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Abstract

This study examines the dynamic response of a selected wave energy converter (WEC) in

long-crested waves ranging from linear to steep scenarios. First, an overview on the state-

of-the-art for WECs is documented, also highlighting the fundamental role of renewable

energy and carbon emission reduction in addressing environmental challenges. Various

WECs technologies are discussed comparatively and, the innovative device, C4 CorPower

WEC, proposed by CorPower is selected for an in-depth analysis. This is based on a point

absorber solution, already at a high Technology Readiness Level (TRL).

The theoretical framework for the dynamic analysis is based primarily on linear potential-

flow theory, but weakly-nonlinear hydrodynamic effects are also examined; moreover,

viscous-flow effects are included through empirical formulas. The linear numerical ap-

proach includes: 1) a frequency-domain solution based on the zero-order boundary el-

ement method FFLOB, developed at CNR-INM, using the Green’s function, and 2) a

time-domain solution following the Cummin’s approach, with Runge-Kutta time scheme,

including nonlinear body dynamics and using a body-fixed reference frame. Weakly-

nonlinear effects in the incident waves and in their induced loads can be included in the

time domain formulation, stretching the applicability of the Cummin’s approach. Prelim-

inary numerical convergence studies are performed for a surface-piercing spherical buoy

and validation analysis against available free-decay tests in heave at three different initial

positions of the body, highlighting the importance of nonlinear effects. The sphere rep-

resents a relevant geometry as it shares similarities with the C4 CorPower WEC, which

is an axisymmetric body with a substantial variation in the horizontal cross section. The

selected device is described in detail, together with the simplified model of the different

components and examined within a stepwise strategy. Within the frequency-domain anal-

ysis, it is first studied at the expected mean draft and the response amplitude operator

(RAO) is evaluated for the relevant rigid degrees of freedom, then different values of the

mean draft are assumed to quantify the effects on hydrostatic restoring, added mass and

natural period in heave. Within the time domain analysis, free-decay tests in calm water

and analyses in regular and irregular waves representing operational and severe sea en-

vironments, are examined. Both fully linear and weakly-nonlinear models are used. The

selected wave conditions are taken from Agucadoura, in Portugal, a site of particular in-

terest to CorPower, and for which, reference experimental and numerical data were made

available by the company for comparison. Present study focuses on a detuned case where

the device is not generating energy but is instead in a condition of storm protection. In

this scenario, the device employs a high PTO (Power Take-Off) stiffness to ensure mini-

mal heave movements, demonstrating the possibility to adapt in harsh sea environments.

This approach explores paths for possible improvements of the system design, particularly

in enhancing the operational flexibility of the WEC in facing extreme weather conditions.
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Chapter 1

Introduction

1.1 Context and motivation

The quest for sustainable and environmentally friendly energy sources has raised impor-

tance in recent decades due to the pressing global issues of climate change and exhausting

fossil fuel reserves [1]. In this context, renewable energy systems have emerged as an

unique solution, offering the promise of reducing greenhouse gas emissions and mitigating

the environmental impact of energy production. In fig. 1.1 are depicted three graphs

illustrating the projected energy mix from 1990 to 2050 according to three different sce-

narios: Stated Policies Scenario (STEPS), Announced Pledges Scenario (APS), and Net

Zero Emissions (NZE). Each graph displays the historical and projected energy contri-

butions from various sources, including solar photovoltaics (PV), wind, hydro, nuclear,

other renewables, unabated coal, unabated natural gas, other low-emissions, and other

energy sources. The STEPS graph represents the energy outlook based on current policy

settings, APS includes countries’ specific policy intentions and targets, and NZE is aligned

with achieving net-zero CO2 emissions by 2050. The shaded areas indicate the range of

each energy source’s contribution over time, reflecting the changes and growth in global

energy production and consumption [2].
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Figure 1.1: Global electricity generation by source and scenario, 1990-2050

Source: IEA, world energy outlook, 2023

Between the Renewable Energy Sources, ocean energy has garnered significant interest

in recent years due to its distinctive attributes, which position it as an appealing addition

to the renewable energy mix. Some of those benefits are represented in fig. 1.2 particularly

emphasizing predictability, one of ocean energy’s most interesting characteristics. Unlike

other renewable sources that may be intermittent, ocean energy, offers a consistent and

reliable energy flow. This predictability is crucial as it facilitates energy planning and

grid management, ensuring a stable energy supply.

Figure 1.2: Benefits of ocean energy technologies

Source: Scaling up investments in ocean energy technologies, IRENA

Always referring to predictability , among the diverse array of ocean renewable energy

sources, Wave Energy Converters (WECs) have gained particular attention as a promising

technology that harnesses the energy present in ocean waves which potential is represented

in fig. 1.3.
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Figure 1.3: Global distribution of annual mean wave power

Source: Andrew Cornett, A Global Wave Energy Resource Assessment, 2008

This introduction will provide an overview of renewable energy systems, with a special

focus on Wave Energy Converters, and highlight their significance in transitioning towards

a more sustainable and cleaner energy future.

Renewable energy systems are those that draw power from sources that are naturally

replenished over time, such as sunlight, wind, geothermal heat, and the movement of

water. Their appeal lies in their ability to generate electricity without the release of

greenhouse gases and other harmful pollutants, making them an essential component of

global efforts to combat climate change. According to the International Energy Agency

(IEA), renewable energy sources contributed to over 29% of global electricity generation

in 2020, and this percentage is projected to grow exponentially in the coming years [3].

One of the most difficult challenges to face with the increasing RES is the development

of appropriate infrastructure for energy storage and transmission.

Wave Energy Converters, a subset of marine renewable energy, focus on the vast and

untapped potential of the world’s oceans. These devices are designed to capture energy

from the ocean waves and convert it into electricity [4]. The ocean’s constant and inex-

haustible wave energy makes WECs a promising technology with the ability to generate

power continuously, reducing the reliance on intermittent energy sources like wind and

solar. Their development is driven by their capacity to produce clean energy and their

low carbon footprint.

This introduction serves as a foundation for exploring the domain of Wave Energy Con-

verters, examining their different designs, operational principles, and the challenges they

face. A comprehensive understanding of these systems is necessary for the transition

towards sustainable energies, promoting a cleaner and more sustainable future for gener-

ations to come [1].
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1.2 Thesis objectives and structure

The objective of this thesis is to analyze the dynamics of the CorPower Ocean’s WEC C4

in an harsh sea environment.

To accomplish this objective, the thesis begins with a comprehensive review and classi-

fication of various WECs in Chapter 2, setting the stage for a deeper exploration into the

field. Following this overview, the thesis delves into the characteristics and operational

principles of the CorPower C4 WEC in Chapter 3, providing an understanding of its place

in the realm of wave energy conversion. It is after presenting this foundational knowl-

edge that the thesis then constructs the necessary theoretical background in Chapter 4,

explaining the theory behind wave-body interaction dynamics, which is fundamental for

the subsequent analysis.

Following the theoretical foundation, the thesis introduces the numerical strategies used

for this study in Chapter 5. These solutions are essential for simulating the complex inter-

actions between the WEC and its marine environment, allowing for a detailed examination

of the WEC’s response under various conditions.

An important step before the WEC’s analysis is the validation phase, where the numer-

ical results are compared with experimental data in Chapter 6. The examined case refers

to free-decay tests of a sphere, which shares important features with the targeted WEC

concept.

The thesis then specifically focuses on the CorPower C4 WEC in Chapter 7. By mod-

eling the system and comparing surge free-decay simulation results to CorPower’s own

experimental findings, the study makes necessary adjustments to account for non-linear

effects. This step is fundamental, as it enhances the model’s accuracy by incorporating

these critical factors into the base linear potential flow solution adopted as first step.

Finally, the thesis conducts simulations under both regular and irregular wave conditions.

These tests are designed to simulate real-world marine environments, providing valuable

insights into how the WEC operates under various wave scenarios.
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Chapter 2

Wave Energy Converters (WECs)

WECs can be classified according to their operating principle, the direction of the incom-

ing waves and the location of the Wave Energy Converter [5].

2.1 Classification by location

Wave energy converters are categorized according to their placement, which includes

offshore, nearshore, and onshore configurations.

Offshore Locations: The higher wave energy levels found in deep waters make offshore

devices more favorable for wave power generation. However, offshore devices face the

challenges of severe climatic conditions, demanding deployment, and operational com-

plexities.

Nearshore: Nearshore devices are typically deployed in shallower waters, often attached

to the ocean floor.

Onshore: Onshore devices are situated along the shoreline, offering the advantage of

easier maintenance and installation. They do not require deep-water moorings, and the

risk of storm damage is minimal. However, the wave energy potential for onshore devices

is generally less efficient.

The percentage of WECs referring to the location is represented in fig. 2.1
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Figure 2.1: WECs based on location

Source: Dongsheng Qiao, Rizwan Haider, Jun Yan, Dezhi Ning and Binbin Li, Review of

Wave Energy Converter and Design of Mooring Systemn, 2020

2.2 Operational principle

The operational principle of a wave energy converter (WEC) shows its interaction with

and the absorption of energy from incoming waves. Here it is introduced a classification

framework based on this operational principle and their share for this classification is

represented in fig. 2.2.

Figure 2.2: WECs based on operational principle

Source: Dongsheng Qiao, Rizwan Haider, Jun Yan, Dezhi Ning and Binbin Li, Review of

Wave Energy Converter and Design of Mooring Systemn, 2020

One prominent type within this classification is the Oscillating Water Column (OWC)

as in fig. 2.3. The OWC can either be a floating hollow or fixed device that utilizes the

variations in water level induced by wave motion to compress and decompress air in its

chamber. This process results in a pressure differential inside the chamber, compelling

air to flow through a connected turbine that drives a generator. When located near the

shoreline, OWCs serve the dual purpose of wave energy conversion and coastal protec-

tion, effectively functioning as breakwater structures. Several OWC devices have been
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developed and implemented, each with unique characteristics and advantages. Notably,

installations close to the shore offer inherent advantages.

