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Abstract

Domain Adaptation (DA) is the task of making a model function effectively on domains
that differ from the one(s) it was trained on. Visual (Geo-)Localization, on the other hand,
is the task of estimating the position or the pose in which a query image has been taken
by comparing it to a large labeled database. The objective of this thesis is to investigate
two scenarios where this paradigm is deployed in challenging domains which, without
proper countermeasures, would cause severe degradation in performances. In particular,
the first one regards the deployment of a large scale model in a different city from the one
that it has been trained on. This is done through a carefully picked domain adaptation
strategy that has then been accurately tuned to best fit the problem. The second scenario
questions the performances of state-of-the-art methods in complex indoor environments
and presents a simple yet effective fine-tuning procedure that significantly boosts their
performances of all models across all the relevant benchmarks.
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Chapter 1

Introduction

One of the most important trends of this century has been the exponential rise of Deep
Learning. Although the concept traces its roots back almost a century, it is in the last few
years that advancements in hardware capabilities and efficiency have fueled its widespread
adoption across academic and industrial worlds. Recently it has even become a main-
stream topic and it is often a point of discussion in traditional, non-technical media. This
is, at least in part, due the development of ChatGPT : for the first time a deep learning
model could emulate a human-like level of grammatical, lexical and semantic prowess.
Beyond language processing, however, the impact of this paradigm has been pervasive
across many domains, such as Computer Vision, Speech Recognition and Robotics. But
why is that?

The general aim in the field of Artificial Intelligence is to build intelligent systems
capable of comprehending information coming from the world, processing and converting
it into knowledge, storing it, and utilizing it for reasoning and interacting again with
the world. Each step has its own challenges: first of all, information may originate from
diverse sources that have to be interpreted in different ways. Secondly, external inputs
are often chaotic and noisy in nature, therefore processing information poses significant
challenges: the system must be able to retain only pertinent and useful information and
convert it into actual knowledge. Thirdly, knowledge needs to be stored efficiently, as
this allows for faster reasoning. Lastly, the way that the model interact with the world
is extremely varied. Some systems may be build for specific tasks, while others may be
designed to be as general as possible.

The deep learning paradigm has become the state-of-the-art solution to many of this
problems. Very generally, the system (usually called model) receives a set of parameters
and uses them to elaborate external inputs and to create an output. This is used to
evaluate a specific function, referred to as loss, which is then utilized to adjust the system
parameters through the back propagation process. After many repetitions, the quality
of the output improves significantly as the system learns how to effectively perform its
task. Please note that during this procedure, called training there is no explicit human
intervention: for this reason deep learning is incredibly powerful and versatile. It does,
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Introduction

however, come with some severe and structural issues. The performance of a system is
correlated with the amount of data available, while the speed of the training depends
on the capacity of the hardware. As the model size grows, both performances and re-
quirements tend to increase. This trend has lead to growing emphasis on aggressive data
collection, raising notorious privacy concerns, and to the extensive utilization of powerful
yet energy-intensive hardware. The way researchers will tackle this challenges will shape
the future of deep learning.

An additional concern with this paradigm is domain shift. The data used during
the training phase may be different from the inputs given to the deployed model (or, in
general, at test time). If this discrepancy is not properly addressed, it may cause heavy
degradation in performances. This happens because the model learns to associate some
features to the particular conditions encountered during training. Any deviation during
testing can result in a loss of efficiency. Several factors contribute to domain shift in visual
data, including:

• The data source changes. If the device used to create the training set is not the same
as the one used for test images, there could be significant difference in resolution,
orientation and overall quality. Many training dataset that will be mentioned are
filled with pictures taken by industry-grade cameras, but the corresponding test
images are taken using a commercial smartphone;

• The type of illumination changes. The lightning conditions play an heavy role on
how scenes are perceived in an picture. If a model is accustomed to well-lit images,
it will struggle when the scenario changes. In outdoor-related tasks, some important
illumination factors are the weather, the season and the time of the day.

• The demographic changes. If the underlying task concerns humans but only a specific
demographic group is represented in the training dataset, then the model will not
generalize effectively to all people. This is an especially dangerous scenario, as
the outputs of the system may be biased in favor or against specific age groups or
ethnicities.

The tasks that aim at fixing domain shift are commonly referred to as domain adap-
tation and domain generalization. The main idea is to encourage the model to extract
information that is invariant to any transient domain, such as the ones mentioned above,
effectively making it blind to those changes. In this thesis a range of domain adaptation
techniques will be introduced and applied in multiple real-world scenarios, with the scope
of enhancing state-of-the-art models in non-standard domains.

Within the many subfields of artificial intelligence, Computer Vision is the one re-
sponsible of enabling computers to interpret and understand visual information from the
world. Its ultimate goal is to find efficient ways for machines to gain some sort of knowl-
edge from all sorts of visual data, ranging from simple photos and videos to medical and
microscopy imaging. For this reason countless computer vision tasks are being studied.
Some are more straight forward, such as Object Detection, and some are more structured
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and complex, such as Egocentric Vision. In this thesis the focus will be on Visual Place
Recognition and Visual Localization. The former is the task of estimating the geograph-
ical position where a given photo was taken by comparing it with a large database of
images of known locations. In most cases the metric of reference is the GPS or UTM
coordinates. The latter is the task to determine the pose of a camera in a given picture,
which means estimating the spatial position of the camera as well as its orientation. This
six degrees of freedom are represented by a three dimensional vector and three rotation
angles. The metrics employed are usually meters and degrees with respect to an arbitrary
reference system. These two tasks are inherently related to each other, yet they serve
two very distinct purposes and have to deal with unique challenges. To illustrate, Visual
Place Recognition models operate on a broader scale, as state-of-the-art algorithms work
over entire metropolis. In contrast, Visual Localization models find practical applications
in indoor environments with stricter thresholds for error.

The remaining chapters will be structured as follows. Chapter two will delve into both
Visual Place Recognition and Visual Localization in details, with particular attention to
the state-of-the-art approaches and most popular datasets. Chapter three will shift its fo-
cus to domain adaptation, starting from the mathematical theory that has been developed
and covering all relevant techniques. Chapter four will present the first experimental sce-
nario. The goal is to enhance the performances of a Visual Place Recognition model when
deployed in cities that differ from the one used during training. Finally, the fifth chapter
will discuss the second experimental scenario, where the focus is on indoor environments.
These are notoriously hard and the localization pipeline is composed of multiple steps
and model. The results of extensive testing will be shown and discussed, with the goals
of providing the widest possible overview of the performances of current methods and
finding useful insight into possible improvements.

5



6



Chapter 2

Visual Place Recognition and
Visual Localization

In this chapter the central tasks of this thesis will be presented, following this general
structure. First of all, there will be a broad discussion on the most relevant approaches
that, over the years, have proven to be more successful. Then a more detailed analysis
will explore some the current state-of-the-art models and many of the most used datasets.
Since a full coverage of both tasks would be unfeasible, let alone pointless, the focus will
mostly be on methods and datasets that will be used in at least one of the experimental
scenarios. For the same reason, there will not be an in-depth explanation of many general
concepts of deep learning. However, a reference to useful learning material will be given
when they are first mentioned.

2.1 Visual Place Recognition
Visual Place Recognition (VPR), also known as Visual Geo-Localization (VG) or image
localization, is the task of recognizing the place depicted in a given image by comparing
it to a large dataset of images. This definition is extremely broad on purpose. Indeed,
VPR is also studied in communities outside of computer vision, each providing a unique
prospective. The most prominent one is robotics, where this task is usually implemented
using streams of heterogeneous data and with a particular focus on computational ef-
ficiency and real-time execution. The word "place" itself could have different meaning
depending on the objective at hand. It may refer to the name of a particular landmark or
the 6 degree of freedom (DoF) of the camera pose. In this work the former interpretation
is associated with the landmark retrieval task, while the latter with the visual localization
task. In this work the concept of place in VPR always refers to the GPS or UTM coordi-
nates associated with an image, putting the emphasis on the geo-localization aspect. In
a dynamic and rich research panorama, it is difficult to have such a strict nomenclature.
The partition above is quite clearly an over-classification, but is to be intended as an
introductory description of VPR and some of its existing instances.
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Visual Place Recognition and Visual Localization

Visual Geo-Localization is generally formulated as an image retrieval problem: a deep
model (usually a convolutional neural network) is used to extract a vector of descriptors
from each database image. These contains all the information that the network considers
relevant in the picture. Then, the same procedure is applied to all query images and simi-
larity scores are computed between queries and database descriptors. This score can be as
simple as the L2 norm distance or a more complex cosine similarity. For each query, the
k best scoring images are considered and their coordinates are used as estimates for the
query position. If they are within a fixed error threshold, then the prediction is considered
correct. The most common metric is recall@k, which represents the percentage of queries
for which one of the k estimates is correct. Generally the most relevant k is 1. In order
to improve the performances, some approaches add a re-ranking step after the retrieval.
Most of them are based on geometric verification, which is notoriously computationally
intensive.

The retrieval paradigm is applied in many other fields of deep learning, but in VG it
faces some unique challenges strictly related to the nature of the task:

1. The scene in which a place appears are complex and there is not a single, identifying
object that can be exploited. In most cases the information is scattered across some
of the many elements of the image. Some of it may even be hidden behind occlusions
and not available to the model.

Figure 2.1: In this picture there are mul-
tiple elements of interest, from the small
house to the left to the tall buildings in
the background.

Figure 2.2: Most of this picture is taken
up by the street, which is not very infor-
mative, and a tram, which possibly hides
useful building in the background.

2. In real world scenarios the scenes are extremely dynamic and can change rapidly.
This happens not only because of natural illumination variations, such as the day/night
cycle, seasons and weather, but also because of the presence of physical objects, such
as temporary construction sites or billboards.
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2.1 – Visual Place Recognition

Figure 2.3: A picture taken as night.
Note that the lack of natural light
highlight the presence of artificial light
sources, that are much more predomi-
nant than in the daytime.

Figure 2.4: Here an example of both a
transient obstruction and long term ar-
tificial changes are shown. The truck is
obscuring most of the current image, but
the curated trees will be part of the sce-
nario going forwards.

3. A single scene can be depicted from many different points of view and the resulting
images have different appearances. There is no guarantee that the database contains
a positive match with the same viewpoint, especially if the images source is a camera
with a fixed pose (e.g. a front facing camera on a car). Even if that is the case, an
invariance to the viewpoint shift can easily increase the performances of the model.

Figure 2.5: Two of pictures representing the same intersection from different viewpoint.
The one on the left is a query, while the one on the right is part of the dataset. The shift
in viewpoint adds more noisy elements such as trees and a new facade. It also changes
the geometric properties of the building and its elements.

Images from Figure 2.1 to Figure 2.4 are all taken from the SF_XL dataset (Berton et al.
[2022a]).
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Visual Place Recognition and Visual Localization

2.1.1 Geo-Localization methods over the years
Over the years a variety of different approaches have been proposed. Originally, visual
geo-localization algorithms were based on hand-crafted representations of images using
local descriptors. All of them uses a keypoints detector to identify interesting points of
the image. The patches containing such points are then fed to a local descriptors ex-
tractor, such as SIFT (Lowe [1999]) or SURF (Bay et al. [2008]), that generates multiple
numerical arrays describing each patch. Each method is characterized by the way it uses
this descriptors. Since a full comparison of all database image is unfeasable over large
scales, Sivic and Zisserman [2003] takes inspiration from Natural Language Processing and
proposes a Bag of Words (BoW) approach where the local descriptors are clustered with
respect to a codebook of visual words. Each image is then represented by the histogram of
the assignment to visual words of all image descriptors, weighted by the "term frequency
– inverse document frequency" (tf-idf). This index is designed to promote visual words
that appear frequently in an image but not frequently overall.
A clear improvement over BoW was introduced in Jégou et al. [2010]. The main idea was
to not just use the assignment of each local descriptor to the visual word, but to compute
the difference between each of their components. This way a lot more information is pre-
served and exploited during the matching phase, and performances improve significantly.
Even before the advent of convolutional neural networks there has been some proposed
approaches using global descriptors i.e. descriptors that do not focus on single patches
of scene, but rather encode its holistic properties (Dalal and Triggs [2005], Oliva and
Torralba [2006]). This approach is generally less robust to the issues mentioned above,
but it does not require the extraction and matching of the local descriptors, thus being
significantly faster over large scale datasets. A more thorough investigation of shallow
approaches can be found at Lowry et al. [2016]

In order to overcome the limitations of global descriptors, while retaining their com-
putational advantages, researchers tried to use Convolutional Neural Networks (CNNs) to
generate image representations. Their experimentations proved that, after some proper
processing, the information extracted from the convolutional layers of a CNN were akin to
global descriptors (Babenko et al. [2014]). In particular, the tensor output of this kind of
layers has shape H × W × C, where H is the height, W is the width and C is the number
of channel. In order to convert it into a one dimensional array, a simple flattening is not
enough, as it loses all spatial information contained in the tensor. There are two possible
approaches to this objective:

• Aggregated Representations: the output tensor can be seen as a set of densely
extracted local descriptors (specifically, a H ×W grid of C-dimensional descriptors).
These can then be aggregated using classical encodings such as BoW and VLAD
(Sivic and Zisserman [2003] and Jégou et al. [2010] resp.) or using more advanced
modules with learnable parameters. The most important one, which is still competi-
tive today, is NetVLAD (Arandjelović et al. [2016]). The idea is to replace the hard,
non differentiable assignment to each cluster center with a softmax operation, which
is differentiable and exploitable for backpropagation. This module can then be easily
plugged on top of a CNN backbone and the parameters of the softmax assignment
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2.1 – Visual Place Recognition

are learned during training. This increases significantly the flexibility of the method
and its performances.

