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Summary

The study of capital requirements is an extremely important topic for the stability of the
financial system. Recent geopolitical shocks including the war in Ukraine, the Israeli-
Palestinian conflict, tensions on supply chains in the Red Sea, in parallel with the Quan-
titative Tightening monetary policies of central banks are putting its robustness under
pressure. Being able to give an estimate of risk and interdependencies within investment
portfolios allows one to have a clear vision of costs-benefits in terms of risk-rewards. This
work proposes the use of copula theory both to address the problem of studying assets
dependencies and predicting capital requirements in the form of risk measures. The class
of Vine copulas is presented, which aims to overcome the limits linked to the adoption
of a particular family of copulas in addressing the cited topics. This class in fact allows
modeling the problem without the need to rely on a precise family but incorporating them
all, within the computational limits of the R package used. A Monte Carlo simulation
is developed and the validity of presented models is confirmed. Finally, an analysis of
probability equivalent levels is carried out, a tool that could be very useful for risk man-
agement, since it enables the comparison of risk measures under different conditions of
observability of financial markets.
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Chapter 1

Financial Background

1.1 The purpose of Finance
Finance is the study and discipline of money and capital assets. On one side, money is any
item accepted as payment for goods, services and repayment of debts. On the other side,
capital assets are properties of any kind, movable or immovable, tangible or intangible,
fixed or circulating, that are held by an assessee.

Behind these two trivial concepts, finance is a multidisciplinary field that can involve
insights from economics, mathematics, statistics and computer science. According to my
risk management professor, the purposes of finance are mainly two:

• Shifting consumption over time: if I have excess income in some period I might delay
consumption to a later time period. By a similar token, I might wish to anticipate
consumption to an earlier time period. This is possible thanks to the financial
system, which tries to match savers and borrowers, so that all of them may improve
their consumption timing. It is needless to specify how everything has a cost, which
depends on lending and borrowing rates.

• Risk transfer: an investor may shape the probability distribution of his wealth ac-
cording to his taste and appetite for risk. Clearly, for any player hedging a risk
exposure away, there must be another participant willing to assume that risk or part
of it. Adding also the uncertainty that circumscribes this environment, the financial
system plays the role of risk transfer mechanism.

These two points allow to introduce the so called time value of the money. The principle
is based on the premise that money has the potential to earn interest or other returns
over time, depending on economic and geopolitical conditions. ECB’s negative interest
rates policy is an example of monetary tool that can influence negatively future value of
the money, in a period of low inflation and economic stagnation.

Actually, as can be seen from the second point, time is intertwined with another
fundamental dimension in finance, namely, uncertainty or risk. Risks can be of different
types and are almost coutless in the finacial context, to name a few in simple words:
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Financial Background

• Market Risk: it is the risk of financial losses due to fluctuations in market prices or
the value of financial instruments.

• Credit Risk: it is the risk that an unexpected change in a counterparty’s credit-
worthiness, collateral value, or use of available margin in the event of default could
generate an unexpected change in the value of banks’ exposures.

• Operational Risk: the risk of financial losses resulting from inadequate or failed
internal processes, systems, people or external events.

• Liquidity Risk: the risk of being unable to buy or sell financial instruments quickly
without significantly affecting their prices. A crucial element that contributed to
banks’ inability to handle 2008 financial crisis was the lack of liquidity.

• Model Risk: the risk of financial losses resulting from errors or inadequacies in
financial models used for decision-making.

• Systemic Risk: the risk that events affecting the financial system as a whole could
lead to widespread financial instability.

Quantitative Risk Management is the area of finance focused on studying how to
control risk and balance possibility of gains. It includes the process of measuring risk and
developing strategies to manage it. The adjective Quantitative should refer to the use
of mathematical models. In my humble opinion, which comes from university experience
and brief work experience, I believe that quantitative risk management should not be an
exclusively data-driven process. In other words, the massive use of data is useless if there
is no underlying modeling of the financial system. Models should not only be data-driven,
but also algorithm-driven, which means that they should not only seek a good fit to the
data, but also be algebraically stated and proved according to a theoretical formalism.

1.2 Capital Requirements in Risk Management
Throughout its history, the financial landscape has operated in absence of a uniform global
regulatory framework, establishing common criteria for risk management and financial ro-
bustness internationally. This implied that each country or financial entity have adopted
its own protocols and capital requirements without following a universally accepted stan-
dardized approach. The lack of international agreement resulted in greater diversity in
risk management practices among nations and financial institutions. This diversification
has generated inequalities in the financial soundness of banks over the years, increasing
systemic risk in the event of a crisis.

Over time, unified regulations and principles for the banking sector were introduced,
with the aim of filling gaps in international supervision coverage, ensuring that no banking
institution escaped supervision. Limitations of these regulations particularly emerged
during the severe 2008 financial crisis, where banks failed to cope with the crisis precisely
because of insufficient liquidity. It was during those years that the Basel Committee took
action, issuing a set of provisions that are known as the Basel III Accords. These are global
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1.3 – Univariate Time Series Analysis

treaties, constituting a regulatory framework that establishes guidelines for managing risk
and strengthening financial soundness in the banking sector. The agreement aims to
ensure that banks maintain an appropriate level of capital, sufficient to cover potential
losses.

Although most of the troubled institutions were banks, a number of insurers were also
affected by the crisis, due to poor investment decisions by insurers that led to significant
losses, interconnectedness with banks, or general evidence of inadequate governance, says
Insurance and Authority [2018]. The crisis demonstrated the importance of an harmonized
understanding of risks by all actors of the financial system and the need to consider broader
implications for financial stability. For this reason, Solvency II Directive was implemented,
which also includes the calculation of capital requirements for different categories of assets
held by insurance and reinsurance companies.

Key points that connect these topics are how to measure risk, quantify the probability
of loss and how to account for the interdependence that can be created among different
financial institutions. Hence the need to define what risk measures and copulas are, the
cornerstone topics of this work.

1.3 Univariate Time Series Analysis
Before going in details of what risk measures and copulas are, it is important to define the
building blocks that enable the study of these two topics, i.e. univariate time series. In
a nutshell, they are a set of observations {rt : t = 1,2, ...} taken over time, where there is
assumed to be a temporal dependence. Each time serie can contain a trend, i.e. a general
direction or tendency exhibited by the data, and seasonal effects, i.e. recurring patterns
or fluctuations that follow a consistent and predictable cycle over specific time intervals.
Dependence between close observations is translated into the concepts of homoschedastic-
ity and heteroschedasticity. The first one represents the condition where the variance of
observations remains constant, indicating consistent level of dispersion. The second one
instead is the contrary, i.e. a scenario where variance varies, indicating unequal levels of
dispersion between observartions.

From a mathematical point of view, given a probability space (Ω, F , P) with sample
space Ω, σ-Algebra F and probability measure P , a time serie can be considered as a
realization of a stochastic process. The latter is a collection of random variables (Rt)t∈T
defined on (Ω, F , P), with values in (R, B(R)), where B(R) is the σ-Algebra of Borel. In
our case T is the set of all time istants, while the random variable Rt can be the log return
of a particular asset at time t, which is obviously uncertain. Important properties that
allow to distinguish different time series are:

• Strong stationarity: it means that by traslating a serie for a time h its distribution
does not change. In formulas, ∀h ∈ R, ∀t1, ..., tn ∈ T , ∀n ∈ N, ∀r = (r1, ..., rn) ∈ Rn

fRt1 ,...,Rtn
(r1, ..., rn) = fRt1+h,...,Rtn+h

(r1, ..., rn) (1.1)

where f is the multivariate density function.
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• Weak stationarity of order k: it is the property of a stochastic process where the
first k moments exist and are time invariant. In formulas, ∀t1, ..., tn ∈ T , ∀h ∈
R, ∀k1, ..., kn ∈ N such that k1 + k2 + ... + kn = k

E[Rk1
t1 Rk2

t2 ...Rkn
tn

] = E[Rk1
t1+hRk2

t2+h...Rkn

tn+h] (1.2)

• Markov property: the law of a process at a given time ti does not depend on its
entire past, but only on its most recent past. In formulas, given any set of temporal
indexes t1 < t2 < ... < ti

P (Rti = ri|Rti−1 = ri−1, Rti−2 = ri−2, ..., Rt1 = r1) = P (Rti = ri|Rti−1 = ri−1)
(1.3)

• Markov property of order h: it corresponds to a more restrictive case than the general
law. In fact, the distribution at a given time ti depends only on the previous h times,
in particular

P (Rti = ri|Rti−1 = ri−1, Rti−2 = ri−2, ..., Rt2 = r2, Rt1 = r1) =
= P (Rti = ri|Rti−1 = ri−1, Rti−2 = ri−2, Rti−h = ri−h)

(1.4)

In addition, two other elements that will be discussed throughout the work are the
autocovariance and autocorrelation functions. These are nothing more than the covariance
e correlation calculated between two different time instants ti and ti+l. For weak stationary
processes of order at least two, these fuctions depends only on the lagged time difference
and are defined as:

γ(l) := Cov(Rti , Rti+l) = E(RtiRti+l) − E(Rti)E(Rti+l) (1.5)

ρ(l) := Cov(Rti , Rti+l)
V ar(Rti)

= γ(l)
γ(0) (1.6)

Univariate time series models are the tools used to characterize, for example, the indi-
vidual assets that make up a portfolio, evaluating their mean, variance and understanding
the autocorrelation of log returns as the time interval changes. Henceforth, weak station-
arity of order at least two will be assumed, and the term will often be referred to simply
as stationarity. For non-stationary time series, the concepts presented are fully replicable,
although some adjustments would be needed, such as detrending series. The main models
used are presented below, along with the technical specifications chosen specifically for
this work. Closed formulas for mean, variance, autocovariance and autocorrelation are
available for all models, but they are complicated and their addition would not add any
value.

1.3.1 Autoregressive Models
Autoregressive model (AR) of order p express the mathematical concept that present value
rt of a time serie can be explained by a function involving its previous p values, namely
rt−1, ..., rt−p. In the conventional AR model, this functional relationship is linear:

rt =
pØ

l=1
ϕlrt−l + wt (1.7)
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1.3 – Univariate Time Series Analysis

where ϕl are parameters to be estimated while wt are i.i.d random variables, called in-
novation processes and follow a skewed-t distribution with parameters (ξ, ω, α, ν). This
distribution was proposed for the first time by Hansen [1994] and basically is the extension
of a student-t distribution including also a parameter to shape skewness. Formally:

wt = ξ + V −1/2Z

Z ∼ SN(ξ, ω, α)
V ∼ χ2(ν)/ν

(1.8)

where V is a chi-squared distribution with ν degress of freedom and SN(ξ, ω, α) is a skewed
normal distribution, which is a random variable such that:

fZ(x) = 2φ(z − ξ)Φ(αω−1(z − ξ))

φ(z) = (2π)−1/2exp(−z2

2 )

Φ(z) =
Ú z

−∞
φ(x) dx

(1.9)

ξ and ω are called respectively position and scale parameter, as they are nothing but the
mean and variance of a classic normal distribution. α instead is a parameter that refers
to skewness, which can be either positive or negative.

Intuitively, AR(p) models are Markov processes of order p. By defining the linear
operator Bprt := rt−p and calling Θp(B) := (1 − ϕ1B − ϕ2B2 − ... − ϕpBp), it is possible
to rewrite an AR(p) model as:

Θp(B)rt = wt (1.10)

It can be proved that AR(p) models are strong stationary if and only if all the roots of
the characteristic polynomial Θp(B) are greater than one in absolute value. This trans-
late for example in having |ϕl|<1 ∀ l=1,...,p in case of AR(1) with normally distributed
innovation.

1.3.2 Moving Average Models
In a completely similar way it is possbile to define moving average models (MA) of order
q, where the present value rt of a time serie is a function of last q innovations terms. The
functional relation is again linear:

rt =
qØ

l=1
θlwt−l + wt (1.11)

where θl are parameters to be estimated and wi
i.i.d∼ skewed-t(ξ, ω, α, ν) ∀ i=t-q,...,t. Also

in this case, by defining the polynomial ϕq(B) := (1 + θ1B + θ2B2 + ... + θqBq), it is
possible to write a MA(q) model as:

rt = ϕq(B)wt (1.12)

It can be proved that MA(q) processes are strong stationary if and only if all the roots
of ϕq(B) are greater than one in absolute value.
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1.3.3 Autoregressive Moving Average Models
AR models are effective for capturing trend-like patterns in the data. They represent
how past values influence the current state. The term "autoregressive" in fact indicates
self-regression, meaning that the serie is regressed on its own past values.

On the other hand, the focus of MA models is considering random fluctuations. These
models are effective when the emphasis is on filtering out short-term irregularities, by
highlighting the impact of recent shocks or unexpected events and providing insights into
the short-term volatility of time series.

Combinations of AR and MA models can enhance the overall modeling capacity, creat-
ing the so called Autoregressive Moving Average models (ARMA). Stationarity is critical
when working with AR models, as these models assume that relationships over time are
constant. If series are not weakly stationary, the parameters of AR models may vary and
make difficult model estimation. This problem does not occur for MA models, since they
are finite linear combination of a random variables for which the first two moments are
time invariant, so weak stationarity of order 2 always holds. From what has been said
regarding AR models, it is clear to require that time series under consideration should be
at least weakly stationary of order at least 2.

Mathematically, ARMA(p,q) models can be written as:

rt = ϕ0 +
pØ

l=1
ϕlrt−l + wt +

qØ
l=1

θlwt−l (1.13)

with wi
i.i.d∼ skewed-t(ξ, ω, α, ν) ∀ i=t-q,...,t. Parameters estimation and strong stationarity

conditions follow from AR(p) and MA(q) models.

1.3.4 Generalized Autoregressive Conditional Heteroschedastic-
ity Models

Up to now, models with costant variance over time were presented. However, different
situations may arise in the reality of stressed and correlated markets. As reported by
Jondeau et al. [2006], volatility of returns can cluster in some cases, so that large variation
of prices (positive or negative) are expected after large variation of prices (of either sign).
This suggest that assets volatility tend to revert to some mean rather than remaining
constant or moving in monotonic fashion over time. In addition, according to Ait-Sahalia
et al. [2013], rising asset prices are accompanied by declining volatility and vice versa. In
fact, when asset prices fall, companies mechanically become more leveraged as the relative
value of their debt increases relative to that of their equity. As a result, it is natural to
expect their stocks to become riskier and thus more volatile. The term leverage effect
refers to this phenomenon, and it has been documented that it is generally asymmetrical,
in the sense that declines in stock prices are accompanied by greater increases in volatility
than the decline in volatility that accompanies the increase in prices.

While asymmetric behaviors and fat tail can be partially captured by skewed-t in-
novation processes, the same cannot be said for volatility clustering and leverage effect.
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1.3 – Univariate Time Series Analysis

This is the reason why Generalized Autoregressive Conditional Heteroschedasticity mod-
els (GARCH) and their variations were introduced firstly by Bollerslev [1986]. To put it
simply, GARCH models can be decribed as ARMA models for the volatility. Mathemat-
ically, as done by Sommer [2022], we can decompose the return at time t rt in a mean
term and a volatility term:

rt = µt + σt

µt = ϕ0 +
pØ

l=1
ϕlrt−l + wt +

qØ
l=1

θlwt−l

σt = wtϵt

w2
t = α0 +

mØ
l=1

αiσ
2
t−i +

sØ
j=1

βjw
2
t−j

(1.14)

with ϵt ∼ skewed-t(ξ, ω, α, ν). With this notation we can say that the mean term follows
an ARMA(p,q) model, while the volatility term follows a GARCH(m,s) model. Putting
together we obtain the so called ARMA(p,q)-GARCH(m,s) model. Some conditions that
must hold are: αi ≥ 0, βi ≥ 0 ∀i, j and

qmax(m,s)
i=1 (αi +βj) < 1. The last one is a sufficient

but not necessary condition to guarantee a finite variance of innovations and so weakly
stationary of time series, as reported by Jondeau et al. [2006].

It is important to observe that the analogy with ARMA models shows why volatility
clustering can be explained with GARCH models, as trend patterns, random fluctua-
tions, and short-term irregularities in volatility can be explained with this type of models.
Regarding leverage effect, there are variants of GARCH models, such as the threshold
GARCH by Zakoian [1991], that allow to account for this phenomenon as well, but this
is beyond the scope of the following work.

1.3.5 Estimation, forecast and model quality assesment
Having presented ARMA and GARCH models, it is necessary to give some background
about their estimation, prediction and model quality assessment. As we have noted in
previous sections, these models involve the estimation of various parameters, each one
playing a key role in characterizing time dynamics and volatility patterns of financial
time series. Understanding the estimation process is important both for underlying the
structure of data but also to establish the effectiveness of these models in capturing and
predicting market behavior.

In this work, parameters are determined via maximum likelihood estimation. By fixing
skewed-t distribution as innovations and through transformations of random variables, it
is possible to obtain analytically the density of returns f(rt, rt−1, ..., r1; θ), where
θ = (ϕ0, ..., ϕp, θ1, ..., θq, α0, ..., αm, β1, ..., βs, ξ, ω, α, ν) is the vector of parameters. After
this, given a vector of observed returns r1, ..., rt, the likelihood is defined as:

L(θ) := f(θ; rt, ..., r1) =
tÙ

i=1
f(rt; rt−1, ..., r1) (1.15)

15



Financial Background

where the last equality holds thanks to factorisation of the joint distribution f(θ; rt, ..., r1).
Maximization of this function returns an estimator θ̂ of the parameters θ. The process is
performed first for the mean term, then on the series of squared residuals for the volatility
term, since w2

t must be modeled according to an ARMA model, and not σt. All this is
done in a rolling window fashion for the following analysis. More details about the rolling
window approach are given below but basically it is a window of fixed size moving through
the time series data, where, at each step, the model parameters are recalculated based on
the observations within the window. This dynamic process allows the model to capture
evolving patterns over time, providing a real-time and adaptive estimation of parameters.

Time series forecasting, on the other hand, can be done recursively, iterating a one-step
ahead forecast for the desired number of times. In fact, given a series of returns and the
associated estimated parameters of an ARMA-GARCH model up to time t, it is possible
to obtain a return at time t+1, assuming that the model structure is the same, by simply
simulating an observation from the known distribution.

The last step, and maybe the most importan one, is model quality assesment. Actually,
accuracy and reliability of presented models is an essential element, because without that
the whole discussion would lose meaning. Graphical approaches based on properties of
ARMA-GARCH autocorrelation function exist, but they become useless when considering
portfolios with substantial number of assets. For this reason, the procedure adopted in
this work is to study standardized residuals, defined as:

zt = rt − µ̂t

σ̂t
(1.16)

Theoretically, since they are by definition equivalent to the innovation processes, they
should be independent and identically distributed according to a skewed-t distribution
with common parameters. In addition, by the hypothesis of weakly stationarity, they
should not exibit any type of autocorrelation and this can be verified by the Ljung-Box
test of Ljung and Box [1978]. The null hypothesis is that residuals up to lag H are
independently distributed and the test examines the autocorrelation function by means
of the statistic:

Q = T (T + 2)
HØ

h=1

ρ̂(h)2

T − h
under H0∼ χ2(H) (1.17)

Operatively, good fit happens with high p-values i.e. one does not want to reject the null
hypothesis. Often, multiple values of H are tested.

In conclusion, performance evaluation between different models to choose the most
suitable one is done with the Akaike Information Criterion (AIC) of Akaike [1973] and
the Bayesian Information Criterion (BIC) of Schwarz [1978], defined as:

AIC := −2 ln(L(θ)) + 2k

BIC := −2 ln(L(θ)) + k ln(n)
(1.18)

where k is the number of model parameters and n is the sampel size. These are widely
utilized tools for model selection because they offer selection criteria that balance model
efficiency, measured through likelihood, with a penalty for model complexity in terms of
the number of parameters. This helps prevent overfitting, ensuring the choice of models
that are both efficient and parsimonious.
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1.4 Risk Measures
According to Brandimarte [2018] a risk measure ξ is a functional that maps a continuous
random variable RP

t to a real number:

ξ : RP
t → R (1.19)

where t ≥ 0 is an instant of time and RP
t is a continuous measurable function that can

represent, for example, the value of a portfolio P at time t. More generally, a risk measure
is an objective assessment of risk and, to be such, is usually characterized by certain
properties of coherence in the context of quantitative risk management. The following
properties define a coherent risk measure:

• Normalization: if a random variable is identically zero (RP ≡ 0), it is reasonable to
set ξ(0) = 0. In simple words, if we do not hold any portfolio, we are not exposed
to any risk.

• Monotonicity: if RP
1 ≤ RP

2 , meaning that the inequality holds almost surely, i.e., for
all possible outcomes, with exception of a set of measure zero, then ξ(RP

1 ) ≥ ξ(RP
2 ).

In simple words, if the value of portfolio 1 is never larger than the value of portfolio
2, then portfolio 1 is at least as risky as portfolio 2.

• Translation invariance: if we add a fixed amount a to the portfolio, the risk measure
is affected: ξ(RP + a) = ξ(RP ) − a. If a > 0, then we are adding a positive value to
our portfolio for each possible scenario, so risk is reduced.

• Positive homogeneity: if we double the amount invested in a portfolio, we double
risk. Formally: ξ(bRP ) = bξ(RP ), for b ≥ 0. This condition does not encapsulate the
more general case where the liquidity effect is taken into account, i.e., the larger a
position the more difficult is to disassemble it, since large sales contribute to further
depreciation in reality.

• Subadditivity: the risk of the sum of two random variables cannot exceed the sum of
their respective risks: ξ(RP

1 + RP
2 ) ≤ ξ(RP

1 ) + ξ(RP
2 ). In simple words diversification

is expected to decrease risk and cannot increase it.

A direct interpretation of these properties is that ξ(RP + ξ(RP )) = ξ(RP ) − ξ(RP ) = 0,
which means that the risk measure of a portfolio can be considered as the minimum
amount of additional capital needed to make portfolio acceptable in some sense, i.e. with
risk equal to 0. In addition, thanks to homogeneity and subadditivity, every coherent risk
measure is also convex, since ξ(λRP

1 + (1 − λ)RP
2 ) ≤ λξ(RP

1 ) + (1 − λ)ξ(RP
2 ) ∀λ ∈ [0,1].

1.4.1 Value-at-risk
In this work two particular risk measures are taken into consideration. The first one is
the value-at-risk (VaR), which can be considered as the worst expected loss over a given
time horizon for a fixed confidence level, knowing the market underlying distribution. To
understand the importance of this risk measure, it is sufficient to note that according

17



Financial Background

to Basel III, Pillar I, there is a risk coverage indicator, known as Stressed VaR, used to
assess risk under stress conditions, which could result in increased capital for some trading
activities and derivative instruments, especially in the case of complex transactions. In a
complementary way, as reported by Insurance and Authority [2022], the Solvency Capital
Requirements should at least cover non-life underwriting risk, life underwriting risk, health
underwriting risk, market risk and counterparty default risk, which should all be calibrated
using a value-at-risk approach. Mathematically speaking, value-at-risk at confidence level
α ∈ (0,1) is nothing but the α quantile of portfolio return distribution RP

t at a specific
time t:

V aRP,t
α := sup

î
r|FRP

t
(r) ≤ α

ï
= QRP

t
(α) (1.20)

It can be proved that value-at-risk satisfies all properties of coherent risk measures
except Subadditivity, as shown in Brandimarte [2018].

1.4.2 Expected Shortfall
The other risk measure adopted in this work tries to overcome value-at-risk limits from a
mathematical point of view and is called expected shortfall (ES). Roughly speaking it is
the expected value of a portfolio, conditional on having a value lower than value-at-risk.
References about this measure are both present in Insurance and Authority [2016] and
on Banking Supervision [2019], where is used to derive shocks for stress test and capital
requirements for internal rating models respectively. From a mathematical point of view,
it is defined as:

ESP,t
α := E

è
RP

t |RP
t ≤ V aRP,t

α

é
= 1

α

Ú α

0
rfRP

t
(r) dr = 1

α

Ú α

0
V aRP,t

u du (1.21)

where the last equality holds thanks to the change of variable u=F(r), which implies that
r=F −1

RP
t

(u) = V aRP,t
u (r). The peculiarity of ES is that it is a coherent risk measure, which

therefore also includes the property of subadditivity.

1.4.3 Backtesting
Backtesting aims to assess model accuracy of predicted risk measures by employing both
unconditional and conditional coverage hypothesis tests to study the behavior of the
number of exceedances. Given portfolio observed returs over a period of time h, an
exceedance occurs when the value of the portfolio is worse than the predicted risk measure.
The tests adopted in this work are presented below and depend on the risk measure chosen:

• Value-at-risk test of Kupiec (Kupiec [1995]): unconditional tests to evaluate if the
observed frequency of exceedances aligns with the chosen confidence level within the
selected time interval. The null hypothesis H0 states that the expected violation
rate is equal to the theoretical confidence level α. The test statistic is defined as:

LRuc = −2ln[αn(1 − α)h − n] + 2ln(n/h)n(1 − n/h)h − n] under H0∼ χ2(1) (1.22)

where n and n/h are respectively the total number and observed proportion of ex-
ceedances. Also in this case, good fit happens with high p-values, i.e. one does not
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want to reject the null hypothesis. As noted by Tòfoli et al. [2019], Kupiec’s test
may be rather questionable, since it does not check whether exceedances are clus-
tered with respect to the time at which they appear, but rather assumes they arise
independently.

• Value-at-risk test of Christoffersen (Christoffersen [1998]): to account for indepence
of exceedances, Christoffersen considered a binary first-order Markov chain for the
exceedances defined as follows:

It := ✶{rt< ˆV aRt
α} t = 1, ..h

S = {1 := V aR violation, 0 := No V aR violation}
πi,j = P (It = j|It−1 = i) = (ni,j/

Ø
j

ni,j) ∀i, j = 0,1
(1.23)

where I is the stochastic process representing the indicator sequence of violations
and S is the state space. Under H0: π0,1 = π1,1 = α, i.e. the estimated violation
rate is equal to α and exceedances are independet. The test statistic is:

LRcc = −2ln[αn(1−α)h−n]+2ln[(π0,1)n0,1(1−π0,1)n0,0π
n1,1
1,1 −(1−π1,1)n1,0 ] under H0∼ χ2(2)

(1.24)

• Expected Shortfall Test of McNeil and Frey (McNeil et al. [2000]): the null hypoth-
esis asserts that the excess conditional shortfall, i.e. the excess of the actual series
when VaR is violated, is independent and identically distributed (i.i.d.) with zero
mean. A one-sided t-test is employed against the alternative hypothesis that the
mean of the excess shortfall is greater than zero. The rationale behind this is to
investigate whether the conditional shortfall is systematically underestimated by the
model under consideration. The t-test statistic is:

t = X̄ − µ0

σ/
√

n
(1.25)

where X̄ is the sample mean of the excess shortfall, µ0 is the assumed mean (zero
under H0), σ is the sample standard deviation and n is the sample size. To obtain
p-values associated with the test statistic, the distribution of the excess shortfall is
crucial. However, making assumptions about the distribution can introduce bias.
To solve this problem, the bootstrap resampling method is used to obtain empirical
estimates of the shortfall excess distribution. Bootstrap consists in repeatedly sam-
pling with replacement from the empirical distribution of observed data to generate
the so called multiple bootstrap samples. For each sample, the t-test statistic is cal-
culated, resulting in a distribution of test statistics. The p-value is then calculated
as the proportion of bootstrap statistics that are more extreme than the observed
test statistic. This nonparametric approach allows for a more robust evaluation of
the hypothesis test, mitigating potential biases associated with assumptions about
the distribution of excess shortfall.
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Chapter 2

Copula Theory

Having outlined how to measure risk in the univariate case, the next problem that arises
is the construction of multivariate distribution models, which can be complicated if one
wants to go beyond the simple gaussian case. In general, there are two main approaches
to define the structure of n variables functions:

• On the one hand there are parametric families of distribution depending on lim-
ited number of parameters, such as the multivariate normal distribution previously
mentioned.

• On the other hand, the approach can start by characterizing individual random
variables and then putting pieces together, as copula theory does.

To make concepts more clear, the example presented by Nelsen [2005] can come to aid.
Without giving too much technicalitites, consider a pair of random variables X and Y,
with cumulative distribution fuction (CDF) F (x) = P (X ≤ x) and G(Y ) = P (Y ≤ y),
respectively, and joint distribution F(x,y)=P (X ≤ x, Y ≤ y). For each pair of real
numbers (x,y) we can associate three numbers that lies all in [0,1], namely: FX(x), Fy(y)
and FX,Y (x, y). In other words, each pair (x,y) leads to a point (FX(x), Fy(y)) in the
unit square [0,1]x[0,1], and this ordered pair correspond in turn to a number FX,Y (x, y)
in [0,1]. The correspondance which assigns the value of joint distribution to each ordered
pair of values of individual CDFs is called copula.

Another important aspect having to do with the multivariate world is the study of
correlation and dependencies between individual constituents of multivariate distribu-
tions. Two well known measures to capture these are: Person’s correlation coefficient and
Kendall’s tau. The first one, however, is only able to capture linear associations, while
the second one is more related to the concepts of concordance and discordance between
one random variable and another identically distributed one. Copulas, on the other hand,
are a way of representing the dependence between random variables independently of
marginal distributions, but instead capturing the association between ranks, which are
invariant under monotonic transformations of the initial random variables. More details
about the structure and definition of all these objects are explained below.
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2.1 Copulas Fundamentals
The idea behind copulas is to factorise an n-dimensional multivariate cumulative distri-
bution FX(x1, ..., xn) into two componets:

• a set of univariate marginal CDFs, namely F1(x1), ..., Fn(xn)

• a function C called copula that maps the n univariate marginals from the hypercube
[0,1]n into the unit interval [0,1].

C should be interpreted as a sensible joint CDF, and to make sense, certain properties
must be satisfied. Mathematically, a copula C, is a function defined on [0,1]n, such that:

• C is grounded: in simple terms, below the support of any univariate marginal, the
CDF must be 0. Formally, C(u1, ..., un)=0 whenever at least one uk is equal to the
lowest value of the corresponding univariate marginal support.

• C is n-increasing: it is the natural extension in the n-dimensional case of the so called
rectangular inequality. To make the concept clear, in the bidimensional case, ∀ S =
[a1, b1] × [a2, b2], it should hold that C(b1, b2) − C(b1, a2) − C(a1, b2) + C(a1, a2) ≥ 0.
This relationship can be easily extended to the multidimensional case.

• C has margins Ck, k=1,...,n satisfying Ck(u) = u ∀ u ∈ [0,1], i.e. uniform margins.
Under these requirements, thanks to the famous Sklar’ theorem, it is possibile to say that,
given any n-dimensional distribution with continuous marginal CDFs F1, ..., Fn, there exist
a unique copula C such that:

FX(x1, ..., xn) = C(F1(x1), ..., Fn(xn) ∀x = (x1, ..., xn) (2.1)
Assuming invertibility of the univariate marginal CDFs and by taking the transformation
ui = Fi(xi) ∀i, we can rewrite the equation as C(u1, ..., un) = FX(F −1

1 (u1), ..., F −1
n (un)).

From now on we will refer to copula scale as data denoted by ui and to original/real
scale when dealing with the initial data xi. In addition, we will often fall back on the
two-dimensional case to simplify the discussion.

After defining copulas, several families of them can be derived. On the one hand, some
are obtained from the joint CDF of multivariate distributions, such as gaussian and t
copulas. On the other hand, some have an explicit representation and can be, for example,
one-parameter copulas, such as certain archimedeans, or two-parameter copulas, such as
some members of the biparameter bivariate (BB) family. In the following sections, we
will introduce a specific type of copula that eliminates the need to analyze each individual
family to determine which one is most suitable for describing a generic data set. However,
it is crucial to grasp the distinctive element among copulas, i.e. copula density, as this
factor will guide the search for the most suitable one. In the bivariate case, since C is a
joint sensible CDF, it is possible to write:

fX1,X2(x1, x2) = ∂2FX1,X2(x1, x2)
∂x1∂x2

= ∂2C(FX1(x1), FX2(x2))
∂x1∂x2

= c(FX1(x1), FX2(x2))fX1(x1)fX2(x2)

=⇒ c(u1, u2) ui=F (xi)= c(FX1(x1), FX2(x2)) = fX1,X2(x1, x2)
fX1(x1)fX2(x2)

(2.2)
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where c is copula density. Same can be done for the multidimensional case. Copula fami-
lies are characterized by different densities, which in turn allow to examine different joint
behavior of random variables. The extent of tail thickness and its symmetry properties
are for example reflected by the density and enable the modeling of various degrees of
multivariate dependence. In addition, rotations of copulas, such as 90-degree counter-
clockwise rotation given by C90(u1, u2) = C(1 − u1,1 − u2), can be used, for example,
to model negative dependence with copulas that have positive tail dependence. Figure
2.1, taken from Sommer [2022], show marginal normal contour plots for some bivariate
copula families. Inverse normal scale distribution is adopted for better visualization and
comparison of tails. Each copula, is displayed with strong and weak dependence. These
graphs show plausible patterns of tail dependence that can be obtained with different
copula families.