Figure 2.3: Oscillating Water Column device

Source: Daniela Dzhonova, Rumen Popov, Aleksandar Georgiev, Challenges of Marine

Power in the Balkan Region, 2013

Oscillating Bodies is a broad category used to describe Wave Energy Converters (WECs)

that harness power from wave-induced oscillations of submerged or floating structures,

typically in the surge or heave motion as in fig. 2.4. Heaving-type devices are often

designed as axisymmetric buoys positioned just below or at the water’s surface, capturing

energy from the vertical motion of the waves.

Figure 2.4: Oscillating bodies device

Source: E-nsight, L’energia del moto ondoso, 2020

Oscillating wave surge converters are commonly characterized by one end being anchored

to a substructure or the seabed, while the opposite end remains free to move. Energy

is harnessed from the relative motion of the device, which is driven by the horizontal

movement of waves (surge), around the fixed anchored point.

8



Submerged Pressure Differential devices are securely anchored to the seabed, these de-

vices are commonly known as submerged point absorbers and are located near the shore.

They are constructed with one or more air-filled chambers, where the pressure changes due

to incident waves, either troughs or crests. The dynamic pressure changes within these de-

formable chambers result in a continuous airflow within the device, which is subsequently

converted into electricity by an air turbine.

An overtopping device, fig. 2.5, essentially operates as a wave energy converter that

transforms the kinetic energy of ocean waves into potential energy. This potential energy

is stored in a water reservoir, and its primary function is to ensure a steady supply to a

conventional low-head hydraulic turbine or a series of such turbines.

Figure 2.5: Overtopping device

Source: HKRENet, Wave Energy

2.3 Classification of oscillating WECs by wave direc-

tion

WECs can be categorized based on the direction of wave propagation fig. 2.6 fig. 2.7.

Figure 2.6: Wave direction classification

Source: Atargis Energy Corporation, CycWEC operational position
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Figure 2.7: WECs based on orientation

Source: Dongsheng Qiao, Rizwan Haider, Jun Yan, Dezhi Ning and Binbin Li, Review of

Wave Energy Converter and Design of Mooring Systemn, 2020

Attenuator: Typically, the attenuator is a flexible apparatus oriented parallel to the

wave’s direction of movement. It functions by capturing the energy generated from the

relative motion of its sections, when waves pass through them as depicted in fig. 2.8.

This type of device is designed to float on the water’s surface, effectively harnessing wave

energy in alignment with the wave’s path.

Figure 2.8: Attenuator WEC

Source: Md Jakir Hossain, Possibility and Methodology Investigation of Ocean Wave

Power Generation, 2015

Terminator: In contrast, a Terminator WEC positions its principal axis parallel to the

incoming wave crest, effectively ’terminating’ the wave. These devices extend perpendicu-

lar to the wave’s travel direction, capturing or reflecting the wave’s energy as represented

in fig. 2.9. While these devices are commonly located onshore or near the shore, floating

versions have also been designed for offshore applications.
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Figure 2.9: Terminator WEC

Source: Luca Collegiani, Analisi, modellazione e ottimizzazione del comportamento di

un sistema di conversione per l’energia da moto ondoso, 2013-2014

Point Absorber: Point absorbers are characterized by their significantly smaller dimen-

sions in comparison to a full wavelength. They possess the unique ability to generate

power regardless of the direction of wave propagation. The buoy itself can oscillate along

one degree of freedom or more. The buoy’s motion, while undergoing damping, serves

to extract energy, which is subsequently converted into electricity through a generator.

These devices can be also characterized by two bodies in relative motion (float and heave

plate) as represented in fig. 2.10.

Figure 2.10: Point Absorber WEC

Source: Mirko Morini, Moto ondoso e maree, Sistemi di conversione dell’energia da fonti

rinnovabili 2018-2019
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2.4 Performance Evaluation of WECs

The development of WECs has garnered increased attention, with various types explored.

To comprehensively assess their performance, the analysis of a WEC focuses on energy

capture, technology cost, and reliability. Energy capture efficiency, an important fac-

tor for commercialization, is evaluated using the Hydrodynamic Efficiency (HDE) index.

Multi-DOF WECs demonstrate the highest efficiency, followed by the terminator, point

absorber, overtopping, and oscillating water column types, while attenuators perform the

least efficiently. Also cost is a crucial consideration, cost analysis plays a crucial role in

the development of wave energy capture technologies, and assessing the Levelized Cost

of Energy (LCOE) is an essential step to understand their competitiveness in the energy

market. Reliability depends on material and structural factors, with fewer parts exposed

to seawater resulting in higher reliability, as seen in oscillating water column and over-

topping converters. Conversely, point absorber, terminator, attenuator, and multi-DOF

devices face potential reliability challenges, with multi-DOF converters being the most

complex [6].

2.5 Study Focus: C4 Point-Absorber by CorPower

Notable examples within the category of point absorbers include the CorPower WEC in

fig. 2.11, a floating WEC connected to a bottom-referenced pneumatic-mechanical drive

that will be discussed in greater detail in the following sections.

Figure 2.11: CorPower WEC

Source: https://www.autonational.de/neuigkeiten/corpower-ocean
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In selecting to investigate a point-absorber technology such as the C4 by CorPower,

several factors come into play. Firstly, the choice is justified by the versatility inherent in

its design, particularly concerning wave directionality. The Aguçadoura site in Portugal,

a site of particular interest for CorPower, presents diverse wave conditions, and a point-

absorber like the C4 offers adaptability to varying wave angles, maximizing energy capture

efficiency.

Moreover, the decision to focus on CorPower’s concept is supported by its advanced stage

of development and high Technology Readiness Level (TRL). By examining a technology

at this stage, insights can be gained into its real-world applicability.

By studying the C4 point-absorber, this study aims to contribute to the understanding

and advancement of this wave energy technology.
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Chapter 3

WEC C4 by CorPower

CorPower C4, a point absorber Wave Energy Converter (WEC), represents a cutting-edge

technology among the analyzed WECs. All the information presented in this chapter has

been sourced from the official CorPower Ocean website [7]. The CorPower C4 has emerged

as a remarkable innovation in the field of wave energy. Notably, it possesses several unique

features that make it one of the most promising solutions in the wave energy sector.

The heart of this technology lies in a pre-tension system that anchors the heaving buoy.

When wave swells push the buoy upwards, the stored hydraulic pressure within the system

provides the necessary force to drive the buoy back downwards. This ensures that energy

is harnessed in both upward and downward motions, resulting in a highly efficient and

lightweight system.

CorPower Ocean, the company behind the CorPower C4, has positioned itself at the

forefront of the wave energy revolution, in their technology the energy stored within the

waves is seamlessly converted into electricity through the rise and fall, as well as the

back-and-forth motion of the waves by Power Take Off (PTO) system that efficiently

transforms mechanical energy into electricity.

Key innovations that define the CorPower C4 technology include Wavespring technology,

a Cascade gearbox, a Pre-tension cylinder, a composite buoy design, UMACK anchors,

and advanced control systems. Each of these elements contributes to enhancing energy

production, improving efficiency, reducing costs, and extending the operational lifespan of

the WEC. The Wavespring technology, for instance, introduces a negative spring function

that leads to a threefold increase in energy production for a given buoy size, translating

to increased revenue and cost-effectiveness.

Furthermore, CorPower C4 boasts advanced control technology, allowing the buoy to be

tuned and detuned, adapting its response to varying sea conditions as shown in fig. 3.1.
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Figure 3.1: Tuned and detuned cases

Source: https://corpowerocean.com/

In stormy weather, the detuned state of the system makes it transparent to incoming

waves, a safety feature akin to wind turbines that adjust their blades to prevent overload-

ing. In normal sea conditions, the buoy is tuned to work in optimal timing with incoming

waves, amplifying its motion and power capture. This fine-tuned control system allows

for highly efficient wave energy capture, as it can amplify a 1-meter wave, for instance,

into a buoy motion of 3 meters fig. 3.2.

Figure 3.2: Amplification of the motion up to 3 times

Source: https://www.autonational.de/neuigkeiten/corpower-ocean

The CorPower C4 has key metrics that further underscore its capabilities, including a

CorPack rating of 10-20 MW, an operational range (Hs) of 0.25-8 meters, a buoy diameter

of 9 meters, spatial density of 15 MW/km², installation depth exceeding 40 meters, a

height of 18 meters, a capacity factor ranging from 40% to 60%, a device rating of 300

kW, and a weight of 70 tonnes.

CorPower Ocean offers a comprehensive wave energy solution with its CorPack wave

clusters. These clusters are made up of Wave Energy Converters, a mooring system,

anchors, an electrical collection system, and a remote control and communication system.

CorPacks are designed to be deployed side-by-side, forming larger wave farms with a total
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capacity ranging from hundreds of megawatts to gigawatts. The electricity generated by

each CorPack is efficiently exported through a collection hub, making it compatible with

offshore wind energy installations.

The advantages of CorPower C4 extend beyond its technical capabilities. Its minimal

visual impact is a notable feature, with devices protruding less than 10 meters above sea

level. This attribute enhances its social acceptance as wave farms located only a few

kilometers from the shore do not significantly disturb the coastal view.

Another key benefit of the CorPower C4 technology is its modular and efficient use of

ocean space. With its spacial density, these wave farms can deliver three to five times

more power from the same ocean space compared to a typical offshore wind farm. This

remarkable high-density clustering approach empowers CorPower Ocean to provide a solu-

tion that efficiently utilizes the available ocean resources. In a manner similar to batteries

constructed from many small cells packaged in modules, CorPower’s wave clusters are

comprised of numerous identical wave devices as shown in fig. 3.3. This modular ap-

proach facilitates efficient industrial deployment, fosters economies of scale, and encour-

ages the involvement of local supply chains for construction, installation, and servicing.

Consequently, this approach promotes high local content throughout the entire project

life cycle.

Figure 3.3: CorPower’s wave clusters

Source: https://www.autonational.de/neuigkeiten/corpower-ocean

In summary, CorPower C4 is a groundbreaking point absorber Wave Energy Converter

that leverages principles inspired by the human heart to efficiently harness the power of

ocean waves. With advanced technology, innovative features, and a modular approach, it

offers a sustainable and highly efficient solution for unlocking the vast energy potential

of the oceans. This technology has the potential to revolutionize wave energy generation

and contribute significantly to the transition to clean and renewable energy sources.

