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Summary

Origin and objectives of the thesis
A quantum computer is a computer that exploits quantum mechanical phenomena:
for this reason, it is able to efficiently perform tasks that a classical computer would
never complete in human time, including solving problems on which cryptographic
systems are currently based. Post-quantum cryptography deals with studying new
quantum-resistant problem on which to rely in order to be able to run secure
signature protocols. In this context, we can observe that the digital signatures can
be based on different problems, more or less complex: the following thesis arise
from the interest in analysing one of these, the multivariate quadratic problem, in
all its facets, from its definition to its use in zero-knowledge protocols, which in
turn can fall into different types.

In particular, I focused on the most recent signatures belonging to the state of
the art, the one presented by Ming-Shing Chen, called MQDSS and based on an
identification scheme, and the one presented by Thibauld Feneuil, based on the zero-
knowledge protocol MPC-in-the-head; moreover I have made implementations of
both signatures, both in order to be able to demonstrate the theoretical treatments
and to sample results regarding their performance.
At the end, in order not to burden the structure of the thesis, I have included some
supplementary material, which may be necessary for the understanding of some of
the concepts discussed, dealing with the world of quantum and post-quantum, but
also more algebraic and cryptographic concepts.

Structure of the thesis
Chapter 1 provides a brief introduction to quantum computing and its formalism.
In Chapter 2 are given the main definitions of the different protocols and are
explained the main instruments, such as the Fiat–Shamir transform and the MPC-
in-the-head protocol. Chapter 3 provides an exhaustive treatment of the quadratic
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multivariate problem, starting with the identification schemes from which, by
applying the Fiat–Shamir transform, is obtained the digital signature scheme.
Chapter 4 discusses existing signatures and considers the possible attacks (and
their costs, both computational and in memory) on the quadratic multivariate
problem. Finally, the appendix A shows the additional material to integrate some
concepts explained in the thesis, while appendix B shows the code that implements
what has been studied.
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Chapter 1

Introduction to
post-quantum cryptography

1.1 General definitions and main concepts
Governments all around the world are investing heavily in building quantum
computers. Society must be prepared for the consequences, including cryptanalytic
attacks accelerated by these computers. In particular, Shor’s algorithm shatters
the foundations for implemented public key cryptography: RSA and the discrete
logarithm problem in finite fields and elliptic curves. Long-term confidential
documents such as patient health-care records and state secrets need to be secure
for many years, but today encrypted information uses RSA or elliptic curves, which
one day will no longer do. Post-quantum cryptography is the science that deals
with formulating, studying and testing new cryptographic algorithms, implemented
on classical computers, that can be secure against cryptanalytic attacks done by a
quantum computer.
Let us take a closer look, however, at what quantum mechanics really is, basis for
understanding the following treatises.

1.1.1 The postulates of quantum mechanics
Quantum mechanics is a physical theory whose postulates are designed to provide
a bridge between the real world and mathematical formalism.

• Postulate I
Associated with every isolated physical system there is Hilbert space, that is a
complex vector space endowed with a inner product and complete with respect
to the distance function induced by its inner product: this space is called the
space of states of the system. The system is completely described by its state
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Introduction to post-quantum cryptography

vector - a unitary vector within the space of states and usually denoted by
|ψ⟩ using Dirac notation1 - which contains all the information available.

• Postulate II
The time evolution of a closed system is deterministic, and is described by
a unitary transformation. More precisely, the state of the system at time t1
is linked to the state of the same at time t2 through a unitary operator U
dependent solely on the times t1 and t2,

|ψ⟩(t2) = U(t1, t2)|ψ⟩(t1)

.

• Postulate III
Any observable attribute of a physical system can be described by a Hermitian
M acting on the state vector of the system

M : |ψ⟩ −→ |ψ′⟩ =M|ψ⟩.

For each operator M there are particular states |ψ⟩ such that

M|ψm⟩ = m|ψm⟩.

Such states are called eigenstates of the operator M while the multiplicative
constants m are called eigenvalues (relative to the |ψ⟩ eigenstates) of the
operator.
Note that in the finite-dimensional case, this postulate follows from the spectral
theorem in C for Hermitian matrices, which asserts that an endomorphism is
Hermitian if and only every Hermitian matrix is diagonalizable by a unitary
matrix.
The only possible outcomes of an observable M are its eigenvalues. In
particular, since these are of Hermitian operators, these eigenvalues turn out
to be real and the eigenstates form an orthonormal basis of the space of states.
Quantum measurements are described by a collection Mm of measurement
operators, where the index m refers to the possible outcomes that may occur
during the experiment.
If the state of the quantum system is |ψ⟩ immediately before the measurement,
for what has been seen, it is possible to pose

|ψ⟩ =
Ø
m

cm|ψm⟩, cm ∈ C, (1.1)

1See the additional material in A
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1.1 – General definitions and main concepts

and the probability that m occurs as a result is given by

p(m) = ⟨ψ|M †
mMm|ψ⟩ = |cm|2,

Ø
m

|cm|2 = 1. (1.2)

The status after measurement results as

Mm|ψ⟩ñ
⟨ψ|M †

mMm|ψ⟩
, (1.3)

where M † is the conjugate transposed and there is the corrective term in the
denominator inserted by normalization.
The latter result most likely makes this postulate the least intuitive among
the four: for it is being asserted that if m has been obtained as the result of
a measurement, the state of the system collapses into the eigenstate of the
operator relative to that eigenvalue.

• Postulate IV
The space of states of a composite physical system turns out to be the tensor
product of the spaces of the states of its individual components

H = ⊗n
a=1Ha.

It follows then that, if system number i is prepared in state |ψi⟩, the overall
state of the system turns out to be the tensor product of the states of the
individual subsystems

|ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψn⟩.

However, it would be wrong to conclude that every state in H turns out to be
defined in this way. Having fixed a basis for each subsystem, we have in fact
that the generic state of the composite is writable as a linear combination of
the tensor products of these.

1.1.2 Quantum computing
It is now common knowledge that the basis of computation and information
classically there is the bit. This “unit of information” - assuming only two values, 0
and 1 - can be encoded, for example, as an on/off switch, or as an on/off voltage
inside a transistor (as is the case in our laptops). When we enter the realm of
atoms and photons, however, we find that these do not assume only configurations
comparable to classical on/off, but also super-positions coherent of these. The
fundamental unit of quantum information on which stands this new view is called
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the quantum bit, or qubit for short. States analogous to on/off2 are now denoted
by |0⟩ and |1⟩ while the generic coherent state in which the qubit can exist, called
superposition, is conventionally denoted by

|ψ⟩ = α|0⟩+ β|1⟩, (1.4)

where a and b are complex numbers.
Unfortunately, quantum mechanics states that it is impossible to know exactly the
|ψ⟩ state with a single measurement, or equivalently, to know α and β. When the
state of a qubit is measured, it is only possible to obtain |0⟩ with probability |α|2
or |1⟩ with probability |β|2.
Clearly, |α|2 + |β|2 = 1, since these are complementary probabilities.
This surprising mismatch between the state of the qubit and the result of the
measurement lies at the foundation of quantum computation and information, thus
making it counter intuitive and abstract.

Because of what has just been observed, the state of a qubit can be understood
as a vector unit in the 2-dimensional space of states. It is therefore possible to
rewrite the Equation 1.4 as

|ψ⟩ = eiγ

A
cos θ2 |0⟩+ eiϕ sin θ2 |1⟩

B
, (1.5)

where θ, ϕ and γ are real numbers.
Since the eiγ phase has no observable effect 3 it can be removed, thus rewriting the
definition as

|ψ⟩ = cos θ2 |0⟩+ eiϕ sin θ2 |1⟩, (1.6)

where the values of θ and ϕ uniquely define a point on the three-dimensional unit
sphere, usually called the Bloch sphere, which is a useful tool for understanding
some properties of the qubit (unfortunately, there is no generalization for multiple
qubits).
Not only that, such a representation also turns out to have interesting practical
applications, such as the study of the polarization of a photon: the Bloch sphere in
fact provides a geometric representation of the possible polarization configurations
of the particle (vertical/horizontal = |0⟩/|1⟩, resulting in super-positions).

2These two states are commonly called computational basis states and form a basis orthonormal
of the vector space

3Recalling Postulate III, the probability that the result m occurs is given by ⟨ψ|M†
mMm|ψ⟩

and ⟨ψ|e−iγM†
mMme

iγ |ψ⟩ = ⟨ψ|M†
mMm|ψ⟩.
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1.2 – Elements of Quantum algorithms

Of all the coherent super-positions, some turn out to be of greater significance,
acquiring particular designations:

|±⟩ = |0⟩ ± |1⟩√
2

and |±i⟩ = |0⟩ ± i|1⟩√
2

(1.7)

represent, for example, the rotations of |0⟩ and |1⟩ on the x-axis and the y. It
is necessary to dwell on one detail: to claim that one can find the qubit in
an infinite number of possible states is incorrect: the measurement will provide
only |0⟩ or |1⟩ and especially it changes its state, collapsing it from its superposition.

Figure 1.1: Representation of the state of a qubit on the Bloch sphere

1.2 Elements of Quantum algorithms
After explaining what quantum mechanics is, I want to give a hint of the most
important problems that quantum computing is therefore able to solve. So let’s
take for example the integer factorization: it is in fact impossible for current
computers to factor large numbers that are the product of two prime numbers of
almost equal size; the quantum computer with 2n q-bits can factor instead numbers
with lengths of n bits. Another example is quantum database search, for which
the search for information in an unordered database takes orders of magnitude of
time much smaller than a classical computer. The use in the fields of simulations
of quantum mechanics is also reported: for example in the context of chemistry,
biology, medicine and many others, the quantum computer - unlike the classic
one - can calculate millions of variables simultaneously. Finally it’s mandatory
mentioning the field of cryptography, destroyed by the potential arrival of the
quantum computer, which is capable of deciphering codes.
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Introduction to post-quantum cryptography

1.2.1 Grover’s algorithm
An extended class of problems can be categorized as search i.e. find the elements x
for which the statement f(x) is true.
An unstructured search problem is one in which nothing is known (or no assump-
tions are used) about the structure of the solution space and the statement f ; a
structured search problem is one in which one can find information about the search
and statement f exploited. Thus for a search in a space of dimension N the search
requires an evaluation of elements of order O(N); Grover’s algorithm performs a
search on an unordered set of N = 2n elements to find the unique element that satis-
fies a given condition: it possesses quadratic velocity, using only O(

√
N) operations.

Grover’s search algorithm demonstrates how the properties of quantum systems
can be used to improve the timing of execution times of classical algorithms.
Specifically, the algorithm of Grover exploits the (quantum-only) possibility of
superposition of quantum states and phase shifting of the amplitude of the quantum
states.

1.2.2 Quantum Fourier Transform
The Quantum Fourier Transform (QFT) is the key computational ingredient in
many algorithms quantum; in particular, we observe that the QFT:

• performs the transform of quantum amplitudes;

• allow the estimation of the phase, by approximation of the eigenvalues of a
unit operator under certain conditions;

• solves the problem of the hidden subgroup, a generalization of phase estimation;

• solves the discrete logarithm problem, which has no solution in the classical
framework.

1.2.3 Quantum Phase Estimation algorithm
The quantum phase estimation algorithm is a quantum algorithm to estimate the
phase corresponding to an eigenvalue of a given unitary operator. This algorithm
finds one of its main applications for solving the problem of order-finding and
factoring. These two problems and their solution are two central routines of Shor’s
algorithm, that is interesting because it proves that the quantum computers are
inherently more powerful than classical computers, and overall are capable of
breaking the public-key cryptosystem of RSA.
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Chapter 2

Preliminaries and
background

2.1 Definitions
In this chapter, there will be given the main instruments and definitions that will
be essential to understand the core of this thesis, the MQ problem, addressed in
the next chapter.

Definition 1 (NP-relation) An NP-relation is a relation R ⊆ {0,1}∗ × {0,1}∗
such that

(x,w) ∈ R ⇐⇒ R(x,w) = 1 and |w| ≤ p(|x|)

where R(·, ·) is a polynomial-time algorithm and p(·) is a polynomial.

Note that {0,1}∗ is the space of finite strings in the alphabet of 0 and 1 and |w| is
the length of these strings.
In this context, x is called public key (often denoted by pk) or problem or instance
and w is called secret key (often denoted by sk) or solution or witness.
In other words, NP-relations are relations R for which is computationally easy to
determine if, given the solution (x,w), this one belongs (or not) to the relation
R, but given x it is usually difficult to find w such that (x,w) is solution (and so
(x,w) ∈ R).

Definition 2 (Problem) Let R be an NP-relation: then

given x, the problem of determining if there exists w such that (x,w) ∈ R is
called decision problem;

7
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given x, the problem of finding one w such that (x,w) ∈ R is called search
problem.

Note that w might not exist.

Definition 3 (Protocol) A cryptographic protocol is defined as a series of steps
and message exchanges between multiple entities in order to achieve a specific
security objective.

The properties of a protocol, generally, are the following:

• Everyone involved in the protocol must know the protocol and all of the steps
to follow in advance;

• Everyone involved in the protocol must agree to follow it;

• The protocol must be unambiguous, that is every step is well defined and
there is no chance of misunderstanding;

• The protocol must be complete, i.e., there is a specified action for every
possible situation.

Note that the protocol may or may not be interactive, i.e. it may be required
that there is an active exchange of information between the parties or not; in the
event of non-interactivity, it is possible to be enabled to prove one’s identity or the
truthfulness of the information in possession without sharing it.

Definition 4 (PPT) A Probabilistic Polynomial-Time Problem (said PPT prob-
lem) is a problem solvable by a probabilistic Turing machine in polynomial time.

2.1.1 ZKPoK
A Zero-Knowledge Proof of Knowledge (in short ZKPoK ) is a method by which
one party, the prover, can prove to another party, the verifier, that s/he (the
prover) has knowledge of some secret information, in a way that does not reveal
such information to the verifier. In cryptography, the prover has a public key and a
secret key; by construction the public key is an instance of a difficult mathematical
problem, while the private key is the solution of that instance. The ZKPoK has
many applications in cryptography, such as in the identification protocols - the
prover identifies himself to the verifier by giving a ZKPoK of his private key - or
in the digital signatures - where the prover signs a document by turning it into a
ZKPoK of his private key.

8
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For a given NP-relation R and a publicly known x ∈ {0,1}∗, ZKPsoK are for-
malized as a prover convincing a verifier that s/he knows a w such that (x,w) ∈ R
(that is, a solution to the search problem).

Zero-Knowledge protocols find use in numerous areas of verification, but in
systems designed for ascertainment, it is also necessary to ensure the proof property
of knowledge; in particular, three different levels of security are distinguished:

℘ Authentication schemes: the prover can prove to the verifier that he is
the prover itself, and no one else can prove to the verifier that he is the real
prover.

℘ Identification schemes: The prover can prove to the verifier to be the
prover, and the verifier cannot prove to someone else to be the prover.

℘ Signature schemes: the prover can prove to the verifier that he is the prover,
and the verifier cannot prove to himself that he is the prover either.

ZKPoK in Graph Theory

One of the most immediate examples that can be offered to understand how ZKPoK
works is its application to Graph Theory, so we report the recall of some notions
necessary for understanding it.

Figure 2.1: A graph.

A graph is a pair (V,E), where V is a
finite set and E is a set of unordered pairs
of elements of V ; the elements of V are
called vertices, while the elements of E
are called edges.

9



Preliminaries and background

Let G1 = (V1, E1) and G2 = (V2, E2) be two
graphs: then a graph isomorphism between G1
and G2 is a bijective function f : V1 → V2 such
that

{v, w} ∈ E1 ⇐⇒ {f(v), f(w)} ∈ E2.

So G1 and G2 are isomorphic if there exists a
graph isomorphism between them ( in such case
we write G1 ∼= G2 or f : G1 → G2).
Notice that if the functions f : G1 → G2 and
g : G2 → G3 are isomorphism, then the functions
f−1 : G2 → G1 and (g ◦ f) : G1 → G3 are iso-
morphism too. It is also important to point out
that the permutation, being a bijective function
with domain and codomain of equal size, is also
an isomorphism.

Figure 2.2: Two isomor-
phic graphs.

The problem of determining if two given graphs are isomorphic is known as
Graph Isomorphism Problem; given two graphs, both with n vertices, the
obvious way to check if they are isomorphic is to try all n! possible f, which is
infeasible for large n (the complexity of the most efficient known algorithm1 grows
as O(2(log n)c) where c = 3).