Figure 2.1. Marginal normal contour plots of some bivariate copula families.
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2.2 Vine Copulas
Despite the large number of bivariate copulas, the multivariate case has been little studied
until recently. As already said, the most popular model is multivariate gaussian distribu-
tion, even if it accounts only for symmetric and non-heavy tails. There have been efforts
to extend the class of Archimedean copulas in the multivariate case, but these models
require additional restrictions on parameters. On the other side, firstly Joe [1996], then
Bedford and Cooke [2001], proposed a probabilistic construction of multivariate distri-
butions based on bivariate copulas as building blocks. This approach is the so called
pair-copula construction and was formally outlined by Aas et al. [2009].

The main idea is to decompose the dependence among n variables by studying the
dependence among the n(n−1)

2 possible pairings of all variables. However, since to define
the weight of an asset within a portfolio it is necessary to consider the dependence it
has with all other assets, pair dependence is studied factorising the multivariate density.
Consider for example a portfolio X=(X1, X2, X3), where Xi represent the i-th asset. Its
density can be written in two ways:

f123(x1, x2, x3) = f3(x3)f2|3(x2|x3)f1|23(x1|x2, x3)
f123(x1, x2, x3) = c123(F1(x1), F2(x2), F3(x3))f1(x1)f2(x2)f3(x3)

(2.3)

where ci,j,k is the copula density associated to the vector (Xi, Xj , Xk). The first equality
holds as a consequence of the product formula, while the second follows from equation
2.2. By reiterating 2.3 for the elements present in the right hand side of the first equation
it is possible to write:

f2|3(x2|x3) = f23(x2, x3)
f3(x3) = c23(F2(x2), F3(x3))f3(x3)f2(x2)

f3(x3) = c23(F2(x2), F3(x3))f2(x2)

f1|23(x1|x2, x3) = f123(x1, x2, x3)
f23(x2, x3) =

f13|2(x1, x3|x2)f2(x2)
f23(x2, x3) =

=
c13|2(F1|2(x1|x2), F3|2(x3|x2))f1|2(x1|x2)f3|2(x3|x2)f2(x2)

f23(x2, x3) =

= c13|2(F1|2(x1|x2), F3|2(x3|x2))f1|2(x1|x2)
= c13|2(F1|2(x1|x2), F3|2(x3|x2))c12(F1(x1), F2(x2))f1(x1)

f123(x1, x2, x3) = f3(x3)f2|3(x2|x3)f1|23(x1|x2, x3)
= f3(x3)c23(F2(x2), F3(x3))f2(x2)·
· c13|2(F1|2(x1|x2), F3|2(x3|x2))c12(F1(x1), F2(x2))f1(x1)

(2.4)

What we have done is writing a joint multivariate density as the product of univari-
ate marginal densities and bivariate copulas, called pair-copulas. This is the approach
behind the definition of vine copulas, which allows to evaluate families and parameters
for each pair-copula independently, consequently obtaining a wide variety of dependency
structures. The concept can be extended in the n-dimensional case and in order to do
this we have to refer to the structures defined in Dißmann et al. [2013].
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2.2.1 R-vine copulas definition
The first problem that arises from what said until now is the identification of the needed
pairs of variables and their corresponding set of conditioning variables. In plain english,
what is done for the portfolio X=(X1, X2, X3) can be repeated in a completely similar
way for the portfolio X̂=(X3, X2, X1). It is evident that the two portfolios are identi-
cal, however, the multivariate joint density factorisation will result different by applying
equation 2.4. This problem is overcome by defining a sequence of trees called regular vine
(R-vine), whose multivariate distribution will be the R-vine copula.

An object V = (T1, ..., Tn−1) defined over n elements is called a regular vine if:

• T1 is a tree with nodes N1 = 1, ..., n and a set of edges denoted by E1.

• For i=2,...,n-1, Ti is a tree with nodes Ni=Ei−1 and edge set Ei.

• For i=2,...,n-1 and {a, b} ∈ Ei with a={a1, a2} and b={b1, b2} it must hold that #(a
∩ b)=1 (proximity condition), where # denotes the cardinality of a set.

In simple words, as reported by Dißmann et al. [2013], an R-vine on n elements is a nested
set of n-1 trees such that the edges of tree j become the nodes of tree j+1. Proximity
condition ensures that two nodes in tree j+1 are connected if these nodes share a common
node in tree j. An example of R-vine on seven variables can be seen in Figure 2.2, which
will be used as reference to make all concepts clear from now on.

In order to define an R-vine copula we must first introduce some additional elements,
which are:

• Complete union of an edge ei ∈ Ei ∀i: it is the set of all indexes that an edge
countains. In formulas, Uei = {n1 ∈ N1|∃ej ∈ Ej , j = 1, ..., i − 1, with n1 ∈ e1 ∈
e2 ∈ ... ∈ ei−1 ∈ ei} ∈ N1. For example, the complete union of the edge a between
(1,2) and (2,3) in T2 of Figure 2.2 is {1,2,3}. Similarly, the complete union of the
edge b between (2,3) and (3,6) in T2 of Figure 2.2 is {2,3,6}.

• Conditioning set of an edge ei = {a, b} ∈ Ei with a,b ∈ Ni ∀i: it is the intersection
of complete unions of edges a and b. Note that the meanings of node and edge are
interchangeable, given the structure of R-vines where each node of a tree corresponds
to an edge of the previous tree. In formulas, Dei = Ua ∩ Ub and as an example one
can see that the conditioning set between edges a and b previously defined is {2,3}.

• Conditioned set of an edge ei = {a, b} ∈ Ei with a,b ∈ Ni ∀i: it is the symmetric
difference of complete unions of edges a and b. In formulas, Cei = (Ua \ Ub) ∪ (Ub \
Ua) = Cei,a ∪ Cei,b, where Cei,(·) := U(·) \ Dei can be thought as the conditioned
set of a generic edge ei with respect to a generic node/edge (·). For example, the
conditioning set between edges a and b previously defined is {1,6}.

• Constrain set of V : it is defined as CV = {({Ce,a, Ce,b}, De)|e ∈ Ei, e = {a, b}, i =
1, ..., n − 1}. Essentially, it is a structure that combines the conditioning and condi-
tioned sets for each edge. In Figure 2.2, for every edge of the R-vine, the conditioned
set is represented by what is written before "|", while the conditioning set is repre-
sented by what is written after "|".
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Figure 2.2. Example of R-vine on seven variables, taken from Dißmann et al. [2013].

Having defined all the possible details that characterize an R-vine object, we can
now characterize R-vine copulas: the triple (F,V ,B) is called R-vine copula specifica-
tion if F=(F1, ..., Fn) is a vector of continuous invertible distribution functions, V is a
n-dimensional R-vine and B={Be|e ∈ Ei, i = 1, ..., n − 1} is the set of bivariate copulas
families associated to each edge of the different trees, also called pair-copulas. It is im-
portant to immediately highlight the distinction between R-vine copula specification and
R-vine copula distribution. As reported by Dißmann et al. [2013] a joint distribution F
of a random vector (X1, ..., Xn) is said to realize an R-vine copula specification (F,V ,B) if
for each e ∈ Ei, i = 1, ..., n − 1, e = {a, b}, Be is the bivariate copula of XCe,a and XCe,b

given XDe = {Xi|i ∈ De}, where it is assumed that this conditional copula is indepen-
dent of the conditioning variables XDe . The distribution followed by the copula instead
is called R-vine copula distribution. In plain english, R-vine copula specification refers
to data in real scale, whose copula associated with the multivariate CDF is an R-vine
copula. On the other side, R-vine copula distribution refers to data on copula scale. Us-
ing the same notation of Dißmann et al. [2013], we will refer to the copula density with
family Be, associated to the edge e={a, b}, as cCe,a,Ce,b|De

. One thing that can be observed
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immediately concerns the possibility of adopting different copulas families independently
from each other. Nonetheless, as the specified copulas in a tree impact the conditioned
variables utilized in subsequent trees, the selection of different copulas will exert mutual
influence. It therefore seems reasonable that portfolio dependences can be modeled by
means of R-vine copulas.

2.2.2 Density of an R-vine specifications
We are now able to extend what is reported in equation 2.4 for the multivariate case
with n>3. In fact, given a R-vine copula, thanks to the Sklar theorem and the notation
adopted, there is a unique multivariate distribution F that realizes this copula, and its
density is:

f1...n(x) =
nÙ

k=1
fk(xk)

n−1Ù
i=1

Ù
e∈Ei

cCe,a,Ce,b|De
(FCe,a|De

(xCe,a |xDe)FCe,b|De
(xCe,b

|xDe)) (2.5)

where x=(x1, ..., xn), e={a, b}, xDe = {xi|i ∈ De} and fi is the marginal density ∀i =
1, ..., n.
It is quite obvious that the calculation of this function can be very complicated as the
dimensionality increases. For this reason, Dißmann et al. [2013] defines a way to store
R-vines as arrays. The concept involves organizing the constrain set of an R-vine within
the columns of an n-dimensional lower triangular matrix. This structural arrangement
will be used also in the next sections for likelihood calculation and sampling. The two
main elements needed to encode R-vines in arrays are:

• Array constrain set: given a lower triangular matrix M=(mi,j)i,j=1,...,n, it is defined
as CM := CM (1) ∪ ... ∪ CM (n − 1) where CM (i) = {({mi,i, mk,i}, D)|k = i +
1, ..., n, D = {mk+1,i, ..., mn,i}}∀i = 1, ..., n − 1. Similarly to above, {mi,i, mk,i} is
called conditioned set, while D is the conditioning set.

• R-vine array: a lower triangular matrix M=(mi,j)i,j=1,...,n is a R-vine array if for
i=1,...,n-1 and k=i+1,...,n-1, there is a j in i+1,...,n-1 such that (mk,i, {mk+1,i, ..., mn,i}) ∈
BM (j) or ∈ B̂M (j), where:

BM (j) := {(mj,j , D)|k = j + 1, ..., n; D = {mk,j , ..., mn,j}}
B̂M (j) := {(mk,j , D)|k = j + 1, ..., n; D = {mj,j} ∪ {mk+1,j , ..., mn,j}}

(2.6)

It can be proved that the constraint set V of an R-vine is equal to the array constraint
set CM of the corresponding R-vine array M. However, matrix M associated to a R-vine
structure is in general not unique, as outlined by Dißmann et al. [2013]. Using definition
2.6, it is possible to rewrite equation 2.5 as:

f1...n =
nÙ

j=1
fj

1Ù
k=n−1

k+1Ù
i=1

cmk,k,mi,k|mi+1,k,...,mn,k
(Fmk,k|mi+1,k,...,mn,k

, Fmi,k|mi+1,k,...,mn,k
) (2.7)

where arguments of the fuctions are omitted to simplify notation.
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Figure 2.3. R-vine specification density estimation algorithm.

Figure 2.3 shows the procedure defined by Dißmann et al. [2013] to evaluate equation
2.7. Structures T and P are the matrices that contain information about types and
parameters of each bivariate copula. In particular, for all j = 1, . . . , n−1, i = j +1, . . . , n,
the entry mi,j of matrix M encodes the copula of variables indexed by mj,j and mi,j

conditional on the variables indexed by {mi+1,j , . . . , mn,j}. ti,j denotes the copula family,
while pi,j contains the parameters of this copula. M is assumed with all the diagonal
entries ordered from n to 1, i.e., mk,k = n − k + 1∀k. Ordering the array differently will
lead to the same R-vine but with relabeled indexes. M is called the maximum array and
is defined as:

M = (mi,k)i,k=1,...,n with mi,k = max{mi,k, ..., mn,k ∀k = 1, ..., n and i = k, ..., n} (2.8)

In words, mi,k is the maximum of all entries in the k-th column of M from the bottom up
to the i-th element. The definition of M is used to associate the correct indexes with the
different entries of the matrix M. Knowing the parameters and families that characterize
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each density c of equation 2.7, it is possible to evaluate the conditional distributions F(·)|(·)
inside the brackets of c. This can be done using the so called h-functions. According to
the notation of equation 2.5, Joe [1996] proved that the following relation holds:

FCe,a|De
(xCe,a |xDe) =

∂CCa|Da
(FCa,a1 |Da

(xCa,a1
|xDa), FCa,a2 |Da

(xCa,a2
|xDa))

∂FCa,a2 |Da
(xCa,a2

|xDa)
:= h(FCa,a1 |Da

(xCa,a1
|xDa), FCa,a2 |Da

(xCa,a2
|xDa))

(2.9)

where FCa,a1 |Da
(xCa,a1

|xDa) and FCa,a2 |Da
(xCa,a2

|xDa) are obtained in the same way by
recursion. With all these instruments the algorithm basically performs an outer for-
loop to iterate over the columns of M from right to left, an inner for-loop to iterate
over the rows of M from bottom up to the diagonal and computes the h-functioni,k

for copula type ti,k with parameters pi,k in a recursively manner. The h-functions are
stored in the arrays V direct and V indirect. Dißmann et al. [2013] proved that z

(1)
i,k =

Fmk,k|mi+1,k,...,mn,k
(xk,k|xi+1,k, ..., xn,k) and z

(2)
i,k = Fmi,k|mi+1,k,...,mn,k

(xi,k|xi+1,k, ..., xn,k) for
k=n-1,...,1 and i=n,...,k+1. This allows to evaluate efficiently the multivariate density of
an R-vine copula specification.

2.3 Structure Selection of R-vine Copula specifica-
tions

Up to now we have seen how to evaluate the density of an R-vine copula specification
given a vector of observed values. However, copulas parameters were supposed to be
known. In a context where these arguments are not known a maximum log-likelihood
estimation approach can be used to infer them. Log likelihood expression L can be
obtained repeating algorithm shown is Figure 2.3 and sobstituting L=0 in line 0 and
L = L + log c(z(1)

i,k , z
(2)
i,k |ti,k, pi,k) in line 14. A more operational and less computationally

expensive approach than what has just been said is the sequential estimation, where tree
structure of R-vines is exploited to estimate the parameters of each pair-copula of each
tree separately. Essentially, the parameters of pair copulas associated with the first tree
are first estimated, then the variables are transformed into the copula scale and used to
estimate the parameters of pair copulas in the subsequent tree. This process is repeated
until all the trees are finished and usually represents a good approximation for the joint
maximum likelihood estimation.

It is therefore clear that the problem underlying this sequential approach is the char-
acterization of R-vine structures, which from a mathematical point of view translates into
the problem of determining the correct order of the trees. In fact, sorting tree nodes
differently from an initial R-vine copula specification will result in the same R-vine but
with relabeled indexes. From a practical point of view, since these indexes could, for
example, represent assets, it is important to link them correctly and meaningfully. Wrong
assets connections could have drastic consequences on the estimation of portfolios internal
dependencies, which in turn could lead to incorrect prediction of risk measures in stressed
market conditions. This point is highlighted by Dißmann et al. [2013] to be important for
real-world applications, where R-vine copulas must be fitted from a generic data set.
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An additional reason for adopting a sequential estimation strategy, instead of for exam-
ple testing all possible copula specifications, lies in the very rapid increase in the number
of possible index orderings, and so of R-vine tree structures, as the total number of nodes
increase. It is quite intuitive how the global optimum is not guaranteed with a sequential
approach, which is why a possible future extension could be instead to consider a dy-
namic programming approach for structure selection. Despite this, with the model under
consideration, trees are selected so that the chosen pairs model the strongest pairwise
dependencies. This is a desiderable feature for real world applications, as usually it is
important to firstly model correctly the dependence structure between random variables
that have high dependence. In addition, it is also natural to assume that randomness
is driven by the dependence of only some variables and not all. All these concepts are
translated into formulas by algorithm in Figure 2.4. Kendall tau is chosen as a measure

Figure 2.4. R-vine structure selection algorithm.
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of dependece, since it is at least able to capture correlations that are not necessarily lin-
ear. Given two random vectors X = [X1, X2], X̂ = [X̂1, X̂2] independent and identically
distributed, it is defined as:

ρτ (X, X̂) = P{(X1 − X̂1)(X2 − X̂2) > 0} − P{(X1 − X̂1)(X2 − X̂2) < 0}
= E[sign((X1 − X̂1)(X2 − X̂2))]

(2.10)

Trees are constructed maximizing the sum of absolute empirical Kendall taus, which
are the weights of edges connecting nodes in the trees. This is done using a maximum
spanning tree algorithm (MST), such as Prim’s algorithm, where trees are constructed
starting with a vertex and incrementally adding the edge with the largest ρτ . Proximity
condition of R-vines ensure that every graph constructed is also connected, so that for
sure MST will lead finally to a tree. Once the structure is defined, pair-copula families and
the respective parameters should be chosen and estimated. The selection process involves
calculating the AIC for each potential copula family and then choosing the copula with
lowest AIC. Independence copulas are incorporated into the selection procedure, since
going deeper and deeper into the trees one observes that Kendall tau decreases, as shown
by Dißmann et al. [2013] in the multivariate normal case. It is precisely at this point that
the strength of R-vine copulas can be observed, since the choice of the best copula family
with related parameters will be guided by the degree of dependence that exists between
the variables under examination, rather than by the adoption of always the same family
with just different parameters. Dependence that can be positive or negative in the tails
and distributed symmetrically or asymmetrically depending on the chosen family.
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Chapter 3

Monte Carlo Simulation

Monte Carlo simulations play a critical role in refining and validating models. These
simulations, rooted in probabilistic methodologies, allow to evaluate the robustness of
models under varying conditions, providing valuable insights into their behavior. This
chapter is dedicated to assess the plausibility of R-vines structure selection model. In
particular, the approach under examination regards the sequential selection and estimation
method presented in the previous section.

3.1 Inference of R-vine Copula specifications
Besides parameter estimation, there is also another aspect to take into consideration in
statistical inference, namely simulation, which allows to numerically explore the distribu-
tion of statistical results that usually have analytical closed formulas complex to evaluate.
For R-vine copula specifications, simulation can be done using the inverse probability in-
tegral transformation. Starting from the base, given a continuous random variable X with
cumulative distribution FX and a realization x, the probability integral trasform (PIT) of
x is nothing but u:=FX(x). More in general, the random variable U:=FX(X) ∼ U[0,1],
since it holds that:

FU (u) = P (U ≤ u) = P (FX(X) ≤ u) = P (X ≤ F −1
X (u)) = P (X ≤ x) = FX(x) (3.1)

This means that the PIT is the transformation which maps data from original scale to
copula scale. However, since R-vine copula specifications are in terms of real scale, our
objective is to simulate a sample on the real scale, given that its copula follows an R-
vine distribution. Therefore, the endpoint is represented by x rather than u. That is
why simulation is done using the inverse probability integral transform: given a uniform
random variable U[0,1], i.e. in copula scale, F −1

X (U) is a random variable with distribution
equal to FX , since it holds that:

FF −1
X (U)(x) = P (F −1

X (U) ≤ x) = P (FX(F −1
X (U)) ≤ FX(x)) = P (U ≤ FX(x)) = FX(x)

(3.2)
where the last equality is true because the CDF of uniform random variables is the identity
function. The reasoning can be extended also in terms of h-functions for equation 2.9, since
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they are defined as conditional cumulative distribution functions. This enables to obtain
a sample from an R-vine copula specification by performing the following operations:

x1 = u1

x2 = F −1
2|1 (u2|x1)

x3 = F −1
3|12(u3|x1, x2)

...

xn = F −1
n|12...n−1(un|x1, ..., xn−1)

(3.3)

where u1, ..., un are independent, uniform samples on [0,1] while F −1
j|12...j−1(uj |x1, ..., xj−1) j =

1, ...n is computed using the inverse of h functions. Rosenblatt [1952] established the va-
lidity of the relationships outlined in equations 3.3 through an inductive approach. All
these concepts are summarized in Figure 3.1, where the algorithm is exactly the same of
Figure 2.3, with the only differences related to the need to apply an inverse PIT instead
of evaluating the density.

3.2 Empirical Application
The simulation study explained below confirms the validity of the presented model. The
analysis is conducted in four different scenarios. For each one of these, R-vine tree struc-
ture chosen is the same of Figure 2.2. Dißmann et al. [2013] have shown that the corre-
sponding R-vine array is:

M =



7
4 4
5 6 6
1 5 5 5
2 1 1 1 1
3 2 2 3 3 3
6 3 3 2 2 2 2


The process consists in simulating data knowing parameters and families of each pair-
copula. After this, structure selection algorithm of Figure 2.4 is applied to derive a plau-
sible R-vine copula specification. To evaluate the accuracy of the model in reconstructing
the initial structure, three quantitites are defined, as done by Dißmann et al. [2013]:

• General τ difference: this meausure aims to capture the ability of the proposed
model to correctly derive the dependency between observations. Having available the
structure of the fitted and real models, data from the fitted model are simulated and
the empirical Kendall tau of the latter is calculated. Similarly, the empirical Kendall
tau is calculated from the initial (real) data, which had already been simulated from
the known R-vine structure. These two quantities are then subtracted obtaining an
error matrix where each entry belongs to the interval [-2,2], since ρτ ∈ [−1,1] is a
measure of dependence between two variables. Subsequently, the average over the
error matrix is calculated to obtain a closed value as error. The procedure is iterated
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Figure 3.1. R-vine specification simulation algorithm.

a specific number of times, averaging the errors obtained across different repetitions
to mitigate estimate variability and prevent the occurrence of biased results.

• Lower and Upper τ difference: these errors are a natural extension of the previous
one to measure the strenght of joint tail behavior. Same procedure of above in fact
is applied to the so called coefficient of upper and lower exceedance Kendall tau,
defined in the bidimensional case as:

τ lower(U1, U2) := τ(U1, U2|U1 ≤ 0.2, U2 ≤ 0.2)
τupper(U1, U2) := τ(U1, U2|U1 ≥ 0.8, U2 ≥ 0.8)

(3.4)

where U1 and U2 represents two variables in the copula scale.
In simple words, having simulated data by the true and real model, for each possible
pairing of variables only the observations that are lower or higher than the thresholds
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are retained. The idea is therefore to have a measure of dependence for what can be
considered as extreme events, given that it depends on whether the variables take
on very small or large values. Also in this case a lower triangular empirical Kendall
tau matrices are calculated, subtracted, averaged over their entries and then over all
repetitions.

All the empirical versions of Kendall tau are calculated using the algorithm developed
by Knight [1966], which is a computer method for calculating Kendall tau for ungrouped
data. The scenarios considered are:

1. Fixed BB1 copula family: each pair-copula family contained in the matrix T is of the
same type, i.e. BB1 copula with no rotation. This is a two-parameter copula used
to capture more than one type of dependence on tails. In particular, as reported by
Joe [1997], copula density can be written as:

C(u, v, θ, σ) = {1 + [(u−θ − 1)σ + (v−θ − 1)σ]1/σ}−1/θ θ > 0, σ ≥ 1. (3.5)

where θ and σ are the two parameters. Upper and lower tail dependece coefficients
are respectively equal to λu = 2 − 21/σ, λl = 2−1/(θσ). For numerical reasons, the
first parameter can be only in the interval [0,7], while the second one can be only in
[1,7].

2. BB1 copulas with random rotations: this scenario is a more general case of the
previous one. Copula family is still fixed but rotations are allowed. The entries
of matrix T in fact are sampled randomly choosing between BB1 copula without
rotation or with rotations of 90, 180 or 270 degrees.

3. Mixed copulas as done by Dißmann et al. [2013]: this approach is slightly different
from those presented above. Parameters are not chosen randomly but according to
a prespecified Kendall tau and family matrix T:

τ =



0.05
0.10 0.10
0.15 0.15 0.15
0.20 0.20 0.20 0.20
0.25 0.30 0.35 0.40 0.45
0.50 0.55 0.60 0.65 0.70 0.75



T =



N
F N
N F N
G SG G SG
F N F N t

SG G SG G t t


where N=Gaussian, t=Student-t, G=Gumbel, SG=180 degrees rotated Gumbel,
F=Frank. The choice to determine parameters starting from a setting of Kendall
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taus is possible because only families of one parameter copulas have been chosen,
with the exception of Student-t. Closed formulas of parameters are available on the
user guide of VineCopula package in R. Regarding Student-t, the first parameter is
derived from Kendall tau values while the second one, i.e. the degree of freedom,
is linearly increased by 1 for each pair-copula terms in higher order trees and start
with 3 in the first tree, as done by Dißmann et al. [2013].

4. Mixed copulas choosing every possible familiy: this scenario represents the most
general case possible that can be implemented based on all the functions defined
within the VineCopula package. In fact, copula families are selected randomly from
all the existing families, which are included below for the sake of completeness in
the discussion: Gaussian, Student-t, Clayton, Gumbel, Frank, Joe, BB1, BB6, BB7,
BB8, Tawn type 1, Tawn type 2 and all the possibile rotation of 90, 180 or 270
degrees. Differently from the mixed scenario of Dißmann et al. [2013], parameters
are sampled randomly and not starting from a Kendall tau setting. For numerical
reasons, each copula has a limited range of allowed parameter values. The final
family matrix obtained is:

T =



90◦Joe
180◦BB8 180◦BB7

N t 90◦Joe
180◦Tawn type 1 270◦BB8 180◦G 180◦G

N 270◦BB1 180◦Tawn type 1 90◦BB7 Independence
G 90◦Tawn type 1 180◦BB6 90◦G 180◦BB6 180◦BB1


where the abbreviations are the same adopted above and the notation x◦Y stands
for copula family Y rotated of x degrees.

The whole study is repeated considering different sizes in terms of number of simu-
lated samples N1 and number of repetition N2. Table 3.1 summarizes results obtained.
Some considerations can be made looking at the table. In fact, the scenarios have been
numbered in ascending order of complexity. Imagining, for example, that the data gen-
erated represent observations of portfolio returns: in the first scenario the dependence
between assets can be considered fixed, while in the last scenario the interdependence
is quite random, within the limits of copula families defined in VineCopula package. In
general, errors are very low and decrease as the number of observations and repetitions
increase. This is a desirable feature, since variability due to simulations can affect what
are the final estimates. Two slightly anomalous cases are represented by scenarios 2 and
4. In the case of BB1 copulas with random rotations what is observed is that the generic
τ difference remains fairly stable as dimensionality increases while the tail dependence
errors do not have a linear behavior. Regarding scenario 4, increasing number of repeti-
tions seems to help decrease in the error. However, increasing the sample size also adds
noise, particularly for the upper τ difference. These behaviors might indicate greater
difficulty in modeling asymmetric dependencies between different assets, for example, if
some are positively and others negatively correlated. Errors remain fairly circumscribed,
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Scenario Dimensions General τ diff. Lower τ diff. Upper τ diff.
1 {N1 = 500, N2 = 10} 0.014 0.045 0.072
1 {N1 = 500, N2 = 100} 0.011 0.039 0.057
1 {N1 = 500, N2 = 1000} 0.012 0.040 0.061
1 {N1 = 1000, N2 = 1000} 0.009 0.033 0.056
2 {N1 = 500, N2 = 10} 0.010 0.021 0.058
2 {N1 = 500, N2 = 100} 0.012 0.020 0.031
2 {N1 = 500, N2 = 1000} 0.013 0.029 0.023
2 {N1 = 1000, N2 = 1000} 0.012 0.030 0.050
3 {N1 = 500, N2 = 10} 0.024 0.064 0.062
3 {N1 = 500, N2 = 100} 0.022 0.057 0.063
3 {N1 = 500, N2 = 1000} 0.020 0.058 0.067
3 {N1 = 1000, N2 = 1000} 0.015 0.046 0.051
4 {N1 = 500, N2 = 10} 0.024 0.034 0.041
4 {N1 = 500, N2 = 100} 0.081 0.076 0.080
4 {N1 = 500, N2 = 1000} 0.036 0.043 0.057
4 {N1 = 1000, N2 = 1000} 0.017 0.029 0.116

Table 3.1. Simulation study results.

although the problem of modeling tail dependencies is an important issue, as highlighted
earlier when discussing the leverage effect. Indeed, it clearly emerges that the upper tau
exceedance is more variable than the two other estimates. The positive side of the coin
is that the issue we aim to tackle primarily concerns modeling dependence amidst market
stresses, particularly focusing on downward assets returns, i.e. low values on copula scale,
which are well captured according to the small values of lower τ exceedance. However, it
remains beneficial for financial institutions to establish a clear correlation between assets
during for example bull markets.

The interested reader might question the methodology used to validate the model. In
fact, algorithm of Figure 3.4 shows the process of selecting the structure and families
associated with R-vine copulas. Thus, one might wonder how well the method presented
is able to reconstruct the exact structure and families given simulations. This verification
was observed to come up short in general when comparing the estimated families and
structures with the original ones. However, it should be pointed out that the initial prob-
lem was modeling dependencies between assets in the multivariate case and not modeling
portfolios. Since these tools will later be used to estimate measures associated with capital
requirements, the structure comes up short given the need to be able to asses correlation
in stressed conditions.
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Chapter 4

Probability Equivalent Level
Analysis

The final section of this work focuses on integrating the elements discussed so far, i.e. risk
measures and vine copulas. Sommer [2022] has already provided a framework and the
portvine package to tackle this problem. However, what remains unexplored is a recent
research area, called the study of probability equivalent levels. The following paragraphs
aim to provide an empirical and non-formal demonstration regarding the characterization
of these levels in the multidimensional case and for different risk measures. The exploration
is made possible thanks to the flexibility of R-vine copulas. Additionally, a different, and
hopefully more operational, interpretation of the topic is also presented.

Before going into details, it may be useful to give a brief idea of what will be covered.
Figure 4.1 and 4.2, taken from Sommer [2022], explain simply the context.

Figure 4.1. Unconditional risk estimation approach.
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Figure 4.2. Conditional risk estimation approach.

Given a portfolio composed of several assets, each one is firstly modeled singularly with
ARMA-GARCH processes, then their dependece is modeled thanks to R-vine copulas and
finally risk measure estimates are obtained starting from simulated portfolio log returns.
Figure 4.2 introduce a further element with respect to first one, i.e. the conditioning on
the value of other assets to obtain the so called conditional risk measures. This will be
the starting point for probability equivalent level analysis.

4.1 Unconditional vine copula based risk measure es-
timation

Figure 4.1 gives already a general idea of how a risk measure is inferred, but going deeper
in the analysis, Sommer [2022] has developed a method based on vine copulas and a
rolling window. As already said, a rolling window is basically a window of fixed size
moving through a time series data. The process repeated in each window is called one
step ahead unconditional risk measure estimation, and is summarized in Figure 4.5.
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Figure 4.3. One step ahead unconditional risk measure estimation approach.
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The notation adopted by Sommer [2022] is mandatory to understand the concept:

• Ω = {wj , r
Aj

t |t = 1, ..., T : j = 1, ...d} is a portfolio with d ∈ N assets denoted as
A1, ..., Ad. r

(·)
t represents the log return of (·) at time t, while wj are assets weights

within the portfolio.

• Γ < T is the length of fitting window for marginal models, which moves forward as
time goes on.

• Ψ ≤ Γ is the length of fitting window for vine copula models, which moves forward
as time goes on.

• S ∈ N is the number of simulated log return for risk measure estimation.

Knowing this, the procedure for one step ahead forecast can be summarized as:

1. Fit an ARMA-GARCH model for each log return series for the time frame of the
fitting window Γ. Subsequently, forecast mean and volatility at time Γ + 1. A
grid search to find best model orders has been set up. However, given the large
computational costs also deriving from the other parts that will be described later,
ARMA(1,1)-GARCH(1,1) models were adopted for each series, being recognized in
literature as good starting points for financial applications.

2. Compute standardized residuals for each univariate model, transform them in copula
scale using a probability integral transformation and fit a R-vine copula along the
time frame of the fitting window Ψ.

3. Simulate S samples on copula scale from the R-vine copula just fitted, transform
them in the log returns scale applying an inverse probability integral transformation
and use the weight of each asset to compute portfolio log return samples at time
Γ + 1.

4. From the vector of dimension S a Monte Carlo method is used to derive risk measures
estimates. The focus of this work will be in VaR and ES. Regarding the first one, the
standard empirical quantile function based on the set of S samples can be evaluated
at the confidence level α chosen, to obtain the forecast [V aRΓ+1. Regarding ES
instead, the mean of simulated samples that fall under the corresponding [V aRΓ+a+1
is calculated to obtain the forecast äESΓ+1.

A computational burden underlying the model just presented is that marginals and de-
pendency structures are refitted at each step, from Γ+1 up to T, which is considered the
final time horizon. For this reason, the definition of parameters γ and κ was introduced.
The main simplifications they introduce concern the possibility of making forecast for time
interval grater than 1 and refit models after a certain period of use, in order to capture
evolutions in the dependency structure but maintaining a balance in terms of compu-
tational costs. In particular, γ ≤ (T − Γ) ∈ N is the length of forecasting window for
marginal models, while κ ≤ γ ∈ N is the length of usage window for vine copula models.
Their utility can be better understood looking at Figure 4.4.
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Figure 4.4. Example of a rolling window shifting over time.