In order to advance the development of CorPower C4 technology, it becomes necessary to

thoroughly comprehend the system’s behavior within the challenging context of a harsh
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sea environment. This thesis aims to contribute in this context through the utilization of

a numerical simulation. Nevertheless, before focusing on the numerical analysis and the

subsequent presentation of the achieved results, it is fundamental to furnish a scholarly

introduction to the interactions of floating structure dynamics, the wave-body interaction

phenomena, and the numerical solution strategy to perform this analysis.
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Chapter 4

Theoretical background

The dynamic analysis of offshore structures forms a critical component of this study,

focusing on assessing forces, motions, and accelerations of bodies in open sea conditions

with uniform water depth. Through a comprehensive approach that extends beyond linear

potential flow theory to include weakly non-linear hydrodynamic effects as well as the

effects of viscous-flow through empirical formulas, the study aims to assess the following

problem: analyzing the performance of a surface-piercing body under various marine

conditions. This study delves into the dynamic analysis of the C4 wave energy converter

in scenarios ranging from free decay to interactions with both regular and irregular waves,

particularly under adverse sea states [8].

4.1 Definition of motion

To study the interaction problem between the wave and the floater, it is initially necessary

to define a fixed Cartesian reference system, as shown in fig. 4.1. The origin of the

earth fixed Cartesian reference system is located at on the mean free surface, which then

represents the plane z=0. The x and y-axes lie in the plane of the free surface while the z-

axis is oriented vertically upward. The six degrees of freedom of the body are subsequently

represented and defined.

The translational motions along the axes are denoted as η1, η2, and η3, while the rota-

tional motions are denoted as η4, η5, and η6. These variables can be used to represent the

displacement of a generic point moving rigidly with the body as:

s⃗ = η1i+ η2j+ η3k+ α⃗× r⃗ (4.1)

With:

α⃗ = η4i+ η5j+ η6k (vector of angular motion)

r⃗ = xi+ yj+ zk (position vector of the point of interest)
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Figure 4.1: Definition of motions
Source: O.M. Faltinsen, Sea Loads on Ships

and Offshore Structures

• SURGE: Translation along the X-axis

• SWAY: Translation along the Y-axis

• HEAVE: Translation along the Z-axis

• ROLL: Rotation around the X-axis

• PITCH: Rotation around the Y-axis

• YAW: Rotation around the Z-axis

4.2 Linear wave-induced loads and motions

In this study, linear potential flow theory is considered as an initial and valuable approach

to analyze the behavior of the floater, specifically in terms of their motions and loads.

This chapter’s content is based on what is presented in the book Sea Loads On Ships and

Offshore Structures [8].

The potential flow theory simplifies the mathematical treatment of fluid flow around

objects under certain assumptions. These include:

1. Inviscid Fluid: The fluid is assumed to have no viscosity.

2. Incompressible Fluid: The fluid density is constant.

3. Irrotational Flow: The flow is irrotational, implying that the curl of the velocity

field is zero, i.e., ∇ × V = 0. This allows representing the velocity field as the

gradient of a scalar potential function ϕ.

Given these assumptions, the velocity of the fluid at any point is derived from the

potential function as:

V = ∇ϕ = i
∂ϕ

∂x
+ j

∂ϕ

∂y
+ k

∂ϕ

∂z
(4.2)

For an inviscid, incompressible, and irrotational flow, the Bernoulli equation can be

expressed as:

p+ ρgz + ρ
∂ϕ

∂t
+
ρ

2
V ·V = C (4.3)
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The velocity magnitude V is related to the potential function ϕ, allowing us to incorpo-

rate it into the Bernoulli equation.

So the problem can be linearized and studied by considering the velocity potential ϕ and

solved using the system of the following equations referred to fig. 4.2:

∇2ϕ = 0 (Laplace’s equation) (4.4)

∂ϕ

∂z
= 0 in z = −h (horizontal seabed impermeability condition) (4.5)

∂2ϕ

∂t2
+ g

∂ϕ

∂z
= 0 in z = 0 (combined linearized free surface condition) (4.6)

∂ϕ

∂n
= V⃗ · n⃗ in SB (body impermeability condition) (4.7)

lim
r→∞

∇ϕ = 0 at r∞ (far field condition with r horizontal distance) (4.8)

Where SB is the mean wetted surface and n is the normal vector into the body.

Figure 4.2: Control surface used to define the boundary conditions

Source: O.M. Faltinsen, Sea Loads on Ships and Offshore Structures

Considering the previously mentioned assumption of linearity, the problem can be de-

composed into two distinct parts: one related to radiation and the other to diffraction.

The overall outcome is the result of the superposition of these effects, as depicted in

fig. 4.3.
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Figure 4.3: Decomposition of the problem

Source: O.M. Faltinsen, Sea Loads on Ships and Offshore Structures

In fluid dynamics and wave theory, the linear assumption simplifies the analysis of the

body. A useful consequence of linear theory is that it is possible to obtain results in

irregular waves by adding together results of regular waves (with constant amplitude and

one frequency) with different amplitudes and wavelenghts, so it is sufficient to analyse

the floater in incident regular sinusoidal waves of small wave steepness in a steady-state

condition so that there are no transient effects and the induced loads and motion of the

structure will oscillate with the excitation frequency, that allows to use the frequency

domain analysis. Moreover, within linear theory, it is possible to separate the seakeeping

problem into radiation and diffraction problems, which are associated to the two mech-

anisms involved in the wave-body interactions. The radiation part deals with the waves

generated by the motion of the structure itself, while diffraction addresses the interaction

of incident waves with the structure. The overall response of the structure is the com-

bination of these two components. This approach enables a more tractable analysis of

complex fluid-structure interactions.

In the diffraction problem, a stationary body is exposed to incident regular waves. The

exciting loads (hydrodynamic loads) result from the summation of two contributions: one

is an effect induced by the pressure field generated by the undisturbed waves as if the body

were absent, leading to the Froude-Krylov loads. The other contribution envisions the

body generating a flow that guarantees its impermeability as fixed structure, yielding the

Diffraction or Scattering forces. Moving forward, the term ’forces’ will denote generalized

forces, encompassing both forces and moments acting on the body. Therefore, a force

vector will comprise six components: the initial three represent forces, while the latter

three represent moments.

In the radiation problem, on the other hand, one considers the body as forced to oscillate

in its degrees of freedom within a wave-free environment. As the body moves, it generates

forces acting upon it, thereby altering the fluid field. The forces derived from this scenario

can be categorized into three components: Added Mass, Damping, and Restoring, each

directly proportional to the acceleration, velocity, and displacement of the body.

Considering the linear problem, the potential can be decomposed into the sum of the radi-
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ation potential and the diffraction potential. Consequently, ϕ(x, y, z, t) = ϕR(x, y, z, t) +

ϕD(x, y, z, t). Assuming steady-state condition, within linear theory the loads and the

response will oscillate as the input, so as the regular-incident waves; therefore the fre-

quency domain analysis can be used. Using complex notation, the six-component vector

of body motion can be written as η = ηae
(iωt). Moreover, the relationship ϕ(x, y, z, t) =

ϕ(x, y, z)eiωt can be defined, indicating that the time and space dependence of the velocity

potential can be separated in steady-state conditions. The diffraction potential can, in

turn, be considered as the sum of the wave potential without the body and the scatter-

ing potential: ϕD = ϕW + ϕ7. Splitting the space and time dependence, the first one

can be rewritten as ga
ω
ek(z−i(x cosβ+y sinβ)), where a is the wave amplitude, β is the angle

of incidence, ω is the circular frequency, and k = 2π
λ
. The radiation potential is given

by
∑6

j=1(η̇jϕj), where ϕj is the potential associated with unitary body velocity in the j

direction.

The boundary conditions to solve this problem are as follows:

∇2ϕ =0 (Laplace’s equation) (4.9)

∂ϕj

∂z
= 0 in z = −h (impermeability condition on the seabed) (4.10)

-ω2ϕj + g
∂ϕj

∂z
= 0 with ȷ = 1, . . . , 7 (unified free surface condition) (4.11)

∂ϕj

∂n
= nj with ȷ = 1, . . . , 6 (body boundary condition) (4.12)

∂ϕj

∂n
= −∂ϕw

∂n
with j = 7 (body boundary condition) (4.13)

lim
r→∞

√
r(
∂ϕj

∂r
− ikϕj) = 0 with ȷ = 1, . . . , 7 (radiation and far-field condition) (4.14)

The potential obtained in this way is complex, characterized by both magnitude and

phase, representing either lead or lag with respect to the incident wave. The numerical

solution of the presented problem will be explained later.

For the radiation problem to obtain the dynamic pressure, it is possible to use equation

4.3 to express the radiation force as:

Frad,k = −ρ
∫
SB

∂ϕR

∂t
n⃗k dSB with k = 1, . . . , 6 (4.15)

By integrating the linear dynamic pressure, multiplied by the normal vector, over the

surface for the desired force component, the expression can be reformulated as:
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Frad,k = −
6∑

j=1

[Akj
∂2ηj
∂t2

+Bkj
∂ηj
∂t

] (4.16)

Where Aj,k is the added mass coefficient, and Bj,k is the damping coefficient, calculated

as:

Aj,k = ρRe

[∫
SB

ϕjnkdSB

]
(4.17)

Bj,k = −ρωIm
[∫

SB

ϕjnkdSB

]
(4.18)

Integrating the hydrostatic pressure on the instantaneous wetted body surface up to

z = 0 and subtracting the mean buoyancy we get the hydrostatic restoring forces due to

the body motions. They are formally as Fhyd,k = −
∑

j Ckjηj

For an unmoored structure with vertical symmetry, such as in the case of a buoy, the

only non-zero Cj,k elements are:

C33 = ρgAW (4.19)

C35 = C53 = −ρg
∫ ∫

AW

xdS (4.20)

C44 = ρgV GMT (4.21)

C44 = ρgV GML (4.22)

Where AW is the waterplane area, the surface area of the body’s hull at the waterline

level, and for a moored structure additional restoring forces must be added.