• Pooled Representations: the output sensor is aggregated and compared without
any embedding process. The argument is that the convolutional features have an
higher discriminatory power than hand-crafted ones, so they can be pooled together
following a simple scheme, such as:

– Max/Mean/Sum-Pooling: using a sliding window of fixed size, the values of each
feature map are pooled together with a max/mean/sum operation. Mousavian
and Kosecka [2015] observes that max-pooling is more invariant to a change in
scale, while sum-pooling is more robust against noisy features;

– R-MAC: Tolias et al. [2016] max pooling is applied to a number of patches ran-
domly sampled from the feature maps generated by the convolutional network.
The results can be seen as regional descriptors. These are finally summed and
L2 -normalized, in order to keep their dimensionality low. This whole procedure
was improved multiple times: one notable example is Gordo et al. [2017], that
introduced a differentiable sampling procedure so that R-MAC could be used in
top of a CNN for end-to-end training. Other more complex variations are still
extremely competitive today;

– GeM: this simple layer was introduced by Radenović et al. [2018] and imple-
ments the generalized mean operator. This is differentiable, hence the mean
parameter can be learned during training, offering state-of-the-art performances.

When discussing and selecting models later in the experimentations chapters, a lot of
weight will be given to the dimensionality of the descriptors. This characteristic is ex-
tremely important for efficiency (and thus scalability) purposes, as larger descriptors will
require more space in memory and will lead to heavier computations. Even a simple K
Nearest Neighbours algorithms scales linearly with their size. For this reasons many new
models that have been introduced over the years are designed to perform well even with
limited descriptors dimension.

2.1.2 Training a model
Since it became evident that deep learned models would outperform any shallow counter-
part, researched questioned what training procedure would best fit the Geo-Localization
task. Their efforts can be partitioned into three different approaches.

• Classification Loss: the first CNN-based representations ever used came from
model that were trained for classification, generally on ImageNet, and not fine-
tuned for VPR. This simple approach had decent performances, as the featured
extracted by a convolutional network are somewhat transferable across tasks, but
was promptly superseded by more task specific methods. Generally speaking, the
issue of using classification for training purposes is that it enhances the robustness of
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Visual Place Recognition and Visual Localization

the descriptor against intra-class variability. This is generally not a desired property
for image retrieval, where it is important to distinguish between particular objects
even if they belong to the same semantic class Gordo et al. [2017].
For many years the focus shifted away from classification and towards contrastive,
triplet or ranking losses, which will be presented briefly. Recently the trend seems to
have shifted, as classification techniques have been further investigated. For example
Cao et al. [2020], Yokoo et al. [2020] and Berton et al. [2022a] use the ArcFace loss
(Deng et al. [2022]) for the training of a network using only image level labels. The
main reasons for this resurgence are two: firstly, the descriptors produced by such
methods are compact. The importance of this property has been already discussed.
Secondly, only image level labels are needed. This means that there is no need for the
expensive mining of negative samples, which is the main drawback of constrastive
learning.

• Contrastive learning: most studies regarding image retrieval for VPR use either
the constrastive or the triplet loss. Both follow the idea of metric learning, i.e
learning to extract descriptors that represent well the similarity under a distance
function. This is done by feeding the model both positives and negative examples
for each training sample. To be clear, in the context of VPR the former are images
taken in the same position, while the latter are taken in a different place. The net-
work is therefore encouraged to create a representation of the sample that is close to
those of positives samples and distant to those of negative ones. Since this paradigm
has been mainstream for many years numerous variations on the theme have been
published. Some examples can be found in Arandjelović et al. [2016] and Ong et al.
[2017].
As it was already mentioned, the main drawback of this approach is the process of
finding the appropriate positive and negatives examples. The former can be extracted
(or mined) offline by exploiting their labels (if available) or 3D models Radenović
et al. [2018]. The latter are especially tricky, as there is not really an obvious way
to define them. One of the most popular approaches is mining "hard" negatives, i.e
images of a different place that have similar descriptors. Some example are shown
in fig. 2.6 In general it is important to strike a balance between examples that are
too easy, and therefore not effective for learning, and too difficult, which could lead
to overfitting and/or local minima of the loss function (Radenović et al. [2016]). A
full rundown of many of the losses and mining variations can be found in Masone
and Caputo [2021].

• Listwise Ranking: other than sample mining, constrastive learning has another
significant limitation. Mean average precision (mAP) is generally considered as an
appropriate metric for a model performance, but the losses used (both triplet and
constrastive) are not related to it in a satisfactory way. Indeed it has been proven
by Liu [2009] that they are simply upper bounds on mAP. The idea of the listwise
loss is to modify the computation of the average precision to make it differentiable.
This is done by implementing histogram binning and a differentiable soft assignment
Revaud et al. [2019a].
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Figure 2.6: The first and the third images are training samples, while the second and
fourth ones are examples of hard negatives. They are of similar appearances, but taken
in different places. These hard examples have been found by using a pre-trained VPR
model and selecting two of its wrong predictions.

2.2 Visual Localization
Visual Localization (VL) is the task of estimating the position and the orientation of an
image. Generally it is studied within the robotics community as part of the broader Si-
multaneous Localization And Mapping (SLAM) paradigm. Multiple deployment scenarios
require different approaches, which Chen et al. [2023] summarize as:

• Incremental Motion Estimation: given a stream of frames from a sensor, estimate the
variation in translation and rotation between two consecutive frames. For example,
a camera mounted on the front of a car can be used to determine its position and
orientation in real time;

• Global Relocalization: given a known scene and some prior knowledge, retrieve the
pose of some sort of agent by matching the input image with a map of the envi-
ronment. This can alliviate the pose drift, i.e. the difference between the current
estimated position and the actual one, or can be used to tackle the kidnapped robot
problem, which arises when the agent position changes without it being able to keep
track.

• Mapping: build a consistent model of the surrounding environment. This can then
be used for various purposes, generally to provide information to human operators
or for robot tasks, including the one mentioned in global relocalization.

• Loop Closing: when mapping an environment, an agent may end up in a place it
already visited. Is is important for it to be able to recognize that this is happening
and to therefore "close the ring" in its mapping, by properly connecting the two
different parts of the map.

Each scenario is tackled in its own way and it would be vain to describe all of them.
Instead, the focus of this work will be limited to global relocalization in a 3D map, where
the task is to recover the camera pose of a 2D image with respect to a 3D prebuilt scene
model. In most cases the map of the space is built using structure-from-motion (SfM)
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algorithms and database of images is available. The general idea is to first establish 2D-
3D correspondences between the pixels of a given image (query) and the points of the 3D
model, and then use those matches to estimate the camera pose by solving a perspective
problem.
The first step can be solved by establishing 2D-2D correspondences between the query
and k database images, which are then matched with the 3D map (this last computations
can be done offline, thus speeding up the whole procedure). The final result is the desired
set of 2D-3D matches. The correspondences are computed using a keypoints detector
and a local features extractor. The former identifies some elements of interest within the
image and the latter generates the corresponding vectors of descriptors. We discussed
some proposed methods in the previous section. Different approaches change the order of
this two procedures, even attempting to do them simultaneously (Revaud et al. [2019b]).
It is particularly important to choose the best possible value of k. At least in theory,
it is enough to retrieve a single relevant image, but a larger k makes it more likely to
happen. On the other hand, since 2D-2D matches have to be computed online, local
feature matching is the bottleneck of the whole algorithm. Moreover, a larger k will also
introduce more noisy matches that may hinder the performances of the second step. The
value of k should therefore be set to be as low as possible.
But how are those database images selected? They are then predictions made by a VPR
algorithm applied to the queries and the dataset. The quality of this predictions is strictly
correlated to the optimal value of k, as a better model would allow to lower it while
guaranteeing the retrieval of at least a single relevant image. Visual Localization has been
studied in a wide array of domains, but the datasets that will be used in this thesis are
all from indoor environment. In order to design an effective VPR model for the retrieval
in this context, additional challenges have to be kept in mind:

• Repetitive or non informative elements. Many indoor scenes may contain multiple
instances of very similar objects or structures, which can easily trick a visual localiza-
tion model. Another issue is reflective or non informative surfaces, such as windows
or plain walls, that should be ignored. All these elements are not as predominant
in urban datasets, so most models (that are trained for urban environment) are not
trained to deal with them. An example is shown in Figure 2.7

Figure 2.7: Example of both repetitive and reflective structure.
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2.2 – Visual Localization

• When images are taken in crowded public environment, the likeliness of human
obstructions is very high. Again, this is not the case for large outdoor datasets. An
example is shown in Figure 2.8

Figure 2.8: Example of prevalent human obstruction.

• All indoor datasets have limited size, and thus can only be used for testing and
not for training. To be more specific, the indoor datasets mentioned in this thesis
contain a few thousand images, while the outdoor ones have millions. The second
experimentation scenario has been designed to tackle this exact problem.

The second step is generally solved by combining a Perspective-n-Problem (PnP) al-
gorithm with RANSAC (Fischler and Bolles [1981]), in order to compensate for noise and
outliers. A full discussion on this topics is out of the scope of this work. A more insightful
analysis can be found in Humenberger et al. [2022].
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Chapter 3

Domain Adaptation

When introducing both Visual Place Recognition and Visual Localization, one concept
that has been mentioned multiple times is the domain as a general description of the
environment in which the pictures are taken. For example, in Section 2.1 the day-night
shift was mentioned, while in Section 2.2 the focus was on outdoor-indoor differences.
Since deep learning models requires large amounts of data to be trained, the sources of
the training images are generally limited. On the other hand, there is no such limitation
regarding the deployment environment which can be extremely varied. This creates an
incoherence between what the model learns and what it has to deal with at test time,
which may lead to a significant decrease in performances. This difference is generally
referred to as domain shift and domain adaptation is the task that aims at mitigating the
effects of such gap. This chapter will contain a complete introduction to the theoretical
fundamentals of Domain Adaptation, followed by a presentation of the methods that have
some relevance within the scope of this thesis.

3.1 The theoretical background
Domain Adaptation theory has received plenty of attention over the years thanks to the
simplicity in which it can be described in mathematical terms, starting from the definition
of domain itself.

Definition 3.1. A domain D is defined as a quadruple (X, Y,P(X),P(X|Y )), where:

• X is the feature space;

• Y is the label space;

• P(X) is the marginal distribution probability of X;

• P(X|Y ) is the conditional probability distribution of Y given X.

In most of Machine Learning applications, the object is to learn P(X|Y ) from a set
of observations and labels {(xi, yi)}. More specifically, this is referred to as supervised
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learning. In an ideal scenario both training and testing data would be originated from the
same domain, however this is often not the case.

Definition 3.2. The source domain DS represents the origin of the training data, while
the target domain DT the one of the test data. They are denoted respectively as:

DS = (XS , YS ,PS(X),PS(X|Y )) DT = (XT , YT ,PT (X),PT (X|Y ))

The notation will be lightened in the following way:

DS = (XS , YS , S(X), S(X|Y )) DT = (XT , YT , T (X), T (X|Y ))

Please note that the amount of data from the target domain is generally not enough for an
effective training of the model, as this would already be an effective solution to the domain
adaptation problem.

How can DS and DT differ from each other? In the wider context of transfer learning
there are countless way as there could even be a difference in the underlying task, as
illustrated in Pan and Yang [2010], but in domain adaptation it is common to assume
that YS = YD and that the task is the same in both domains. Having said that, Kouw
and Loog [2021] identify three different ways in which DS and DT may differ, starting
from the fact that P(X, Y ) = P(Y |X)P(X) = P(X|Y )P(Y )

• prior shift: the conditional distribution remains the same, but the prior is different
i.e. S (X|Y ) = T (X|Y ) but S (Y ) /= T (Y );

• covariate shift: the posterior distribution remains the same, but the data distribution
is different. i.e. S (Y |X) = T (Y |X) but S (X) /= T (X). This translates to a bias
in the sample selection;

• concept shift: it the opposite case of covariate shift, as the data distribution is the
same but the posterior is different i.e. S (X) = T (X) but S (Y |X) /= T (Y |X).

This classification is not often reflected in real world applications, as multiple of those
cases can be true at the same time. However, most of the efforts made are towards the
covariate shift case.

Now that the possible differences between domains have been presented, it is crucial
to discuss a quantitative way to represent them starting from some notation:

• from now on δ will always represent the desired confidence that any bound holds, as
they will always be a Probably Approximately Correct (PAC) bound;

• all the theory that will be presented was developed in the case of classifiers, specifi-
cally for scenario in which the number of candidates is finite. The set that contains
all the considered classifiers (or hypothesis) is called H and an arbitrary element is
referred to as h;
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The first relevant equation was introduced in Ben-David et al. [2010] and describes the
upper bound on the cross-domain generalization error of a classifier trained on the source
data and deployed in the target domain with respect to the optimal classifier. Before
presenting that equation, it is useful to introduce the following:

Definition 3.3. The symmetric difference hypothesis divergence dH∆H (S, T ) is the quan-
tity that evaluates to what extent two classifiers disagree with each other on both domains.

dH∆H (S, T ) = 2 sup
h,h′∈H

| Ex∼DS
[|h (x) − h′ (x) |] − Ex∼DT

[|h (x) − h′ (x) |] | (3.1)

Definition 3.4. The error of the ideal joint hypothesis is:

err∗
S,T = min

h∈H
[errS (h) + errT (h)] (3.2)

Now that all the preliminary elements have been defined, it is possible to present the
PAC bound on cross-domain generalization error.

Theorem 3.5. The deviation between the target generalization error of a classifier trained
on the source data, err(ĥS) and the target generalization error of the optimal target clas-
sifier err(ĥT ) can be defined as:

err(ĥS) − err(ĥT ) ≤ err∗
S,T + 1

2dH∆H (S, T ) + C (H, δ) (3.3)

where C (H, δ) is a constant that depends on complexity of the classifiers in H and the
desired confidence δ (Vapnik [2000]).

As it will be discussed later, domain adaptation methods try to minimize the first two
terms of Equation (3.3) by building a classifier that simultaneously works well on the
source domain and whose features are invariant with respect to the domain of the data.
The latter is achieve by making sure that the induced source and target distributions in
the representation space are as close as possible.

The main issue with the dH∆H (S, T ) divergence is that it does not show a way to
practically extract domain invariant features. In particular, it is not obvious what it means
for two distributions to be close. Several functions have been proposed for the purpose of
effectively quantifying the distance between two domains, and the most relevant ones will
be now presented.