Figure 4.5 instead reports pseudo code of the entire algorithm implemented in portvine
package.
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Figure 4.5. Rolling window unconditional risk measure estimation algorithm.
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4.2 Conditional vine copula based risk measure esti-
mation

Regarding prediction of conditional risk measures, the previously introduced model re-
mains similar but some adjustments need to be made. In particular, the framework
developed by Sommer [2022] for this case, is focused on a subclass of R-vine copulas,
called Drawable vine (D-vine). These are nothing but R-vine copulas with the addi-
tional constraint that each tree is an ordered connected path with no loops. In formulas,
|{e ∈ Ej |n ∈ e}| ≤ 2 ∀n ∈ Nj , j = 1, ..., d − 1. An example can be seen in Figure 4.6,
whose copula density is:

Figure 4.6. Example of D-vine tree structure.

c1234(u1, u2, u3, u4) eq.2.2= f1234(x1, x2, x3, x4)
f1(x1)f2(x2)f3(x3)f4(x4)

eq.2.4= c12(u1, u2) × c23(u2, u3) × c34(u3, u4)
× c13|2(C1|2(u1|u2), C3|2(u3|u2))
× c24|3(C2|3(u2|u3), C4|3(u4|u3))
× c14|23(C1|23(u1|u2, u3), C4|23(u4|u2, u3))

(4.1)

where argumets inside brackets of last equality are written according to the notation
ui := F (xi) ∀i.

The reasons why it is necessary to introduce this subclass of vines are mainly two:
• The need of easily sampling observations conditional on having observed other values.

Conditioning values from now on are assumed to be market indexes, named I, and
can be at maximum two. In addition, they are supposed to be the rightmost leaves
nodes, i.e. the nodes at the end of the first path in the tree structure.

45



Probability Equivalent Level Analysis

• By fixing the order of the first tree, the structure and order of all the other trees is
automatically derived for D-vines, as outlined by Dißmann et al. [2013].

In particular, the algorithm depicted in Figure 3.1 can be rephrased more conveniently
by leveraging the well-established Rosenblatt transform and defining the three matrices:

V =


u1 u2 u3 u4 ...
− C2|1(u2|u1) C3|2(u3|u2) C4|3(u4|u3) ...
− − C3|21(u3|u2, u1) C4|32(u4|u3, u2) ...
− − − C4|123(u4|u1, u2, u3)
− − − − ...



V 2 =


u1 u2 u3 u4 ...
− C1|2(u1|u2) C2|3(u2|u3) C3|4(u3|u4) ...
− − C1|23(u1|u2, u3) C2|34(u2|u3, u4) ...
− − − C1|234(u1|u2, u3, u4)
− − − − ...



Θ =


− θ12 θ23 θ34 ...
− − θ31|2 θ42|3 ...
− − − θ41|32 ...
− − − − ...


These are the equivalent versions of V direct, V indirect and T of Figure 3.1, but the final
algorithm is greatly simplified, as can be seen in Figure 4.7. Again the pseudo code
is reported on copula scale, since the framework depicted by Sommer [2022] involves
simulating data from D-vine copulas to subsequently obtain risk measures estimates. In
the case of conditional sampling the algorithm is the same with the exception that u1 and
u2 are fixed, as they represent market indexes values on the copula scale. In addition to
this, the formulation of the final algorithm involves a redefinition of index ordering, given
that market indexes should be the rightmost leaves nodes in the first path.

So far it has been observed how simulation of D-vines is simplified compared to R-
vines. The further element of simplification is the determination of D-vines structures.
Consider the d assets previously introduced: given the path structure of D-vines trees,
what we want to determine is a permutation j1, ..., jd of indexes 1,...,d that maximize the
overall likelihood. Sommer [2022] proposes a methodology where the order:

Ajd
− Ajd−1 − ... − Aj1 − I (4.2)

is fixed sucht that Aj1 is the most dependent asset on the market index I, Aj2 is the most
dependent on the asset Aj1 , after accounting for the effect of market index I, and so on.
The idea is to assign weights to the edges corresponding to the bivariate copula densities
using 2 measures:

• Pearson correlation coefficient: used to find most correlated assets in the first tree.
Given Aj(·) and I, it is defined as:

ρ := ρ(Aj(·) , I) := Corr(Aj(·) , I) =
Cov(Aj(·) , I)ñ

V ar(Aj(·))
ð

V ar(I)
(4.3)
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Figure 4.7. D-vine copula simulation algorithm.

where Var and Cov are the variance and covariance respectively. Aj1 is the assets
which maximize equation 4.3 and the same reason is applied for the other nodes in
the first tree.

• Partial correlation coefficient: used from the second tree onwards to measures the
dependence between two random variables, with the effect of a set of controlling
random variables removed. Given d assets A1, ..., Ad and the reduced index set
Id

−(i,j) = {1, ..., d} \ {i, j} with i /= j, it is defined as:

ρi,j|Id
−(i,j)

= sgn(bi,j|Id
−(i,j)

) ×
ñ

bi,j|Id
−(i,j)

× bj,i|Id
−(i,j)

(4.4)

where bi,j|Id
−(i,j)

are the coefficients that minimize E[(Aji −
qd

j=2,j /=i ai,j|Id
−(i,j)

Aji)2]
with respect to ai,j|Id

−(i,j)
. The notation i, j|Id

−(i,j) is adopted to account for the
conditioning sets of D-vines.

The final algorithm is explained in Figure 4.8, while Figure 4.9 shows an example of how
the algorithm is applied in a four dimensional case. It is crucial to point out that the
notation of equation 4.3 can be misleading, because in reality Pearson’s coefficient is not
calculated among real scale data, but between copula scale data that are transformed to
normalized scale, defined as:

zi,j = ϕ−1(ui,j) ∀i, j (4.5)

where ui,j are data in copula scale and ϕ is the density function of a N(0,1). This means
that Pearson correlation is nothing but Spearman ρ correlation with an additional linear
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Figure 4.8. D-vine structure selection algorithm based on one conditional market index.

Figure 4.9. Example of application of algorithm in Figure 4.8.

trasnformation between ranks given by ϕ−1. Again, inverse normal scale is adopted by
Sommer [2022] for better rescaling of tails. Finally, the introduction of the cutoff depth
parameter cdepth implies that Pearson and Partial correlation coefficients can be calculated
up to the specified depth of D-vine edges, so as to reduce the computational cost in case
of high dimensions.

48



4.2 – Conditional vine copula based risk measure estimation

The study with two market indexes is analogous, with the only need to shift the indexes
by one, obtaining the scheme:

Ajd
− Ajd−1 − ... − Aj1 − Ij̃1

− Ij̃2
(4.6)

Ordering and sampling procedure are the same as before, since the only difference is that
the value of another index is further fixed.

We are now able to extend the procedure presented in the previous section but for the
conditional case:

1. First ARMA-GARCH processes are fitted starting from the log return scale, as done
in Figure 4.5. At the same time, forecasting of conditional mean µ̂I

Γ+1 and volatility
σ̂I

Γ+1 for the next time instant can be done, obtaining the forecasted conditioning
value for market indexes on the log return scale by performing µ̂I

Γ+1+σ̂I
Γ+1×F −1

I (αI)
(inverse PIT).

2. Second, standardized residuals are calculated, transformed to copula scale, and fed
into the algorithms of Figure 4.7, 4.8 to determine the order and simulate from
D-vine copulas conditionally on observed values of the market indexes.

3. Finally, simulations are transformed to the log return scale to compute conditional
sample portfolio values and derive conditional risk measure estimates.

Regardless of whether conditioning occurs with one or two market indexes, the key novelty
of this approach lies in the first point of the preceding numbered list. Specifically, αI ∈
(0,1) represents the confidence level of the estimated quantile obtained from the marginal
market index distribution. This confidence level can be used as conditioning value of the
final risk measure estimate on the copula scale. Since all the marginals on the copula
scale are uniform, the quantile corresponds to the confidence level αI itself. Consequently,
the retransformation to the return scale is also performed on the conditioning value αI as
well as for all assets. This approach is referred to as the quantile strategy for estimating
conditional risk measures.
In contrast, Sommer [2022] introduces an alternative approach known as residual strategy
for estimating conditional risk measures. Instead of conditioning on a quantile level, this
method conditions on the copula scale residual of index I from the previous time
unit, denoted as uI

t−1. The resulting estimated risk measure aims to mimic the behavior
of conditioning on the predicted market index log return series and can be compared with
the first one. It’s important to note that conditioning series based on fitted residuals
from the preceding time unit may tend to amplify sudden high volatility situations. For
instance, if the univariate marginal time series model fails to anticipate a sudden price
drop of the conditioning asset at time t − 1, this could result in a very small copula scale
residual uI

t−1. Consequently, conditioning at time t on this sharp drop from the prior
time unit may often exaggerate the decline of the estimated risk measures. Therefore,
it is crucial to assess in practice the extent to which this volatility exaggeration might
manifest. Figure 4.10 reports the complete algorithm implemented in portvine package for
conditional risk measures estimate given a single market index as conditioning variable.
The case with two market indexes is nothing but an extension of the presented algorithm,
with the ordering given by equation 4.6.
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Figure 4.10. Rolling window conditional risk measure estimation algorithm.
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4.3 Probability equivalent levels definitions
The introduction of conditional risk measures, in particular the ones associated with the
quantilie strategy, allows to introduce a more generic problem studied very recently by
Ortega-Jiménez et al. [2024]. To be more clear, we can fix the concepts for the two risk
measures treated up to now, i.e. VaR and ES. Algorithm of Figure 4.10 returns what
can be defined as conditional-value-at-risk (CoVaR) and conditional-expected-shortfall
(CoES). Formally, they are defined as:

• CoV aRv,u[Ω|I] = V aRv[Ω|I = V aRu[I]] = F −1
Ω|I=V aRu(X)(v), where u ∈ (0,1) is the

confidence level for the market index I while v ∈ (0,1) is the confidence level of
portfolio Ω. This measure has been already defined by Ortega-Jiménez et al. [2024],
but differently from them, here Ω is a multivariate random vector and not a single
asset.

• CoESv,u[Ω|I] = ESv[Ω|I = V aRu[I]] = E[Ω|Ω ≤ V aRv(Ω), I = V aRu[I]], i.e. the
expected shorfall given that market index is at level u. It is important to note that
we are always talking about a single market index, but from what has just been
presented in the previous sections, all the reasonings can be extended to two market
indexes.

The importance of these two risk measures is quite intuitive. From now on, all the
arguments will be presented for VaR and CoVaR, but can be applied in the same way
for ES and CoES. As pointed out by Acharya [2009], "the goal of prudential regulation
should be to ensure the financial stability of the system as a whole, i.e., of an institution
not only individually , but also as a part of the overall financial system". With respect
to this, conditional risk measures could be very useful for making adjustments in capital
requirements based on the performance of certain market indexes. In this sense, it can
be said that conditional risk measures seem to better capture the dimension of systemic
risk. In addition, given certain stressed market situation, it can be useful to identify
if VaR is more or less conservative than CoVaR and so a better or worse risk measure
in terms of capital requirements. The example made by Ortega-Jiménez et al. [2024]
and translated with respect to our notation enables a deeper understanding of what just
said. Suppose that, initially, the risk capital calculation is based on VaR at level v
for a portfolio Ω. If, given a risk I and u ∈ (0,1), CoV aRv,u[Ω|I] > V aRv[Ω], then
replacing VaR by CoVaR does not make sense, since CoVaR is more optimistic. If however
CoV aRv,u[Ω|I] < V aRv[Ω], then it is possible that VaR is underestimating the spillover
effect and it can be more prudent to replace it with CoVaR. What has just been reported
may seem the exact opposite of what was said in Ortega-Jiménez et al. [2024], however, it
is important to remember that the definition adopted in this work for VaR is portfolio’s
return in the 5% of worst-case scenarios, if v=0.05, and not portfolio’s loss in the 5% of
worst-case scenarios. When returns are low typically losses are high. Thus, increasing
conditioning level of market indexes implies better financial conditions and so higher
returns, which may result in risk measures increasing. In this terms, it could be stated
that if the estimate of returns increases in the 5% of unfavorable cases, i.e. risk measures
increase, then risk estimates may be more optimistic.
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As might be inferred from above, an interesting inquiry concerns the circumstances
under which the two measures are equivalent. This leads to the definition of probability
equivalent level: for a portfolio Ω, a market index I and a confidence level v ∈ (0,1),
the value uv is defined as a probability equivalent level of CoVaR-VaR at the risk level
v (PELCoVv) for Ω if CoV aRv,uv [Ω|I] := V aRv[Ω|I = V aRuv [I]] ≡ V aRv[Ω]. In plain
english it is the conditional quantile u such that CoVaR and VaR, evealuated both at
confidence level v, are equivalent. The same can be done for CoES and ES bringing to the
definition of PELCoES. Ortega-Jiménez et al. [2024] have provided the hypothesis under
which existence and uniqueness of PELCoVv is guaranteed, but limited to the bivariate
case. The goal of the following analysis is to prove empirically the existence of these levels
also in the multivariate case and extend the discussion also for PELCoES.

4.4 Empirical Application
The last section of this work represents the core analysis of this thesis. The adopted
data set is available in rugarch library of R. It contains Dow Jones Industrial Average
(DJIA) 30 Constituents closing value log returns for working days from 1987-03-16 to
2009-02-03, taken from Yahoo Finance. As reported in the guide, AIG has been replaced
by KFT (Kraft Foods) on September 22, 2008. This is not reflected in the data set as
that would bring the starting date of the data to 2001. For our purposes this lack is not
essential but for completeness it is fair to specify it. In particular, the focus period for us
is from 2007-01-01 to 2009-02-03, corresponding to the United States Bear Market and the
Global Financial Crisis periods, mainly due to the housing bubble created by subprime
mortgages, excessive risk-taking by global financial institutions and continuous buildup
of toxic assets within banks. Figure 4.11 reports the performance of the index and its
constituents in the reference period.

Looking at plots it is possible to say that time series are weakly stationary of order 2,
since they have constant mean and finite variance. This implies that the first two moments
are preserved. Loess smoothing line further confirms what just said. Unlike traditional
regression techniques that assume a specific functional form for the relationship between
variables, loess regression adapts to the local structure of the data by fitting multiple
linear regressions over small subsets of the data. This adaptability allows the loess line to
capture complex patterns and nonlinear relationships that may exist in the data, making
it particularly useful in detecting trends or patterns that may not be apparent from the
raw data alone. Having a fairly constant loess smoothing line reassures that time series
mean is preserved over time.

Before going deep in PELCOVs analysis, a demonstration of conditional risk measures
effectiveness is done. For training set, 1000 observations before 2008-04-18 are taken, both
for marginals and vine copulas. The test set, used for the rolling window conditional/un-
conditional risk measure estimation approach, is the remaining part up to 2009-02-03 and
consists of 200 observations. The choice to use these numbers of observations and April
2008 as threshold was driven by the need to have enough data to test models and not to
increase computational costs excessively. However, this date makes sense from a macroe-
conomic point of view. In fact, by that time DJIA had already reached its historical
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Figure 4.11. Dow Jones Industrial Average (DJIA) log returns in the reference period.
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peaks, twice overshooting the 14000 mark, and also alternated moments of decline, such
as the 8.3% drop recorded after July 2007 peak. Moreover, the first signs of economic
weakness were already showing up, such as the near bankrupcy of Bear Sterns on March
2008, that was addressed thanks to the guarantees offered by the Federal Reserve on bad
loans and their acquisition by JPMorgan Chase. Being able to capture systemic risk and
possible downside spillovers effects was critical at that time but essential to be able to
meet liquidity requirements that failed a few months later, leading to a global crisis.
Other parameters and quantities fixed are:

• γ = 50 so that 4 rolling window are computed at the end.

• κ = 50 so that at the beginning of each rolling window vine copulas are fitted again.

• Ω1 = {Alcoa Corporation (AA), American Express Company (AXP), The Boeing
Company (BA), Bank of America Corporation (BAC))} each weighing 1

4 .

• I1 = {Citigroup Inc. (C), Caterpillar Inc. (CAT)}.

• S = 500.

• Confidence level for risk measures estimation equal to 5%, while confidence level of
the estimated quantile obtained from the marginal market index distribution αI is
assumed to be 0.1 on copula scale.

• ARMA(1,1)-GARCH(1,1) models are chosen for each univariate time serie.
Ljung-box test p-values for serial autocorrelation at different times are reported below
and show that marginals do not present any type of autocorrelation, since null hypothesis
is never rejected:

• First rolling window p-values for standardized residuals:
t = 1 t = 5 t = 10 t = 15 t = 20

AA 0.6380067 0.5463938 0.6029006 0.6344385 0.6718554
AXP 0.8014358 0.9053650 0.1593253 0.3227831 0.5922897
BA 0.4676530 0.9880981 0.9515401 0.7557235 0.9220219

BAC 0.5154959 0.9828692 0.4915308 0.7299531 0.8291133

• Second rolling window p-values for standardized residuals:
t = 1 t = 5 t = 10 t = 15 t = 20

AA 0.7574107 0.4250166 0.5197523 0.5792903 0.5595016
AXP 0.9649823 0.7189497 0.1273333 0.3255091 0.6412178
BA 0.3584866 0.9509725 0.7782875 0.6425933 0.8159217

BAC 0.5889626 0.9750401 0.2606740 0.5787592 0.7132500

• Third rolling window p-values for standardized residuals:
t = 1 t = 5 t = 10 t = 15 t = 20

AA 0.7303668 0.4845496 0.5032916 0.3530659 0.5161353
AXP 0.9758730 0.6804913 0.2132273 0.3709773 0.6907675
BA 0.3565942 0.9610094 0.7203465 0.6127089 0.8014826

BAC 0.6870309 0.9555553 0.4242265 0.6489335 0.8104965
54



4.4 – Empirical Application

• Fourth rolling window p-values for standardized residuals:

t = 1 t = 5 t = 10 t = 15 t = 20
AA 0.4785026 0.8102419 0.6801353 0.6230811 0.5774870

AXP 0.7419728 0.7221892 0.5306022 0.7773300 0.9391385
BA 0.4223057 0.8533465 0.9064178 0.7290525 0.7063390

BAC 0.7907871 0.9558479 0.1554015 0.3116655 0.5337789

Same test is applied for standardized squared residuals, since in volatility term of equation
1.14 w2

t follows an ARMA model and not σt, obtaining the following results:

• First rolling window p-values for squared standardized residuals:

t = 1 t = 2 t = 3 t = 4 t = 5
AA 0.3720645 0.3588128 0.5520004 0.7587870 0.8277244

AXP 0.1763380 0.5868463 0.3012886 0.4141761 0.6076664
BA 0.3100602 0.7714612 0.9323075 0.9715605 0.9816345

BAC 0.9376997 0.9005088 0.6384118 0.5807796 0.7340830

• Second rolling window p-values for squared standardized residuals:

t = 1 t = 2 t = 3 t = 4 t = 5
AA 0.2901060 0.4123180 0.6495486 0.8579638 0.9231744

AXP 0.1825294 0.6219297 0.3051888 0.4206254 0.6002521
BA 0.2898876 0.8078642 0.9686650 0.9793846 0.9912506

BAC 0.8328646 0.8739790 0.7051593 0.6253267 0.7566121

• Third rolling window p-values for squared standardized residuals:

t = 1 t = 2 t = 3 t = 4 t = 5
AA 0.2781621 0.3542505 0.4614083 0.7665455 0.9266283

AXP 0.1737278 0.6032993 0.2955229 0.3834031 0.5551994
BA 0.3166856 0.7722314 0.8726943 0.9458312 0.9755234

BAC 0.8350609 0.9535959 0.9202004 0.8726341 0.9193350

• Fourth rolling window p-values for squared standardized residuals:

t = 1 t = 2 t = 3 t = 4 t = 5
AA 0.3840283 0.5761943 0.2772587 0.5221912 0.7443184

AXP 0.1481619 0.6964143 0.0617093 0.0970664 0.1774252
BA 0.5043815 0.9213580 0.7772781 0.7562458 0.6348034

BAC 0.8154017 0.7972667 0.8175921 0.8799484 0.8821706

Null hypothesis is again rejected zero times, demonstrating the validity of adopted marginal
models. These models come into play only in the first part of algorithms shown in Figures
4.5, 4.10. The remaining part instead contains dependencies modeling and risk measures
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Figure 4.12. Unconditional and conditional rolling window estimation approaches for VaR.

forecast, both performed with a rolling window approach. Figures 4.12, 4.13 display all
risk measures computed on the test set. Quantile strategy quantities are indicated with
the suffix "_0.1", while residual ones are shortened as "_prior_resid".
As mentioned above, it is clear how conditional series forecast based on residuals of the
time unit before, i.e. residual strategy, exaggerate high volatility situations. Having to
assess which of the estimated risk measures are the best, the Kupiec, Christoffersen and
McNeil & Frey tests are adopted. Before seeing numerical results, it may be useful to
have graphical representations of how exceedances behave with respect to the different
methods adopted. Figures 4.14, 4.15 show this behavior, hinting that residual strategy do
not achieve formidable results, since it is quite obvious that forecasted risk measures have
a number of exceedances well above the theoretical 5% of cases that they should actually
represent.

56



4.4 – Empirical Application

Figure 4.13. Unconditional and conditional rolling window estimation approaches for ES.

Figure 4.14. Unconditional strategy portfolio exceedances.
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Figure 4.15. Conditional residual and quantile strategies portfolio exceedances.
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Citigroup (C) and Catarpillar (CAT) are considered as market indexes for the quantile
strategy and assumed to performing bad, since αI = 0.1 for both. Even if they cannot
be considered true market indexes, conditioning on the value of other companies can be
very useful if, for example, there are good relationships in terms of interbank deposits
or other activities between two or more financial institutions. In addition, as reported
later by Richard M. Bowen III, Business Chief Underwriter for Correspondent Lending in
Citigroup’s Consumer Lending Group, 60% of the mortgages purchased by Citigroup from
some 1,600 mortgage companies were "defective" (were not underwritten according to the
policy, or did not contain all of the documents required by the policy), this despite the
fact that each of these 1,600 originators were contractually responsible (certified through
representations and warranties) that their mortgages met Citigroup’s standards. Basically,
what we want to say in simple words is that these stress conditions could really have been
realized, except that the problem had become of such a large magnitude that it forced
government takeovers, which in the case of Citigroup reached 36% of stake.
Overall, conditional quantile strategy seems to be a good approximation of what should
be the theoretical VaR at confidence level 5%. Results of the adopted hypothesis tests
are reported below and confirm the validity of the conditional approach:

VaR test of Kupiec VaR test of Christoffersen
Null Hypothesis (H0) Correct Exceedances Correct Exceedances & Independent
Actual exceedances 24 24
Expected exceedances 10 10
LR 15.1 17.1
LR critical value (α = 0.05) 3.84 5.99
P-value 1.03 × 10−4 1.94 × 10−4

Decision Reject H0 Reject H0

Table 4.1. Kupiec and Christoffersen VaR tests for unconditional rolling window approach.

VaR test of Kupiec VaR test of Christoffersen
Null Hypothesis (H0) Correct Exceedances Correct Exceedances & Independent
Actual exceedances 50 50
Expected exceedances 10 10
LR 90 110
LR critical value (α = 0.05) 3.84 5.99
P-value 0 0
Decision Reject H0 Reject H0

Table 4.2. Kupiec and Christoffersen VaR tests for conditional residual
rolling window approach.
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VaR test of Kupiec VaR test of Christoffersen
Null Hypothesis (H0) Correct Exceedances Correct Exceedances & Independent
Actual exceedances 7 7
Expected exceedances 10 10
LR 1.05 1.56
LR critical value (α = 0.05) 3.84 5.99
P-value 0.305 0.457
Decision Fail to Reject H0 Fail to Reject H0

Table 4.3. Kupiec and Christoffersen VaR tests for conditional quantile
rolling window approach.

ES Test of McNeil and Frey
Null Hypothesis (H0) Mean of Excess Violations of VaR is equal to zero
Actual Excess Violations 24
Expected Excess Violations 10
Bootstrap P-value 0.49
Decision Fail to Reject H0

Table 4.4. McNeil and Frey ES test for unconditional rolling window approach.

ES Test of McNeil and Frey
Null Hypothesis (H0) Mean of Excess Violations of VaR is equal to zero
Actual Excess Violations 50
Expected Excess Violations 10
Bootstrap P-value 0.00208
Decision Reject H0

Table 4.5. McNeil and Frey ES test for conditional residual rolling window approach.

ES Test of McNeil and Frey
Null Hypothesis (H0) Mean of Excess Violations of VaR is equal to zero
Actual Excess Violations 7
Expected Excess Violations 10
Bootstrap P-value 0.156
Decision Fail to Reject H0

Table 4.6. McNeil and Frey ES test for conditional quantile rolling window approach.
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In fact, the message from tests results is that, as far as VaR is concerned and in this
specific example, the best approximation of what should be the theoretical VaR at 5%
confidence level is obtained by the conditional VaR with quantile strategy, since Kupiec
and Christoffersen tests fail to reject only in this case. For ES, on the other hand, McNeil
and Frey’s test fail to reject both in case of conditional quantile strategy and for the
unconditional approach, thus showing how the conditional approach is not always better.

Another specific case study, useful to show the strength of conditional approach and
vine copulas is the following. Parameters and quantities set previously are unchanged
except for the portfolio and training and test sets. Specifically, the portfolio under consid-
eration is: Ω3 = {International Business Machines Corporation (IBM), Intel Corporation
(INTC), & Johnson & Johnson (JNJ), JPMorgan Chase & Co. (JPM)} each weighing 1

4 ,
I3 = {American International Group Inc. (AIG), The Coca-Cola Company (KO)}. As
training set, 1000 observations are taken between 2003-09-24 and 2007-09-13, while the
period from 2008-04-21 to 2009-02-03 is taken as test set. This means that model training
phase capture the two DJIA peaks previously mentioned while the Bearn Sterns failure is
excluded. In theory, this nearly 7 months time hole should negatively impact the rolling
window approach for estimating risk measures, since the purchase of not-so-healthy Bearn
Sterns shares by JPMorgan Chase & Co. could have greatly impacted dependencies es-
timates for Ω3 in those months. Yet, what can be observed from the results of Kupiec,
Christoffersen and McNeil & Frey tests is that quantile strategy conditional risk measures
fail to reject tests, unlike the others, thus showing their superior ability in approximating
theoretical risk measures with respect to a given confidence level. In addition to this,
this example also highlights the ability in correctly modeling and adapting through the
different rolling windows of the dependence between assets, despite not having complete
information.

What has been just said allows us to introduce the last part of this work, which is the
study of probability equivalent levels. This tools should enable risk management and not
just its measurement, as done so far. In particular, they allow to understand under what
conditions one strategy is more or less conservative than others. In fact, as explained in
the previous section, PELCoV, and similarly PELCoES, are the levels uv of conditioning
market indexes such that the conditional and unconditional approaches for estimating risk
measures at a given portfolio confidence level v are equal. Higher conditioning levels may
imply that CoVaR is less conservative than VaR, while lower levels may imply instead
that VaR could underestimate spillover effects. In order to find PELCoV and PELCoES
at a given confidence level v, the quantile strategy just presented is reiterated conditioning
on market index values that are different from 0.1 and store inside the vector uv. The
study is repeated both for one conditional asset and for two conditional assets. For the
latter case, only conditioning on the same value of αI of both market indexes is allowed by
portvine package. This simplification is due to both computational reasons but also for a
theoretical nature. In fact, in the way just explained, probability equivalent levels can be
represented through lines, given that each confidence level v of portfolio Ω is associated
with a single conditioning level uv of indexes. If it were possible to condition on two
indexes with different values, then the result would be a surface of probability equivalent
levels, a fact that greatly complicates the treatment and notation adopted up to this point.
Possible future areas of study could concern this topic, as it is evident in reality that in
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stressful situations not all market players behave in the same way. Parameters previously
presented are rescaled according to table 4.7 to avoid increase in computational costs.

Parameters Values

Training set 750 observations before 2008-07-01
Test set 150 observations after 2008-07-01
Γ 750
Ψ 750
γ 50
κ 25
S 500
v {0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065, 0.07}
Ω1 {Alcoa Corporation (AA), American Express Company (AXP),

The Boeing Company (BA), Bank of America Corporation (BAC)}
each weighing 1

4
I1 {Citigroup Inc. (C), Caterpillar Inc. (CAT)}
Ω2 {DuPont de Nemours Inc. (DD), The Walt Disney Company (DIS),

General Electric Company (GE), General Motors Company (GM)}
each weighing 1

4
I2 {The Home Depot Inc. (HD), HP Inc. (HPQ)}
Ω3 {International Business Machines Corporation (IBM), Intel Corporation (INTC),

Johnson & Johnson (JNJ), JPMorgan Chase & Co. (JPM)}
each weighing 1

4
I3 {American International Group Inc. (AIG), The Coca-Cola Company (KO)}

Table 4.7. Settings for probability equivalent level analysis.

Going into details, for a fixed portfolio confidence level v, what is done can be seen in
Figures 4.16, 4.17, 4.18. All conditional strategies with different conditioning values are
plotted together with unconditional risk measures. Conditioning values uv are chosen
according to the portfolio under consideration and by deductive reasoning. In fact, the
analysis is initially made with the dummy vector uv = {0.01,0.11,0.21,0.31,0.41,0.51,
0.61,0.71,0.81,0.91}, where each single value represent a plausible probability equivalent
level. Next, the elements of the vector uv such that above and below those there are no
intersections between the conditional and unconditional approaches are identified. At this
point, the process of Figures 4.16, 4.17, 4.18 is done for a new vector uv with 10 points
equally spaced between the previously identified thresholds. In this way, the search for the
exact value of uv among the elements contained in the vector is done in a more detailed
and precise manner than just adopting the same uv vector for all portofolios. Note that
thresholds are set for all risk measures together, and not for VaR and ES separately, to
avoid an excessive increase in computational costs. In addition, the reasoning is made
first for uv vector corresponding to probability equivalent levels analysis associated with
one conditional asset risk measures and then repeated again for uv vector in the case of
probability equivalent level analysis with two conditional assets risk measures.
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Figures 4.16, 4.17, 4.18 offer a dual interpretation of the concept of probability equiv-
alent level. On the one hand there is the definition presented up to this moment, i.e. uv

are all intersection points between the black line and the colored lines. Actually, with
few data available, lines do not intersect at points that have x axis in common. However,
intersections clearly exist, as can be seen from plots. Having to determine the value of uv

in closed form, the strategy adopted for this work consists in fixing a particular colored
line (corresponding to a particular conditioning level) and then calculating the number of
upcrossing and downcrossing between the line just mentioned and the black one so as to
obtain an approximation of number of times the two lines intersect. This reasoning is done
for each different conditioning level, i.e. for all colored lines, obtaining for each element
of the vector uv the number of intersections with the unconditional approach. Subse-
quently, a weighted average of the different uv is carried out, where the weight is given by
the number of intersections, to obtain an approximation of PELCoV and PELCoES final
values.

Figure 4.16. One conditional asset PELCoV analysis, portfolio confidence level v=0.05.
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Figure 4.17. Two conditional assets PELCoV and one conditional PELCoES analyses,
portfolio confidence level v=0.05.
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Figure 4.18. PELCoES analysis, portfolio confidence level v=0.05.

The whole procedure is repeated for each portfolio confidence level v and the final perfor-
mance of PELCoV and PELCoES, whether conditioned on one or two assets, are shown
from Figure 4.19 to Figure 4.30. Although on the y-axis it can be seen that sometimes
values assumed by probability equivalent levels are very close and the differences are on
the order of the second decimal place, in general the behavior of probability equivalent
levels is varied. Figures 4.19, 4.20, 4.21, 4.22, 4.24 show how in certain cases, as v in-
creases the same happens for uv, revealing a kind of linear behavior. The fact may be
quite intuitive, if one considers that with the increase of confidence level v, the returns in
the v% worst cases increase, and consequently the conditioning levels for the conditional
risk measures should also increase in order to obtain PELCoV and PELCoES. Despite
this, as already pointed out by Ortega-Jiménez et al. [2024], there are conditions that
guarantee monotonicity and the same should be investigated for the multivariate case.
Looking at all plots together in fact we can observe that in general the behavior of prob-
ability equivalent levels seem to be either monotonic increasing or constant fluctuating
around a certain value. A further element of study might be why the same probability
equivalent level conditioned on different numbers of assets result in opposite trends of uv

values, as in Figures 4.21, 4.22.
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Figure 4.19. One conditional asset PELCoV
trend for Ω1, I1.

Figure 4.20. Two conditional assets PELCoV
trend for Ω1, I1.

Figure 4.21. One conditional asset PELCoV
trend for Ω2, I2.

Figure 4.22. Two conditional assets PELCoV
trend for Ω2, I2.
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Figure 4.23. One conditional asset PELCoV
trend for Ω3, I3.

Figure 4.24. Two conditional assets PELCoV
trend for Ω3, I3.

Figure 4.25. One conditional asset PELCoES
trend for Ω1, I1.

Figure 4.26. Two conditional assets PELCoES
trend for Ω1, I1.
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Figure 4.27. One conditional asset PELCoES
trend for Ω2, I2.

Figure 4.28. Two conditional assets PELCoES
trend for Ω2, I2.

Figure 4.29. One conditional asset PELCoES
trend for Ω3, I3.

Figure 4.30. Two conditional assets PELCoES
trend for Ω3, I3.