From the diffraction problem is possible to obtain the exciting force dependent from the

wave amplitude a:

Fex,K = −iωρ
∫
SB

∂ϕ7

∂t
nkdSB − ρ

∫
SB

∂ϕw

∂t
nkdSB = Re

{
aXke

(iωt)
}

with k = 1,...,6

(4.23)

Where the two contributions of the k-component of the excitation-force are, respectively,

the Scattering and the Froude-Krylov forces. They are obtained integrating the corre-

sponding linear dynamic pressure (multiplied by nk) along the mean wetted surface of the

body.
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4.3 Response Amplitude Operator (RAO)

Within a linearized model in steady state conditions, having defined the terms for radi-

ation and diffraction forces, it is possible to calculate the hydrodynamic forces based on

the second law of Newton applied to the problem of floaters:

F = Mη̈ (4.24)

where F = Frad,k+Fhyd,k+Fex+FPB where FPB gives the generalized force contribution

from weight and buoyancy.

Using complex notation, we can obtain:

[−ω2(M+A) + iwB+C]ηae
iωt = aXeiωt (4.25)

From which we can derive:

ηa
a

= [−ω2(M+A) + iωB+C]−1X (4.26)

that represents the Response Amplitude Operator (RAO), providing the complex transfer

function of the body motions in terms of amplitude and phase. The transfer function of

the amplitude gives the amplitude per unite incident-wave amplitude and the phase gives

the deterministic phase relative to the incident-wave.

4.4 Cummins’ approach for time domain simulations

The Cummins’ approach provides a powerful framework for simulating the response of the

floater in the time domain [9], allowing for the analysis of transient scenarios and scenarios

involving multiple frequencies. This methodology bridges the gap between frequency-

domain analyses and the need for time-domain solutions, particularly useful in complex

sea states or when considering the interaction of waves with varying characteristics.

Cummins’ approach is based on the convolution integral that relates the motion of a

floating body to the applied wave forces over time. The equation can be represented as:

(M+A(∞))η̈(t) +

∫ t

0

K(t− τ)η̇(τ)dτ +Cη(t) = F(t) (4.27)

where:

• M is the mass matrix of the floating structure.

• A(∞) is the added mass at infinite frequency.

• K(t − τ) represents the impulse response function, derived from the frequency-
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dependent damping. It describes how the damping changes over time, incorporating

the effects of radiation damping that depend on past motions.

• C is the hydrostatic stiffness matrix.

• η(t) is the vector of body motions (heave, sway, roll, etc.).

• F(t) is the excitation force vector as a function of time.

4.5 Weakly nonlinear problem

Nonlinear effects play a critical role in accurately predicting the response of floating struc-

tures to wave interactions. Traditional linear models, while foundational, are sometimes

not enough to study the complex dynamics arising from nonlinear interactions. This

limitation is particularly evident when, for example, resonance for certain degrees of free-

dom occurs at natural frequency outside the incident-wave frequency range so that in

steady-state condition it cannot be excited by linear effects, but it could by second or

higher-order effects. To address these complexities, the perturbation approach extends

the analysis to encompass second- and higher-order effects. Focusing on second-order

effects, a systematic approach necessitates the incorporation of second-order models for

both incident wave dynamics and wave-body interactions.

Weakly non-linear models aim to simplify the fully non-linear formulation. In these

models, a perturbation expansion is performed based on the wave steepness (ka), where

k represents the wave number and a is the wave amplitude. The boundary conditions are

approximated using their Taylor expansion. The perturbation method is applied to solve

for the lowest degree of steepness, and these solutions are used as input for higher-order

terms. Typically, a second-order approximation is used, where the (linear) solution in ka

is employed to solve for (ka)2. Codes utilizing this second-order approximation are more

effective in describing diffraction and excitation problems [10].

The weak-scatterer approximation is a simplification that can be used, which assumes

that the waves and the body motions can be large, so second order effects are included,

but radiation and scattering effects are limited and can be modelled with a correction of

their linear prediction.

In this study three different effects are analysed:

1. Radiation scattering correction: the model assumes an impermeable body, with its

movement affecting the surrounding wave field. The normal velocity component

at the hull is derived from the relative motion between the floater and the waves,

averaged across the wetted surface. This approach integrates the radiation and

scattering phenomena, which are then processed through a convolution integral

that is informed by specific hydrodynamic coefficients [11].
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2. Nonlinear hydrostatic: the hydrostatic restoring coefficient C is no more calculated

considering a mean wetted surface configuration but the instantaneous wetted sur-

face is calculated every time step and so it becomes function of the body motion

C(η)

3. Viscous effects: viscous effects are taken into account via empirical formulas as it

will be analysed in the following section.

4.6 Viscous effects: correction in potential flow model

Linear potential flow models simplify their analysis by ignoring the effects of viscosity,

assuming the fluid is inviscid. However, if the body has elements with cross-section

small relative to the incident-wave length and height then flow separation mechanisms

are expected and viscous-flow effects should be included in the loads and it is suggested

that the significance of viscous effects should be acknowledged by incorporating them

externally. Viscous losses are contingent on the device’s velocity relative to the fluid, with

these losses exhibiting linear and quadratic dependence on velocity. Morison’s equation

is commonly used to model the viscous forces on a cylindrical structure. According to

Morison’s equation the horizontal force on a fixed strip of length dz can be written as:

dF = ρ
πD2

4
Cma1dz +

ρ

2
CDD|u|udz (4.28)

Where ρ is the mass density of the water, D is the diameter of the cylinder, u and a1

are the horizontal undisturbed fluid velocity and acceleration. The mass and and drag

coefficient have to be empirically determined since they are dependent on the KC and

Reynolds numbers.

Considering the modified Morison’s equation for a moving circular cylinder and focusing

on the inertial term:

dF = ρ
πD2

4
Cma1dz︸ ︷︷ ︸

Mass

+
ρ

2
CDD(u − ṡ)|u − ṡ|dz︸ ︷︷ ︸

Drag

− ρ(Cm − 1)
πD2

4
s̈dz︸ ︷︷ ︸

Added mass

(4.29)

Where Cm − 1 = Ca represents the added mass coefficient and u and a1 represent

respectively the velocity and the acceleration of the flow. The acceleration of the body

can be written considering eq. (4.1) as follows:

s̈ = ξ̈1 +

 0 z 0

−z 0 0

0 0 0

 ξ̈2

where z is the coordinate of the mooring, ξ̈1 represents the vector (η̈1, η̈2, η̈3) and ξ̈2
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represents the vector (η̈4, η̈5, η̈6) and so the first 3 components of the added mass can be

obtained integrating the elementary 3D added-mass force

dF = ρACAI ξ̈1dz + ρACA

 0 z 0

−z 0 0

0 0 0

 ξ̈2dz

and the second 3 components can be obtained integrating the torque of the elementary

3D force

dM = r × dF

and more explicitly

dM = ρACA

 0 −z 0

z 0 0

0 0 0

 ξ̈1dz + ρACA

 z2 0 0

0 z2 0

0 0 0

 ξ̈2dz

The integration should be performed from the seabed to the coordinate of the fairlead,

giving

M = ρA
CA

2

 0 −z2 0

z2 0 0

0 0 0

 ξ̈1 + ρA
CA

3

 z3 0 0

0 z3 0

0 0 0

 ξ̈2

∣∣∣∣∣∣∣
z=fairlead

z=seabed

In Morison’s equation the drag coefficient, CD, is dependent on both the Reynolds num-

ber (Rn), as calculated by UmD
ν

, and the Keulegan-Carpenter number, KC, defined by

KC = UmT
D

. Here Um represents the relative velocity between the body and the flow, ν

is the kinematic viscosity, T is the characteristic period of oscillation, D is the cylinder’s

diameter. Here, the DNV Recommendation Practice are followed [12], so:

1. For Rn > 105:

ψ(KC) =


Cπ + 0.10(KC − 12), for 2 ≤ KC < 12

Cπ − 1.00, for 0.75 ≤ KC < 2

Cπ − 1.00− 2.00(KC − 0.75), for KC ≤ 0.75

(4.30)

where:

Cπ = −1.50− 0.024(12/CDS − 10)

For intermediate roughness, the values are found by linear interpolation between the

curves for smooth and rough cylinder corresponding to CDS = 0.65 and CDS = 1.05.

2. For Rn < 105:
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CD =


CD1 =

3π3

2KC

(
(πβ)−1/2 + (πβ)−1 − 1

4
(πβ)−3/2

)
, for KC < KC0

CD2 = 0.2KC, for KC0 < KC < 10

CD3 = 1.2[1 + 0.58e−0.064KC ]2, for KC > 10

(4.31)

Assuming a value of the KC0 equal to 1.8 and where β = D2

νT
[13].

According to the DNV recommended practices, as illustrated in fig. 4.4 the coefficient’s

values for a cylinder depend on surface roughness and the Keulegan-Carpenter number[12].

Figure 4.4: Cm as function of KC number for smooth (solid line) and rough (dotted line)
cylinders

Source: Environmental conditions and environmental loads. DNV-RP-C205, 2014
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Chapter 5

Numerical solution of the problem

The dynamic analysis framework relies on the linear potential-flow theory, integrating

weakly-nonlinear hydrodynamic effects and incorporating viscous-flow effects via empiri-

cal formulas. The linear analysis consists of a frequency-domain solution using a zero-order

boundary element method, performed through FFLOB, a software developed by CNR-

INM, using Green’s function, together with a time-domain solution following to Cummin’s

methodology with a Runge-Kutta time-stepping scheme. This approach accounts for non-

linear dynamics of the body within a body-fixed reference frame, and permits inclusion of

weakly-nonlinear effects from incident waves and their resulting loads in the time domain,

so stretching the applicability of Cummin’s approach [9].

Thus an acceptable model can be obtained through the fundamental assumptions of fluids

being incompressible, inviscid, and irrotational, with negligible surface-tension effects, for

which the potential flow theory is valid. As already introduced there are two principal

methodologies: frequency-domain analysis and time-domain analysis, which provides a

direct approach for simulations over time.

5.1 Frequency domain solution

In the frequency domain, the numerical approach requires evaluating the solution across

a selected set of frequencies. For each frequency, the system of equations associated with

the complex velocity potential ϕj, is solved numerically through a direct boundary integral

method using the Green’s function. This involves inverting a new coefficient matrix for

each frequency, due to the frequency dependency introduced by the Green’s function.