Maximum Mean Discrepancy

One of the most popular distribution distance measures in domain adaptation is the Max-
imum Mean Discrepancy, introduced in Borgwardt et al. [2006]. The formal expression
for MMD is:

DMMD (S, T ) = sup
f∈F

1
Ex∼T (X)[f (x)] − Ex∼T (X)[f (x)]

2
(3.4)

where:
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• Ex∼D(X)[·] is the expectation under the distribution D (X);

• F is the set of functions that transform the data.
Before discussing why the MMD is so useful for DA, it is necessary to introduce the
well-renowned concept of Reproducing Kernel Hilbert Space (RKHS).
Definition 3.6. A reproducing kernel Hilbert H space is defined as a Hilbert space of
real-valued functions in which all evaluation functionals can be be represented as an inner
product between the argument and a particular function Kx ∈ H. To be more specific,
given an arbitrary set X on which the functions are defined, an evaluation functional is:

Lx : f −→ f (x) ∀f ∈ H (3.5)
If H is a RKHS, then it exists Kx ∈ H so that

Lx (f) = f (x) = ⟨f, Kx⟩ ∀x ∈ X (3.6)
Since Kx ∈ H ∀x ∈ X, it is possible to write:

Ly (Kx) = Kx (y) = ⟨Kx, Ky⟩ (3.7)
and define the reproducing kernel of H as:

K : x, y −→ ⟨Kx, Ky⟩ (3.8)
By imposing that F is the set of functions in the unit ball in a RKHS, it is possible to
prove (Gretton et al. [2012]) that the MMD is null if and only if the source and target
distribution are equal, which is the exact desired property.
Another important quality of the MMD is that its empirical estimate is simple to compute.
Given a set of n labeled observations from the source domain and another one of m from
the target domain, the formal expression would be:

DMMD (XS , XT ) = ∥ 1
n

nØ
i=1

ϕ
1
xS

i

2
− 1

m

mØ
i=1

ϕ
1
xT

i

2
∥ (3.9)

where ϕ is the mapping to a RKHS H. However, Gretton et al. [2012] proved that it can
be expressed in terms of kernel function values by using the kernel trick. This means that
it is possible to compute the distance between the sample means in a high dimensional
feature space with requiring the explicit mapping function.

f -Divergences

A different approach to the matter is offered by f -divergences. In this scenario, probability
distributions are considered as elements of a Riemannian manifold. In particular, given
an arbitrary set X and a family p (x|θ) of probability density functions parameterized
by θ on X, the space {p (x|θ) |θ ∈ Rd} is a Riemannian manifold, usually referred to as
the statistical manifold. This concepts are discussed at length in Baktashmotlagh et al.
[2017]. An f -divergence is nothing but a way in which the metric on the manifold, called
Fisher-Rao, can be approximated. Its general expression is:

Df (S∥T ) =
Ú

f

3
S (x)
T (x)

4
T (x) dx (3.10)

where f defines the specific instance of divergence.
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Kullback-Leibler and Jensen-Shannon divergences

A particular example of f -divergence is the Kullback-Leibler divergence, where f (x) =
xlog (x). The full expression is:

DKL (S∥T ) =
Ú

S (x) log

3
S (x)
T (x)

4
dx (3.11)

This particular formulation has some issues, as it is not symmetric and does not satisfy the
triangular inequality. For this reason the Jensen-Shannon divergence was introduced:

D2
JS = 1

2DKL (S∥M) + 1
2DKL (S∥M) (3.12)

where M is a mixture distribution of S and T . This quantity can be thought of as the
square of the mutual information between a random variable X, associated to a mixture
distribution between S and T , and a binary indicator Z used to switch between S and T
to produce the mixture (Csurka et al. [2022]). One of the most important property has
been proved by Goodfellow et al. [2014], and is the fact that it is equal to the loss used to
train Generalized Adversarial Models, minus a constant. This gives a strong theoretical
foundation to the adversarial paradigm in domain adaptation, which will be built upon
in the next chapter.

Wasserstein Distance

The last distance that will be discussed is the Wasserstein distance. Given the set Γ of
all the joint distribution whose marginals are S and T , the p-th Wasserstein distance is
defined by:

Wp (S, T ) =
3

inf
γ∈Γ(S,T )

E(x,y)∼γ [d (x, y)p]
41/p

(3.13)

The most used instance of distance is the so-called Earth Mover’s, which requires p = 1,
because its computation can be efficiently solved as an optimal transport problem. Many
modern DA approaches are related to this distance, as they solve optimal transportation
problems to align the distributions of the two domains.

3.2 Proposed Methods
Over the last decades an astounding number of domain adaptation methods have been
proposed in the literature. In this section the most important ones are presented and
their relationship with the theoretical background is discussed.
The introduction of the deep learning paradigm had a significant impact, as a models prop-
erly trained could extract robust and general features without any domain adaptation. For
this reason the focus of the proposed methods shifted heavily towards end-to-end training
and fine-tuning procedures. Since this work is focused on deep learning, shallow methods
are largely ignored and only mentioned when they have lead to deep-learned counterparts.

All methods can generally be divided into two categories, based on their scope:
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• aligning data representations: the ultimate goal is to align the distributions of
the features extracted by the backbone of the model.

• aligning data distributions: instead of focusing on the representations, these
approaches aim at directly bridging the gap between the distributions of the data
i.e. making it so that S (X) = T (X).

The underlying idea is the same in both categories, and revolves around minimizing the
second term in the right hand side of Equation (3.3). The difference is simply on the level
on which they act, feature and image respectively. Moreover,

Aligning Data Representations

This category contains a plethora of different ideas, many of which were the foundation
of shallow methods. One of the most relevant is called CORAL and aims at aligning the
second order statistics of the features from the two domains, i.e. aligning the covariance
matrices. In a shallow context this could be done by computing a transformation matrix
Sun et al. [2016], while the deep counterpart utilizes the squared Frobenius norm between
the covariance matrices Sun and Saenko [2016]. The idea behind CORAL was further
exploited to create more sophisticated approaches.
There are many more other methods that deserve to be mentioned, but since both ex-
perimental chapter will discuss methods that do not belong in this category, they will be
skipped. More information about them can be found in Csurka et al. [2022]

Aligning Data Distributions

The first batch of methods that will be introduced follow the same general procedure: a
Siamese network with two streams, one for each domain, is trained using a task specific
loss on the source branch and a distribution alignment loss defined on both the source and
the target samples and employed on the last activation layer before the soft-max. The
latter loss is generally chosen to reproduce one of the distances presented in Section 3.1.
For example it is possible to implement an empirical Maximum Mean Discrepancy based
loss:

DMMD (XS , XT ) = ∥ 1
|XS |

|XS |Ø
i=1

ϕ
1
xS

i

2
− 1

|XT |

|XT |Ø
i=1

ϕ
1
xT

i

2
∥ (3.14)

where XS and XT are the activations of the network in the source and target branches re-
spectively. In the spirit of deep learning, the means are not computed over all the dataset
but rather on the current training batch. Further improvements have been proposed in
Long et al. [2015] and Li et al. [2020]. Alternatively Zhuang et al. [2015] proposes a loss
based on the Kullback-Leibler divergence while Damodaran et al. [2018] explores the uti-
lization of the Wasserstein Distance.

The other batch of methods follow instead a different paradigm, called adversarial
learning, where two connected network work against each other in an attempt to improve
the robustness and domain-invariance of the extracted features. All these methods fall

22



3.2 – Proposed Methods

under the name of Generalized Adversarial Networks and, as mentioned above, it has been
proven that they minimize the Jensen-Shannon divergence. All these approaches rely on
two elements:

• A domain classifier θd, usually called discriminator, which is trained to classify each
sample to its domain.

• The main model, which is trained to extract features from samples of both domains.

The adversarial idea is in the fact that, while θD tries to learn to discriminate between
domains, the main model learns to fool it by creating features that are domain-invariant.
Those are then passed onwards and used for the downstream task, for example to another
classifier.

Figure 3.1: A visual representation of the effect of adversarial domain adaptation to the
image representations. On the left the two domains are well separated but the main
model, a landmark classifier in this example, currently works only on the "photo" domain.
On the right, the domains are much closer to each other while maintaining the same class
separation. This allows the main classifier to work effectively on the "sketch" domain.
Image taken from Csurka et al. [2022]

One of the first adversarial domain adaptation approaches was proposed in Ganin and
Lempitsky [2015] and Ganin et al. [2016]. The authors presents the following scanerio and
architecture:

• The origin domain is known for all data, however only source data is labeled;

• There is a main model that extract features from the data, which is represented by
the mapping Gf ;

• There is a label predictor that, during training, receives only features vectors of
source data. It is represented by the mapping Gy and is associated with an arbitrary
loss Ly. There are no limitations on which loss can be used;
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• There is the aforementioned domain classifier that takes all feature vectors as input.
It is represented by the mapping Gd and is associated with a binary loss Ld;

• Each part of the model contains learnable parameters that will be referred to as θf ,
θy and θd.

The goal is to find the optimal θf , θy so that Ly is minimized and Ld is maximized, while
simultaneously find the optimal θd so that Ld is minimized. In Figure 3.2 it is possible to
see a clear representation of this model.

Figure 3.2: A visual representation of the full architecture, data flow and losses. Image
taken and modified from Ganin et al. [2016]

.

Formally, the training is formulated as the min-max problem:1
θ̂f , θ̂y

2
= arg min

θf ,θy

E
1
θf , θy, θ̂d

2
(3.15)

θ̂d = arg max
θd

E
1
θ̂f , θ̂y, θd

2
(3.16)

where

E (θf , θy, θd) = 1
|XS |

Ø
x∈XS

Ly(x) − λ

 1
|XS |

Ø
x∈XS

Ld(x) + 1
|XT |

Ø
x∈XT

Ld(x)

 (3.17)

Please note that this formula contains some notation abuses, as the losses function
should formally be written as:

• Ly (x) ∼ Ly (Gy (Gf (x; θf ) ; θy));

• Ld (x) ∼ Ld (Gd (Gf (x; θf ) ; θd));
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3.2 – Proposed Methods

but one may see how confusing it would be to use it every time.

Now that the problem has been defined, it is time to present a way to solve it. This
is done in an extremely simple and elegant way: by introducing the Gradient Reversal
Layer. This new element operates as an identity function during the forward pass and as
a negative multiplicative coefficient during the backpropagation step. It is set between
the feature extractor and domain classifier (please note the white forwardprop arrow in
Figure 3.2 and Figure 3.3). By doing so, the contribution of the loss Ld to the learning of
θd and θf is opposite. The former will aim at actually minimizing the loss, while the former
will maximise. Formally, the complete loss used to train the model is the pseudo-function
of θf , θy and θd:

Ẽ (θf , θy, θd) = 1
|XS |

Ø
x∈XS

Ly (Gy (Gf (xi; θf ) ; θy))

− λ
1

|XS |
Ø

x∈XS

Ld (Gd (R (Gf (xi; θf )) ; θd))

− λ
1

|XT |
Ø

x∈XT

Ld (Gd (R (Gf (xi; θf )) ; θd))

(3.18)

where R is the gradient reversal layer. By minimizing this loss it is possible to solve the
problem presented in Equation (3.15) and Equation (3.16) and obtain a feature extractor
that is robust to the shift in domain from S to T . In Figure 3.3 it is possible to see a
representation of the whole training procedure.

Figure 3.3: A full representation of the training procedure of the model. The key element
is the change in sign of the gradient when it flows from the domain classifier, in pink, to
the feature extractor, in green. Image taken from Ganin et al. [2016]

.
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Relation with distribution distance measures

Now that the method has been fully presented, it is interesting to see how it relates
to the theoretical measures and bounds presented in Section 3.1. First of all it will be
shown how the adversarial training paradigm is related to the Shannon-Jensen divergence
(Equation (3.12)).
In a scenario where there is a feature extractor F and a domain classifier D, assume
that the features of the source data xS and of the target data xT follows two different
distributions, called pS and pT . During training, D learns to predict the origin domain
of the features, while F learns to minimize log (1 − D (F (xT ))). This procedure can be
written in the form of a min-max problem:

min
F

max
D

1
EF (x)∼pS

[log D (F (x))] + EF (x)∼pT
[1 − log D (F (x)))]

2
(3.19)

Theorem 3.7. The min-max problem presented in Equation (3.19) has global optimum
of − log 4 for pS = pT .

Proof. Fixed any F , the training criterion for the domain classifier D is to maximize:

V (F, D) =
Ú

x
pS (x) log (D (F (x))) + pT (x) log (1 − D (G (x))) dx (3.20)

For each fixed x, the maximum value of the integrating function is achieved for D (F (x)) =
pS(F (x))

pS(F (x))+pT (F (x)) = pS(x)
pS(x))+pT (x) . The second equality is only a simpler notation.

For this reason it is possible to define the virtual training criterion C (F ) as:

C (F ) = EF (x)∼pS

5
log pS (x)

pS (x) + pT (x)

6
+ EF (x)∼pT

5
log pT (x)

pS (x) + pT (x)

6
(3.21)

In order to minimize it, one could note that each term could be rewritten as:

• EF (x)∼pS

è
log pS(x)

pS(x)+pT (x)

é
=EF (x)∼pS

è
log 2pS(x)

pS(x)+pT (x)

é
− log 2

• EF (x)∼pT

è
log pT (x)

pS(x)+pT (x)

é
= EF (x)∼pT

è
log pT (x)

2pS(x)+pT (x)

é
− log 2

Please note that the first terms on the right hand side are Kullback-Leibler divergences
from pS and pT respectively to the mixture pS+pT

2 . Their sum is the definition of the
Jensen-Shannon, so it possible to redefine C (F ) as:

C (F ) = D2
JS (pS∥pT ) − log 4 (3.22)

It can be easily proven that the Jenson-Shannon divergence is always non-negative and is
zero if and only if the distributions are equal. Therefore, if pS = pS , the global minimum
of C (F ) is obtained and it is − log 4.
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This theorem is of extraordinary importance for the adversarial framework, as it pro-
vides a solid theoretical foundations to this idea.

