented in the Python script previously
introduced to derive the corridors of the remaining sections of the model. Figure
4.22 shows the adapted solution space corridors. We can highlight, compared to the

200

100

o

200

400 1000

Figure 4.22: Solution Space corridors of the model

solution space corridors evaluated for the entire model and shown in Figure 4.5, an
increase in the corridor of the first section of component 3. Smaller variations can
be also identified in the other components. Tables 4.13, 4.14 and 4.15 summarize

the solution space corridors relative to each load path.
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Table 4.13: Solution space corridor relative to 1st load path

Section 1 4 5
Component 1 3 3
Upper limit [kN] | 57.12 | 190.56 | 190.56
Lower limit [kN] | 0.00 | 27.44 | 27.44

Table 4.14: Solution space corridor relative to 2nd load path

Section 6 7 8 9 10 11

Component 4 5 D 6 6 6

Upper limit [kN] | 158.50 | 255.50 | 271.79 | 275.00 | 214.43 | 214.43

Lower limit [kN] | 0.00 | 158.51 | 89.20 | 222.55 | 51.32 | 51.31

Table 4.15: Solution space corridor relative to 3rd load path

Section 12
Component 7
Upper limit [kN] | 74.78
Lower limit [kN] | 0.00
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4.2.5 Propagation of the uncertainties

The behavior of component 2 during a frontal crash is affected by the uncertainties in
the model. In this section, we will present the methodology applied to uncertainties
of the design parameters of each component to study their effect on component
2. We propose an energy approach for the uncertainty propagation. Figure 4.22
showed the solution space corridors of the model obtained after defining the design
of component 2. We assign a value of 0 to the lower limit of each corridor, and 1 to
the upper limit. The requested crashing force is evaluated as:

Fo=k-(F.—F,)+Fy (4.11)

where Fj is the crashing force of section ¢, F;,, and F;; are the upper and lower limit
of each corridor, and k is a parameter between 0 and 1. So, the energy absorption
requested at each section is equal to:

Ei = Fl : dmax (412)

where Ej; is the energy absorbed by section 7, and d,,,4, is the maximum deformation
of the section (200 mm for each section of the two parallel load paths, 82.84 mm for
component 7). To reduce the number of variables in the analysis, we consider for
each sample point the same value of k for the different sections of a single compo-
nent. This assumptions leads to a single variable for the 2 sections of components 3
and 4 and for the 3 sections of component 6. This reduces the problem to 6 variables
for the propagation of the uncertainties.

An optimization method based on machine learning has been presented in Sec-
tion 3.2.1. However, the computational resources required by the surrogate models
caused a heavy slowdown of the FE simulations. For this reason, the parameters k
relative to each component are defined by a DoE based on a Latin-Hypercube sam-
pling strategy. Similarly to the methodology used to select the design of component
2, we find the design of each component that returns the smallest difference between
the energy absorbed and the requested one. This process allowed us to evaluate the
force-deformation curves a priori. Adopting this solution, each FE simulation can
be run by implementing the curves previously obtained, without recalling the sur-
rogate models at each iteration. The force-deformation curve of each component is
implemented in LS-Dyna using the edit_curve python function shown in Figure 4.23.
As expressed in Section 4.2.4, defining the design of one component affects the so-
lution space of the other components of the model. In this thesis, we consider the
variation of the solution space corridors negligible. This assumption is applied to
simplify the method proposed, due to the high computational resources required
by an iterative adaptation of the solution space and the reevaluation of the force-
deformation curves.
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lcid = [1,2,3,4,5,6,7]
for lcid in lcid:
lcid=1cid
title="Component_@"+str{int(lcid))+"_Spline"
if lcid==1:
al_list = def_1[j,:1]
al=np.array(al_list)
0ol_list = force_11[j,:1]
0ol = np.array(ol_list)
lcid==2:
al_list = [0, 200, 200.01, 400, 400.01]
al=np.array(al_list)
ol_list = [11@, 11, 130, 130, 1E10]
0ol = np.array(ol_list)
lcid==3:
al_list = def_3[j,:]
al=np.array(al_list)
0ol_list = force_3I[j,:1]
0ol = np.array(ol_list)
lcid==4:
al_list = def_4[j,:]
al=np.array(al_list)
0l_list = force_4[j,:]
0ol = np.array(ol_list)
lcid==5:
al_list = def 5[j,:1]
al=np.array(al_list)
0l_list = force_5[j,:]
ol = np.array(ol_list)
lcid==6:
al_list = def_61[j,:1]
al=np.array(al_list)
0l_list = force_61[j,:]
0ol = np.array(ol_list)
lcid==7:
al_list = def_71[j,:1]
al=np.array(al_list)
0l_list = force_7[j,:]
0ol = np.array(ol_list)
dyna.edit_curve(path, lcid, title=title, al = al, ol = ol)

Figure 4.23: Python script for the implementation of the force-deformation curve of
each component in the material keyword file.
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4.2.6 Evaluation of component 2 robustness

