
POLYTECHNIC OF TURIN

Master’s degree programme in Mathematical
Engineering

Consumption-Saving under Labor
Uncertainty

Supervisor

Prof. PAOLO BRANDIMARTE

Candidate

FULVIO RADDI

March 2024

Summary

This thesis, authored by Fulvio Raddi from the Polytechnic of Turin, delves into the
numerical dynamic programming approach for addressing consumption and saving
decisions under labor income uncertainty. The central objective is to ascertain
optimal strategies for consumption and savings in the presence of two stochastic
factors: varying labor conditions (modeled as unemployed, fully employed, and an
intermediate state) and portfolio investment in both a riskless and a risky asset,
with observed returns post-investment. Transitions between labor conditions are
captured through a Markov chain. Utilizing Matlab scripts, the thesis employs
a numerical dynamic programming framework, emphasizing scenario generation,
value function approximation, and state space discretization. The overarching
aim is to pinpoint the optimal strategy that maximizes a utility function linked
to consumption, considering the dynamic interplay of wealth and employment
conditions within the numerical dynamic programming paradigm.

ii

Acknowledgements

I would like to express my deepest gratitude to Prof. Paolo Brandimarte, my thesis
advisor, for his invaluable guidance, unwavering support, and insightful feedback
throughout the entire research process. His expertise and encouragement played a
pivotal role in shaping this work.
I would like to extend my heartfelt gratitude to the European Central Bank for
providing me with the opportunity to work within its esteemed institution during
the period of writing this thesis. The exposure to the dynamic environment and
the invaluable experiences gained have significantly enriched me, contributing to
my personal and professional growth in every aspect of my human being. I am
truly appreciative of the support and resources extended to me during this period.

Gratitude is extended to my family and friends for their unwavering support,
understanding, and encouragement during the challenging phases of this academic
journey. Their belief in my abilities has been a constant source of motivation.

Finally, I want to express my appreciation to the entire Polytechnic of Turin
community for providing a conducive environment for academic growth and research
exploration.

Fulvio Raddi

“Pauca sed matura”
Gauss’s motto

iii

iv

Table of Contents

List of Tables vii

List of Figures viii

Acronyms x

1 Investing for Retirement 1
1.1 Introduction to the problem . 1
1.2 Approximating the Optimal Policy by Numerical DP 4

1.2.1 State space discretization . 4
1.2.2 Sparse Grid discretization 5
1.2.3 Approximation architectures for the value functions 8

1.3 Scenario Generation . 11

2 Selecting the best approximation 17
2.1 Implementation in Matlab . 17
2.2 Comparing utility functions . 18
2.3 Value functions approximation and utility function evaluation . . . 22
2.4 Refinements . 26

2.4.1 Scenario generation alternatives 29

3 Time analysis 31
3.1 Sparse Grid - Monte Carlo time analysis 31
3.2 Comparing more methods . 33

Bibliography 35

vi

List of Tables

2.1 Log utility table broken by Grids and Scenarios 20
2.2 Power utility table broken by Grids and Scenarios 20
2.3 Power utility-makima table broken by Grids and Scenarios 24
2.4 Power utility-pchip table broken by Grids and Scenarios 25
2.5 Log-makima table broken by Grids and Scenarios 25
2.6 Log-pchip table broken by Grids and Scenarios 25
2.7 Log-Sparse grid table with Voronoi cell sampling broken by approxi-

mation functions . 28
2.8 Power utility-Sparse grid table with Voronoi cell sampling broken

by approximation functions . 29
2.9 Log-Adaptive grid table with Monte Carlo sampling broken by

approximation functions . 30
2.10 Power utility-Adaptive grid table with Monte Carlo sampling broken

by approximation functions . 30

vii

List of Figures

1.1 Part of the code where the Tchebycheff grid is implemented 5
1.2 Implementing the Sparce grid using the datasample function 5
1.3 Implementing the Sparce grid using the datasample function 6
1.4 Matlab code for the concave and increasing basis function 7
1.5 Value functions using sparse grid with increasing concave basis function 7
1.6 Value functions for the three labor conditions 8
1.7 Value functions with shape-preserving splines 9
1.8 Value functions with shape-preserving splines and uniform grid . . . 9
1.9 Value functions with shape-preserving splines and sentinels point . . 10
1.10 Value functions with cubic splines and sentinels point 10
1.11 hermite gauss function . 14
1.12 hermite gauss function . 15
1.13 Gaussian scenarios . 15
1.14 Gaussian scenarios . 16