For the numerical solution, a zeroth-order Boundary Element Method (BEM) is utilized.

The submerged part of the body is discretized into N flat panels, with each panel main-

taining a constant potential value, ϕj , where j = 1. . . 7. The discretization facilitates the

approximation of the body boundary condition by enforcing a uniform velocity poten-

tial across each element. Consequently, the problem is represented as a system of linear

equations for the centroids of the N panels.
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This leads to seven algebraic equation systems, each with N unknowns. They share the

same (full) matrix, which make more efficient their numerical solution. As the problems

depend on the involved frequency, one needs to solve seven problems for each frequency,

but the zero and infinite frequency cases represent special scenarios considering that they

correspond to zero vertical velocity and zero velocity potential on the free-surface, respec-

tively. Once ϕj is found, the added-mass and wave-radiation damping coefficients, as well

as the excitation forces can be estimated and be used in eq. (4.26) to estimate the RAOs.

To sum up, the frequency-domain analysis tool, FFLOB, inputs a discretized geometry

of the submerged part of the body along with a file containing the selected frequencies

and outputs added mass and damping coefficients, as well as the real and imaginary parts

of the excitation forces.

5.2 Time domain solution

This analysis adopts a time-domain approach to address the problem, within the context

of mean free-surface and body setups and using the frequency domain results for the

time domain. This is achieved through the reconstruction of the solution over time by

applying the Fourier transform operator to the impulse response. The current approach

is noted for its effectiveness in solving these problems, though it has limited applicability.

To stretch the applicability of the linear solution it is possible to account for nonlinear

hydrostatic effects by calculating the hydrostatic pressure on the instantaneous wetted

surface defined by the body motions and the incident waves, similarly can be done for the

Froude-Krylov forces, for the integration of the linear dynamic pressure of the incident

waves and including also quadratic-velocity term in the pressure. Finally, one can also

include viscous-flow effects through the Morison’s equation. These forces are directly

integrated on the body motion, enhancing the accuracy of computing the instantaneous

body-boundary condition on the actual wetted hull surface in the presence of incident

waves.

The refinement of this approach includes the consideration of the Cummins equation

within the solution algorithm, where M , representing the body mass properties, is pre-

determined. The infinite-frequency added mass A∞ and damping B coefficients are de-

termined using FFLOB software, allowing for the evaluation of forces at any given time

instant. With the forces known at any time, the equation of motion can be integrated over

time through either a third or fourth-order Runge-Kutta scheme. This method, known

for its simplicity and robustness, involves numerically integrating ordinary differential

equations by using a trial step at the midpoint with an explicit/implicit iterative method

[14]. The third-order Runge-Kutta formula, which will be specified, is fundamental to

this approach’s efficacy in enhancing the computational precision of dynamic interactions

with incident waves.
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The flow diagram of the complete frequency and time domain solver is given in 5.1.

Figure 5.1: Flow diagram of the complete frequency and time domain solver

This formulation enables the accurate integration of the equation of motion over time,

employing a balanced approach that considers both computational efficiency and the

accuracy necessary for assessing dynamic pressures and forces on the wetted surface of

the body.

In the upcoming chapter, the initial step involves a validation process of the software that

implements the numerical solution before delving into the CorPower C4 hydrodynamic

analysis.
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Chapter 6

Verification and Validation of the

software

The validation step is undertaken to ensure the accurate and reliable functioning of the

underlying software. It serves as a necessary check to confirm that the computational tool

is appropriately capturing and representing the physical phenomena associated with the

hydrodynamic behavior of the CorPower C4 system.

By subjecting the software to validation, the aim is to establish confidence in the numer-

ical results and their alignment with real-world observations. This not only safeguards

against potential errors but also enhances the credibility of subsequent analyses and find-

ings. The validation process typically involves comparing the software’s predictions with

more general solutions, as for example experimental data, or validated numerical results

from similar cases.

Only after successfully illustrating this validation step will the work proceed with some

verification steps of convergence studies and with the in-depth analysis of the CorPower

C4 hydrodynamics.

The plots in this chapter, providing dimensional quantities, give their dimensions in the

SI units.

6.1 Reference experimental data

The experiments taken as reference [15] for the validation step were conducted using an

unmoored sphere subjected to heave decay tests in a controlled wave basin. The primary

parameters defining the experimental setup are summarized in table 6.1.
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Parameter Value

Sphere Diameter 0.3 [m]

Sphere Mass 7.056 [kg]

Material Density 998.2 [kg/m3]

Water Depth 0.9 [m]

CoG (0, 0,−0.0348) [m]

Ixx 98251E3 [gmm2]

Iyy 98254E3 [gmm2]

Izz 73052E3 [gmm2]

Ixz 0E3 [gmm2]

Ixy, Ixy 10E3 [gmm2]

Table 6.1: Summary of Experimental Parameters

Heave decay tests were performed to capture the natural oscillation and damping char-

acteristics of the spherical model. The test outcomes, specifically the decay rates and

natural frequencies, are critical for validating the simulation results. Initial condition test

data are presented in table 6.2.

Initial Displacement Value
H0 [m] 0.1D
H0 [m] 0.3D
H0 [m] 0.5D

Table 6.2: Initial condition for the Heave Decay Test

6.2 Input data for the frequency domain analysis

As already explained, FFLOB uses as input data a discretized geometry of the body and

a list of frequencies for which the problem is to be solved. This section explains how these

are constructed.

Starting with the mesh, it is created using Gmsh [16], an open-source 3D finite ele-

ment mesh generator with a built-in CAD engine and post-processor. The two types of

meshes that have been created differ in the type of finite elements used: in the case of

a structured mesh, they are all regular and ordered, unlike the case of the unstructured

mesh. The structured mesh was created by drawing a curve equivalent to a quarter of

a circumference and performing four revolutions of π
2
to obtain a hemisphere, as shown

in appendix A.0.1. This technique was adopted to avoid generating any unwanted asym-

metries. Only the lower part of the sphere, i.e., the part below the mean free-surface,

is discretized, consistently with linear theory. Regarding the list of frequencies, it was
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calculated considering wavelengths that vary from 0.1 times to 100 times the diameter of

the sphere, so calculating the wave number k = 2π
λ
and consequently the frequency (using

deep-water dispersion relationship) ω =
√
gk. Once obtained the minimum and maximum

frequency all the others are evaluated using a step of 0.05 between one frequency and the

next. The problem was also solved at zero and infinite frequency.

The phase of the software validation involves a comparison of the obtained results with

experimental tests on the free decay of a sphere [15]. A spherical shape was selected

due to its geometric similarity to the CorPower WEC. Neither structure is wall-sided,

and both demonstrate significant changes in their horizontal cross-sections. In these

experiments, the sphere is released from three different heights in calm-water conditions,

and the resulting heave motion is analyzed in the time domain. The goal is to assess the

accuracy of the computational model by comparing its predictions against the observed

behavior of the sphere in free decay.

To initiate this validation phase, simulations were carried out using both structured and

unstructured meshes given as input to FFLOB together with a list of frequencies in order

to run a convergence study to identify the geometry discretization with a sufficient number

of panels to obtain stable results without exceeding to avoid to inflate the time needed

to perform the simulation. As anticipated the fundamental difference between the two

types of meshes lies in the arrangement of grid points, with structured meshes adopting

an organized, grid-like structure, and unstructured meshes offering more flexibility with

irregularly arranged nodes. For both types of meshes, the panel count was increased,

starting from N = 500, and progressing to 2000 and 3000 as shown in fig. 6.1 and fig. 6.2.

Since it is assumed that halph of the sphere is submerged, consistently it is possible to note

the meshes were computed only for half of the sphere since the solution in the frequency

domain is fully linear and it solves the problem around the mean wetted surface in steady-

state conditions, so the upper part of the surface piercing sphere outside of the water is

not needed and it will be only included in the time domain solver when is needed to

account of the dynamic pressure on the instant wetted surface. As already explained this

process aimed to determine the optimal mesh configuration by examining the behavior of

the solutions at different panel counts so the goal was to identify the most suitable mesh,

along with the corresponding number of panels, for conducting simulations in the time

domain to be compared with the experimental results.

Figure 6.1: Unstructured meshes with 500, 2000 and 3000 panels from left to right
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Figure 6.2: Structured meshes with 500, 2000 and 3000 panels from left to right

6.3 Numerical convergence for the sphere: frequency

domain results

The convergence of results in the frequency domain is demonstrated by systematically

increasing the number of panels for both the structured and unstructured meshes. The

following graphs depicted in fig. 6.3 fig. 6.4 and fig. 6.5 represent the added mass, damping,

and response amplitude operator curves computed through the frequency domain solver

as previously explained. As the panel count is increased, the plots reveal how these key

parameters converge enabling the selection of a mesh with a specific number of panels

that yields accurate results without unnecessarily inflating the simulation time.
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Figure 6.3: Adimendional Heave added mass for structured and non structured meshes
as function of the frequency [Hz]

Figure 6.5: RAO for structured and non structured meshes as function of the wavlenght
[m] 36



Figure 6.4: Adimensional Heave damping for structured and non structured meshes as
function of the frequency [Hz]

It is evident that the results converge and demonstrate consistency for both the 2000 and

3000 panels meshes that also reduce the peaks of the irregular frequencies (more evident

with the N = 500 mesh), unexpected deviations in the curves, mitigated increasing the

mesh resolution, leading to a smoother curve as the number of panels increase, thus

validating their utilization in conducting the time domain analysis.

6.4 Influence of draft on added mass

Before dvelving in the time domain analysis it is performed a study of draft’s influence on

added mass, interesting in bodies with a steep change in cross-section, such as spheres,

offers an insights into the hydrodynamic behavior of this body. This study has been

performed for understanding how similar geometric traits as the sphere can be compared

with the WEC analysed later, since they both share this steep cross-sectional variation.