68



4.4 – Empirical Application

On the other hand, another interpretation of probability equivalent levels, which hope-
fully is more operational, is based on graphs 4.16, 4.17, 4.18. In fact, without the need
to calculate the exact value of uv for each portfolio confidence level v, we have already
observed that:

• There are levels that can be interpreted as upper or lower bounds, in the sense that
conditional risk measures never intersect with the respective unconditional one either
from above or below. For example, in the first PELCoV analysis for Ω1 with two
conditional assets and the dummy vector uv, these values were found to be 0.11 and
0.31.

• There exists a market index conditioning level uv where it is evident that most of
the overlap occurs for that value. For example, in the first PELCoV analysis for Ω1
with two conditional assets and the dummy vector uv, this value can be guessed to
be 0.21.

These three quantities could be of great use for example in defining indicators for early
warning systems based on historical data under stressed conditions. Their purpose could
be to identify critical warning thresholds for repayment risks within a credit risk frame-
work. This would enable banks to take corrective actions, such as increasing RWAs, to
meet liquidity requirements during times of market stress.

Having reached this point, the careful reader will notice that all reasonings about
monotonicity of probability equivalent levels have been made with conditional verbs. In
particular, two observations were made in the preceding paragraphs:

• As the market indexes conditioning level αI increases, we should expect conditional
risk measures to increase as well.

• As the portfolio confidence level v for estimating risk measures increases, we should
also expect probability equivalent levels final value uv to increase as well.

Ortega-Jiménez et al. [2024] have already investigated the monotonic conditions under
which the second point is true, even if only in the bidimensional case. What they have not
completely outlined, however, concerns the first point. Intuitively one would be inclined
to think that what is written is right. However, this is a false intuition, and to prove it the
analysis presented so far has been repeated on a fourth portfolio Ω4 = { 1329, ETFMIB,
GDAXIEX, SPY}, with conditioning assets I4 = {GCJ4, CCK4} taken from Investing.
Asset names are nothing but the symbols found in the financial markets of four ETFs that
track Nikkei 225, FTSE MIB, DAX and S&P 500 indexes respectively. The conditioning
indexes, on the other hand, are the prices of gold and cocoa futures respectively. The
training data refer to 689 observations before 2007-09-4, in which all assets increase and
then peak, while the test ones are the later 324 realizations, corresponding to the decline
due to the Global Financial Crisis. Time series and copula parameters are chosen as in
table 4.7 with the exceptions of:

• Γ =689

• Ψ=689
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• γ=50

• κ=50
The uniqueness of this dataset, compared to the previous ones, can be seen in Figure
4.31 and Table 4.8, which represent univariate asset prices, Spearman’s ρ and Kendall
Tau matrices between training, test set and the conditioning assets respectively. Portfolio
assets are positively correlated with each other and with the conditioning indexes in
the training set. However, in the test set the behavior reverses, and this challenges the
algorithms presented so far for their ability to correctly model the dependence and know
how to adjust it according to market conditions.

Figure 4.31. Asset prices for Ω4 and I4.

Spearman’s ρ GCJ4 CCK4
Ω4 training set 0.8845225 0.5328657

Ω4 test set -0.1222775 -0.3032364

Kendall Tau GCJ4 CCK4
Ω4 training set 0.6932501 0.3852222

Ω4 test set -0.1098750 -0.1762041

Table 4.8. Correlation measures between Ω4 and I4 asset prices. GCJ4 and CCK4 prices
are taken only in the respective set of Ω4.
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Moreover, Figure 4.31 is presented at price level, in order to highlight more the correlation
between different assets. However, the procedure for estimating risk measures is done at
the log return level, in order to ensure weak stationarity of time series under consideration.
The logarithmic scale poses an additional problem for modeling dependencies, since the
correlations seen in table 4.8 will not be as pronounced as for prices. In addition to this,
two questions that can arise are: How will the estimated unconditional risk measures
perform? Regarding conditional risk measures, is it fair to expect them to perform better
when conditioning on positive value in the copula scales (i.e. αI = 0.9) or if conditioning
on bad values (i.e. αI = 0.1)? The second question may seem meaningless, as one would
expect that only by conditioning on the true value assumed by gold and cocoa, i.e positive
values as can be seen in the test set for this particular case, the conditional risk measures
would perform well. In fact, Ω4 and I4 are negatively correlated in the test set, which in
turn implies that positive values of gold and cocoa in the copula scale would be matched by
portfolio bad values in the copula scale. The results of Kupiec, Christoffersen and McNeil
& Frey tests only partially confirm what just said, showing indeed that even conditioning
on bad values of gold and cocoa the rolling window risk measure estimation algorithm
still succeeds in correctly modeling dependencies and exceedances:

VaR test of Kupiec VaR test of Christoffersen
Null Hypothesis (H0) Correct Exceedances Correct Exceedances & Independent
Actual exceedances 15 15
Expected exceedances 16 16
LR 0.0958 0.225
LR critical value (α = 0.05) 3.84 5.99
P-value 0.757 0.893
Decision Fail to Reject H0 Fail to Reject H0

Table 4.9. Kupiec and Christoffersen VaR tests, unconditional rolling win-
dow approach for Ω4, I4.

VaR test of Kupiec VaR test of Christoffersen
Null Hypothesis (H0) Correct Exceedances Correct Exceedances & Independent
Actual exceedances 11 11
Expected exceedances 16 16
LR 1.97 2.75
LR critical value (α = 0.05) 3.84 5.99
P-value 0.16 0.253
Decision Fail to Reject H0 Fail to Reject H0

Table 4.10. Kupiec and Christoffersen VaR tests, conditional quantile rolling window
approach with αI = 0.1 for Ω4, I4.
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VaR test of Kupiec VaR test of Christoffersen
Null Hypothesis (H0) Correct Exceedances Correct Exceedances & Independent
Actual exceedances 24 24
Expected exceedances 16 16
LR 3.47 3.5
LR critical value (α = 0.05) 3.84 5.99
P-value 0.0627 0.174
Decision Fail to Reject H0 Fail to Reject H0

Table 4.11. Kupiec and Christoffersen VaR tests, conditional quantile rolling window
approach with αI = 0.9 for Ω4, I4.

ES Test of McNeil and Frey
Null Hypothesis (H0) Mean of Excess Violations of VaR is equal to zero
Actual Excess Violations 15
Expected Excess Violations 16
Bootstrap P-value 0.309
Decision Fail to Reject H0

Table 4.12. McNeil and Frey ES test, unconditional rolling window approach for Ω4, I4.
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ES Test of McNeil and Frey
Null Hypothesis (H0) Mean of Excess Violations of VaR is equal to zero
Actual Excess Violations 11
Expected Excess Violations 16
Bootstrap P-value 0.275
Decision Reject H0

Table 4.13. McNeil and Frey ES test, conditional quantile rolling window
approach with αI = 0.1 for Ω4, I4.

ES Test of McNeil and Frey
Null Hypothesis (H0) Mean of Excess Violations of VaR is equal to zero
Actual Excess Violations 24
Expected Excess Violations 16
Bootstrap P-value 0.0825
Decision Fail to Reject H0

Table 4.14. McNeil and Frey ES test, conditional quantile rolling window
approach with αI = 0.9 for Ω4, I4.

In order to give a meaningful explanation for these seemingly counterintuitive results, it
is necessary to study the structures of R-vines and D-vines constructed when applying
the rolling window risk measure estimation algorithms. This structures are shown in
Figures 4.32 and 4.33. Looking in particular at figure 4.32 we can answer the first of
the two questions presented earlier: unconditional risk measures perform well even in the
case of datasets with negatively correlated assets due to the greater flexibility of R-vine
structures, which are not simply paths but can potentially include more articulated trees.
On the other hand, with respect to Figure 4.33, it can be observed that the weights of the
edges connecting assets in the portfolio to the conditioning indexes are "lightly weighted,"
i.e they have low Kendall Tau values. In other words the algortims are focusing more
on modeling internally portfolio dependencies, since they are positive and strong, than
modeling poor negative dependencies with market indexes. This partially justifies the fact
that, regardless of the conditioning level, tests are passed correctly in each case.
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Figure 4.32. Example of R-vine structure for a particular rolling window.

Figure 4.33. Example of D-vine structure for a particular rolling window.
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Going finally to replicate the probability equivalent level analysis, an interesting fact
emerges, closely related to the first issue of monotonicity mentioned few pages ago. In-
deed, it has been said that as the conditioning level of market indexes αI increases, it
is false to expect that the conditional risk measures always increase. This is confirmed
by Figure 4.34, where we can observe PELCoES analysis at 2.5% confidence level with
one conditioning asset. The graph presents what might be called an "inverted structure",
that is, positive values on which we condition in the copula scales correspond to lower
risk measures, i.e. more conservative risk measures on the log return scale. In formu-
las, CoES0.025,0.9[Ω4|I4] ≤ CoES0.025,0.1[Ω4|I4]. Thinking about it more closely, it makes
some sense what happens in the figure if we look at the graph in parallel with those in
Figure 4.31. In fact, by conditioning on positive values in the copula scales for gold and
cocoa we are assuming that these assets are performing well in the market. Since they are
negatively correlated with portfolio Ω4, it is fair to expect accordingly that Ω4 performs
very poorly. This would explain why the conditional quantile risk measure estimation
with αI = 0.9 turns out to be more conservative than the case with αI = 0.1.

Figure 4.34. Example of inverted structure for conditional risk measures.

However, what has just been observed is only a special case, and going to analyze all the
graphs such as those in Figures 4.16, 4.17, 4.18 but for every possible value of v, it can be
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seen that there is no clear and definitive correspondence to say under what circumstances
of dependence an "inverted structure" occurs or not. Looking for example at the number
of exceedances in tables 4.10, 4.11, one can easily see that VaR and CoVar do not exhibit
an "inverted structure" in that case, since the number of exceedances conditioning on
αI = 0.9 is greater than the number of exceedances conditioning on αI = 0.1, thus
CoV aR0.05,0.9[Ω4|I4] ≥ CoV aR0.05,0.1[Ω4|I4]. What is certain at a more operational level,
on the other hand, is that while the interpretation of probability equivalent levels is
unique, the same cannot be said for the assesment of which risk measures are more or
less conservative than others but a case-by-case study must be analyzed, studying the
behaviors of the conditional risk measures for different values of the vector uv and trying
to extrapolate some sort of correspondence that determines the presence of an inverted
structure or not.
For completeness, the results of probability equivalent level analysis for Ω4 and I4 are
also shown below, similar to what can be seen from Figure 4.19 to Figure 4.30. Similar
considerations to those made earlier can be repeated in part, with the difference that when
conditioning on two assets it seems that PELCoV and PELCoES have a decreasing trend,
which might be due to the presence of negatively correlated assets or "inverted structures"
between conditional risk measures.

Figure 4.35. One conditional asset PELCoES
trend for Ω4, I4.

Figure 4.36. Two conditional assets PELCoES
trend for Ω4, I4.
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Figure 4.37. One conditional asset PELCoES
trend for Ω4, I4.

Figure 4.38. Two conditional assets PELCoES
trend for Ω4, I4.
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Chapter 5

Conclusion

The use of Vine copula presents various opportunities in the financial context, regardless
of the specific area of application. In general, these tools provide a total view of what
can be defined as systemic risk, being able to measure, predict and manage it. Thanks
to univariate time series models, it is possible to feed Vine copula models to capture de-
pendencies between different assets within an investment portfolio. Once the dependence
structure is known, this work have addressed the prediction of risk measures, both with a
conditional and unconditional approaches. The study of conditional risk measures, along
with a demonstration of their validity, allows for a greater understanding of the differ-
ent facets of systemic risk and brings to light another topic of equal importance, namely
the study of probability equivalent levels. Their existence is proved with the following
work, but a characterization from a more formal point of view for the multivariate case
could be a future research topic, leading to the definition of multidimensional surfaces
of probability equivalent levels. Beyond this, further extensions could be to consider an
approach closer to dynamic programming, and thus less myopic than the current one, for
evaluating R-Vine structures, as well as exploiting more complex univariate time series
models, which would allow a more precise and detailed characterization of residuals.
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Appendix A

R code

A.1 Monte Carlo Simulation

#l i b r a r i e s
rm( l i s t = l s ( ) )
set . seed (129)
l ibrary ( s t a t s )
l ibrary ( VineCopula )
l ibrary ( skewt )
#g l o b a l parameters
T=1000
d = 7
N=1000
dd = d∗ (d−1)/2
mat=matrix (c ( 7 , 4 , 5 , 1 , 2 , 3 , 6 , 0 , 4 , 6 , 5 , 1 , 2 , 3 , 0 , 0 , 6 , 5 , 1 , 2 , 3 ,

0 , 0 , 0 , 5 , 1 , 3 , 2 , 0 , 0 , 0 , 0 , 1 , 3 , 2 , 0 , 0 , 0 , 0 , 0 , 3 , 2 ,
0 , 0 , 0 , 0 , 0 , 0 , 2 ) , 7 , 7 )

#MONTE CARLO SIMULATION
#SCENARIO WITH FIXED BB1 COPULA

#i n i t i a l i z a t i o n s
k=runif (7 , 0 , 7)
gamma=runif (7 , 1 , 7)
par1_mat=array (0 ,dim=c (d , d) )
par1_mat [ lower . t r i ( par1_mat) ]=k
par2_mat=array (0 ,dim=c (d , d) )
par2_mat [ lower . t r i ( par2_mat) ]=gamma
fam_mat=matrix (0 ,nrow=d , ncol=d)
fam_mat [ lower . t r i ( fam_mat , diag=FALSE) ]=7
rvm_r=RVineMatrix (Matrix=mat , family=fam_mat , par=par1_mat , par2=par2_mat)
rv ine=array (NA, dim = c (T, d , N) )
rv ine_e s t=array (NA, dim=c (T, d , N) )
tau=rvm_r$tau
gen_tau_d i f f=array (NA, dim = c (d , d , N) )
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lower_tau_d i f f=array (NA, dim = c (d , d , N) )
upper_tau_d i f f=array (NA, dim = c (d , d , N) )

#simulat ion
for ( i in 1 :N){

rv ine [ , , i ]=RVineSim(T, rvm_r )
}
#check missing va lues
sum( i s .na( rv ine ) )

#estimation
for ( i in 1 :N){

rvm_e s t=RVineStructureSe lect ( rv ine [ , , i ] , p r og r e s s=FALSE) #RVM = RVINE MATRIX

#genera l tau d i f f e r e n c e
rv ine_e s t [ , , i ]=RVineSim(T, rvm_e s t ) #RVINE EST=SAMPLE FROM RVM
gen_tau_d i f f [ , , i ]=abs ( TauMatrix ( rv ine [ , , i ] )−TauMatrix ( rv ine_e s t [ , , i ] ) )

#lower tau d i f f e r e n c e
rv ine_lower=matrix (nrow = 0 , ncol = d)
rv ine_e s t_lower=matrix (nrow = 0 , ncol = d)
for ( j in 1 : ( d−1) ) {

for ( k in ( j +1) : d) {
f l g=rv ine [ , j , i ]<=0.2 & rv ine [ , k , i ]<=0.2
rv ine_lower=rbind ( rv ine_lower , r v ine [ f l g , , i ] )
f l g_e s t=rv ine_e s t [ , j , i ]<=0.2 & rv ine_e s t [ , k , i ]<=0.2
rv ine_e s t_lower=rbind ( rv ine_e s t_lower , r v ine_e s t [ f l g_est , , i ] )

}
i f (dim( rv ine_lower ) [1] >1 & dim( rv ine_e s t_lower ) [1 ] >1) {

rv ine_lower=unique ( rv ine_lower )
rv ine_e s t_lower=unique ( rv ine_e s t_lower )
lower_tau_d i f f [ , , i ]=abs ( TauMatrix ( rv ine_lower )−TauMatrix ( rv ine_e s t_lower ) )

}
}

#upper tau d i f f e r e n c e
rv ine_upper=matrix (nrow = 0 , ncol = d)
rv ine_e s t_upper=matrix (nrow = 0 , ncol = d)
for ( j in 1 : ( d−1) ) {

for ( k in ( j +1) : d) {
f l g=rv ine [ , j , i ] >0.8 & rv ine [ , k , i ] >0.8
rv ine_upper=rbind ( rv ine_upper , r v ine [ f l g , , i ] )
f l g_e s t=rv ine_e s t [ , j , i ] >0.8 & rv ine_e s t [ , k , i ] >0.8
rv ine_e s t_upper=rbind ( rv ine_e s t_upper , r v ine_e s t [ f l g_est , , i ] )

}
i f (dim( rv ine_upper ) [1] >1 & dim( rv ine_e s t_upper ) [1 ] >1) {

rv ine_lower=unique ( rv ine_lower )
rv ine_e s t_lower=unique ( rv ine_e s t_lower )
upper_tau_d i f f [ , , i ]=abs ( TauMatrix ( rv ine_upper )−TauMatrix ( rv ine_e s t_upper ) )

}
}

}

#d i s p l a y error
mean_tau_d i f f=apply ( gen_tau_d i f f , c (1 , 2) , mean)
print (paste ( "mean␣ gene r i c ␣ tau␣ d i f f e r e n c e ␣1 " ,mean(mean_tau_d i f f [ lower . t r i (mean_tau_

d i f f ) ] ) ) )
#T=500, N=10: 0.01361244393549
#T=500, N=100: 0.0111957247828991
#T=500, N=1000: 0.0115575364061456
#T=1000, N=1000: 0.00931771161637828

mean_lower_tau_d i f f=apply ( lower_tau_d i f f , c (1 , 2) , mean)
print (paste ( "mean␣ lower ␣ tau␣ d i f f e r e n c e " ,mean( lower_tau_d i f f [ lower . t r i ( lower_tau_

d i f f ) ] ) ) )
#T=500, N=10: 0.0450569702002633
#T=500, N=100: 0.0393313219607121
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#T=500, N=1000: 0.040562476569338
#T=1000, N=1000: 0.0329022128240668

mean_upper_tau_d i f f=apply (upper_tau_d i f f , c (1 , 2) , mean)
print (paste ( "mean␣upper␣ tau␣ d i f f e r e n c e " ,mean(upper_tau_d i f f [ lower . t r i (upper_tau_

d i f f ) ] ) ) )
#T=500, N=10: 0.0721471873130148
#T=500, N=100: 0.0567947864616883
#T=500, N=1000: 0.0608024698527986
#T=1000, N=1000: 0.055513015028374

#SCENARIO WITH BB1 COPULA RANDOM ROTATION

#i n i t i a l i z a t i o n s
par1_mat=array (0 ,dim=c (d , d) )
par2_mat=array (0 ,dim=c (d , d) )
fam_mat=matrix (0 ,nrow=d , ncol=d)
random_fam=sample (c (7 ,17 ,27 ,37) , 7 , replace = TRUE)
fam_mat [ lower . t r i ( fam_mat , diag=FALSE) ]=random_fam
par1_mat=array (0 ,dim=c (d , d) )
par2_mat=array (0 ,dim=c (d , d) )
for ( i in 1 : d) {

for ( j in 1 : d) {
i f ( fam_mat [ i , j ]==7 | | fam_mat [ i , j ]==17){

par1_mat [ i , j ]= runif (1 , 0 , 7)
par2_mat [ i , j ]= runif (1 , 1 , 7)

}
else i f ( fam_mat [ i , j ]==27 | | fam_mat [ i , j ]==37){

par1_mat [ i , j ]= runif (1 , −7, 0)
par2_mat [ i , j ]= runif (1 , −7, −1)

}
}

}
rvm_r=RVineMatrix (Matrix=mat , family=fam_mat , par=par1_mat , par2=par2_mat)
rv ine=array (NA, dim = c (T, d , N) )
rv ine_e s t=array (NA, dim=c (T, d , N) )
tau=rvm_r$tau
gen_tau_d i f f=array (NA, dim = c (d , d , N) )
lower_tau_d i f f=array (NA, dim = c (d , d , N) )
upper_tau_d i f f=array (NA, dim = c (d , d , N) )

#simulat ion
for ( i in 1 :N){

rv ine [ , , i ]=RVineSim(T, rvm_r )
}
#check missing va lues
sum( i s .na( rv ine ) )

#estimation
for ( i in 1 :N){

rvm_e s t=RVineStructureSe lect ( rv ine [ , , i ] , p r og r e s s=FALSE) #RVM = RVINE MATRIX

#genera l tau d i f f e r e n c e
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rv ine_e s t [ , , i ]=RVineSim(T, rvm_e s t ) #RVINE EST=SAMPLE FROM RVM
gen_tau_d i f f [ , , i ]=abs ( TauMatrix ( rv ine [ , , i ] )−TauMatrix ( rv ine_e s t [ , , i ] ) )

#lower tau d i f f e r e n c e
rv ine_lower=matrix (nrow = 0 , ncol = d)
rv ine_e s t_lower=matrix (nrow = 0 , ncol = d)
for ( j in 1 : ( d−1) ) {

for ( k in ( j +1) : d) {
f l g=rv ine [ , j , i ]<=0.2 & rv ine [ , k , i ]<=0.2
rv ine_lower=rbind ( rv ine_lower , r v ine [ f l g , , i ] )
f l g_e s t=rv ine_e s t [ , j , i ]<=0.2 & rv ine_e s t [ , k , i ]<=0.2
rv ine_e s t_lower=rbind ( rv ine_e s t_lower , r v ine_e s t [ f l g_est , , i ] )

}
i f (dim( rv ine_lower ) [1] >1 & dim( rv ine_e s t_lower ) [1 ] >1) {

rv ine_lower=unique ( rv ine_lower )
rv ine_e s t_lower=unique ( rv ine_e s t_lower )
lower_tau_d i f f [ , , i ]=abs ( TauMatrix ( rv ine_lower )−TauMatrix ( rv ine_e s t_lower ) )

}
}

#upper tau d i f f e r e n c e
rv ine_upper=matrix (nrow = 0 , ncol = d)
rv ine_e s t_upper=matrix (nrow = 0 , ncol = d)
for ( j in 1 : ( d−1) ) {

for ( k in ( j +1) : d) {
f l g=rv ine [ , j , i ] >0.8 & rv ine [ , k , i ] >0.8
rv ine_upper=rbind ( rv ine_upper , r v ine [ f l g , , i ] )
f l g_e s t=rv ine_e s t [ , j , i ] >0.8 & rv ine_e s t [ , k , i ] >0.8
rv ine_e s t_upper=rbind ( rv ine_e s t_upper , r v ine_e s t [ f l g_est , , i ] )

}
i f (dim( rv ine_upper ) [1] >1 & dim( rv ine_e s t_upper ) [1 ] >1) {

rv ine_lower=unique ( rv ine_lower )
rv ine_e s t_lower=unique ( rv ine_e s t_lower )
upper_tau_d i f f [ , , i ]=abs ( TauMatrix ( rv ine_upper )−TauMatrix ( rv ine_e s t_upper ) )

}
}

}

#d i s p l a y error
mean_tau_d i f f=apply ( gen_tau_d i f f , c (1 , 2) , mean)
print (paste ( "mean␣ gene r i c ␣ tau␣ d i f f e r e n c e ␣1 " ,mean(mean_tau_d i f f [ lower . t r i (mean_tau_

d i f f ) ] ) ) )
#T=500, N=10: 0.0104550434201737
#T=500, N=100: 0.0121030327321309
#T=500, N=1000: 0.01346073967774
#T=1000, N=1000: 0.0116576354653324

mean_lower_tau_d i f f=apply ( lower_tau_d i f f , c (1 , 2) , mean)
print (paste ( "mean␣ lower ␣ tau␣ d i f f e r e n c e " ,mean( lower_tau_d i f f [ lower . t r i ( lower_tau_

d i f f ) ] ) ) )
#T=500, N=10: 0.0214083181761
#T=500, N=100: 0.020322939800837
#T=500, N=1000: 0.028608124109949
#T=1000, N=1000: 0.0301880199408099

mean_upper_tau_d i f f=apply (upper_tau_d i f f , c (1 , 2) , mean)
print (paste ( "mean␣upper␣ tau␣ d i f f e r e n c e " ,mean(upper_tau_d i f f [ lower . t r i (upper_tau_

d i f f ) ] ) ) )
#T=500, N=10: 0.0575692439084721
#T=500, N=100: 0.0314271738330079
#T=500, N=1000: 0.0230840521430407
#T=1000, N=1000: 0.0500424886405396
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#SCENARIO WITH MIXED COPULAS MIXED TAUS TAKEN FROM CZADO

#i n i t i a l i z a t i o n s
par1_mat=array (0 ,dim=c (d , d) )
par2_mat=array (0 ,dim=c (d , d) )
fam_mat=matrix (0 ,nrow=d , ncol=d)
fam_mat=matrix (c ( 0 , 1 , 5 , 1 , 4 , 5 , 14 , 0 , 0 , 1 , 5 , 14 ,1 , 4 , 0 , 0 , 0 , 1 , 4 , 5 , 14 ,

0 , 0 , 0 , 0 , 14 ,1 , 4 , 0 , 0 , 0 , 0 , 0 , 2 , 2 , 0 , 0 , 0 , 0 , 0 , 0 , 2 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 ) , 7 , 7 )

tau=matrix (c ( 0 , 0 . 0 5 , 0 . 1 0 , 0 . 1 5 , 0 . 2 0 , 0 . 2 5 , 0 . 5 0 , 0 , 0 , 0 . 1 0 , 0 . 1 5 , 0 . 2 0 , 0 . 3 0 , 0 . 5 5 ,
0 , 0 , 0 , 0 . 1 5 , 0 . 2 0 , 0 . 3 5 , 0 . 6 0 , 0 , 0 , 0 , 0 , 0 . 2 0 , 0 . 4 0 , 0 . 6 5 ,
0 , 0 , 0 , 0 , 0 , 0 . 4 5 , 0 . 7 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 . 70 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 ) , 7 , 7 )

deg_f r e e_t=3
for ( i in 1 : 7 ) {

for ( j in 1 : 7 ) {
i f ( i>j ) {

par1_mat [ i , j ]=BiCopTau2Par ( family=fam_mat [ i , j ] , tau=tau [ i , j ] )
i f ( fam_mat [ i , j ]==2){

par2_mat [ i , j ]=deg_f r e e_t
deg_f r e e_t=deg_f r e e_t+1

}
}

}
}
rvm_r=RVineMatrix (Matrix=mat , family=fam_mat , par=par1_mat , par2=par2_mat)
rv ine=array (NA, dim = c (T, d , N) )
rv ine_e s t=array (NA, dim=c (T, d , N) )
gen_tau_d i f f=array (NA, dim = c (d , d , N) )
lower_tau_d i f f=array (NA, dim = c (d , d , N) )
upper_tau_d i f f=array (NA, dim = c (d , d , N) )

#simulat ion and est imation
for ( i in 1 :N){

rv ine [ , , i ]=RVineSim(T, rvm_r )
rvm_e s t=RVineStructureSe lect ( rv ine [ , , i ] , p r og r e s s=FALSE) #RVM = RVINE MATRIX

#genera l tau d i f f e r e n c e :
#simulate data with true model , compute empir ica l tau from simulated data (A) ,
#est imate the model , s imulate data from the est imated model ,
#compute empir ica l tau on simulated data from estimated model (B) ,
#compute A−B
rv ine_e s t [ , , i ]=RVineSim(T, rvm_e s t ) #RVINE EST=SAMPLE FROM RVM
gen_tau_d i f f [ , , i ]=abs ( TauMatrix ( rv ine [ , , i ] )−TauMatrix ( rv ine_e s t [ , , i ] ) )

#lower tau d i f f e r e n c e
rv ine_lower=matrix (nrow = 0 , ncol = d)
rv ine_e s t_lower=matrix (nrow = 0 , ncol = d)
for ( j in 1 : ( d−1) ) {

for ( k in ( j +1) : d) {
f l g=rv ine [ , j , i ]<=0.2 & rv ine [ , k , i ]<=0.2
rv ine_lower=rbind ( rv ine_lower , r v ine [ f l g , , i ] )
f l g_e s t=rv ine_e s t [ , j , i ]<=0.2 & rv ine_e s t [ , k , i ]<=0.2
rv ine_e s t_lower=rbind ( rv ine_e s t_lower , r v ine_e s t [ f l g_est , , i ] )

}
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i f (dim( rv ine_lower ) [1] >1 & dim( rv ine_e s t_lower ) [1 ] >1) {
rv ine_lower=unique ( rv ine_lower )
rv ine_e s t_lower=unique ( rv ine_e s t_lower )
lower_tau_d i f f [ , , i ]=abs ( TauMatrix ( rv ine_lower )−TauMatrix ( rv ine_e s t_lower ) )

}
}

#upper tau d i f f e r e n c e
rv ine_upper=matrix (nrow = 0 , ncol = d)
rv ine_e s t_upper=matrix (nrow = 0 , ncol = d)
for ( j in 1 : ( d−1) ) {

for ( k in ( j +1) : d) {
f l g=rv ine [ , j , i ] >0.8 & rv ine [ , k , i ] >0.8
rv ine_upper=rbind ( rv ine_upper , r v ine [ f l g , , i ] )
f l g_e s t=rv ine_e s t [ , j , i ] >0.8 & rv ine_e s t [ , k , i ] >0.8
rv ine_e s t_upper=rbind ( rv ine_e s t_upper , r v ine_e s t [ f l g_est , , i ] )

}
i f (dim( rv ine_upper ) [1] >1 & dim( rv ine_e s t_upper ) [1 ] >1) {

rv ine_lower=unique ( rv ine_lower )
rv ine_e s t_lower=unique ( rv ine_e s t_lower )
upper_tau_d i f f [ , , i ]=abs ( TauMatrix ( rv ine_upper )−TauMatrix ( rv ine_e s t_upper ) )

}
}

}

#d i s p l a y error
mean_tau_d i f f=apply ( gen_tau_d i f f , c (1 , 2) , mean)
print (paste ( "mean␣ gene r i c ␣ tau␣ d i f f e r e n c e ␣1 " ,mean(mean_tau_d i f f [ lower . t r i (mean_tau_

d i f f ) ] ) ) )
#T=500, N=10: 0.0240433629163088
#T=500, N=100: 0.0217010478099055
#T=500, N=1000: 0.0202402946846073
#T=1000, N=1000: 0.0151380412793746

mean_lower_tau_d i f f=apply ( lower_tau_d i f f , c (1 , 2) , mean)
print (paste ( "mean␣ lower ␣ tau␣ d i f f e r e n c e " ,mean( lower_tau_d i f f [ lower . t r i ( lower_tau_

d i f f ) ] ) ) )
#T=500, N=10: 0.0643451872350793
#T=500, N=100: 0.0574120432934252
#T=500, N=1000: 0.0584803049953999
#T=1000, N=1000: 0.0460839739232319

mean_upper_tau_d i f f=apply (upper_tau_d i f f , c (1 , 2) , mean)
print (paste ( "mean␣upper␣ tau␣ d i f f e r e n c e " ,mean(upper_tau_d i f f [ lower . t r i (upper_tau_

d i f f ) ] ) ) )
#T=500, N=10: 0.0623787921797875
#T=500, N=100: 0.0632510552615448
#T=500, N=1000: 0.0668592147271203
#T=1000, N=1000: 0.0509377528813044

#study of anomalous cases
#desktop_path<− f i l e . path ( Sys . getenv ("USERPROFILE") , " Desktop " , " rv ine_save . csv ")
#rvine_save<− as . data . frame ( as . t a b l e ( rv ine [ , , c (292 ,514 ,533 ,736 ,745 ,989) ] ) )
#wri te . csv ( rvine_save , f i l e =desktop_path , row . names = FALSE)
#read_df <− read . csv (" rvine_save . csv ")
#rvine_na<− array ( read_df $Freq , dim = c (500 , 7 , 6) )
#rvm_e s t of rv ine [ , , 7 4 5 ] has got a NA in p o s i t i o n (3 ,2) of tau matrix
#(same f o r rvine [ , , 5 3 3 ] ) , t h i s i m p l i e s t h a t mean_tau_d i f f 2 has got a l s o NA,
#in p a r t i c u l a r in p o s i t i o n (2 ,1) (3 ,2) (4 ,2) (5 ,2) (6 ,1) )
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#SCENARIO WITH EVERY POSSIBLE FAMILY RANDOMLY

#i n i t i a l i z a t i o n s
par1_mat=array (0 ,dim=c (d , d) )
par2_mat=array (0 ,dim=c (d , d) )
rv ine=array (NA, dim = c (T, d , N) )
rv ine_e s t=array (NA, dim=c (T, d , N) )
fam_mat=matrix (0 ,nrow=d , ncol=d)
gen_tau_d i f f=array (NA, dim = c (d , d , N) )
lower_tau_d i f f=array (NA, dim = c (d , d , N) )
upper_tau_d i f f=array (NA, dim = c (d , d , N) )

#choose copula fami ly and parameters
copula_f am i l i e s=c (0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 13 ,