The GRL approach has another interesting property that relates its training to the sym-
metric difference hypothesis divergence Definition 3.3. Suppose that Hy and Hd are the
hypothesis sets of the label and domain classifiers respectively and that Xd includes the
symmetric difference hypothesis set of Hy, i.e.:

Hd ⊇ Hy∆Hy = {h|h = h1 ⊕ h2, h1, h2 ∈ Hy} (3.23)

This set can be used to rewrite Equation (3.1) as:

dH∆H (S, T ) = 2 sup
h∈H∆H

| Ex∼DS
[h (x)] − Ex∼DT

[h (x)] | (3.24)

It will now be shown that, by exploiting this inclusion, the training of the GRL model
actually relates to the minimization of the H∆H-divergence and thus of the upper bound
on the generalization error:

dH∆H (S, T ) = 2 sup
h∈H∆H

| Ex∼DS
[h (x)] − Ex∼DT

[h (x)] |

≤ 2 sup
h∈Hd

| Ex∼DS
[h (x)] − Ex∼DT

[h (x)] |

= 2 sup
h∈Hd

| Px∼DS
[h (x) = 1] − Px∼DT

[h (x) = 1] |

= 2 sup
h∈Hd

|1 − Px∼DS
[h (x) = 0] − Px∼DT

[h (x) = 1] |

= 2 sup
h∈Hd

|1 − α (h) |

(3.25)

The optimal domain classifiers maximizes the value of α (h) and creates an upper bound
on the divergence. During the training, however, the reversed gradient modifies the rep-
resentation space created by the feature extractor in a way that reduces the effectiveness
of the optimal domain classifier and thus the bound on generalization error presented in
Equation (3.3).
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Chapter 4

First Scenario: Dealing with
Domain Shift in Large Scale
Visual Place Recognition

As discussed in Section 2.1, most current state of the art methods requires a huge amount
of data to be trained properly. The best source to procure the necessary images is Google
Street View, which not only offers a large collection of panoramic images from all over the
world, but also allows to access photos from old Street View collections. This is incredibly
useful not only because it increases the amount of available images of the same places,
but using the outdated one may be helpful to build a model that is robust to long term
changes in urban landscapes. This source provides two other extremely useful advantages:

• All images have GPS coordinates available which can be used as labels;

• Even when ignoring images from old collections, most places typically appear in
multiple images. This allows the construction of a dense dataset, which is a desirable
quality in Visual Place Recognition.

Later some example of Street View datasets will be provided.
From the VPR point of view, the main issue with Google Street view is the fact that all
images are took in the same exact manner, from the same type of viewpoint and from
the same type of cameras. Moreover, they are all taken during the daytime and do not
generally contain significant amount of obstructions. This is not the case in most of the
queries that the model will see at test time, the quality of which is less consistent by nature.

In this chapter the work regarding the first experimental scenario is presented. Firstly,
the problem will be further introduced, highlighting the main challenges and difficulties.
Secondly the discussion will focus on the dataset used and their most relevant character-
istic. Then the proposed approach is presented and compared to the ones in literature.
Finally the numerical performances will be shown and analyzed, focusing on the optimal
values of the hyperparameters and discussing the insights that emerged from the results.
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4.1 The Scenario

In the first experimental scenario the goal is to determine whether or not it is possible
to overcome the domain shift in the deployment of a large scale Visual Place Recognition
model by integrating a Domain Adaptation technique in its training. This is done through
two different setting, each one set up to examine a different kind of domain shift:

1. In the first one the focus will be on the shift of viewpoint. As already mentioned,
the training data is taken from Google Street View, where the viewpoint is generally
the same. If we test the model on photos taken by non professional with commercial
cameras, this is not the case anymore. An example is represented in Figure 4.1;

2. The second experiment adds another type of gap by not only considering the shift
in viewpoint, but also switching to a large city of another country during test. This
adds a significant challenge, as the environment and general aspect of building is not
coherent with respect to the training. An example is represented in Figure 4.2.

In order to build a fair evaluation environment in both settings while simultaneously
keeping the computation burden low, it is important to choose the proper datasets that
reflect the aforementioned issues and a large scale model that works well with limited
resources. The former choice is discussed in Section 4.2 and the latter in Section 4.3.

Figure 4.1: The picture on the left is a database image, taken from Google Street View.
The one on the left is a user taken photo. It is clear to see that the viewpoint on the left
could not be replicated by any image from Google, as it is taken from inside a private
property, thus creating a significant shift. Both are from San Francisco XL dataset Berton
et al. [2022a]
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Figure 4.2: The picture on the left is a database image from San Francisco XL Berton
et al. [2022a], while the one on the right is a query from Tokyo 24/7 Torii et al. [2015].
There is a significant shift both in viewpoint, as the latter one is taken from a pavement,
and in scene, as the city appearance is different.

4.2 The Datasets
Choosing the proper datasets is a crucial step in building a setting that reflects the de-
sired properties. Over the years the number of datasets for Visual Place Recognition
has increased significantly. However, not all of them fits the requirements. For example,
Pitts250K is a popular dataset introduced in Torii et al. [2013] that has been consis-
tently used over the years for both training and testing (Arandjelović et al. [2016], Berton
et al. [2022a], Keetha et al. [2023]). However, its the query set is generated from the
same source of the database (Google Street View) and therefore does not contain sig-
nificant shifts in viewpoint. For this reason it will not be considered for both settings.
Many other datasets share this limitation, including MSLS (Warburg et al. [2020]), SVOX
(Moreno Berton et al. [2021]) and St. Lucia (Warren et al. [2010]), as they are made only
of frontal view taken from moving cars and do not contain the desired kind of viewpoint
change.
The chosen datasets are:

1. San Francisco XL (Berton et al. [2022a]): a large scale dateset that covers the
whole city of San Francisco with images taken from Google Street View between
2009 and 2021. To be more specific, the authors collected 3.41 millions 360° panora-
mas and extracted 12 horizontal crops for each. The total number of images available
for training amount to 41.2 millions, all paired with GPS and heading labels. Since
extracting the features for all of them would take too much time on a single GPU,
the test split only contains 2.8 millions images of the same year but still covers the
whole city. As for the queries, they are 1000 hand-picked photos from Flickr whose
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GPS coordinates have been manually verified. These have been chosen to cover a
wide range of viewpoints and some illumination changes.

2. Tokyo 24/7 (Torii et al. [2015]): a smaller dataset composed of Street View images
of a Tokyo neighborhood (Shibuya) that covers around 1.6 km2. The total number of
database images is around 76000, considerably smaller than the one for SF-XL. The
queries are 315 and do not come from the web, but rather were taken by the authors
during the creation of the dataset using commercial smartphones. Additional 810
queries are available but are not generally used for evaluation purposes.

In particular, San Francisco XL training images will be used in both settings as the source
distribution. Its test split will be used as the target distribution in the first one, as the
domain gap between these two is mainly due to the shift in viewpoint of the images.
The test split of Tokyo 24/7 will be instead used as the target distribution in the second
setting, as this effectively simulates the scenario in which a model is trained in one city
and deployed in a somewhat different one. A clear visualization of both test sets can be
found in Figure 4.3.

Figure 4.3: Blue points are queries, cyan points are database images.
The picture on the left is visual representation of the test split of San Francisco, while
on the right there is the Tokyo 24/7 counterpart. As one can see, the density of SF-XL
is very high and it covers the whole city, while Tokyo 24/7 is much smaller and sparser.
Please note that the representation of Tokyo 24/7 may be misleading, as each blue dot
actually represents 9 distinct queries, as for each of the 125 position 9 images were taken
(the combinations of three different viewing directions and three times of the day).
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4.3 The Model
Now that the settings and the dataset have been presented, it is necessary to pick a
state-of-the-art Visual Place Recognition approach and a Domain Adaptation technique
to integrate. Out of the many possibilities, Cosplace (Berton et al. [2022a]) was selected
as the most suitable candidate. Its architecture is composed of:

• A convolutional backbone that acts as a feature extractor;

• An aggregation block composed of, among others, a GeM Pooling layer Radenović
et al. [2018] and a fully connected layer;

• Multiple classifiers paired with a Large Margin Cosine Loss (LMCL) (Wang et al.
[2018]), also known as CosFace, which is generally used for face recognition.

At test time the classifiers are discarded and the remaining parts are used to extract fea-
tures and perform image retrieval.

The training procedure for Cosplace first divides the area spanned by the dataset
into cells of equal area in a grid-like fashion, then further splits each of these into classes
according to the orientation of the images inside them. To be clearer, each cell is M×M m2

and there are 360
α classes within each cell, all of which cover α° of orientation (e.g. 0°-α°).

An image is assigned to a class if it belongs in the same cell and its orientation falls
into the class range. This process generally done though UTM coordinates and heading
information.
At each epoch, only a subset of non-adjacent classes is considered, a so-called CosPlace
Group. Each group is matched with a unique classifier. The classes in a group have to
satisfy two requirements:

• If two classes are in the same cell, then there must be exactly (L − 1) ∗ α degrees of
orientation between their ranges;

• If they belong in different cells, then there must be exactly a distance of (N −1)∗M
meters between them.

Moreover, a class can only belong in a single group. Please note that α, M , N and L are
all tunable hyperparameters. This is done in order to avoid the possibility of ambiguous
classification labels, as the grid partition is done arbitrarily and could therefore put images
of the same place in adjacent classes. A more comprehensive explanation can be found in
the original paper.

As for domain adaptation, the Gradient Reversal Layer technique was chosen. Please
refer to Section 3.2 for an in-depth presentation and discussion of this approach and its
theoretical foundations.

These two choices were made because these models and techniques have proven to be
extremely effective in their respective tasks, but also because they seamlessly fit together.
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The CosFace classifier can be interpreted as the label classifier in the GRL setting, while a
domain classifier can be simply added as a detaching branch before or after the aggregation
layer. During training the labeled training images are used as data from the source domain,
while the unlabeled queries from the test splits are used as data from the target domain.
By doing this, the backbone learns simultaneously to correctly assign each source image
to its class and to generate features that are invariant with respect to the domain gap
between source and target distributions.

4.4 The Numerical Results
it’s Although there are some differences between the first and second setting, the general
configuration was mostly the same and will now be fully described:

• the CosPlace hyperparameter : CosPlace hyperparameters were kept at the same
values specified in Berton et al. [2022a]. This includes the ones related to the creation
of the classes, the ones related to the data augmentation techniques applied and the
learning rates of the backbone and the classifiers. A full rundown of the values can
be found in Table 4.1

• The hardware: all experiments were run in the GPU cluster of the VANDAL group,
composed of 16 NVIDIA GeForce GTX 1080 GPUs. A small amount of preliminary
tests were run on a different machine equipped with a NVIDIA GeForce GTX 1070
and a TITAN RTX;

• the software: All experiments were run using Python 3.10, PyTorch 2.0.1 and torchvi-
sion 0.15.2.

Hyperparameter Role Value
M The lenght of the edges of all cells 10
α The range of orientations that a singel class covers 30
N see Section 4.3 5
L see Section 4.3 2

groups_num Number of Cosplace groups created 8
brightness - 0.7
contrast Values passed to Pytorch’s 0.7

hue ColorJittering function 0.5
saturation - 0.7

random_resized_crop The minimum possible area for the random crop 0.5
lr the learning rate of the backbone 10−5

classifiers_lr the learning rate of all classifiers 10−2

batch_size Batch size of images from the source domain 32

Table 4.1: The values of the parameters that have been unchanged during all experiments
presented in this section. The horizontal lines divide them into semantic groups
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As for the hyperparameters related to the Gradient Reversal Layer architecture, the
experiments focused on four different ones:

• Learning Rate µ: the learning rate of the domain classifier;

• Weight of the domain classifier loss λ: the domain classifier is paired with a cross
entropy loss. Thus, the total loss is:

Total_Loss = CosFace_Loss + λ ∗ CrossEntropy_Loss (4.1)

where λ represents the weight assigned to the domain classifier loss. This is arguably
the most important hyperparameter as it needs to balance the two learning objective
of the adversarial framework;

• GRL backpropagation (exponential) coefficient γ: in Section 3.2 it was mentioned
that the GRL layer changes the sign of the gradients during backpropagation. In
practice, it actually multiplies them by a negative coefficient during backpropagation.
This value changes during the training, following the formula presented in Ganin and
Lempitsky [2015]:

GRL_coeff = 2
1 + exp (−γp) − 1 (4.2)

where p represents the training progress linearly changing from 0 to 1. Instead, γ
represents the speed at which the coefficient converges to 1. This is done to ignore
the noisy gradient updates that come from the first few epochs, when the domain
classifier is not yet well trained. The faster the convergence, the less epochs are
ignored;

• Target Domain Batch Size: The number of images from the target domain for each
batch fed to the domain classifier. To be more specific, this architecture requires to
create two separate batches. The first one is composed of 32 images from the source
domain, as illustrated in Table 4.1, and is fed to the backbone and all classifiers. The
second one is composed of images from the target domain and is fed to the backbone
and the domain classifier, as no labels are available. During preliminary tests it was
found that a target batch size of 8 was a solid trade-off between performances and
additional computational time. To achieve this the source batch was modified so
that all 32 images were fed to the backbone and the CosPlace classifiers, but only 8
were fed to the domain classifier. By doing this no class re-weighting was necessary.

4.4.1 The First Setting
In order to determine the best combination of GRL-related hyperparameters values, three
candidates were selected for each of them. Then a grid search was performed by training
a model for each configuration. The candidates were:

• µ ∈ {10−4, 10−3, 10−2}.
In the original paper that introduced the GRL technique there is not a specific
discussion regarding the learning rate of the domain classifier, so the values picked
span a wide range;
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• λ ∈ {10−1, 1, 10}.
As for the previous hyperparameter, no indication were given in the paper, so the
values are chosen to cover a wide range. In particular, this choices would be able to
prove whether or not the secondary loss should be enhanced or reduced with respect
to the default value. This is useful as it may indicate the direction that a future,
denser grid search may follow regarding λ;

• γ ∈ {7, 10, 15}.
The proposed value is 10, but the authors mentioned that no further tests were made
to find the optimal value. Similarly to λ, the choices are made to prove whether or
not to increase or decrease the number of initial epochs to consider as noisy. In
Figure 4.4 it is possible to visualize how these values actually affect the coefficient
of the GRL layer.