2.1 Setting the parameters . 18
2.2 Learning and evaluating the DP policy 19
2.3 Wealth path with Tchebychev grid 20
2.4 Consumption path with Tchebychev grid 21
2.5 Alpha path with Tchebychev grid 22
2.6 Comparison between pchip, spline and makima over flat regions . . 24
2.7 Comparison between pchip, spline and makima using an oscillatory

function . 25

3.1 Normplot of the sample data taken from T1 33
3.2 Comparison of the four methods . 34

viii

Acronyms

AI
artificial intelligence

x

Chapter 1

Investing for Retirement

1.1 Introduction to the problem
In this chapter, we will introduce a simplified model for making consumption and
saving decisions.1 We have T time instants and we have to decide the allocation of
wealth Wt between consumptions Ct and savings St for each t = 0, . . . , T − 1. The
amount St must be divided between a risky and a risk-free asset. In this model,
the time horizon T is fixed; however, in more realistic models, T is treated as a
random variable.
Another source of uncertainty is the labour income Lt. To model it, we assume
that Lt can take one of three values based on the employment state. Let λt be the
state of the employment at time t, which take three values in the set L = {α, β, γ}.
If we interpret α as "fully-employed", η as "unemployed" and β as an intermediate
condition then we assume that the labour income L(·) is a function of the state
with L(α) > L(η) > L(β). To maintain temporal coherence, the dynamics of the
employment state can be model as a finite Markov chain, where the matrix Π is
formed by the time-indipendent transition probabilities

πi,j = P{λt+1 = j|λt = i}, i, j ∈ L.

The decision process unfolds as follows:

• At a time instant t = 0,1,2, . . . , T − 1, i.e., at the beggining of each time
interval, the agent owns a current financial wealth denoted by Wt, resulting
from the previous saving and investment decisions.

1For the interested reader see [1] chapters 3 and 6, for a complete treatment see [2]

1

Investing for Retirement

• Labor income Lt is collected; this is the income earned during the previous
time interval t, from time instant t − 1 to time instant t.

• The total available wealth is Wt + Lt, the sum of financial wealth and the last
earned labor income; this is devided between saving St and consumption Ct.

• Consumption yields a utility represented by a concave function u(·). The
overall objective is to maximize the total expected utility

maxE

T −1Ø
t=0

γtu(Ct) + γT H(WT + LT)
,

where γ ∈ (0,1) is a subjective discount factor. The function H(·) might
represent utility from bequest or serve as a means to ensure the acceptability
of the terminal wealth. For simplicity, we assume that terminal wealth at time
t = T is entirely consumed, i.e., CT = WT + LT . Therefore, our focus is on
the objective function

maxE

 TØ
t=0

γtu(Ct)
.

The saved amount St, t = 0, . . . , T − 1, is allocated between a risk-free
asset, with deterministic rate of return rf for each time interval, and a risky
asset, with random rate of return Rt+1. As is customary, the subscript t + 1
emphasizes the fact that this return will only be known at the subsequent
time instant t + 1, or, in other words, at the end of the next time interval
t + 1, whereas the allocation decision must be made now, at the beginning of
the time interval, i.e., at time instant t. Let us denote the fraction of saving
that is allocated to the risky asset by αt ∈ [0,1]. Given a decision αt , the rate
of return of the investment portfolio over the next time interval is

αtRt+1 + (1 − αt)rf = αt(Rt+1 − rf) + rf ,

where Rt+1−rf is typically referred to as excess return. Therefore, the financial
wealth at time instant t + 1, before collecting income Lt+1, is

Wt+1 = [1 + αt(Rt+1 − rf) + rf].