The uncertainties of the model are propagated considering 500 sample points in the
design space presented in the previous section. Each sample point is tested with
an FE simulation, using the MPP solver provided by LS-Dyna. The robustness of
component 2 is verified by analyzing the crashing force dependent on the deformation
and the maximum deformation of the component at each simulation.
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Figure 4.24: Force-deformation curve measure on component 2
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Figure 4.25: Maximum deformation measured at each simulation performed

The force and deformation of the component are analyzed independently due to
the high range of variation measured on the deformation. The maximum deforma-
tion measured highlights the problems in the implementation of the 2D component
in the model. The component has never reached the desired deformation of 400 mm.
This behavior highlights high energy dissipation in the model. The Results and Dis-
cussion sections provide a more detailed analysis of the behavior of component 2.
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Chapter 5

Results

Following the procedure explained in section 4.1, we managed to create a simplified
1D FE model with a connecting element between the load paths. The solution space
corridors are evaluated and the model is tested to verify the constraints applied are
met.

The FE model is then expanded, coupling 1D elements with a 2D mesh of a compo-
nent. We trained a surrogate model for each component to predict their behavior.
The surrogate model is used to fix an initial design of component 2, affecting the
solution space previously evaluated. As a last step, the surrogate models are used to
propagate the uncertainty of each component of the model. The effect of the propa-
gation is studied by analyzing the variation of the force-deformation curve measured
on component 2.

5.1 Results of Solution Space method

In section 4.1 we presented the simplified 1D FE model studied, and how it is possible
to describe different constraints applied through a matricial equation. The three
performance requirements on the model are minimum energy absorption, maximum
acceleration and progressive order of deformation. The equations are assembled into
a linear system Ax<b, shown in Equation 4.2 and Figure 4.4. The system is solved
through the Adaptive Solution Space Code in Python, programmed by Ascia, Paolo.
Tables 5.1, 5.2 and 5.3 show the upper and lower limits of each section, divided
between the three load paths.

Table 5.1: Solution space corridor relative to 1st load path

Section 1 2 3 4 5
Component 1 2 2 3 3
Upper limit [kN] | 57.13 | 158.12 | 152.03 | 200.00 | 181.13
Lower limit [kN] | 0.00 | 110.03 | 100.00 | 158.13 | 10.25
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Table 5.2: Solution space corridor relative to 2nd load path

Section 6 7 8 9 10 11
Component 4 5 5 6 6 6
Upper limit [kN] | 138.83 | 230.68 | 246.98 | 252.96 | 205.00 | 223.86
Lower limit [kN] | 0.00 | 138.83 | 55.65 | 200.93 | 34.11 | 52.97

Table 5.3: Solution space corridor relative to 3rd load path

Section 12
Component 7
Upper limit [kN] | 78.80
Lower limit [kN] | 0.00

400 1000

Figure 5.1: Solution Space Corridors
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Studying the solution space corridors, we can note how the force absorbed in the
first section of one component is higher than the one absorbed in each section of the
component that precedes it. This increase in force is caused by the constraint on the
progressive order of deformation. The lower limit of each corridor is implemented
in the keyword file Material of the model. The model is impacted by a rigid wall
with a mass of 1350 kg and an initial velocity of 15.6 m/s to verify that the solution
implemented is able to absorb all the kinetic energy.
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Figure 5.2: Rigid wall velocity during the impact

Figure 5.2 shows how the velocity of the rigid wall varies during the impact. We

can see how the impacting object reaches a velocity of 0 m/s, proving that the model
was able to absorb the kinetic energy of the frontal crash. At the end of the impact,
the velocity of the rigid wall reaches small negative values. This phenomenon is
caused by the relaxation of the compressed components that push away the rigid
wall.
The progressive order of deformation is also verified by analyzing the displacement
of the first node of each component. Component 7 is not analyzed as its deformation
depends on the displacement of the connected load path. In particular, component
7 starts deforming when node 4100002, which refers to the start of the deformable
part of component 5, registers a displacement. Figures 5.3 and 5.4 show that the
constraint is correctly implemented in the model. The graphs shown also provide
information on the deformation of the entire structure. Component 4 in the 2nd
load path is the first deforming element, as the lower longitudinal beam is 200 mm
longer than the upper longitudinal beam. Components 1 and 5 start deforming
simultaneously, as expected by the definition of the solution space. In fact, those
components share the same section in the first 200 mm of deformation. Component
6 starts deforming before component 3, as it is component by one more section: its
deformation begins while component 2 is still deforming and it reached the section 3.
This data, however, is impossible to be visualized in the graphs shown. An analysis
of the deformations of each component during the impact would be needed.
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Figure 5.4: Order of deformation of 2nd load path

A second simulation is performed by implementing in the material card the
upper limit of the solution space corridors. With this test, we aim to verify that the
maximum acceleration does not exceed the limit imposed. Figure 5.5 shows that the
maximum acceleration reached is slightly lower than the limit imposed. The limit
is exceeded after 0.025s. However, as the limit is not respected for a small period of
time, less than 1/100 of a second, we can consider the result positive.

