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Summary

The main objective in this thesis is to obtain a unified approach to the stability
classification of continuous-time Markov chains defined on discrete state space
via Foster-Lyapunov criteria. These criteria are tipically stated in terms of the
generator of the process.
Aleksandr Lyapunov first introduced these techniques for the study of ordinary
differential equations and F. Gordon Foster first adapted them to a stochastic
setting.
After an introduction of the preliminaries about the main setting of work, a
version of Dynkin’s formula and its proof are provided.
Ruling out unstable behaviours of the Markov chains such as explosivity or
transience and establishing recurrence and positive recurrence is a complex
task. In these regards, the second chapter analyzes the Foster-Lyapunov cri-
teria that imply these properties and the results are proved by the systematic
application of Dynkin’s formula.
Consider, for istance, the classical Foster-Lyapunov criterion for verifying the
positive recurrence: it assumes that the Markov chain tends to drift in unit
steps towards some finite subset of the state space, and it does not wander too
far when it makes a one-step transition out of this set. The third chapter deals
with establishing analogous drift criteria that are defined on random stopping
times of the Markov chain.
The first study that addressed such issues was Filonov, who enunciated a suf-
ficient drift condition for a discrete time Markov chain on a countable space to
be positive recurrent.
The last chapter is devoted to analyzing some interesting examples of stochas-
tic reaction networks and to studying their limit behaviour by Foster-Lyapunov
criteria.
In particular, stochastic reaction networks are a family of continuous time
Markov chains used to model biochemical systems and intracellular processes.
The idea is quite simple: the species react by a finite number of possible bio-
chemical transformations and the state of the system, which is the count of the
available species, changes by the occurrence of a reaction.
Traditionally, the dynamics of the concentration of each species are modelled
by means of an ordinary differential equation, however this type of models are
inaccurate if the number of constituents of at least one species is extremely low,
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something common in biological setting. This makes the stochastic descriptions
of reaction networks essential.
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Chapter 1

Introduction

Along this section we will provide the preliminaries about the main settings
where we will work.

1.1 Operator semigroups
Let L denotes a real Banach space.
Definition 1.1. A one parameter {T (t), t ≥ 0} of bounded linear operators
on a Banach space is called semigroup if T (0) = I and T (s + t) = T (s)T (t).
Definition 1.2. A semigroup {T (t), t ≥ 0} on L is said to be strongly con-
tinuous if limt→0 T (t)f = f , for every f ∈ L.

A (possibly unbounded) linear operator A on L is a linear mapping whose
domain D(A) is a subspace of L and whose range R(A) lies in L. The graph of
A is given by

R(A) = {(f, Af) : f ∈ D(A)} ⊂ L × L.

Definition 1.3. The (infinitesimal) generator of a semigroup {T (t)} on
L is the linear operator A defined by

Af = lim
t→0

1
t
{T (t)f − f}.

The domain D(A) of A is the subspace of all f ∈ L for which this limit
exists in L pointwise.
Let ∆ be a closed interval in (−∞, +∞), and denote by CL(∆) the space
of continuous functions u : ∆ → L. Moreover, let C1

L(∆) be the space of
continuously differentiable functions u : ∆ → L.
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Lemma 1.1. (Fundamental theorem of calculus)
If u ∈ C1

L[a, b], then Ú b

a

d

dt
u(t)dt = u(b) − u(a). (1.1)

Theorem 1.1. Let {T (t), t ≥ 0} be a strongly continuous semigroup on L
with generator A.

1. If f ∈ D(A) and t ≥ 0, then T (t)f ∈ D(A) and

d

dt
T (t)f = AT (t)f = T (t)Af. (1.2)

2. If f ∈ D(A) and t ≥ 0, then

T (t)f − f =
Ú t

0
AT (s)f ds =

Ú t

0
T (s)Af ds. (1.3)

Proof. 1. Using the property that T (t) is a semigroup, T (t + h) − T (t) =
T (t)T (h) − T (t):

1
h

[T (t + h)f − T (t)f ] = AhT (t)f = T (t)Ahf

for all h > 0, where Ah = h−1[T (h)−I], it follows that T (t)f ∈ D(A), since
the limit of Ah for h → 0+ exists. So (d/dt)+T (t)f = AT (t)f = T (t)Af ,
for the commutative property of the product operation. Thus, it sufficies
to check that (d/dt)−T (t)f = AT (t)f = T (t)Af (assuming t > 0). But
this follows from the identity

1
−h

[T (t−h)f −T (t)f ]−T (t)Af = T (t−h)[Ah −A]f +[T (t−h)−T (t)]Af

for 0 < h ≤ t. Clearly we used that for h → 0− we have [T (t − h) −
T (t)]Af = 0, because the semigroup {T (t)} is strongly continuous, and
Ah → A.

2. Ú t

0
AT (s)f ds =

Ú t

0
T (s)Af ds =

Ú t

0

d

ds
T (s)fds = T (t)f − f

as a consequence of eq. 1.2 and Lemma 1.1.
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1.2 Stochastic processes and Martingales
We consider an abstract set Ω called probability space, with the generic element
ω called elementary event, a Borel field F of subsets of Ω called measurable
sets and a countably additive probability measure P defined on F .

Definition 1.4. A stochastic process X with index set I and state space
(E, B) (a measurable space) defined on a probability space (Ω, F ,P) is a function
defined on I × Ω with values in E such that for each t ∈ I, X(t, ·) : Ω → E is
an E−valued random variable, that is {ω : X(t, ω) ∈ Γ} ∈ F for every Γ ∈ B.

In the general case (see Sean P. Meyn [1993]) it is assumed that the state
space E is a locally compact and separable metric space and that B is the Borel
field on E.
We denote with B(E) the collection of real-valued Borel measurable functions
on E.

We take I = (0, ∞) (so that the time parameter is taken to be the set of
non-negative real numbers, having the continuous parameter case).
We say that X is measurable if X : [0, ∞)×Ω → E is B[0, ∞)×F -measurable.
We say that X is (almost surely) continuous (right continuous, left continuous)
if for (almost) every ω ∈ Ω, X(·, ω) is continuous (right continuous, left con-
tinuous).
The function X(·, ω) is called the sample path of the process at ω.

Definition 1.5. A collection {Ft} = {Ft, t ∈ [0, ∞)} of σ-algebras of sets in
F is a filtration if Ft ⊂ Ft+s for t, s ∈ [0, ∞).

Intuitively Ft corresponds to the information known by an observer at time
t. In particular, for a process X we define {FX

t } by FX
t = σ(X(s) : s ≤ t);

that is FX
t is the information obtained by observing X up to time t.

Definition 1.6. A process X is {Ft}-progressive (or simply {Ft} = {FX
t })

if for each t ≥ 0 the restriction of X to [0, t] × Ω is B[0, t] × Ft-measurable.

Note that every right (left) continuous {Ft}-adapted process is {Ft}-progressive.

Definition 1.7. A process X is adapted to a filtration {Ft} (or simply {Ft}-
adapted) if X(t) is Ft-measurable for each t ≥ 0.

Since Ft is increasing in t, X is {Ft}-adapted if and only if FX
t ⊂ Ft for

each t ≥ 0.
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Definition 1.8. A random variable τ with values in [0, ∞] is an {Ft}-stopping
time if {τ ≤ t} ∈ Ft, for every t ≥ 0.

If τ < ∞ a.s. we say that τ is finite a.s.
In some sense a stopping time is a random time that is recognizable by an
observer whose information at time t is Ft.

Definition 1.9. A real-valued process X with E[|X(t)|] < ∞ for all t ≥ 0 and
adapted to a filtration {Ft} is an {Ft}-martingale if

E[X(t + s)|Ft] = X(t), t, s ≥ 0. (1.4)

Definition 1.10. A real-valued process X adapted to the filtration {Ft} is an
{Ft}-local martingale if

• The τk are almost surely increasing, P{τk < τk+1} = 1 ;

• The τk diverge almost surely, P{limk→∞ τk = ∞} = 1;

• The stopped process Xt∧τk
is an {Ft}-martingale ∀k.

1.3 Generators and Markov processes
We can say that a Markov process is a special case of a stochastic process,
distinguished by a certain Markov property, that is enounced below.

Definition 1.11. X is a Markov process if

P{X(t + s) ∈ Γ|FX
t } = P{X(t + s) ∈ Γ|X(t)} (1.5)

for all s, t ≥ 0, Γ ∈ B(E).

Definition 1.12. A function P (t, x, Γ) defined on [0, ∞) × E × B(E) is a time
homogeneous transition function if

P (t, x, ·) is a probability measure, (t, x) ∈ [0, ∞) × E,

P (0, x, ·) = δx, x ∈ E,

P (·, ·, Γ) ∈ B([0, ∞) × E), Γ ∈ B(E),

P (t + s, x, Γ) =
Ú

P (s, y, Γ)P (t, x, dy), s, t ≥ 0, x ∈ E, Γ ∈ B(E).

(1.6)
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The last one property is called the Chapman-Kolmogorov property.
A transition function P (t, x, Γ) is a transition function for a time-homogenous
Markov process if

P{X(t + s) ∈ Γ|FX
t } = P (s, X(t), Γ), (1.7)

for all s, t ≥ 0 and Γ ∈ B(E), or equivalently, if

E[f(X(t + s))|FX
t ] =

Ú
f(y)P (s, X(t), dy), (1.8)

for all s, t ≥ 0 and f ∈ B(E).
Intuitively, the meaning of P (t, x, Γ) is the probability that X(t) ∈ Γ given
that the initial state of X was X(0) = x.