Let’s assume that the initial state λ0 is known, and the corresponding income
L0 = L(λ0) is immediately available at time t = 0 for consumption and saving,
along with the initial financial wealth W0. Therefore, the available wealth at time
t = 0 is W0 + L0. More generally, at time instant t, we observe the employment
state λt and collect labor income Lt = L(λt), which is added to financial wealth
Wt to yield the available wealth Wt + Lt. The current employment state λt does

2

Investing for Retirement

not specify the labor income Lt+1 = L(λt+1) over the next time interval, but it
provides a clue about it, since we have some information about the conditional
probability distribution of the next state λt+1, via the transition probability Π.
We need to define our state variables, to address the problem with a dynamic
programming framework. In our case the most natural choice is the pair

st = (Wt, λt),
where Wt is the financial wealth at time instant t and λt the current employment

state; It’s worth noting once more that the total available (cash) wealth at time
instant t is Wt + L(λt). We observe that the state space is continuous with respect
to the first component and discrete with respect to the second one. Dynamic
programming requires to find the set of value functions

Vt(Wt, λt), t = 1,2, . . . , T − 1,

subject to the terminal condition

VT (WT , λT) = u(WT + L(λT)).

The functional equation is

Vt(Wt, λt) = max
Ct,αt

u(Ct) + γEt

5
Vt+1(Wt+1, λt+1)

6, (1.1)

where the notation Et[·] emphasizes that expectation is conditional on the
currentstate and decisions. The dynamic equations for state transitions are

λt+1 = MΠ(λt), (1.2)
Wt+1 = (Wt + Lt − Ct)

è
1 + rf + α(Rt+1 − rf)

é
, (1.3)

where Lt = L(λt), and MΠ in Eq. (1.2) represents the stochastic evolution of
the employment state according to the matrix Π, and the evolution of wealth in
Eq. (1.3) depends on the random rate of return of the risky asset and the labor
income Lt, which is a function of employment state λt. The constraints on the
decision variables are

αt ∈ [0,1], t = 0, . . . , T − 1
0 ≤ Ct ≤ Wt + Lt, t = 0, . . . , T − 1.

We are tacitly assuming that the employment state evolution and the return
from the risky asset are independent. If we consider that both financial returns
and employment depend on underlying macroeconomic factors, we should factor in
their correlation.

3

Investing for Retirement

1.2 Approximating the Optimal Policy by Nu-
merical DP

In this section we extend the approach of [1] (see chapter 6) with refinements and
generalization when it’s possible.

1.2.1 State space discretization
We have to discretize the wealth component of our state variable. In [1], the author
employs a uniform grid to discretize the state space. Typically, this approach may
not be the most optimal choice. One alternative idea is to utilize the Tchebycheff
nodes. By Tchebycheff nodes, we refer to the numbers

xj = cos πj

N
, 0 ≤ j ≤ N (1.4)

for some N ≥ 0, where for N = 0 we take x0 = 1. The reason why we use such
nodes can be expressed by the following theorem 2

Theorem 1 Let f be a continuous function on [−1,1], pN its degree N polynomial
interpolant in the Tchebysheff points (1.4), and p∗

N its best approximation of on
[−1,1] in the norm || · || = || · ||∞. Then

1. ||f − pN || ;

2. if f has a kth derivative in [−1,1] of bounded variation for some k > 1,
||f − pN || = O(N−k) as N → ∞;

3. if f is analytic in a neighborhood of [−1,1], ||f − pN || = O(CN) as N → ∞
for some C < 1; in particular we may take C = 1

M+m
if f is analytical in the

closed ellipse with foci ±1 and semimajor and semiminor axis lengths M > 1
and m ≥ 0.