As demonstrated by the results obtained, all constraints imposed are respected.
We can consider the mathematical model proposed by Chaudhry Taimoor Niaz [5]
and the implementation presented in this thesis successful.
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Figure 5.5: Acceleration-time curve during the impact

5.2 Performance of surrogate models

The surrogate models have been trained on a DoE based on LHS strategy, shown
in Table 4.10. Two surrogate models are trained for the force-deformation curve of
each component:

e One surrogate model for the knots of the curve, with information on the de-
formation;

e One surrogate model for the coefficients of the curve.

The performance of the surrogate models are tested with the leave-one-out strat-
egy presented in Section 3.2.1, and the error are evaluated with the normalized root
mean squared shown in equations 4.8 and 4.9. The following table shows the errors
evaluated for each surrogate:

Table 5.4: Performance of surrogate models

Component 1 3 6 7
Knots NRMSE 0.226 | 0.244 | 0.060 | 0.279
Coefficient NRMSE | 0.177 | 0.261 | 0.381 | 0.229

Using the NRMSE, we expect an error between 0.2 and 0.5 for a well-trained
model. In our study, we obtained an error below 0.4 for each surrogate model. The
surrogate model relative to the knots of component 6 performs particularly well,
with an error of only 0.06. This is caused by the increased number of sample points
used to train component 6. This choice was necessary due to the complexity of the
component, as shown by the performance of the surrogate related to the coefficients
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of the curve. However, the error on the knots showed a slower increase compared to
the complexity of the components. This trend leads to a high decrease of the knots
NRMSE for component 6.

5.3 Design of component 2

The design of component 2 is chosen following the methodology presented in Sec-
tion 4.2.3, as the design that returns through the surrogate models the minimum
difference between the energy absorbed and the energy requested. Table 5.5 shows
the parameters of the designed component. Figure 5.6 shows the force deformation
curve of the design chosen.

Table 5.5: Characteristic of component 2

Section 1 2
Thickness [mm] 3.33 3.47
Energy required [J] | 22000.0 | 26000.0
Energy difference [J] | 233.20 0.60
Energy difference [%] | 1.06 | 0.0027
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Figure 5.6: Force-deformation curve of the fixed design for component 2
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Choosing the design of one component affect the solution space corridors of the
model, effect shown in Figure 4.22. Tables 5.6, 5.7 and 5.8 show the upper and lower
limits of the corridors of each load path.

Table 5.6: Solution space corridor relative to 1st load path

Section 1 4 5
Component 1 3 3
Upper limit [kN] | 57.12 | 190.56 | 190.56
Lower limit [kN] | 0.00 | 27.44 | 27.44

Table 5.7: Solution space corridor relative to 2nd load path

Section 6 7 8 9 10 11
Component 4 5) 5) 6 6 6
Upper limit [kN] | 158.50 | 255.50 | 271.79 | 275.00 | 214.43 | 214.43
Lower limit [kN] | 0.00 | 158.51 | 89.20 | 222.55 | 51.32 | 51.31

Table 5.8: Solution space corridor relative to 3rd load path

Section 12
Component 7
Upper limit [kN] | 74.78
Lower limit [kN] | 0.00

The design has been verified by running an FE simulation of the drop tower
test. Figure 5.7 shows the force-deformation curve obtained in the simulation. The
results obtained in the drop tower test return a smaller deformation of 382.85 mm.
This variation indicates an error of 3.8% compared to the deformation of 398.08
mm obtained with the surrogate model. The energy absorbed by the component
in the simulation is 49000 J. The energy absorbed by the force-deformation curve
obtained with the surrogate model is 47800 J. These results return an error of 2.45%
between the predicted result and the simulation. This data is shown in Table 5.9.
Nevertheless, we can identify some differences in the forces evaluated in Figures 5.6
and 5.7. The biggest difference is shown in the peak force, reached in the simulation
at the start of the deformation. This crashing force has been filtered in the trained
surrogate model, and it caused smaller variations in the force evaluated in the rest
of the curve. Even though the energy absorbed is correctly predicted, as shown in
Table 5.9, the absence of the crashing force in the surrogate models prediction caused
further problems in the simulations of the entire system, due to the non-compliance
of the order of deformation. This phenomenon is further analyzed in Section 6.3.
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Table 5.9: Comparison between simulation and surrogate model results of the com-
ponent 2 design

Simulation | Surrogate model | Error
Maximum deformation [mm)] 382.85 398.08 3.8 %
Energy absorbed [J] 49000 47800 2.45 %
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Figure 5.7: Force-deformation curve of the design chosen for component 2 obtained
in FE simulation
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5.4 Robustness of component 2

The uncertainty in the design characteristics of the frontal crash structure is propa-
gated by modifying the energy absorbed by each component. The methodology ap-
plied to obtain the force-deformation curves imposed on each component has been
presented in Section 4.2.5. A DoE based on Latin-Hypercube sampling strategy
has been generated with 500 sample points. Each sample point, which refers to one
force-deformation curve for each component, has been tested with an FE simulation.
The force and deformation of component 2 have been measured to analyze the effects
of the uncertainties. Figure 5.8 shows the maximum deformation measured on the
component. It can be highlighted that the deformations registered on component 2
are lower than the desired value of 400 mm. This behavior is caused by an increase
in the energy absorbed by each component that constitutes the structure.
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Figure 5.8: Maximum deformation measured at each simulation performed