In this context, the ZKPoK for Graph Isomorphism requires that there are
two publicly known graphs, G1 and G2; the prover knows a graph isomorphism
f : G1 → G2 and wants to convince the verifier of that, but without revealing f .
The protocol is the following:

1It’s a quasi-polynomial-time algorithm that works for all graphs and it’s due to László Babai
(November 2005; his result was later improved by Helfgott, who proved the value of the constant
c.)
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1) The prover generates a random permutation
π : V1 → V1 and constructs a graph G ∼= G1 by
applying π to the vertices of G1. Then he sends G
to the verifier.

2) The verifier chooses a random challenge
ch ∈ {1, 2} and sends it to the prover.

3) If the prover received ch = 1, then he sends π to
the verifier. If instead the prover received ch = 2,
then he sends g := π ◦ f−1 to the verifier.

4) If ch = 1, then the verifier checks that π is a graph
isomorphism between G1 and G. If ch = 2, then
the verifier checks that g is a graph isomorphism
between G2 and G.

Table 2.1: ZKPoK protocol for Graph Isomorphism

Observations. For ch = 1 the verifier obviously accepts because, by construc-
tion, π is a graph isomorphism between G1 and G; for ch = 2 the verifier accepts
by proving that g := π ◦ f−1 is a graph isomorphism between G2 and G. In this
way, the hypothetical cheater (who does not possess f) cannot know what to give
as an answer either in case the challenge is worth 1 or in case it is worth 2. It is
also intuitive that no information on f is revealed: in fact, in case of ch = 1 the
verifier receives π that do not contains any information about f ; in case instead of
ch = 2, the verifier receives g (that is given by π ◦ f−1) but the randomness of the
permutation destroy any information on f .
There is a chance, however, that a cheater will convince the verifier that s/he
possesses f , constructing G as the prover and receiving as a challenge precisely 1:
this happens once in two times; therefore, by repeating the protocol n times, the
probability of this happening is lowered to (1

2)n.

2.1.2 Sigma Protocols

Let P1, P2, V1 and V2 be probabilistic-polynomial-time algorithms: a Sigma Protocol
for an NP-relation R is an interactive protocol between a prover P = (P1, P2) and
a verifier V = (V1, V2), which follows the steps below.
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1. The prover sends to the verifier a commitment.

2. The verifier sends to the prover a challenge from a finite set of
challenges C.

3. The prover computes an appropriate response and sends it to the verifier.

4. The verifier checks if the response is correct, in according to the challenge
and the commitment. In such a case the verifier accepts, otherwise
he rejects.

Table 2.2: Sigma Protocol

Definition 5 (Transcript) The quadruple that contains the instance x, the com-
mitment comm, the challenge ch and the response rsp is called transcript and it
indicates as transcript(x, com, ch, rsp).

So in other words, given a transcript(x, com, ch, rsp), the execution of its protocol
is as reported below:

Figure 2.3: Summary of Sigma Protocol

Generally, a cryptographic protocol must respect three properties (that hold for
the Sigma Protocol), that are Completeness, Soundness and Honest Verifier
Zero-Knowledge (HVZK).

Definition 6 (Completeness) If all parties follow the protocol on input (x,w) ∈
R, then the verifier always accept.

In other words, the protocol should work if every party is honest.

12
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Definition 7 (Soundness) There exists a polynomial-time algorithm,
called extractor, that takes as input two transcripts, (x, com, ch1, rsp1) and
(x, com, ch1, rsp1), with ch1 /= ch2, of a honest execution of the protocol on input
(x,w) ∈ R, and returns as output a witness w′ such that (x,w′) ∈ R.

Here w and w′ may or may not be equal. In other words, cheating is as difficult as
computing the witness.

Definition 8 (Honest Verifier Zero-Knowledge) There exists a PPT algo-
rithm, called simulator, that takes as input x and returns as output a random
transcript (x, com, ch, rsp) having the same probability distribution of transcripts of
a honest execution of the protocol on input (x,w) ∈ R.

In other words, the transcripts of a legit execution of the protocol contain no
information on the witness.

Obviously it is necessary also provide security measures, in order to analyze how
safe it is to use one protocol compared to another, so for this the following definition
is given:

Definition 9 (Soundness error) The soundness error of a sigma protocol is the
probability that a verifier accepts the response of a cheater who does not know the
witness.

In the case of a sigma protocol, if this has a soundness error equal to p, then by
doing n rounds (that is, repeating the protocol procedure n times), the probability
became equal to pn. It should be observed that 0 < p < 1 (in fact we cannot
exclude a priori that a cheater is able to give the correct information even only
thanks to luck), therefore the more rounds you make, the more the probability of
being able to cheat will tend to zero, making the protocol increasingly secure.

The ZKPoK for Graph Isomorphism shown before does indeed satisfy the properties
of a sigma protocol.

2.1.3 Schnorr Identification Protocol
The Schnorr Identification Protocol, or Schnorr Identification Scheme, is an iden-
tification protocol built from a ZKPoK of the discrete logarithm problem over a
cyclic group having as order a prime number.
To fully understand this protocol, it becomes necessary the following definition:

Definition 10 (Identification Protocols based on ZKPoK) An Identifica-
tion Protocol is a NP-relation R in which each user has a public key x and a
private key w such that (x,w) ∈ R and, when a user with public key x needs to

13



Preliminaries and background

identify himself to another user, he gives a ZKPoK of his key w (being the prover,
while the other user is the verifier).

Note that in order to achieve a security level λ, the number of rounds should be at
least λ

log 1
p

, where p is the soundness error of the sigma protocol; in this way has
the probability of the cardsharper to cheat that is less than 2−λ.

It is also necessary to remember the notions of linear algebra:

Definition 11 (Discrete Logarithm Problem (DLP)) Let G be a finite mul-
tiplicative group generated by g ∈ G. Given h ∈ G, the problem of finding an integer
x such that h = gx is known as the Discrete Logarithm Problem.

It has been studied that the DLP is a difficult problem when the group G is Z∗n
or a multiplicative group of a finite field or a cyclic subgroup of the group of an
elliptic curve over a finite field: in this case there is no sub-exponential algorithm
able to solve it. Note that the choice of group is very important since there are
groups for which the DLP is simple to solve, such as Zp with p a prime number or,
more in general, an additive field Zn with n positive integer.

Also in the Schnorr Identification Protocol the group is carefully chosen: in fact
the group that usually is used is G = ⟨g⟩, where g is given by g = h

p−1
q and h ∈ Z∗p

such that h
p−1

q /≡ 1 (mod p) (p and q are two primes such that q divides p− 1); in
this context, given G multiplicative cyclic group of q elements and g its generator,
that are publicly known, the prover wants to convince the verifier that he knows x
(his private key, that is an integer in [0, q)), but without revealing x.

1. The prover generates a random r ∈ [0, q), computes k = gr, and sends k
to the verifier.

2. The verifier generates a random challenge c ∈ [0, q) and sends it to the
prover.

3. The prover computes y = r + cx mod q and sends it to the verifier.

4. The verifier accepts if gy = khc, where h is the public key of the
prover, obtained by h = gx. Otherwise, the verifier rejects.

Table 2.3: Schnorr Identification Protocol
Note that The Schnorr Identification Protocol satisfies the properties of a sigma
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protocol (the proof is omitted). Furthermore the soundness error of Schnorr
Identification Protocol is equal to 1

q
.

2.1.4 ZKPoK for other problems

There are other problems to which the zero-knowledge proof can be applied, such
as Square Root and Discrete Logarithm; for both of them, the obtained protocols
satisfies the three properties seen that characterize the sigma protocol.
In the context of the Square Root Problem, there is G (usually G = Z∗n with n
product of two primes) as finite multiplicative commutative group and a ∈ G: the
prover wants to convince the verifier that he knows x ∈ G such that a = x2, but
without revealing x.
In the context of the Discrete Logarithm Problem, instead, there is G multiplicative
cyclic group of n elements (G of arbitrary order) and g generator of G, with h ∈ G:
the prover wants to convince the verifier that he knows an integer x such that
h = gx, but without revealing x.

The protocols are reported here:

1. The prover generates a random r ∈ G, computes b = r2, and sends b to
the verifier.

2. The verifier generates a random challenge ch ∈ {0, 1} and sends it to
the prover.

3. The prover computes c = xchr and sends it to the verifier.

4. The verifier accepts if c2 = achb. Otherwise, he rejects.

Table 2.4: Square Root Protocol
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1. The prover generates a random r ∈ [0, n), computes k = gr, and sends k
to the verifier.

2. The verifier generates a random challenge c ∈ {0, 1} and sends it to the
prover.

3. The prover computes t = cx+ r mod n and sends it to the verifier.

4. The verifier accepts if hck = gt. Otherwise, he rejects.

Table 2.5: Discrete Logarithm Protocol

The protocol called Discrete Logarithm Protocol is better known and popular as
Fiat–Shamir’s identification protocol. Note that the soundness error of the Discrete
Logarithm Protocol is 1

2 , while Schnorr’s is 1
q
, which can be much smaller.

2.1.5 The Cut-and-Choose Protocol and the Identification
Scheme

The protocols that we will see in the next chapters employ the cut-and-choose
approach, so it’s given the following:

Definition 12 (Cut-and-Choose Protocol) A cut-and-choose protocol is a two-
party protocol in which one party tries to convince another party that some data he
sent to the former was honestly constructed according to an agreed upon method.

Note that the expression cut-and-choose is used in analogy to a popular cake
sharing problem: given a complete cake to be shared among two parties distrusting
each other. A fair way for them to share the cake is to have one of them cut the
cake in two equal shares, and let the other one choose his favourite share. This
solution guarantees that it is in the former’s best interest to cut the shares as
evenly as possible.
In the context of the next protocols, a prover first divides her secret into shares
and then proves the correctness of some shares depending on the choice of a verifier
without revealing the secret itself.

This paragraph provides the definitions necessary to understand the protocols
that will follow; furthermore, in order to standardize the notation (and therefore
be consistent with Sakumoto’s publication), concepts already introduced in the
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previous chapter are rewritten in a concise manner.

Let A and B be two finite sets and let R ⊂ A × B be a binary relation;
let S be a finite set and let x ∈R S be a random element of this set: then
R(x) := {s : (x, s) ∈ R}. If s ∈ R(x) then s is solution for the problem x.

Let Setup be an algorithm which takes a security parameter 1λ and outputs the
parameter param (therefore the security level is arbitrary, depending on the λ you
pass it); let Gen be a key-generation algorithm which takes param, and outputs
the couple public key - secret key (pk, sk); let V be a verifier and P be a prover:
the quantities param and pk are publicly known between both parties, while sk
belongs just to P .

Definition 13 An Identification Scheme is a tuple of algorithms
(Setup,Gen, P, V ); the protocol (P, V ) is called Identification Protocol.

The Commitment Scheme is a scheme that works in two phase:

• The sender computes a commitment value c← Com(s; ρ), where Com is the
string commitment function, and sends c to the receiver, where s is a string
and ρ is a random string.

• The sender gives (s, ρ) to the receiver and the receiver verifies that c =
Com(s; ρ).

Note that it’s required that the string commitment function Com be both statisti-
cally hiding and computationally binding.

Definition 14 (Computational Hiding) For an adversary A we define the ad-
vantage for the commitment hiding game for a pair of messages m,m′ as

AdvHiding
Com (A,m,m′) =

----- P
bits←{0,1}λ

[1 = A(Com(bits,m)]− P
bits←{0,1}λ

[1 = A(Com(bits,m′)]
-----

We say that Com is computationally hiding if for all polynomial-time algorithms
A, and every pair of messages (m,m′) the advantage AdvHiding

Com (A,m,m′) is a
negligible function of the security parameter λ.
Note that in the Commitment Scheme means that at the end of the first phase,
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no receiver can distinguish two commitment values generated from two distinct
strings even if the receiver is computationally unbounded2.

Definition 15 (Computational Binding) For an adversary A we define its ad-
vantage for the commitment binding game as

AdvBinding
Com (A) = P[Com(bits,m) = Com(bits′,m′)|(bits,m, bits′,m′)← A(1λ)]

We say that Com is computationally binding if for all polynomial-time algorithms
A, the advantage AdvBinding

Com (A) is a negligible function of the security parameter
λ.
Note that in the Commitment Scheme means that no polynomial-time sender can
change the committed string after the first phase; please note that in practice the
commitment scheme is constructed from a collision-resistant hash function.

2.2 Non-interactive ZKPoK
Following the first publication regarding knowledge-zero, three years later was
released the mathematical demonstration of the existence of non-interactive zero-
knowledge proofs. In fact, the main defect of normal Zero-Knowledge Protocols is
that they are only able to function if the verifier is online and willing to interact
with the prover by choosing a random challenge; what is discussed in that papers3

is the possibility of even disposing of the cyclic interaction between the parties,
of the verifier’s random choice of challenge, and allow verification of the prover’s
secret with a single message: all of this is possible if a short random Common
Reference String (CRS) is exchanged a priori to be used as key. This translates in
mathematical language with the concept of a one-way function, and in cryptography
with the concept of a hash function.
In order to allow the key to be exchanged, however, an initial phase is required of
communication, called trusted setup,in which a trusted party generates it publicly.
An alternative to the CRS model is to use a Random Oracle Model4.

2Unbounded means that there is no a-priori fixed limitation to the amount of space and time
that a valid, non-diverging program could take. Unbounded space and time is a hard requirement
for a computational model to be Turing-complete, in the sense that there exist functions that
take arbitrarily high time and space to be computed; any computational model with a space or
time limitation would therefore be unable to compute such functions making it, by definition, not
Turing-complete.

3See [1] and [2]
4A random oracle is a mathematical function that associates with each possible question a

truly random answer chosen within its output domain.

18



2.2 – Non-interactive ZKPoK

2.2.1 Fiat–Shamir transform

The Fiat–Shamir transform is a technique for converting a sigma protocol
identification scheme into a digital signature scheme5.

This heuristic collapse the number of rounds required into a single round, increasing
the space used for the challenge from {0,1} into a larger space that allows to
control the soundness error (e.g. Zq), at the cost of making the Honest-Verifier
protocol Zero-Knowledge. Furthermore there is no more the verifier that generate
challenges, but this is compute using an hash function.

Since this technique completely replaces the interactivity part of the protocol
(considering that it reduces the number of rounds to one and the verifier does not
even have to answer and to generate the challenge), it can also be seen as converting
an interactive ZKPoK protocol into a non-interactive one (Zero-Knowledge is not
necessarily required).

The Schnorr’s identification scheme is the best example to observe how the Fiat–
Shamir transform is applied.

Schnorr Signature

The Schnorr signature scheme is a non-interactive Zero-Knowledge protocol that is
also a Proof of Knowledge and a digital signature concept, obtained by applying
Fiat–Shamir heuristics to Schnorr’s identification protocol seen above. In fact, by
including a message M as an optional value, one can obtain a signature on M ,
which can only be produced by someone who knows the secret key s.
Let H : {0, 1} → Zq be an hash function, public among the parties: then the
protocol revisited for proving the knowledge of the secret s concerning the key
public PKA is:

5See [3]
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1. The prover generates a random integer r ∈ [1, q], and s/he hides it by
calculating u = gr mod p (commitment).

2. The prover uses H(·) to calculate the challenge e = H(u||M), where u is
represented as a bit string, M is the message, and || represents the
concatenation operation (challenge).

3. The prover calculates z = −se+ r mod q and communicates to the
verifier the pair (z, e) that constitutes the message signature (response).

4. The verifier only needs to make verifications because of H(·) in common,
so he calculates his uB = PKe

A · gz and his eB = H(uB||M), and
checks whether eB = e. This is valid because if the prover is honest then
s/he knows s and can compute z, so we have uB = gse · g−se+r mod p
and u = gr mod p (completeness).

Table 2.6: Schnorr’s Digital Signature Protocol

Observations. Even in this implementation of the protocol, however, if the same
r is used in two separate signatures, it is possible to trace the private key. It is in
fact sufficient to subtract the two values of z, such as z2−z1 = (r2−r1)−s(e2−e1).
Therefore, if e2 /= e1, we have: s = z1−z2+r2−r1

e2−e1
. In terms of security, however, it

has been shown that Schnorr’s signature scheme can be considered as such if the
hash function H is defined and modeled as a random oracle.
It has been demonstrated [5] that

Theorem 1 Given an identification scheme Π, let Π′ be its signature scheme
obtained by applying the Fiat–Shamir transform to Π, if Π is secure and H is
modeled as a random oracle, then Π′ is safe.