We denote the transition semigroup as {T (t)}, in particular we exploit the
fact that

T (t)f(x) =
Ú

f(y)P (t, x, dy),

so that the Markov property may be expressed

E[f(X(t + s))|FX
s ] = T (t)f(X(s)), s < t < ∞

where FX
s = σ{X(u), u : 0 ≤ u ≤ s}.

We let {On : n ∈ Z+} be a sequence of precompact sets for which On → E
as n → ∞. We let T m = τOc

m
the time of the first entrance to Oc

m.

Definition 1.13. The exit time for the process is defined as ζ = limm→∞T m

Definition 1.14. We call the process X non-explosive if Px(ζ = ∞) = 1,
for all x ∈ E.
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1.4 Dynkin’s formula
Since the finite-dimensional distributions of a Markov process are determined by
a corresponding semigroup {T (t)}, they are in turn determined by full generator
A or by a sufficiently large set contained in A.
One of the best approaches for determining when a set is "sufficiently large" is
through the martingale problem of Stroock and Varadhan, which is based on
the observation in the following theorem.

Theorem 1.2. (Martingale problem)
Let X be an E−valued, progressive non-explosive Markov process with transi-

tion function P (t, x, Γ), and f ∈ B(E) bounded. Moreover, let {T (t)} and A
be as above. Then

M(t) = f(X(t)) −
Ú t

0
Af(X(s)) ds (1.9)

is an {FX
t }-martingale.

Proof. For each t, u ≥ 0

E
è
M(t + u)|FX

t

é
=
Ú

f(y)P (u, X(t), dy) −
Ú t+u

t

Ú
Af(y)P (s − t, X(t), dy) ds

−
Ú t

0
Af(X(s)) ds

= T (u)f(X(t)) −
Ú u

0
T (s)Af(X(t)) ds −

Ú t

0
Af(X(s)) ds

= f(X(t)) −
Ú t

0
Af(X(s)) ds

= M(t).

In the third equation we used Theorem 1.1, 2, while the change in the order of
integration in the second line is from Fubini’s Theorem, which can be applied
since f is a bounded function for hypothesis.

(X(s)) ds], It’s useful to note that by means of the the Doob’s Optional
Sampling Theorem we can enounce Theorem 1.2 having instead of an integer
time t, a stopping time τ (a.s. finite):

Ex [f(X(τ))] = f(X(0)) + Ex

5Ú τ

0
Af((X(s))ds

6
(1.10)
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Theorem 1.3. (Dynkin’s formula)
Let X be an E−valued, progressive Markov process and let {T (t)} and A be as
above. Moreover suppose that

• L is the Banach space that contains only bounded functions f on compact
sets, which means f1K is a bounded function ∀K ⊂ E compact set;

• τ denotes the exit time from the interior of a compact set K ⊂ E, that we
denotes by K̊;

then
Ex [f(X(t ∧ τ))] = f(x) + Ex

CÚ τ∧t

0
Af((X(s)) ds

D
, x ∈ K.

Proof.

Ex

C
f(x) +

Ú t∧τ

0
Af((X(s)) ds

D
= f(x) + Ex

CÚ t∧τ

0
Af((X(s)) ds

D

= f(x) + Ex

CÚ t

0
Af((X(s ∧ τ))1K(X(s ∧ τ)) ds

D

= f(x) +
Ú t

0

Ú
E

Af(y)1K(y) dPstop(s, x, dy)ds

= f(x) +
Ú t

0

Ú
E

Astopf(y) dPstop(s, x, dy)ds

(1.11)

where we denote Pstop(s, x, dy) the transition function associated to the stopped
process till time τ and Astop as the generator of the stopped process till time
τ . Note also that Af(y)1K(y) is equal to the generator of the stopped process.
In the last equality we have used Fubini’s theorem for change in the order of
integration.
Now it’s possible to apply Theorem 1.1, 2 to eq. (1.11) and obtain

f(x)+Ex

CÚ t∧τ

0
Af(X(s)) ds

D
= f(x)+Ex [f(X(t ∧ τ))]−f(x) = Ex [f(X(t ∧ τ))]

(1.12)

Supposing the process X is non-explosive and that there exists a sequence
of On open finite sets s.t. On → E for n → ∞, we can conclude that the
previous statement is equivalent to say that f(t ∧ τ) −

s t∧τ
0 Af(X(s))ds is a

local-martingale.
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It’s important to observe that our study will be restricted to the case of contin-
uous time-homogeneous Markov process defined on a discrete state space, that
is called Markov chain, mainly to avoid the technical complications of Markov
chains with a continuous state space. For this reason now some crucial defini-
tions are given, which are reasonable if we keep in mind this setting.
First of all, we give a result on the generator in the case of a continuous time-
homogeneous Markov chain.

Af(x) =
Ø
y /=x

(f(y) − f(x))q(x, y) (1.13)

It’s necessary to prove the equation above, first in the case f is bounded, and
then assuming f as a non-negative function that is bounded on compact sets.

Proof. 1. Assume f as a bounded function. If x ↛ y (which means that,
starting from state x, the chain does not reach y in one jump), then

ph(x, y) = P(2 or more jumps from x in [0, h]) ≤ c2h2 ∀y.

Consider

f(y)ph(x, y) ≤ f(y)P(x → y)ü ûú ý
q(x,y)
λ(x)

P(1 jump in [0, h])+

+ f(y)P(x ↛ y)P(2 or more jumps from x in [0, h])

≤ f(y)q(x, y)
λ(x) ch + f(y)c2h2

ü ûú ý
we call it ⋆

,

where c = λ(x)h + c1h2.
Since

sup
y

----f(y)q(x, y) − ⋆

h

---- ≤ sup
y

---f(y)c1h + f(y)c2h2
--- f bounded−−−−−−→

h→0
0.

So, we can use the uniform convergence theorem to change the order of
limit and summation in the third equality below, concluding the proof for
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f bounded.

Af(x) = lim
h→0

Ex[f(X(h))] − f(x)
h

= lim
h→0

q
y f(y)ph(x, y) − f(x)

h

= lim
h→0

q
y /=x f(y)ph(x, y) + f(x)(ph(x, x) − 1)

h

=
Ø
y /=x

3
f(y)q(x, y)

4
+ f(x)q(x, x)

=
Ø
y

3
f(y)q(x, y)

4
.

2. Assume f as non-negative and only bounded on compact sets, we define
fK the function restricted to the compact set K:

f|K =
f(x) if x ∈ K

0 if x /∈ K
,

then f|K ≤ f .
It’s obvious that f|K → f (f|K converges in a punctual way for size of
K → +∞) and f|K is bounded.
We have

lim
h→0

E [f(X(h))] − f(x)
h

= lim
h→0

lim
K→+∞

E
è
f|K (X(h))

é
− f|K (x)

h

= lim
K→+∞

lim
h→0

E
è
f|K (X(h))

é
− f|K (x)

h

= lim
K→+∞

lim
h→0

q
y /=x f|K (y)ph(x, y) + f|K (x)(ph(x, x) − 1)

h

= lim
K→+∞

Ø
y

q(x, y)f|K (y)

=
Ø
y

q(x, y)f(y),

thanks to the Moore-Osgood theorem together with the application of case
1 above to fK .
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For a measurable set B ⊂ E we let

τB = inf{t ≥ 0 : Xt ∈ B and Xs /∈ B, 0 ≤ s < t}

be the hitting time (in the case of X0 ∈ B, τB is also called the return time) of
X.

Definition 1.15. Supposing that the Markov chain X is irreducible, for a fixed
B ⊂ E we call:

• X transient, if for some non-empty B, Px(τB < ∞) < 1 ∀x /∈ B;

• X recurrent, if for some finite B, Px(τB < ∞) = 1 ∀x ∈ E;

• X positive recurrent, if for some finite B, Ex(τB) < ∞ ∀x ∈ E.

14



Chapter 2

Foster Lyapunov criteria

Ruling out unstable behaviours such as explosivity or transience and estab-
lishing positive recurrence (or equivalently, the existence of stationary distri-
butions), is a complex task. With this aim we need to introduce the Foster-
Lyapunov criteria to test for these properties. These are conditions for these
properties that have the purpose to find a function that satisfies various in-
equalities.
They are named jointly after Aleksandr Lyapunov who first introduced these
types of conditions in his study of the solutions of ordinary differential equa-
tions and F. Gordon Foster who first adapt them to a stochastic setting.

Before continuing a little reminder is important; throughout the following
conditions, in the next sections, we assume that L is the Banach space that
contains only bounded functions f on compact sets, f ∈ L is a positive mea-
surable function, and it has the characteristic of a norm-like function, that is
f(x) → ∞ as x → ∞ (i.e. {x : V (x) ≤ B} is precompact for each B ≥ 0).