Figure 4.4: Visual representation of how different values of γ affect the GRL coefficient.
For example the 0.9 threshold is reached after 9, 6 and 4 epochs for γ = 7, 10 and 15
respectively.

Now that the hyperparameters choices have been presented, the focus will now shift
on the architectural and training choices. Since the goal of these experiments is not to
find the best performing model, but rather to investigate whether a DA technique can
help a VPR model, the choices were made to lighten the computational burden as much
as possible while keeping the results coherent and insightful.

• The backbone architecture is the ResNet18 He et al. [2015], which is the smallest of
the family, and the weights were loaded from the checkpoints available on PyTorch
Hub. This allows for a significant reduction in the number of epochs of training;

• The descriptors dimension, which is the dimension of the output vector of the aggre-
gation block, is set to 512. This value was chosen as good trade-off between increased
performance and additional memory usage and computations;
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• The iterations per epoch and number of epochs and is set to 10000 and 20 respec-
tively. The former is the default value of CosPlace, while the latter was determined
through the preliminary experiments as a good threshold;

• Since using the full San Francisco XL test split would require a significant amount
of time, and since it is fair to expect that a good part of the experiments will result
in failure, the San Francisco XS test split will be used to evaluate each model. This
is a subset of San Francisco XL with the same queries but a limited database, so
that the number of features to extract is lower. All the experiments that were
conducted indicate that the performances on this subset are fine indicators for the
performances on the XL counterpart, but this choice allows for faster discarding of
the failing configurations. The successful models were then also tested on the full
version.

In table Table 4.2 the performances of the configurations generated through the grid
search are shown. All results are expressed in terms of Recall@1 using the standard
threshold distance of 25m. Please note that the baseline used for these experiments is the
PyTorch Hub CosPlace model (with the same backbone and descriptors dimension), but
a configuration that beats the baseline is not automatically considered successful. This
is due to the general trend that this training procedure follows: because of the definition
of the of the GRL coefficient (Equation (4.2)), during the first epoch its value is always
zero, so no adversarial training actually happens. However the model is able to adjust
its batch normalization statistics to better fit the target images, thus already bringing an
improvement to the performances. In the test set however, this improvement is minimal.
When the coefficient becomes non null, there is generally a dip in performances that lasts
for some epochs. The model is considered successful if it’s able to "recover" from this dip
and perform better than in the first epoch, i.e. better than 69%1.
The first insight that can be extracted is that the exponential coefficient γ does not clearly
impact the performances. Secondly, the best configurations of the other parameters are!
µ = 10−3, λ = 10−1"

and especially
!
µ = 10−2, λ = 10

"
. In order to see how this model

generalizes, those successful configuration have been tested on SF-XL test split. Those
results are presented in Table 4.3. All the chosen model outperforms the baseline.

4.4.2 The Second Setting
The procedure for the second is partially similar to the first one, however some newly-
found insight are exploited to focus the hyperparameter search on range of values that
have been seen to work well. Out the the two configuration that worked the best on San
Francisco XL,

!
µ = 10−2, λ = 10

"
is chosen as the fixed one for all experiments, while the

search range for the optimal γ is expanded to the range [5, 16]. All architectural and
training configurations were unchanged from the first setting with the obvious exception
of the test set, which is the Tokyo24/7 test split. The validation set is the Tokyo-XS test

1All experiments were conducted using the same randomness seed. Thus the R@1 reached in the
first epoch is always 69%.
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Learning Rate µ Weight λ
Coefficient γ

7 10 15
10−4 10−1 69.6 69.6 69.2
10−4 1 69 69 69
10−4 10 69 69 69
10−3 10−1 70.6 69.9 69.2
10−3 1 69 69 69
10−3 10 69 69 69
10−2 10−1 69 69 69
10−2 1 69 69 69
10−2 10 70.3 69.7 70.5

baseline 67.7

Table 4.2: Results on San Francisco XS of Cosplace trained for 20 epochs on SF-XL using
GRL for domain adaptation on the queries of the test split of SF-XL. For compactness,
the values of γ have been moved along the columns. The highlighted value represents the
configurations that have been considered successful.

Learning Rate µ Weight λ Coefficient γ R@1 R@5
10−3 10−1 7 68.5 77
10−3 10−1 10 67.3 75.6
10−2 10 7 69.2 76,8
10−2 10 10 66.7 75.1
10−2 10 15 67.8 76.2

baseline 65.5 74.1

Table 4.3: Results on San Francisco XL of the successful models highlighted in Table 4.2.
The highlighted value represents the best configuration.

split.

The results are shown in Table 4.4. The baseline, as in the previous setting, is the Py-
Torch Hub CosPlace model with the same backbone and descriptors dimension. The best
performing values for γ seems to be 10, 11 and 12, but it appears that the model is pretty
robust with respect to that hyperparameter.

Additional test have been carried out to answer the following questions:

1. Does increasing the number of epochs significantly increase performances?

2. Does having additional queries (exclusively for training) lead to better generalization
and thus better performances?

The first answer was found by extending the training of three of the best performing model
(identified by γ = [10, 12] ) for another 20 epochs. Out of the three, only one showed
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Learning Rate µ Weight λ Coefficient γ R@1 R@5

10−2 10

5 80.3 90.5
6 84.8 92.1
7 83.2 91.7
8 83.2 93.7
9 82.9 92.1
10 85.4 94
11 85.7 93
12 86 94.3
13 83.8 93.7
14 84.8 93.3
15 83.5 94
16 85.4 93.7

baseline 81.9 90.8

Table 4.4: Results on Tokyo 24/7 of Cosplace trained for 20 epochs on SF-XL using GRL
for domain adaptation on the queries of the test split of Tokyo 24/7. The best performing
configurations are highlighted.

light improvements, thus it is possible to conclude that 20 epochs are enough to reach a
plateau in performances and no further training is required. Full results are showed in
Table 4.5.
The second answer was instead found by adding 810 extra queries to the training process.
These are available with the Tokyo 24/7 dataset but are not generally used for evaluation.
Full results are shown in Table 4.6. It is possible to see that, on average, a configuration
gains a few % points. This indicates that an increased number of queries can be useful
to improve the performances of the models trained used the GRL technique. Further
tests were carried out to verify that adding training epochs does not significantly impact
the results: although most configurations’ recalls increase, the average improvement is
below 0.5%. This cannot justify the additional time and computations required by the
additional epochs.

Learning Rate µ Weight λ Coefficient γ R@1 R@5

10−2 10
10 86 94
11 85.7 93
12 86 94.3

baseline 81.9 90.8

Table 4.5: Results on Tokyo 24/7 of three top performing Cosplace model from Table 4.4
trained for another 20 epochs on SF-XL using GRL for domain adaptation on the queries
of the test split of Tokyo 24/7. The only configuration that improved is highlighted.

This chapter is concluded with a brief analysis of the training of the domain classifier.
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Learning Rate µ Weight λ Coefficient γ R@1 R@5

10−2 10

5 85.4 93.7
6 85.1 93.7
7 83.5 94
8 84.1 92.1
9 82.5 92.1
10 86.7 95.9
11 83.8 94.6
12 83.5 92.4
13 85.4 94.9
14 85.1 93.3
15 85.1 94.9
16 84.8 93.7

baseline 81.9 90.8

Table 4.6: Results on Tokyo 24/7 of Cosplace trained for 20 epochs on SF-XL using GRL
for domain adaptation on all the 1125 queries of the test split of Tokyo 24/7. The best
performing configurations are highlighted.

Since the goal for the backbone is to effectively fool it by extracting domain invariant
features, it is interesting to visualize its accuracy during the training and compare it
to the final performance of the model. Generally speaking, during a successful training
the accuracy of the domain classifier is expected to oscillate around the 50% mark, as
this represents the fact the backbone is completely fooling it. This happens in Figure 4.5,
where after some noisy first epochs the accuracy becomes considerably stable around 50%.
In most of the unsuccessful trainings, such as in Figure 4.6, the reason for the failure is
that the updates to the weights that come from the domain loss are not significant enough
for the backbone to trick the domain classifier, thus resulting in poor performances. This
issue is generally found in configurations where either µ or λ are too low, as the general
architecture ends up being not balanced at all.
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Figure 4.5: Details of the successful training procedure of the configuration with γ = 12
in Table 4.6

.

Figure 4.6: Details of the unsuccessful training procedure.
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Chapter 5

Second Scenario: Fine tuning
of Visual Place Recognition
Models for Indoor Retrieval

As discussed in Section 2.2, image retrieval is a key step in the global relocalization pipeline
as it allows to select a restricted number of candidates to compute 2D-2D correspondences
between them and the query. The optimal Visual Place Recognition model should be able
to find at least one appropriate candidate within the first k predictions, with k being
as small as possible. This would significantly increase the speed of the pose estimation
algorithm, as in most cases the matching step is the bottleneck of the whole procedure.
Additionally, the restriction to the k candidates has another advantage: since the match-
ing relies on local descriptors, it is exposed to the risk of noisy matches that may come
from similar images taken in different places. This is especially true in indoor environ-
ment, where repetitive and non-informative structures are frequent (see Figure 2.7). By
limiting the matching to the candidates, we reduce the probability to find noisy matches.

As of the writing of this thesis, Image Retrieval in indoor environment is not a popular
topic in deep learning literature. Out of the state-of-the-art methods that are going to
be used in this scenario, the majority were designed and trained to work in urban envi-
ronment (Arandjelović et al. [2016], Revaud et al. [2019a], Ge et al. [2020], Berton et al.
[2022a], Ali-bey et al. [2022], Berton et al. [2023] Ali-bey et al. [2023] and Izquierdo and
Civera [2023]), while only Keetha et al. [2023] attempts to build a model that works well in
a general setting. However there is a benchmark, presented in Humenberger et al. [2022],
that offers an in-depth analysis of the role of Image Retrieval in the larger context of pose
estimation, with a particular attention to indoor environments. The main limitation of
this work is that only a small amount of VPR approaches are tested, namely NetVlad,
DenseVlad (Torii et al. [2015]), AP-GeM and DELG (Cao et al. [2020]). Moreover, the
methods are used without any attempt at fine-tuning them to the specific domain.
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In this chapter the work regarding the second scenario is presented. Firstly, a thor-
ough introduction will further present the problem and provide a complete rundown of
the datasets and methods that will be tested. Secondly, a wide benchmark on indoor en-
vironment will be described and its result presented. From this, some of the most effective
models are selected to be fine-tuned. The performances achieved by them will offer great
insight into what makes a VPR work effectively in the indoor domain.

5.1 The Datasets
The main issue regarding indoor Visual Place Recognition is the lack of large scale
datasets. For the very nature of the environment, it is daunting task to build a dataset
that contains a large number of images and, at the same time, covers a large and varied
area. Since there are no easily accessible sources such as Google Street View, all images
have to be manually taken. This is usually done with some sort of mobile vehicle that
can hold multiple cameras and instruments, often of different natures. Indeed, since the
underlying task is generally pose estimation rather than simple retrieval, it is common to
use laser scanner to build 3D models. This requires significant additional work and thus
reduce the possible extension of the datasets.
For these reasons, many existing datasets were not considered for this work, as they
present some relevant limitations. For example, 7-scenes (Glocker et al. [2013]) contains
more than 40k images, but it covers the area of only 7 small rooms. A similar issue is
present in 17 places (Sahdev and Tsotsos [2016]. In Taira et al. [2018] the InLoc dataset
is introduced and its size, both in terms of number of images and area covered, should
warrant effectiveness for the purpose of this work. However, its sparsity makes it so that
VPR performs poorly on it and cannot really be used under strict evaluation thresholds.

The chosen datasets for this scenario are:

• Gangnam Station B1-B2 (Lee et al. [2021]): this dataset was created in one of the
busiest metro station in Seoul, which was not closed while the images were taken.
Thus it contains a large amount of human obstruction in most images, and was
created with the idea of a robustness benchmark for VPR models. Each section
covers an entire floor of the station: B1 contains scenes of a mall and some turnstiles,
while B2 contains images of the metro station platform. Some image samples are
shown in Figure 5.1;

• Hyundai Department Store B1-1F-4F (Lee et al. [2021]): this dataset was instead
created in a large South Korea department store, so there is large presence of com-
mercial activities. Once again, each section covers an entire floor: B1 contains many
cafes, restaurants and supermarkets, and its images are captured under low-light
conditions, while 1F and 4F both contains mainly fashion-related shops. In par-
ticular, the fourth floor was still partially under construction when the images were
taken, so a lot of temporary and texture-less walls are included. Some image samples
are shown in Figure 5.2;
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Figure 5.1: An example of a database image, on the left, and a query, on the right, from
Gangnam Station B1.

Figure 5.2: An example of a database image, on the left, and a query, on the right, from
Hyundai Department Store 1F.

• Baidu Mall (Sun et al. [2017]): This dataset, similarly to Hyundai Department Store,
was created in the ground floor a large mall in China. Even though one may expect
them to be similar, they are actually very different for three reasons:

– The general environment in Baidu Mall is more open and less cluttered than in
Hyundai Dept., thus the general appearance of the images are different;

– In Baidu Mall, the queries are not taken from the same moving structure as the
database images, but rather by different users using commercial phones. This
is not the case in Hyundai Dept.;

– Baidu Mall is significantly sparser, as one can see in the bottom right of Fig-
ure 5.5.
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Some image samples are shown in Figure 5.3;

Figure 5.3: An example of a database image, on the left, and a query, on the right, from
Baidu Mall.

One noteworthy limitation of both the Gangnam and Hyundai datasets is that the label of
the test set are not available and the evaluation on those splits can only be done through
a specific website and with respect to extremely strict thresholds. Thus, the test queries
cannot be considered for this work. The labels of the validation set are indeed available,
so those will be used instead.s Additional information about the chosen datasets can be
found in Table 5.1, while it is possible to visualize them in Figure 5.5.