To perform this analysis the added mass at infinite frequency was calculated with FFLOB

at different draft values of a sphere with 0.15 m radius. The results represented in fig. 6.6

are normalized with respect to the added mass calculated at half of the sphere submerged

and the radius of the sphere respectively.
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Figure 6.6: Variation of the heave added mass as function of the draft

In the time domain solution adopted for this studies, the added mass is not changing

with the different values of the draft varying during time but is taken at infinite frequency

and calculated at the mean expected draft as in eq. (4.27).

6.5 Free-decay time domain analysis and results

As mentioned earlier, the results obtained from free decay simulations in time domain were

compared with experimental tests that analyze the heave motion of a sphere dropped into

water from three different heights: 0.1D, 0.3D, and 0.5D, with the diameter of the sphere

in the experimental results equal to 0.3m and the one of the simulation, whose results are

properly scaled, equal to 1m. Free decay refers to the motion of an object, in this case, the

sphere, experiencing oscillations in calm-water conditions without external forces. The

fig. 6.7 below presents the results of the experimental tests obtained for the three different

heights.
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Figure 6.7: Free decay experimental results

All the results are dimensionless. In particular the time is normalized with the damped

natural period in heave, (calculated using the hydrodynamic coefficients for the statically

neutrally buoyant position) Te0 = 0.76s of the sphere and the heave motion is divided

by the initial height from which the sphere is dropped. As evident from the results

of the simulations obtained using an unstructured mesh with 2000 panels in both the

linear solution and in the one accounting of the nonlinearities stated in points 1 and 2 of

section 4.5, an increase in the initial height from which the sphere is dropped reveals a

growing differences between the two solutions. Those effects become more pronounced as

the amplitude of motion grows, leading to deviations from linear predictions as shown in

fig. 6.8. As already anticipated, to integrate the nonlinear effects also the upper part of

the sphere geometry was discretized in the same way of the lower part and given as input

to the time domain solver. It has been decided to incorporate these two nonlinear effects

rather than viscous forces because flow separation in viscous effects is a phenomenon that

requires time, larger motions, and velocities. Indeed, by making an approximate estimate

of the KC number, calculated as 2πa
D

where a is the maximum motion amplitude (0.5D),

it results in being less than 4. Therefore, viscous effects are very unlikely to be significant

in this free decay case, in addition to being of more complex implementation.
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Figure 6.8: Comparison between linear and non-linear results for the three cases

In the same way, the results obtained with a sphere using 3000 panels remain consistent

with those attained earlier, as depicted in fig. 6.9.
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Figure 6.9: Comparison with more panels

This uniformity also persists whether an unstructured or structured mesh is employed

as shown in fig. 6.10.

Figure 6.10: Comparison between structured and unstructured meshes

However, by analyzing the sway and surge motions showed in fig. 6.11 for both a struc-

tured and an unstructured sphere, it becomes apparent that the results with a structured

mesh preserve better the symmetry of the body. This is because an unstructured mesh

introduces unintended asymmetries. Therefore, considering the symmetry of the point

absorber C4 geometry with respect to the z-axis, a structured mesh will be employed for

simulations related to the Wave Energy Converter (WEC). This decision is driven by the

structured mesh’s ability to better capture the symmetrical characteristics of the system,

avoiding undesired asymmetries introduced by the unstructured mesh, thus enhancing the

overall precision of the simulations.
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Figure 6.11: Surge and sway motions with different meshes
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Figure 6.12: Comparison between the experimental data and the simulation performed
with H0 = 0.5D and structured mesh

Comparing the results of the experimental tests with the ones of the simulation with

the structured mesh and with an initial height of 0.5D, in fig. 6.12, it is evident that the

outcomes are consistent in terms of change of oscillation (natural) period of the sphere

and they are mostly due to nonlinear hydrostatic effects so once the software is validated

it is possible to move on to the analisys of the CorPower WEC.
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Chapter 7

Analysis of WEC C4

Regarding the studies conducted with CorPower’s WEC C4, an equivalent system to that

developed by CorPower to carry out experimental trials in the COAST laboratory at

Plymouth University, was developed. The system of the experiments is a 1:25 scale model

consisting of the WEC hull directly connected to the moorings without the presence of

the PTO (infinite stiffness) and the slide on which the buoy can move (as in the final

design realized by CorPower) thus obtaining a similar model to the detuned case for

storm protection where the PTO stiffness is significantly high, leading to a reduction

in heave motion. The moorings themselves consist of three parts and were modeled for

simulations as two springs in series with their equivalent axial and torsional stiffness. To

summarize, the behavior of this model in water can be likened to that of an inverted

pendulum composed of a buoy and a spring, i.e., the moorings, which have the ability to

rotate just like a pendulum thanks to an H-link joint with the moorings that allows for

rotations.

(a) Full-scale WEC (b) Model of the WEC (scale 1:25)
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Some of the WEC’s features have been detailed in chapter 3, and all simulations were

conducted at full scale, leveraging the experiment results from CorPower’s scaled model,

which have been upscaled to full scale. Due to the sensitive nature of the geometry data,

further specifics cannot be shared.

The plots in this chapter, providing dimensional quantities, give their dimensions in the

SI units.

7.1 Modeling of the hull of the WEC

Same as the case of the sphere for the verification phase, a structured mesh was also

created for the geometry of the CorPower floating buoy with 4 revolutions of the profile.

As can be seen from the script in appendix A.0.2, a spline was created to join a series

of points combined with lines to define the stepped profile part of the buoy. The three

meshes with an increasing number of panels to conduct an initial convergence study in

the frequency domain are shown in fig. 7.2, the results of which are analyzed in the

following paragraph. Also in this case, only the mesh of the submerged part of the WEC

hull in its average configuration was given as input to FFLOB, along with the file of

calculated frequencies, always considering waves with a length from 0.1 to 100 times the

diameter of the buoy. An initial analysis using three meshes of 500, 1000, and 2000

panels, respectively, as shown in the figure, was conducted to examine the convergence of

the added mass, damping, and Response Amplitude Operators (RAO).

Figure 7.2: 500, 1000 and 2000 panels structured meshes of the WEC

7.2 Numerical convergence for the WEC: frequency

domain results

Below, the results for added mass, damping, and Response Amplitude Operators (RAO)

for heave motion are shown. It is important to highlight that the results of these simula-

tions cannot be used to analyze the response of the complete system, as the full system

is not considered, notably lacking the moorings. Therefore, the obtained results are nec-

essary only for conducting a convergence study to analyze the sufficient number of panels

required to discretize the geometry of the body.
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Figure 7.3: Heave added mass for the WEC

Figure 7.4: Heave damping for the WEC

Figure 7.5: Heave RAO for the WEC

As can be observed from the figures, the mesh with 1000 panels is sufficient to solve

the problem with an adequate degree of precision also reducing the peaks of the irregular

frequencies. Moreover it is interesting to notice that the maximum value of the RAO for

the WEC it is similar to the one of the sphere in section 6.3.
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7.3 Influence of draft on hydrostatic restoring, added

mass and natural period

As already discussed in the chapter on the frequency domain solver FFLOB, the problem is

solved in a steady-state condition, and consequently, the results obtained are significant

for submersion around an average configuration. Also within linear theory there are

motions but due to the geometry small vertical motions can lead to large changes in the

hydrostatic and added mass effects and here a quasi-static approach is used to check this

and the features of the geometry. So a study on the variation of hydrostatic restoring,

added mass and natural period in heave as a function of the body’s submersion was

conducted. To accomplish this, it was necessary to recreate the different geometries of

the submerged body to provide as input to FFLOB, and as shown in fig. 7.6, 4 new

configurations were taken in addition to the one already used previously.

(a) (b) (c) (d)

Figure 7.6: Meshes with different draft values: a) 0.49m b) 3.25m c) 8.89m d) 12.4m

Using C33(D) and A33(ω,D) associated with the actual submerged structure, it is pos-

sible to examine the influence on the natural frequency in heave ω3n, assuming a 1DOF

(One Degree of Freedom) undamped system. In this scenario, ω3n can be estimated as

the frequency where the two curves y = C33(D) and y = ω2(M + A33(ω,D)) intersect,

ρgπr2 = ω2
n[M + A33(ωn)] (7.1)

Solving for ωn provides the natural frequency of the system, offering valuable insights

into its resonant condition.
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Figure 7.7: Influence of the draft on the natural frequency

The results of this analysis are shown in fig. 7.7 and it is possible to calculate the variation

of the natural period of the WEC with different values of draft shown in table 7.1

Draft (m) Tn (s)

12.4 24.16

8.89 9.97

5.47 4.16

3.25 4.88

0.49 9.81

Table 7.1: Table of Natural Periods at Various Drafts

A plot of the interpolated values of the natural period as function of the draft is repre-

sented in fig. 7.8, evaluated as it can be seen in the script in appendix A.0.3.
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Figure 7.8: Influence of the draft on the natural frequency

The heave added mass results for the different draft values are shown in fig. 7.9. As

expected, the added mass increases with the draft and, therefore, with the submerged

volume.

Figure 7.9: Influence of draft on heave added mass
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Finally, the values of the added mass at infinite frequency as a function of draft were

interpolated using a Lagrange polynomial, as shown in the script in appendix A.0.4 and

in fig. 7.10, allowing a better understanding of the variation of this term with respect to

the draft. Also the adimensional heave added mass is represented in fig. 7.11 where the

added mass is divided by its value at usual draft to normalize it.

Figure 7.10: Heave added mass as function of the draft

Figure 7.11: Adimensional Heave added mass as function of the adimensional draft
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The results in fig. 7.11 were normalized in order to be compared with the one obtained

in the case of the sphere in section 6.4. It is possible to note from the comparison that

there is an interesting similarity between the two geometries due to the fact that both

bodies present a steep variation of the cross-sectional area with the draft.

It is also important to note that the variation of this term is significant, although it must

be emphasized that some configurations are particularly extreme and difficult to achieve.

In any case, a correction associated with this could be introduced in the hydrodynamic

loads, through using a quasi-static approach. In particular, one could consider the varia-

tion of the added mass in the software as a function of the draft and, therefore, as function

of time , this could be done for the added-mass at infinite frequency only. Such correction

would keep the solution strategy efficient and represents a more important contribution

with respect to changes in the retardation function eq. (4.27), based on the work by [17].

However, in this study, it is only used the value of the added mass as seen in the Cummins’

equation to perform the time domain simulations.