It follows from condition (1) of Theorem 1 that the Tchebycheff interpolant of a
function f on [−1,1] is within a factor 10 of the best approximation if N < 105, a
factor 100 if N < 1066. Thus Tchebycheff interpolants are near-best.
With this result in mind, we are going to test whether a grid based on Tchebycheff
nodes prevents undesirable effects on the value functions. To achieve this, we
will employ a Matlab script provided by [1] (see chapter 6) where we consider a
Tchebycheff grid instead of a uniform one.

2See [3] for further details

4

Investing for Retirement

Figure 1.1: Part of the code where the Tchebycheff grid is implemented

1.2.2 Sparse Grid discretization
Another option is to use a sparse grid discretization. The sparse grid method
is a general numerical discretization technique for multivariate problems. This
approach, first introduced by the Russian mathematician Smolyak in 1963, is based
on a sparse tensor product construction.
We are not delving into the technicalities of this topic, but interested readers can
follow this guide [4]. In Matlab, we can experiment with approaches to generate
sparse grids. The initial option is to commence with a uniform grid and introduce
a certain degree of sparsity using the built-in function datasample.

Figure 1.2: Implementing the Sparce grid using the datasample function

We can see from Figure 1.3 that we set 30 points, of which 20 are coming from
the datasample function. With this selection, the resulting graph is as follows:

For each time period, we observe a convex and increasing value function that
aligns with the problem setting.

The second way is to generate sparse grids with basis functions. Since the
function we want to approximate is concave and increasing, we can choose basis

5

Investing for Retirement

Figure 1.3: Implementing the Sparce grid using the datasample function

functions that capture these characteristics. Here are some considerations for
selecting basis functions for a sparse grid in this context:

• Basis Functions:

For concave and increasing functions, we might want basis functions that
can represent such behavior. Polynomial basis functions like Tchebysheff
polynomials or Legendre polynomials could be suitable. We could consider
basis functions that are known to capture concavity, such as Chebyshev
polynomials of the first kind or shifted Legendre polynomials.

• Adaptive Refinement:

Since the function is concave and increasing, areas of interest are likely to
be regions with high gradients. We can use adaptive refinement strategies
to focus on regions where the function exhibits rapid changes. This can be
achieved by adding new points in regions with high gradients.

• Sparse Grid Construction:

We exploit the tensor product structure of sparse grids. If our function was
defined in a multi-dimensional space, we could have used tensor products of
one-dimensional basis functions. This allows us to construct high-dimensional
basis functions efficiently.

• Consider Constraints:

6

Investing for Retirement

If there are known constraints on the function (e.g., bounded intervals, concav-
ity constraints), we can incorporate these constraints into the basis functions
or the refinement strategy.

We are going to use f(x) = e−αx where α > 0 as a basis function. This function
is concave and increasing, so let’s see what will happen during our experiments.
The Matlab code to perform it is described in Fig. 1.4.

Figure 1.4: Matlab code for the concave and increasing basis function

The graphs obtained by this choice are summarize in Fig. 1.5

Figure 1.5: Value functions using sparse grid with increasing concave basis
function

As expected, we have obtained concave and increasing value functions.

In the upcoming chapters, we will explore all the components involved in the
Matlab script. For now, it’s worth mentioning that we are approximating the

7

Investing for Retirement

value function with cubic splines. In the following image, the value functions are
displayed for each employment condition. The lowest dotted line corresponds to
the unemployed state, and the highest continuous line corresponds to the fully
employed state.

Figure 1.6: Value functions for the three labor conditions

We can observe that they are concave, even for large values of wealth, which is
coherent with risk aversion.

1.2.3 Approximation architectures for the value functions
For now, we have used interpolating cubic splines in our experiments. A possible
alternative is to use Piecewise Cubic Hermite Interpolation (PCHIP); the reason is
that this method preserves monotonicity and the shape of the data. On the other
hand, cubic splines aim to reduce an oscillatory behavior; it makes sense to compare
the two approach and to see wich one helds to better results. Matlab provides a
function called pchip that generates the shape-preserving Hermite splines. If we
run our script using the Hermite splines we have the Fig 1.7

As we can see, it’s worst than the cubic splines. If we focus on the periods 1 and
3, we observe that, for large values of the wealth, the value functions are convex.
This is opposite to the risk-aversion like we pointed out in the last section.
Another test that can be performed is to use the shape-preserving splines with an
uniform grid. In this case, the results are shown in Fig.1.9.