A simulation with the minimum energy absorbed imposed on each component has
been run to verify the discussion presented. Figure 5.9 shows the force-deformation
curve measured on component 2 in this simulation. Even at the lowest energy
absorbed by the structure during the impact, and so at the maximum absorption
required by component 2, the deformation measured is much lower than the 400
mm desired in the design phase. However, the deformation measured in the uncer-
tainty quantification analysis is, on average, lower than the 265 mm measured in the
following simulation. This result supports the analysis of the reduced deformation
registered due to the increase of the energy absorbed by the other components in the
model. Additionally, we can highlight that component 2 does not deform in multiple
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simulations performed. While this effect is partially caused by the higher energy ab-
sorbed by the other components of the structure, the main cause of this effect is the
non-compliance with the order of deformation, as shown in Figure 5.10. Component
2 is the last deforming element of the structure, due to the high crashing force re-
quired. This effect causes a dissipation of the kinetic energy due to the deformation
of the following components 3 and 6, which should start deforming after component
2. As the energy absorbed by these components is higher than the minimum value
required, the remaining kinetic energy in the impact is not high enough to guarantee
the maximum deformation. In multiple simulations, the remaining kinetic energy is
not high enough to provide the necessary crashing force.
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Figure 5.9: Force deformation curve at minimum energy absorbed by the structure
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Figure 5.10: Force deformation curve at minimum energy absorbed by the structure
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Figure 5.11: Force-deformation curve measure on component 2
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The force-deformation curves measured in the 500 simulations performed are
then analyzed. Figure 5.11 shows the results obtained in the uncertainty quantifi-
cations analysis. We can highlight a peak force registered in the first millimeters of
deformation of the component. This behavior is caused by the first impact of the
rigid wall with the component. The peak force could cause a peak acceleration in
the impact that overcomes the imposed limit of 300 mm/s*. However, we expect
that the limit will be surpassed over a short period of time and can be neglected.
For this reason, the peak force has been filtered in the force-deformation curve on
which the surrogate models have been trained. The force registered reaches values
of around 200 kN, higher than the maximum force allowed in the solution space
corridors presented in the previous section. As the crashing force is higher than the
maximum allowed, the order of deformation of the structure is not followed. This
behavior could be the cause of the lower deformation registered. Component 3 starts
deforming before component 2 finishes its deformation. The forces are transmitted
to the following components, causing a lower deformation than the one imposed in

the GSM.
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Chapter 6

Discussion

6.1 Behavior of connecting element

The FE model featuring the connecting element originally implemented by Chaudhry
Taimoor Niaz [5] presented various problems with the component. Figure 6.1 shows
an example of the behavior of the connecting element obtained in the previous
model.

Figure 6.1: Global bending of connecting element [5]

During a frontal crash simulation, the element was not able to work only in
compression, but global bending could be observed. The global bending of the com-
ponent caused undesired peaks in the acceleration measured, and a general poor
performance of the model. To solve this problem, we replaced the connecting ele-
ment characterized by two different sections, one deformable and the other unde-
formable, with a component made up of a single deformable section. The maximum
deformation of the component, equal to 82.84 mm, is forced by the geometrical
characteristics of the model. However, the LS-Dyna software needs a complete
force-deformation curve of the component, to understand how the element behaves
in case of a higher deformation. For this reason, the limit is imposed by request-
ing a force of several orders of magnitude for deformations higher than 82.84 mm.
These values are not achievable in a real scenario, meaning that the second part of
the deformable section acts like an undeformable component. Figure 6.2 shows an
example of a force-deformation curve implemented in the material card to simulate
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the behavior described.
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Figure 6.2: Force-deformation curve of connecting element

Testing the model with this force-deformation curve implemented, we can note
how the connecting element works only in compression in the local reference frame.
The component is subject also to tangential forces, which cause the rotation of
its axis in the global reference frame. The rotation of the axis is necessary for a
correct representation of the component 7 behavior in a real crash due to the higher
deformations in the 2nd load path, compared to those imposed in the 1st load path.
This behavior allows for a correct absorption of the kinetic energy and transmission
of forces between the load paths. Figure 6.3 shows different moments of a crash test,
demonstrating the deformation of the connecting element just described.