7.4 Time domain approach

As previously explained at the beginning of this chapter, the system can be likened to

that of an inverted pendulum, consisting of a mass and a spring that can rotate together

around the anchoring point on the seabed. For this reason, the heave and surge motions

discussed in the results are a consequence of the rotation around the anchoring point and

the projection of the buoy’s position onto the z and x axes.

Additionally, the extension of the spring can also cause motion, but due to the high

stiffness, this effect will not be particularly pronounced.

Regarding the simulations performed in the time domain, the procedure was as follows:

• The moorings were modeled as previously described at the beginning of the chapter,

equivalent to two springs in series, utilizing the corresponding torsional and axial

stiffness. Flexural stiffness was not considered since, with the system being free

to rotate around the anchoring point ideally without any friction, the only flexural

moment that could arise is due to the friction of the moorings with the surrounding

water flow, an analysis not conducted in this thesis study.

• The equations of motion for the WEC were reformulated to impose the rotational

motion around the center of rotation, which is the anchorage on the seabed.

• All the geometrical properties of the system, namely mass, center of mass, moments

of inertia of the WEC hull, and mooring components, were inputted into the solver

in the time domain.
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• A free-decay surge motion was simulated to be compared with another provided by

CorPower in a report, which contained the result of an experimental trial and also

their numerical simulation conducted with Simulink.

• Simulations were conducted with regular waves and also irregular sea states of var-

ious characteristics reflecting those of adverse sea states at the Aguçadoura site in

Portugal.

7.5 Results in free-decay

As an initial approach, the linear problem was solved without considering nonlinear effects

and viscous forces, as explained in the theoretical background. The system’s initial con-

ditions were set at -11.7 m in surge, which is the motion under analysis, and subsequently

calculated -1.68 m in heave and -16.36° in pitch, considering a circular trajectory with

the radius equal to the distance between the anchoring point and the system’s center of

mass. The result in the time domain of the pitch motion is shown below.

Figure 7.12: Linear solution of the surge free-decay

Comparing the results with the ones provided by CorPower’s tank experiments, it is

glamping the difference between both the decay (so the damping) and the oscillation

period involved (so the natural period). In the simulation there is almost no damping

and so the viscous forces through the Morison’s equation will be modeled. Moreover it is

possible to see that the simulation has a natural period of about 13.3 seconds compared to

the 14.7 seconds of the experiments. Since the restoring effects are expected to be properly

modelled, the reason of the disagreement should be checked in the added-mass effects.

Indeed, until this point, the added mass term for the moorings has not been considered

since it was not modeled in the input geometry of FFLOB that gives as output the added

mass of the only buoy, and for this reason, it is calculated analytically through the strip

theory as explained in Chapter 4.6 though the implementation of the viscous forces.
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The system’s diameter was determined as a function of the s coordinate, as detailed in

the Python script in appendix A.0.5 and illustrated in fig. 7.13

Figure 7.13: Diameter as function of the s vertical coordinate

values are in meters

The initial analysis encompassed three distinct scenarios. Consequently, the KC value

varies with the s coordinate of the moorings, leading to the selection of the following cases

for the analysis:

1. With minimum KC, Ca = 1.

2. With maximum KC and minimum roughness, Ca = 0.6.

3. With maximum KC and maximum roughness, Ca = 0.2.

The outcomes for these three scenarios are depicted in the following figures:
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Figure 7.14: Surge free-decay comparison with Ca = 1

Figure 7.15: Surge free-decay comparison with Ca = 0.6
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Figure 7.16: Surge free-decay comparison with Ca = 0.2

Analyzing the outcomes, it becomes evident that the solution most closely aligning with

CorPower’s experimental findings is characterized by a Ca value of 0.2. This scenario

is indicative of significant roughness alongside an elevated KC number. Notably, the

calculated mean KC number, based on the structure and within the initial 40-second

period of free decay, is approximately 21.26. Reference to the accompanying chart in

fig. 4.4 confirms this observation, aligning with a Cm value of 1.2 and reaffirming a Ca

value of 0.2, underscoring the coherence between the previous assumption and the roughly

evaluated KC number.

7.6 Results in regular waves

In this section, the presented results are derived from simulations conducted with regular

waves, marking a significant step towards understanding the device’s behavior under

controlled conditions. It is important to note, however, that a direct comparison with

real-world data or reference datasets is currently not feasible due to the unavailability of

such information. This limitation does not detract from the value of the simulations but

highlights the need for further research and data collection to fully validate the model’s

predictions. The pursuit of additional data and comparative studies will be crucial for

advancing our understanding and enhancing the reliability of those simulations.

Regarding the chosen cases, the operational range of the WEC, which is 0.25-8 meters in

significant wave height (Hs), was taken into account. By approximating the wave height

to be two-thirds of the significant wave height Hs, three scenarios were identified. Two

fall within the operational range with wave heights of 2.6 meters and 5.3 meters, and one

falls outside of this range with a wave height of 8 meters. Subsequently, considering the

amplitudes of these three waves, the wavelength was calculated using a wave steepness
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of 0.1. This value represents a threshold beyond which the nonlinear effects of the waves

become more pronounced and within which the waves can be described in a linear context.

The table 7.2 presents the parameters of the three waves studied.

Wave n° Hs (m) H = (2/3 Hs) (m) a (m) λ (m) k = 2π
λ

ω (rad/s) T (s)
1 4 2.6 1.3 26.6 0.23 1.52 4.13
2 8 5.3 2.6 53.3 0.12 1.07 5.8
3 12 8 4 80 0.078 0.87 7.16

Table 7.2: Waves Parameters

The results for the three different cases for heave and surge motion are represented in

fig. 7.17, fig. 7.18 and fig. 7.19. It is important to state again the heave and surge motion

represented in those results are always the projection respectively on the z and x axis of

the position of the center of mass of the buoy that is rotating around the anchoring point.

Figure 7.17: Surge and heave motion for regular wave n°1
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Figure 7.18: Surge and heave motion for regular wave n°2
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Figure 7.19: Surge and heave motion for regular wave n°3

All the graphs show a regular pattern, since the simulations were run with regular waves,

where the amplitude and period are consistent over time after an initial transient. The

heave motion oscillates between zero and negative values because the results were reported

by shifting to a zero value the position of the center of mass when the system is in vertical

equilibrium.

7.7 Results in irregular waves

Regarding irregular waves, simulations were conducted following the experimental results

provided by CorPower to enable comparison. Specifically, simulations were carried out

using irregular waves represented by the Jonswap spectrum, with the characteristics dis-

played in table 7.3.

State n° Hs (m) Tp (s) Wave spec. γ
SA4 9.51 13 Jonswap 1.7
SA6 10 15 Jonswap 1.7

Table 7.3: Irregular Waves Parameters

Here Tp indicates the peak period and γ is a parameter that describes the peakedness

of the wave energy spectrum around its dominant frequency.
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The results obtained with the model implemented in this study and the ones obtained

by CorPower (including both tank and simulation results) are represented in fig. 7.20,

fig. 7.21, fig. 7.22 and fig. 7.23.

Due to lack of information about the random phase (seed) that was used to create

the irregular wave patterns, a direct temporal comparison of the results is impossible

to perform. The wave time histories are not aligned, precluding a closer examination.

Consequently, the comparison can only be generalized to observe the average oscillatory

behavior of the heave motion and axial forces.

(a) Heave motion with irregular waves SA4

(b) Axial forces with irregular waves SA4

Figure 7.20: Heave motion and axial forces for both experimental and numerical simula-
tions conducted by CorPower with irregular waves SA4
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(a) Heave motion with irregular waves SA4

(b) z-component of the mooring forces with irregular waves SA4

Figure 7.21: Results of the simulations for heave motion and z-component of the mooring
forces with irregular waves SA4

As it is possible to see in Figure 7.21a, the heave motion values oscillate between zero

(as anticipated) and a minimum of -5.7 meters. Further, a statistical analysis reveals that

the heave motion exceeds only once the threshold of 90% of this minimum value, and

surpasses the 70% of the threshold three times. It is important to note that among these

occurrences, the instance of the absolute minimum value itself is included.

In the same way it is possible to analyse the values of the z component of the mooring

forces in fig. 7.21b and state that the maximum and minimum value are respectively
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6.047 · 106N and -1.7 · 106N . The negative values occurs when the wave trough is lower

than the draft of the buoy that remains completely out of the water and so the moorings

undergo a compression state. The threshold of 90% of the maximum value is exceeded 4

times in this time history.

(a) Heave motion with irregular waves SA5

(b) Axial forces with irregular waves SA5

Figure 7.22: Heave motion and axial forces for both experimental and numerical simula-
tions conducted by CorPower with irregular waves SA5
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(a) Heave motion with irregular waves SA4

(b) z-component of the mooring forces with irregular waves SA5

Figure 7.23: Results of the simulations for heave motion and z-component of the mooring
forces with irregular waves SA5

In the same way, for the sea state SA5 the minimum value in fig. 7.23 is -5.87 meters

and the threshold of 90% of this value is exceeded once, while the threshold of 70% of

this value is exceeded five times.

Concerning the forces on the moorings in the z direction they oscillates between a maxi-

mum and minimum value that are respectively 6.47·106N and -2.11·106N . The threshold

of 90% of this maximum value is exceeded 4 times in this time history.
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Chapter 8

Conclusions

This study explores the advancements in wave energy conversion through the numeri-

cal analysis of the C4 CorPower Wave Energy Converter within various wave scenarios.

Initiated by outlining the pressing need for renewable energy sources, it then provides a

thorough review of current WEC technologies, with a particular focus on the operational

principles and classifications of these systems before presenting CorPower C4 charac-

teristics. The thesis delves into the theoretical framework of wave-body interactions,

employing linear potential-flow theory supplemented by corrections relating to nonlinear

potential and viscous-flow effects to enhance the accuracy of its analyses.

Subsequently, the study goes into the numerical solution realm, using a frequency do-

main approach together with time domain simulations following Cummins’ equation to

model the dynamic responses of the WEC. Through a rigorous validation process with ex-

perimental data, the thesis confirms the reliability and accuracy of the employed software

tools and modeling of the studied systems. Moreover through a numerical convergence

study, it is highlighted the importance of nonlinear hydrodynamic effects and viscous ef-

fects for an accurate representation of WEC behavior under operational and harsh sea

conditions.