2.1 Transience
Theorem 2.1. If X is a non-explosive, irreducible continous time-homogeneous
Markov chain and there exist a norm-like function f : E → R+ and a non-
empty set B ⊂ E such that

Af(x) ≤ 0, ∀x /∈ B (2.1)
and

f(y) < inf
x∈B

f(x), for some y /∈ B (2.2)

then X is transient.
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Proof. We can use the Dynkin’s formula with x /∈ B, obtaining

Ex [f (X ((t + h) ∧ T m ∧ τB)) | Ft] = f(X(t ∧ τB ∧ T m)) + Ex

CÚ (t+h)∧T m∧τB

t∧T m∧τB

Af(X(s)) ds

D
≤ f(X(t ∧ τB ∧ T m))

(2.3)

where we have used the first hypothesis (eq. (2.1)) in the second inequality.
From eq. (2.3) we can conclude that f(X(t ∧ T m ∧ τB)) is a non-negative
supermartingale.
Now we enounce a result that we will use immediately after:
Lemma 2.1. A non-negative super-martingale converges almost surely to a
finite limit.

In particular we have that f(X(t ∧ T m ∧ τB)) converges to a finite limit and
we can write

f(X(t ∧ T m ∧ τB)) → fm
∞ a.s. (2.4)

Then, we can proceed as follows

fm
∞ ≥ fm

∞1{τB<∞}1{T m>τB}

= lim
t→∞

f(X(t ∧ τB ∧ T m))1{τB<∞}1{T m>τB}

= f(X(τB ∧ T m))1{τB<∞}1{T m>τB}.

(2.5)

Taking, now, the limit for m → ∞

lim
m→∞

f(X(τB ∧ T m))1{τB<∞}1{T m>τB} = f(X(τB))1{τB<∞}

≥ inf
z∈B

f(z)1{τB<∞}
(2.6)

Using the supermartingale property of f(X(t ∧ T m ∧ τB)) and the monotone
convergence theorem:

f(x) ≥ lim
m→∞

Ex

è
fm

∞1{τB<∞}1{T m>τA}
é

≥ Ex

5
inf
z∈B

f(z)1{τB<∞}

6
= inf

z∈B
f(z)Px(τB < ∞).

(2.7)

Set now x0 /∈ B such that
f(x0) < inf

z∈B
f(z),
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Foster Lyapunov criteria

from eq. (2.2) we can show that

Px0(τB < ∞) ≤ f(x0)
infx∈B f(x) < 1 (2.8)

which establishes transience.

2.2 A condition for non-explosion
In this section we develop a criterion which ensures that the sample paths of
the process X remain bounded on bounded time intervals, in order to have a
non-explosive process.
Theorem 2.2. If X is a right continuous time Markov chain and there exists
a norm-like function f : E → R+ and a constant c ≥ 0 such that

Af(x) ≤ cf(x) ∀x ∈ E, (2.9)
then ζ = ∞, so that X is non-explosive.
Proof. The proof proceeds by considering the function h(x, t) := f(x)exp(−ct).
We obtain, from the product rule, that the generator of the process applied to
this new function shows a "negative drift":

Ah(x, t) = exp(−ct)[Af(x) − cf(x)] ≤ 0.

The inequality is justified using the hypothesis (eq. 2.9).
Consider tm = t ∧ T m, from Dynkin’s formula we have:

Ex [h (X(tm), tm)] = h(x, 0) + Ex

CÚ tm

0
Ah (X(s), s) ds

D
≤ h(x,0) = f(x).

(2.10)
Let Mt = exp(−ct)f(X(t))1{T m≥t}. We show that the adapted process (Mt, FX

t )
is a supermartingale.
Fixed s < t, we take first {s > T m}, on this event Mt = Ms = 0, because
T m < s < t, and in the expression of Mt there is the indicator function 1{T m≥t}.
Hence we can write:

E
è
Mt|FX

s

é
= Ms on {s > T m}.

Otherwise considering the event {s ≤ T m}, we use (2.10) to conclude the
desired supermartingale property.

E
è
Mt|FX

s

é
= exp(−ct)EX(s)

è
f (X(t − s)) 1{T m≥t−s}

é
≤ exp(−cs)EX(s) [h (X(t − s)m, (t − s)m)]
≤ exp(−cs)f(X(s)) = Ms.
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Now we can use the following Kolmogorov’s inequality for supermartingales:
Lemma 2.2. Suppose Zn, n ≥ 1 is a nonnegative supermartingale, then for
a > 0

Px (sup(Z1, . . . , Zn) ≥ a) ≤ E[Z0]
a

.

In our case we have the following (since E[Z0] = M0 = f(X(0)) = f(x)):

Px

A
sup
t≥0

Mt ≥ a

B
≤ f(x)

a
, a > 0

that can be rewritten as

Px

A
sup

0≤t≤T m
(f (X(t)) exp(−ct)) ≥ a

B
≤ f(x)

a
, a > 0

Letting m → ∞ and using the monotone convergence theorem, we can write

Px

A
sup

0≤t≤ζ
(f (X(t)) exp(−ct)) ≥ a

B
≤ f(x)

a
, a > 0

Since f is a norm-like function, technically we have that f(X(t))exp(−ct) is a
nonnegative supermartingale ∀t.
Before concluding that ζ = ∞ we have to prove it raa (recductio ad absurdum).
Suppose that ζ < ∞ and that

sup
0≤t≤ζ

||X(t)|| = ∞

Since f is norm-like we have

sup
0≤t≤ζ

f(X(t)) = ∞

Taking t as a finite value, we then have

sup
0≤t≤ζ

(f(X(t))exp(−ct)) = ∞

However if we use the Kolmogorov’s inequality, we obtain an absurdum, ∀a > 0:

Px

A
sup

0≤t≤ζ
(f(X(t))exp(−ct) = ∞

B
≤ Px

A
sup

0≤t≤ζ
(f(X(t))exp(−ct) ≥ a

B

≤ f(x)
a

→ 0
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Foster Lyapunov criteria

2.3 A recurrence criterion
Theorem 2.3. For X an irreducible continuous time-homogeneous Markov
chain, a measurable compact set C ⊂ E and a norm-like function f : E → R+

if
Af(x) ≤ 0, x /∈ C (2.11)

then X is recurrent.

We might note that if the the set C is a finite set and it’s recurrent, then at
least one state in C is recurrent. If the process X is irreducible, all the states
communicate with each others, and so the process itself is recurrent.

Proof. First of all, we observe that since C is a compact set, then we can take

K∗ = sup
x∈C

f(x) < ∞.

If we fix K > K∗, then
f(x) > K → x /∈ C.

so we can consider {x : f(x) > K} as hypothesis.
Taking t < τC , then f(X(t)) > K and on {t < τC} we know that Af(x) ≤ 0
for the hypothesis.
Our goal now is to prove that f(X(t ∧ τC)) is a non negative (because f is a
norm-like function) supermartingale.
The second equality can be obtained using the Fatou’s lemma, which allows us
to apply the Dynkin’s formula in the third line.

E
è
f(X((t + h) ∧ τC))|FX

t

é
= E

5
lim inf
m→∞

f(X((t + h) ∧ τC ∧ T m))|FX
t

6
= lim inf

m→∞
E
è
f(X((t + h) ∧ τC ∧ T m))|FX

t

é
= f(X(t ∧ τC)) + lim inf

m→∞
E
CÚ (t+h)∧τC∧T m

t∧τC

Af(X(s)) ds

D
≤ f(X(t ∧ τC)).

(2.12)

Thanks to lemma (2.1) we can conclude that f(X(t ∧ τC)) converges almost
surely to a finite limit, in particular, P-a.s. on the event {τC = ∞} we have
f(X(t)) is converging.
Since we suppose that the Markov chain we are working with is irreducible and
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Foster Lyapunov criteria

the state space is a discrete set so that {x : f(x) < L} is a finite set, then X(t)
visits all the sets of the form {x : f(x) > L}.
As a consequence

sup
t

f(X(t)) = ∞ =⇒ f(x) → ∞,

but this is an absurdum since f(X(t)) is a supermartingale.
So it must be Px(τC = ∞) = 0 and this concludes the proof.

2.4 A positive recurrence criterion
We present the Foster-Lyapunov drift condition that is shown to yield a crite-
rion for positive recurrence.

Theorem 2.4. Consider X an irreducible continuous time-homogeneous Markov
chain, a measurable compact set K ⊂ E, for some c, d > 0 and a norm-like
function f : E → R+ if

Af(x) ≤ −c + d1K(x), x ∈ E

then X is positive recurrent .

Proof. In order to prove that X is positive recurrent, we want:

Ex[τK ] < ∞, x ∈ E.