J |

Y R —

(a) Initial impact (b) Crash test completed

Figure 6.3: Deformation of connecting element at different moments of the simula-
tion

6.2 Limit on the deformation of each component

In Section 4.1, Figure 4.6 showed how the same limit discussed in the previous
section was implemented in the force-deformation curve of each component. The
implementation of this limit can be easily understood by analyzing the result of
a simulation in which the limit is not imposed. Figure 6.4 shows the deformation
obtained by the deformation of the model, in particular highlighting component 2.
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2000002

1000002

(a) 1D FE model

2000002 1000002

(b) Model compressed

Figure 6.4: Deformation of the 1D FE model without limit on the deformation of

each component

The deformable part of component 2 is highlighted in green. We can note that
the LS-Dyna software is not able to understand how the components behave when
the deformation is higher than the one provided in the force-deformation curve. This
phenomenon is highlighted by the position of the nodes 1000002 and 2000002, which
delimits the deformable part of component 2. The nodes ”switch places”, indicating
that the deformation obtained is much higher than the length of the component.
Due to this error in the simulation, is fundamental to implement a limit on the
maximum deformation in the material keyword of each component. Figure 6.5 shows
the same simulation performed, implementing the limit on the deformation of each
component. The results show that the deformation of the highlighted component 2

is fixed to a maximum of 400 mm.

1100002 2100002

(a) 1D FE model

(b) Model compressed

Figure 6.5: Deformation of the 1D FE model with limit on the deformation of each

component implemented
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6.3 Deformation of component 2

The results presented in Section 5.4 show that the deformation measured on the
component reaches values much lower than the desired deformation of 400 mm. In
Section 5.3, we showed a comparison between the results obtained with the use of
the surrogate models and the ones obtained with an FE simulation of the drop tower
test. The deformation presented a difference of only 3.8%, demonstrating the valid-
ity of the surrogate models implemented.

To better clarify the results obtained, we perform an FE simulation of the full model
imposing on each component the lower limit of the solution space corridors shown in
Section 5.3. The displacement of the two nodes that delimit the component is ana-
lyzed in Figure 6.6. The result shows that component 3, which follows the analyzed
mesh, deforms before component 2. This behavior supports the discussion presented
in Section 5.3, and is caused by the higher forces measured on the component.
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Figure 6.6: Displacement of nodes 1100002 and 2100003, which delimit component
2

Figure 6.7 shows the force-deformation curve measured on component 2. Impos-
ing the lower limit of the corridors on each component, and so forcing the highest
energy absorbed on component 2, we obtain a maximum deformation of 269.22 mm.
We can highlight a peak force of 390 kN at the start of the deformation. These re-
sults could be the main cause behind the non-compliance of the order of deformation
constraint.
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Figure 6.7: Force deformation curve at minimum energy absorbed by the structure

This behavior suggests that the problem arises in the implementation of the
component in the entire model, Additionally, we can compute the energy absorbed
by the component as the integral of the force-deformation curve, obtaining a result
of 40600 J. The energy absorbed is 7400 J less than the desired one. This value
suggests that there is a transmission of forces in the entire structure that was not
considered in the mathematical model of the solution space method, or an effect of
component 7 on the structure that is not captured by a conventional drop tower
test.
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Chapter 7

Conclusions and Outlook

The aim of this project is to define a workflow to quantify the effects of the design
uncertainties of the components in a frontal crash structure. The model used for
the analysis is based on the structure proposed by [5], in which two parallel load
paths are connected by an additional element. Few differences in the position and
inclination of the connecting element are introduced. The proposed mathematical
model, based on the constraints by [3] and the angular correction by [5], is verified
through FE simulations at the upper and lower limits of the solution space corridors.
In these simulations, for simplicity, the force is considered constant along the entire
deformation of each section. Then, the 2D mesh of one component is introduced in
the model, defined by quadrilateral elements. The 2D mesh replaces the component
on which a higher influence of the connecting element is expected. The assumption
of a constant force is removed. The force-deformation curve of each 1D component
is evaluated using surrogate models, trained on multiple drop tower tests performed
in an FE environment. The performance of the surrogate models is verified through
a leave-one-out cross-validation strategy. Surrogate models are also used to define
an early design of the 3D component, imposing the desired deformation and energy
absorption. The solution space corridors are recomputed, assessing the effect of the
fixed design. Finally, 500 simulations on the simplified FE model coupled with the
2D mesh of one component are performed, modifying the force-deformation curve of
each monodimensional component. The effect of the uncertainties of the structure
is verified in terms of force and maximum deformation measured on the component
studied.
The key findings from our research are:

e [t is possible to introduce a connecting element in an FE model that works
only in compression in the local reference frame. The proposed method intro-
duces a limit on the deformation of the component, implemented through a
high slope of the force-deformation curve. With this solution, the component
can be modeled with a single deformable section, avoiding the global bending
displayed in [5].

e The same limit on the deformation needs to be introduced in the force-deformation
curve of each deformable section. This solution is necessary due to the LS-
Dyna solver, which fills in the missing information on the crashing force at

60



CHAPTER 7. CONCLUSIONS AND OUTLOOK

higher deformations. The LS-Dyna allowed the interpenetration between the
components.

e The current training strategy for the surrogate models allowed the use of a
low number of sample points. This choice returned an impressive result in the
prediction of the deformation of the components but resulted in a poor per-
formance in the force prediction. The error on the energy absorbed, however,
is comparable to the one measured on the deformation. The method proposed
is acceptable for an approach based on the energy absorbed but needs to be
revised in case a higher accuracy on the forces is required.

e The current surrogate models are trained on filtered force-deformation curves.
This solution allowed faster training, due to the decreased number of coeffi-
cients, but lost information on the peak force registered at the initial contact.
This assumption caused poor performance of the full model, due to the non-
compliance of the order of deformation.

e The maximum deformations registered on the component studied are much
lower than the desired value of 400 mm. While this behavior could be caused
by the non-compliance of the order of deformation, we also measured a high
dispersion of energy. This could be caused by the methodology used to im-
plement the limit on the deformation of 1D components. Additionally, the
interactions between the connecting element and the two load paths were not
considered in the surrogate model training.