Theorem 2 If the discrete logarithm problem is difficult relative to the defined
problem (G, q, g), then Schnorr’s identification protocol can be called safe.
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2.3 The MPC-in-the-Head Paradigm
We’ve seen that zero-knowledge proofs allow a prover to prove to a verifier about
the veracity of a statement without revealing anything beyond the assertion; the so
called MPC protocol, a secure multiparty computational protocol, allows a set of
n mutually distrusting parties to compute a joint function of their private inputs.
The security guarantee is that any algorithm that corrupts even all but one of the
n parties cannot learn anything about the input of the uncorrupted parties beyond
what it can learn from the function output.

Definition 16 (MPC) A Multi-Party Computation is a distributed protocol be-
tween n parties, where every party Pi holds a secret wi and the output of the protocol
is f(w1, . . . , wn); in this setting, the values of wi remain secret.

In particular, an MPC protocol is defined by some instructions for each party Pi;
furthermore it’s defined as V iewi of Pi the triplet (wi, ri, (m1, . . . ,mj)) where wi

is the private input (of the user i), ri is the randomness used by the user i and
(m1, . . . ,mj) are the messages received by other parties. Two views V iewi, V iewj

are consistent if the parties follow the instructions and the set of messages sent by
Pi is consistent with the set of messages received by Pj and vice versa.

The function f isn’t a generic one but has the particular shape:

f(w1, . . . , wn) =
I

1 if (x,qn
1 wi) ∈ R

0 otherwise
(2.1)

Note that the quantities x, f and R are public and the only one that is secret is
w = qn

i=1 wi.
MPC protocols enjoy both passive security, that means that the protocol is secure
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and correct with respect to honest-but-curious parties, and t-privacy, that is that
the views of any t parties leak no information about the secret w.

After these definitions, it’s possible to explain the MPC in the head protocol,
that presents as setting the relation R, that is chosen and public, then it’s formed
(x,w) ∈ R and f such that

fx(w) = 1⇐⇒ (x,w) ∈ R;

in this context the MPC in the head protocol consists of the following steps:

1. The prover generates shares of w (i.e. w = q
wi) and run in its head the

MPC protocol among n parties, obtaining output shares fx(w)i for each
party; then commits V iewi to Ci for each i and sends them to the verifier;
he also sends fx(w)1, . . . , fx(w)n.

2. The verifier picks t indexes among {1, . . . , n} and sends them to the prover.

3. The prover sends the views of the received indexes.

4. The verifier checks the commitments and that the received views are
consistent: if qi fx(w)i = 1, accepts.

Table 2.7: MPC-in-the-head Protocol

Note that the MPC protocol has the three properties of the sigma protocol, that are
completeness (implied by the correctness of the MPC protocol), soundness (given
by the fact that if the prover cheats, then some of the views will be inconsistent)
and Honest Verifier Zero-Knowledge (given by the t-privacy of the MPC protocol).
The soundness error of this protocol is equal to 1

(n
t)

. This protocol is a perfectly
correct MPC that satisfies t-privacy (in fact t = 2 is sufficient); it’s possible even
extend the protocol to have negligible soundness error without sequential repetition,
in this case the steps for this protocol are the following:
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1. The prover chooses random w1, . . . , wn subject to the condition that
⊕i∈[n]wi = w where w is the witness.

2. The prover runs the MPC protocol Π in his head (by choosing uniform
random coins for each party) to generate the views of each party Pi.
Let V iewi denote the view of party Pi in the execution of Π.

3. The prover generates commitment to each V iewi separately using a
statistically binding commitment scheme and sends the commitment to
the verifier.

4. The verifier chooses t random i1, . . . , it ∈ [n] and sends it to the prover.

5. The prover opens the commitment to the views V iewi1 , . . . , V iewit .

6. The verifier checks if the openings are correct and if it is the case it checks
if the views are consistent. If they are in consistent it outputs 0 if the
protocol outputs 0; otherwise, it outputs 1.

Table 2.8: Extended Protocol

Note finally that the security of MPC comes in different flavors depending on
how the parties are corrupted: if the corruption algorithm follows the protocol
description but may try to learn arbitrary information from the protocol transcripts,
then it’s referred as semi-honest; on the other hand, if the corruption algorithm can
deviate arbitrarily from the protocol description, then it’s referred as malicious.
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Chapter 3

The Multivariate Quadratic
Problem

3.1 Introduction to the MQ problem
The problem of solving a system of multivariate quadratic polynomials over a finite
field, which is called an MQ problem, is a interesting problem in cryptography.
The associated decision problem is known to be NP-complete and a random
instance of the MQ problem is widely believed to be intractable (there is no known
polynomial-time quantum algorithm to solve the MQ problem).
Many studies have been done over time on this type of problem both in the field
of symmetric and asymmetric cryptography. A very important milestone, which
brings results on which subsequent studies of MQ signature are then based, is the
paper by Sakumoto et al. [6], in which is proposed a public-key identification
schemes based on the conjectured intractability of the MQ problem under the
assumption of the existence of a non-interactive commitment scheme which is
statistically-hiding and computationally-binding.

Let Fq be a finite field (of order q): then we denote by MQ(n,m,Fq) a family of
functions I

F(x) = (f1(x), . . . , fm(x))
-----fl(x) =

Ø
i,j

al,i,jxixj +
Ø

i

bl,ixi,

al,i,j, bl,i ∈ Fq for l = 1, . . . ,m
J (3.1)

where x = (x1, . . . , xn).

Definition 17 (The MQ function) We call F ∈MQ(n,m,Fq) an MQ function.
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In order to use the cut-and-choose protocol, it is necessary to be able to split
the secret into several parts: this is possible by exploiting the property of group
homomorphism, i.e. using the modular exponentiation or a linear function1; however
the MQ function does not seem to have such a property. For this reason, new
splitting techniques are introduced, which exploit the bilinearity of the following
polar form:

Definition 18 (Polar form of an MQ function) The polar form G of the MQ
function F is a function G(x1,x2) = F(x1 + x2)− F(x1)− F(x2).

It’s known that the function G = (g1, . . . , gm) has the property of bilinearity,
in fact gl(x,y) = q

i,j al,i,j(yixj +xiyj), where x = (x1, . . . , xn) and y = (y1, . . . , yn).

The division technique used involves the following steps: let s and v = F(s) be
respectively a secret key and a public key:

• First, the secret key is divided as s = r0 + r1;

• Then the public key v = F(r0 + r1) is represented as

v = F(r0) + F(r1) + G(r0, r1)

(thanks to the polar form G of the MQ function F);

• Since there is still the term G(r0, r1) that depends on both r0 and r1, one
should consider that r0 and F(r0) are further divided as r0 = t0 + t1 and
F(r0) = e0 + e1, respectively.

• In this case, the public key can be divided into two parts:

v = (G(t0, r1) + e0) + (F(r1) + G(t1, r1) + e1)

thanks to the bilinearity of G.
Each of the two parts is represented by either (r1, t0, e0) or (r1, t1, e1) (no
information on s can be obtained from one of the two tuples).

An intractability assumption for a random instance is defined as follows:

Definition 19 (Intractability of an MQ function) For polynomially bounded
functions n = n(λ), m = m(λ) and q = q(λ), it is said that MQ(n,m,Fq) is
intractable if there is no polynomial-time algorithm that takes (F,v) generated via
F ∈R MQ(n,m,Fq), s ∈R Fn

q , and v← F(s) and finds a preimage2 s′ ∈ Fn
q such

that F(s′) = v with non-negligible probability ϵ(λ).

1See the additional material in A
2See additional material in A
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Note that, in general, a function f is said polynomially bounded if |f(x)| ≤ p(x) for
some real polynomial p.

Definition 20 (The MQ problem) For F ∈MQ(n,m,Fq), we define a binary
relation RF = {(v,x) ∈ Fm

q ×Fn
q : v = F(x)}. Given an instance F ∈MQ(n,m,Fq)

and a vector v ∈ Fm
q , the MQ problem is finding a solution s ∈ RF(v).

3.2 3-pass identification scheme of Sakumoto [6]
The two identification schemes, both the 3-step and the 5-pass one, are made up
of the sequential composition and the parallel composition of the identification
protocols.
In this part, assuming the existence of the non-interactive commitment scheme
Com described as before (so statistically hiding and computationally binding), it’s
given the identification scheme, consisting of a 3-pass statistical zero-knowledge
argument of knowledge for RF:
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Prover’s input: ((F,v), s) aaaa Verifier’s input: (F,v)

1. Pick r0, t0 ∈R Fn
q , e0 ∈R Fm

q . a a
2. r1 ← s− r0, t1 ← r0 − t0 aaa a a
3. e1 ← F(r0)− e0 aaaaaaaaaaa a a

l 4. c0 ← Com(r1,G(t0, r1) + e0) a a a
5. c1 ← Com(t0, e0) aaaaaaaaaa a a
6. c2 ← Com(t1, e1) aaaaaaaaaa (c0,c1,c2)

−→ a

a Ch
←− Pick ChR ∈ {0, 1, 2} aaaaaaaaaaa

If Ch = 0, Rsp← (r0, t1, e1) aaa a a
If Ch = 1, Rsp← (r1, t1, e1) aaa a a
If Ch = 2, Rsp← (r1, t0, e0) aaa Rsp

−→ • If Ch = 0, parse Rsp = (r0, t1, e1)
a a and check aaaaaaaaaaaaaaaaaaa
a a c1

?= Com(r0 − t1,F(r0)− e1) a
a a c2

?= Com(t1, e1) aaaaaaaaaaaa
a a • If Ch = 1, parse Rsp = (r1, t1, e1)
a a and check c0

?= aaaaaaaaaaaaaa
a a aaaaCom(r1,v− F(r1)−G(t1, r1)− e1)
a a c2

?= Com(t1, e1) aaaaaaaaaaaa
a a • If Ch = 2, parse Rsp = (r1, t0, e0)
a a and check aaaaaaaaaaaaaaaaaaa
a a c0

?= Com(r1,G(t0, r1) + e0) aa
a a c1

?= Com(t0, e0) aaaaaaaaaaaa
a a a

Table 3.1: 3-pass identification protocol

It has got a soundness error3 of 2
3 .

The protocol shown in the table 3.1 is written succinctly; in more detail, the process
to be carried out is as follows:

• The beginning part, that is the key generation, is done with the previously
described algorithm, Setup and Gen, given in order to formulate the definition
13; note that in order for F ∈ MQ to be intractable one has passed the
arbitrary parameter λ to have n = n(λ), m = m(λ) and q = q(λ) polynomially
bounded.

3The soundness error is the difference between the known (estimated) output of the system
and the actual achieved output
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3.2 – 3-pass identification scheme of Sakumoto [6]

After choosing a random vector s ∈R Fq
n, Gen computes v ← F(s), then

outputs (pk, sk) = (v, s).

• In the very first step described in 3.1, the prover choose randomly the three
values r0, t0 and e0;

• Then the prover split the secret (aka the secret key): the first time, in point 2,
calculating s := r0 + r1 (so having r0 and s, he calculate r1), and the second
time in point 3, calculating r0 := t0 + t1, in such a way to not have G(r0, r1)
that depends both on r0 and r1.

• In points 4, 5 and 6 the prover calculates the three commitments4 that it sends
to the verifier: depending on the challenge that the verifier will send to the
prover, the prover will in turn send a specific tuple that will allow two of the
three Commitments to be checked for correctness. This is done in this way
because the three Commitments depend differently on t0, t1, e0, e1, and r1:
thus, by revealing only the tuples constructed in such a way that no further
quantities can be computed, it is in no way possible to trace any information
regarding the private key s.

• Upon receiving the three Commitments, (c0, c1, c2), the verifier creates a
random challenge, drawing a value between 0,1 and 2; he then communicates
the value of the challenge to the prover.

• Depending on what it has received, the prover sends only one of the following
three tuples to the verifier:

(r0, t1, e1), (r1, t1, e1), (r1, t0, e0)

• Knowing the two relation s − r0 = r1 and r0 − t0 = t1, the verifier has to
check the correctness of the equations

G(t0, r1) + e0 = v − F (r1)−G(t1, r1)− e1

in fact the only more elaborate verification is that of c0:

c0 = Com(r1,G(t0, r1) + e0)=5 Com(r1,G(r0 − t1, r1) + e0)=6

Com(r1,G(r0, r1)−G(t1, r1) + e0)=7

4Note that the random string ρ in Com is not written explicitly but is implied; moreover note
that the “,” means concatenation between the different strings.

5t0 = r0 − t1
6Bilinearity of the function polar form G
7Definition of G as the polar form of F: see 18
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Com(r1,F(r0 + r1)− F(r0)− F(r1)−G(t1, r1) + e0)=8

Com(r1,v−e0−e1−F(r1)−G(t1, r1)+e0)= Com(r1,v−e1−F(r1)−G(t1, r1))

It is easy to see that the verifier always accepts an interaction with the honest
prover: thus the 3-pass scheme has perfect correctness. The properties enjoyed by
the protocol are as follows:

Theorem 3 The 3-pass protocol is statistically zero knowledge when the commit-
ment scheme Com is statistically hiding.

Theorem 4 The 3-pass protocol is argument of knowledge for RF with knowledge
error 2

3 when the commitment scheme Com is computationally binding.

Note that a modified version of this protocol was discussed, which involves using a
hash function H that is collision-resistant, calculating c = H(c0, c1, c2) instead of
sending the three commitment values.9

3.3 5-pass identification scheme of Sakumoto [6]

Also in this protocol, we assume the same assumption as in the previous one is
valid, namely that there exists the non-interactive commitment scheme Com that
is statistically hiding and computationally binding. The identification scheme is
here summarized:

8F(r0 + r1) = F(s) = v; moreover F(r0) = e0 + e1, as presented after the definition 18
9See [9].
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Prover’s input: ((F,v), s) aaaa Verifier’s input: (F,v)

1. Pick r0, t0 ∈R Fn
q , e0 ∈R Fm

q aa a a
2. r1 ← s− r0 aaaaaaaaaaaaalaa a a
3. c0 ← Com(r0, t0, e0) aaaalaaa a a
4. c1 ← Com(r1,G(t0, r1) + e0) (c0,c1)

−→ a

a α
←− Pick α ∈R Fq aaaaaaaaaaaaaaaaaaaaaa

t1 ← αr0 − t0 aaaaaaaaaaaaaaa a a
e1 ← αF(r0)− e0 aaaaaaaaaaaa (t1,e1)

−→ a

a Ch
←− Pick Ch ∈R {0,1} aaaaaaaaaaaaaaaaaa

If Ch = 0, Rsp← r0 aaaaaaaaa a a
If Ch = 1, Rsp← r1 aaaaaaaaa Rsp

−→ • If Ch = 0, parse Rsp = r0 aaaaaaaaa
a a and check c0

?= aaaaaaaaaaaaaaaaa
a a Com(r0, αr0 − t1, αF(r0)− e1) aaa
a a • If Ch = 1, parse Rsp = r1 aaaaaaaaa
a a and check c1

?= aaaaaaaaaaaaaaaaa
a a aa Com(r1, α(v− F(r1))−G(t1, r1)− e1)
a a a

Table 3.2: 5-pass identification protocol

It has got a soundness error of 1
2 + 1

2q
; this error is smaller than the one in the

previous protocol when p ≥ 4. As before, let us analyze the steps described in the
table 3.2:

• The Setup algorithm and the key-generation algorithm of this scheme are
identical to those of the scheme of the previous chapter, the 3-pass one.

• In step 1, the prover choose randomly r0, t0 and e0;

• In point 2, the prover calculate the quantity r1 following the split of the secret
s := r0 + r1; the second split will be done later, after the interaction with the
verifier.

• In steps 3 and 4, the prover calculate the Commitments c0 and c1 and send
them to the verifier;

• Once received (c0, c1), the verifier choose randomly the value α that sends to
the prover;

• The prover computes the values t1 and e1 through the formulas αr0 = t0 + t1
and αF(r0) = e0 + e1. Note that for more than one choice of α ∈ Fq, an
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impersonator cannot response both of verifier’s challenges Ch = 0 and Ch = 1
unless the impersonator has a solution s for v.
Then he send to the verifier the couple (t1, e1) just calculated.

• At this point the verifier choose the challenge Ch and sends it to the prover;

• According to what he received, the prover sends only one of this values, or r0
or r1.