We would like to use the Dynkin’s formula (eq. (1.10)) but it’s necessary that
τ is the exit time from a compact set, so we use the trick of writing τK ∧ T m.
Now it’s possible to use the Dynkin’s formula:

Ex [f(X(τK ∧ T m))] = f(X(0)) + Ex

CÚ τK∧T m

0
Af((X(s)ds)

D

It’s useful to divide the proof into two cases.
First, we consider x /∈ K:

Ex [f(X(τK ∧ T m))] ≤ f(X(0)) + Ex

CÚ τK∧T m

0
−c ds

D

= f(X(0)) − Ex

CÚ τK∧T m

0
c ds

D
= f(X(0)) − Ex [ c (τK ∧ T m)]
= f(x) − cEx [τK ∧ T m] ,

(2.13)
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Foster Lyapunov criteria

where we used the hypothesis in the first inequality.
So, we have:

Ex [τK ∧ T m] ≤ f(x)
c

− Ex [f(X(τK ∧ T m))]
c

≤ f(x)
c

(2.14)

and the second inequality is justified using the fact that f is norm-like.
We can conclude that Ex[τK ∧ T m] is a non-decreasing succession w.r.t m, so
it admits the limit. Letting m → ∞ and using the monotone convergence
theorem:

Ex [τK ] = Ex

5
lim

m→∞
τK ∧ T m

6
= lim

m→∞
Ex [τK ∧ T m] ≤ f(x)

c
. (2.15)

We have proved that Ex [τK ] < ∞, for x /∈ K.
The second case is x ∈ K. It is worth writing the return time τK as the sum
of two stopping times, that is

τK = τ1 + τ2,

where τ1 is the exit time from the set K, while τ2 is the return time from any
point which is not in K to K.
First analyzing Ex[τ1], x ∈ K is finite since it represents the exit time from a
set K that has only a finite number of points.
Now we consider instead E[τ2].
It is known that ∀x ∈ K,

Af(x) =
Ø

y
q(x, y)f(y)

 ≤ d (2.16)

If we denote qy q(x, y)f(y) as u(x), then obviously

sup
x∈K

u(x) ≤ d < ∞. (2.17)

Now, we give the definition of the boundary of the set K as follows:
∂K = {x̂ ∈ K s.t. p(x̂, y) > 0 for some y /∈ K}.

Denoting

θ = inf
x̂∈∂K

Ø
ŷ∈K

(q(x̂, ŷ) > 0)
 (2.18)
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Foster Lyapunov criteria

then we can obtain the following inequality on the probability of going from x̂
to y, conditioned to the fact that x̂ is the last state in K that is visited before
X goes out from K:

p(x̂, y|x̂ last visited) = q(x̂, y)q
ŷ /∈K q(x̂, ŷ) ≤ q(x̂, y)

θ
. (2.19)

Considering that E[τ2] is the mean value of the return time in K from a general
state not in K then

E[τ2] =
Ø
y /∈K

Ey[τ2]P(x, y, τ1) (2.20)

where P(x, y, τ1) is the probability of going from the state x ∈ K to the state
y /∈ K at time τ1.
Using what obtained previously in the case x /∈ K (see eq. (2.15)), the following
inequality can be writtenØ

y /∈K

Ey[τ2]P(x, y, τ1) ≤
Ø
y /∈K

f(y)
c

P(x, y, τ1) (2.21)

Using now eq. (2.19), we obtain

E[τ2] ≤
Ø
y /∈K

f(y)
c

P(x, y, τ1)

=
Ø
y /∈K

Ø
x̂∈∂K

p(x̂, y|x̂ last visited)Px(x̂ last visited)f(y)
c

≤
Ø

x̂∈∂K

Ø
y /∈K

q(x̂, y)
θ

f(y)
c

≤
Ø

x̂∈∂K

1
θ · c

u(x̂)

≤
Ø

x̂∈∂K

d

θ · c

< ∞.

(2.22)

In the third line it’s used the fact that Px(x̂ last visited) is less or equal than
1. In the fourth line we have changed the order of summation because the
summation on x̂ ∈ ∂K is a finite summation, while the last two inequalities
are justified using eq. (2.17).

To conclude we can combine the two cases above, obtaining Ex[τK ] < ∞, ∀x ∈
E, which proves the statement.
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Chapter 3

Generalization to
Foster-Lyapunov criteria
with stopping times

3.1 Generalization to stopping time based cri-
teria version 1

The classical Foster criteria that we have explained and proved in the previous
pages are well known for testing whether an irreducible Markov chain on a
countable state space is transient, recurrent and positive recurrent.
Intuitively, to give an example, the positive recurrence criterion assumes that
the chain tends to drift (in unit steps) towards some finite subset of the state
space, and the chain does not wander too far when it makes a one-step transi-
tion out of this set.
However, now the question is whether is possible to state analogous drift cri-
teria for Markov chains that are defined on steps that may be random steps.
In particular are there drift criteria for recurrence, positive recurrence, or tran-
sience?
The first study that addressed such issues was Filonov, who gave a sufficient
drift condition for a Markov chain on a countable space to be ergodic for steps
that are stopping times.
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Generalization to Foster-Lyapunov criteria with stopping times

3.1.1 Transience criterion generalization version 1
Theorem 3.1. Consider X an irreducible continuous time-homogeneous Markov
chain, for a measurable non-empty set B ⊂ E and a norm-like function f : E →
R+ if ∀x /∈ B ∃ τ(x) stopping time a.s. finite (indicating the exit time from a
compact set containing x) such that

Ex

CÚ τ(x)

0
Af(X(t)) dt

D
≤ 0, x /∈ B (3.1)

and
f(y) < inf

z∈B
f(z), y /∈ B (3.2)

then X is transient.

Proof. It’s useful to define the following DTMC:

• Y0 = X(0) = x

• Y1 = X(τ(x))

• Y2 = X(τ(X(τ(x))))

• . . .

• Yn+1 = X(τ(Yn))

The idea is to make a partition into sets of the state space E, where the τ(Yi)
is the exit time from one of these sets containing Yi.
Since X is an irreducible CTMC, then {Yn} has an absorbing communication
class and {Yn} limited to this class is irreducible.
To make this consideration more intuitive let’s consider y1 the entrance point
into a set A1 and x1 /∈ A1 s.t. there is a non-negative probability of a transition
from x1 to y1. Using the irreducibility of X , it returns to visit x1, then it’s
possible to go from x1 to y1. So the entrance points in the sets constitute an
irreducible set for Y .
To sum up Y has an irreducible set and it is worth considering the DTMC
limited to it to prove transience, choosing B as a non-empty measurable subset
of the irreducible set of Y .
Clearly, if we prove that B is a transient set, then we can conclude that Y is
transient because Y limited to its absorbing communication class is irreducible.
Denoting the hitting time for the DTMC {Yn}

TB = inf {n ≥ 1 : Yn ∈ B}
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Generalization to Foster-Lyapunov criteria with stopping times

we want to show that Px(TB < ∞) < 1, x /∈ B
We recall that T m indicates the exit time from the compact set Om ∈ E.
Considering now τ(Yi) as the exit times from finite sets that contain Yi, the
idea is to show that f(Yn∧TB∧T m) is a non-negative supermartingale, as follows.

E [f(Yn∧TB∧T m)|F0] = Ex [f (Yn∧TB∧T m)]
= Ex

è
f
1
X
1
τ
1
Y(n∧TB∧T m)−1

222é
= f(x) + Ex

CÚ τ(Y(n∧TB∧T m)−1)

0
Af(X(t)) dt

D
≤ f(x).

(3.3)

In the third equality we suppose that n ≤ TB otherwise we will have finished
the proof and we have used the Dynkin’s formula, while in the last inequality
we use the hypothesis eq. (3.1).
Since we have proved that f(Yn∧TB∧T m) is a non-negative supermartingale, it
converges almost surely to a finite limit, in particular, on the event {TB = ∞}
we have f(Yn∧TB∧T m) → fm

∞.
Now we can write

fm
∞ ≥ fm

∞1{TB<∞}

= lim
n→∞

f(YTB∧n∧T m)1{TB<∞}1{T m>TB}

= f(YTB∧T m)1{TB<∞}1{T m>TB}

Now, taking the limit with m → ∞

f(x) ≥ lim
m→∞

Ex

è
f(YTB∧T m)1{TB<∞}1{T m>TB}

é
≥ Ex

5
inf
z∈B

f(z)1{TB<∞}

6
= inf

z∈B
f(z)Px(TB < ∞).

(3.4)

Setting x0 /∈ B, using the hypothesis:

Px0(TB < ∞) ≤ f(x0)
infz∈B f(z) < 1.

The equation below states that B is a non-empty transient set for the DTMC
{Yn}, for what has been explained at the beginning of the proof it is sufficient
to conclude that Y is transient.
It can be observed that if X is recurent then also Y is recurrent (using the
definition of Y an the irreducibility of X together with the hypothesis of re-
currence). Finally, by the contronominal property if Y is transient then X is
transient.

25



Generalization to Foster-Lyapunov criteria with stopping times

3.1.2 Recurrence criterion generalization version 1

Theorem 3.2. Consider X an irreducible continuous time-homogeneous Markov
chain, for a measurable compact set B ⊂ E and a norm-like function f : E →
R+ if ∀x /∈ B ∃ τ(x) stopping time a.s. finite (indicating the exit time from a
compact set containing x) such that

Ex

CÚ τ(x)

0
Af(X(t)) dt

D
≤ 0, x /∈ B (3.5)

then X is recurrent.

Proof. It’s useful to define the following DTMC:

• Y0 = X(0) = x

• Y1 = X(τ(x))

• Y2 = X(τ(X(τ(x))))

• . . .