The main objective of our project is accomplished. A solution to implement a
connecting element in a simplified 1D Finite Element model is introduced, which
allows to study more complex structures in future research. Additionally, the in-
troduction of surrogate models to predict the behavior of the components returns
good results in terms of deformation measured and energy absorbed, allowing for
a reduction of time and computational costs required for a full model simulation.
However, the addition of the connecting element introduced difficulties in the un-
certainty quantification of the model.

The results obtained in this thesis offer the following insights for future research:

e A limit on the deformation of the component needs to be introduced for a
correct interpretation by the LS-Dyna solver. However, further studies on the
possible energy dissipation caused are required.

e Introducing the limit on the deformation of the components, it may be possible
to further simplify the 1D FE model, removing the undeformable section and
modeling each component as a single deformable element.

e The filtered force-deformation curves used to train the surrogate models caused
the non-compliance of the order of deformation constraint in the full model.
We suggest investigating a better methodology for the interpolation of the
simulation curves, which allows the reduction of the number of coefficients of
the curve while maintaining the information regarding the crashing force of
the components.
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e The surrogate models are trained on data from drop tower tests. This method-
ology neglects the interactions between the components. While we consider
this assumption possible for consecutive components, one should look into the
effect of the connection of the connecting element with the two load paths.

The thesis proposes a methodology to identify the effects of the uncertainties
in the design characteristics of a complex frontal crash structure, introducing an
additional connecting element between two parallel load paths. The methodology
described offers a detailed procedure to generate a GSM and the relative DSM, im-
plement the early design of one component in an FE software, derive the adapted
solution space corridors, and train surrogate models to reduce the computational
costs of a full FE simulation. The methodology proposed is sufficient to design
complex structures in simplified 1D FE models. The advantages of the solution re-
garding the 1D model, and the limitations of the combined model, are identified and
discussed. Possible solutions to the limits of the 1D model combined with the 2D
mesh of one component are proposed. By utilizing the proposed methodology, com-
plex FE models can be used to accelerate the design process of new crash structures
for crashworthiness.
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Appendix

A.1 Simplified 1D FE model

The following section presents two keyword files implemented for the study of the
simplified 1D FE model. The first keyword file presented is the implementation of
the 1D components in LS-Dyna, using component 1 as an example. The different
keywords are introduced with the syntax *x K EYWORD. In the file presented, the
character * is missing due to the limit of the text editor. The xPART keyword is
used to define the 2 different segments of the component. xELEMENT _BEAM
defines the nodes that delimit each section. *x DEFINFE CURV E_TITLE is used
to implement the desired force-deformation curve. At the end of each part, the
material card is defined: NON_LINEAR_PLASTIC for the deformable part, and
LINEAR_PLASTIC for the undeformable.

Component 01

$# Unit System: ton, mm, sec, N, MPa, mJ
S HHHHH R R R R

$# File: Component O1 #
Sttt
$

KEYWORD

$

St
$

$# Definition - Component_01_Deformable

Sttt

PART

$# title
Component_01_Deformable

$# pid secid mid eosid hgid grav adpopt tmid

1000001 1000001 1000001
SECTION_BEAM_TITLE
Component_01

$# secid elform shrf qr/irid cst scoor nsm naupd
1000001 6 1.0 1 0 2.0 0.0 0
$# vol iner cid ca offset rrcon srcon trcon
2.51E5
ELEMENT_BEAM
$#  eid pid nil n2 n3 rtl rrl rt2 rr2 local
1000001 1000001 1100000 1100001 0 0 0 0 0 1

MAT_NONLINEAR_PLASTIC_DISCRETE_BEAM_TITLE
Component_01_Deformable

64



$# mid ro tkr tks tkt rkr rks rkt
1000001 7.89E-09 2.07E+05
$# tdr tds tdt rdr rds rdt

$#  lcpdr lcpds lcpdt lcpmr lcpms lcpmt
1

$# ffailr ffails ffailt mfailr mfails mfailt

$# ufailr ufails ufailt tfailr tfails tfailt

$# for fos fot mor mos mot

DEFINE_CURVE_TITLE
Component_01_Spline

$# lcid sidr sfa sfo offa offo dattyp lcint
1 0 1.000 1000.000 0.000 0.000 0 0
$# al ol
0.000000 30.0
200.000000 30.0
200.100000 1000000.000000