14 , 16 , 17 , 18 , 19 , 20 , 23 , 24 , 26 , 27 ,
28 , 29 , 30 , 33 , 34 , 36 , 37 , 38 , 39 , 40 ,
104 , 114 , 124 , 134 , 204 , 214 , 224 , 234)

random_fam=sample ( copula_f am i l i e s , dd , replace=TRUE)
fam_mat [ lower . t r i ( fam_mat , diag=FALSE) ]=random_fam
for ( i in 1 : d) {

for ( j in 1 : d) {
i f ( fam_mat [ i , j ] %in% c (1 , 2) ) {

par1_mat [ i , j ] = runif (1 , −1, 1)
i f ( fam_mat [ i , j ] == 2) par2_mat [ i , j ] = runif (1 , 2 , 1 e3 )

} else i f ( fam_mat [ i , j ] %in% c (3 , 13) ) {
par1_mat [ i , j ] = runif (1 , 0 , 28)

} else i f ( fam_mat [ i , j ] %in% c (4 , 14) ) {
par1_mat [ i , j ] = runif (1 , 1 , 17)

} else i f ( fam_mat [ i , j ] == 5) {
prova=runif (1 , −35, 35)
while ( prova==0){

prova=runif (1 , −35, 35)
}
par1_mat [ i , j ] = prova

} else i f ( fam_mat [ i , j ] %in% c (6 , 16) ) {
par1_mat [ i , j ] = runif (1 , 1 , 30)

} else i f ( fam_mat [ i , j ] %in% c (7 , 17) ) {
par1_mat [ i , j ] = runif (1 , 0 , 7)
par2_mat [ i , j ] = runif (1 , 1 , 7)

} else i f ( fam_mat [ i , j ] %in% c (8 , 18) ) {
par1_mat [ i , j ] = runif (1 , 1 , 6)
par2_mat [ i , j ] = runif (1 , 1 , 8)

} else i f ( fam_mat [ i , j ] %in% c (9 , 19) ) {
par1_mat [ i , j ] = runif (1 , 1 , 6)
par2_mat [ i , j ] = runif (1 , 0 , 75)

} else i f ( fam_mat [ i , j ] %in% c (10 , 20) ) {
par1_mat [ i , j ] = runif (1 , 1 , 8)
par2_mat [ i , j ] = runif (1 , 1e−4, 1)

} else i f ( fam_mat [ i , j ] %in% c (23 , 33) ) {
par1_mat [ i , j ] = runif (1 , −28, 0)

} else i f ( fam_mat [ i , j ] %in% c (24 , 34) ) {
par1_mat [ i , j ] = runif (1 , −17, −1)

} else i f ( fam_mat [ i , j ] %in% c (26 , 36) ) {
par1_mat [ i , j ] = runif (1 , −30, −1)

} else i f ( fam_mat [ i , j ] %in% c (27 , 37) ) {
par1_mat [ i , j ] = runif (1 , −7, 0)
par2_mat [ i , j ] = runif (1 , −7, −1)
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} else i f ( fam_mat [ i , j ] %in% c (28 , 38) ) {
par1_mat [ i , j ] = runif (1 , −6, −1)
par2_mat [ i , j ] = runif (1 , −8, −1)

} else i f ( fam_mat [ i , j ] %in% c (29 , 39) ) {
par1_mat [ i , j ] = runif (1 , −6, −1)
par2_mat [ i , j ] = runif (1 , −75, 0)

} else i f ( fam_mat [ i , j ] %in% c (30 , 40) ) {
par1_mat [ i , j ] = runif (1 , −8, −1)
par2_mat [ i , j ] = runif (1 , −1, −1e−4)

} else i f ( fam_mat [ i , j ] %in% c (41 , 51) ) {
par1_mat [ i , j ] = runif (1 , 0 , 1 e10 )

} else i f ( fam_mat [ i , j ] %in% c (61 , 71) ) {
par1_mat [ i , j ] = runif (1 , −1e3 , 0)

} else i f ( fam_mat [ i , j ] == 42) {
b <− runif (1 , −1, 1)
limA <− (b − 3 − sqrt (9 + 6 ∗ b − 3 ∗ b^2) )/2
while ( limA>1) {

b <− runif (1 , −1, 1)
limA <− (b − 3 − sqrt (9 + 6 ∗ b − 3 ∗ b^2) )/2

}
par1_mat [ i , j ] = runif (1 , limA , 1 )
par2_mat [ i , j ] = b

} else i f ( fam_mat [ i , j ] %in% c (104 , 114 , 204 , 214) ) {
par1_mat [ i , j ] = runif (1 , 1 , 1 e3 )
par2_mat [ i , j ] = runif (1 , 0 , 1)

} else i f ( fam_mat [ i , j ] %in% c (124 , 134 , 224 , 234) ) {
par1_mat [ i , j ] = runif (1 , −1e3 , −1)
par2_mat [ i , j ] = runif (1 , 0 , 1)

}
}

}
rvm_r=RVineMatrix (Matrix=mat , family=fam_mat , par=par1_mat , par2=par2_mat)
tau=rvm_r$tau

#simulat ion
for ( i in 1 :N){

rv ine [ , , i ]=RVineSim(T, rvm_r )
}
#check missing va lues
sum( i s .na( rv ine ) )

#estimation
for ( i in 1 :N){

rvm_e s t=RVineStructureSe lect ( rv ine [ , , i ] , p r og r e s s=FALSE) #RVM = RVINE MATRIX

#genera l tau d i f f e r e n c e
rv ine_e s t [ , , i ]=RVineSim(T, rvm_e s t ) #RVINE_EST = SAMPLE FROM RVM
gen_tau_d i f f [ , , i ]=abs ( TauMatrix ( rv ine [ , , i ] )−TauMatrix ( rv ine_e s t [ , , i ] ) )

#lower tau d i f f e r e n c e
rv ine_lower=matrix (nrow = 0 , ncol = d)
rv ine_e s t_lower=matrix (nrow = 0 , ncol = d)
for ( j in 1 : ( d−1) ) {

for ( k in ( j +1) : d) {
f l g=rv ine [ , j , i ]<=0.2 & rv ine [ , k , i ]<=0.2
rv ine_lower=rbind ( rv ine_lower , r v ine [ f l g , , i ] )
f l g_e s t=rv ine_e s t [ , j , i ]<=0.2 & rv ine_e s t [ , k , i ]<=0.2
rv ine_e s t_lower=rbind ( rv ine_e s t_lower , r v ine_e s t [ f l g_est , , i ] )

}
i f (dim( rv ine_lower ) [1] >1 & dim( rv ine_e s t_lower ) [1 ] >1) {

rv ine_lower=unique ( rv ine_lower )
rv ine_e s t_lower=unique ( rv ine_e s t_lower )
lower_tau_d i f f [ , , i ]=abs ( TauMatrix ( rv ine_lower )−TauMatrix ( rv ine_e s t_lower ) )

}
}

#upper tau d i f f e r e n c e
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A.2 – DJIA Vine Copula based Risk Measures forecast

rv ine_upper=matrix (nrow = 0 , ncol = d)
rv ine_e s t_upper=matrix (nrow = 0 , ncol = d)
for ( j in 1 : ( d−1) ) {

for ( k in ( j +1) : d) {
f l g=rv ine [ , j , i ] >0.8 & rv ine [ , k , i ] >0.8
rv ine_upper=rbind ( rv ine_upper , r v ine [ f l g , , i ] )
f l g_e s t=rv ine_e s t [ , j , i ] >0.8 & rv ine_e s t [ , k , i ] >0.8
rv ine_e s t_upper=rbind ( rv ine_e s t_upper , r v ine_e s t [ f l g_est , , i ] )

}
i f (dim( rv ine_upper ) [1] >1 & dim( rv ine_e s t_upper ) [1 ] >1) {

rv ine_lower=unique ( rv ine_lower )
rv ine_e s t_lower=unique ( rv ine_e s t_lower )
upper_tau_d i f f [ , , i ]=abs ( TauMatrix ( rv ine_upper )−TauMatrix ( rv ine_e s t_upper ) )

}
}

}

#d i s p l a y error
mean_tau_d i f f=apply ( gen_tau_d i f f , c (1 , 2) , mean)
print (paste ( "mean␣ gene r i c ␣ tau␣ d i f f e r e n c e " ,mean(mean_tau_d i f f [ lower . t r i (mean_tau_

d i f f ) ] ) ) )
#T=500, N=10: 0.0238954098673538
#T=500, N=100: 0.0806560380616617
#T=500, N=1000: 0.0357822972386742
#T=1000, N=1000: 0.0174836106895621

mean_lower_tau_d i f f=apply ( lower_tau_d i f f , c (1 , 2) , mean)
print (paste ( "mean␣ lower ␣ tau␣ d i f f e r e n c e " ,mean( lower_tau_d i f f [ lower . t r i ( lower_tau_

d i f f ) ] ) ) )
#T=500, N=10: 0.0341544492487925
#T=500, N=100: 0.0756173075316744
#T=500, N=1000: 0.0433710712192429
#T=1000, N=1000: 0.0297517949215619

mean_upper_tau_d i f f=apply (upper_tau_d i f f , c (1 , 2) , mean)
print (paste ( "mean␣upper␣ tau␣ d i f f e r e n c e " ,mean(upper_tau_d i f f [ lower . t r i (upper_tau_

d i f f ) ] ) ) )
#T=500, N=10: 0.0413958695116491
#T=500, N=100: 0.0795217912376646
#T=500, N=1000: 0.0571722129818986
#T=1000, N=1000: 0.115660439599446

A.2 DJIA Vine Copula based Risk Measures forecast
#l i b r a r i e s
rm( l i s t = l s ( ) )
set . seed (129)
l ibrary ( VineCopula )
l ibrary ( rugarch )
l ibrary ( mvtsplot )
l ibrary ( por tv ine )
l ibrary ( s t a t s )
l ibrary ( r v i n e copu l i b )
l ibrary ( skewt )
l ibrary ( magr i t t r )
l ibrary ( ggp lot2 )
l ibrary ( t i dyv e r s e )
data ( " d j i 3 0 r e t " )
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#RISK MEASURES COMPUTATION AND BACKTESTING
#p l o t d j i a c o n s t i t u e n t s and index
data_i n i z i o_c r i s i <− as . Date ( " 2007−01−01 " )
dates=as . Date (row .names( d j i 3 0 r e t ) )
d j i 3 0 r e t_07_09 <− d j i 3 0 r e t [ dates > data_i n i z i o_c r i s i , ]

d j i a <− d j i 3 0 r e t_07_09 %>%
rownames_to_column (var = " date " ) %>%
mutate (date = as . Date (date ) ) %>%
gather ( key = " Const i tuent " , va lue = " log_re turn " , −date )

ggp lot (data = dj ia , aes ( x = date , y = log_return , c o l o r = Const i tuent ) ) +
geom_l i n e ( ) +
geom_smooth (method = " l o e s s " , se = FALSE, c o l o r = " black " , l i n ew idth = 0 . 5 ) +
labs ( t i t l e = "DJIA␣Const i tuents ␣Log␣Returns␣2007−2009 " ,

s u b t i t l e = "LOESS␣smoothing␣ l i n e ␣ in ␣ black ␣ to ␣ check␣weak␣ s t a t i o n a r i t y " ,
x = "Year " ,
y = "Log␣Return " )

index <− data . frame (data = rowSums( d j i 3 0 r e t_07_09) ) %>%
rownames_to_column (var = " date " ) %>%
mutate (date = as . Date (date ) )

ggp lot (data = index , aes ( x = date , y = data ) ) +
geom_l i n e ( ) +
labs ( t i t l e = "DJIA␣ Index␣Log␣ re tu rn s ␣2007−2009 " ,

x = "Year " ,
y = "Log␣Return " )

#t r a i n / t e s t s e t construct ion
t r a i n <− d j i 3 0 r e t %>%

rownames_to_column (var = " date " ) %>%
mutate (date = as . Date (date ) ) %>%
f i l t e r (date <= as . Date ( " 2008−04−18 " ) ) %>% #2008−07−01∗∗∗
t a i l (1000) #1200∗∗∗

#t r a i n=t r a i n [ 1 : 1 0 0 0 , 1 : l e n g t h ( t r a i n ) ] #∗∗∗
t e s t <− d j i 3 0 r e t %>%

rownames_to_column (var = " date " ) %>%
mutate (date = as . Date (date ) ) %>%
t a i l (200) #200∗∗∗

t r a i n_t e s t=rbind ( t ra in , t e s t )
cat ( " Dimensione␣ t r a i n ␣ s e t : " , nrow( t r a i n ) )
cat ( " Dimensione␣ t e s t ␣ s e t : " , nrow( t e s t ) )
cat ( " Dimensione␣ datase t : " , nrow( t r a i n_t e s t ) )

# #gridsearch f o r arma(p , q )−garch ( x , y ) orders s e l e c t i o n (commented due to high
computational c os t )

# max_order <− 3 #p o s s i b l e va lues of p , q , x , y ( from 1 to 3)
# combinaz <− expand . g r i d (p=1:max_order , q=1:max_order , x=1:max_order , y=1:max_order )
# aic_mat <− array (NA, dim=c (dim( d j i 3 0 r e t ) [ 2 ] , dim( combinaz ) [ 1 ] ) )
# b i c_mat <− array (NA, dim=c (dim( d j i 3 0 r e t ) [ 2 ] , dim( combinaz ) [ 1 ] ) )
# b e s t_aic=array (NA, dim=dim( d j i 3 0 r e t ) [ 2 ] )
# b e s t_b i c=array (NA, dim=dim( d j i 3 0 r e t ) [ 2 ] )
# b e s t_combinaz=array (NA, dim=dim( d j i 3 0 r e t ) [ 2 ] )
# f o r ( i in 2: dim( t r a i n ) [ 2 ] ) {
# p r i n t ( i )
# f o r ( j in 1: dim( combinaz ) [ 1 ] ) {
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# model <− ugarchspec ( variance . model = l i s t ( model = "sGARCH" , garchOrder = c (
combinaz [ j , 3 ] , combinaz [ j , 4 ] ) ) ,

# mean . model = l i s t ( armaOrder = c ( combinaz [ j , 1 ] , combinaz [ j
, 2 ] ) ) ,

# d i s t r i b u t i o n . model=" s s t d ")
# f i t_model <− u g a r c h f i t ( spec = model , data = t r a i n [ , i ] , s o l v e r = " hybrid ")
# aic_mat [ i , j ] <− i n f o c r i t e r i a ( f i t_model ) [ 1 ]
# b i c_mat [ i , j ] <− i n f o c r i t e r i a ( f i t_model ) [ 2 ]
# }
# }
#
# p r i n t (sum( i s . na( aic_mat) ) )
# p r i n t (sum( i s . na( b i c_mat) ) )
# f o r ( i in 1: dim( d j i 3 0 r e t ) [ 2 ] ) {
# b e s t_aic [ i ]=which . min( aic_mat [ i , ] )
# b e s t_b i c [ i ]=which . min( b i c_mat [ i , ] )
# i f ( b e s t_aic [ i ]< b e s t_b i c [ i ] ) {
# b e s t_combinaz [ i ]= b e s t_aic [ i ]
# }
# e l s e {
# b e s t_combinaz [ i ]= b e s t_b i c [ i ]
# }
# }
# p r i n t ( b e s t_aic )
# p r i n t ( b e s t_b i c )
# p r i n t ( b e s t_combinaz )
# #ARMA−GARCH s p e c i f i c a t i o n given the b e s t orders
# spec_l i s t <− l a p p l y (1:30 , funct ion ( i ) {
# aic_va lues <− combinaz [ b e s t_b i c [ i ] , ]
# spec <− d e f a u l t_garch_spec ( ar = aic_va lues $p , ma = aic_va lues $q , arch = aic_

va lues $x , garch = aic_va lues $y )
# return ( spec )
# })
# names( spec_l i s t )=names( d j i 3 0 r e t )

#uncondit ional var , es est imation using a r o l l i n g window
#marginal s e t t i n g s
marg_s e t t i n g s <− marginal_s e t t i n g s (

t r a i n_s i z e = 1000 ,
r e f i t_s i z e = 50 , #l e n g t h of f o r e c a s t i n g window of marginal models

#i n d i v i d u a l_spec = spec_l i s t #uncomment t h i s l i n e i f ARMA−GARCH gridsearch i s
done

default_spec = default_garch_spec ( )
)

#vine s e t t i n g s
uncond_vine_s e t t i n g s <− vine_s e t t i n g s (

t r a i n_s i z e = 1000 ,
r e f i t_s i z e = 50 , #how many times use the same copula

)
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col_index <− s e t d i f f ( 2 : ncol ( t r a i n_t e s t ) , 8)
col_sampled <− c ( 2 , 3 , 4 , 5 , 6 , 7 )
#c o l_sampled <− c (15 ,16 ,17 ,18 ,19 ,20) #∗∗∗
a s s e t_names=names( t r a i n_t e s t ) [ col_sampled ]
weights_por ta f=setNames (c ( rep (1/ ( length ( a s s e t_names)−2) , length ( a s s e t_names) − 2) ,

0 , 0) , a s s e t_names)
r e a l i z e d=rowSums( t e s t [ , col_sampled [ 1 : 4 ] ] /4)

#r o l l i n g est imation approach : f i t ARMA−GARCH, take r e s i d u a l s , apply PIT , f i t vine
uncond_r i s k_r o l l <− es t imate_r i s k_r o l l (

data = t ra i n_t e s t [ , col_sampled [ 1 : 4 ] ] ,
weights=weights_por ta f [ 1 : 4 ] ,
marginal_s e t t i n g s = marg_s e t t i n g s ,
v ine_s e t t i n g s = uncond_vine_s e t t i n g s ,
alpha = c ( 0 . 0 5 ) ,
r i s k_measures = c ( "VaR" , "ES_mean" ) ,
n_samples = 500 ,
trace = TRUE

)
df_r i s k=r i s k_e s t imate s ( uncond_r i s k_r o l l , exceeded = TRUE)

#ljung −box t e s t f o r s e r i a l a u t o c o r r e l a t i o n at d i f f e r e n t l a g s (H0: no
a u t o c o r r e l a t i o n )

margina ls <− f i t t e d_margina ls ( uncond_r i s k_r o l l )
v ine s=f i t t e d_v ine s ( uncond_r i s k_r o l l )
l ag=c (1 , 5 , 10 ,15 ,20 )
l j ung_mat_std <− array (NA, dim=c ( 4 , 5 , 4 ) ) #a s s e t x l a g x r o l l i n g_window
l j ung_mat_sqr_std <− array (NA, dim=c ( 4 , 5 , 4 ) ) #a s s e t x l a g x r o l l i n g_window
for ( i in 1 : 4 ) {

for ( j in 1 : 4 ) { #p o r t f o l i o with 4 a s s e t
std_resid <− r o l l_residuals ( marg ina ls [ [ names( t r a i n_t e s t ) [ col_sampled [ j ] ] ] ] ,

r o l l_num = i )
sqr_std_resid <− r o l l_residuals ( marg ina ls [ [ names( t r a i n_t e s t ) [ col_sampled [ j ] ] ] ] ,

r o l l_num = i )∗∗2
for ( t in 1 : 5 ) {

l jung_mat_std [ j , t , i ]=Box . t e s t ( std_resid , l ag = lag [ t ] , type = " Lju " )$p . value
l jung_mat_sqr_std [ j , t , i ]=Box . t e s t ( sqr_std_resid , l ag = lag [ t ] , type = " Lju " )$

p . value
}

}
}
cat ( " Ljung−Box␣ t e s t ␣p−va lues ␣on␣ r e s i d u a l s \n" )
l j ung_mat_std
cat ( " Nul l ␣ hypothes i s ␣ r e j e c t e d " ,sum( l j ung_mat_std < 0 .05 ) , " t imes " )
#r o l l window 1
#0.6380067 0.5463938 0.6029006 0.6344385 0.6718554
#0.8014358 0.9053650 0.1593253 0.3227831 0.5922897
#0.4676530 0.9880981 0.9515401 0.7557235 0.9220219
#0.5154959 0.9828692 0.4915308 0.7299531 0.8291133
#r o l l window 2
#0.7574107 0.4250166 0.5197523 0.5792903 0.5595016
#0.9649823 0.7189497 0.1273333 0.3255091 0.6412178
#0.3584866 0.9509725 0.7782875 0.6425933 0.8159217
#0.5889626 0.9750401 0.2606740 0.5787592 0.7132500
#r o l l window 3
#0.7303668 0.4845496 0.5032916 0.3530659 0.5161353
#0.9758730 0.6804913 0.2132273 0.3709773 0.6907675
#0.3565942 0.9610094 0.7203465 0.6127089 0.8014826
#0.6870309 0.9555553 0.4242265 0.6489335 0.8104965
#r o l l window 4
#0.4785026 0.8102419 0.6801353 0.6230811 0.5774870
#0.7419728 0.7221892 0.5306022 0.7773300 0.9391385
#0.4223057 0.8533465 0.9064178 0.7290525 0.7063390
#0.7907871 0.9558479 0.1554015 0.3116655 0.5337789
#Null h y p o t h e s i s r e j e c t e d 0 times
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cat ( " Ljung−Box␣ t e s t ␣ pvalues ␣on␣ squared ␣ r e s i d u a l s \n" )
l j ung_mat_sqr_std
cat ( " Nul l ␣ hypothes i s ␣ r e j e c t e d " ,sum( l j ung_mat_sqr_std < 0 .05 ) , " t imes " )
#r o l l window 1
#0.3720645 0.3588128 0.5520004 0.7587870 0.8277244
#0.1763380 0.5868463 0.3012886 0.4141761 0.6076664
#0.3100602 0.7714612 0.9323075 0.9715605 0.9816345
#0.9376997 0.9005088 0.6384118 0.5807796 0.7340830
#r o l l window 2
#0.2901060 0.4123180 0.6495486 0.8579638 0.9231744
#0.1825294 0.6219297 0.3051888 0.4206254 0.6002521
#0.2898876 0.8078642 0.9686650 0.9793846 0.9912506
#0.8328646 0.8739790 0.7051593 0.6253267 0.7566121
#r o l l window 3
#0.2781621 0.3542505 0.4614083 0.7665455 0.9266283
#0.1737278 0.6032993 0.2955229 0.3834031 0.5551994
#0.3166856 0.7722314 0.8726943 0.9458312 0.9755234
#0.8350609 0.9535959 0.9202004 0.8726341 0.9193350
#r o l l window 4
#0.3840283 0.5761943 0.27725871 0.52219124 0.7443184
#0.1481619 0.6964143 0.06170925 0.09706642 0.1774252
#0.5043815 0.9213580 0.77727810 0.75624577 0.6348034
#0.8154017 0.7972667 0.81759214 0.87994837 0.8821706
#Null h y p o t h e s i s r e j e c t e d 0 times

#p l o t of r e s u l t s
x_geom_point=df_r i s k $row_num[ df_r i s k $exceeded ]
y_geom_point=df_r i s k $ r e a l i z e d [ df_r i s k $exceeded ]
df_geom_point=data . frame (df_r i s k $ r e a l i z e d [ df_r i s k $exceeded ] )
df_r i s k %>%

ggplot ( ) +
geom_l i n e ( aes ( x = row_num, y = r e a l i z e d ) , col = " grey " ) +
geom_l i n e ( aes ( x = row_num, y = r i s k_est , col = factor ( r i s k_measure ) ) ) +
scale_ f i l l_manual ( ) +
geom_point ( aes ( x = x_geom_point , y = y_geom_point ) ,

data = df_geom_point ,
col = "#db4f59 " )+

labs (x = " t rad ing ␣day " ,
y = " p o r t f o l i o ␣ log ␣ r e tu rns " ,
col = " Risk␣measure " ,
t i t l e = " Uncondit iona l ␣ r i s k ␣measures , ␣ conf . ␣ l e v e l ␣5%" ,
s u b t i t l e = " Exceedances ␣ in ␣ red , ␣ p o r t f o l i o ␣ log ␣ return ␣ in ␣ grey " )

#c o n d i t i o n a l var , es est imation using a r o l l i n g window
#vine s e t t i n g s
cond_vine_s e t t i n g s <− vine_s e t t i n g s (

t r a i n_s i z e = 1000 ,
r e f i t_s i z e = 50 , #how many times use the same copula
family_set = c ( " parametr ic " ) ,
v ine_type = " dvine " )
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#confidence l e v e l of the est imated q u a n t i l e from the marginal d i s t r i b u t i o n
pe lcov =0.1
pe lcov_s t r=as . character ( pe lcov )
#r o l l i n g est imation approach : f i t ARMA−GARCH, take r e s i d u a l s , apply PIT , f i t vine
cond_r i s k_r o l l <− es t imate_r i s k_r o l l (

data = t ra i n_t e s t [ col_sampled [ 1 : 6 ] ] ,
weights =weights_por ta f ,
marginal_s e t t i n g s = marg_s e t t i n g s ,
v ine_s e t t i n g s = cond_vine_s e t t i n g s ,
alpha = c ( 0 . 0 5 ) ,
r i s k_measures = c ( "VaR" , "ES_mean" ) ,
n_samples = 500 ,
cond_vars = c (names( t r a i n_t e s t ) [ col_sampled [ 5 ] ] ,names( t r a i n_t e s t ) [ col_sampled

[ 6 ] ] ) ,
cond_u=pelcov , #value i n s i d e pe lcov i s a s s o c i a t e d to both condi t ioning v a r i a b l e s
##QUANTILE STRATEGY=marginal market index on copula s c a l e
#( marginals f o r copulas are unif−−>q u a n t i l e i s the confidence l e v e l i t s e l f ) ,
p r i o r_resid_s t r a t egy = TRUE,

#RESIDUAL STRATEGY=condi t ioning va lues f o r the f o r e c a s t at time t
#are the PIT of index I r e s i d u a l at time t −1
trace = TRUE

)

#PLOT OF ALL STRATEGIES
df_cond=r i s k_e s t imate s ( cond_r i s k_r o l l , exceeded = TRUE)
ggp lot (df_cond ) +

geom_l i n e (data=df_cond , aes ( x = row_num, y = r e a l i z e d ) , col = " grey " ) +
geom_l i n e (data = subset (df_cond , r i s k_measure == "VaR" & cond_u == " p r i o r_r e s i d " )

,
aes ( x = row_num, y = r i s k_est , col="Var_p r i o r_r e s i d " ) ) +

geom_l i n e (data = subset (df_cond , r i s k_measure == "VaR" & cond_u == pelcov_s t r ) ,
aes ( x = row_num, y = r i s k_est , col=paste0 ( "VaR_" , pe lcov_s t r ) ) ) +

geom_l i n e (data = subset (df_cond , r i s k_measure == "ES_mean" & cond_u == " p r i o r_
r e s i d " ) ,

aes ( x = row_num, y = r i s k_est , col="ES_mean_p r i o r_r e s i d " ) ) +
geom_l i n e (data = subset (df_cond , r i s k_measure == "ES_mean" & cond_u == pelcov_s t r

) ,
aes ( x = row_num, y = r i s k_est , col=paste0 ( "ES_mean_" , pe lcov_s t r ) ) ) +

labs (x = " t rad ing ␣day " ,
y = " p o r t f o l i o ␣ log ␣ r e tu rns " ,
col = " Risk␣measure " ,
t i t l e = " Al l ␣ c ond i t i ona l ␣ r i s k ␣measures , ␣ conf . ␣ l e v e l ␣5%" ,
s u b t i t l e = " Exceedances ␣ in ␣ red , ␣ p o r t f o l i o ␣ r e a l i z e d ␣ log ␣ return ␣ in ␣ grey " )+

scale_ f i l l_manual (
name = " Risk␣Measure " ,
labels = c ( paste0 ( "ES_mean_" , pe lcov_s t r ) , "ES_mean_p r i o r_r e s i d " , paste0 ( "VaR_" ,

pe lcov_s t r ) , "Var_p r i o r_r e s i d " )
)

#QUANTILE STRATEGY PLOT
ggp lot (df_cond ) +

geom_l i n e ( aes ( x = row_num, y = r e a l i z e d ) , col = " grey " ) +
geom_l i n e (data = subset (df_cond , r i s k_measure == "VaR" & cond_u == pelcov_s t r ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "VaR_" , pe lcov_s t r ) ) ) +
geom_l i n e (data = subset (df_cond , r i s k_measure == "ES_mean" & cond_u == pelcov_s t r

) ,
aes ( x = row_num, y = r i s k_est , col=paste0 ( "ES_mean_" , pe lcov_s t r ) ) ) +

geom_l i n e (data = subset (df_cond , cond_u == pelcov_s t r ) ,
aes ( x = row_num, y =! ! as . name(names( t r a i n_t e s t ) [ col_sampled [ 5 ] ] ) ,

col=paste0 (names( t r a i n_t e s t ) [ col_sampled [ 5 ] ] , "_" , pe lcov ) ) ) +
geom_l i n e (data = subset (df_cond , cond_u == pelcov_s t r ) ,

aes ( x = row_num, y =! ! as . name(names( t r a i n_t e s t ) [ col_sampled [ 6 ] ] ) ,
col=paste0 (names( t r a i n_t e s t ) [ col_sampled [ 6 ] ] , "_" , pe lcov ) ) ) +

geom_point (data=subset (df_cond , exceeded== TRUE & cond_u == pelcov_s t r ) ,
aes ( x = row_num, y=r e a l i z e d ) , col="#db4f59 " )+

scale_ f i l l_manual (
name = " Risk␣Measure " ,
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labels = c ( paste0 (names( t r a i n_t e s t ) [ col_sampled [ 6 ] ] , "_" , pe lcov ) ,
paste0 (names( t r a i n_t e s t ) [ col_sampled [ 5 ] ] , "_" , pe lcov ) ,
paste0 ( "ES_mean_" , pe lcov_s t r ) , paste0 ( "VaR_" , pe lcov_s t r ) ) )+

labs (x = " t rad ing ␣day " ,
y = " p o r t f o l i o ␣ log ␣ r e tu rns " ,
col = " Risk␣measure " ,
t i t l e = " Quanti le ␣based␣ cond i t i ona l ␣ r i s k ␣measures , ␣ conf . ␣ l e v e l ␣5%" ,
s u b t i t l e = " Exceedances ␣ in ␣ red , ␣ p o r t f o l i o ␣ r e a l i z e d ␣ log ␣ return ␣ in ␣ grey " )

#PRIOR RESIDUAL COPULA SCALE STRATEGY PLOT
#I t should be noted t h a t the c o n d i t i o n a l s e r i e s based on the f i t t e d
#r e s i d u a l s of the time unit b e f o r e w i l l most l i k e l y exaggerate
#sudden high v o l a t i l i t y s i t u a t i o n s
ggp lot (df_cond , aes ( x = row_num) ) +

geom_l i n e ( aes ( y = r e a l i z e d ) , col = " grey " ) +
geom_l i n e (data = subset (df_cond , r i s k_measure == "VaR" & cond_u == " p r i o r_r e s i d " )

, aes ( y = r i s k_est , col="VaR_p r i o r_r e s i d " ) ) +
geom_l i n e (data = subset (df_cond , r i s k_measure == "ES_mean" & cond_u == " p r i o r_

r e s i d " ) , aes ( y = r i s k_est , col="ES_mean_p r i o r_r e s i d " ) ) +
geom_point (data=subset (df_cond , exceeded== TRUE & cond_u == " p r i o r_r e s i d " ) , aes ( y=

r e a l i z e d ) , col="#db4f59 " )+
labs (x = " t rad ing ␣day " ,

y = " p o r t f o l i o ␣ log ␣ r e tu rns " ,
col = " Risk␣measure " ,
t i t l e = " Pr io r ␣Res idual ␣ c ond i t i ona l ␣ r i s k ␣measures , ␣ conf . ␣ l e v e l ␣5%" ,
s u b t i t l e = " Exceedances ␣ in ␣ red , ␣ p o r t f o l i o ␣ r e a l i z e d ␣ log ␣ return ␣ in ␣ grey " )+

scale_ f i l l_manual (
name = " Risk␣Measure " ,
labels = c ( "ES_mean_p r i o r_r e s i d " , "VaR_p r i o r_r e s i d " )

)

#var , covar comparison
l owest_s e r i e=df_cond$ r i s k_e s t [ df_cond$ r i s k_measure=="VaR" & df_cond$cond_u==pelcov_

s t r ]
middle_s e r i e=df_r i s k $ r i s k_e s t [ df_r i s k $ r i s k_measure=="VaR" ]
upper_s e r i e=df_cond$ r i s k_e s t [ df_cond$ r i s k_measure=="VaR" & df_cond$cond_u==" p r i o r_

r e s i d " ]
ggp lot ( ) +

geom_l i n e (data = subset (df_r i sk , r i s k_measure == "VaR" ) ,
aes ( x = row_num, y = r i s k_est , col="Var " ) ) +

geom_l i n e (data = subset (df_cond , r i s k_measure == "VaR" & cond_u == " p r i o r_r e s i d " )
,

aes ( x = row_num, y = r i s k_est , col="Var_p r i o r_r e s i d " ) ) +
geom_l i n e (data = subset (df_cond , r i s k_measure == "VaR" & cond_u == pelcov_s t r ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "VaR_" , pe lcov_s t r ) ) ) +
labs (x = " t rad ing ␣day " ,

y = " p o r t f o l i o ␣VaR" ,
col = " Risk␣measure " ,
t i t l e = "Comparison␣VaR␣&␣CoVaR, ␣ conf . ␣ l e v e l ␣5%" )+

scale_ f i l l_manual (
name = " Risk␣Measure " ,
labels = c ( "VaR" , paste0 ( "VaR_" , pe lcov_s t r ) , "Var_p r i o r_r e s i d " )