• Yn+1 = X(τ(Yn))

As it has been explained in the introduction of the proof of the transience
criterion above, since X is an irreducible CTMC, then {Yn} has an absorbing
communication class, and limiting {Yn} to this class it is irreducible.
So, it is worth considering the DTMC limited to this class to prove recurrence
and the set K as a subset of the states in this class. Indeed if it is a recurrent
finite set, there is a state in the class that has to be recurrent also for X. Using
that X is an irreducible chain, X itself is recurrent.
To sum up the idea is to show that {Yn} limited to a closed and irreducible
communication class is a recurrence DTMC under the hypothesis of the theo-
rem, the consequence will be that also the CTMC {Xt} is a recurrent chain.
Denoting the hitting time for the DTMC {Yn}

TB = inf {n ≥ 1 : Yn ∈ B}

we want to show that Px(TB < ∞) = 1.
Considering now τ(Yi) as the exit times from finite sets that contain Yi, the
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idea is to show that f(Yn∧TB
) is a non-negative supermartingale, as follows.

E [f(Yn∧TB
)|F0] = Ex [f(Yn∧TB

)]
= Ex

è
f(X(τ(Y(n∧TB)−1)))

é
= f(x) + Ex

CÚ τ(Y(n∧TB)−1)

0
Af(X(t)) dt

D
≤ f(x).

(3.6)

In the third equality we suppose that n ≤ TB otherwise we will have finished
the proof and we have used the Dynkin’s formula.
Since we have proved that f(Yn∧TB

) is a non-negative supermartingale, it con-
verges almost surely to a finite limit, in particular, on the event {TB = ∞} we
have f(Yn) is converging.
Since Yn ∈ B ⇐⇒ f(Yn) ≤ K (K > K∗ = supn f(Yn)) then Yn visits all the
sets of the form {x : f(x) > L}.
As a consequence

sup
t

f(X(t)) = ∞ =⇒ f(x) → ∞

but this is an absurdum since f(Yn)) is a supermartingale.
So it must be Px(TB = ∞) = 0 with x ∈ E and this concludes the proof.
Indeed we have proven that there exists a finite recurrent set for the DTMC.

3.1.3 Positive recurrence criterion generalization version
1

Theorem 3.3. Consider X an irreducible continuous time-homogeneous Markov
chain, c, d > 0, a measurable finite set K and f : E → R+ norm-like function.
If for all x ∈ E ∃ τ(x) stopping time a.s. finite (indicating the exit time from
a compact set containing x) such that

Ex

CÚ τ(x)

0
Af(X(t)) dt

D
< −cEx [τ(x)] + d1K(x), x ∈ E

then X is positive recurrent.

Proof. We proceed in a similar way as in the proof of Theorem (2.4).
We must show that Ex[τK ] < ∞ ∀x ∈ E.
We define τ(xi) as the exit time of the process from a compact set that contains
the state xi.
Let T0 = 0 and for m ≥ 1 denote
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Tm = τ(x1) + τ(x2) + · · · + τ(xm)
Now it’s possible to use Theorem (1.10):

Ex [f(X(τK ∧ Tm))] = f(x) + Ex

CÚ τK∧Tm

0
Af(X(t)) dt

D

= f(x) +
m−1Ø
i=0

Ex

CÚ τK∧Ti+1

τK∧Ti

Af(X(t)) dt

D

< f(x) +
m−1Ø
i=0

Ex

è
(−cExi [τ(xi)] + d1K(xi)) 1{xi+1 /∈K}

é

= f(x) +
m−1Ø
i=0

Ex

è
(−cEx [τ(xi)|X(Ti)] + d1K(xi))1{xi+1 /∈K}

é

= f(x) +
m−1Ø
i=0

Ex

è
(−cτ(xi) + d1K(xi))1{xi+1 /∈K}

é
(3.7)

where we used the hypothesis in the third inequality, since the stopping times
τ(xi), i = 1, . . . , m are a.s. finite, and we suppose xi /∈ K, otherwise we will
have finished the proof because we have the thesis.
So, having that {X(Ti+1) /∈ K} = {Ti+1 < τK}, we can combine the summa-
tions, obtaining:

Ex [f(X(τK ∧ Tm))] = f(x) + Ex

CÚ τK∧Tm

0
Af(X(t)) dt

D

< f(x) +
m−1Ø
i=0

Ex

è
(−cτ(xi) + d1K(xi))1{xi+1 /∈K}

é
= f(x) − cEx [τK ∧ Tm] + dEx [1K(x)]
= f(x) − cEx [τK ∧ Tm] + d1K(x).

(3.8)

We have
Ex[τK ∧ Tm] <

f(x) + d1K(x)
c

because f is norm-like.
We can conclude as before letting m → ∞ and using the monotone convergence
theorem:

Ex [τK ] = Ex

5
lim

m→∞
τK ∧ Tm

6
= lim

m→∞
E [τK ∧ Tm] <

f(x) + d1K(x)
c

(3.9)

which finishes the proof since we have proved that Ex[τK ] < ∞, for x ∈ E.
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3.2 Generalization to stopping time based cri-
teria version 2

In the criteria above we used τ as the stopping time representing the exit
time from a finite set containing x. Using the formulation above we cannot
extend the criteria with τ indicating the exit time from a general non-empty
set containing x (as the Dynkin’s formula is no longer available to be used).
To overcome this problem we formulate now a second version of these criteria.
Before enouncing the criteria it’s necessary to give some definitions.
It is assumed that on the probability space, there is a semi-group of shift-
operators (θt) so that the relation X(t + s) = X(t) ◦ θs holds almost surely for
all t, s ≥ 0.
Let

t1 = inf{s > tn : X(s) /= X(s−)}, (3.10)

the first instant of jump of (X(t)) and for n ≥ 1,

tn+1 = inf{s > tn : X(s) /= X(s−)} = tn + t1 ◦ θtn, (3.11)

the sequence of the instants of successive jumps of the process.

3.2.1 Transience criterion generalization version 2
Theorem 3.4. Consider X an irreducible continuous time-homogeneous Markov
chain, c > 0, a non-empty measurable set B and f : E → R+ norm-like func-
tion. If there exists τ an integrable stopping time such that τ ≥ η ∧ t1, for a
constant η > 0 and t1 indicates the first instant of jump of X(t), and

Ex[f(X(τ))] − f(x) ≤ 0, x /∈ B, (3.12)

f(y) < inf
z∈B

f(z), y /∈ B (3.13)

then X is transient.

Proof. We define a sequence of induced stopping times (sn) by induction, by
s1 = τ and

sn+1 = sn + τ ◦ θsn (3.14)

Using the hypothesis on τ , it follows that (sn) is almost surely an increasing
sequence, i.e. sn < sn+1, ∀n ≥ 1.
We then define

τB = inf{s ≥ 1 : X(s) ∈ B} (3.15)
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and
ν = inf{n ≥ 1 : X(sn) ∈ B} (3.16)

and clearly τB ≤ sν .
Define for n ≥ 1

Un = f(X(sn)) (3.17)

then, with eq. (3.12) and the strong Markov property of X(t) for the stopping
time sn, we obtain the relation

E[Un+1|Fsn] = EX(sn)[f(X(τ))] = EX(sn)[f(X(τ)) − f(x)] + Un ≤ Un (3.18)

on the event {ν > n}.
The process Uν∧n is therefore a non-negative supermartingale, in particular it
is converging almost surely to a finite limit, that is called U∞.
Then, we can proceed as follows.

U∞ ≥ U∞1{τB<∞}

= lim
n→∞

Un∧ν1{τB<∞}

= Uν1{τB<∞}

≥ inf
z∈B

f(z)1{τB<∞}.

(3.19)

Using now the supermartingale property of Uν∧n:

U0 = f (X (s0))
= f(X(0))
= f(x)
≥ Ex[U∞]
≥ Ex

è
U∞1{τB<∞}

é
≥ inf

z∈B
f(z)Px(τB < ∞).

(3.20)

Set now x0 /∈ B such that
f(x0) < inf

z∈B
f(z),

from the second hypothesis, which is eq. (3.13), it is shown that

Px0(τB < ∞) ≤ f(x0)
infz∈B f(z) < 1. (3.21)

which establishes transience.

30



Generalization to Foster-Lyapunov criteria with stopping times

3.2.2 Recurrence criterion generalization version 2
Theorem 3.5. Consider X an irreducible continuous time-homogeneous Markov
chain, a measurable finite set K and f : E → R+ norm-like function. If there
exists τ an integrable stopping time such that τ ≥ η ∧ t1 (for a constant η > 0
and t1 indicating the first instant of jump of X(t)), and

Ex[f(X(τ))] − f(x) ≤ 0, x /∈ K (3.22)

then X is recurrent.

Proof. We define a sequence of induced stopping times (sn) by induction, by
s1 = τ and

sn+1 = sn + τ ◦ θsn. (3.23)
Using the hypothesis on τ , it follows that (sn) is almost surely an increasing
sequence, i.e. sn < sn+1, ∀n ≥ 1.
We then define

τK = inf{s ≥ 0 : f(X(s)) ≤ C} (3.24)
and

ν = inf{n ≥ 0 : f(X(sn)) ≤ C} (3.25)
and clearly τK ≤ sν .
Define for n ≥ 1

Un = f(X(sn)) (3.26)
then, with eq. (3.22) and the strong Markov property of X(t) for the stopping
time sn, we obtain the relation

E[Un+1|Fsn] = EX(sn)[f(X(τ))] = EX(sn)[f(X(τ)) − f(x)] + Un ≤ Un (3.27)

on the event {ν > n}.
The process Uν∧n is therefore a non-negative supermartingale, in particular it
is converging almost surely to a finite limit.
Let’s prove using reductio ad absurdum that τK < ∞, supposing τK = ∞.
Then, Un = f(X(sn)) converges almost surely to U∞.
Assume that f(X(sn)) is transient, then f(X(sn)) leaves any compact set, so
that

lim sup
n→∞

f(X(sn)) = ∞

obtaining a first absurdum, since f(X(sn)) should converge almost surely to a
finite limit U∞.
As a consequence, on the event {τK = ∞}, f(X(sn)) is recurrent, which implies

31



Generalization to Foster-Lyapunov criteria with stopping times

that X(t) visits infinitely many times a state x. Using the irreducibility of the
process, X will visit infinitely many times the set {x : f(x) ≤ K}. This fact
leads to the second absurdum, implying τK < ∞, that concludes the proof.