Dataset Name Scene N° of DB Image N° of queries (val) Area (m2)

Gangnam Station B1 16,536 2,620 20,900
B2 4,518 916 5,250

Hyundai Dept. Store
B1 20,579 1,751 8,500
1F 16,222 734 10,000
4F 7,482 584 8,350

Baidu Mall - 689 2,292 9,200

Table 5.1: A recap of the most relevant properties of the chosen datasets.
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Figure 5.5: A visual representation of the chosen indoor datasets. Since each one has its
own reference system, the position of all images have been normalized, thus each image is
in scale. As one may expect by looking at Table 5.1, the Gangnam datasets cover a wider
area than the others and Baidu is the most sparse. The blue points only partially cover
the area because the labels of the test split queries are not available.
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5.2 The Models
As said in the introduction to this chapter, the only benchmark for indoor Visual Place
Recognition, presented in Humenberger et al. [2022], includes just four methods. The goal
of the first part of the experimentation is to significantly broaden that work by including
all current state-of-the-art methods. For this reason this section is devoted to their pre-
sentation and a brief discussion about what can be expected in terms of performances on
the indoor datasets.

• EigenPlaces (Berton et al. [2023]): this method was designed with the specific
intention of tackling the issue of viewpoint shift i.e. building a model that could
reliably recognize a place from all points of view. In order to do so, the authors
propose a clever subdivision of the training set. Firstly, the area covered is divided
into 15m × 15m cells. For each of them, the UTM coordinates of the images that
they contain are used to compute the first two principal components, which are
in turn exploited to find two focal points: a lateral and a frontal one. The idea
behind this comes from the fact that most urban environment dataset is composed
of images taken from cars, thus it is likely that the first principal component of each
cell will follow the direction of the road, and that the second one (which has to be
perpendicular) will always face the building on the side. The classes are defined as
the set of images within a cell that face a specific focal point. The training is very
similar to that of CosPlace, as the Large Margin Cosine Loss is employed and at each
epoch only 1 in every N cells is utilized (both in the longitudinal and latitudinal
directions). A visual representation of the classes is shown in Figure 5.6;

Figure 5.6: A visual representation of the classes within a cell (lateral on the left, frontal
on the right). Each blue dot is an image paired with its heading. The green dots are the
focal points. Image from Berton et al. [2023]

• MixVPR Ali-bey et al. [2023]: MixVPR exploits the ability of fully-connected layers
to automatically aggregate features in a holistic way. The architecture is shown in
Figure 5.7. Given a single image, the backbone extracts a feature map of dimension
c × h × w, where c is the number of channels. For the purpose of this method, it
can be seen as c separate activation maps of size h × w, each of which get separately
flattened and then re-joined together as a 2 dimensional array of size c × (h ∗ w).
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This is then fed to the Feature Mixture i.e. a sequence of isotropic MLP blocks
that iteratively incorporate relationships between spatial features in each individual
activation map. The output is the projected depth and row-wise to generate he
final descriptor array. The computations are mainly matrix multiplications which
are generally efficiently computed, especially when comparing with the self attention
layers of the visual transformers;

Figure 5.7: The architecture of MixVPR. Image from Ali-bey et al. [2023].

• Anyloc Keetha et al. [2023]: as the author said: "Anyloc is the first concrete at-
tempt at building a VPR model that works anywhere, anytime and across anyview".
This approach exploits the incredible representation power of the Dinov2 backbone
(Oquab et al. [2023]) to build a model that is incredibly robust and competitive
across a wide range of domains. The main drawback is that, out of the state-of-art
methods, it is by far the most computationally and memory intensive. On a single
GPU, the benchmark evalutations took 10× more than the ones of the second slowest
method (that also employs Dinov2);

• Salad Izquierdo and Civera [2023]: similarly to Anyloc, Salad also utilizes DinoV2.
However it builds a training pipeline that includes a few block of the backbone and
proposes a revisited VLAD layer for cluster assignments and aggregation of the local
features. The former is seen as an optimal transport problem where the unitary
mass of the feature vector must be effectively distributed among the clusters, which
includes a new so-called "dustbin", which should contain non-informative features
that will eventually be dropped. In each cluster the features are added up, then the
resulting vectors are concatenated with all the ones from the other clusters and simple
global token. This procedure allows for the removal of VLAD priors, i.e. the starting
cluster centroids, and shows excellent performances in Visual Place Recognition.

• NetVlad (Arandjelović et al. [2016]): this method is a staple of VPR and is based on
a differentiable version of VLAD. A lengthier discussion can be found in Section 2.1;

• SFRS Ge et al. [2020]: this approach proposes a change in the generic loss frame-
work. First of all, it add a secondary, self-supervised, loss function that is based on
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the similarity scores between the queries and the fine-grained regions of the first k
gallery images. Secondly, in the main loss the negative samples are replaced with
their "worst" region. This allows the training procedure to ignore false positives and
focus on actually informative database images;

• CosPlace (Berton et al. [2022a]): as this was the chosen approach in the first
scenario, a complete description can be found in Section 4.3;

• Conv-AP (Ali-bey et al. [2022]): this approach simply introduces a novel aggrega-
tion layer composed of two steps. The first one is a channel-wise weighted pooling
i.e. a 1 × 1 convolution, while the second is an adaptive average pooling;

• AP-GeM (Revaud et al. [2019a]): AP-GeM utilizes directly the average precision
as the loss function. The reasons are explained in Section 2.1.

Since none of these methods is trained specifically for indoor Visual Place Recognition,
is it hard to predict which one could perform the best. The only exceptions are Anyloc
and Salad, which employ Dinov2 as a backbone and thus are consistently competitive
across domains. As for the others, it will be interesting to see which training procedures,
losses and aggregation would perform better.

5.3 The Benchmark
The benchmark that will be presented in this section aims at being the most comprehen-
sive one yet. For this reason, all the available configurations for each of the state-of-the-art
methods presented in the previous section have been tested across the 5 indoor datasets
(Gangnam Station B1-B2 and Hyundai Department Store B1-1F-4F). Moreover, each
evaluation was done using six different threshold: three solely distance-based (1m, 10m,
25m) and three that also consider angular distance (1m 5°, 10m 30°, 25m 60°). Out of the
54 configurations tested, the the top ten performing ones are shown in Tables 5.2 to 5.6.
They are ranked based on the average performance across all datasets and thresholds.

From those results we can gather that, in terms of complexity, the Gangnam datasets
are significantly harder benchmarks for the models than the Hyundai ones. Under any
threshold of 10 meters and 30° or looser, in the latter the average performance is around
90% for 1F and 4F and around 85% for B1. This result is confirmed by the upper bounds,
which are only significant for the two lowest thresholds, and are generally higher for the
Hyundai datasets. This matches the expectations based on their composition. A busy
metro station environment is rich of obstructions, repetitive or non informative structures
and noisy elements. While those problems would also arise in a department store, their
frequency is generally lower.
The threshold were arbitrarily selected by looking at the most common values in the Visual
Localization literature. Given these results, it is fair to conclude that the combination of
1m and 5° is too strict for a pipeline that includes only image retrieval. Moreover, for
higher positional distances the addition of an angular bound does not have an high impact
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on the results.
As for the methods, the gathered data offer precious insights:

• SFRS is the best overall method: This is true particularly for the 1m threshold,
where it is consistently on top of the scoreboard by a quite consistent margin. On
Gangnam Station B2, which by construction contains the most amount of noise, it
beats all competitors across a wide range of thresholds. From this behaviour it can
be deduced that the constrastive training that SFRS models undergo is helpful for
indoor deployment, especially for scenarios with strict thresholds, probably because
the region subdivision allows them to more effectively ignore noise and focus on the
relevant aspects of the images;

• Eigenplaces is the most robust across configurations: out of all the methods that
have multiple configurations (which is all except sfrs, anyloc and salad), eigenplaces
is the one with the highest consistency. Out the total 54, seven out of eleven are in
the top 20 and none are in the bottom 15. This indicates that the training procedure
is able to fully take advantage of the representation power of all backbones and lead
to good performances. In Table 5.7 some eigenplaces configurations are compared
to the top models on Gangnam B2. One interesting surprise is that the ResNet50
version outperform the larger ResNet101 one (with the same descriptors dimension)
by quite a relevant margin;

• Dinov2 is effective: both salad and anyloc consistently perform the best, even though
salad is better on average. One peculiar issue that is found is that both severely
struggle under the 1 m threshold. In particular, in four out of five cases salad is the
best choice under the 1m 5° bound, but it trails severely (∼ -12%) under the 1m
one. This is not simple to explain, as it is even outperformed by netvlad, on which
it is based. A possible reason is that the Dinov2 backbone generates descriptors so
robust that, under that strict threshold, they become ineffective. There is no doubt
that under looser threshold these approaches thrive and outclass all competitors;

• MixVPR and NetVLAD are solid alternatives but not much more: both methods are
constantly among the top then, but rarely are the best ones. The only instance in
which that happens is in Hyundai Department Store 4F, where mixVPR outperforms
all competitors by a narrow margin;

• Cosplace, AP-GeM and Conv-AP are not competitive: as one can see in Table 5.8, the
best configurations of such methods are not nearly as effective as the top ones. The
only small exception is AP-GeM on Gangnam Station B2, which is somewhat closer.
Note that AP-GeM was the best performing method for the Visual Localization
benchmark in Humenberger et al. [2022].

Finally, when weighting the performances with the computational burden of each method,
its clear that the improvements brought by salad and especially anyloc over, for example,
SFRS and eigenplaces are considerably expensive. However, they still represent the state
of the art in a significant portion of this benchmark. For this reasons, salad and eigen-
places models are chosen as starting points for the fine-tuning on indoor environment.
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Method Backbone Desc. Dim. Gangnam Station B1 (Recall@1)
1m 5° 10m 30° 25m 60° 1m 10m 25m

sfrs VGG16 4096 3.6 46.4 54.2 26 55.7 60.4
mixvpr ResNet50 4096 3.6 50.7 56.6 24.4 56.6 60.7

eigenplaces ResNet50 2048 4 46.6 53.4 25.5 54 60
salad DINOv2 8448 5.2 59.4 61.5 21.1 62 67.9

eigenplaces ResNet101 2048 3.8 44.3 50.8 25.4 51.8 57.9
eigenplaces ResNet101 512 3.7 45.2 51.7 22.4 53.1 59.3
eigenplaces ResNet50 512 3.5 41.8 48.4 23.1 50 55.8

netvlad VGG16 4096 2.6 38 46.6 20.3 49.9 55.7
anyloc DINOv2 49152 2.8 44.4 54.5 17.9 63.9 70.9
netvlad VGG16 32768 2.6 38 46.9 20.2 51.4 57.2

Upper Bounds 10.4 97.1 100 81 97.2 100

Table 5.2: Benchmark results of the top ten best performing models on Gangnam Station
B1, ranked based on the average performance across all datasets and thresholds.

Method Backbone Desc. Dim. Gangnam Station B2 (Recall@1)
1m 5° 10m 30° 25m 60° 1m 10m 25m

sfrs VGG16 4096 3.9 50.8 63.8 40.8 60 70
mixvpr ResNet50 4096 4.3 44.5 56.9 31.2 52.6 63.1

eigenplaces ResNet50 2048 4.5 45.4 57.2 30.8 54.3 65.5
salad DINOv2 8448 4.6 40.2 48.4 22.2 45.5 57.6

eigenplaces ResNet101 2048 4.3 41.7 52.5 28.3 49.8 58.1
eigenplaces ResNet101 512 3.9 39 50.7 26 48.6 58.8
eigenplaces ResNet50 512 3.4 46 55.1 29.5 52.8 64.2

netvlad VGG16 4096 3.3 44.8 55.7 36.7 54.4 62.6
anyloc DINOv2 49152 4.7 40.9 53.9 26.9 55.2 70.1
netvlad VGG16 32768 2.7 43.7 55.3 34.6 53.7 64.5

Upper Bounds 8.8 100 100 90.9 100 100

Table 5.3: Benchmark results of the top ten best performing models on Gangnam Station
B2, ranked based on the average performances across all datasets and thresholds.
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Method Backbone Desc. Dim. Hyundai Dept. Store 1F (Recall@1)
1m 5° 10m 30° 25m 60° 1m 10m 25m

sfrs VGG16 4096 9.5 84.6 92.6 38.7 93.5 96.2
mixvpr ResNet50 4096 7.6 87.3 93.2 26.6 92.9 96.3

eigenplaces ResNet50 2048 7.9 81.9 88.6 26.6 89.4 94.7
salad DINOv2 8448 11.9 91.4 94 22.6 92.6 96.6

eigenplaces ResNet101 2048 8.7 83.8 88.8 26.8 90.1 95
eigenplaces ResNet101 512 8.6 81.7 86.6 25.2 88.1 94.1
eigenplaces ResNet50 512 8 76.4 83 26.4 84.9 92.4

netvlad VGG16 4096 8.3 74.9 86.8 35.4 87.9 95.2
anyloc DINOv2 49152 8.4 75.9 83 25.3 89 98
netvlad VGG16 32768 8 74.1 84.1 32.6 86.2 92.8

Upper Bounds 18 100 100 84.7 100 100

Table 5.4: Benchmark results of the top ten best performing models on Hyundai De-
partment Store 1F, ranked based on the average performances across all datasets and
thresholds.