• If Ch = 0, the check of the verifier consists only of using the inverse
formulas of those used by the prover; instead if Ch = 1, he has to check if
c1 = Com(r1, α(v− F(r1))−G(t1, r1)− e1): in fact

c1 = Com(r1,G(t0, r1) + e0)=10 Com(r1,G(αr0 − t1, r1) + e0)=11

Com(r1,G(αr0, r1)−G(t1, r1) + e0)=12

Com(r1, αG(r0, r1)−G(t1, r1) + e0)=13

Com(r1, α
1
F(r0 + r1)− F(r0)− F(r1)

2
−G(t1, r1) + e0)=

Com(r1, αF(r0 + r1)− αF(r0)− αF(r1)−G(t1, r1) + e0)=14

Com(r1, αv− e0 − e1 − αF(r1)−G(t1, r1) + e0)=

Com(r1, α
1
v− F(r1)

2
−G(t1, r1)− e1)

It’s easy to see that the verifier always accepts an interaction with the honest
prover: thus the 5-pass scheme has perfect correctness. The properties enjoyed by
the protocol are as follows:

Theorem 5 The 5-pass protocol is statistically zero knowledge when the commit-
ment scheme Com is statistically hiding.

10t0 = αr0 − t1
11Bilinearity of the function G
12Bilinearity of the function G
13Definition of G as the polar form of F.
14F(r0 + r1) = F(s) = v; moreover αF(r0) = e0 + e1
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Theorem 6 The 5-pass protocol is argument of knowledge for RF with knowledge
error 1

2 + 1
2q

when the commitment scheme Com is computationally binding.

Security and Efficiency

These identification schemes, both the 3-pass and the 5-pass one, are secure against
impersonation under active attack and passive attack, respectively; note that
requiring security against impersonation under active attack is stronger than under
passive attack.
Below are two tables comparing various parameters that identify the efficiency of
the identification schemes - 3 and 5 pass (such as bits occupied, memory required,
rounds needed and arithmetic operations performed) between Sakumoto’s [6] ones
and those of other authors, specified below:

a SD [18] [19] CLE [20] PP [21] IDS [6]
round 52 52 73 52

system parameter (bit) 122500 4608 28497 285600
public key (bit) 350 288 245 80
secret key (bit) 700 192 177 84

communication (bit) 59800 45517 100925 29640
arithmetic ops. (times/field) 224/ F2 216/ F257 222/ F127 226/ F2

permutations (times/size) 2/ S700 2/ S24 2/ S161, S177 NO
hash function (times) 4 4 8 4

best known key-recovery attack 287 284 > 274 280

a a a a a

Table 3.3: Comparison of 3-pass schemes on 80-bit security against key-recovery
attack when the impersonation probability is less than 2−30

The first column report the parameters of the SD identification scheme, based on
the Syndrome Decoding problem, elaborated by Stern in multiple works [18] [19];
in the second column, instead, there is the CLE identification scheme, based on
Constrained Linear Equations, always elaborated by Stern [20]. The third column
refers to the PP identification scheme, based on the Perceptrons Problem, written
by Pointcheval [21].
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a SD [18] [19] SD [23] PK [22] CLE [20] PP [21] IDS [6]

round 31 31 31 31 52 33

system parameter (bit) 122 500 32 768 4 608 4 608 28 497 259 200

public key (bit) 2450 512 384 288 245 120

secret key (bit) 4900 1024 203 192 177 180

communication (bit) 120 652 61 783 27 234 27 528 105 060 26 565

arithmetic ops. (times/field) 223/ F2 218/ F256 215/ F251 215/ F257 221/ F127 222/ F24

permutations (times/size) 8/ S700 2/ S128 3/ S48 4/ S24 2/ S161, S177 NO

hash function (times) 2 2 2 2 5 2

best known key-recovery attack 287 287 285 284 > 274 283

a a a a a a a

Table 3.4: Comparison of 5-pass schemes on 80-bit security against key-recovery
attack when the impersonation probability is less than 2−30

The first, fourth, fifth and sixth columns represent the author identification
schemes of the previous table; in the second column there is the IDS based on the
Syndrome Decoding problem drawn by Cayrel [23], instead in the third column
there is the IDS based on the Permuted Kernel (PK) problem, formulated by
Shamir [22].

Please note that all the values of both tables of the system parameter can be
reduced to 128 bit if a pseudo-random number generator is used. Finally, note that
the field permutations shows the number of times of computing permutations and
the size of the permutation, where Sn means a permutation over {1, . . . , n}.
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Chapter 4

MQ-Based Signatures

4.1 Introduction
This chapter discusses the possibility of making signatures based on the MQ
problem; therefore, the necessary definitions are given first and then the steps to
obtain a signature structure will be analyzed.

Definition 21 (Digital Signature Scheme) A digital signature scheme, in
short DSS, is a triplet of polynomial-time algorithms DSS = (KeyGen, Sign, Verify).

The algorithms that compose the DSS are the following:

§ KeyGen is the key generation algorithm and it’s a probabilistic algorithm that
on input 1k, where k is the security parameter you’ve to pass, outputs a key
pair (sk, pk) (that is the secret key and the public key);

§ Sign is the signing algorithm and it’s a possibly probabilistic algorithm that
takes in input the secret key sk and a message M , then outputs the signature
σ;

§ Verify is the so called verification algorithm and is a deterministic algorithm:
takes in input the public key pk, a message M and the signature σ, and
outputs a bit b where b = 1 indicates that the signature is accepted, while
b = 0 indicates the rejection.

The standard security notion for a digital signature scheme is the property of
the Existential Unforgeability under adaptive Chosen Message Attacks, in short
EU-CMA. To arrive at its definition, the construction is as follows:

✷ Let Expeu−cma
DSS(1k)(A) be the notation that identifies the following experiment:
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1. The challenger generates a valid pair of keys (sk, pk) and gives pk to the
attacker A;

2. The attacker may now repeatedly ask for signatures on chosen messages
(M1, . . . ,Mq) of its choosing, and receives the valid signatures (σ1, . . . , σq)
in response;

3. In the end of the experiment, the attacker must output a message and
signature M∗, σ∗ such that:

i. the message M∗ was not one of the messages requested in the previous
step

ii. the message/signature verifies correctly under the public key.

✷ In the experiment Expeu−cma
DSS(1k)(A), the success probability is denoted as

Succeu−cma
DSS(1k)(A) := P

è
Expeu−cma

DSS(1k)(A) = 1
é

✷ Let k ∈ N be the arbitrary security parameter and DSS a digital signature
scheme defined above: it’s call DSS EU-CMA-secure if ∀ Qs, t = poly(k),
the maximum success probability InSeceu−cma

1
DSS(1k); t, Qs

2
is negligible

in k, for all the possible adversaries A (running in a time less or equal than t);
in symbols

InSeceu−cma(DSS(1k); t, Qs) := max
A

Succeu−cma
DSS(1k)(A) = negl(k).

So finally a signature is called EU-CMA-secure if any PPT adversary has
only a success probability that is negligible.

At this point it’s possible analyze how to apply the Fiat–Shamir transform to
an identification scheme that respects certain characteristics: for this reason it is
define the (2n+ 1)-pass scheme and the soundness property.

Definition 22 ((2n+1)-pass IDS) Let k ∈ N: then the identification scheme
(KeyGen, P, V ) is a (2n+ 1)-pass one if it has got n challenge Cj with 0 < j ≤ n.

This type of scheme is called canonical (2n+ 1)-pass identification scheme if the
prover can be split into n+ 1 subroutines P = (P0, . . . ,Pn) and the verifier into
n+ 1 subroutines V = (ChS1, . . . ,ChSn,Verify) such that:

• P0(sk) computes the initial commitment com and sent it as first message.

• ∀ j ≤ n, ChSj computes the (j-th) challenge message chj ←R Cj, sampling a
random element from the j-th challenge space.
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• ∀ 0 < i ≤ n, Pi(sk, trans2i) computes the (i-th) response of the prover thanks
to the fact that it owns both the private key and trans2i, the transcript so far
containing the first 2i messages.

• Verify(pk, trans) outputs V’s final decision because he owns both the public
key and the total transcript.

It must be observed that this definition of IDS tells us that this scheme is a
public coin1 one, and as consequence the challenges are sampled using the uniform
distribution.

Definition 23 (Special n-soundness) A (2n+ 1)-pass IDS satisfies the special
soundness property if there exists a PPT algorithm E such that given any pair of
accepting transcripts (with ch1 /= ch2) E can recover sk.

In other words, this property says that given two transcripts that agree on
all messages but the last challenge and possibly the last response, one can
extract a valid secret key. The algorithm E is called the extractor, while
the two transcripts are trans = (com, ch1, resp1, . . . , respn−1, chn, respn) and
trans′ = (com, ch1, resp1, . . . , respn−1, ch′n, resp′n) (with chn /= ch′n).

At this point we observe that a (2n+ 1)-step scheme remains too generic: for this
reason we give the following theorem

Theorem 7 Every canonical (2n + 1)-pass IDS that fulfills special n-soundness
can be turned into a canonical 3-pass IDS, fulfilling special soundness.

Given an identification scheme identified as IDS = (KeyGen,P ,V), considering it
a canonical (2n+ 1)-pass IDS that enjoys the special n-soundness, then the 3-pass
scheme, identified as IDS ′ = (KeyGen,P ′,V ′), is too canonical and fulfills special
soundness if the quantities above are given as:

• ∀ j ∈ (0, n) (that is all the j but the last challenge generation algo-
rithm) it moves ChSj from V to P: in other words P ′ computes com′ =
(com, ch1, resp1, . . . , respn−1, chn−1) using P0, . . . ,Pn−1 and ChS1, . . . ,ChSn−1.

• After P ′ sent com′ to V ′;

1In a public coin protocol the verifier generates the challenge ch and sends it to the prover,
while in a private coin context the verifier generates ch, applies some transformation to it (i.e. in
the Graph Isomorphism Problem it’s the random permutation π) and sends it to prover. In the
private coin protocol, the prover does not see what has been generated by the verifier, but only
the output of a function that used it as input. Note that the Fiat–Shamir transform can only be
used in the case of public coins.
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• then V ′ replies with ch′1 ← ChSn(1k);

• P ′ computes resp′1 ← Pn(sk, trans2n) and sends it to V ′;

• V ′ verifies the transcript using Verify.
Graphically, the procedure can be summarized as follows:

Prover P ′ aaaa Verifier V ′

Pick the needed quantities to aaaaaaaa a a
calculate the n− 1 commitments aaaa a a

Calculate ci ← Com(·, ·) with i ∈ (0, n) a a
and let com′ := (c0, c1, . . . , cn−1) aaaaa com′

−→ a

a ch′
1

←− Pick ch′1 ∈ ChSn(1k) aaaaaaaaaa

Depending on the value of ch′1, aaaaaaa a a
Rsp′1 ← Pn(sk, trans2n) aaaaaaaaaaaaa Rsp′

1
−→ Check using Verify aaaaaaaaaaaaaaaa

a a a

Table 4.1: A 3-pass IDS converted from a (2n+ 1)-pass one

At this point it is natural to think of being able to convert all the schemes with
an arbitrary (odd) number of steps into 3-step schemes (which therefore enjoy
1-soundness); however, this is false since the extracting algorithms need more than
two transcriptions (they must form two pairs, one to agree on ch1 but not on ch2
and vice versa).
For this reason it holds the following
Theorem 8 The 5-pass identification scheme of the section 3.3 does not fulfill
special n-soundness if the computational MQ-problem is hard.
It is therefore necessary to analyze which are the safety parameters that affect this
type of schemes; looking at the literature on (2n+ 1)-pass IDSS, it is observed that
most of these are 5-steps, therefore we can restrict the field of analysis to only this
type, point out what is lost due to this restriction. It is considered a particular
type of 5-pass identification protocols, where the length of the two challenges is
restricted to q and 2:
Definition 24 (q2 - IDS) Let k ∈ N: a q2-Identification Scheme IDS(1k) is a
canonical 5-pass identification scheme where for the challenge spaces C1 and C2 it
holds that |C1| = q ∈ Z∗ and |C2| = 2.
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Furthermore, the probability that the commitment com takes a given value is
negligible (in k), where the probability is taken over the random choice of the
input and the used randomness.

Moreover, it’s said that a q2-Identification scheme IDS(1k) has a q2-extractor
if there exists a PPT algorithm E - the extractor - that, given a public key pk
and four transcripts, outputs a matching secret key sk for pk with non-negligible
success probability (in k).
The transcripts in this case are of the form trans(i) = (com, ch(i)

1 , resp(i)
1 , ch(i)

2 , resp(i)
2 )

with 0 ≤ i ≤ 4, and the challenges are such that

ch(1)
1 = ch(2)

1 /= ch(3)
1 = ch(4)

1

ch(1)
2 = ch(3)

2 /= ch(2)
2 = ch(4)

2

Obviously these transcripts are valid with respect to pk mentioned before. Note
that to facilitate the reading of the quantities, the colors have been inserted in the
superscripts and subscripts belonging to the same scheme.

At this point is possible to construct the signature, pointing out some issues; the
first thing to observe, for example, is that these schemes possess only a soundness
error that is constant (in the sense that does not depend on anyMQ’s parameters):
therefore it becomes necessary to create a construction which has a minor error
at the intermediate step, and this is achieved by making a polynomial-number of
repeated rounds (therefore transj = (comj, ch1,j, resp1,j, ch2,j, resp2,j) indicates the
j-th round).

Definition 25 (q2-signature) The q2-signature scheme q2-DSS(1k) is the
triplet of algorithms (KeyGen, Sign, Verify) given by the application of the Fiat–
Shamir transform on q2 - IDS.

Specifically, by analyzing the scheme we point out the salient points:

⋄ The q2-identification scheme IDS = (KeyGen, P, V ) has got soundness error
equal to ξ.

⋄ the challenge spaces of IDSr, aka Cr
1 and Cr

2 , have exponential size in k ∈
N (security parameter); note that IDSr = (KeyGen,Pr,Vr) is the parallel
composition of IDS, given by the r rounds such that ξr = negl(k).

⋄ The challenges chj here are substituted by the values that are given by the
hash functions H1 : {0,1}∗ → Cr

1 and H2 : {0,1}∗ → Cr
2 , where the input is

the concatenation of the message to be signed and the all 2(j−1)+1 messages
that have been exchanged so far (the signature just contains the messages sent
by P).
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⋄ The steps to construct the signature specifically are summarized in the table
below:

Inputs: (sk, pk)← KeyGen(1k)
Protocol:
I1) The prover P compute σ0 = Pr

0(sk) (and σ0 := com).
1.1) P compute h1 = H1(m,σ0);

I2) P compute σ1 = Pr
1(sk, σ0, h1) (and σ1 := resp1).

2.1) P compute h2 = H2(m,σ0, h1, σ1);

I3) P compute σ2 = Pr
2(sk, σ0, h1, σ1, h2) (and σ2 := resp2).

I4) The signature is σ = (σ0, σ1, σ2)← Sign(sk,m).

I5) Verify(pk,m, σ) use σ to computes the values h1, h2 as above and outputs
aaaaVr(pk, σ0, h1, σ1, h2, σ2)
a

Table 4.2: q2-DSS

4.2 Security and Efficiency
Let’s now analyze the security of the signature, considering that we assume as
hypothesis that the q2-IDS is HVZK2, posses the property of soundness (with
constant soundness error) and has got a q2-extractor;it has been shown that the
following hold:

Theorem 9 Let IDS(1k) be a q2-IDS (with k ∈ N as security parameter) that is
HVZK, achieves soundness with constant soundness error ξ and has a q2-extractor:
then q2 −DSS(1k), the q2-signature scheme explained in the table 4.2 above, is
existentially unforgeable under adaptive chosen message attacks.

In other words, this signature resists at the CMA3. Moreover, this signature is also
resistant at the KOA, in fact the following holds:

2As describe in the definition 8
3The Existentially Unforgivability is the ability to create a valid signature for a message chosen

by the attacker: the message itself is not important (nor that it has a sensible content) but it is
important to be able to create the couple (signature, message). It contrasts with selective forgery
and universal forgery, which can provide a valid signature for any type of message.
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Theorem 10 Let IDS(1k) (with k ∈ N) be a q2-IDS that achieves soundness
with constant soundness error ξ and has a q2-extractor: then q2−DSS(1k) (the
q2-signature) is unforgeable under key-only attacks.

Finally, it’s important to point out how this signature also respects EU-CMA
security, so for this reason the two following lemmas are given:

Lemma 1 (Forking lemma) Let DSS(1k) be a q2-signature scheme with security
parameter k ∈ N: if there exists a PPT adversary A that can output a valid signature
message pair (m,σ) with non-negligible success probability, given only the public key
as input, then - with non-negligible probability - rewinding A a polynomial-number
of times (with same randomness) but different oracles, outputs four valid signature
message pairs (m,σ = (σ0, σ

(i)
1 , σ

(i)
2 )) with 1 ≤ i ≤ 4, such that for the associated

hash values it holds that

h
(1)
1,j = h

(2)
1,j /= h

(3)
1,j = h

(4)
1,j , h

(1)
2,j = h

(3)
2,j /= h

(2)
2,j = h

(4)
2,j

for some round j ∈ {1, . . . , r}.