3.2.3 Positive recurrence criterion generalization version
2

Theorem 3.6. Consider X an irreducible continuous time-homogeneous Markov
chain, c > 0, a measurable finite set K and f : E → R+ norm-like function. If
there exists an integrable stopping time τ such that τ ≥ η ∧ t1 (for a constant
η > 0 and t1 indicates the first instant of jump of X(t)) and

Ex[f(X(τ))] − f(x) ≤ −cEx[τ ] + d1K(x), x ∈ E; (3.28)

then X is positive recurrent.

Proof. We define τ(xi) as the exit time of the process from a non-empty set
that contains the state xi.
Let T̃0 = 0 and for m ≥ 1 denote

T̃m = τ(x1) + τ(x2) + · · · + τ(xm)

We cannot use the Dynkin’s formula, however the first equality can be obtained
adding pairs of consecutive terms that cancel each others (as a sort of telescopic
sum):

Ex

è
f(X(τK ∧ T̃m))

é
= f(x) +

m−1Ø
i=0

Ex

è
f(X(τK ∧ T̃i+1)) − f(X(τK ∧ T̃i))

é

< f(x) +
m−1Ø
i=0

Ex

è
(−cExi [τ(xi)] + d1K(xi)) 1{xi+1 /∈K}

é

= f(x) +
m−1Ø
i=0

Ex

è
(−cEx

è
τ(xi)|X(T̃i)

é
+ d1K(xi))1{xi+1 /∈K}

é

= f(x) +
m−1Ø
i=0

Ex

è
(−cτ(xi) + d1K(xi))1{xi+1 /∈K}

é
(3.29)

where we used the hypothesis in the third inequality, since the stopping times
τ(xi), i = 1, . . . , m are a.s. finite, and we suppose xi /∈ K, otherwise we will
have finished the proof because we have the thesis.
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So, having that {X(T̃i+1) /∈ K} = {T̃i+1 < τK}, we can combine the summa-
tions, obtaining:

Ex

è
f(X(τK ∧ T̃m))

é
= f(x) − cEx

è
τK ∧ T̃m

é
+ dEx [1K(x)]

= f(x) − cEx

è
τK ∧ T̃m

é
+ d1K(x).

(3.30)

We have
Ex[τK ∧ T̃m] <

f(x) + d1K(x)
c

because f is norm-like.
We can conclude as before letting m → ∞ and using the monotone convergence
theorem:

Ex [τK ] = Ex

5
lim

m→∞
τK ∧ T̃m

6
= lim

m→∞
E
è
τK ∧ T̃m

é
<

f(x) + d1K(x)
c

(3.31)

which finishes the proof since we have proved that Ex[τK ] < ∞, for x ∈ E.
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Chapter 4

Stochastic Reaction
Networks

4.1 Poisson and general counting process
The basic building block of the models that we will consider are counting pro-
cesses, which are processes N such that N(t) is the number of times that a
particular phenomenon has been observed by time t. We assume that these
observations occur one at a time, so we have the following definitions:
Definition 4.1. N is a counting process if N(0) = 0 and N is constant
except for jumps of +1.

If we have that N is a counting process, and t < s, then N(t) − N(s) is the
number of observations in the interval (t, s]. The simplest counting process is
a Poisson process.
Definition 4.2. A counting process is a Poisson process if these conditions
are satisfied:

• In disjoint time intervals the number of observations are independent ran-
dom variables, that is if t0 < t1 < · · · < tn, then N(tk) − N(tk−1),
k = 1, . . . , n are independent random variables.

• The distribution on N(t + s) − N(t) is not dependent from t.

Theorem 4.1. If N is a Poisson process, then there exists a constant λ > 0
such that N(s)−N(t) is Poisson distributed with parameter λ(s− t) or, rather,

P((N(s) − N(t)) = k) = (λ(s − t))k

k! e−λ(s−t) (4.1)
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In general the intensity for a counting process at time t may depend on the
behaviour of the counting process prior to time t, but also on other stochastic
inputs.

Definition 4.3. A Cox process is a point process which is a generalization of
a Poisson process where the intensity that varies across the underlying mathe-
matical space (often space or time) is itself a stochastic process.

Indeed a Cox process can be interpreted as the result of a doubly stochastic
procedure, which generates first a random measure ξ and then a Poisson process
with intensity measure ξ.

4.2 The basic model
We can think about a reaction network as a collection of objects that dynami-
cally interfere with each other, with some rules. A biochemical system consists
of two parts: a reaction network, and a choice of dynamics. The network is a
static objects consisting of:

• Species S, that are the chemical components.

• Complexes C, which are nonnegative linear combinations of the species.
They describe how species interact.

• Reactions R, which describe how to convert one such complex to another.

Definition 4.4. A chemical reaction network consists of a triple {S, C, R}
where:

1. S = {S1, . . . , Sn} is the set of species, with cardinality n where n is finite;

2. C is the set of complexes, consisting of nonnegative integer linear combi-
nations of the species;

3. R = {yk −→ y′
k : yk, y′

k ∈ C} is the set of reactions, that is a finite set of
ordered couples of complexes.

The notation that we use to write the k−th reaction is the stoichiometric
equation: Ø

i

ykiSi −→
Ø

i

y′
kiSi
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where the vectors yk, y′
k ∈ Zn

≥0 are associated with the source and the product
complex, respectively.
We then define the reaction vectors of the network as ζk = y′

k − yk ∈ Zn
≥0.

Figure 4.1. Example of a reaction network, where: Species X = {A, B, C},
Complexes C = {A + B, 2A, 3C} ∈ Z |X|

≥0 , Reactions R ∈ C × C.

Having a notion of a reaction system in hand, now the question is how to
model the dynamical behavior of the counts of the different species.
The stochastic model is a continuous time Markov chain {X(t), t ≥ 0}, where
X(t) counts the number of molecules of the different species at time t.
For each reaction yk −→ y′

k ∈ R we specify an intensity function λk : Zn
≥0 →

R≥0. The number of times that the k−th reaction occurs by time t is described
by the counting process

Rk(t) = Yk

AÚ t

0
λk(X(s))ds

B
, (4.2)

where the Yk are independent unit Poisson process. The state of the system
then satisfies the equation X(t) = X(0) +q

k Rk(t)ζk, or

X(t) = X(0) +
Ø
k

Yk

AÚ t

0
λk(X(s))ds

B
ζk, (4.3)
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where the sum is over the reaction channels.
Now we need to specify the intensity functions or the kinetics. The minimal
hypothesis that we can make on the kinetics is that it is stochiometrically
admissible, which means that λk(x) = 0 if xi < yki, ∀i ∈ {1, . . . n}. The
definition suggests that a reaction can take place only if the number of molecules
is sufficient to produce the source complex and ensure the process remains
within Zn

≥0 for all time.
One of the most common type of kinetics is the mass-action kinetics. The
stochastic form of the law of mass action says that for some constant κk, termed
the reaction rate constant, the rate of the k−th reaction should be

λk(x) = κk

nÙ
i=1

yki!
A

x

yk

B
= κk

nÙ
i=1

xi!
(xi − yki)!

(4.4)

that corresponds to the hypothesis that the system is well stirred. The rate
function is proportional to the number of possible combinations of molecules
present in the system that can give rise to the reaction.

4.3 Deterministic models of reaction networks
In this section we consider a chemical reaction network where the number of
constituents is extremely high, so that the dynamics of the concentrations is
described accurately by a deterministic model.
Set x(t) ∈ Rn

≥0 as the vector whose components xi(t) contains the concentration
of species Si at t.
The most common choice for the deterministically modeled system is

ẋ(t) =
Ø
k

κkx(t)ykζk, (4.5)

where for two vectors a, b ∈ Rm
≥0 we write ab = rm

j=1 a
bj

j .
The option of κkxyk is called deterministic mass-action kinetics.

4.4 Networks conditions and complex-balanced
equilibra

The definitions that follow allow us to relate the network architecture to its
associated dynamical systems.
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Definition 4.5. A chemical reaction network, {S, C, R} is called weakly-
reversible if for any reaction yk → y′

k ∈ R, there is a sequence of directed
reactions beginning with y′

k as a source complex and ending with yk as a prod-
uct complex. This means that y′

k → y1, y1 → y2, . . . , yr → yk ∈ R.

Definition 4.6. A network is called reversible if y′
k → yk ∈ R, whenever

yk → y′
k.

Figure 4.2. Example of a reaction network that is weakly reversible
but not reversible.