)

#es , coes comparison
ggp lot ( ) +

#geom_l i n e ( data=df_r i sk , aes ( x = row_num, y = r e a l i z e d ) , c o l = " b l a c k ") +
#geom_l i n e ( data=df_cond , aes ( x = row_num, y = r e a l i z e d ) , c o l = " ye l low ") +
#geom_l i n e ( data=t e s t , aes ( x = (501:650) , y =rowSums( t e s t [ , c o l_sampled [ 1 : 4 ] ] /4) ) ,

c o l = " red ") +
geom_l i n e (data = subset (df_r i sk , r i s k_measure == "ES_mean" ) ,

aes ( x = row_num, y = r i s k_est , col="ES_mean" ) ) +
geom_l i n e (data = subset (df_cond , r i s k_measure == "ES_mean" & cond_u == " p r i o r_

r e s i d " ) ,
aes ( x = row_num, y = r i s k_est , col="ES_mean_p r i o r_r e s i d " ) ) +

geom_l i n e (data = subset (df_cond , r i s k_measure == "ES_mean" & cond_u == pelcov_s t r
) ,
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aes (x = row_num, y = r i s k_est , col=paste0 ( "ES_mean_" , pe lcov_s t r ) ) ) +
#geom_point ( data=s u b s e t ( df_cond , exceeded== TRUE) ,
# aes ( x = row_num, y=r e a l i z e d ) , c o l="#db4f59 ")+
#geom_point ( data=s u b s e t ( df_cond , exceeded== TRUE & r i s k_measure == "VaR" & cond_u

== " prio r_r e s i d " & r e a l i z e d >middle_s e r i e ) ,
# aes ( x = row_num, y=r e a l i z e d ) , c o l ="green3 ")+
#geom_point ( data=s u b s e t ( df_r i sk , exceeded== TRUE & r i s k_measure == "VaR" &

r e a l i z e d >=lowest_s e r i e ) ,
# aes ( x = row_num, y=r e a l i z e d ) , c o l ="ye l low ")+
l ab s (x = " t rad ing ␣day " ,

y = " p o r t f o l i o ␣VaR" ,
col = " Risk␣measure " ,
t i t l e = "Comparison␣ES␣&␣CoES , ␣ conf . ␣ l e v e l ␣5%" )+

scale_ f i l l_manual (
name = " Risk␣Measure " ,
labels = c ( "ES_mean" , paste0 ( "ES_mean_" , pe lcov_s t r ) , "ES_mean_p r i o r_r e s i d " )

)

#b a c k t e s t i n g
uncond_var=df_r i s k [ df_r i s k $ r i s k_measure=="VaR" , 2 ]
cond_var_quantile=df_cond [ df_cond$ r i s k_measure=="VaR" & df_cond$cond_u==pelcov_s t r

, 2 ]
cond_var_r e s i d u a l=df_cond [ df_cond$ r i s k_measure=="VaR" & df_cond$cond_u==" p r i o r_

r e s i d " , 2 ]
bckt_var_uncond=VaRTest ( alpha = 0 .05 , ac tua l=r e a l i z ed ,

VaR=uncond_var , conf . l e v e l = 0 . 95 ) #0.05)#
bckt_var_quantile=VaRTest ( alpha = 0 .05 , ac tua l=r e a l i z ed ,

VaR=cond_var_quantile , conf . l e v e l = 0 . 95 )
bckt_var_r e s i d u a l=VaRTest ( alpha = 0 .05 , ac tua l=r e a l i z ed ,

VaR=cond_var_r e s i dua l , conf . l e v e l = 0 . 95 )
cat ( " uncond i t i ona l ␣ s t r a t egy ␣ f o r ␣VaR␣ es t imat ion \n" , s t r ( bckt_var_uncond ) )
# $ expected . exceed : num 10
# $ a c t u a l . exceed : num 24
# $ uc .H0 : chr " Correct Exceedances "
# $ uc . LRstat : num 15.1
# $ uc . c r i t i c a l : num 3.84
# $ uc .LRp : num 0.000103
# $ uc . Decision : chr " Reject H0"
# $ cc .H0 : chr " Correct Exceedances & Independent "
# $ cc . LRstat : num 17.1
# $ cc . c r i t i c a l : num 5.99
# $ cc .LRp : num 0.000194
# $ cc . Decision : chr " Reject H0"
cat ( " c ond i t i ona l ␣ quan t i l e ␣ s t r a t egy ␣ f o r ␣VaR␣ es t imat ion \n" , s t r ( bckt_var_quantile ) )
# $ expected . exceed : num 10
# $ a c t u a l . exceed : num 7
# $ uc .H0 : chr " Correct Exceedances "
# $ uc . LRstat : num 1.05
# $ uc . c r i t i c a l : num 3.84
# $ uc .LRp : num 0.305
# $ uc . Decision : chr " Fai l to Reject H0"
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# $ cc .H0 : chr " Correct Exceedances & Independent "
# $ cc . LRstat : num 1.56
# $ cc . c r i t i c a l : num 5.99
# $ cc .LRp : num 0.457
# $ cc . Decision : chr " Fai l to Reject H0"
cat ( " c ond i t i ona l ␣ p r i o r ␣ r e s i d u a l ␣ s t r a t egy ␣ f o r ␣VaR␣ es t imat ion \n" , s t r ( bckt_var_

r e s i d u a l ) )
# $ expected . exceed : num 10
# $ a c t u a l . exceed : num 50
# $ uc .H0 : chr " Correct Exceedances "
# $ uc . LRstat : num 90
# $ uc . c r i t i c a l : num 3.84
# $ uc .LRp : num 0
# $ uc . Decision : chr " Reject H0"
# $ cc .H0 : chr " Correct Exceedances & Independent "
# $ cc . LRstat : num 110
# $ cc . c r i t i c a l : num 5.99
# $ cc .LRp : num 0
# $ cc . Decision : chr " Reject H0"

uncond_es=df_r i s k [ df_r i s k $ r i s k_measure=="ES_mean" , 2 ]
cond_es_quantile=df_cond [ df_cond$ r i s k_measure=="ES_mean" & df_cond$cond_u==pelcov_

s t r , 2 ]
cond_es_r e s i d u a l=df_cond [ df_cond$ r i s k_measure=="ES_mean" & df_cond$cond_u==" p r i o r_

r e s i d " , 2 ]
bckt_es_uncond=ESTest ( alpha = 0 .05 , ac tua l=r e a l i z ed , ES=uncond_es ,

VaR=uncond_var , conf . l e v e l = 0 .95 , boot = TRUE, n . boot = 1000)
bckt_es_quantile=ESTest ( alpha = 0 .05 , r e a l i z ed , cond_es_quantile ,

cond_var_quantile , conf . l e v e l = 0 .95 , boot = TRUE, n . boot =
1000)

bckt_es_r e s i d u a l=ESTest ( alpha = 0 .05 , r e a l i z ed , cond_es_r e s i dua l ,
cond_var_r e s i dua l , conf . l e v e l = 0 .95 , boot = TRUE, n . boot =

1000)
cat ( " uncond i t i ona l ␣ s t r a t egy ␣ f o r ␣ES␣ es t imat ion \n" , s t r ( bckt_es_uncond ) )
# $ expected . exceed : num 10
# $ a c t u a l . exceed : i n t 24
# $ H1 : chr "Mean of Excess V i o l a t i o n s of VaR i s g r e a t e r than zero "
# $ boot . p . va lue : num 0.49
# $ p . value : num 0.452
# $ Decision : chr " Fai l to Reject H0"
cat ( " c ond i t i ona l ␣ quan t i l e ␣ s t r a t egy ␣ f o r ␣ES␣ es t imat ion \n" , s t r ( bckt_es_quantile ) )
# $ expected . exceed : num 10
# $ a c t u a l . exceed : i n t 7
# $ H1 : chr "Mean of Excess V i o l a t i o n s of VaR i s g r e a t e r than zero "
# $ boot . p . va lue : num 0.156
# $ p . value : num 0.0762
# $ Decision : chr " Fai l to Reject H0"
cat ( " c ond i t i ona l ␣ p r i o r ␣ r e s i d u a l ␣ s t r a t egy ␣ f o r ␣ES␣ es t imat ion \n" , s t r ( bckt_es_r e s i d u a l

) )
# $ expected . exceed : num 10
# $ a c t u a l . exceed : i n t 50
# $ H1 : chr "Mean of Excess V i o l a t i o n s of VaR i s g r e a t e r than zero "
# $ boot . p . va lue : num 0.00208
# $ p . value : num 0.000193
# $ Decision : chr " Reject H0"

#∗∗∗ :
#the se are the code−l e v e l changes t h a t must be made to obtain the
#r e s u l t s t h a t r e f e r to the s p e c i f i c example presented in s e c t i o n 4.4
#(Omega_3={ I n t e r n a t i o n a l Business Machines Corporation (IBM) ,
#I n t e l Corporation (INTC) , Johnson & Johnson (JNJ) , JPMorgan Chase & Co. (JPM) }
#each weighing 1/4 , I_3={American I n t e r n a t i o n a l Group Inc . (AIG) ,
#The Coca−Cola Company (KO) } , t r a i n i n g s e t with 1000 o b s e r v a t i o n s
#between 2003−09−24 and 2007−09−13, t e s t s e t from 2008−04−21 to 2009−02−03)
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A.3 DJIA Probability Equivalent Level Analysis
#l i b r a r i e s
rm( l i s t = l s ( ) )
set . seed (129)
l ibrary ( VineCopula )
l ibrary ( rugarch )
l ibrary ( mvtsplot )
l ibrary ( por tv ine )
l ibrary ( s t a t s )
l ibrary ( r v i n e copu l i b )
l ibrary ( skewt )
l ibrary ( magr i t t r )
l ibrary ( ggp lot2 )
l ibrary ( t i dyv e r s e )
data ( " d j i 3 0 r e t " )

#PROBABILITY EQUIVALENT LEVEL ANALYSIS
#i n i t i a l i z a t i o n s
t r a i n <− d j i 3 0 r e t %>%

rownames_to_column (var = " date " ) %>%
mutate (date = as . Date (date ) ) %>%
f i l t e r (date < as . Date ( " 2008−07−01 " ) ) %>%
t a i l (750)

t e s t <− d j i 3 0 r e t %>%
rownames_to_column (var = " date " ) %>%
mutate (date = as . Date (date ) ) %>%
t a i l (150)

t r a i n_t e s t=rbind ( t ra in , t e s t )
cat ( " Dimensione␣ t r a i n ␣ s e t : " , nrow( t r a i n ) )
cat ( " Dimensione␣ t e s t ␣ s e t : " , nrow( t e s t ) )
cat ( " Dimensione␣ datase t : " , nrow( t r a i n_t e s t ) )

marg_s e t t i n g s <− marginal_s e t t i n g s (
t r a i n_s i z e = 750 ,
r e f i t_s i z e = 50 , #l e n g t h of f o r e c a s t i n g window of marginal models
default_spec = default_garch_spec ( )

)

uncond_vine_s e t t i n g s <− vine_s e t t i n g s (
t r a i n_s i z e = 750 ,
r e f i t_s i z e =25, #how many times use the same copula

)

cond_vine_s e t t i n g s <− vine_s e t t i n g s (
t r a i n_s i z e = 750 ,
r e f i t_s i z e = 25 , #how many times use the same copula
family_set = c ( " parametr ic " ) ,
v ine_type = " dvine " )

#d e f i n i t i o n of r i s k l e v e l s at which pe lcov should be d e t e c t e d
r i s k_l e v e l s_v=c

( 0 . 0 1 , 0 . 0 1 5 , 0 . 0 2 , 0 . 0 2 5 , 0 . 0 3 , 0 . 0 3 5 , 0 . 0 4 , 0 . 0 4 5 , 0 . 0 5 , 0 . 0 5 5 , 0 . 0 6 , 0 . 0 6 5 , 0 . 0 7 )
f i n a l_pe l_uv=array (NA,dim=c (4 , length ( r i s k_l e v e l s_v ) ) )
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col_index <− s e t d i f f ( 2 : ncol ( t r a i n_t e s t ) , 8)
col_sampled <− c ( 2 , 3 , 4 , 5 , 6 , 7 ) #p o r t f o l i o 1)
#c o l_sampled <− c (9 ,10 ,11 ,12 ,13 ,14) #p o r t f o l i o 6)
#c o l_sampled <− c (15 ,16 ,17 ,18 ,19 ,20) #p o r t f o l i o 7)
a s s e t_names=names( t r a i n_t e s t ) [ col_sampled ]
weights_por ta f=setNames (c ( rep (1/ ( length ( a s s e t_names)−2) , length ( a s s e t_names) − 2) ,

0 , 0) , a s s e t_names)
r e a l i z e d=rowSums( t e s t [ , col_sampled [ 1 : 4 ] ] /4)
pe l_p l o t s <− vector ( " l i s t " , length ( r i s k_l e v e l s_v ) ) #vector containing a l l p l o t s to

see g r a p h i c a l l y PELs

for ( v in 1 : length ( r i s k_l e v e l s_v ) ) {
#uncondit ional r o l l i n g window est imation approach : f i t ARMA−GARCH, take r e s i d u a l s

, apply PIT , f i t vine
uncond_r i s k_r o l l <− es t imate_r i s k_r o l l (

data = t ra i n_t e s t [ , col_sampled [ 1 : 4 ] ] ,
weights=weights_por ta f [ 1 : 4 ] ,
marginal_s e t t i n g s = marg_s e t t i n g s ,
v ine_s e t t i n g s = uncond_vine_s e t t i n g s ,
alpha = c ( r i s k_l e v e l s_v [ v ] ) ,
r i s k_measures = c ( "VaR" , "ES_mean" ) ,
n_samples = 500 ,
trace = TRUE

)
df_r i s k=r i s k_e s t imate s ( uncond_r i s k_r o l l , exceeded = TRUE)
uncond_var=df_r i s k [ df_r i s k $ r i s k_measure=="VaR" , 2 ]
uncond_es=df_r i s k [ df_r i s k $ r i s k_measure=="ES_mean" , 2 ]

#ONE CONDITIONAL ASSET
#f i n d the c o r r e c t i n t e r v a l to search f o r p e l
pe l_t r i a l= seq ( 0 . 0 1 , 0 . 91 , by = 0 . 1 )
i n t e r s e c t i o n s_t r i a l=array (0 ,dim=c (4 , length ( pe l_t r i a l ) ) )
pe l_t r i a l_s t r=as . character ( pe l_t r i a l )
df_cond_l i s t_t r i a l=vector ( " l i s t " , length = length ( pe l_t r i a l ) )

#one c o n d i t i o n a l a s s e t r o l l i n g window est imation approach : f i t ARMA−GARCH, take
r e s i d u a l s , apply PIT , f i t vine

for ( i in 1 : length ( pe l_t r i a l ) ) {
cond_r i s k_r o l l <− es t imate_r i s k_r o l l (

data = t ra i n_t e s t [ col_sampled [ 1 : 5 ] ] ,
weights =weights_por ta f [ 1 : 5 ] ,
marginal_s e t t i n g s = marg_s e t t i n g s ,
v ine_s e t t i n g s = cond_vine_s e t t i n g s ,
alpha = c ( r i s k_l e v e l s_v [ v ] ) ,
r i s k_measures = c ( "VaR" , "ES_mean" ) ,
n_samples = 500 ,
cond_vars = c (names( t r a i n_t e s t ) [ col_sampled [ 5 ] ] ) ,
cond_u=pe l_t r i a l [ i ] ,
p r i o r_resid_s t r a t egy = TRUE,
trace = TRUE

)
df_cond_l i s t_t r i a l [ [ i ] ]= r i s k_e s t imate s ( cond_r i s k_r o l l , exceeded = TRUE)

}

#search i n t e r s e c t i o n s f o r pe lcov e p e l o c e s
d f s_var_t r i a l<− l i s t ( )
d f s_es_t r i a l <− l i s t ( )
for ( i in 1 : 10 ) {

d f s_var_t r i a l [ [ i ] ] <− subset (df_cond_l i s t_t r i a l [ [ i ] ] , r i s k_measure == "VaR" &
cond_u == pe l_t r i a l_s t r [ i ] )

d f s_es_t r i a l [ [ i ] ] <− subset (df_cond_l i s t_t r i a l [ [ i ] ] , r i s k_measure == "ES_mean"
& cond_u == pe l_t r i a l_s t r [ i ] )

d i f f_s e r i e s 1 <− d f s_var_t r i a l [ [ i ] ] [ , 2 ] − uncond_var
d i f f_s e r i e s 2 <− d f s_es_t r i a l [ [ i ] ] [ , 2 ] − uncond_es
for ( j in 2 : length ( d i f f_s e r i e s 1 ) ) {

i f ( d i f f_s e r i e s 1 [ j − 1 ] ∗ d i f f_s e r i e s 1 [ j ] < 0) {
i n t e r s e c t i o n s_t r i a l [ 1 , i ] <− i n t e r s e c t i o n s_t r i a l [ 1 , i ] + 1
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}
i f ( d i f f_s e r i e s 2 [ j − 1 ] ∗ d i f f_s e r i e s 2 [ j ] < 0) {

i n t e r s e c t i o n s_t r i a l [ 2 , i ] <− i n t e r s e c t i o n s_t r i a l [ 2 , i ] + 1
}

}
}

#take 10 e q u a l l y spaced points in the i n t e r v a l where i n t e r s e c t i o n s with pe lcov
#and p e l c o e s are !=0 (minimum index a s s o c i a t e d with the f i r s t non−zero value
#f o r both pe lcov and p e l c o e s i s taken so t h a t the f o r loop only has to be
#executed once in subsequent rows and does not increase too much computational

c os t )
min_intersect=min( head (which ( i n t e r s e c t i o n s_t r i a l [ 1 , ] !=0) ,1 ) , head (which (

i n t e r s e c t i o n s_t r i a l [ 2 , ] !=0) ,1 ) )
max_intersect=max( t a i l (which ( i n t e r s e c t i o n s_t r i a l [ 1 , ] !=0) ,1 ) , t a i l (which (

i n t e r s e c t i o n s_t r i a l [ 2 , ] !=0) ,1 ) )
pe lcov_1d= round( seq ( pe l_t r i a l [min_intersect ] , pe l_t r i a l [max_intersect ] , length =

10) ,2) #0.1 , 0.5 , by = 0.05∗∗∗
pe lcov_1d_s t r=as . character ( pe lcov_1d)
df_cond_l i s t_1d=vector ( " l i s t " , length = length ( pe lcov_1d) )
i n t e r s e c t i o n s=array (0 ,dim=c (4 ,10 ) ) #dim=c (4 ,9) ∗∗∗

#one c o n d i t i o n a l a s s e t r o l l i n g window est imation approach : f i t ARMA−GARCH, take
r e s i d u a l s , apply PIT , f i t vine

for ( i in 1 : length ( pe lcov_1d) ) {
cond_r i s k_r o l l <− es t imate_r i s k_r o l l (

data = t ra i n_t e s t [ col_sampled [ 1 : 5 ] ] ,
weights =weights_por ta f [ 1 : 5 ] ,
marginal_s e t t i n g s = marg_s e t t i n g s ,
v ine_s e t t i n g s = cond_vine_s e t t i n g s ,
alpha = c ( r i s k_l e v e l s_v [ v ] ) ,
r i s k_measures = c ( "VaR" , "ES_mean" ) ,
n_samples = 500 ,
cond_vars = c (names( t r a i n_t e s t ) [ col_sampled [ 5 ] ] ) ,
cond_u=pelcov_1d [ i ] ,
p r i o r_resid_s t r a t egy = TRUE,
trace = TRUE

)
df_cond_l i s t_1d [ [ i ] ]= r i s k_e s t imate s ( cond_r i s k_r o l l , exceeded = TRUE)

}

#search i n t e r s e c t i o n s f o r pe lcov e p e l o c e s
d f s_var_1d<− l i s t ( )
d f s_es_1d <− l i s t ( )
for ( i in 1 : 10 ) { #1:9∗∗∗

d f s_var_1d [ [ i ] ] <− subset (df_cond_l i s t_1d [ [ i ] ] , r i s k_measure == "VaR" & cond_u
== pelcov_1d_s t r [ i ] )

d f s_es_1d [ [ i ] ] <− subset (df_cond_l i s t_1d [ [ i ] ] , r i s k_measure == "ES_mean" & cond
_u == pelcov_1d_s t r [ i ] )

d i f f_s e r i e s 1 <− d f s_var_1d [ [ i ] ] [ , 2 ] − uncond_var
d i f f_s e r i e s 2 <− d f s_es_1d [ [ i ] ] [ , 2 ] − uncond_es
for ( j in 2 : length ( d i f f_s e r i e s 1 ) ) {

i f ( d i f f_s e r i e s 1 [ j − 1 ] ∗ d i f f_s e r i e s 1 [ j ] < 0) {
i n t e r s e c t i o n s [ 1 , i ] <− i n t e r s e c t i o n s [ 1 , i ] + 1

}
i f ( d i f f_s e r i e s 2 [ j − 1 ] ∗ d i f f_s e r i e s 2 [ j ] < 0) {

i n t e r s e c t i o n s [ 2 , i ] <− i n t e r s e c t i o n s [ 2 , i ] + 1
}

}
}

#s t o r e s g r a p h i c a l r e s u l t s
#pelcov
f i r s t_e lements_var_1d <− sapply ( d f s_var_1d , function (df ) df [ 1 , " r i s k_e s t " ] )
order_index_var_1d <− order ( f i r s t_e lements_var_1d)
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colors <− c ( "#1f78b4 " , "#33a02c " , "#e31a1c " , "#6a3d9a " , "#a6cee3 " , "#b2df8a " , "#
fdb f 6 f " , "#cab2d6 " , "#fb9a99 " , " gold " ) #remove go ld ∗∗∗

legend_data_var_1d <− data . frame (
labels = c ( paste0 ( "Var_" , pe lcov_1d_s t r [ order_index_var_1d ] ) ) ,
colors = colors [ order_index_var_1d ]

)
plot<− ggp lot ( ) +

geom_l i n e (data = subset (df_r i sk , r i s k_measure == "VaR" ) ,
aes ( x = row_num, y = r i s k_e s t ) , c o l o r=" black " , l i n ew id th =0.75)+

geom_l i n e (data = subset (df_cond_l i s t_1d [ [ 1 ] ] , r i s k_measure == "VaR" & cond_u ==
pelcov_1d_s t r [ 1 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "Var_" , pe lcov_1d_s t r [ 1 ] ) ) )+
geom_l i n e (data = subset (df_cond_l i s t_1d [ [ 2 ] ] , r i s k_measure == "VaR" & cond_u ==

pelcov_1d_s t r [ 2 ] ) ,
aes ( x = row_num, y = r i s k_est , col=paste0 ( "Var_" , pe lcov_1d_s t r [ 2 ] ) ) )+

geom_l i n e (data = subset (df_cond_l i s t_1d [ [ 3 ] ] , r i s k_measure == "VaR" & cond_u ==
pelcov_1d_s t r [ 3 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "Var_" , pe lcov_1d_s t r [ 3 ] ) ) )+
geom_l i n e (data = subset (df_cond_l i s t_1d [ [ 4 ] ] , r i s k_measure == "VaR" & cond_u ==

pelcov_1d_s t r [ 4 ] ) ,
aes ( x = row_num, y = r i s k_est , col=paste0 ( "Var_" , pe lcov_1d_s t r [ 4 ] ) ) )+

geom_l i n e (data = subset (df_cond_l i s t_1d [ [ 5 ] ] , r i s k_measure == "VaR" & cond_u ==
pelcov_1d_s t r [ 5 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "Var_" , pe lcov_1d_s t r [ 5 ] ) ) )+
geom_l i n e (data = subset (df_cond_l i s t_1d [ [ 6 ] ] , r i s k_measure == "VaR" & cond_u ==

pelcov_1d_s t r [ 6 ] ) ,
aes ( x = row_num, y = r i s k_est , col=paste0 ( "Var_" , pe lcov_1d_s t r [ 6 ] ) ) )+

geom_l i n e (data = subset (df_cond_l i s t_1d [ [ 7 ] ] , r i s k_measure == "VaR" & cond_u ==
pelcov_1d_s t r [ 7 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "Var_" , pe lcov_1d_s t r [ 7 ] ) ) )+
geom_l i n e (data = subset (df_cond_l i s t_1d [ [ 8 ] ] , r i s k_measure == "VaR" & cond_u ==

pelcov_1d_s t r [ 8 ] ) ,
aes ( x = row_num, y = r i s k_est , col=paste0 ( "Var_" , pe lcov_1d_s t r [ 8 ] ) ) )+

geom_l i n e (data = subset (df_cond_l i s t_1d [ [ 9 ] ] , r i s k_measure == "VaR" & cond_u ==
pelcov_1d_s t r [ 9 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "Var_" , pe lcov_1d_s t r [ 9 ] ) ) )+
geom_l i n e (data = subset (df_cond_l i s t_1d [ [ 1 0 ] ] , r i s k_measure == "VaR" & cond_u

== pelcov_1d_s t r [ 1 0 ] ) ,
aes ( x = row_num, y = r i s k_est , col=paste0 ( "Var_" , pe lcov_1d_s t r [ 1 0 ] ) ) )+

#comment the se 2 l i n e s ∗∗∗
l ab s (x = " t rad ing ␣day " ,

y = " p o r t f o l i o ␣VaR" ,
col = " Risk␣measure " ,
t i t l e = " Pelcov ␣ r e s ea r ch ␣ g raph i ca l l y , ␣1␣ c ond i t i ona l ␣ a s s e t " ,
s u b t i t l e = paste0 ( " Uncondit iona l ␣VaR␣ in ␣black , ␣VaR␣ conf . ␣ l e v e l ␣ " , r i s k_

l e v e l s_v [ v ] ∗100 , "%" ) )+
scale_c o l o r_manual (name = " Risk␣Measure " , va lues = legend_data_var_1d$colors ,

labels = legend_data_var_1d$ labels )
pe l_p l o t s [ [ v ] ] [ [ 1 ] ] <− plot

#p e l c o e s
f i r s t_e lements_es_1d <− sapply ( d f s_es_1d , function (df ) df [ 1 , " r i s k_e s t " ] )
order_index_es_1d <− order ( f i r s t_e lements_es_1d)
legend_data_es_1d <− data . frame (

labels = c ( paste0 ( "ES_mean_" , pe lcov_1d_s t r [ order_index_es_1d ] ) ) ,
colors = colors [ order_index_es_1d ]

)
plot<− ggp lot ( ) +

geom_l i n e (data = subset (df_r i sk , r i s k_measure == "ES_mean" ) ,
aes ( x = row_num, y = r i s k_e s t ) , c o l o r=" black " , l i n ew id th =0.75)+

geom_l i n e (data = subset (df_cond_l i s t_1d [ [ 1 ] ] , r i s k_measure == "ES_mean" & cond_
u == pelcov_1d_s t r [ 1 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "ES_mean_" , pe lcov_1d_s t r [ 1 ] )
) )+

geom_l i n e (data = subset (df_cond_l i s t_1d [ [ 2 ] ] , r i s k_measure == "ES_mean" & cond_
u == pelcov_1d_s t r [ 2 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "ES_mean_" , pe lcov_1d_s t r [ 2 ] )
) )+
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geom_l i n e (data = subset (df_cond_l i s t_1d [ [ 3 ] ] , r i s k_measure == "ES_mean" & cond_
u == pelcov_1d_s t r [ 3 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "ES_mean_" , pe lcov_1d_s t r [ 3 ] )
) )+

geom_l i n e (data = subset (df_cond_l i s t_1d [ [ 4 ] ] , r i s k_measure == "ES_mean" & cond_
u == pelcov_1d_s t r [ 4 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "ES_mean_" , pe lcov_1d_s t r [ 4 ] )
) )+

geom_l i n e (data = subset (df_cond_l i s t_1d [ [ 5 ] ] , r i s k_measure == "ES_mean" & cond_
u == pelcov_1d_s t r [ 5 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "ES_mean_" , pe lcov_1d_s t r [ 5 ] )
) )+

geom_l i n e (data = subset (df_cond_l i s t_1d [ [ 6 ] ] , r i s k_measure == "ES_mean" & cond_
u == pelcov_1d_s t r [ 6 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "ES_mean_" , pe lcov_1d_s t r [ 6 ] )
) )+

geom_l i n e (data = subset (df_cond_l i s t_1d [ [ 7 ] ] , r i s k_measure == "ES_mean" & cond_
u == pelcov_1d_s t r [ 7 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "ES_mean_" , pe lcov_1d_s t r [ 7 ] )
) )+

geom_l i n e (data = subset (df_cond_l i s t_1d [ [ 8 ] ] , r i s k_measure == "ES_mean" & cond_
u == pelcov_1d_s t r [ 8 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "ES_mean_" , pe lcov_1d_s t r [ 8 ] )
) )+

geom_l i n e (data = subset (df_cond_l i s t_1d [ [ 9 ] ] , r i s k_measure == "ES_mean" & cond_
u == pelcov_1d_s t r [ 9 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "ES_mean_" , pe lcov_1d_s t r [ 9 ] )
) )+

geom_l i n e (data = subset (df_cond_l i s t_1d [ [ 1 0 ] ] , r i s k_measure == "ES_mean" & cond
_u == pelcov_1d_s t r [ 1 0 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "ES_mean_" , pe lcov_1d_s t r
[ 1 0 ] ) ) )+ #comment th ese 2 l i n e s ∗∗∗

l ab s (x = " t rad ing ␣day " ,
y = " p o r t f o l i o ␣VaR" ,
col = " Risk␣measure " ,
t i t l e = " Pe lcoes ␣ r e s ea r ch ␣ g raph i ca l l y , ␣1␣ c ond i t i ona l ␣ a s s e t " ,
s u b t i t l e = paste0 ( " Uncondit iona l ␣ES␣ in ␣black , ␣ES␣ conf . ␣ l e v e l ␣ " , r i s k_l e v e l s

_v [ v ] ∗100 , "%" ) )+
scale_c o l o r_manual (name = " Risk␣Measure " , va lues = legend_data_es_1d$colors ,

labels = legend_data_es_1d$ labels )
pe l_p l o t s [ [ v ] ] [ [ 2 ] ] <− plot

#TWO CONDITIONAL ASSETS
#f i n d the c o r r e c t i n t e r v a l to search f o r p e l
#two c o n d i t i o n a l a s s e t s r o l l i n g window est imation approach : f i t ARMA−GARCH, take

r e s i d u a l s , apply PIT , f i t vine
for ( i in 1 : length ( pe l_t r i a l ) ) {

cond_r i s k_r o l l <− es t imate_r i s k_r o l l (
data = t ra i n_t e s t [ col_sampled ] ,
weights =weights_porta f ,
marginal_s e t t i n g s = marg_s e t t i n g s ,
v ine_s e t t i n g s = cond_vine_s e t t i n g s ,
alpha = c ( r i s k_l e v e l s_v [ v ] ) ,
r i s k_measures = c ( "VaR" , "ES_mean" ) ,
n_samples = 500 ,
cond_vars = c (names( t r a i n_t e s t ) [ col_sampled [ 5 ] ] ,names( t r a i n_t e s t ) [ col_sampled

[ 6 ] ] ) ,
cond_u=pe l_t r i a l [ i ] ,
p r i o r_resid_s t r a t egy = TRUE,
trace = TRUE

)
df_cond_l i s t_t r i a l [ [ i ] ]= r i s k_e s t imate s ( cond_r i s k_r o l l , exceeded = TRUE)

}

#search i n t e r s e c t i o n s f o r pe lcov e p e l c o e s
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for ( i in 1 : 10 ) {
d f s_var_t r i a l [ [ i ] ] <− subset (df_cond_l i s t_t r i a l [ [ i ] ] , r i s k_measure == "VaR" &

cond_u == pe l_t r i a l_s t r [ i ] )
d f s_es_t r i a l [ [ i ] ] <− subset (df_cond_l i s t_t r i a l [ [ i ] ] , r i s k_measure == "ES_mean"

& cond_u == pe l_t r i a l_s t r [ i ] )
d i f f_s e r i e s 1 <− d f s_var_t r i a l [ [ i ] ] [ , 2 ] − uncond_var
d i f f_s e r i e s 2 <− d f s_es_t r i a l [ [ i ] ] [ , 2 ] − uncond_es
for ( j in 2 : length ( d i f f_s e r i e s 1 ) ) {

i f ( d i f f_s e r i e s 1 [ j − 1 ] ∗ d i f f_s e r i e s 1 [ j ] < 0) {
i n t e r s e c t i o n s_t r i a l [ 3 , i ] <− i n t e r s e c t i o n s_t r i a l [ 3 , i ] + 1

}
i f ( d i f f_s e r i e s 2 [ j − 1 ] ∗ d i f f_s e r i e s 2 [ j ] < 0) {

i n t e r s e c t i o n s_t r i a l [ 4 , i ] <− i n t e r s e c t i o n s_t r i a l [ 4 , i ] + 1
}