In other words, this lemma tell us that if an opponent can forge a signature with
non-negligible probability, then there is a non-negligible probability that the same
opponent with the same random tape could create a second forged signature in an
attack with a different random oracle; that is to say that if an adversary, on inputs
drawn from some distribution, produces an output that has some property with
non-negligible probability, then with non-negligible probability, if the adversary is
re-run on new inputs but with the same random tape, its second output will also
have the property.

Lemma 2 (Conversion of CMA into KOA) Let IDS(1k) be a q2-IDS (with
k ∈ N as security parameter) that is HVZK: then any PPT adversary B against
the EU-CMA security of q2−DSS(1k) can be turned into a key-only adversary A
with the properties described in Lemma 1.
A runs in polynomial-time and succeeds with essentially the same success probability
as B.

4.3 Signature of Chen
In the literature we can find some attempts to create and implement this signature,
only the most important are reported here, those of Chen, Hülsing, Rijneveld et al.
[7] and Feneuil [8].
In the work of Chen it has been used a 5-ass IDS in MQ(n,m,Fq), using as field
F31, that allow to have a smaller values for n and m (and of the rounds r too) with
respect to F2 for which n = m = 256 in order for it to be reached the 128 bits of
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post-quantum security. The authors called their signature MQDSS (Multivariate
Quadratic Digital Scheme Signature).

♣ Parameters.

MQDSS is parameterized by a security parameter k ∈ N, and m,n ∈ N such
that the security level of the MQ instance MQ(n,m,F2) ≥ k;
the length of the function F is equal to length(F) = m · n·(n+1)

2 . Moreover
are fixed the following:

– cryptographic hash functions, that are
H : {0, 1}∗ → {0, 1}k,
H1 : {0, 1}2k → Fr

31 and H2 : {0, 1}2k → {0, 1}r.
– The two string commitment functions, as
Com0 : Fn

31 × Fn
31 × Fm

31 → {0, 1}k and Com1 : Fn
31 × Fm

31 → {0, 1}k.
– The pseudo-random generators, that are
Gseed : {0,1}k → Flength(F)

31 for the seed,
Gsk : {0, 1}k → Fn

31 for the secret key,
Gc : {0, 1}2k → Fr·(2n+m)

31 for the challenges.

♢ Key generation.

Then a secret key of k bits is randomly sampled as sk ←R {0,1}k, and the
same is done for the seed as seed ←R {0, 1}k.
Furthermore is selected a (pseudo-random) F fromMQ(n,m,F31) by expand-
ing the seed. Observe that are generated length(F) = m·(n·(n+1)

2 +n) elements
for F, to use as coefficients for both the quadratic and the linear monomials;
for this aim it’s used the pseudo-random generator Gseed.
In order to compute the public key, the idea is to use the secret key as input
for F, but sk is a k-bit string (instead of a sequence of n elements from F31),
so it’s necessary to use it as a seed for a pseudo-random generator as well,
deriving skF31 = Gsk(sk); then it is possible to compute pk = F(skF31). The
secret key sk′ = (sk, seed) and the public key pk′ = (seed, pk) require 2 · k
and k + 5 ·m bits respectively, assuming 5 bits per F31 element.

♡ Signing.

• The signature algorithm takes as input a message m ∈ {0, 1}∗ and a secret
key sk′ = (sk, seed); it’s calculated also F = Gseed(seed).
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• Then, it’s derived a message-dependent random value R = H(sk||m) (||
is the string concatenation);
• using R, we compute the randomized message digest D = H(R||m). The

value R must be included in the signature, so that a verifier can derive
the same randomized digest.
• The core of the derived signature scheme essentially consists of iterations

of the IDS: let compute Gc(sk,D) to obtain the commitment vectors

(r(0,0), . . . , r(0,r), t(0,0), . . . , t(0,r), e(0,0), . . . , e(0,r)).

• Compute for each round i, the values of the string commitment functions
c(0,i) and c(1,i) (as defined in the IDS) as Com0 and Com1:

c(0,i) = Com0(r(0,i), t(0,i), e(0,i))

c(1,i) = Com1(r(1,i),G(t(0,i), r(1,i)) + e(0,i)).

Observe that it is not necessary to include all 2r commitments in the
transcript.
• On the other hand, calculate an hash over the concatenation of all com-

mitments
σ0 = H(c(0,0)||c(1,0)|| . . . ||c(0,r−1)||c(1,r−1))

.
• Then are derived the challenges αi ∈ F31 (for 0 ≤ i < r) by applying H1

to h1 = (D, σ0).
• With these values of αi, can be computed the following vectors

t(1,i) = αi · r(0,i) − t(0,i)

e(1,i) = αi · F(r(0,i))− e(0,i).

• Compute σ1 = (t(1,0)||e(1,0)|| . . . ||t(1,r−1)||e(1,r−1)).
• Calculate h2 by applying H2 to the tuple (D, σ0, h1, σ1); then use it as r

binary challenges ch2,i ∈ {0,1}.
• Let σ2 = (r(ch2,i,i), . . . , r(ch2,i,r−1), c1−ch2,i

, . . . , c1−ch2,r−1). Note that here
we also need to include the challenges c1−ch2,i

that the verifier cannot
recompute.
• The obtained signature is σ = (R, σ0, σ1, σ2);

at 5 bits per F31 element, the size of this signature is (2+r)·k+5·r·(2·n+m)
bits.
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♠ Verification.

• To check, let take as input the message m, the signature σ = (R, σ0, σ1, σ2)
and the public key pk′ = (seed, pk).
• As in the signing algorithm, through R and m it’s possible to compute D,

and derive F from seed using Gseed.
• As the signature contains σ0, it’s possible compose h1 and, consequentially,

the challenge values αi for all r rounds, by using H1.
• Similarly, the values ch2,i are computed by applying H2 to (D, σ0, h1, σ1).
• ∀ 0 ≤ i ≤ r, the verifier calculate ti and ei

4 from σ1, while compute ri

from σ2.
• At this point half of the commitments can be computed, in fact:

if ch2,i = 0, c(0,i) = Com0(ri, α · ri − ti, αF(ri)− ei),
if ch2,i = 1, c(1,i) = Com1(ri, α · (pk − F(ri))−G(ti, ri)− ei).
• At least the verifier extract the missing commitments c(1−ch2,i,i) from σ2,

and can computes

σ′0 = H(c(0,0)||c(1,0)|| . . . ||c(0,r−1)||c(1,r−1)).

The signature is valid if the verifier finds the equality σ′0 = σ0.

For the sake of completeness, here are reported the complete signature and verifi-
cation schemes, written in implementable pseudo-code:

4Note that ti = t(1,i) and ei = e(1,i), always.
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Figure 4.1: Signing algorithm of MQDSS, based on the Chen’s 5-pass identification
scheme
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Figure 4.2: Verification algorithm of MQDSS, based on the Chen’s 5-pass identi-
fication scheme
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4.3.1 Security of the signature
The authors [7] of signature security analysis provide only asymptotic statement:
while this does not suffice to make any statement about the security of a specific
parameter choice, it provides evidence that the general approach leads a secure
scheme.

Theorem 11 (Optimization) MQDSS is EU-CMA-secure in the random oracle
model (ROM in short), if:

• the search version of the MQ problem is intractable,

• the hash functions H, H1 and H2 are modeled as random oracles (RO),

• the commitment functions Com0 and Com1 are computationally binding, com-
putationally hiding, and the probability that their output takes a given value is
negligible in the security parameter,

• the pseudo-random generator Gseed is modeled as random oracle, and

• the pseudo-random generators, Gsk, and Gc have outputs computationally
indistinguishable from random.

Theorem 12 Let IDS(1k) (with k ∈ N as security parameter) be a q2-IDS that is
HVZK, achieves soundness with constant soundness error ξ and has a q2-extractor:
then opt-q2-DSS(1k), the optimized q2-signature scheme (derived as in the table
4.2) and the optimization explained in the theorem 11, is existentially unforgeable
under adaptive chosen message attacks.

4.4 Signature of Feneuil
As for the signature of Feneuil, the approach that was used is slightly different: it
is in fact based on the use of the Multiparty Computation in the Head, or in short
MPCitH. We know, from the chapter 2, that a zero-knowledge protocol combined
with the Fiat–Shamir transform gives us a digital signature scheme, taking away its
interactivity; while Chen [7] used as a Zero-Knowledge protocol one derived from
the identification scheme, Feneuil here decided to approach it with an MPC in the
version in the head, so that the final signature scheme could be more optimized.
For this reason, let’s rewrite some concepts, in order to fully understand the process
follow by the author [8].
The MPCitH is an MPC protocol in which there are N parties, that are denoted by
P1, . . . ,PN , that have the task of evaluate a function f in a secure and correct way
on a secret input x; in particular, must be respected the following characteristics:
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• the secret x is encoded as a sharing [[x]] and each Pi takes a share [[xi]] as
input;

• the function f outputs accept or reject;

• the views of t parties leak no information about the secret x.

Definition 26 Let [[x]] denote an additive sharing of x, i.e. a sharing of x consists
of random x1, . . . , xN ∈ Fq such that x = q

i∈[N ] xi, where Pi holds xi.

Keep in mind that all communications occurring between the different parties are
broadcast. In this context, the protocol is carried out as follows: the prover has to
build a random sharing [[x]] of x, to simulate locally (so in his/her head) all the
parties of the MPC protocol and then send the commitments to each party’s view
(aka party’s input share), and both the secret random tape and messages sent and
received to the verifier; finally the prover has to send the output shares [[f(x)]] of the
parties (which should correspond to accept). At this point the verifier randomly
chooses t parties and asks the prover to reveal their views: after receiving them,
the verifier checks that they are consistent with an honest execution of the MPC
protocol and with the commitments.
Observe that with only t views, the verifier do not possess any information on the
complete secret x and the probability on a successfully cheating is less than N−t

N
;

moreover the protocol takes as input an additive sharing of a candidate solution
of the studied problem, and eventually an additive sharing of auxiliary data. It is
assumed, of course, that the secret x is additive and also that each party performs
an arbitrary number of times the three actions Receiving randomness, Receiving
hint and Computing & broadcasting, here described:

• in the action of Receiving randomness the parties expect to receive a random
value ϵ from a randomness oracle OR.(when calling this oracle, all the parties
get the same random value ϵ); this means that the parties get only once a
common random value from the oracle.

• in the Receiving hint the parties can receive a sharing [[β]] (one per each of
them) from a hint oracle OH ;
observe that the hint β can depend on the witness w and the previous random
values sampled from OR.

• Finally in the action of Computing & broadcasting the parties can locally
compute [[α]] := [[ϕ(v)]] from their sharing [[v]] (note that ϕ is an F-linear
function), then broadcast all the shares [[α]]1, . . . , [[α]]N in order to reconstruct
α := ϕ(v) publicly. The function ϕ can depend on the previous random values
{ϵi}i from OR and on the previous broadcasted values.
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Note finally that is defined a false positive rate when the function f outputs
accept when in reality it shouldn’t: this happens with probability at most p,
considering the randomness of the oracle.

Applying the MPC-in-the-Head paradigm to this MPC protocol results in a 5-round
zero-knowledge proof of knowledge and, as repeatedly said, a signature scheme is
obtained after applying the Fiat–Shamir transform: in this particular case, the
forgery cost the signature is

costforge := min
r1,r2:

r1+r2=r

I
1qr

i=r1

1
r
i

2
pi(1− p)r−i

+N r2

J
(4.1)

where r is the number of the rounds (or parallel executions) and p = 2
qη − 1

q2η .

In the author’s [8] MPC protocol, it will be necessary to be able to verify the
correctness of the product between different matrices, for this reason, before dealing
with the scheme, we still give the definition of the protocol that deals with this
type of matrix verification:
Definition 27 The Matrix Multiplication Checking Protocol, denoted by Πη

MM , is a
protocol that checks if, given the three matrices X, Y and Z, is satisfied the relation
Z = X · Y .

Observe that the protocol Πη
MM , that we allow ourselves to indicate it with Πη

to lighten the notation (MM stands for Matrix Multiplication), depends on the
parameter η that is an arbitrary dimension involved in the decomposition of the
matrix.
Since the matrix multiplication protocol is a variant of the multiplication checking
protocol already presented and exposed by Baum and Nof [10], it is reported first,
and then the Feneuil’s integrative variant.

Let now define the operation that will be used in the next schemes:
⊛ The operation open([[x]]) means that, to reveal the secret x, each party broad-

casts its share xi; upon receiving xj from each Pj, Pi sets x = q
j∈[N ] xj.

⊛ The operation of the sum [[x]] + [[y]] means that given the two shares xi and yi

of x and y, each party Pi defines xi + yi as its share of the result.

⊛ The operation σ · [[x]] means that, given a sharing [[x]] and a public constant σ,
each party Pi defines σ · xi as its share of the product.

⊛ The operation σ + [[x]] means that, given a sharing [[x]] and a public constant
σ, P1 defines x1 + σ as its new share while other parties’ shares remain the
same.
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So according to Baum, in a MPC context is given in input the triplet ([[a]], [[b]], [[c]])
(where c = a · b) and the sharing [[x]] and [[y]], while the parties have to verify that
[[z]] = [[x]] · [[y]] = [[xy]]: then

1. the parties compute [[α]] = [[x]]− [[a]] and [[β]] = [[y]]− [[b]];

2. then each party runs open([[α]]) and open([[β]]) to obtain α and β;

3. the parties compute [[z]] = [[c]]− α · [[b]]− β · [[a]] + α · β.
With this protocol as introduction, the schema Πη is now given:

Inputs: Each party takes a share of the following sharings as inputs:
[[X]] where X ∈ Fm×p

q

[[Y ]] where Y ∈ Fp×n
q

[[Z]] where Z ∈ Fm×n
q

[[A]] where A has been uniformly sampled from Fp×η
q

[[C]] where C ∈ Fm×η
q satisfies C = XA.

a
Protocol:

a
1. The parties get a random Σ ∈ Fn×η

q ;
2. The parties locally set [[D]] = [[Y ]]Σ + [[A]];
3. The parties broadcast [[D]] to obtain D ∈ Fp×η

q ;
4. The parties locally set [[V ]] = [[X]]D − [[C]]− [[Z]]Σ;
5. The parties open [[V ]] to obtain V ∈ Fm×η

q ;
6. The parties outputs accept if V = 0 and reject otherwise.
a

Table 4.3: MPC protocol Πη

Note that the check is done on V = 0 because V = XD−C−ZΣ = XY Σ +XA−
XA−XY Σ = (XY −XY )Σ, in a lighter notation.
The authors [10] also give demonstration of the following lemma on the cheating
probability:
Lemma 3 If Z = X · Y and if C are genuinely computed, then Πη always outputs
accept; if Z /= X · Y , then Πη outputs accept with probability at most 1

qη .

In this scenario, it is necessary to give the definition of Multivariate Quadratic
Problem again, in order to be consistent with the notation of Feneuil [8]:

MQ problem
Let m ∈ N∗ for which there are (Ai)i∈[m], (bi)i∈[m], x and y be such that:
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⋇ x is uniformly sampled from Fn
q , where n ∈ N∗ and Fq is a finite field with q

elements;

⋇ ∀i ∈ [m], Ai is uniformly sampled from Fn×n
q ;

⋇ ∀i ∈ [m], bi is uniformly sampled from Fn
q

⋇ ∀i ∈ [m], yi is defined as yi := xTAix+ bT
i x.

From ((Ai)i∈[m], (bi)i∈[m], y), find x.

The protocol based on this hard problem sees the prover as the one that has to
convince the verifier that knows x ∈ Fn

q such that
y1 = xTA1x+ bT

1 x
...
ym = xTAmx+ bT

mx

(4.2)

Let now give the MPC protocol, MQ based:

Public values: The matrices A1, . . . , Am ∈ Fn×n
q ,

the vectors b1, . . . , bm ∈ Fn
q ,

the outputs y1, . . . , ym ∈ Fq.
Inputs: Each party takes a share of the following sharings as inputs:

[[x]] where x ∈ Fn
q

[[a]] where a has been uniformly sampled from Fn
qη

[[c]] where c ∈ Fqη satisfies c = −⟨a, x⟩.
a
Protocol:

a
1. The parties get a random γ1, . . . , γm ∈ Fqη and a random ε ∈ Fqη ;
2. The parties locally set [[z]] = qm

i=1 γi(yi − bT
i [[x]]);

3. The parties locally set [[w]] = (qm
i=1 γiAi)[[x]];

4. The parties locally set [[α]] = ε · [[w]] + [[a]];
5. The parties open α ∈ Fn

qη ;
6. The parties locally set [[v]] = ε · [[z]]− ⟨α, [[x]]⟩ − [[c]];
7. The parties open v ∈ Fqη ;
8. The parties outputs accept if v = 0 and reject otherwise.
a

Table 4.4: Feneuil’s MPC protocol
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The main idea under this passages is that instead of checking the m relationships
of the system 4.2 separately, it’s possible to group them in a linear combination
where the coefficients γ1, . . . , γm are uniformly sampled (in Fqη); in this way the
new check to be performed will be

mØ
i=1

γi(yi − xTAix− bT
i x) = 0.