Sttt

$
$# Definition - Component_O1_Undeformable

Sttt

PART

$# title
Component_01_Undeformable

$# pid secid mid eosid hgid grav adpopt tmid

1000002 1000002 1000002
SECTION_BEAM_TITLE
Component_01_Undeformable

$#  secid elform shrf  qr/irid cst scoor nsm naupd
1000002 6 1.0 1 0 2.0 0.0 0

$# vol iner cid ca offset rrcon srcon trcon
2.51E5

ELEMENT_BEAM

$# eid pid nl n2 n3 rtl rrl rt2 rr2 local

1000002 1000002 1100001 1100002
MAT_LINEAR_ELASTIC_DISCRETE_BEAM_TITLE
Component_01_Undeformable

$# mid ro tkr tks tkt rkr rks rkt
1000002 7.89E-09 2.07E+09 0.0 0.0 0.0 0.0 0.0
4 tdr tds tdt rdr rds rdt
0.0 0.0 0.0 0.0 0.0 0.0
$# for fos fot mor mos mot
0.0 0.0 0.0 0.0 0.0 0.0
Sttt H
END

The second keyword file is used to implement the boundary conditions and define
the kinetic energy. The keywords *SET _NODE_LIST TITLE and *+BOUNDARY _SPC_SET
are used to group a few nodes in a list and reduce the degrees of freedom of the
desired node group. The keyword *RIGID_PLANAR_MOVING_FORCE_ID
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implements the starting position of a moving rigid wall, with the selected mass and
velocity. These two parameters allow the definition of the kinetic energy of the

impact.

$

KEYWORD

$
SET_NODE_LIST_TITLE
NODESET_SPC_111111

’Boundary Conditions‘

4 sid dal da2 da3 dad solver
1 0.0 0.0 0.0 0.0OMECH
$# nidl nid2 nid3 nid4 nidb nid6é nid7 nid8
3100003 6100004
SET_NODE_LIST_TITLE
NODESET_SPC_011111
$# sid dal da2 da3 dad solver
2 0.0 0.0 0.0 0.0OMECH
$# nidl nid2 nid3 nid4 nid5 nidé nid7 nid8
1100000 1100001 1100002 2100001 2100002 2100003 3100001 3100002
4100000 4100001 4100002 5100001 5100002 5100003 6100001 6100002
6100003
BOUNDARY_SPC_SET
$# nsid cid dofx dofy dofz dofrx dofry dofrz
1 0 1 1 1 1 1 1
BOUNDARY_SPC_SET
$# nsid cid dofx dofy dofz dofrx dofry dofrz
2 0 0 1 1 1 1 1
RIGIDWALL_PLANAR_MOVING_FORCES_ID
$# id title
9000001CrashPlate
$4# nsid nsidex boxid offset birth death rwksf
0 0 0 0.0 0.0 1.00E20 1.0
$# xt yt zt xh yh zh fric wvel
-1956.0 0.0 0.0 -1955.0 0.0 0.0 0.0 0.0
$# mass v0
1.35 15600.0
4 soft ssid nil n2 n3 n4
0 0 9000001 0 0 0
RIGIDWALL_PLANAR_FORCES_ID
$# id title
9000002Firewall
4 nsid nsidex boxid offset birth death rwksf
0 0 0 0.0 0.01.00000E20 1.0
$# Xt yt zt xh yh zh fric wvel
0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0
$# soft ssid nil n2 n3 n4d
0 0 9000002 0 0 0
END
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A.2 Uncertainty Quantification

The following section presents a keyword file and two Python scripts implemented
for the study of the uncertainties of the model. The keyword file presented concerns
the definition of the 2D mesh of component 2 and the implementation of the rigid
connection between the 2D mesh and the 1D components in LS-Dyna. The two dif-
ferent sections are defined with the keyword *xSECTION_SHELL TITLFE, which
allows us to define the thickness of each section.

xDATABASE _CROSS_SECTION_PLAN E_ID implements the cross-section nec-
essary for the measurement of the force acting on component 2. The keyword
xCONSTRAINED NODAL_RIGID_BODY is used to rigidly connect one node
of the precedent or following 1D component with every node on that plane, as shown
in Figure 4.12.

‘Component 2 mesh‘

Sttt

$# File: Component_2.k #
St
$

KEYWORD

SH#HHHEH R R R R R R R R R
$# Part Cards

St

PART

$# title
Section_1

$# pid secid mid eosid hgid grav adpopt tmid

2000001 2000001 2100001
SECTION_SHELL_TITLE
Section_1

$# secid elform shrf nip propt qr/irid icomp setyp
2000001 2 1.0 2 1.0 0 0 1

$# t1 t2 t3 t4 nloc marea idof edgset

3.3238611 3.3238611 3.3238611 3.3238611 0.0 0.0 0.0 0

SHut#

PART

$# title

Section_2

$# pid secid mid eosid hgid grav adpopt tmid

2000002 2000002 2100001
SECTION_SHELL_TITLE

Section_2

$#  secid elform shrf nip propt qr/irid icomp setyp
2000002 2 1.0 2 1.0 0 0 1

$# t1 t2 t3 t4 nloc marea idof edgset

3.4669875 3.4669875 3.4669875 3.4669875 0.0 0.0 0.0 0

St
$# For Output
S #
SET_PART_LIST_TITLE
Component_2
$# sid dai da2 da3 da4d solver
2000001 0.0 0.0 0.0 0.OMECH
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$# pidl pid2 pid3 pid4 pidb pid6 pid7 pid8
2000001 2000002
DATABASE_CROSS_SECTION_PLANE_ID