The connected components of the graph form a partition of the complexes
into different linkage classes.

Figure 4.3. The graph above has two connected components and each
component is partitioned into the following linkage classes {2S1, S5} and
{S3, S1 + S2, 2S2, S4, S1}.
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Definition 4.7. The stoichiometric subspace of the network is
S=span{yk→y′

k∈R}{y′
k − yk}.

Definition 4.8. Given c ∈ Rn, we call c + S the stoichiometric compat-
ibility classes, while (c + S) ∩ Rn

≥0 are the non-negative stoichiometric
compatibility classes of the network.
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4.5 Examples
We give now some cases of study and try to apply the Foster-Lyapunov criteria
in order to establish transience, recurrence and positive recurrence.

Example 4.1. Consider the following chemical reaction network, characterized
by:

• species X = {A, B};

• complexes C = {0, A, B, 2A, A + 2B} ∈ Z |X|
≥0 ;

• reactions R ∈ C × C.

The CRN has 3 linkage classes, the first two are reversible, while the last
one is not reversible nor weakly reversible.
Denote with X(t) = [X1(t), X2(t)] ∈ Z2

≥0 respectively the number of species of
type A and type B.
The five reaction channels have reaction vectors

1. ζ1 =
C
1
0

D
,

2. ζ2 =
C
−1
0

D
,

3. ζ3 =
C
0
1

D
,
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4. ζ4 =
C

0
−1

D
,

5. ζ5 =
C
−1
2

D
;

and respective intensities (using the law of mass action)

1. λ1(x) = κ1,

2. λ2(x) = κ2x1,

3. λ3(x) = κ3,

4. λ4(x) = κ1x2,

5. λ5(x) = κ5x1(x1 − 1).

Recall that the generator A can be written as

Af(x) =
Ø
k

λk(x) (f(x + ζk) − f(x)) . (4.6)

Choosing a linear Lyapunov function f of the form f(x) = αx1 + βx2, then:

Af(x) = λ1(x)[f(x + ζ1) − f(x)] + λ2(x)[f(x + ζ2) − f(x)] + λ3(x)[f(x + ζ3) − f(x)]
+ λ4(x)[f(x + ζ4) − f(x)] + λ5(x)[f(x + ζ5) − f(x)]
= κ1[f(x1 + 1, x2) − f(x1, x2)] + κ2x1[f(x1 − 1, x2) − f(x1, x2)]
+ κ3[f(x1, x2 + 1) − f(x1, x2)] + κ4x2[f(x1, x2 − 1)]
+ κ5x1(x1 − 1)[f(x1 − 1, x2 + 2)]
= κ1[α(x1 + 1) + βx2 − αx1 − βx2] + κ2x1[α(x1 − 1) + βx2 − αx1 − βx2]
+ κ3[αx1 + β(x2 + 1) − αx1 − βx2] + κ4x2[αx1 + β(x2 − 1)]
+ κ5x1(x1 − 1)[αx1(x1 − 1) + β(x2 + 2) − αx1 − βx2]
= ακ1 − ακ2x1 + βκ3 − βκ4x2 + (−α + 2β)κ5x1(x1 − 1)

(4.7)

Using α = 2 and β = 1, then in order to use Theorem 2.4 it’s necessary that

Af(x) = 2κ1 − 2κ2x1 + κ3 − κ4x2 ≤ −c (4.8)

for c > 0 and x /∈ K, where K is a compact set.
Since κ1 > 0 and κ3 > 0 if we call M = c + 2κ1 + κ3, then M > 0 and the
condition of Theorem 2.4 can be written as

2κ2x1 + κ4x2 > M. (4.9)
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Since 2κ2x1 + κ4x2 = M is the equation of a straight line, Af(x) > 0 is valid
out from a compact set, thanks to this it can be concluded that the CRN is
positive recurrent.

Example 4.2. It can be seen that, for symmetry, this second example is almost
similar to the one above.

The five reaction channels have reaction vectors

1. ζ1 =
C
1
0

D
,

2. ζ2 =
C
−1
0

D
,

3. ζ3 =
C
0
1

D
,

4. ζ4 =
C

0
−1

D
,

5. ζ5 =
C

2
−1

D
;

and respective intensities (using the law of mass action)

1. λ1(x) = κ1,

2. λ2(x) = κ2x1,

3. λ3(x) = κ3,
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4. λ4(x) = κ1x2,

5. λ5(x) = κ5x2(x2 − 1).

Using, as in the first example, a linear Lyapunov function f(x) = αx1 + βx2,
we obtain

Af(x) = λ1(x)[f(x + ζ1) − f(x)] + λ2(x)[f(x + ζ2) − f(x)] + λ3(x)[f(x + ζ3) − f(x)]
+ λ4(x)[f(x + ζ4) − f(x)] + λ5(x)[f(x + ζ5) − f(x)]
= κ1[f(x1 + 1, x2) − f(x1, x2)] + κ2x1[f(x1 − 1, x2) − f(x1, x2)]
+ κ3[f(x1, x2 + 1) − f(x1, x2)] + κ4x2[f(x1, x2 − 1)]
+ κ5x2(x2 − 1)[f(x1 + 2, x2 − 1)]
= κ1[α(x1 + 1) + βx2 − αx1 − βx2] + κ2x1[α(x1 − 1) + βx2 − αx1 − βx2]
+ κ3[αx1 + β(x2 + 1) − αx1 − βx2] + κ4x2[αx1 + β(x2 − 1)]
+ κ5x2(x2 − 1)[αx1(x1 + 2) + β(x2 − 1) − αx1 − βx2]
= ακ1 − ακ2x1 + βκ3 − βκ4x2 + (2α − β)κ5x2(x2 − 1).

(4.10)

For symmetry we choose α = 1 and β = 2 and in order to use Theorem 2.4 it’s
necessary that

Af(x) = κ1 − κ2x1 + 2κ3 − 2κ4x2 ≤ −c (4.11)

for c > 0 and x /∈ K, where K is a compact set.
Since κ1 > 0 and κ3 > 0 if we call M = c + 2κ1 + κ3, then M > 0 and the
condition of Theorem 2.4 can be written as

κ2x1 + 2κ4x2 > M. (4.12)

Since κ2x1 + 2κ4x2 = M is the equation of a straight line, Af(x) > 0 is valid
out from a compact set, thanks to this it can be concluded that the CRN is
positive recurrent.

Example 4.3. Consider now a CRN that is a union of the two models described
above.
It’s interesting to observe that, although the two single models are positive
recurrent as shown in the previous two examples, their combination is recurrent,
as we prove in the following.
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The six reaction channels have reacton vectors

1. ζ1 =
C
1
0

D
,

2. ζ2 =
C
−1
0

D
,

3. ζ3 =
C
0
1

D
,

4. ζ4 =
C

0
−1

D
,

5. ζ5 =
C
−1
2

D
,

6. ζ6 =
C

2
−1

D
;

and respective intensities (using the law of mass action)

1. λ1(x) = κ1,

2. λ2(x) = κ2x1,

3. λ3(x) = κ3,

4. λ4(x) = κ1x2,
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5. λ5(x) = κ5x1(x1 − 1),

6. λ6(x) = κ6x2(x2 − 1).

Choosing a Lypaunov function f of the form f(x) = 1
x1+x2

, then

Af(x) = λ1(x)[f(x + ζ1) − f(x)] + λ2(x)[f(x + ζ2) − f(x)] + λ3(x)[f(x + ζ3) − f(x)]
+ λ4(x)[f(x + ζ4) − f(x)] + λ5(x)[f(x + ζ5) − f(x)] + λ6(x)[f(x + ζ6) − f(x)]
= κ1[f(x1 + 1, x2) − f(x1, x2)] + κ2x1[f(x1 − 1, x2) − f(x1, x2)]
+ κ3[f(x1, x2 + 1) − f(x1, x2)] + κ4x2[f(x1, x2 − 1)]
+ κ5x1(x1 − 1)[f(x1 − 1, x2 + 2)] + κ6x2(x2 − 1)[f(x1 + 2, x2 − 1)]

= κ1[ 1
(x1 + 1) + x2

− 1
x1 + x2

] + κ2x1

5 1
(x1 − 1) + x2

− 1
x1 + x2

6

+ κ3

5 1
x1 + (x2 + 1) − 1

x1 + x2
] + κ4x2

5 1
x1 + (x2 − 1) − 1

x1 + x2

6

+ κ5x1(x1 − 1)
5 1
(x1 − 1) + (x2 + 2) − 1

x1 + x2

6

+ κ6x2(x2 − 1)
5 1
(x1 + 2) + (x2 − 1) − 1

x1 + x2

6

= κ1

5
− 1

(x1 + x2 + 1)(x1 + x2)

6
+ κ2x1

5 1
(x1 + x2 − 1)(x1 + x2)

6

+ κ3

5
− 1

(x1 + x2 + 1)(x1 + x2)

6
+ κ4x2

5 1
(x1 + x2 − 1)(x1 + x2)

6

+ κ5x1(x1 − 1)
5

− 1
(x1 + x2 + 1)(x1 + x2)

6

+ κ6x2(x2 − 1)
5

− 1
(x1 + x2 + 1)(x1 + x2)

6

= (κ1 + κ3 + κ5x1 + κ6x2(x2 − 1))
3

− 1
(x1 + x2 + 1)(x1 + x2)

4

+ (κ2x1 + κ4x2)
3 1

(x1 + x2 − 1)(x1 + x2)

4
(4.13)

Since the set {x : Af(x) ≤ 0} is the region outside a non-empty set (in partic-

ular an ellipse since det(A3,3) > 0 where A3,3 =
C
k5 0
0 k6

D
), the first condition

of Theorem 2.1 is satisfied.
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Finally, it remains to prove the second condition of the transience criterion
(eq. 2.2) which is:

f(y) < inf
x∈B

f(x), for some y /∈ B (4.14)

Since the chosen Lyapunov function f is positive in the ellips and it decreases,
converging to 0 as x1 → ∞ and x2 → ∞, we have the conclusion, and the
reaction model in this example is transient.