It is possible to make some algebraic steps, to remodel the equation: in fact
mØ

i=1
γi(yi − xTAix− bT

i x) = 0 =⇒
mØ

i=1
γi(yi − bT

i x) =
mØ

i=1
γi(xTAix)

For the second term of the equation it is possible to write
mØ

i=1
γi(xTAix) = xT

1 mØ
i=1

γiAi

2
x = ⟨x,w⟩

where w :=
1qm

i=1 γiAi

2
x.

In this way the initial check became

z = ⟨x,w⟩

where it has been defined the quantity z := qm
i=1 γi(yi − bT

i x).

Given the MPC in the head protocol, I explicitly report Feneuil’s signature and
verification scheme, together with the keys generation algorithms:
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Figure 4.3: Algorithms for the generation, the compression and the decompression
of the public and secret keys in the MQ problem.
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Figure 4.4: Signing algorithm ofMQ in the head, based on the Feneuil’s protocol.
Please note that the matrices (A1, . . . ,Am) are in Fn×n

q , the vectors(b1, . . . ,bm) are in Fn
q , the

outputs (y1, . . . , ym) are in Fq and x is in Fn
q ; msg is in {0,1}∗
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Figure 4.5: Verification algorithm of MQ in the head, based on the Feneuil’s
protocol.

4.4.1 Efficiency
It has been demonstrated that this complete MPC protocol posses a cheating
probability of

1
qη

+
1
1− 1

qη

2 1
qη

= 2
qη
− 1
q2η

Moreover, the soundness error of the resulting protocol is

ε := 1
N

+
1
1− 1

N

21 2
qη
− 1
q2η

2
.

As before, if the protocol is repeated r times, the soundness error goes down to εr;
note that to obtain a soundness error of λ bits, it’s required to impose r = ⌈ −λ

log2 ε
⌉.
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Once applied the Fiat–Shamir transform, the resulting signature scheme in this
case will have the security cost seen in 4.1, while the communication cost is

4λ+ r ·
1
n · log2(q) + n · η · log2(q) + η · log2(q) + λ · log2 N + 2λ

2
where λ is the security level, η is a scheme parameter and r is computed such that
the soundness error is of λ bits in the interactive case and such that costforge is of
λ bits in the non-interactive case.

4.5 Signature attacks
In post-quantum cryptography, theMQ problem constitutes the elementary unit of
the Multivariate public key cryptosystems, in short called MPKCs; the cryptosystems
of this type, used for signatures, are divided into two categories: the trapdoor
multivariate signature schemes, built upon a trapdoor multivariate polynomial
map, and the one-way multivariate signature schemes, based on IDSs like the ones
analysed before, for which security is directly based on the difficulty of the MQ
problem itself.
We know that the MQ problem is known to be NP-complete and appears to be
hard on average for a wide range of parameters, but despite its obvious difficulty,
there are a considerable number of algorithms that can solve theMQ problem. So
what degree of security do cryptographic systems that are based on this problem
possess? Fortunately, the complexity of these solving algorithms depends on several
values: hence depending on the variation of these values, let’s now analyze some of
these algorithms.
Note that the following algorithms will rely only on find a possible solution (if
there is any) of the problem, also known as the search version of the problem.
Please also note that will be discussed two types of algorithms, depending on
whether the system is determined or not.

Definition 28 A system of equations is said to be determined if it has as many
unknowns as equations, so referring to the notation of the system 3.1, it has got
m = n. If instead n > m, the system is called underdetermined.

In the case of an underdetermined system, one can either fall back to a determined
system, or use the appropriate algorithms designed considering the difference
between the dimension. Observe that it is possible to transform an underdetermined
system into a determined one, so that a solution of the former can be found from
one of the latter; two ways usually used are:

• using the algorithm call fixing variables, which indeed involves fixing n−m
unknowns to obtain a m×m system;
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• using the algorithm call Thomae–Wolf and Improvements, which involves
fixing a a number of equations such that an equivalent system of m− ⌊α⌋+ a
unknowns and equations is obtained.

As for the specific algorithms for underdetermined systems, we have:

KPG Kipnis, Patarin, and Goubin, the authors of this algorithm, suggest this
procedure that works when the dimensions respect the inequality n > m(m+1):
in particular, the goal is to solve the system

mØ
i=1

ai,1y
2
i +

mØ
i=1

yiLi,1(ym+1, . . . , yn) +Q1(ym+1, . . . , yn) = 0

...
mØ

i=1
ai,my

2
i +

mØ
i=1

yiLi,m(ym+1, . . . , yn) +Qm(ym+1, . . . , yn) = 0

where (y1, . . . , yn) = S(x1, . . . , xn) with S variable change matrix - non singu-
lar - (that is to find), Qi(·) quadratic maps and Li,j(·) linear maps.
The time complexity is O(mnω), where ω denotes the exponent in the com-
plexity of matrix multiplication, or in other words there is an algorithm that
multiplies two n× n matrices with O(nω) operations. The space complexity,
instead, is given by O(mn2).

MHT This algorithm, suggested by Miura, Hashimoto, and Takagi, works instead
for n ≥ m(m+3)

2 ; its time complexity isO(nωm) if q even
O(2mnωm) if q odd

where qis the characteristic of the field; moreover the space complexity is
dominated by the memory required to store the initial set of polynomials.
It has been proposed a generalization of this algorithm, by Huang and Bao,
that works for n ≥ m(m+1)

2 and has time complexity asO(q(log q)2 · nωm) if q even
O(q(log q)2 · 2mnωm) if q odd

CGMT-A Courtois, Goubin, Meier and Tacier proposed their “Algorithm A”, which is
so structured:
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⊞ ∀j ∈ [1,m], the polynomials that characterize the underlying system
are rewritten as fj(x1, . . . , xn) = gj(x1, . . . , xk) + hj(xk+1, . . . , xn) +qk

i=1 Li,j(xk+1, . . . , xn)xi, where Li,j are linear maps randomly chosen
in Fq;

⊞ ∀j ∈ [1, 2k] let us rewrite also g′j(x1, . . . , xn) = gj(x1, . . . , xk) +qk
i=1 Li,j(xk+1, . . . , xn)xi : then one has to compute the qk vectors of

the set G = {−(g′1(a), . . . , g′2k(a)) : a ∈ Fk
q} along with its corresponding

preimage a.
⊞ Finally, one has to find the vector b ∈ Fn−k

q such that {Li,j(b) =
Li,j(xk+1, . . . , xn)}k,2k

i,j=0 ∧ (h1(b), . . . , h2k(b)) ∈ G.

If k = min[m
2 ,
ò

n
2 −

ñ
n
2 ], then the algorithm has got the time complexity

equal to O
1
2k
1

n−k
2

2
qm−k

2
, while the space complexity is O(2kqk).

Another way to search the solutions of the MQ problem is to use the Gröbner
basis algorithms, that are based on the formulation of an appropriate Gröbner
basis, knowing that a solution to the MQ problem f1 = · · · = fm = 0 can be
efficiently extracted from a Gröbner basis Glex, in the lexicographic order, of the
ideal I = ⟨f1, . . . , fm⟩ (for a complete definition see A.4). Note that it’s assumed
that the sequence of polynomials is either regular or semi-regular, for this reason
are given the following:

Definition 29 The degree of regularity of a homogeneous ideal I ⊆ Fq[x] is the
minimum integer d, if any, such that dim(Id) = dim(Rd), where Id = Rd ∩ I, Rd

is the set of elements in R of degree d.

Definition 30 A homogeneous sequence F ∈ Fq[x]m is called semi-regular if

Ø
d≥0

dim(Rd/Id)zd =
è(1− zq)n

(1− z)n

1 1− z2

1− z2q

2mé
+

where [H(z)]+ means that the series H(z) is cut from the first non-positive co-
efficient. An affine sequence G = (g1, . . . , gm) is semi-regular if the sequence
(æg1, . . . , ægm) does, where ågi) is the homogeneous part of gi of highest degree.

Through this type of procedure are given some algorithms such as F4 and F5, in
which the monomial order in the underlying polynomial ring is the graded reverse
lexicographic (grevlex) monomial order, or the algorithm given by Bardet, Faugère,
and Salvy, used for homogeneous ideal of polynomials in the grevlex order.
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One more algorithm is the one used for the exhaustive search, denoted by FES
(aka Fast Exhaustive Search): this performs an exhaustive search over Fn

2 by
enumerating the solution space with Gray codes5. This algorithm posses a
time complexity of 4 log(n)

1
2n

nsol+1

2
, where nsol is the number of solutions of

a given MQ instance, while the space complexity is O(n2m); the extension
in a field Fq (that use the q-ary Gray codes) has (time) complexity O

1
logq(n) qn

nsol+1 .

The last two categories of algorithms are hybrid algorithms, which combine a
partial exhaustive search with other procedures, and probabilistic algorithms,
which asymptotically outperform the FES.
As for the part of the hybrid ones, there is, for example, the algorithm so called
BooleanSolve, that give an estimation of the number of the variables iteratively
and check the consistency of the resulting problem: this verification is done by
checking the consistency of the system made up by the original one but with
n− k variables, by using the Macaulay matrix6 at large enough degree; its time
complexity is qk · { åO11n−k+dwit

dwit

2ω2
where dwit = deg(

è
(1−zq)n−k

(1−z)n−k+1

1
1−z2

1−z2q

2mé
+

) + 1.
Yet another hybrid algorithm is guess a set of the k variables and then solve the
resulting system by applying one of the algorithm F4 or F5: the time complexity
is qk · O

11
n−k+dreg

dreg

2ω
+ nn3

sol

2
. Finally there is the Crossbread algorithm, which

is very similar to the BooleanSolve cited, but with more detailed complexity
analysis.
For the probabilistic algorithm, instead, are reported just the Lokshtanov et al.
algorithm, the very first introduced for this scope: its goal is to verify the consistency
(i.e., determining whether or not the system has a solution) and computing a solution
can be done iteratively several times. In the worst case, the algorithm solves a
square (m = n) polynomial the time complexity is åO(qδn), for some δ < 1 depending
on q and m = n. Some variations of this algorithm have been made over time, such
as Björklund’s or Dinur’s, but the complexity remains similar.

5The Gray code is an ordering of the binary numeral system such that two successive values
differ in only one bit, as for example the numbers 1 and 2 - that in binary would normally be 001
and 010 - while in Gray code are represented as 001 and 011.

6See A.5 for additional material.
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Additional material

A.1 Dirac notation
In the field of quantum information, the fundamental unit is the quantum bit or
qubit.The qubit is a vector in a complex vector space, and its two fundamental
states, |0⟩ are chosen to form an orthonormal basis of the vector space. The
superposition of the states is possible by linear combination linear of the vectors of
the basis. A generic vector in this space can be written in the form

|ψ⟩ = a|0⟩+ b|1⟩, |a|2 + |b|2 = 1

The most commonly used notation is known as Bra-Ket or notation of Dirac, named
after the scientist Paul Dirac who introduced it in his time. This notation makes it
possible to describe vectors in a way that is more compact and easily handled from
a computational point of view:

|0⟩ =
C
1
0

D
|1⟩ =

C
0
1

D

Let us then consider a generic vector written using the Dirac notation:

v =


v0
v1
...
vn

 = |v⟩

The column vector |v⟩ is referred to as ket-v; the dual vector of ⟨v| is called bra-v
and is written using the Dirac notation:

⟨v| = vT = [v0 v1 . . . vn]
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where v is the complex conjugate of v.
Dirac notation is a convenient way to describe vectors in Hilbert space H, which
is the vector space used for the quantum computation. The inner product of two
vectors in a Hilbert space is denoted using Dirac notation by ⟨u|v⟩ and is therefore
calculated as the product of the vectors v and uT (which is the dual vector of u):

⟨u|v⟩ = uT v = [u0 u1 . . . un]


v0
v1
...
vn

 = u0 · v0 + u1 · v1 + · · ·+ un · vn

Two column vectors |u⟩ and |v⟩ of lengths m and n produce a column tensor vector
of length m · n:

|u⟩|v⟩ = |uv⟩ =


u0
u1
...
um

⊗

v0
v1
...
vn

 =



u0 · v0
u0 · v1

...
u0 · vn

u1 · v0
...

um−1 · vn

um · v0
...

um · vn



Tensor products are important because they describe the interaction between two
quantum systems. The vector space describing one quantum system multiplied
with a tensor product with the vector space describing another system quantum
system is the vector space consisting of linear combinations of all the vectors in
the two vector spaces.

A.2 Group Homeomorphism
In topology, a homeomorphism (known as isomorphism or bi-continuous func-
tion too) is a bijective and continuous function between topological spaces that
has a continuous inverse function. In particular, it’s given as definition the following:

A function f : X → Y between two topological spaces is a homeomorphism if:

✸ f is a bijective function;
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✸ f is continuous;

✸ the inverse function f−1 is continuous.

Homeomorphisms are the isomorphisms in the category of topological spaces: for
this reason, the composition of two homeomorphisms is again an homeomorphism,
and the set of all self-homeomorphisms X → X forms the group called the
homeomorphism group of X.

For our purpose, the two following functions are given as an example:

◦ The modular exponentiation x→ gx mod p;
In fact if s = r0 + r1, then gs = (gr0)(gr1).

◦ The linear function x→Mx;
In fact if s = r0 + r1, then Ms = Mr0 +Mr1.
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A.3 Preimage attack
A preimage attack on a hash functions tries to find a message that has a specific
hash value, in fact the hash function should resist attacks on its preimage (that is
the set of possible inputs). There are two types of preimage resistance:

⋆ The preimage resistance tells that for all pre-specified outputs, it has to be
computationally infeasible to find any input that hashes to that output;
for example given y, it is difficult to find an x such that h(x) = y.

⋆ The second-preimage resistance tells instead that for a specified input, it
has to be computationally infeasible to find another input which produces the
same output;
for example given x, it is difficult to find a second input x′ /= x such that
h(x) = h(x′).

The second-preimage resistance can be confronted with the collision resistance,
for which it has to be computationally infeasible to find any two distinct inputs
x, x′ that hash to the same output (i.e. such that h(x) = h(x′). Note that the
collision resistance implies the second-preimage resistance, but does not guarantee
preimage resistance; in reverse, a second-preimage attack implies a collision attack.

A.4 Gröbner basis
Given a monomial order < on the polynomial ring R, a subset G of the ideal
I ⊂ R is said to be a Gröbner basis for I with respect to < if it satisfies one of the
following properties:

⅁ the ideal given by the principal terms of the polynomials in the ideal I is itself
generated by the principal terms of the basis G;

⅁ the principal term of each polynomial in I is divisible by the principal term of
some polynomial in the base G;

⅁ the multivariate division of each polynomial in the polynomial ring R by G
returns a unique remainder;

⅁ multivariate division of each polynomial in the ideal I by G returns 0.

Please note that all these properties are equivalent.
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A.5 Macaulay matrix
The Macaulay matrix can be viewed as generalisation of the Sylvester Matrix,
which is defined for two univariate polynomials:

Definition 31 The Sylvester matrix associated to two polynomials of degree m and
n is the (n+m)× (n+m) matrix constructed following given steps.

Let p the and q two non-zero polynomials as p(z) = p0 + p1z + p2z
2 + · · ·+ pmz

m

and q(z) = q0 + q1z + q2z
2 + · · ·+ qnz

n, then the steps for the construction of the
matrix are:

• if n > 0, the first row is
1
pm pm−1 · · · p1 p0 0 · · · 0

2
;

• the second row is the first row, shifted one column to the right (the first
element of the row is zero);

• the following n− 2 rows are obtained the same way, shifting the coefficients
one column to the right each time and setting the other entries in the row to
be 0;

• if m > 0 the (n+ 1)-th row is
1
qn qn−1 · · · q1 q0 0 · · · 0

2
;

• the following rows are obtained the same way as before.