Method Backbone Desc. Dim. Hyundai Dept. Store 4F (Recall@1)
1m 5° 10m 30° 25m 60° 1m 10m 25m

sfrs VGG16 4096 14.7 91.4 96.4 61 97.4 99.3
mixvpr ResNet50 4096 17.1 96.1 98.1 56.3 99 99.8

eigenplaces ResNet50 2048 12.5 92.6 95.9 52.1 96.4 99.1
salad DINOv2 8448 18.2 95.5 97.3 42.5 97.1 99

eigenplaces ResNet101 2048 13.5 91.6 96.4 51.9 95.5 99
eigenplaces ResNet101 512 11.6 91.6 96.2 46.6 93.8 98.5
eigenplaces ResNet50 512 13.9 91.3 93.8 49.8 94.7 97.4

netvlad VGG16 4096 9.9 89.9 96.9 56.3 97.9 99.3
anyloc DINOv2 49152 12.5 88.4 94 39 96.4 99.1
netvlad VGG16 32768 9.4 87.8 95.5 53.8 96.9 99.3

Upper Bounds 40 100 100 98.4 100 100

Table 5.5: Benchmark results of the top ten best performing models on Hyundai De-
partment Store 4F, ranked based on the average performances across all datasets and
thresholds.
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Method Backbone Desc. Dim. Hyundai Dept. Store B1 (Recall@1)
1m 5° 10m 30° 25m 60° 1m 10m 25m

sfrs VGG16 4096 9.4 83.6 90.1 33.6 89.6 96.5
mixvpr ResNet50 4096 8.7 84.1 87.8 26.6 88.1 93.4

eigenplaces ResNet50 2048 9.1 82.1 88.3 29.1 87.8 95.7
salad DINOv2 8448 12 92.3 93.8 27.6 93.9 98.2

eigenplaces ResNet101 2048 9.4 85 89.6 28.8 90.3 96.9
eigenplaces ResNet101 512 8.9 81.7 87.2 28.4 87.5 95.7
eigenplaces ResNet50 512 8.2 79.6 85.7 27.8 85.8 95.7

netvlad VGG16 4096 8.7 74.2 82.9 31.5 83.6 94
anyloc DINOv2 49152 8.8 77.3 83.7 24.4 86.9 97.9
netvlad VGG16 32768 8.3 72.7 80.5 30.3 81.8 93.9

Upper Bounds 21.6 100 100 90.4 100 100

Table 5.6: Benchmark results of the top ten best performing models on Hyundai De-
partment Store B1, ranked based on the average performances across all datasets and
thresholds.

Method Backbone Desc. Dim. Gangnam Station B2 (Recall@1)
1m 5° 10m 30° 25m 60° 1m 10m 25m

sfrs VGG16 4096 3.9 50.8 63.8 40.8 60 70
mixvpr ResNet50 4096 4.3 44.5 56.9 31.2 52.6 63.1
anyloc DINOv2 49152 4.7 40.9 53.9 26.9 55.2 70.1

eigenplaces

ResNet50 2048 4 46.6 53.4 25.5 54 60
ResNet101 2048 3.8 44.3 50.8 25.4 51.8 57.9
ResNet101 512 3.7 45.2 51.7 22.4 53.1 59.3
ResNet50 512 3.5 41.8 48.4 23.1 50 55.8
VGG16 512 2.7 40 46.5 18.5 49 54.3

ResNet50 256 3.3 39.2 45.2 19.9 46.7 53.2
ResNet101 256 3.1 38.7 45.1 19.8 46.1 52

Upper Bounds 8.8 100 100 90.9 100 100

Table 5.7: Benchmark results of a few of the best performing models and the top seven
eigenplaces configurations on Gangnam Station B2. The separate groups are ranked based
on the average performance across all datasets and thresholds.
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Method Backbone Desc. Dim. Gangnam Station B1 (Recall@1)
1m 5° 10m 30° 25m 60° 1m 10m 25m

sfrs VGG16 4096 3.6 46.4 54.2 26 55.7 60.4
mixvpr ResNet50 4096 3.6 50.7 56.6 24.4 56.6 60.7
salad DINOv2 8448 5.2 59.4 61.5 21.1 62 67.9

cosplace VGG16 512 3.3 41.4 46.8 18.1 48.2 53.8
apgem ResNet101 2048 2.1 35 46.1 19.6 50.7 56.5
convap ResNet50 4096 3.4 36.1 41.1 14.9 41.5 47.7

Upper Bounds 10.4 97.1 100 81 97.2 100

Method Backbone Desc. Dim. Gangnam Station B2 (Recall@1)
1m 5° 10m 30° 25m 60° 1m 10m 25m

sfrs VGG16 4096 3.9 50.8 63.8 40.8 60 70
mixvpr ResNet50 4096 4.3 44.5 56.9 31.2 52.6 63.1
anyloc DINOv2 49152 4.7 40.9 53.9 26.9 55.2 70.1

cosplace VGG16 512 3.9 33.5 43 20.6 39.8 53.9
apgem ResNet101 2048 3.5 41.3 57.1 30.6 55.5 69.2
convap ResNet50 4096 4 34.1 43.8 18.4 40.1 53.6

Upper Bounds 8.8 100 100 90.9 100 100

Table 5.8: Benchmark results of a few of the best performing models and the best config-
urations (on average) of Cosplace, AP-GeM and Conv-AP on Gangnam Station B1 and
B2. As one can see, the former are much more effective than the latter on both datasets.

5.4 Finetuning Models for Indoor VPR
In the previous section it was established that, out of the most effective deep Visual Place
Recognition methods, none are designed to work in indoor environment. Moreover, the
size of available indoor datasets is generally too small to achieve a satisfactory training
of a deep model. For this reason, the only way to improve performances is to construct
a fine-tuning procedure that exploits the limited amount of labeled data available. This
is done in the contrastive learning framework proposed by Berton et al. [2022b]: in each
epoch a number of queries are randomly selected and their positives and negatives are
mined from the database to form triplets. Then the model extracts their features and
feed them to a Triplet Loss. This aims at pushing the queries representations closer to
the positives and far from the negatives ones in the latent space. A visualization of this
process is shown in Figure 5.8. Although the idea is quite simple and standard, it offers
a great deal of new information and insight into what direction researchers could move to
tackle the task of Indoor Visual Localization.

Firstly, it is necessary to determine which of the methods tested in the benchmark
to pick for the fine-tuning. Since none of them is globally optimal, this choice is not
trivial. Based on their overall performance, robustness across configurations and ease of
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Figure 5.8: Visual represetation of the fine-tuning procedure on indoor environments.
Image taken from Berton et al. [2022b]

technical implementation, EigenPlaces and Salad are selected. Secondly, but arguably
more importantly, there is the need of defining a train-validation-test split across the
available datasets. Since each of them is already quite small (see Table 5.1), the split will
not actually divide any of them but simply assign them to either the training, validation
or test group. The number of possible combinations is too high to perform a full search,
so some general rules are set:

• Gangnam Station B2 is only ever used for testing, as it is the second smallest and is
the most noisy;

• Both B1 sections are either used for training or validation. This is because they are
the two largest ones, and thus offer the largest amounts of queries for training, and
because they are challenging benchmarks for the validation;

• Hyundai Department Store 1F and 4F are only used for testing, as they are too
small for training and not challenging enough for validation. In a few experiments
this rule has to be broken as both the B1s are used in training. It has been determined
experimentally that, in those situations, 4F generates better performances;

• During the first phase of experiments Baidu Mall is only used for testing, but is
added at a later time to the training group so that its impact can be rigorously
analyzed;

Then a mining method must be defined. Since all queries have available labels, no expen-
sive mining is actually required. The procedure follows these steps:

1. The queries are randomly sampled from the training group and their hard positives
are computed. A hard positives is a database image whose position is closer to the
query than a threshold (referred to as hard positives threshold). Those who have
none are ignored. The number of queries sampled depends on the training dataset
and will be discussed later;

2. A number of database images are sampled, then both their and the queries features
are extracted;

3. For each query, the best positive and hardest negatives are selected. This is the hard
positive whose feature vector is the closest to the query’s one in the latent space;
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4. Finally, the hardest negatives are chosen for each query. These are obtained by
first selecting all sampled database images whose distance to the query is larger
than a second threshold, called soft positives threshold and always greater the soft
counterpart, and then choosing the ten whose representations are the closest the
query’s ones. The "triplets" are therefore formed by twelve images: the query, the
best positives and ten hardest negatives. The number of negatives picked could be
object for optimization, but it is out of the scope of this work.

Starting from these rules and through a long series of preliminary tests, the candidate
groups for the training-validation and testing split are presented in Table 5.9.
Finally, the test thresholds for Recall@1 are slightly adjusted from the benchmark: the

Training Validation Test

Gangnam Station B1 Hyundai Dept. Store B1
Gangnam Station B2

Hyundai Dept. Store 1F-4F
Baidu Mall

Hyundai Dept. Store B1 Gangnam Station B1
Gangnam Station B2

Hyundai Dept. Store 1F-4F
Baidu Mall

Gangnam Station B1
Hyundai Dept. Store B1 Hyundai Dept. Store 4F

Gangnam Station B2
Hyundai Dept. Store 1F

Baidu Mall

Table 5.9: Selected train-validation-test splits for the fine-tuning.

values are 1m, 5m, 10m and 25m. Thresholds based on angular distances have been
dropped because of the very role of image retrieval within visual localization, which is to
find relevant images in the database rather than estimate the image pose.

Now that the architecture and the procedures have been presented, it is now the time
to present the actual experiments, their goals and their results. Please note that, from now
on, all tables will contain a short abbreviation in place of the full names of the datasets.
They should be easy to understand, but a dictionary can be found in Table 5.10.

Full Name Abbreviation
Gangnam Station B1 GB1
Gangnam Station B2 GB2

Hyundai Department Store 1F H1F
Hyundai Department Store 4F H4F
Hyundai Department Store B1 HB1

Baidu Mall BAI

Table 5.10: Brief dictionary of the abbreviations that will be used from now on.
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First Batch: analysis of optimal thresholds and the training sets composition

The first batch of experiments has a twofold objective: firstly it studies how different
hard and soft positives thresholds affect the performances of the fine tuning. This is
done by setting them to three different values, chosen arbitrarily, which spans the domain
of conceivable values. To be precise, the chosen option are (2,5), (5,10) and (10, 25).
Secondly, it aims at finding what the best way is to make use of the training datasets.
Since in most cases the training group is composed of multiple dataset, it is not clear
whether or not they should be used separately or as a single larger one. The training
could either:

• Use a single dataset in each epoch, rotating through them until the training stops.
This choice would limit the sampling to the database in which the queries belong
and not allow for cross-dataset hard negatives;

• Combine all datasets in the training group into a larger one, allowing the choosing
of a hard negative from a different dataset. This is done by arbitrarily shifting one
of the coordinates of all images by k ∗ 105, where k is a small positive integer that
identify the original dataset. The hard positives remains obviously unchanged.

The second option could potentially generate harder negatives, thus improving the qual-
ity of the learned feature, but at the same time the quality of the database sampling is
diluted. Since this approach has never been discussed in the literature, there is not a
standard way go. The experiments are therefore designed to evaluate the two possibilities
and determine which one works best. Please note that, in this first batch, this difference
is only relevant when using the third split in Table 5.9 i.e. the only one that has multiple
datasets in the training group. In this batch all experiments fine-tune the same Eigen-
Places model, with ResNet50 as the backbone and a descriptors dimension of 2048.

Since a single huge table would be hard to read and understand, the results will be
split into smaller tables each designed to show a relevant insight. The general rule for all
tables is that cursive values indicates that the performances is better than all baselines,
while bolded ones indicates that it is the best overall. The baseline performances of the
off-the-shelf methods is reported in Tables 5.11 and 5.12. The first experiments results
are presented in Tables 5.13 and 5.14. They show the results of all the experiments that
employ separated training datasets grouped by the training-validation-testing split. The
numbers show that there are not globally optimal choices for neither the threshold nor the
splits. Generally speaking, the (5,10) thresholds seems to lead to the overall best perfor-
mances on Baidu but significantly worse on the other benchmarks. This is probably due
to the fact that those distances better fit the properties of Baidu, which is significantly
sparser. Both (10,25) and (2,5) performs better overall, with the former working slightly
better on Baidu and worse on the others. Again, this is probably due to its sparsity. In
terms of the training-validation-testing splits, both GB1 and GB1-HB1 generates the best
results, while HB1 trails in all testsets.
Overall, the fine-tuned models outperform the off-the-shelf counterparts by a significant
margin, especially under the stricter threshold. This is not true for Baidu, in which the
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results are almost always unchanged or slightly worse. Notably, no single methods outper-
forms the best baselines. This is probably due to the that the Gangnam and Hyundai are
created in a very similar way, while Baidu is not, thus there is a significant divergence in
the general way the images look, even if they are all indoor datasets. By not using Baidu
in the training, the models struggle on it as they seem to overfit on the appearances of
the others.

In Table 5.15 the results of the training with aggregated datasets using both B1 sec-
tions. For this instances, the results seems to get worse on average. This indicates that,
on average, for this configuration of datasets the additional hard negatives do not com-
pensate for the dilution in the sampling.

Baseline Methods GB2 (R@1) H1F
1m 5m 10m 25m 1m 5m 10m 25m

sfrs 40.8 59.1 60 70 38.7 89.1 93.5 96.2
mixvpr 31.2 51.4 52.6 63.1 26.6 84.7 92.9 96.3

eigenplaces 30.8 53.1 54.3 65.5 26.6 82.8 89.4 94.7
salad 22.2 43.9 45.5 57.6 22.6 84.7 92.6 96.6

netvlad 36.7 53.4 54.4 62.6 35.4 82.8 87.9 95.2
anyloc 26.9 50.9 55.2 70.1 25.3 80 89 98

Table 5.11: Performances of the baseline methods on Gangnam Station B2 and Hyundai
Department Store 1F. The configurations are the best performing ones in the benchmark.