We conducted this last experiment to emphasize the importance of the grid
choice in approximating the value functions. As depicted from Fig. 1.7, all the
values functions are concave and so, in this case, the Hermite splines perorm better

8

Investing for Retirement

Figure 1.7: Value functions with shape-preserving splines

Figure 1.8: Value functions with shape-preserving splines and uniform grid

than the cubic ones. We are not going to consider the uniform grid as a serious
candidate for our model, but it can be used as a benchmark to underline the
sensitivity of the model for different choices.
Another strategy is to use sentinel points 3. For istance, we can think to add
few more points corresponding to large and unlikely wealth levels and acting

3see[1] section 6.2.3

9

Investing for Retirement

as “sentinels”. If we add the points 300 and 500 to the grid, we obtain a good
approximation both for cubic and shape-preserving splines as we can see in Figure 1.9
and Figure 1.10.

Figure 1.9: Value functions with shape-preserving splines and sentinels point

Figure 1.10: Value functions with cubic splines and sentinels point

It’s worth stressing again how crucial the choice of the grid is in approximating
the value functions. Simply adding two extra points to our grid proved sufficient
to eliminate non-concave behaviors. Moving forward, we will consistently employ
the Tchebysheff grid and cubic splines, unless otherwise specified.

10

Investing for Retirement

1.3 Scenario Generation
Let’s delve into how we generated the scenario in the previous Matlab script. Given
that the employment state follows a discrete-time Markov chain, our task is to
discretize the risk factor associated with the price (or return) of the risky asset.
The random return from the risky asset is connected to the relative change in its
price Pt :

Rt+1 = Pt+1 − Pt

Pt

(1.5)

If we assume that the price of the risky asset is modeled by geometric Brownian
motion, it can be shown that its evolution is given by

Pt+1 = Pt exp
µ − σ2

2

+σ

ϵ

,

where the length of the discrete time intervals in the model and the time unit
used in expressing the drift and volatility coefficients µ and σ are the same (say, one
year). The underlying risk factor is a standard normal variable ϵ ∼ N (0,1). This
means that prices Pt are lognormal random variables, i.e., exponentials of a normal
random variable with expected value µ− σ2

2 and standard deviation σ. Since we have
a single risk factor, there is no need to resort to random sampling. Nevertheless,
there are different options to come up with a clever discretization of the underlying
normal random variable or of the lognormal price. In the script we have pursued a
stratification approach to discretize a lognormal random variable Y with parameters
µ and σ. The idea is based on partitioning the support of the lognormal distribution,
the halfline [0, +∞], into m intervals with the same probability, and then choose,
as a representative point of each interval, the conditional expected value on that
interval. The procedure is the following:

1. Define m − 1 probability levels

ph = h

m
, h = 1, . . . , m

2. Find the corresponding quantiles yh by inverting the cumulative distribution
function of the lognormal distribution.

3. Use the quantiles yh to define m intervals

[0, y1), [y1, y2), . . . , [ym−1, +∞]

By construction, there is a probability qh = 1
m

that Y falls into each interval.

11

Investing for Retirement

4. We want to use the expected value ξh of Y , conditional on falling into the
interval (yh−1, yh, as the representative point of the interval:

ξh
·= E

è
Y |Y ∈ (yh−1, yh)

é
.

This defines a discrete distribution, with a support consisting of m points,
approximating the lognormal variable Y . In order to find the conditional expected
value, we use standard numerical integration:

ξh = m
Ú yh

yh−1
xfY (x)dx.