Example 4.4. Consider the following chemical reaction network
The reaction vectors are:

1. ζ1 =
C

0
−1

D
,

2. ζ2 =
C
1
1

D
,

3. ζ3 =
C
0
1

D
,

4. ζ4 =
C
−1
−1

D
;

and the respective intensities are

1. λ1(x) = κ1x2,

2. λ2(x) = κ2,

3. λ3(x) = κ3x2(x2 − 1),

4. λ4(x) = κ4x1x2.
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This example is significant because it shows that it is not possible to prove
positive recurrence using the classicl Foster-Lyapunov criterion as in the mod-
els above. Indeed if we choose as Lyapunov function f(x) = x1 + x2, taking a
point of type (x1,0), the only possible reaction is 0 → A + B. However along
this path the Lyapunov function does not decrease.
Another problem is that from the state (x1,0), we can go to (x1 + 1,1). Assum-
ing x1 very big, the dominant reaction is A + B → 0, so that from (x1 + 1,1)
we return back to (x1,0)and we remain "trapped" in a sort of cycle as indicated
in the figure below. Clearly if the Lyapunov function is chosen in order to de-
crease in one direction of the cycle, it cannot decrease also in the other direction.

All these observations lead to the conclusion that it is necessary, in this case,
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to use the Foster-Lyapunov criterion with stopping times. The main techni-
cal difficulty is of gluing different functions in order to have a global Foster-
Lyapunov function. In particular the goal is to prove the positive recurrence
of the model using Theorem 3.6 with the following Lyapunov function:

f(x) =
ex1+x2 if x2 ≥ 2

ex1+4 if x = (x1 + 1,1) or x = (x1,0)
. (4.15)

We define the stopping time τ as

τ =
t1 if X2(0) ≥ 3

inf{t : X(t) /∈ {(x1,0), (x1 + 1,1), (x1 + 2,2)} if X(0) ∈ {(x1,0), (x1 + 1,1), (x1 + 2,2)}
.

(4.16)

• Set X2(0) = x2 ≥ 3. Thanks to Dynkin’s formula:

Ex [f(X(τ))] − f(x) = Ex [f(X(t1)) − f(x)]

= Ex

CÚ t1

0
Af(X(s))ds

D
= Af(x)Ex [t1]
≤ −cEx [t1]

.

(4.17)

So, it is sufficient to prove Af(x) ≤ −c, ∀x /∈ K where K is a compact
set.

A(f(x)) = λ1(x) (f(x + ζ1) − f(x)) + λ2(x) (f(x + ζ2) − f(x)) +
+ λ3(x) (f(x + ζ3) − f(x)) + λ4(x) (f(x + ζ4) − f(x))

= ex1+x2
351

e
− 1

6
k1x2 +

5
e2 − 1

6
k2 +

5
e − 1

6
k3x2 (x2 − 1) −

5 1
e2 − 1

6
k4x1x2

4
≤ −γ

(4.18)

∀x not in K and γ > 0.
We call M = [e2−1]k2+[e−1]k3x2

2 > 0, M +γ = c and a = −k4[ 1
e2 −1] > 0,

b = k1[−e−1 + 1] + k3[−1 + e] > 0.
Then eq. (3.28) can be rewritten as

−ax2 − bx1x2 ≤ −c ∀x /∈ B. (4.19)
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Let us fix x1 ≥ c
bx2

,

ax2 + bx1x2 ≥ ax2 + c ≥ c.

Since x2 ≥ 3 eq. (4.19) is satisfied ∀x not in a rectangle (that is a compact
set).

• Set X(0) ∈ T = {(x1,0), (x1+1,1), (x1+2,2)}. The possible states out from
this set of three points that the model can visit after one single reaction are
R = {(x1 +1,2), (x1 +2,3), (x1 +3,3), (x1 +3,2)}. It’s worth to consider the
continuous time Markov chain with the set of seven possible states T ∪ R.
In particular we consider the set T as transient states and R as recurrence
states.
The intuition is that the event with the greatest probability that allow
us to exit from T is the reaction B → 2B in the state (x1 + 1,1) . To
understand this, we compute the exit probabilities from each of the three
states in T and show that the limit for x1 → ∞ of the exit probability
goes to 0 from (x1, 0), (x1 + 2,2) and to 1 from (x1 + 1, 1). In order to
compute the exit probabilities from each of the three states in T , we use
the following formula

−Q−1
T,T QT,R, (4.20)

clearly the Q−1
T,T is the inverse of the matrix QT,T .

Notice that, using the values of the reaction intensities we can write the
transition rate matrix Q and especially QT,T that contains only the tran-
sitions among the transient states as

QT,T =

 −k2 k2 0
k4(x1 + 1) −k4(x1 + 1) − k2 − k1 k2

0 k4(2x1 + 4) −k4(2x1 + 4) − k2 − 2k1 − 2k3


We use the math solver Symbolab (any math solver is sufficient) to com-
pute the inverse of this matrix and we paste in Fig. 4.4 the result of the
inverse operation.
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Then, we write the matrix QT,R as

QT,R =

 0 0 0 0
k1 0 0 0
0 2k1 k2 2k3


Using eq.(4.20), we obtain the matrix of the exit distributions from the
states in T , calling −Q−1

T,T = A and QT,R = B. It’s interesting to notice
that, because of the structure of the matrix QT,R, we are only interested
in the elements of the second and third columns of matrix Q−1

T T .

−Q−1
T,T QT,R =

A1,2B2,1 A1,3B3,2 A1,3B3,3 A1,3B3,4
A2,2B2,1 A2,3B3,2 A2,3B3,3 A2,3B3,4
A3,2B2,1 A3,3B3,2 A3,3B3,3 A3,3B3,4


Consider again the matrix Q−1

T,T depicted in the figure above, it’s clear that
the elements in the second column tend to a constant as x1 → ∞, while
those of the third column go to 0 as x1 → ∞.
This is particular useful, since taking x1 → ∞, the only elements that do
not tend to 0 in the matrix −Q−1

T,T QT,R of exit distribution are those of the
first column. This is to say that the only probabilities that do not vanish
as x1 → ∞ are the exit probabilities from each transient state to the state
(x1 + 1,2).
Now, we are able to apply Theorem 3.6.
Ex [f(X(τ))] − f(x) = [f(x1 + 1,2) − f(x1, x2)]Px(X(τ) = (x1 + 1,2))

+ [f(x1 + 2,3) − f(x1, x2)]Px(X(τ) = (x1 + 2,3)
+ [f(x1 + 3,2) − f(x1, x2)]Px(X(τ) = (x1 + 3,2))
+ [f(x1 + 3,3)) − f(x1, x2)]Px(X(τ) = (x1 + 3,3).

(4.21)
Consider to take x1 very large, so that the only probability that survives
is Px(X(τ) = (x1 + 1,2)).
Notice that the sum along the rows of the matrix Q−1

T,T represents the mean
time spent in each one of the three states in T and it is a polynomial w.r.t.
x1.
Then,

Ex [f(X(τ))] − f(x) = ex1+3 − ex1+4

= ex1(e3 − e4)
≤ −γ(r + qn(x1))

(4.22)

so we have the conclusion.
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Chapter 5

Conclusions

In this thesis we analyzed the Foster-Lyapunov criteria to study the stability
of continuous-time Markov chains defined on countable state space and we pre-
sented some interesting applications to Stochastic Reaction Networks.
We proposed and proved a more general version of the Dynkin’s formula, ex-
tending it to functions only bounded on compact sets and to stopping times
that are exit times from compact sets. This approach has been crucial since
the classical Foster-Lyapunov criteria are proved by a systematic application
of the Dynkin’s formula.
The main goal of the work has been to enunciate the Foster-Lyapunow criteria
with stopping times, which are a generalization of the classical criteria. Con-
sidering, for instance, the positive recurrence criterion, the idea is that starting
from an initial state x of high energy this does not lead quickly to a lower
energy level, so that Af(x) ≤ −c, c > 0. Indeed there could be the possibility
of having to wait for some amount of time, the stopping time τ , before the
generator applied to f can significantly decrease.
Moreover, the stopping time τ may be chosen in a way that X(τ) is in some
convenient subspace.
As shown in the last example, the criteria with the stopping times are, in
some cases, essential to study the limit behaviour of the Stochastic Reaction
Networks. In this particular example, it is too much difficult to find a global
Lyapunov function that satisfies the classical drift criterion, making the gener-
alized version of it needful.
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