Through a blend of theoretical insights and numerical analyses, the thesis successfully

demonstrates the integration of linear potential-flow theory with viscous effects to accu-

rately predict the WEC’s dynamic response across various wave scenarios.

The thesis also presents additional enhancements to the linear theory that, while not

integrated into the numerical solution for this study, offer potential avenues for future

research. The limitations of the theory used in this study are due to the model’s exclusion

of highly nonlinear effects, which means it cannot explore phenomena like wave breaking

or slamming, problem that can be simplified as described for example in [17]. These

theoretical augmentations, left unexplored within the current work, present promising

opportunities to further improve the accuracy and effectiveness of the modeling and the

analysis of those systems. This statement opens the door to subsequent investigations

aimed at realizing the full potential of these theoretical integrations. Concluding, future
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studies should aim to model the actual WEC system rather than relying on the model

used for experimental tests. This would include integrating the Power Take-Off and the

relative heave motion between the buoy and its moorings.

Acknowledgments

I would like to express my gratitude to my supervisor, Professor Giovanni Bracco; En-

gineer Andrea Bardazzi for his endless technical support; Professor Marilena Greco for

her availability and patience in her guidance; and finally, Professor Claudio Lugni, for his

support and inspiration.

I would also like to thank CorPower Ocean for their willingness to collaborate and the

Norwegian University of Science and Technology (NTNU) in Trondheim, Norway, for

hosting me during this project.

64



Appendix A

Python scripts

A.0.1 Gmsh script for the meshed structure of the sphere

Listing A.1: Script for the structured sphere mesh

1 SetFactory("OpenCASCADE");

2 //+

3 Point (1) = {0.5, 0, 0, 1.0};

4 //+

5 Point (2) = {0, 0, 0.5, 1.0};

6 //+

7 Point (3) = {0, 0, 0, 1.0};

8 //+

9 Circle (1) = {1, 3, 2};

10 //+

11 //+

12

13 nth = 29;

14 nr = nth - 1;

15

16

17 Extrude {{0, 0, 1}, {0, 0, 0}, Pi/2} {

18 Curve {1}; Layers{nr}; Recombine;

19 }

20 Extrude {{0, 0, 1}, {0, 0, 0}, Pi/2} {

21 Curve {4}; Layers{nr}; Recombine;

22 }

23 Extrude {{0, 0, 1}, {0, 0, 0}, Pi/2} {

24 Curve {7}; Layers{nr}; Recombine;

65



25 }

26 Extrude {{0, 0, 1}, {0, 0, 0}, Pi/2} {

27 Curve {10}; Layers{nr}; Recombine;

28 }

29 Transfinite Curve {1,4,7,10} = nth Using Progression -1;

30

31 Mesh 2;

32

33 Transfinite Surface {1} Right;

34 //+

35 // Transfinite Surface {1};

36 //+

37 // Recombine Surface {1};

38 //+

39

40 //+

41 Transfinite Curve {10} = 20 Using Progression 1;

42 //+

43 Curve {10} In Surface {3};

A.0.2 Gmsh script for the meshed structure of the WEC hull

Listing A.2: Script for the WEC hull mesh

1 SetFactory("OpenCASCADE");

2

3 #define all the points of the profile of the hull

4

5 // Create a spline til point 17

6 Spline (1) = {1:16};

7

8 // Create a line

9 Line (2) = {16, 17};

10

11 // Line

12 Line (3) = {17, 18};

13

14 circ = 18;

15 nr = circ - 1;
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16

17 Extrude {{0, 0, 1}, {0, 0, 0}, Pi/2} {

18 Curve {1 ,2}; Layers{nr}; Recombine;

19 }

20 Extrude {{0, 0, 1}, {0, 0, 0}, Pi/2} {

21 Curve {3};

22 }

23 Extrude {{0, 0, 1}, {0, 0, 0}, Pi/2} {

24 Curve {6 ,8}; Layers{nr}; Recombine;

25 }

26 Extrude {{0, 0, 1}, {0, 0, 0}, Pi/2} {

27 Curve {10};

28 }

29 Extrude {{0, 0, 1}, {0, 0, 0}, Pi/2} {

30 Curve {13 ,15}; Layers{nr}; Recombine;

31 }

32 Extrude {{0, 0, 1}, {0, 0, 0}, Pi/2} {

33 Curve {17};

34 }

35 Extrude {{0, 0, 1}, {0, 0, 0}, Pi/2} {

36 Curve {20 ,22}; Layers{nr}; Recombine;

37 }

38 Extrude {{0, 0, 1}, {0, 0, 0}, Pi/2} {

39 Curve {24};

40 }

41

42 Transfinite Curve {1,6,13,20} = nr Using Progression -1;

43 Transfinite Curve {3,10 ,17,24,31} = 12 Using Progression -1;

A.0.3 Script for the interpolated curve of the natural period

function of the draft

Listing A.3: Script for the function of the natural period

1 import matplotlib.pyplot as plt

2 import numpy as np

3 from scipy.interpolate import interp1d

4

5 # Draft values and corresponding natural periods in seconds
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6 drafts = np.array ([0.49 , 3.25, 5.47, 8.89, 12.4]) # meters

7 T_n = np.array ([9.81 , 4.88, 4.16, 9.97, 24.16]) # seconds

8

9 # Interpolating the data

10 f = interp1d(drafts , T_n , kind=’cubic’)

11

12 # Generating more points for a smoother curve

13 drafts_interp = np.linspace(min(drafts), max(drafts), num

=1000)

14 T_n_interp = f(drafts_interp)

15

16 # Plotting

17 plt.figure(figsize =(8, 6))

18 plt.plot(drafts , T_n , ’o’, label=’Data points ’)

19 plt.plot(drafts_interp , T_n_interp , ’-’, label=’Interpolated

curve’)

20 plt.xlabel(’Draft (m)’)

21 plt.ylabel(’Natural Period (s)’)

22 plt.title(’Natural Period vs. Draft’)

23 plt.legend ()

24 plt.grid(True)

25 plt.show()

A.0.4 Script for the interpolated curve of the added mass func-

tion of the draft

Listing A.4: Script for the function of the added mass

1 import matplotlib.pyplot as plt

2 import numpy as np

3 from sympy import symbols , prod , diff , lambdify

4

5 # Data

6 A_values = [144884 , 118443 , 87694 , 50560, 5863]

7 #A_values = [144884/87694 , 118443/87694 , 87694/87694 ,

50560/87694 , 5863/87694] #to use for adimensional result

8 D_values = [12.4, 8.89, 5.47, 3.25, 0.49]

9 T_values = [1, 2, 3, 4, 5]

10
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11 # Definition of D e T as symbols

12 D, T = symbols(’D T’)

13

14 # Calculation of Lagrange poly

15 lagrange_poly = sum(A * prod ([(D - D_values[j]) / (D_values[i

] - D_values[j]) for j in range (5) if j != i]) for i, A in

enumerate(A_values))

16

17 # Calculation of the derivative of the function with respect

to the draft

18 derivative_lagrange = diff(lagrange_poly , D)

19

20 # Calculation of dA/dD * dD/dT

21 result = derivative_lagrange * diff(sum(D * prod ([(T -

T_values[j]) / (T_values[i] - T_values[j]) for j in range

(5) if j != i]) for i, D in enumerate(D_values)), T)

22

23 # Calculation of dA/dD * dD/dT as numerical funcion

24 result_func = lambdify(D, result , ’numpy’)

25

26 # Array of values of D for the plot

27 D_values_plot = np.linspace(min(D_values), max(D_values),

1000)

28

29 # Array of interpolated values fot the Added mass

30 lagrange_func = lambdify(D, lagrange_poly , ’numpy ’)

31 A_values_plot = lagrange_func(D_values_plot)

32

33 # Calcularion of dA/dD * dD/dT with numerical method

34 result_values_plot = np.array ([ result_func(float(d)) for d in

D_values_plot ])

35

36 # Plot of Lagrange poly with respect to the original values

37 plt.figure(figsize =(8, 6))

38 plt.plot(D_values , A_values , ’ro’, label=’Original data’)

39 plt.plot(D_values_plot , A_values_plot , label=’Lagrange

function ’)

40 plt.title(’Variation of the heave added mass (A) with respect

to the Draft (D)’)
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41 plt.xlabel(’Draft (D)’)

42 plt.ylabel(’Heave added mass (A)’)

43 plt.legend ()

44 plt.show()

A.0.5 Script for the interpolated curve of the diameter as func-

tion of the height of the structure

Listing A.5: Script for the function of the diameter

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 def diametro_altezza_completa(s):

5 if 6.710 >= s >= -5.474:

6 # WEC interpolato con un polinomio di grado 5: the

coefficient are hidden for confidential issues

7 return A1 * s**5 + A2 * s**4 + A3 * s**3 -\

8 A4 * s**2 - A5 * s + A6

9

10 elif s > 6.710:

11 # Higher part

12 return 2.056

13 elif -24.8 < s <= -5.474:

14 # Tapered rod

15 return 0.02

16 elif -36.9 < s <= -24.8:

17 # Rod housing

18 return 0.068

19 elif -46 < s <= -36.9:

20 # Rod side

21 return 0.024

22 else:

23 return 0

24

25 # Creazione di un intervallo di valori di s che copre sia la

parte interpolata che quella a scalini

26 s_valori = np.linspace (12, -46, 1000) # Copre l’intero

intervallo da 0 a -46
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27

28 # Calcolo dei valori di diametro per ogni valore di s

utilizzando la funzione completa

29 x_valori = [diametro_altezza_completa(s) for s in s_valori]

30

31 # Plot del profilo completo della struttura

32 plt.figure(figsize =(8, 8))

33 plt.plot(x_valori , s_valori , label=’Complete profile ’)

34 plt.xlabel(’Diameter ’)

35 plt.ylabel(’Height ’)

36 plt.title(’Complete profile of the system ’)

37 plt.legend ()

38 plt.grid(True)

39 plt.axis(’equal’)

40 plt.show()
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