$# csid title
2000001Force Measure

$# psid xct yct zct xch ych zch radius
2000001 -610.0 -80.0 50.0 -608.0 -80.0 50.0 0.0

$# xhev yhev zhev lenl lenm id itype
-610.0 -80.0 46.0 100.0 160.0 0 0

Sttt

CONSTRAINED_NODAL_RIGID_BODY

$# pid cid nsid pnode iprt drflag rrflag
2000006 0 2000001

SET_NODE_LIST_TITLE

Front

$# sid dal da2 da3 da4d solver its -
2000001 0.0 0.0 0.0 0.0OMECH 1

$# nidil nid2 nid3 nid4 nidb nid6 nid7 nid8

1100002 2000001 2000002 2000011 2000012 2002433 2002434 2002435
2002436 2002437 2002438 2002439 2002440 2002441 2002442 2002443
2002444 2002445 2002446 2002447 2002448 2003234 2003235 2003236
2003237 2003238 2003239 2003240 2003241 2003242 2003681 2003682
2003683 2003684 2003685 2003686 2003687 2003688 2003689 2003690
2003691 2003692 2003693 2003694 2003695 2003696 2004369 2004370

2004371 2004372 2004373 2004374 2004375 2004376 2004377 0
St HH R
CONSTRAINED_NODAL_RIGID_BODY
$# pid cid nsid pnode iprt drflag rrflag
2000007 0 2000002
SET_NODE_LIST_TITLE
Rear
4 sid dal da2 da3 da4d solver its -
2000002 0.0 0.0 0.0 0.0OMECH 1
$# nidl nid2 nid3 nid4 nidb nid6 nid7 nid8

2100003 2000005 2000006 2000007 2000008 2000117 2000118 2000119
2000120 2000121 2000122 2000123 2000124 2000125 2000126 2000127
2000128 2000129 2000130 2000131 2000132 2000805 2000806 2000807
2000808 2000809 2000810 2000811 2000812 2000813 2001245 2001246
2001247 2001248 2001249 2001250 2001251 20012562 2001253 2001254
2001255 2001256 2001257 2001258 2001259 2001260 2002002 2002003
2002004 2002005 2002006 2002007 2002008 2002009 2002010 0
END

The first Python script allows the variation of the configuration of the vehicle,
based on the desired forces applied on each section of component 2. The script used
is specific to this study and would need a few adjustments to be applied to other
components or configurations.

1 import numpy as np

2 import csv

3

4+ def vehicleConfigurationModifier(ol_fixed):
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HAAAAAAAA

# ol_fized = vector with lower and upper limit of the corridors
— of each section:

# [dsL1, dsU1, dsL2, dsU2]

HAAAAAAAS

with open('vehicleConfiguration.py', 'r') as file:
config = file.readlines()

with open('A_Matrix.csv','r') as A_matrix:
lookupA = r'"configuration['vehicle_4']J['A']="
for num_A, line in enumerate(config, 1):
if lookupA in line:

print('found at line:', num_A)

break
reader = csv.reader(A_matrix)
data = list(reader)
A_mat = np.matrix(data,dtype='float64')
b_vector = open('b_Matrix.csv','r"')
readerb = csv.reader(b_vector)
datab = list(readerb)
b_vec = np.array(datab,dtype='float64"')
lookupB = r'"configuration['vehicle 4']J['b']="
for num_B, line in enumerate(config, 1):

if lookupB in line:

print('found at line:', num_B)

break
A_col = A_mat[:,0].reshape(-1,1)
A_col_ar = np.array(A_col,dtype='float64')
ol = float(ol_fixed[0])
b_fix = np.multiply(A_col_ar, ol)
b_vec = b_vec - b_fix
b_vec = b_vec.T
b_str='np.array(['+str(float(b_vec[0,0]))+"
new_B = str(lookupB) + str(b_str) + '\n'

-
A

config[num_B-1] = new_B
with open('vehicleConfiguration.py', 'w') as file:
file.writelines(config)

file.close()

The second Python script presented allows the training and validation of the

surrogate models using a leave-one-out cross-validation. In the example presented,
we train the surrogate model on the coefficients relative to component 1.
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nrmse = np.zeros(60)

loo = LeaveOneQOut ()

for train,test in loo.split(DOE_t):
DOE_test = DOE_t[test,:]
DOE_train = np.delete(DOE_t, test, 0)
PAR_test = C_test[test, :]
PAR_train = np.delete(C_test,test,0)
ndim = 2
C = KRG(thetaO=[le-2]+*ndim,print_prediction =
C.set_training_values(DOE_train,PAR_train)
C.train()
y = C.predict_values(DOE_test)
nrmse [test] = mean_squared_error(y, PAR_test,
— squared=False)/np.max (PAR_test)

print ('Coefficient RMSE:' +str(np.mean(nrmse)))
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