}
}

#take 10 e q u a l l y spaced points in the i n t e r v a l where i n t e r s e c t i o n s with pe lcov
#and p e l c o e s are !=0 (minimum index a s s o c i a t e d with the f i r s t non−zero value
#f o r both pe lcov and p e l c o e s i s taken so t h a t the f o r loop only has to be
#executed once in subsequent rows and does not increase too much computational

c os t )
min_intersect=min( head (which ( i n t e r s e c t i o n s_t r i a l [ 3 , ] !=0) ,1 ) , head (which (

i n t e r s e c t i o n s_t r i a l [ 4 , ] !=0) ,1 ) )
max_intersect=max( t a i l (which ( i n t e r s e c t i o n s_t r i a l [ 3 , ] !=0) ,1 ) , t a i l (which (

i n t e r s e c t i o n s_t r i a l [ 4 , ] !=0) ,1 ) )
pe lcov_2d_a= round( seq ( pe l_t r i a l [min_intersect ] , pe l_t r i a l [max_intersect ] , length

= 10) ,2) #0.1 , 0.5 , by = 0.05∗∗∗
pe lcov_2d_a_s t r=as . character ( pe lcov_2d_a )
df_cond_l i s t_2d_a=vector ( " l i s t " , length = length ( pe lcov_2d_a ) )

#two c o n d i t i o n a l a s s e t s r o l l i n g window est imation approach : f i t ARMA−GARCH, take
r e s i d u a l s , apply PIT , f i t vine

for ( i in 1 : length ( pe lcov_2d_a ) ) {
cond_r i s k_r o l l <− es t imate_r i s k_r o l l (

data = t ra i n_t e s t [ col_sampled ] ,
weights =weights_porta f ,
marginal_s e t t i n g s = marg_s e t t i n g s ,
v ine_s e t t i n g s = cond_vine_s e t t i n g s ,
alpha = c ( r i s k_l e v e l s_v [ v ] ) ,
r i s k_measures = c ( "VaR" , "ES_mean" ) ,
n_samples = 500 ,
cond_vars = c (names( t r a i n_t e s t ) [ col_sampled [ 5 ] ] ,names( t r a i n_t e s t ) [ col_sampled

[ 6 ] ] ) ,
cond_u=pelcov_2d_a [ i ] ,
p r i o r_resid_s t r a t egy = TRUE,
trace = TRUE

)
df_cond_l i s t_2d_a [ [ i ] ]= r i s k_e s t imate s ( cond_r i s k_r o l l , exceeded = TRUE)

}

#search i n t e r s e c t i o n s f o r pe lcov e p e l c o e s
d f s_var_2d_a<− l i s t ( )
d f s_es_2d_a <− l i s t ( )
for ( i in 1 : 10 ) { #1:9∗∗∗

d f s_var_2d_a [ [ i ] ] <− subset (df_cond_l i s t_2d_a [ [ i ] ] , r i s k_measure == "VaR" &
cond_u == pelcov_2d_a_s t r [ i ] )

d f s_es_2d_a [ [ i ] ] <− subset (df_cond_l i s t_2d_a [ [ i ] ] , r i s k_measure == "ES_mean" &
cond_u == pelcov_2d_a_s t r [ i ] )

d i f f_s e r i e s 1 <− d f s_var_2d_a [ [ i ] ] [ , 2 ] − uncond_var
d i f f_s e r i e s 2 <− d f s_es_2d_a [ [ i ] ] [ , 2 ] − uncond_es
for ( j in 2 : length ( d i f f_s e r i e s 1 ) ) {

i f ( d i f f_s e r i e s 1 [ j − 1 ] ∗ d i f f_s e r i e s 1 [ j ] < 0) {
i n t e r s e c t i o n s [ 3 , i ] <− i n t e r s e c t i o n s [ 3 , i ] + 1

}
i f ( d i f f_s e r i e s 2 [ j − 1 ] ∗ d i f f_s e r i e s 2 [ j ] < 0) {

i n t e r s e c t i o n s [ 4 , i ] <− i n t e r s e c t i o n s [ 4 , i ] + 1
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}
}

}

#s t o r e s g r a p h i c a l r e s u l t s
#pelcov
f i r s t_e lements_var_2d_a <− sapply ( d f s_var_2d_a , function (df ) df [ 1 , " r i s k_e s t " ] )
order_index_var_2d_a <− order ( f i r s t_e lements_var_2d_a )
legend_data_var_2d_a <− data . frame (

labels = c ( paste0 ( "Var_" , pe lcov_2d_a_s t r [ order_index_var_2d_a ] ) ) ,
colors = colors [ order_index_var_2d_a ]

)
plot<− ggp lot ( ) +

geom_l i n e (data = subset (df_r i sk , r i s k_measure == "VaR" ) ,
aes ( x = row_num, y = r i s k_e s t ) , c o l o r=" black " , l i n ew id th =0.75)+

geom_l i n e (data = subset (df_cond_l i s t_2d_a [ [ 1 ] ] , r i s k_measure == "VaR" & cond_u
== pelcov_2d_a_s t r [ 1 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "Var_" , pe lcov_2d_a_s t r [ 1 ] ) ) )
+

geom_l i n e (data = subset (df_cond_l i s t_2d_a [ [ 2 ] ] , r i s k_measure == "VaR" & cond_u
== pelcov_2d_a_s t r [ 2 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "Var_" , pe lcov_2d_a_s t r [ 2 ] ) ) )
+

geom_l i n e (data = subset (df_cond_l i s t_2d_a [ [ 3 ] ] , r i s k_measure == "VaR" & cond_u
== pelcov_2d_a_s t r [ 3 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "Var_" , pe lcov_2d_a_s t r [ 3 ] ) ) )
+

geom_l i n e (data = subset (df_cond_l i s t_2d_a [ [ 4 ] ] , r i s k_measure == "VaR" & cond_u
== pelcov_2d_a_s t r [ 4 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "Var_" , pe lcov_2d_a_s t r [ 4 ] ) ) )
+

geom_l i n e (data = subset (df_cond_l i s t_2d_a [ [ 5 ] ] , r i s k_measure == "VaR" & cond_u
== pelcov_2d_a_s t r [ 5 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "Var_" , pe lcov_2d_a_s t r [ 5 ] ) ) )
+

geom_l i n e (data = subset (df_cond_l i s t_2d_a [ [ 6 ] ] , r i s k_measure == "VaR" & cond_u
== pelcov_2d_a_s t r [ 6 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "Var_" , pe lcov_2d_a_s t r [ 6 ] ) ) )
+

geom_l i n e (data = subset (df_cond_l i s t_2d_a [ [ 7 ] ] , r i s k_measure == "VaR" & cond_u
== pelcov_2d_a_s t r [ 7 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "Var_" , pe lcov_2d_a_s t r [ 7 ] ) ) )
+

geom_l i n e (data = subset (df_cond_l i s t_2d_a [ [ 8 ] ] , r i s k_measure == "VaR" & cond_u
== pelcov_2d_a_s t r [ 8 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "Var_" , pe lcov_2d_a_s t r [ 8 ] ) ) )
+

geom_l i n e (data = subset (df_cond_l i s t_2d_a [ [ 9 ] ] , r i s k_measure == "VaR" & cond_u
== pelcov_2d_a_s t r [ 9 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "Var_" , pe lcov_2d_a_s t r [ 9 ] ) ) )
+

geom_l i n e (data = subset (df_cond_l i s t_2d_a [ [ 1 0 ] ] , r i s k_measure == "VaR" & cond_u
== pelcov_2d_a_s t r [ 1 0 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "Var_" , pe lcov_2d_a_s t r [ 1 0 ] ) )
)+ #comment the se 2 l i n e s ∗∗∗

l ab s (x = " t rad ing ␣day " ,
y = " p o r t f o l i o ␣VaR" ,
col = " Risk␣measure " ,
t i t l e = " Pelcov ␣ r e s ea r ch ␣ g raph i ca l l y , ␣2␣ c ond i t i ona l ␣ a s s e t s ␣with␣same␣ value

" ,
s u b t i t l e = paste0 ( " Uncondit iona l ␣VaR␣ in ␣black , ␣VaR␣ conf . ␣ l e v e l ␣ " , r i s k_

l e v e l s_v [ v ] ∗100 , "%" ) )+
scale_c o l o r_manual (name = " Risk␣Measure " , va lues = legend_data_var_2d_a$colors ,

labels = legend_data_var_2d_a$ labels )
pe l_p l o t s [ [ v ] ] [ [ 3 ] ] <− plot

#p e l c o e s
f i r s t_e lements_es_2d_a <− sapply ( d f s_es_2d_a , function (df ) df [ 1 , " r i s k_e s t " ] )
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order_index_es_2d_a <− order ( f i r s t_e lements_es_2d_a )
legend_data_es_2d_a <− data . frame (

labels = c ( paste0 ( "ES_mean_" , pe lcov_2d_a_s t r [ order_index_es_2d_a ] ) ) ,
colors = colors [ order_index_es_2d_a ]

)
plot<− ggp lot ( ) +

geom_l i n e (data = subset (df_r i sk , r i s k_measure == "ES_mean" ) ,
aes ( x = row_num, y = r i s k_e s t ) , c o l o r=" black " , l i n ew id th =0.75)+

geom_l i n e (data = subset (df_cond_l i s t_2d_a [ [ 1 ] ] , r i s k_measure == "ES_mean" &
cond_u == pelcov_2d_a_s t r [ 1 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "ES_mean_" , pe lcov_2d_a_s t r
[ 1 ] ) ) )+

geom_l i n e (data = subset (df_cond_l i s t_2d_a [ [ 2 ] ] , r i s k_measure == "ES_mean" &
cond_u == pelcov_2d_a_s t r [ 2 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "ES_mean_" , pe lcov_2d_a_s t r
[ 2 ] ) ) )+

geom_l i n e (data = subset (df_cond_l i s t_2d_a [ [ 3 ] ] , r i s k_measure == "ES_mean" &
cond_u == pelcov_2d_a_s t r [ 3 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "ES_mean_" , pe lcov_2d_a_s t r
[ 3 ] ) ) )+

geom_l i n e (data = subset (df_cond_l i s t_2d_a [ [ 4 ] ] , r i s k_measure == "ES_mean" &
cond_u == pelcov_2d_a_s t r [ 4 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "ES_mean_" , pe lcov_2d_a_s t r
[ 4 ] ) ) )+

geom_l i n e (data = subset (df_cond_l i s t_2d_a [ [ 5 ] ] , r i s k_measure == "ES_mean" &
cond_u == pelcov_2d_a_s t r [ 5 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "ES_mean_" , pe lcov_2d_a_s t r
[ 5 ] ) ) )+

geom_l i n e (data = subset (df_cond_l i s t_2d_a [ [ 6 ] ] , r i s k_measure == "ES_mean" &
cond_u == pelcov_2d_a_s t r [ 6 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "ES_mean_" , pe lcov_2d_a_s t r
[ 6 ] ) ) )+

geom_l i n e (data = subset (df_cond_l i s t_2d_a [ [ 7 ] ] , r i s k_measure == "ES_mean" &
cond_u == pelcov_2d_a_s t r [ 7 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "ES_mean_" , pe lcov_2d_a_s t r
[ 7 ] ) ) )+

geom_l i n e (data = subset (df_cond_l i s t_2d_a [ [ 8 ] ] , r i s k_measure == "ES_mean" &
cond_u == pelcov_2d_a_s t r [ 8 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "ES_mean_" , pe lcov_2d_a_s t r
[ 8 ] ) ) )+

geom_l i n e (data = subset (df_cond_l i s t_2d_a [ [ 9 ] ] , r i s k_measure == "ES_mean" &
cond_u == pelcov_2d_a_s t r [ 9 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "ES_mean_" , pe lcov_2d_a_s t r
[ 9 ] ) ) )+

geom_l i n e (data = subset (df_cond_l i s t_2d_a [ [ 1 0 ] ] , r i s k_measure == "ES_mean" &
cond_u == pelcov_2d_a_s t r [ 1 0 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "ES_mean_" , pe lcov_2d_a_s t r
[ 1 0 ] ) ) )+ #comment th ese 2 l i n e s ∗∗∗

l ab s (x = " t rad ing ␣day " ,
y = " p o r t f o l i o ␣VaR" ,
col = " Risk␣measure " ,
t i t l e = " Pe lcoes ␣ r e s ea r ch ␣ g raph i ca l l y , ␣2␣ c ond i t i ona l ␣ a s s e t s ␣with␣same␣

value " ,
s u b t i t l e = paste0 ( " Uncondit iona l ␣ES␣ in ␣black , ␣ES␣ conf . ␣ l e v e l ␣ " , r i s k_l e v e l s

_v [ v ] ∗100 , "%" ) )+
scale_c o l o r_manual (name = " Risk␣Measure " , va lues = legend_data_es_2d_a$colors ,

labels = legend_data_es_2d_a$ labels )
pe l_p l o t s [ [ v ] ] [ [ 4 ] ] <− plot

#p e l computation at confidence l e v e l v
for (u in 1 : 4 ) {

f i n a l_pe l_uv [ u , v]=sum( pe lcov_1d∗ i n t e r s e c t i o n s [ u , ] ) /sum( i n t e r s e c t i o n s [ u , ] )
}

}
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#d i s p l a y pe lcov and p e l c o e s
#t i t l e s 1 <− c ("1D PELCoV" , "2D PELCoV" , "1D PELCoES" , "2D PELCoES") #uncomment i f

you want more verbose graphs
t i t l e s 2 <− lapply ( 1 : 4 , function ( i ) { a s s e t_names [ 1 : 4 ] } )
t i t l e s 3 <− lapply ( 1 : 4 , function ( i ) {

i f ( i%%2==1) { a s s e t_names [ 5 ] }
else { a s s e t_names [ 5 : 6 ] } } )

i n t e rp <− lapply ( 1 :nrow( f i n a l_pe l_uv ) , function ( i ) {
#compute polynomial r e g r e s s i o n of degree 3
df <− data . frame ( r i s k_l e v e l s_v , f i n a l_pe l_uv [ i , ] )
f i t <− lm( f i n a l_pe l_uv [ i , ] ~ poly ( r i s k_l e v e l s_v , degree = 3) , data = df )
df$ f i t <− predict ( f i t , newdata = df )

ggp lot (df , aes ( x = r i s k_l e v e l s_v , y = f i n a l_pe l_uv [ i , ] ) ) +
geom_point ( ) +
geom_l i n e ( aes ( y = f i t ) , c o l o r = " blue " , l i n ew id th= 0 . 8 ) +
#uncomment i f you want more verbose graphs
l ab s (#t i t l e = bquote (Omega ~ "={" ∗ . ( paste ( t i t l e s 2 [ [ i ] ] , c o l l a p s e = " , ") ) ∗

"} , I={" ∗ . ( paste ( t i t l e s 3 [ [ i ] ] , c o l l a p s e = " , ") ) ∗ "}") , #.( t i t l e s 1 [ i ] ) ∗
" : " ∗
#s u b t i t l e = " Polynomial r e g r e s s i o n l i n e of degree 3 in b l ue " ,
x = " conf . ␣ l e v e l ␣v " ,
y = "PEL␣u_v " )

})
i n t e rp
f i n a l_pe l_uv

# 1) AA AXP BA BAC C CAT ( l a s t 2 are c o n d i t i o n a l a s s e t s )
#0.1315929 0.1660231 0.1778372 0.1778481 0.1649654 0.1872483 0.1906231 0.2068702

0.2038284 0.2165409 0.2177612 0.2236431 0.2227600
#0.1424242 0.1730055 0.1614634 0.1558475 0.1446237 0.1641935 0.1593125 0.1647778

0.1740670 0.1628826 0.1559259 0.1676025 0.1716779
#0.1991707 0.2256502 0.2386801 0.1976724 0.1855499 0.2674615 0.2794323 0.2229091

0.2261692 0.2394510 0.2390196 0.1909870 0.1939024
#0.1838813 0.1942647 0.2005169 0.1598492 0.1554198 0.2227960 0.2114919 0.1788485

0.1850932 0.1830472 0.1764336 0.1351351 0.1438542
# 6) DD DIS GE GM HD HPQ ( l a s t 2 are c o n d i t i o n a l a s s e t s )
#0.2625907 0.2513230 0.2600990 0.2710265 0.2724731 0.2582703 0.2813208 0.2835163

0.2676515 0.2819536 0.2853943 0.2952299 0.2984783
#0.2869123 0.2855908 0.2680608 0.2736190 0.2642260 0.2459919 0.2558029 0.2801931

0.2413611 0.2387772 0.2598615 0.2600721 0.2849837
#0.4172696 0.3310995 0.2238636 0.2810654 0.3400000 0.3877723 0.3779633 0.2991948

0.2538919 0.2716556 0.3130928 0.2772805 0.4365810
#0.3790141 0.3332824 0.2434351 0.2575058 0.3163871 0.3429487 0.3007859 0.2758795

0.2167840 0.2176060 0.2589209 0.2385388 0.3943970
# 7) IBM INTC JNJ JPM AIG KO ( l a s t 2 are c o n d i t i o n a l a s s e t s )
#0.1547107 0.1679472 0.1942857 0.1891977 0.1987059 0.2121538 0.2196500 0.2337767

0.2199415 0.2363700 0.2447399 0.2461094 0.2481570
#0.1363043 0.1498187 0.1664935 0.1620625 0.1524918 0.1765347 0.1767130 0.1716349

0.1822581 0.1672222 0.1815167 0.1832440 0.1900000
#0.1583371 0.2443167 0.2674737 0.2266436 0.2326786 0.2451887 0.2524026 0.2596215

0.2544361 0.2680000 0.2384028 0.2374672 0.2427226
#0.1284085 0.2119363 0.2175200 0.1891223 0.1790966 0.2027203 0.1973913 0.1940000

0.2088222 0.1983946 0.1701660 0.1741622 0.1762500
# 8) SPY 1329 ETFMIB GDAXIEX GCJ4 CCK4 ( l a s t 2 are c o n d i t i o n a l a s s e t s )
#0.4330632 0.4506940 0.4584478 0.4824329 0.4600778 0.4607028 0.4611606 0.4433006

0.4677973 0.4743519 0.4629703 0.4695897 0.4830257
#0.4662500 0.4890334 0.4480587 0.4923675 0.4370400 0.4294943 0.4650104 0.4129321

0.4423387 0.4410939 0.4499849 0.4560852 0.4409484
#0.4379221 0.4585175 0.4658549 0.4730480 0.4496754 0.4700928 0.4643601 0.4537870

0.4671429 0.4755140 0.4552888 0.4743959 0.4911050
#0.4688369 0.4788561 0.4554041 0.4971166 0.4409750 0.4489094 0.4571217 0.4215634

0.4504274 0.4589161 0.4456067 0.4564160 0.4462035

#save p l o t s in pdfs
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for ( i in 1 : length ( r i s k_l e v e l s_v ) ) {
pdf_name <− paste ( " r i s k_l e v e l_" , r i s k_l e v e l s_v [ i ] , " . pdf " , sep = " " )
pdf ( pdf_name)
for ( j in 1 : length ( pe l_p l o t s [ [ i ] ] ) ) {

print ( pe l_p l o t s [ [ i ] ] [ [ j ] ] )
}
dev . o f f ( )

}

#a l l r e s u l t s below r e f e r s to the s e t t i n g ∗∗∗ of the commented parts :
#change the code where you f i n d ∗∗∗ in order to obtain same r e s u l t s .
# 1) AA AXP BA BAC C CAT ( l a s t 2 are c o n d i t i o n a l a s s e t s )
#f i n a l_p e l_uv
#0.1771676 0.1828829 0.1597222 0.1973684 0.1896341 0.1829861 0.1892617 0.2022581

0.2091837 0.2235849 0.2416084 0.2266055 0.2330882
#0.1645455 0.1747253 0.1557692 0.1576923 0.1650000 0.1503106 0.1433735 0.1576531

0.1733831 0.1578125 0.1752874 0.1589744 0.1610465
#0.1787975 0.1993007 0.1891447 0.2049180 0.2178947 0.2099237 0.2117925 0.2223485

0.2355670 0.2446429 0.2437500 0.2417647 0.2461165
#0.1401840 0.1626582 0.1635870 0.1641566 0.1671642 0.1588816 0.1624031 0.1745161

0.1803922 0.1719697 0.1940299 0.1942308 0.1838028
# 6) DD DIS GE GM HD HPQ ( l a s t 2 are c o n d i t i o n a l a s s e t s )
#f i n a l_p e l_uv
#0.2719585 0.2560976 0.2748188 0.2698606 0.2558712 0.2779116 0.2453917 0.2662996

0.2694656 0.2699134 0.3027108 0.2852941 0.2943182
#0.2688735 0.2742729 0.2592025 0.2698880 0.2458092 0.2678571 0.2431343 0.2339844

0.2529304 0.2468750 0.2751938 0.2613043 0.2619792
#0.2943478 0.2841564 0.2770000 0.2770202 0.2895722 0.2898734 0.2838028 0.2983240

0.3080537 0.3057325 0.3338415 0.3043333 0.3171429
#0.2624332 0.2893072 0.2823256 0.2746032 0.2718062 0.2834862 0.2798701 0.2730263

0.2859694 0.2704969 0.3158854 0.2881910 0.2959239
# 7) IBM INTC JNJ JPM AIG KO ( l a s t 2 are c o n d i t i o n a l a s s e t s )
#f i n a l_p e l_uv
#0.2035714 0.2084746 0.1991489 0.2051351 0.1965839 0.2185484 0.2271429 0.2494220

0.2487805 0.2608974 0.2461765 0.2604938 0.2574830
#0.1821739 0.1916045 0.1632597 0.1842995 0.1596875 0.1761905 0.1783163 0.2109005

0.2110169 0.2142292 0.1902778 0.2046763 0.2154255
#0.2034483 0.2241259 0.2136076 0.2392638 0.2378261 0.2536765 0.2588816 0.2677632

0.2756000 0.2841667 0.2791262 0.3008621 0.3056818
#0.1708520 0.2002008 0.1769036 0.1829480 0.2000000 0.1964912 0.2046729 0.2206897

0.2170854 0.2339623 0.2133333 0.2370968 0.2378378

A.4 {Ω4, I4} Risk Measures forecast and Probability
Equivalent Level Analysis

#l i b r a r i e s
rm( l i s t = l s ( ) )
set . seed (129)
l ibrary ( VineCopula )
l ibrary ( rugarch )
l ibrary ( mvtsplot )
l ibrary ( por tv ine )
l ibrary ( s t a t s )
l ibrary ( r v i n e copu l i b )
l ibrary ( skewt )
l ibrary ( magr i t t r )
l ibrary ( ggp lot2 )
l ibrary ( t i dyv e r s e )
l ibrary ( r eadx l )
l ibrary ( ggraph )
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#RISK MEASURES COMPUTATION AND BACKTESTING
#import d a t a s e t s
db <− read_ex c e l ( "db . x l sx " , shee t = "db2 " )
db=db [nrow(db) : 1 , ]
db <− column_to_rownames(db , var = "Date " )

db_p <− read_ex c e l ( "db . x l sx " , shee t = "db2␣ p r i c e " )
db_p=db_p [nrow(db_p) : 1 , ]
db_p <− column_to_rownames(db_p , var = "Date " )
db_p_2 <− db_p %>%

rownames_to_column (var = " date " ) %>%
mutate (date = as . Date (date ) ) %>%
gather ( key = " Const i tuent " , va lue = " log_re turn " , −date )

#p l o t u n i v a r i a t e p r i c e s e r i e s
ggp lot (data = db_p_2 , aes ( x = date , y = log_return ) ) +

geom_l i n e ( ) +
labs (x = "Date " , y = "Log␣Return " ) +
f a c e t_wrap ( ~ Const ituent , s c a l e s = " f r e e_y " , ncol = 3) +
g g t i t l e ( " Univar ia te ␣ Pr i ce ␣ S e r i e s ␣ o f ␣ Po r t f o l i o ␣Assets " ) +
labs ( s u b t i t l e = "GCJ4␣and␣CCK4␣ are ␣ the ␣ c ond i t i ona l ␣market␣ indexes " )

#compute c o r r e l a t i o n matrices
th r e sho ld_t e s t <− as . Date ( " 2007−09−4" )
dates=as . Date (row .names(db_p) )
r e a l i z e d_t r a i n=as .numeric ( rowSums( subset (db_p , row .names(db_p)<= thre sho ld_t e s t )

[ , 1 : 4 ] ) /4)
r e a l i z e d_t e s t=as .numeric ( rowSums( subset (db_p , row .names(db_p) > thre sho ld_t e s t )

[ , 1 : 4 ] ) /4)
gold_t r a i n=subset (db_p , row .names(db_p)<= thre sho ld_t e s t ) [ , 5 ]
go ld_t e s t=subset (db_p , row .names(db_p)> thre sho ld_t e s t ) [ , 5 ]
cocoa_t r a i n=subset (db_p , row .names(db_p)<= thre sho ld_t e s t ) [ , 6 ]
cocoa_t e s t=subset (db_p , row .names(db_p)> thre sho ld_t e s t ) [ , 6 ]

cor_spearman <− matrix (NA, nrow = 2 , ncol = 2)
cor_kenda l l <− matrix (NA, nrow = 2 , ncol = 2)
cor_spearman [ 1 , 1 ] <− cor . t e s t ( r e a l i z e d_t ra in , gold_t ra in , method = " spearman " ,

exact = FALSE)$ es t imate
cor_kenda l l [ 1 , 1 ] <− cor . t e s t ( r e a l i z e d_t ra in , gold_t ra in , method = " kenda l l " , exact

= FALSE)$ es t imate
cor_spearman [ 1 , 2 ] <− cor . t e s t ( r e a l i z e d_t ra in , cocoa_t ra in , method = " spearman " ,

exact = FALSE)$ es t imate
cor_kenda l l [ 1 , 2 ] <− cor . t e s t ( r e a l i z e d_t ra in , cocoa_t ra in , method = " kenda l l " , exact

= FALSE)$ es t imate
cor_spearman [ 2 , 1 ] <− cor . t e s t ( r e a l i z e d_t e s t , go ld_t e s t , method = " spearman " , exact

= FALSE)$ es t imate
cor_kenda l l [ 2 , 1 ] <− cor . t e s t ( r e a l i z e d_t e s t , go ld_t e s t , method = " kenda l l " , exact =

FALSE)$ es t imate
cor_spearman [ 2 , 2 ] <− cor . t e s t ( r e a l i z e d_t e s t , cocoa_t e s t , method = " spearman " , exact

= FALSE)$ es t imate
cor_kenda l l [ 2 , 2 ] <− cor . t e s t ( r e a l i z e d_t e s t , cocoa_t e s t , method = " kenda l l " , exact =

FALSE)$ es t imate
rownames( cor_spearman ) <− c ( " r e a l i z e d_t r a i n " , " r e a l i z e d_t e s t " )
colnames ( cor_spearman ) <− c ( " gold_t r a i n " , " cocoa_t r a i n " )
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rownames( cor_kenda l l ) <− c ( " r e a l i z e d_t r a i n " , " r e a l i z e d_t e s t " )
colnames ( cor_kenda l l ) <− c ( " gold_t r a i n " , " cocoa_t r a i n " ) cor_spearman
#db2 p r i c e
# gold_t r a i n cocoa_t r a i n
#r e a l i z e d_t r a i n 0.8845225 0.5328657
#r e a l i z e d_t e s t −0.1222775 −0.3032364
cor_kenda l l
#db2 p r i c e
# gold_t r a i n cocoa_t r a i n
#r e a l i z e d_t r a i n 0.6932501 0.3852222
#r e a l i z e d_t e s t −0.1098750 −0.1762041

#t r a i n / t e s t s e t construct ion
t r a i n <− db %>%

rownames_to_column (var = " date " ) %>%
mutate (date = as . Date (date ) ) %>%
f i l t e r (date <= as . Date ( " 2007−09−4" ) )

t e s t <− db %>%
rownames_to_column (var = " date " ) %>%
mutate (date = as . Date (date ) ) %>%
f i l t e r (date > as . Date ( " 2007−09−4" ) )

t r a i n_t e s t=rbind ( t ra in , t e s t )
cat ( " Dimensione␣ t r a i n ␣ s e t : " , nrow( t r a i n ) )
cat ( " Dimensione␣ t e s t ␣ s e t : " , nrow( t e s t ) )
cat ( " Dimensione␣ datase t : " , nrow( t r a i n_t e s t ) )

#uncondit ional var , es est imation using a r o l l i n g window
#marginal s e t t i n g s
marg_s e t t i n g s <− marginal_s e t t i n g s (

t r a i n_s i z e =nrow( t r a i n ) ,
r e f i t_s i z e = 50 , #l e n g t h of f o r e c a s t i n g window of marginal models

#i n d i v i d u a l_spec = spec_l i s t #uncomment t h i s l i n e i f ARMA−GARCH gridsearch i s
done

default_spec = default_garch_spec ( )
)

#vine s e t t i n g s
uncond_vine_s e t t i n g s <− vine_s e t t i n g s (

t r a i n_s i z e = nrow( t r a i n ) ,
r e f i t_s i z e = 50 , #how many times use the same copula

)

col_index <− s e t d i f f ( 2 : ncol ( t r a i n_t e s t ) , 8)
col_sampled <− c ( 2 , 3 , 4 , 5 , 6 , 7 )
a s s e t_names=names( t r a i n_t e s t ) [ col_sampled ]
weights_por ta f=setNames (c ( rep (1/ ( length ( a s s e t_names)−2) , length ( a s s e t_names) − 2) ,

0 , 0) , a s s e t_names)
r e a l i z e d=rowSums( t e s t [ , col_sampled [ 1 : 4 ] ] /4)

#r o l l i n g est imation approach : f i t ARMA−GARCH, take r e s i d u a l s , apply PIT , f i t vine
uncond_r i s k_r o l l <− es t imate_r i s k_r o l l (
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data = t ra i n_t e s t [ , col_sampled [ 1 : 4 ] ] ,
weights=weights_por ta f [ 1 : 4 ] , marginal_s e t t i n g s = marg_s e t t i n g s ,

v ine_s e t t i n g s = uncond_vine_s e t t i n g s ,
alpha = c ( 0 . 0 5 ) ,
r i s k_measures = c ( "VaR" , "ES_mean" ) ,
n_samples = 500 ,
trace = TRUE

)
df_r i s k=r i s k_e s t imate s ( uncond_r i s k_r o l l , exceeded = TRUE)

#ljung −box t e s t f o r s e r i a l a u t o c o r r e l a t i o n at d i f f e r e n t l a g s (H0: no
a u t o c o r r e l a t i o n )

margina ls <− f i t t e d_margina ls ( uncond_r i s k_r o l l )
v ine s=f i t t e d_v ine s ( uncond_r i s k_r o l l )
l ag=c (1 , 5 , 10 ,15 ,20 )
l j ung_mat_std <− array (NA, dim=c ( 4 , 5 , 4 ) ) #a s s e t x l a g x r o l l i n g_window
l j ung_mat_sqr_std <− array (NA, dim=c ( 4 , 5 , 4 ) ) #a s s e t x l a g x r o l l i n g_window
for ( i in 1 : 4 ) {

for ( j in 1 : 4 ) { #p o r t f o l i o with 4 a s s e t
std_resid <− r o l l_residuals ( marg ina ls [ [ names( t r a i n_t e s t ) [ col_sampled [ j ] ] ] ] ,

r o l l_num = i )
sqr_std_resid <− r o l l_residuals ( marg ina ls [ [ names( t r a i n_t e s t ) [ col_sampled [ j ] ] ] ] ,

r o l l_num = i )∗∗2
for ( t in 1 : 5 ) {

l jung_mat_std [ j , t , i ]=Box . t e s t ( std_resid , l ag = lag [ t ] , type = " Lju " )$p . value
l jung_mat_sqr_std [ j , t , i ]=Box . t e s t ( sqr_std_resid , l ag = lag [ t ] , type = " Lju " )$

p . value
}

}
}
cat ( " Ljung−Box␣ t e s t ␣p−va lues ␣on␣ r e s i d u a l s \n" )
l j ung_mat_std
cat ( " Nul l ␣ hypothes i s ␣ r e j e c t e d " ,sum( l j ung_mat_std < 0 .05 ) , " t imes " )
#db2 : Nul l h y p o t h e s i s r e j e c t e d 11 times

cat ( " Ljung−Box␣ t e s t ␣ pvalues ␣on␣ squared ␣ r e s i d u a l s \n" )
l j ung_mat_sqr_std
cat ( " Nul l ␣ hypothes i s ␣ r e j e c t e d " ,sum( l j ung_mat_sqr_std < 0 .05 ) , " t imes " )
#db2 : Nul l h y p o t h e s i s r e j e c t e d 7 times