Explicitly, if n = 3 and m = 4, the corresponding Sylvester matrix is The Maculay

Figure A.1: A Sylvester matrix

matrix is therefore the result of the introduction of multivariate resultants with the
goal of finding an explicit solution to solve a systems of polynomial equations, by
eliminating variables; the resultant of the system is the determinant of the matrix,
obtained from the coefficients of the polynomials.
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A.6 Finite fields
This section has been made to explain how calculations are developed in B, where
arithmetic other than standard is used. Throughout the body of the thesis, every
protocol and every calculation was done on a finite field, which is better analysed
and explained here.

A field is defined as a commutative ring in which each of its non-zero elements
possesses an inverse; this inverse is shown to be unique. A finite field is a field that
contains a finite number of elements; such fields are completely classified:

• every finite field has pn elements;

• For every prime number p and natural n ≥ 1, there is only one finite field
with pn elements, barring isomorphism.

This is usually denoted by Fpn or by GF(pn), from Galois Field.
The finite field presents a different structure depending on whether n is 1, and thus
the field has precisely p elements, or whether n is greater than 1.

Fpn with n = 1

When the finite field has exactly p elements (so n = 1), its operations are defined
by modular arithmetic modulo p. Hence Fp is the field of rest classes modulo p,
and is also denoted by Z/pZ. The underlying group in this case is a cyclic group
of order p.

Fpn with n > 1

When n > 1, on the other hand, modular arithmetic modulo p does not yield a
field since Fpn is not isomorphic to the ring of rest classes Z/pnZ (we know that if
p is not a prime, Zp is not a field).
Given a prime power pn with p prime and n > 1, the field GF(pn) may be
explicitly constructed choosing an irreducible polynomial P in GF(p)[X] of de-
gree n (such an irreducible polynomial always exists). Then the quotient ring
GF(q) = GF(p)[X]/(P ) of the polynomial ring GF(p)[X] by the ideal generated by
P is a field of order q. More explicitly, the elements of GF(q) are the polynomials
over GF(p) whose degree is strictly less than n.
In particular, the operations of the field are then defined by means of polynomial
arithmetic and each element of the field is seen as a polynomial whose coefficients
belong to Z/pZ and whose maximum degree is n−1. The operations are performed
as follows: the arithmetic on the coefficients is a modular arithmetic modulo p and
at the end of each operation the resulting polynomial is divided by a particular
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irreducible polynomial in Zp of degree n and the remainder is taken. Please note
that to verify the irreducibility of a polynomial, you can use the Berlekamp algo-
rithm or the Rabin’s irreducibility test.
It is well known that irreducible polynomials are not unique, which is why by
convention Conway polynomials, those of the form Xn + Xk + 1 where k is the
minimum possible, are used to perform such operations. They ensure a certain
compatibility between the representation of a field and the representations of its
sub-fields. In particular, Conway polynomials were defined with the purpose to
provide a standard notation for elements in a finite field GFpn with pn elements.
Their are defined as follows:

Definition 32 Let g(X) = gnX
n + · · · + g0 and h(X) = hnX

n + · · · + h0; then
we define g < h iff there is an index k with gi = hi for i > k and (−1)n−kgk <
(−1)n−khk. The Conway polynomial fp,n(X) for GFpn is the smallest polynomial
of degree n with respect to this ordering such that:

• fp,n(X) is monic;

• fp,n(X) is primitive aka any zero is a generator of the (cyclic) multiplicative
group of GFpn;

• for each proper divisor m of n we have that fp,m(X
pn−1
pm−1 ) = 0 mod fp,n(X)

(that is, the pn−1
pm−1-th power of a zero of fp,n(X) is a zero of fp,m(X))

The existence of these polynomials can be shown with the Chinese Remainder
Theorem.
Since it is expensive to calculate the Conway polynomials explicitly, there are tables
in which they are tabulated as n and p vary.
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Figure A.2: Table of the Conway polynomials with p = 2.
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Figure A.3: Table of the Conway polynomials with p = 3.
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Figure A.4: Table of the Conway polynomials with p = 5.

For the sake of explanation, here is an example in which this is explicitly calculated:
let’s verify that, in GF25 , 7 · 15 = 8.
7 = x2 + x+ 1
15 = x3 + x2 + x+ 1
f2,5 = x5 + x2 + 1
(x2 + x+ 1) · (x3 + x2 + x+ 1) = x5 + 2x4 + 3x3 + 3x2 + 2x+ 1 = x5 + x3 + x2 + 1
(x5 + x3 + x2 + 1)/(x5 + x2 + 1) = 1 r = x3

In fact, 8 = x3.
Please note that also x5 +x3 +1 is an irreducible polynomial in GF25 (demonstrable
with Berlekamp), but we used the Conway one, with the minor total degree.
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Code

B.1 Chen
Here are given the codes written in Python that implement, in a simplistic but
functional manner, the key generation - KeyGen(), the signing scheme and the
verification scheme - MQDSS(sk, pk, A, b, msg) and Verif(σ, msg, pk) - based on
the Chen’s Identification Scheme.
Please note the following implementations are valid only for q prime of the field Fq,
since is exploited the modular arithmetic.
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KeyGen()
1 # KeyGen ()
2

3 import random
4 import numpy as np
5

6 paramSec = 128
7 n = 10
8 m = n+1
9 q = 13 #Only a prime number

10 seed_pk = random . getrandbits ( paramSec )
11 seed_sk = random . getrandbits ( paramSec )
12 seed_pk = seed_pk % (2**32 - 1)
13 seed_sk = seed_sk % (2**32 - 1)
14

15 np. random .seed( seed_sk )
16 sk = np. random . randint (q, size =(n, 1))
17

18 np. random .seed( seed_pk )
19 pk1 = np.zeros ((m, 1))
20 A = np.zeros ((m, n, n))
21 b = np.zeros ((m, n, 1))
22

23 for i in range(m):
24 A[i] = np. random . randint (q, size =(n, n))
25 b[i] = np.floor(q * np. random .rand(n, 1))
26 pk1[i] = sk.T @ A[i] @ sk + b[i].T @ sk
27

28 pk = pk1 % q
29

30 np.savez(" chiavi .npz", sk=sk , pk=pk , n=n, m=m, q=q,
31 A=A, b=b, paramSec = paramSec )
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Figure B.1: Example of algorithm KeyGen() output, with n = 10, q = 13
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MQDSS(sk, pk, A, b, msg)
1 #MQDSS(sk , pk , A, b, msg)
2

3 import numpy as np
4 import hashlib
5 from hashlib import shake_128
6 data = np.load(" chiavi .npz")
7

8 sk = data[’sk’]
9 pk = data[’pk’]

10 q = int(data[’q’])
11 n = int(data[’n’])
12 m = int(data[’m’])
13 A = data[’A’]
14 b = data[’b’]
15 s = sk
16 v = pk
17 d=20
18 M_esteso = "Fiat -- Shamir transform " # Message
19

20 tau = 3
21 sigma0 = []
22 sigma2_r0 = []
23 sigma2_r1 = []
24 vett_t0 = []
25 vett_e0 = []
26 F_r0 = []
27 for t in range(tau):
28 np. random .seed(t)
29 r0 = np. random . randint (q, size =(n, 1))
30 np. random .seed(t+1)
31 t0 = np. random . randint (q, size =(n, 1))
32 np. random .seed(t+2)
33 e0 = np. random . randint (q, size =(m, 1))
34

35 r1 = ((s - r0) % q). astype (’int ’)
36

37 concatenazione = np. concatenate ((r0 , t0 , e0),
38 axis =0)
39 concatenazione_stringa = ’’
40 for i in range(len( concatenazione .T[0])):
41 concatenazione_stringa += str( concatenazione .T[0][i])
42 arg = bytes( concatenazione_stringa ,’utf -8’)
43 c0 = hashlib . sha3_256 (arg). hexdigest ()
44

45 sigma0 . append (c0)
46 sigma2_r0 . append (r0)
47 sigma2_r1 . append (r1)
48 vett_t0 . append (t0)
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49 vett_e0 . append (e0)
50

51 G_t0_r1 = np.zeros ((m, 1), dtype=int)
52 Fr0 = np.zeros ((m, 1), dtype=int) #Used in First Response
53 for i in range(m):
54 G_t0_r1 [i] = (t0.T @ A[i] @ r1 + r1.T @ A[i] @ t0)%q
55 Fr0[i] = (r0.T @ A[i] @ r0 + b[i].T @ r0 ) % q
56

57 F_r0. append (Fr0)
58

59 concatenazione2 = np. concatenate ((r1 ,
60 np.mod( G_t0_r1 + e0 , q)), axis =0)
61 concatenazione_stringa2 = ’’
62 for i in range(len( concatenazione2 .T[0])):
63 concatenazione_stringa2 += str( concatenazione2 .T[0][i])
64 arg2 = bytes( concatenazione_stringa2 ,’utf -8’)
65 c1 = hashlib . sha3_256 (arg2). hexdigest ()
66

67 sigma0 . append (c1)
68

69

70 #First challenge
71 strSigma0 =’’
72 for i in range(len( sigma0 )):
73 strSigma0 += sigma0 [i]
74

75 h1 = int( shake_128 (( M_esteso + strSigma0 )
76 . encode ()). hexdigest (d), 16) % q
77

78

79 #First response
80 sigma1_hash = []
81 sigma1 = np.zeros ((m ,2* tau), dtype=’int ’)
82 for t in range(tau):
83 t1 = np.mod(h1 * sigma2_r0 [t] - vett_t0 [t], q)
84 e1 = np.mod(h1 * F_r0[t] - vett_e0 [t], q)
85 # Conversione per fare hash
86 t1_0=t1. flatten (). astype (int). tolist ()
87 t1_1 = ’’.join(map(str , t1_0))
88 sigma1_hash . append (t1_1)
89

90 e1_0=e1. flatten (). astype (int). tolist ()
91 e1_1 = ’’.join(map(str , e1_0))
92 sigma1_hash . append (e1_1)
93

94 for i in range(n):
95 sigma1 [i ,2*t] = t1[i]. item ()
96 for j in range(len(e1)):
97 sigma1 [j ,2*t+1] = e1[j]
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98

99 strSigma1 =’’
100 for i in range(len( sigma1_hash )):
101 strSigma1 += sigma1_hash [i]
102

103

104 # Second challenge
105 h2 = int( shake_128 (( M_esteso + strSigma0 + str(h1)
106 + strSigma1 ). encode ()). hexdigest (d), 16) % 2
107

108 # Second response
109 if h2 == 0:
110 sigma2 = sigma2_r0
111 else:
112 sigma2 = sigma2_r1
113

114 np.savez(" pubblico .npz", sigma0 =sigma0 , sigma1 =sigma1 ,
115 sigma2 =sigma2 , v=v, A=A, b=b, M_esteso =M_esteso ,
116 d=d, q=q, m=m, n=n, tau=tau)

Table B.1: This implementation of the Signature Scheme algorithm follows the
description made in the pseudo-code in table 4.1
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Figure B.2: Example of algorithm MQDSS(sk, pk, A, b, msg) output

Please note that in line 55 I’ve used the following properties:

G(x, y) = F (x, y)− F (x)− F (y) =1

(x+ y)TA(x+ y) + bT (x+ y)− xTAx− bTx− yTAy − bTy = yTAx+ xTAy.

The same will occur in the next code, in line 98.

1Knowing F (x) = xTAx+ bTx
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Verif(σ, msg, pk)
1 # Verif_MQDSS (sigma , msg , pk)
2

3 import hashlib
4 import numpy as np
5 from hashlib import shake_128
6

7 # Load data of the file
8 data = np.load(" pubblico .npz")
9 sigma0 = data[’sigma0 ’]

10 sigma1 = data[’sigma1 ’]
11 sigma2 = data[’sigma2 ’]
12 v = data[’v’]
13 A = data[’A’]
14 b = data[’b’]
15 M_esteso = data[’M_esteso ’]. item ()
16 q = int(data[’q’])
17 n = int(data[’n’])
18 m = int(data[’m’])
19 d = int(data[’d’])
20 tau = int(data[’tau ’])
21

22

23 #Find h1
24 strSigma0 =’’
25 for i in range(len( sigma0 )):
26 strSigma0 += sigma0 [i]
27

28 h1_v = int( shake_128 (( M_esteso + strSigma0 )
29 . encode ()). hexdigest (d), 16) % q
30

31 # Recalculate the values of the vectors t1 and e1
32 sigma1_t1 = np.zeros ((n,tau), dtype=’int ’)
33 sigma1_e1 = np.zeros ((m,tau), dtype=’int ’)
34

35 for i in range(tau):
36 for j in range(n):
37 sigma1_t1 [j,i] = sigma1 [j ,2*i]
38

39 for i in range(tau):
40 sigma1_e1 [:,i] = sigma1 [: ,2*i+1]
41

42

43 #Find h2
44 sigma1_per_str =[]
45 for i in range(tau):
46

47 t1_0= sigma1_t1 [:,i]. flatten (). astype (int). tolist ()
48 t1_1 = ’’.join(map(str , t1_0))
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49 sigma1_per_str . append (t1_1)
50

51 e1_0= sigma1_e1 [:,i]. flatten (). astype (int). tolist ()
52 e1_1 = ’’.join(map(str , e1_0))
53 sigma1_per_str . append (e1_1)
54

55 strSigma1 =’’
56 for i in range(len( sigma1_per_str )):
57 strSigma1 += sigma1_per_str [i]
58

59 h2_v = int( shake_128 (( M_esteso + strSigma0 + str(h1_v) + strSigma1
). encode ()). hexdigest (d), 16) % 2

60

61

62 c0 = []
63 c1 = []
64 if h2_v == 0:
65 for t in range(tau):
66 Fr0_1 = np.zeros(m, dtype=int)
67 for i in range(m):
68 Fr0_1[i] = ( sigma2 [t].T @ A[i] @ sigma2 [t]
69 + b[i].T @ sigma2 [t]) % q
70

71 conc = np. concatenate (( sigma2 [t],
72 np.mod(h1_v * sigma2 [t]- sigma1_t1 [:,t]. reshape (1,

-1).T, q),
73 np.mod(h1_v * Fr0_1 - sigma1_e1 [:,t], q).

reshape (1, -1).T),
74 axis =0)
75

76 stringa_conc = ’’
77 for i in range(len(conc.T[0])):
78 stringa_conc += str(conc.T[0][i])
79 arg = bytes( stringa_conc ,’utf -8’)
80

81 c0_hash = hashlib . sha3_256 (arg). hexdigest ()
82 c0. append ( c0_hash )
83

84 if sigma0 [2*t] == c0[t]:
85 bit = True
86 else:
87 bit = False
88

89 else: #h2=1
90 for t in range(tau):
91 G_t1_r1 = np.zeros(m, dtype=int)
92 Fr1 = np.zeros(m, dtype=int)
93 for i in range(m):
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94 G_t1_r1 [i] = ( sigma1_t1 [:,t]. reshape (1, -1) @ A[i] @
sigma2 [t]

95 + sigma2 [t].T @ A[i] @ sigma1_t1 [:,t].
reshape (1, -1).T) % q

96

97 Fr1[i] = ( sigma2 [t].T @ A[i] @ sigma2 [t] + b[i].T @
sigma2 [t] ) % q

98

99 conc2 = np. concatenate (( sigma2 [t],
100 np.mod(h1_v * (v.T - Fr1) - G_t1_r1 - sigma1_e1 [:,

t], q)
101 . astype (’int ’). reshape (-1, 1)),axis =0)
102

103

104 stringa_conc_2 = ’’
105 for i in range(len(conc2 [0])):
106 stringa_conc_2 += str(conc2 [0][i])
107 arg2 = bytes( stringa_conc_2 ,’utf -8’)
108

109 c1_hash = hashlib . sha3_256 (arg2). hexdigest ()
110 c1. append ( c1_hash )
111

112 if sigma0 [2*t+1] == c1[t]:
113 bit = True
114 else:
115 bit = False
116

117 print(bit)

Table B.2: This implementation of the Verification algorithm follows the descrip-
tion made in the pseudo-code in table 4.2
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B.2 Feneuil
Here are given the codes written in Python that implement, in a simplistic but
functional manner, the key generation - KeyGen(), the signing scheme and the
verification scheme - DSS(sk, pk, A, b, msg) and Verif(σ, msg, pk) - based on the
Feneuil’s protocol.
Please note that first are given the implementations valid only for q prime of the
field Fq, since is exploited the modular arithmetic, then are given the codes valid
for every q, prime and power of a prime (in this case is exploited the polynomial
arithmetic, which is why the Pyfinite library is used).
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KeyGen()
1 import random
2 import numpy as np
3