Baseline Methods H4F (R@1) BAI
1m 5m 10m 25m 1m 5m 10m 25m

sfrs 61 94.9 97.4 99.3 5.1 38 61 71.2
mixvpr 56.3 96.1 99 99.8 3.3 39.5 67.9 77.3

eigenplaces 52.1 93.8 96.4 99.1 4.1 39.5 65.5 75.3
salad 42.5 93.7 97.1 99 3.4 38.4 72.1 82.3

netvlad 56.3 96.1 97.9 99.3 4.6 40.3 64.4 75.7
anyloc 39 92.8 96.4 99.1 3.3 40.7 76.1 88.6

Table 5.12: Performances of the baseline methods on Hyundai Department Store 4F and
Baidu Mall. The configurations are the best performing ones in the benchmark.
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Train Val Thr. GB2 (R@1) H1F
1m 5m 10m 25m 1m 5m 10m 25m

GB1 HB1
10,25 39.1 61.1 62.3 71.7 34.7 89.2 93.2 96.3
5,10 36.4 60 61.5 69.8 36.2 89.8 93.9 96.7
2,5 38.6 61.1 61.8 69.4 33.2 88.8 94.6 96.6

HB1 GB1
10,25 34.4 55.8 56.7 68.4 32 87.6 92.6 96.3
5,10 34.1 55.1 56.2 68.8 31.1 85.8 92.2 95.9
2,5 35.5 56.9 58 68.6 31.5 88 92.8 96.6

GB1-HB1 H4F
10,25 37.6 61 62.6 71.2 34.9 89.2 93.1 96.2
5,10 35.2 60.2 61.2 70.1 33.8 88.6 92.9 95.6
2,5 38.8 62.3 63.4 72.5 35 88.1 93.1 96.3

Table 5.13: Performances of fine-tuned versions of EigenPlaces on Gangnam Station B2
and Hyundai Department Store 1F. For the last configuration the training has been done
with separated datasets.

Train Val Thr. H4F (R@1) BAI
1m 5m 10m 25m 1m 5m 10m 25m

GB1 HB1
10,25 57.4 97.1 98.6 99.3 4.2 39.1 64 73.2
5,10 56.3 97.4 99 99.5 3.7 41.4 66.7 75.7
2,5 59.1 97.6 99 99.5 3.6 39.4 63.4 72.9

HB1 GB1
10,25 48.6 96.4 97.8 98.6 3.7 38.7 62.3 71.2
5,10 48.1 95.4 98.5 99 3.8 37.6 62.2 71.6
2,5 50.9 94.7 97.3 99 4.1 36.2 59.7 68.7

GB1-HB1 H4F
10,25 4.1 39.6 64 72.8
5,10 - 3.8 38.7 64 72.3
2,5 3.7 38.5 62.4 71.6

Table 5.14: Performances of fine-tuned versions of EigenPlaces on Hyundai Department
Store 4F and Baidu Mall. For the last configuration the training has been done with
separated datasets.

Thr. GB2 (R@1) H1F BAI
1m 5m 10m 25m 1m 5m 10m 25m 1m 5m 10m 25m

10,25 36.7 61.2 62.3 70 37.1 88.1 93.3 97.1 3.8 39.4 63.9 73.3
5,10 35.4 57.4 58.3 67.7 32.4 86.2 91.6 95.8 3.6 39.4 62.6 71.8
2,5 38.3 60.8 61.6 69.9 33.8 89 93.9 97 3.8 39 63.7 72.8

Table 5.15: Performances of fine-tuned versions of EigenPlaces trained on GB1-HB1. The
training has been done with aggregated datasets.
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Second Batch: including Baidu Mall into the training

The second batch of experiments adds the Baidu Mall dateset into the training. The con-
figurations are kept the same to ensure that results can be compared. The only difference
is that the difference between separated and aggregated dataset during training is now
always relevant. The results of the models trained with separated datasets are shown in
Tables 5.16 and 5.17, while those of the ones trained with aggregated datasets are shown
in Tables 5.18 and 5.19. First of all, there is a clear indication that this do not work well
under the (2,5) thresholds. This confirms our finding in the first batch, i.e. these thresh-
olds are too low for Baidu, and this is true regardless of the separation or aggregation
of the training datasets. Under (10,25) the models seem to perform the best, both with
GB1-HB1-BAI and GB1-BAI as training group. Similarly to the first batch, HB1-BAI is
not effective. There does not seem to be a clear improvement or decline when aggregating
rather then separating the training datasets.

Train Val Thr. GB2 (R@1) H1F
1m 5m 10m 25m 1m 5m 10m 25m

GB1-BAI HB1
10,25 37.8 63.8 65.1 73.7 36 89 93.5 96.3
5,10 36.2 60.9 61.9 71.2 33.7 87.2 92.2 95.8
2,5 35.4 57.6 59.1 69.1 33.7 88.4 92.5 96

HB1-BAI GB1
10,25 34.8 57.3 59.1 68.8 32.3 87.7 92 96.2
5,10 29.7 55.6 57.3 68.2 33.4 85.4 90.3 94.3
2,5 31.7 53.2 54.7 66.3 31.9 86.8 91.1 94.6

GB1-HB1-BAI H4F
10,25 35.2 61.7 63.3 71.5 36.1 87.2 91.8 94.6
5,10 38.2 61 62.3 70.1 34.5 87.1 91.7 95.6
2,5 36.7 59.4 60.8 68.2 33.5 88.8 93.7 96.6

Table 5.16: Performances of fine-tuned versions of EigenPlaces on Gangnam Station B2
and Hyundai Department Store 1F. For all configurations the training has been done with
separated datasets.

Train Val Thresholds H4F (R@1)
1m 5m 10m 25m

GB1-BAI HB1
10,25 53.9 97.3 99.1 99.7
5,10 56.2 96.4 97.9 99
2,5 55.5 95.9 97.8 99.3

HB1-BAI GB1
10,25 50.2 94.9 97.3 98.8
5,10 46.4 96.9 98.5 99.5
2,5 48.3 94.9 97.3 99

Table 5.17: Performances of fine-tuned versions of EigenPlaces on Hyundai Department
Store 4F. For all configurations the training has been done with separated datasets.
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Train Val Thr. GB2 (R@1) H1F
1m 5m 10m 25m 1m 5m 10m 25m

GB1-BAI HB1
10,25 36.7 58.4 59.8 70.5 33.9 88 93.3 96.7
5,10 35.6 59.7 61.2 70.6 33.4 89.8 95 97.4
2,5 37.2 58.4 59.5 70 34.9 88.6 94.6 97.3

HB1-BAI GB1
10,25 33.6 56.4 58.1 69.7 34.3 85.4 91.6 96.2
5,10 36.6 59.5 60.9 71.5 30.8 88.4 93.9 97
2,5 34.2 54.7 56.2 66.9 31.7 87.3 92.5 95.6

GB1-HB1-BAI H4F
10,25 35.4 58.7 59.6 69.2 35.1 89.5 93.6 96.3
5,10 34.2 54.7 55.8 65.6 32.2 88.6 93.6 97.3
2,5 36.8 58.1 59.1 68 33.4 89 93.7 97.4

Table 5.18: Performances of fine-tuned versions of EigenPlaces on Gangnam Station B2
and Hyundai Department Store 1F. For all configurations the training has been done with
aggregated datasets.

Train Val Threshold H4F (R@1)
1m 5m 10m 25m

GB1-BAI HB1
10,25 53.8 97.1 97.9 99
5,10 54.3 96.6 98.5 99.5
2,5 52.4 96.7 98.8 99.7

HB1-BAI GB1
10,25 48.8 95 97.1 99
5,10 49.7 94.3 96.9 96.6
2,5 45.4 95 97.8 99

Table 5.19: Performances of fine-tuned versions of EigenPlaces on Hyundai Department
Store 4F. For all configurations the training has been done with aggregated datasets.
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Third Batch: Using Salad as the starting model

The third and final batch of experiments aims at studying the performing of the fine-tuning
process on a different model, in particular one that employs a different backbone and a
completely different training regimen: Salad. Dinov2 is significantly more demanding to
fine-tune than the ResNet50 in terms of GPU memory usage and time required, thus the
number of experiments has been reduced by only focusing on training using aggregated
datasets. Moreover, the size of the images had to be reduced. The numerical results are
shown in Tables 5.20 and 5.21

The numbers clearly indicates that the overfitting issue mentioned in the comments to
the first batch of experiments happens regardless of the method chosen. There are mul-
tiple instances in which Salad beats all competitors in Gangnam B2 and Hyundai 1F-4F
while getting significantly worse in Baidu. As for the thresholds and the splits, once again
training on only HB1 or using (5,10) does not lead to the best results. At the same time,
using (2,5) seems to emphasize the overfitting issue. In most cases, however, there is a
significant improvement over the off-the-shelf Salad model.

The addition of Baidu to all training groups have been thoroughly tested, similarly to
the second batch, but since the performances are all significantly worse and no interesting
insights was found, the numerical results will not be shown.

Train Val Thr. GB2 (R@1) H1F
1m 5m 10m 25m 1m 5m 10m 25m

GB1 HB1
10,25 29.6 60,5 62,8 71,6 26,8 89,9 95,9 98,6
5,10 35.4 61,8 62.7 70,6 28,2 91,7 95 97.8
2,5 33.7 59,5 61 70,2 30.2 92 95.6 97.5

HB1 GB1
10,25 24,6 49 50.7 59,2 24,3 88,4 92.9 96.7
5,10 26,3 50 51,4 61,2 27,1 89.2 94.1 97,3
2,5 33.1 52.4 52,9 64.1 33.4 91.8 94.6 96.9

GB1-HB1 H4F
10,25 27.7 53.4 54.9 65.4 28.9 90.9 95.1 97.5
5,10 28.2 52.5 53.1 64.1 27.9 88 94 97.7
2,5 38.6 65.5 66.2 74.9 31.7 93.1 96.5 98.2

Table 5.20: Performances of fine-tuned versions of Salad on Gangnam Station B2 and
Hyundai Department Store 1F. For the last configuration the training has been done with
separated datasets.
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Train Val Thr. H4F (R@1) BAI
1m 5m 10m 25m 1m 5m 10m 25m

GB1 HB1
10,25 52,9 97.1 98.3 99.3 2,9 38,7 73,1 86,3
5,10 52,6 98.6 99,1 99.5 3.3 37,4 68.5 79.9
2,5 51.7 97.6 98,5 99.1 2.7 39.2 71,8 83,3

HB1 GB1
10,25 42 96.4 97.9 99.1 3 37.2 66.3 77.5
5,10 45 95.7 97.4 98.8 3.6 37.9 65.4 76.7
2,5 55.3 97.9 98.5 99 3.1 34.7 55.5 66.1

GB1-HB1 H4F
10,25 3 35.3 62.3 75.3
5,10 - 3.4 38.7 72.8 85
2,5 3.4 39.4 68.4 79.2

Table 5.21: Performances of fine-tuned versions of Salad on Hyundai Department Store
4F and Baidu Mall. For the last configuration the training has been done with separated
datasets.
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Chapter 6

Conclusions

This chapter will contain the final remarks regarding this thesis, including a discussion on
the results, limitations and insights for future works of both experimental scenarios.
In the first one the goal was to determine whether or not a domain adaptation technique
could help a large scale Visual Place Recognition model deal with the domain gap between
the training images and the queries. This divergence exists because the former generally
come from a single source, Google Street View, while the latter may be taken by anyone
under any circumstance. Moreover, it would be very helpful to pick a model that’s trained
on a city and deploy it into another one without having to fetch another large dataset
to repeat the training on, as this process would be very long and costly. This issues are
reproduced in two different settings:

• Using the training and the test splits of the San Francisco XL datasets, it is possible
to isolate a domain gap concerning viewpoint shift, because the queries are taken by
consumers through commercial cameras;

• Using the training split from SF-XL and the test split from the Tokyo 24/7 dataset
an additional layer of complexity is added, since not only are the queries of the same
nature as those in the other setting, but they also come from a different city;

In both cases the idea is to train a CosPlace model, which is currently one of the best
performing approaches to VPR, and inserting it into a specific adversarial training reg-
imen which employ a simple yet effective Gradient Reversal Layer. The objective is to
create a feature extractor that is domain invariant with respect to the database images
and queries. This method has been choosen because of his proven effectiveness and strong
theoretical foundations.
In the first setting, the experiments prove that this procedure brings actual improvement
over the baseline. The gap is however quite slim (∼ 4.5%), thus proving the fact that the
original model is already quite robust to this type of domain shift.
In the second setting the results are similar in terms of increase in performances, however
they prove not only that the adversarial approach can work well in bridging the domain
gap between cities, but also that, by increasing the number of sample queries from the
target domain (i.e. Tokyo) the whole process becomes more robust to its hyperparameters
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and thus more reliable for deployment. In both cases it was establish that convergence
could be reached within a limited number of epochs.

In the second scenario the goal is to study in what way could the performances of
state-of-the-art be improved for indoor environment. This is extremely useful in the con-
text of Visual Localization, which is a deep learning task in which, given a picture, the
6 degrees of freedom that define the pose of the camera are estimated. This is generally
done through local descriptors matching between the queries and the candidates from the
database. The quality and speed of the process is directly proportional to the quality and
number of candidates that a VPR model can retrieve.
The first step is to create the wider possible benchmark using most of the available datasets
created in different indoor environments. Generally speaking, it was found that all ap-
proaches that utilizes a Dinov2 backbone work egregiously on larger evaluation thresholds,
such as 10 and 25 meters, while the constrastive-based SFRS is consistently the best under
the strictest threshold (1m). Overall, EigenPlaces, Salad, SFRS and Anyloc are proven
to be some of the most effective approaches, and the first two are therefore selected for a
fine-tuning procedure that exploits the few available labeled queries. The models are put
through a few epochs of constrastive learning in order to study what is the best way to
boost their performances in this particular domain. Results show that using loose thresh-
olds to define hard and soft positives (i.e. 10 and 25 meters) leads to the overall best
performances, while using stricter ones (2 and 5 meters) generates some overfitting over
a specific type of dataset. Moreover, the dataset Gangnam Station B1 seems to be able
to offer good training quality just by itself or in combination with Hyundai Department
Store B1. The experiments also investigates into the addition of the Baidu Mall dataset
into the training, revealing that it does not improve the performances. This is probably
due to its different appearance with respect to the other datasets. This means that what
the model learns from it is not useful during testing. Finally, Salad was also tested in the
same configurations and the results confirms all the previous findings.
The main limitation that seriously hinders the potential work on this topic is the serious
lack of large scale indoor datasets for Visual Place Recognition. Currently there are very
few options available and are generally limited in number of images and area covered.
This is because such they are created specifically for Visual Localization and thus require
an accurate 3D mapping, that can be done only through more complex, costly and slow
equipment. The extent of the future work on this topic will heavily depend on the quantity
and quality of newly-proposed datasets.
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