The conditional expected value is obtained by integrating the probability density
fY (·) over the interval (yh−1, yh) and dividing by the corresponding probability.
Since the probability of observing a realization of Y in that interval is 1/m, we end
up multiplying by m. In particular, for h = 1, we integrate from y0 = 0 to y1. For
h = m, we should integrate from ym−1 to ym = +∞; we replace +∞ by a suitably
large value,

ym = eµ+20σ,

which is based on the well-known fact that, for the underlying normal variable,
values beyond µ + 3σ are not too likely.
As suggested in [1] this is not the state-of-the-art but, whatever approach we adopt,
we will define scenarios characterized by realizations yh of the lognormal variable
Y with parameters µ and σ. We can rewrite (1.5) as

Rt+1 = Pt+1 − Pt

Pt

= exp
µ − σ2

2

+σϵ

 − 1 = Y − 1 (1.6)

Hence, we define a set of return scenarios

Rh = yh − 1, h = 1, . . . , m

When using the above stratification approach, each scenario has probability
qh = 1/m h = 1, . . . , m; these probabilities are uniform, but this need not be the
case in general.
Let’s try another strategy. Let’s consider the problem of computing the expectation
of a real-valued function f of a random variable X̃ with probability density function
p(·):

E
è
f(X̃)

é
=

Ú
f(x)p(x)dx.

Gaussian quadrature is a numerical integration technique that calls for X̃ to be
replaced with a discrete random variable whose distribution matches that of X̃ as

12

Investing for Retirement

closely as possible. Specifically, in a Gaussian quadrature scheme, the mass points
x1, x2, . . . , xn and probabilities p1, . . . , pn of the discrete approximant are chosen in
such a way that the approximant possesses the same moments of order 2n − 1 and
below as X̃:

nØ
i=1

pix
k
i = E(X̃k) k = 0, . . . ,2n − 1.

Given the mass point and probabilities of the descrete approximant, the expec-
tation of f(X̃) is approximated as follows:

E
è
f(X̃)

é
=

Ú
f(x)p(x)dx ≈

nØ
i=1

f(xi)pi.

Computing the n-degree Gaussian mass points xi and probabilities pi for a
random variable involves solving 2n nonlinear equations in as many unknowns.
Efficient, specialized numerical routines for computing Gaussian mass points and
probabilities are available for virtually every major distribution, including the
normal, uniform, gamma, exponential, Chi-square, and beta distributions. In our
applications, we will be exclusively concerned with computing expectations of
functions of normal random variates and related random variates.
By design, an n−point Gaussian quadrature rule will compute the expectation of
f(X̃) exactly if f is a polynomial of order 2n − 1 or less. Thus, if f can be closely
approximated by a polynomial, the Gaussian quadrature rule should provide an
accurate estimate of the expectations. Gaussian quadrature rules are consistent
for Riemann integrable functions. That is, if f is Riemann integrable, then the
approximation offered by Gaussian quadrature can be made arbitrarily precise
simply by increasing the number of mass points in the discretizing distribution.
Gaussian quadrature is the numerical integration method of choice when the
integrand is bounded and possesses continuous derivatives, but should be applied
with great caution otherwise. If the integrand is unbounded, it is often possible to
transform the integration problem into an equivalent one with bounded integrand.
If the function possesses known kink points, it is often possible to break the integral
into the sum of two integrals of smooth functions. If these or similar steps do not
produce smooth, bounded integrands, then Newton-Cotes quadrature methods may
be more accurate than Gaussian quadrature because they contain the error caused
by the kinks and singularities to the interval in they occur.
The Gaussian quadrature scheme for normal variates may be used to develop
a good scheme for lognormal random variates. By definition, Y is log-normally
distributed with parameters µ and σ if, and only if, it is distributed as exp X̃ were
X̃ is normally distributed with mean µ and standard deviation σ. It follows that
if {(xi, pi} are Gaussian mass points and probabilities for a normal distribution,
then {(yi, pi}, where yi = exp xi, provides a reasonable a discrete approximant

13

Investing for Retirement

for a log-normal distribution. Given this discrete approximant for the log-normal
distribution, one can estimate the expectation of a function of Ỹ follows:

E
è
f(Ỹ)

é
=

Ú
f(y)p(y)dy ≈

nØ
i=1

f(yi)pi.