4 # Faccio i seed con il modulo random
5 paramSec = 256
6 n = 9
7 m = n+1
8 q = 23 #solo un numero primo
9 seed_pk = random . getrandbits ( paramSec ) % (2**32 - 1)

10 seed_sk = random . getrandbits ( paramSec ) % (2**32 - 1)
11

12 # Campiono col modulo numpy
13 np. random .seed( seed_sk )
14 sk = np. random . randint (q, size =(n, 1))
15

16 np. random .seed( seed_pk )
17 pk1 = np.zeros ((m, 1))
18 A = np.zeros ((m, n, n))
19 b = np.zeros ((n, m))
20

21 for i in range(m):
22 A[i] = np. random . randint (q, size =(n, n))
23 b[:, i] = np. random . randint (q, size=n)
24

25 pk1[i]=np.dot(sk.T, np.dot(A[i], sk))
26 + np.dot(b[:, i].T, sk)
27

28 pk = pk1 % q
29

30 np.savez(" chiavi .npz", sk=sk , pk=pk , n=n, m=m,
31 q=q, paramSec =paramSec , A=A, b=b)

Table B.3: This implementation of the Key Generation algorithm follows the
description made in the pseudo-code in table 4.3
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Figure B.3: Example of algorithm KeyGen() output, with n = 9, m = n + 1,
q = 23.
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Sign()
1 import numpy as np
2 import random
3 import hashlib
4 data = np.load(" chiavi .npz")
5

6 paramSec = data[’paramSec ’]
7 sk = data[’sk’]
8 pk = data[’pk’]
9 q = int(data[’q’])

10 n = int(data[’n’])
11 m = int(data[’m’])
12 A = data[’A’]
13 b = data[’b’]
14 numParties = 7
15 tau = 269
16 eta = 1
17 msg = "Fiat -- Shamir transform " # messaggio
18 random .seed (0)
19 salt = random . getrandbits (2* paramSec ) % (2**32 - 1)
20

21 #Fase1
22 com =[]
23 a = np.zeros ((tau , n, numParties ), dtype=’int ’)
24 x = np.zeros ((tau , n, numParties ), dtype=’int ’)
25 c = np.zeros ((tau , 1, numParties ), dtype=’int ’)
26 state = np.zeros ((tau , numParties +n+1) , dtype=’int ’)
27

28 for t in range(tau):
29 random .seed(t+1)
30 seed1_t = ( random . getrandbits ( paramSec )) % (2**32 - 1)
31 np. random .seed ([salt , seed1_t ])
32 seed2_t = np. random . randint (seed1_t , size= numParties )
33 for i in range( numParties ):
34 state[t,i] = seed2_t [i]
35

36 for j in range( numParties ):
37 np. random .seed ([salt , seed2_t [j]])
38 x[t,:,j]=np. random . randint (q,size=n)
39 a[t,:,j]=np. random . randint (q**eta ,size=n)
40 c[t,0,j]=np. random . randint (q** eta)
41 x[t,:, numParties -1]=( sk.T-np.sum(x[t,:,:-1], axis =1)) % q
42

43 a_tot = np.sum(a[t], axis =1) %q** eta
44 c_tot= (- np.dot(a_tot ,sk)) %q** eta
45 c[t,:, numParties -1] = (c_tot - np.sum(c[t ,: ,: -1])) %q** eta
46

47 for i in range(numParties , numParties +n):
48 state[t,i] = x[t,i-numParties ,numParties -1].T
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49

50 state[t, numParties +n] = c[t,:, numParties -1]. item ()
51

52 for i in range(numParties -1):
53 res = np. concatenate ([np.array ([ salt ]),
54 np.array ([t]), np.array ([i+1]) ,
55 np.array ([ state[t,i]]) ])
56 com. append ( hashlib . sha3_256 (res. tobytes ()). hexdigest ())
57 #com_N
58 res = np. concatenate ([np.array ([ salt ]), np.array ([t]),
59 np.array ([ numParties ]), state[t,numParties -1:]])
60 com. append ( hashlib . sha3_256 (res. tobytes ()). hexdigest ())
61

62 #Fase2
63 comRes =’’
64 for i in range( numParties *tau):
65 comRes += com[i]
66 stringa =msg + str(salt) + comRes
67 o=bytes(stringa ,’utf -8’)
68 h1 = hashlib . shake_128 (o). hexdigest (4)
69

70 np. random .seed(int(h1 ,16))
71 gamma = np.zeros ((tau ,1,m), dtype=’int ’)
72 vareps = np.zeros ((1, tau), dtype=’int ’)
73

74 for t in range(tau):
75 gamma[t] = np. random . randint (q**eta , size=m)
76 vareps [:,t] = np. random . randint (q** eta)
77

78 #Fase3
79 z=np.zeros ((tau , 1, numParties ), dtype=’int ’)
80 w=np.zeros ((tau , n, numParties ),dtype=’int ’)
81 alpha1 = np.zeros ((tau , n, numParties ), dtype=’int ’)
82 openAlpha1 = np.zeros ((tau , n, 1), dtype=’int ’)
83 v1 = np.zeros ((tau , 1, numParties ), dtype=’int ’)
84

85 for t in range(tau):
86

87 # Calcolo shares di z
88 a2=np.zeros(m,dtype=’int ’)
89 for i in range(m):
90 a1=(pk[i] - np.inner(b[:,i].T,x[t ,: ,0]))%q
91 a2[i]=( gamma[t,0,i]*a1.item ())%q
92 z[t ,0 ,0]= (np.sum(a2)%q)
93

94 for j in range (1, numParties ):
95 a1=np.zeros(m,dtype=’int ’)
96 for i in range(m):
97 a1[i] = (- gamma[t,0,i]*( np.inner(b[:,i].T,
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98 x[t,:,j])))%q
99 z[t,0,j]= (np.sum(a1)%q)

100

101 # Calcolo shares di w
102 B=np.zeros ((m,n,n),dtype=’int ’)
103 for i in range(m):
104 B[i]= gamma[t,0,i]*A[i]
105 C=(np.sum(B, axis =0)%q)
106

107 for j in range( numParties ):
108 w[t,:,j]=( np. matmul (C,x[t,:,j])%q)
109

110 # Calcolo alpha
111 for j in range( numParties ):
112 alpha1 [t,:,j] = vareps [0,t]*w[t,:,j] + a[t,:,j]
113 alpha = alpha1 % q** eta
114

115 for j in range( numParties ):
116 openAlpha1 [t ,: ,0] += alpha[t,:,j]
117 openAlpha = openAlpha1 % q** eta
118

119 # Calcolo v
120 for j in range( numParties ):
121 v1[t,0,j]= vareps [0,t]*z[t,0,j]
122 - np.inner( openAlpha [t,:, 0], x[t,:,j]) - c[t,0,j]
123 v = v1%q** eta
124

125 #Fase4
126 coppiaRes =[]
127 for t in range(tau):
128 for i in range( numParties ):
129 res=np. concatenate ([ alpha[t,:,i],np.array ([v[t,0,i]]) ])
130 coppiaRes += res. tolist ()
131 hash0 = ’’
132 for el in coppiaRes :
133 hash0 += str(el)
134

135 stringa2 = msg + str(salt) + h1 + hash0
136 o2 = bytes(stringa2 , ’utf -8’)
137 h2 = hashlib . shake_128 (o2). hexdigest (4)
138

139 np. random .seed(int(h2 ,16))
140 istar = np.zeros ((1, tau), dtype=’int ’)
141

142 for t in range(tau):
143 istar [:,t] = np. random . randint (1, numParties +1)
144

145

146 #Fase5
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147 stateN = np.zeros ((tau , numParties +n), dtype=’int ’)
148 for t in range(tau):
149 if istar [0,t] != numParties :
150 stateN [t] = state[t, [jdx
151 for jdx in range(state.shape [1])
152 if (jdx != (istar [0,t]-1))]]
153 else:
154 for i in range(numParties -1):
155 stateN [t,i] = state[t,i]
156 sigma = []
157 sigma. append (salt)
158 sigma. append (h1)
159 sigma. append (h2)
160 for t in range(tau):
161 sigma. append ( stateN [t])
162 sigma. append (com[ numParties *t+istar [0,t] -1])
163 sigma. append (alpha[t,:, istar [0,t] -1])
164

165 import pickle
166 with open(’pubblico .pkl ’, ’wb’) as file:
167 pickle .dump ({’sigma ’: sigma , ’pk’: pk , ’A’:A, ’b’:b,
168 ’msg ’:msg , ’numParties ’:numParties ,
169 ’tau ’:tau , ’q’:q, ’n’:n, ’m’:m, ’eta ’:eta},
170 file)

Table B.4: This implementation of the Digital Signature Scheme follows the
description made in the pseudo-code in table 4.4
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Figure B.4: Example of algorithm Sign() output, with n = 9, m = n+ 1, q = 23,
number of rounds τ = 8.
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Verif()
1 import pickle
2 import numpy as np
3 import hashlib
4 with open(’pubblico .pkl ’, ’rb’) as file:
5 data = pickle .load(file)
6 sigma = data[’sigma ’]
7 pk = data[’pk’]
8 A = data[’A’]
9 b = data[’b’]

10 msg = data[’msg ’] #"Fiat - Shamir trasform "
11 numParties = data[’numParties ’]
12 tau = data[’tau ’]
13 q = data[’q’]
14 n = data[’n’]
15 m = data[’m’]
16 eta = data[’eta ’]
17 salt = sigma [0]
18 h1 = sigma [1]
19 h2 = sigma [2]
20

21 stateN = np.zeros ((tau , numParties +n), dtype=’int ’)
22 com_istar =[]
23 alpha_istar = np.zeros ((tau , n), dtype=’int ’)
24 for i in range (1, tau +1):
25 stateN [i -1] = sigma [3*i] #tutti tranne istar
26 com_istar . append (sigma [3*i +1])
27 alpha_istar [i -1] = sigma [3*i+2]
28

29 np. random .seed(int(h1 ,16))
30 gamma = np.zeros ((tau ,1,m), dtype=’int ’)
31 vareps = np.zeros ((1, tau), dtype=’int ’)
32

33 for t in range(tau):
34 gamma[t] = np. random . randint (q**eta , size=m)
35 vareps [:,t] = np. random . randint (q** eta)
36

37 np. random .seed(int(h2 ,16))
38 istar = np.zeros ((1, tau), dtype=’int ’)
39 for t in range(tau):
40 istar [:,t] = np. random . randint (1, numParties +1)
41

42 # Ricostruisco gli stati per fare i com
43 state_rebuilt = np.zeros ((tau , numParties +n+1) , dtype=’int ’)
44 for t in range(tau):
45 if istar [0,t] == numParties :
46 for i in range( numParties +n):
47 state_rebuilt [t,i] = stateN [t,i]
48 else:
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49 for i in range(istar [0,t]-1):
50 state_rebuilt [t,i] = stateN [t,i]
51 for i in range(istar [0,t], numParties +n+1):
52 state_rebuilt [t,i] = stateN [t,i -1]
53

54 com =[]
55 for t in range(tau):
56

57 for i in range (0, istar [0,t]-1):
58 res = np. concatenate ([np.array ([ salt ]),
59 np.array ([t]), np.array ([i+1]) ,
60 np.array ([ state_rebuilt [t,i]]) ])
61 com. append ( hashlib . sha3_256 (res. tobytes ()). hexdigest ())
62

63 com. append ( com_istar [t])
64

65 for i in range(istar [0,t], numParties -1):
66 res = np. concatenate ([np.array ([ salt ]),
67 np.array ([t]), np.array ([i+1]) ,
68 np.array ([ state_rebuilt [t,i]]) ])
69 com. append ( hashlib . sha3_256 (res. tobytes ()). hexdigest ())
70

71 if istar [0,t]!= numParties :
72 # com_numParties lo devo trattare a parte
73 res = np. concatenate ([np.array ([ salt ]),
74 np.array ([t]), np.array ([ numParties ]),
75 state_rebuilt [t,numParties -1:]])
76 com. append ( hashlib . sha3_256 (res. tobytes ()). hexdigest ())
77

78 comRes =’’
79 for i in range( numParties *tau):
80 comRes += com[i]
81 stringa =msg + str(salt) + comRes
82 o=bytes(stringa ,’utf -8’)
83 h1_1 = hashlib . shake_128 (o). hexdigest (4)
84

85 seed2 = np.zeros ((tau , numParties ), dtype=’int ’)
86

87 for t in range(tau):
88 if istar [0,t] != numParties :
89 for i in range (0, istar [0,t]-1):
90 seed2[t,i] = stateN [t,i]
91

92 for i in range(istar [0,t], numParties ):
93 seed2[t,i] = stateN [t,i -1]
94 else:
95 for i in range(numParties -1):
96 seed2[t,i] = stateN [t,i]
97
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98 x = np.zeros ((tau ,n, numParties ), dtype=’int ’)
99 a = np.zeros ((tau ,n, numParties ), dtype=’int ’)

100 c = np.zeros ((tau ,1, numParties ), dtype=’int ’)
101 for t in range(tau):
102 for j in range( numParties ):
103 np. random .seed ([salt ,seed2[t,j]])
104 x[t,:,j]=np. random . randint (q,size=n)
105 a[t,:,j]=np. random . randint (q,size=n)
106 c[t,0,j]=np. random . randint (q)
107 if istar [0,t] != numParties :
108 x[t,:, numParties -1] = stateN [t,
109 numParties -1: len( stateN [t]) -1]
110 c[t,:, numParties -1] = stateN [t,len( stateN [t]) -1]
111

112 z=np.zeros ((tau , 1, numParties ), dtype=’int ’)
113 w=np.zeros ((tau , n, numParties ),dtype=’int ’)
114 alpha1 = np.zeros ((tau , n, numParties ), dtype=’int ’)
115 openAlpha1 = np.zeros ((tau , n, 1), dtype=’int ’)
116 v1 = np.zeros ((tau , 1, numParties ), dtype=’int ’)
117

118 for t in range(tau):
119 # Calcolo shares di z
120 a2=np.zeros(m,dtype=’int ’)
121 for i in range(m):
122 a1=(pk[i] - np.inner(b[:,i].T,x[t ,: ,0]))%q
123 a2[i]=( gamma[t,0,i]*a1.item ())%q
124 z[t ,0 ,0]= (np.sum(a2)%q)
125

126 for j in range (1, numParties ):
127 a1=np.zeros(m,dtype=’int ’)
128 for i in range(m):
129 a1[i] = (- gamma[t,0,i]*( np.inner(b[:,i].T,
130 x[t,:,j])))%q
131 z[t,0,j]= (np.sum(a1)%q)
132

133

134 # Calcolo shares di w
135 B=np.zeros ((m,n,n),dtype=’int ’)
136 for i in range(m):
137 B[i]= gamma[t,0,i]*A[i]
138 C=(np.sum(B, axis =0)%q)
139

140 for j in range( numParties ):
141 w[t,:,j]=( np. matmul (C,x[t,:,j])%q)
142 alpha1 [t,:,j] = vareps [0,t]*w[t,:,j] + a[t,:,j]
143 alpha1 [t,:, istar [0,t]-1] = alpha_istar [t ,:]
144 alpha = alpha1 % q** eta
145

146 for j in range( numParties ):
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147 openAlpha1 [t ,: ,0] += alpha[t,:,j]
148 openAlpha = openAlpha1 % q** eta
149

150 # Calcolo v
151 for j in range( numParties ):
152 v1[t,0,j]= vareps [0,t]*z[t,0,j]
153 - np.inner( openAlpha [t,:, 0], x[t,:,j]) - c[t,0,j]
154 temp = v1[t,0, istar [0,t] -1]%q
155 res = np.sum(v1[t]) %q
156 v1[t,0, istar [0,t]-1] = -(res -temp) %q
157

158 v = v1%q** eta
159

160

161 coppiaRes =[]
162 for t in range(tau):
163 for i in range( numParties ):
164 res=np. concatenate ([ alpha[t,:,i], np.array ([v[t,0,i]]) ])
165 coppiaRes += res. tolist ()
166 hashn = ’’
167 for el in coppiaRes :
168 hashn += str(el)
169

170 stringa2 = msg + str(salt) + h1_1 + hashn
171 o2 = bytes(stringa2 , ’utf -8’)
172

173 h2_1 = hashlib . shake_128 (o2). hexdigest (4)
174

175 if h1_1 ==h1 and h2_1 ==h2:
176 print(True)
177 else:
178 print(False)

Table B.5: This implementation of the Verification Scheme of the previous signature
follows the description made in the pseudo-code in table 4.5
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