#p l o t of r e s u l t s
x_geom_point=df_r i s k $row_num[ df_r i s k $exceeded ]
y_geom_point=df_r i s k $ r e a l i z e d [ df_r i s k $exceeded ]
df_geom_point=data . frame (df_r i s k $ r e a l i z e d [ df_r i s k $exceeded ] )
df_r i s k %>%

ggplot ( ) +
geom_l i n e ( aes ( x = row_num, y = r e a l i z e d ) , col = " grey " ) +
geom_l i n e ( aes ( x = row_num, y = r i s k_est , col = factor ( r i s k_measure ) ) ) +
scale_ f i l l_manual ( ) +
geom_point ( aes ( x = x_geom_point , y = y_geom_point ) ,

data = df_geom_point ,
col = "#db4f59 " )+

labs (x = " t rad ing ␣day " ,
y = " p o r t f o l i o ␣ log ␣ r e tu rns " ,
col = " Risk␣measure " ,
t i t l e = " Uncondit iona l ␣ r i s k ␣measures , ␣ conf . ␣ l e v e l ␣5%" ,
s u b t i t l e = " Exceedances ␣ in ␣ red , ␣ p o r t f o l i o ␣ log ␣ return ␣ in ␣ grey " )

#c o n d i t i o n a l var , es est imation using a r o l l i n g window
#vine s e t t i n g s
cond_vine_s e t t i n g s <− vine_s e t t i n g s (

t r a i n_s i z e = nrow( t r a i n ) ,
r e f i t_s i z e = 50 , #how many times use the same copula
family_set = c ( " parametr ic " ) ,
v ine_type = " dvine " )

#confidence l e v e l o f the est imated q u a n t i l e from the marginal d i s t r i b u t i o n
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pe lcov =0.9
pe lcov_s t r=as . character ( pe lcov )#r o l l i n g est imation approach : f i t ARMA−GARCH, take

r e s i d u a l s , apply PIT , f i t vine
cond_r i s k_r o l l <− es t imate_r i s k_r o l l (

data = t ra i n_t e s t [ col_sampled [ 1 : 6 ] ] ,
weights =weights_por ta f ,
marginal_s e t t i n g s = marg_s e t t i n g s ,
v ine_s e t t i n g s = cond_vine_s e t t i n g s ,
alpha = c ( 0 . 0 5 ) ,
r i s k_measures = c ( "VaR" , "ES_mean" ) ,
n_samples = 500 ,
cond_vars = c (names( t r a i n_t e s t ) [ col_sampled [ 5 ] ] ,names( t r a i n_t e s t ) [ col_sampled

[ 6 ] ] ) ,
cond_u=pelcov , #value i n s i d e pe lcov i s a s s o c i a t e d to both condi t ioning v a r i a b l e s
##QUANTILE STRATEGY=marginal market index on copula s c a l e
#( marginals f o r copulas are unif−−>q u a n t i l e i s the confidence l e v e l i t s e l f ) ,
p r i o r_resid_s t r a t egy = TRUE,

#RESIDUAL STRATEGY=condi t ioning va lues f o r the f o r e c a s t at time t
#are the PIT of index I r e s i d u a l at time t −1
trace = TRUE

)

#QUANTILE STRATEGY PLOT
df_cond=r i s k_e s t imate s ( cond_r i s k_r o l l , exceeded = TRUE)
ggp lot (df_cond ) +

geom_l i n e ( aes ( x = row_num, y = r e a l i z e d ) , col = " grey " ) +
geom_l i n e (data = subset (df_cond , r i s k_measure == "VaR" & cond_u == pelcov_s t r ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "VaR_" , pe lcov_s t r ) ) ) +
geom_l i n e (data = subset (df_cond , r i s k_measure == "ES_mean" & cond_u == pelcov_s t r

) ,
aes ( x = row_num, y = r i s k_est , col=paste0 ( "ES_mean_" , pe lcov_s t r ) ) ) +

geom_l i n e (data = subset (df_cond , cond_u == pelcov_s t r ) ,
aes ( x = row_num, y =! ! as . name(names( t r a i n_t e s t ) [ col_sampled [ 5 ] ] ) ,

col=paste0 (names( t r a i n_t e s t ) [ col_sampled [ 5 ] ] , "_" , pe lcov ) ) ) +
geom_l i n e (data = subset (df_cond , cond_u == pelcov_s t r ) ,

aes ( x = row_num, y =! ! as . name(names( t r a i n_t e s t ) [ col_sampled [ 6 ] ] ) ,
col=paste0 (names( t r a i n_t e s t ) [ col_sampled [ 6 ] ] , "_" , pe lcov ) ) ) +

geom_point (data=subset (df_cond , exceeded== TRUE & cond_u == pelcov_s t r ) ,
aes ( x = row_num, y=r e a l i z e d ) , col="#db4f59 " )+

scale_ f i l l_manual (
name = " Risk␣Measure " ,
labels = c ( paste0 (names( t r a i n_t e s t ) [ col_sampled [ 6 ] ] , "_" , pe lcov ) ,

paste0 (names( t r a i n_t e s t ) [ col_sampled [ 5 ] ] , "_" , pe lcov ) ,
paste0 ( "ES_mean_" , pe lcov_s t r ) , paste0 ( "VaR_" , pe lcov_s t r ) ) )+

labs (x = " t rad ing ␣day " ,
y = " p o r t f o l i o ␣ log ␣ r e tu rn s " ,
col = " Risk␣measure " ,
t i t l e = " Quanti le ␣based␣ cond i t i ona l ␣ r i s k ␣measures , ␣ conf . ␣ l e v e l ␣5%" ,
s u b t i t l e = " Exceedances ␣ in ␣ red , ␣ p o r t f o l i o ␣ r e a l i z e d ␣ log ␣ return ␣ in ␣ grey " )

#PRIOR RESIDUAL COPULA SCALE STRATEGY PLOT
#I t should be noted t h a t the c o n d i t i o n a l s e r i e s based on the f i t t e d
#r e s i d u a l s of the time unit b e f o r e w i l l most l i k e l y exaggerate
#sudden high v o l a t i l i t y s i t u a t i o n s
ggp lot (df_cond , aes ( x = row_num) ) +

geom_l i n e ( aes ( y = r e a l i z e d ) , col = " grey " ) +
geom_l i n e (data = subset (df_cond , r i s k_measure == "VaR" & cond_u == " p r i o r_r e s i d " )

, aes ( y = r i s k_est , col="VaR_p r i o r_r e s i d " ) ) +
geom_l i n e (data = subset (df_cond , r i s k_measure == "ES_mean" & cond_u == " p r i o r_

r e s i d " ) , aes ( y = r i s k_est , col="ES_mean_p r i o r_r e s i d " ) ) +
geom_point (data=subset (df_cond , exceeded== TRUE & cond_u == " p r i o r_r e s i d " ) , aes ( y=

r e a l i z e d ) , col="#db4f59 " )+
labs (x = " t rad ing ␣day " ,

y = " p o r t f o l i o ␣ log ␣ r e tu rns " ,
col = " Risk␣measure " ,
t i t l e = " Pr io r ␣Res idual ␣ c ond i t i ona l ␣ r i s k ␣measures , ␣ conf . ␣ l e v e l ␣5%" ,
s u b t i t l e = " Exceedances ␣ in ␣ red , ␣ p o r t f o l i o ␣ r e a l i z e d ␣ log ␣ return ␣ in ␣ grey " )+
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scale_ f i l l_manual (
name = " Risk␣Measure " , labels = c ( "ES_mean_p r i o r_r e s i d " , "VaR_p r i o r_r e s i d " )

)

#b a c k t e s t i n g
uncond_var=df_r i s k [ df_r i s k $ r i s k_measure=="VaR" , 2 ]
cond_var_quantile=df_cond [ df_cond$ r i s k_measure=="VaR" & df_cond$cond_u==pelcov_s t r

, 2 ]
cond_var_r e s i d u a l=df_cond [ df_cond$ r i s k_measure=="VaR" & df_cond$cond_u==" p r i o r_

r e s i d " , 2 ]
bckt_var_uncond=VaRTest ( alpha = 0 .05 , ac tua l=r e a l i z ed ,

VaR=uncond_var , conf . l e v e l = 0 . 95 ) #0.05)#
bckt_var_quantile=VaRTest ( alpha = 0 .05 , ac tua l=r e a l i z ed ,

VaR=cond_var_quantile , conf . l e v e l = 0 . 95 )
bckt_var_r e s i d u a l=VaRTest ( alpha = 0 .05 , ac tua l=r e a l i z ed ,

VaR=cond_var_r e s i dua l , conf . l e v e l = 0 . 95 )
cat ( " uncond i t i ona l ␣ s t r a t egy ␣ f o r ␣VaR␣ es t imat ion \n" , s t r ( bckt_var_uncond ) )
# db2 :
# $ expected . exceed : num 16
# $ a c t u a l . exceed : num 15
# $ uc .H0 : chr " Correct Exceedances "
# $ uc . LRstat : num 0.0958
# $ uc . c r i t i c a l : num 3.84
# $ uc .LRp : num 0.757
# $ uc . Decision : chr " Fai l to Reject H0"
# $ cc .H0 : chr " Correct Exceedances & Independent "
# $ cc . LRstat : num 0.225
# $ cc . c r i t i c a l : num 5.99
# $ cc .LRp : num 0.893
# $ cc . Decision : chr " Fai l to Reject H0"
cat ( " c ond i t i ona l ␣ quan t i l e ␣ s t r a t egy ␣ f o r ␣VaR␣ es t imat ion \n" , s t r ( bckt_var_quantile ) )
# db2 0 . 1 :
# $ expected . exceed : num 16
# $ a c t u a l . exceed : num 11
# $ uc .H0 : chr " Correct Exceedances "
# $ uc . LRstat : num 1.97
# $ uc . c r i t i c a l : num 3.84
# $ uc .LRp : num 0.16
# $ uc . Decision : chr " Fai l to Reject H0"
# $ cc .H0 : chr " Correct Exceedances & Independent "
# $ cc . LRstat : num 2.75
# $ cc . c r i t i c a l : num 5.99
# $ cc .LRp : num 0.253
# $ cc . Decision : chr " Fai l to Reject H0"

# db2 0 . 9 :
# $ expected . exceed : num 16
# $ a c t u a l . exceed : num 24
# $ uc .H0 : chr " Correct Exceedances "
# $ uc . LRstat : num 3.47
# $ uc . c r i t i c a l : num 3.84
# $ uc .LRp : num 0.0627
# $ uc . Decision : chr " Fai l to Reject H0"
# $ cc .H0 : chr " Correct Exceedances & Independent "
# $ cc . LRstat : num 3.5
# $ cc . c r i t i c a l : num 5.99
# $ cc .LRp : num 0.174
# $ cc . Decision : chr " Fai l to Reject H0"
cat ( " c ond i t i ona l ␣ p r i o r ␣ r e s i d u a l ␣ s t r a t egy ␣ f o r ␣VaR␣ es t imat ion \n" , s t r ( bckt_var_

r e s i d u a l ) )

uncond_es=df_r i s k [ df_r i s k $ r i s k_measure=="ES_mean" , 2 ]
cond_es_quantile=df_cond [ df_cond$ r i s k_measure=="ES_mean" & df_cond$cond_u==pelcov_

s t r , 2 ]
cond_es_r e s i d u a l=df_cond [ df_cond$ r i s k_measure=="ES_mean" & df_cond$cond_u==" p r i o r_

r e s i d " , 2 ]
bckt_es_uncond=ESTest ( alpha = 0 .05 , ac tua l=r e a l i z ed , ES=uncond_es ,
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VaR=uncond_var , conf . l e v e l = 0 .95 , boot = TRUE, n . boot = 1000)
bckt_es_quantile=ESTest ( alpha = 0 .05 , r e a l i z ed , cond_es_quantile ,

cond_var_quantile , conf . l e v e l = 0 .95 , boot = TRUE, n .
boot = 1000)

bckt_es_r e s i d u a l=ESTest ( alpha = 0 .05 , r e a l i z ed , cond_es_r e s i dua l ,
cond_var_r e s i dua l , conf . l e v e l = 0 .95 , boot = TRUE, n . boot =

1000)
cat ( " uncond i t i ona l ␣ s t r a t egy ␣ f o r ␣ES␣ es t imat ion \n" , s t r ( bckt_es_uncond ) )
# db2 :
# $ expected . exceed : num 16
# $ a c t u a l . exceed : i n t 15
# $ H1 : chr "Mean of Excess V i o l a t i o n s of VaR i s g r e a t e r than zero "
# $ boot . p . va lue : num 0.309
# $ p . value : num 0.227
# $ Decision : chr " Fai l to Reject H0"

cat ( " c ond i t i ona l ␣ quan t i l e ␣ s t r a t egy ␣ f o r ␣ES␣ es t imat ion \n" , s t r ( bckt_es_quantile ) )
# db2 0 . 1 :
# $ expected . exceed : num 16
# $ a c t u a l . exceed : i n t 11
# $ H1 : chr "Mean of Excess V i o l a t i o n s of VaR i s g r e a t e r than zero "
# $ boot . p . va lue : num 0.275
# $ p . value : num 0.182
# $ Decision : chr " Fai l to Reject H0"

# db2 0 . 9 :
# $ expected . exceed : num 16
# $ a c t u a l . exceed : i n t 24
# $ H1 : chr "Mean of Excess V i o l a t i o n s of VaR i s g r e a t e r than zero "
# $ boot . p . va lue : num 0.144
# $ p . value : num 0.0825
# $ Decision : chr " Fai l to Reject H0"
cat ( " c ond i t i ona l ␣ p r i o r ␣ r e s i d u a l ␣ s t r a t egy ␣ f o r ␣ES␣ es t imat ion \n" , s t r ( bckt_es_r e s i d u a l

) )

#p l o t vine s t r u c t u r e s
uncond_v ine s=f i t t e d_v ine s ( uncond_r i s k_r o l l )
cond_v ine s=f i t t e d_v ine s ( cond_r i s k_r o l l )
plot ( uncond_v ine s [ [ 1 ] ] , t r e e="ALL" , var_names=" legend " , edge_labels=" tau " )
plot ( cond_v ine s [ [ 1 ] ] , t r e e =1:5 , var_names=" legend " , edge_labels=" tau " )

#PROBABILITY EQUIVALENT LEVEL ANALYSIS
#d e f i n i t i o n of r i s k l e v e l s at which pe lcov should be d e t e c t e d
r i s k_l e v e l s_v=c

( 0 . 0 1 , 0 . 0 1 5 , 0 . 0 2 , 0 . 0 2 5 , 0 . 0 3 , 0 . 0 3 5 , 0 . 0 4 , 0 . 0 4 5 , 0 . 0 5 , 0 . 0 5 5 , 0 . 0 6 , 0 . 0 6 5 , 0 . 0 7 )
f i n a l_pe l_uv=array (NA,dim=c (4 , length ( r i s k_l e v e l s_v ) ) )
pe l_p l o t s <− vector ( " l i s t " , length ( r i s k_l e v e l s_v ) ) #vector containing a l l p l o t s to

see g r a p h i c a l l y PELs

for ( v in 1 : length ( r i s k_l e v e l s_v ) ) {
#r o l l i n g est imation approach : f i t ARMA−GARCH, take r e s i d u a l s , apply PIT , f i t vine
uncond_r i s k_r o l l <− es t imate_r i s k_r o l l (

data = t ra i n_t e s t [ , col_sampled [ 1 : 4 ] ] ,
weights=weights_por ta f [ 1 : 4 ] ,
marginal_s e t t i n g s = marg_s e t t i n g s ,
v ine_s e t t i n g s = uncond_vine_s e t t i n g s ,
alpha = c ( r i s k_l e v e l s_v [ v ] ) ,
r i s k_measures = c ( "VaR" , "ES_mean" ) ,
n_samples = 500 ,
trace = TRUE

)
df_r i s k=r i s k_e s t imate s ( uncond_r i s k_r o l l , exceeded = TRUE)
uncond_var=df_r i s k [ df_r i s k $ r i s k_measure=="VaR" , 2 ]
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uncond_es=df_r i s k [ df_r i s k $ r i s k_measure=="ES_mean" , 2 ]
i n t e r s e c t i o n s=array (0 ,dim=c (4 , 9 ) )

#1D CASE
pe lcov_1d= c ( 0 . 1 , 0 . 9 )
pe lcov_1d_s t r=as . character ( pe lcov_1d)
df_cond_l i s t_1d=vector ( " l i s t " , length = length ( pe lcov_1d) )
var_t e s t s_1d=vector ( " l i s t " , length = length ( pe lcov_1d) )
es_t e s t s_1d=vector ( " l i s t " , length = length ( pe lcov_1d) )

#r o l l i n g est imation approach : f i t ARMA−GARCH, take r e s i d u a l s , apply PIT , f i t vine
for ( i in 1 : length ( pe lcov_1d) ) {

cond_r i s k_r o l l <− es t imate_r i s k_r o l l (
data = t ra i n_t e s t [ col_sampled [ 1 : 5 ] ] ,
weights =weights_por ta f [ 1 : 5 ] ,
marginal_s e t t i n g s = marg_s e t t i n g s ,
v ine_s e t t i n g s = cond_vine_s e t t i n g s ,
alpha = c ( r i s k_l e v e l s_v [ v ] ) ,
r i s k_measures = c ( "VaR" , "ES_mean" ) ,
n_samples = 500 ,
cond_vars = c (names( t r a i n_t e s t ) [ col_sampled [ 5 ] ] ) ,
cond_u=pelcov_1d [ i ] ,
p r i o r_resid_s t r a t egy = TRUE,
trace = TRUE

)
df_cond_l i s t_1d [ [ i ] ]= r i s k_e s t imate s ( cond_r i s k_r o l l , exceeded = TRUE)
cond_var_quantile=df_cond_l i s t_1d [ [ i ] ] [ df_cond_l i s t_1d [ [ i ] ] $ r i s k_measure=="VaR"

& df_cond_l i s t_1d [ [ i ] ] $cond_u==pelcov_1d_s t r [ i ] , 2 ]
var_t e s t s_1d [ [ i ] ]=VaRTest ( alpha = r i s k_l e v e l s_v [ v ] , a c tua l=r e a l i z ed ,

VaR=cond_var_quantile , conf . l e v e l = 1−r i s k_l e v e l s_v [ v
] )

cond_es_quantile=df_cond_l i s t_1d [ [ i ] ] [ df_cond_l i s t_1d [ [ i ] ] $ r i s k_measure=="ES_
mean" & df_cond_l i s t_1d [ [ i ] ] $cond_u==pelcov_1d_s t r [ i ] , 2 ]

e s_t e s t s_1d [ [ i ] ]=ESTest ( alpha = r i s k_l e v e l s_v [ v ] , r e a l i z ed , cond_es_quantile ,
cond_var_quantile , conf . l e v e l = 1−r i s k_l e v e l s_v [ v ] ,

boot = TRUE, n . boot = 1000)
}

#pelcov
d f s_var_1d<− l i s t ( )
for ( i in 1 : 2 ) {

d f s_var_1d [ [ i ] ] <− subset (df_cond_l i s t_1d [ [ i ] ] , r i s k_measure == "VaR" & cond_u
== pelcov_1d_s t r [ i ] )

d i f f_s e r i e s <− d f s_var_1d [ [ i ] ] [ , 2 ] − uncond_var
for ( j in 2 : length ( d i f f_s e r i e s ) ) {

i f ( d i f f_s e r i e s [ j − 1 ] ∗ d i f f_s e r i e s [ j ] < 0) {
i n t e r s e c t i o n s [ 1 , i ] <− i n t e r s e c t i o n s [ 1 , i ] + 1

}
}

}

f i r s t_e lements_var_1d <− sapply ( d f s_var_1d , function (df ) df [ 1 , " r i s k_e s t " ] )
order_index_var_1d <− order ( f i r s t_e lements_var_1d)
colors <− c ( "#33a02c " , "#fb9a99 " )
legend_data_var_1d <− data . frame (

labels = c ( paste0 ( "Var_" , pe lcov_1d_s t r [ order_index_var_1d ] ) ) ,
colors = colors [ order_index_var_1d ]

)

#s t o r e s g r a p h i c a l r e s u l t s
plot<− ggp lot ( ) +

geom_l i n e (data = subset (df_r i sk , r i s k_measure == "VaR" ) ,
aes ( x = row_num, y = r i s k_e s t ) , c o l o r=" black " )+

geom_l i n e (data = subset (df_cond_l i s t_1d [ [ 1 ] ] , r i s k_measure == "VaR" & cond_u ==
pelcov_1d_s t r [ 1 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "Var_" , pe lcov_1d_s t r [ 1 ] ) ) )+
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geom_l i n e (data = subset (df_cond_l i s t_1d [ [ 2 ] ] , r i s k_measure == "VaR" & cond_u ==
pelcov_1d_s t r [ 2 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "Var_" , pe lcov_1d_s t r [ 2 ] ) ) )+ labs (x = "
t rad ing ␣day " ,

y = " p o r t f o l i o ␣VaR" ,
col = " Risk␣measure " ,
t i t l e = " Pelcov ␣ r e s ea r ch ␣ g raph i ca l l y , ␣1␣ c ond i t i ona l ␣ a s s e t " ,
s u b t i t l e = paste0 ( " Uncondit iona l ␣VaR␣ in ␣black , ␣VaR␣ conf . ␣ l e v e l ␣ " , r i s k_

l e v e l s_v [ v ] ∗100 , "%" ) )+
scale_c o l o r_manual (name = " Risk␣Measure " , va lues = legend_data_var_1d$colors ,

labels = legend_data_var_1d$ labels )
pe l_p l o t s [ [ v ] ] [ [ 1 ] ] <− plot

#p e l c o e s
d f s_es_1d <− l i s t ( )
for ( i in 1 : 2 ) {

d f s_es_1d [ [ i ] ] <− subset (df_cond_l i s t_1d [ [ i ] ] , r i s k_measure == "ES_mean" & cond
_u == pelcov_1d_s t r [ i ] )

d i f f_s e r i e s <− d f s_es_1d [ [ i ] ] [ , 2 ] − uncond_es
for ( j in 2 : length ( d i f f_s e r i e s ) ) {

i f ( d i f f_s e r i e s [ j − 1 ] ∗ d i f f_s e r i e s [ j ] < 0) {
i n t e r s e c t i o n s [ 2 , i ] <− i n t e r s e c t i o n s [ 2 , i ] + 1

}
}

}

f i r s t_e lements_es_1d <− sapply ( d f s_es_1d , function (df ) df [ 1 , " r i s k_e s t " ] )
order_index_es_1d <− order ( f i r s t_e lements_es_1d)
legend_data_es_1d <− data . frame (

labels = c ( paste0 ( "ES_mean_" , pe lcov_1d_s t r [ order_index_es_1d ] ) ) ,
colors = colors [ order_index_es_1d ]

)

#s t o r e s g r a p h i c a l r e s u l t s
plot<− ggp lot ( ) +

geom_l i n e (data = subset (df_r i sk , r i s k_measure == "ES_mean" ) ,
aes ( x = row_num, y = r i s k_e s t ) , c o l o r=" black " )+

geom_l i n e (data = subset (df_cond_l i s t_1d [ [ 1 ] ] , r i s k_measure == "ES_mean" & cond_
u == pelcov_1d_s t r [ 1 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "ES_mean_" , pe lcov_1d_s t r [ 1 ] )
) )+

geom_l i n e (data = subset (df_cond_l i s t_1d [ [ 2 ] ] , r i s k_measure == "ES_mean" & cond_
u == pelcov_1d_s t r [ 2 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "ES_mean_" , pe lcov_1d_s t r [ 2 ] )
) )+

labs (x = " t rad ing ␣day " ,
y = " p o r t f o l i o ␣VaR" ,
col = " Risk␣measure " ,
t i t l e = " Pe lcoes ␣ r e s ea r ch ␣ g raph i ca l l y , ␣1␣ c ond i t i ona l ␣ a s s e t " ,
s u b t i t l e = paste0 ( " Uncondit iona l ␣ES␣ in ␣black , ␣ES␣ conf . ␣ l e v e l ␣ " , r i s k_l e v e l s

_v [ v ] ∗100 , "%" ) )+
scale_c o l o r_manual (name = " Risk␣Measure " , va lues = legend_data_es_1d$colors ,

labels = legend_data_es_1d$ labels )
pe l_p l o t s [ [ v ] ] [ [ 2 ] ] <− plot

#2D CASE
pe lcov_2d_a= c ( 0 . 1 , 0 . 9 )
pe lcov_2d_a_s t r=as . character ( pe lcov_2d_a )
df_cond_l i s t_2d_a=vector ( " l i s t " , length = length ( pe lcov_2d_a ) )
var_t e s t s_2d_a=vector ( " l i s t " , length = length ( pe lcov_2d_a ) )
es_t e s t s_2d_a=vector ( " l i s t " , length = length ( pe lcov_2d_a ) )

#r o l l i n g est imation approach : f i t ARMA−GARCH, take r e s i d u a l s , apply PIT , f i t vine
for ( i in 1 : length ( pe lcov_2d_a ) ) {

cond_r i s k_r o l l <− es t imate_r i s k_r o l l (
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data = t ra i n_t e s t [ col_sampled ] ,
weights =weights_porta f , marginal_s e t t i n g s = marg_s e t t i n g s ,

v ine_s e t t i n g s = cond_vine_s e t t i n g s ,
alpha = c ( r i s k_l e v e l s_v [ v ] ) ,
r i s k_measures = c ( "VaR" , "ES_mean" ) ,
n_samples = 500 ,
cond_vars = c (names( t r a i n_t e s t ) [ col_sampled [ 5 ] ] ,names( t r a i n_t e s t ) [ col_sampled

[ 6 ] ] ) ,
cond_u=pelcov_2d_a [ i ] ,
p r i o r_resid_s t r a t egy = TRUE,
trace = TRUE

)
df_cond_l i s t_2d_a [ [ i ] ]= r i s k_e s t imate s ( cond_r i s k_r o l l , exceeded = TRUE)
cond_var_quantile=df_cond_l i s t_2d_a [ [ i ] ] [ df_cond_l i s t_2d_a [ [ i ] ] $ r i s k_measure=="

VaR" & df_cond_l i s t_2d_a [ [ i ] ] $cond_u==pelcov_2d_a_s t r [ i ] , 2 ]
var_t e s t s_2d_a [ [ i ] ]=VaRTest ( alpha = r i s k_l e v e l s_v [ v ] , a c tua l=r e a l i z ed ,

VaR=cond_var_quantile , conf . l e v e l = 1−r i s k_l e v e l s_v
[ v ] )

cond_es_quantile=df_cond_l i s t_2d_a [ [ i ] ] [ df_cond_l i s t_2d_a [ [ i ] ] $ r i s k_measure=="
ES_mean" & df_cond_l i s t_2d_a [ [ i ] ] $cond_u==pelcov_2d_a_s t r [ i ] , 2 ]

e s_t e s t s_2d_a [ [ i ] ]=ESTest ( alpha = r i s k_l e v e l s_v [ v ] , r e a l i z ed , cond_es_quantile ,
cond_var_quantile , conf . l e v e l = 1−r i s k_l e v e l s_v [ v ] ,

boot = TRUE, n . boot = 1000)
}

#pelcov
d f s_var_2d_a<− l i s t ( )
for ( i in 1 : 2 ) {

d f s_var_2d_a [ [ i ] ] <− subset (df_cond_l i s t_2d_a [ [ i ] ] , r i s k_measure == "VaR" &
cond_u == pelcov_2d_a_s t r [ i ] )

d i f f_s e r i e s <− d f s_var_2d_a [ [ i ] ] [ , 2 ] − uncond_var
for ( j in 2 : length ( d i f f_s e r i e s ) ) {

i f ( d i f f_s e r i e s [ j − 1 ] ∗ d i f f_s e r i e s [ j ] < 0) {
i n t e r s e c t i o n s [ 3 , i ] <− i n t e r s e c t i o n s [ 3 , i ] + 1

}
}

}

f i r s t_e lements_var_2d_a <− sapply ( d f s_var_2d_a , function (df ) df [ 1 , " r i s k_e s t " ] )
order_index_var_2d_a <− order ( f i r s t_e lements_var_2d_a )
legend_data_var_2d_a <− data . frame (

labels = c ( paste0 ( "Var_" , pe lcov_2d_a_s t r [ order_index_var_2d_a ] ) ) ,
colors = colors [ order_index_var_2d_a ]

)

#s t o r e s g r a p h i c a l r e s u l t s
plot<− ggp lot ( ) +

geom_l i n e (data = subset (df_r i sk , r i s k_measure == "VaR" ) ,
aes ( x = row_num, y = r i s k_e s t ) , c o l o r=" black " )+

geom_l i n e (data = subset (df_cond_l i s t_2d_a [ [ 1 ] ] , r i s k_measure == "VaR" & cond_u
== pelcov_2d_a_s t r [ 1 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "Var_" , pe lcov_2d_a_s t r [ 1 ] ) ) )
+

geom_l i n e (data = subset (df_cond_l i s t_2d_a [ [ 2 ] ] , r i s k_measure == "VaR" & cond_u
== pelcov_2d_a_s t r [ 2 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "Var_" , pe lcov_2d_a_s t r [ 2 ] ) ) )
+

labs (x = " t rad ing ␣day " ,
y = " p o r t f o l i o ␣VaR" ,
col = " Risk␣measure " ,
t i t l e = " Pelcov ␣ r e s ea r ch ␣ g raph i ca l l y , ␣2␣ c ond i t i ona l ␣ a s s e t s ␣with␣same␣ value

" ,
s u b t i t l e = paste0 ( " Uncondit iona l ␣VaR␣ in ␣black , ␣VaR␣ conf . ␣ l e v e l ␣ " , r i s k_

l e v e l s_v [ v ] ∗100 , "%" ) )+
scale_c o l o r_manual (name = " Risk␣Measure " , va lues = legend_data_var_2d_a$colors ,

labels = legend_data_var_2d_a$ labels )
pe l_p l o t s [ [ v ] ] [ [ 3 ] ] <− plot
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#p e l c o e s
d f s_es_2d_a <− l i s t ( )
for ( i in 1 : 2 ) {

d f s_es_2d_a [ [ i ] ] <− subset (df_cond_l i s t_2d_a [ [ i ] ] , r i s k_measure == "ES_mean" &
cond_u == pelcov_2d_a_s t r [ i ] )

d i f f_s e r i e s <− d f s_es_2d_a [ [ i ] ] [ , 2 ] − uncond_es
for ( j in 2 : length ( d i f f_s e r i e s ) ) {

i f ( d i f f_s e r i e s [ j − 1 ] ∗ d i f f_s e r i e s [ j ] < 0) {
i n t e r s e c t i o n s [ 4 , i ] <− i n t e r s e c t i o n s [ 4 , i ] + 1

}
}

}

f i r s t_e lements_es_2d_a <− sapply ( d f s_es_2d_a , function (df ) df [ 1 , " r i s k_e s t " ] )
order_index_es_2d_a <− order ( f i r s t_e lements_es_2d_a )
legend_data_es_2d_a <− data . frame (

labels = c ( paste0 ( "ES_mean_" , pe lcov_2d_a_s t r [ order_index_es_2d_a ] ) ) ,
colors = colors [ order_index_es_2d_a ]

)

#s t o r e s g r a p h i c a l r e s u l t s
plot<− ggp lot ( ) +

geom_l i n e (data = subset (df_r i sk , r i s k_measure == "ES_mean" ) ,
aes ( x = row_num, y = r i s k_e s t ) , c o l o r=" black " )+

geom_l i n e (data = subset (df_cond_l i s t_2d_a [ [ 1 ] ] , r i s k_measure == "ES_mean" &
cond_u == pelcov_2d_a_s t r [ 1 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "ES_mean_" , pe lcov_2d_a_s t r
[ 1 ] ) ) )+

geom_l i n e (data = subset (df_cond_l i s t_2d_a [ [ 2 ] ] , r i s k_measure == "ES_mean" &
cond_u == pelcov_2d_a_s t r [ 2 ] ) ,

aes ( x = row_num, y = r i s k_est , col=paste0 ( "ES_mean_" , pe lcov_2d_a_s t r
[ 2 ] ) ) )+

labs (x = " t rad ing ␣day " ,
y = " p o r t f o l i o ␣VaR" ,
col = " Risk␣measure " ,
t i t l e = " Pe lcoes ␣ r e s ea r ch ␣ g raph i ca l l y , ␣2␣ c ond i t i ona l ␣ a s s e t s ␣with␣same␣

value " ,
s u b t i t l e = paste0 ( " Uncondit iona l ␣ES␣ in ␣black , ␣ES␣ conf . ␣ l e v e l ␣ " , r i s k_l e v e l s

_v [ v ] ∗100 , "%" ) )+
scale_c o l o r_manual (name = " Risk␣Measure " , va lues = legend_data_es_2d_a$colors ,

labels = legend_data_es_2d_a$ labels )
pe l_p l o t s [ [ v ] ] [ [ 4 ] ] <− plot

#p e l computation at confidence l e v e l v
for (u in 1 : 4 ) {

f i n a l_pe l_uv [ u , v]=sum( pe lcov_1d∗ i n t e r s e c t i o n s [ u , ] ) /sum( i n t e r s e c t i o n s [ u , ] )
}

}

#save p l o t s in pdfs
for ( i in 1 : length ( r i s k_l e v e l s_v ) ) {

pdf_name <− paste ( " r i s k_l e v e l_" , r i s k_l e v e l s_v [ i ] , " . pdf " , sep = " " )
pdf ( pdf_name)
for ( j in 1 : length ( pe l_p l o t s [ [ i ] ] ) ) {

print ( pe l_p l o t s [ [ i ] ] [ [ j ] ] )
}
dev . o f f ( )

}
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