This integration rule for log-normal distributions will be exact if f is a polyno-
mial of degree 2n − 1.
In our case, we can create a Matlab script that creates scenarios with a Gaussian
quadrature. Since Matlab does not provide a built-in function for Gaussian quadra-
ture, we can develop one. The idea is to use three functions.

hermite gauss: This function computes nodes x and weights w for Gauss-
Hermite quadrature. Gauss-Hermite quadrature is a numerical method for approxi-
mating integrals of functions weighted by the standard normal distribution.

Figure 1.11: hermite gauss function

• The matrix V represents the matrix of eigenvectors obtained from the diago-
nalization of the tridiagonal matrix A (in the code A is the argument of the
function eig());

• The eig function in MATLAB returns two matrices, V and D, where D is a
diagonal matrix containing the eigenvalues, and V is a matrix whose columns
are the corresponding eigenvectors; The eigenvalues on the diagonal are related
to the zeros of Hermite polynomials.

In the context of Gauss-Hermite quadrature, V is used to obtain the weights
associated with the zeros of Hermite polynomials. The first column of V is extracted
and normalized, and then squared to obtain the weights.

gaussHermite: The gaussHermite function is a wrapper function in the
provided MATLAB script that calls the more specific hermite_gauss

It’s used for simplicity and readability, allowing to use gaussHermite in the main
script without exposing the details of the specific Hermite quadrature implementa-
tion. When we call gaussHermite(N), it internally invokes hermite_gauss(N) and
returns the resulting nodes and weights.

14

Investing for Retirement

Figure 1.12: hermite gauss function

MakeScenarioQ The function calls gaussHermite(numScenarios) to obtain
nodes and weights for Gauss-Hermite quadrature. These nodes and weights are
associated with the standard normal distribution.

Figure 1.13: Gaussian scenarios

The nodes obtained from Gauss-Hermite quadrature are transformed using
y = exp(µ+

√
2×σ ×nodes). This transformation is necessary because the original

quadrature nodes are associated with the standard normal distribution, and this
line adjusts them to match a lognormal distribution with parameters µ and σ.
The normalization step in the MakeScenariosQ function is performed to ensure
that the computed expected values (values) are properly scaled and represent the
average over the specified number of scenarios (numScenarios). It is important
because without it, the values vector would represent the sum of expected values,
not the average. By dividing each element by numScenarios, we obtain the average
expected value for each scenario, making the results more interpretable, especially
when comparing across different numbers of scenarios or simulations.
With this quadrature we obtain the following approximated value functions:

15

Investing for Retirement

Figure 1.14: Gaussian scenarios

16

Chapter 2

Selecting the best
approximation

In the previous chapter, our emphasis was on exploring various approaches to
solving the problem. In this chapter, we will delve into how to compare these
approaches. As we are tackling an optimization problem, the optimal choice would
be the one that maximizes the utility function within a reasonable timeframe. To
validate this, we will employ different utility functions to assess the robustness of
our choice.

2.1 Implementation in Matlab
To compare different approaches we will use modified scripts from [1]1. The two
most important Matlab functions we are going to use are FindDPPolicy and
RunDPPolicy. The first one takes the following input arguments:

• the utility function and the discount factor γ;

• the cell array WealthGrid, which contains an array of wealth values for each
time instant; the cell array allows for different grids over time;

• the vector incomeValues, containing the labor income for each state, and the
state transition matrix transMatrix;

• vectors retScenarios and retProbs, containing the return scenarios for the risky
asset; the risk-free return is stored in riskFree

1See pp.169-180

17

Selecting the best approximation

The output of the function is the cell array splineList, containing three splines
(one for each employment state) for each time instant.
The RunDPPolicy function it’s needed to perform the simulation. It’s similar
to the first one, but we need in-sample return scenarios inRetScenarios and out-
of-sample scenarios outRetScenarios to check the actual performance. In-sample
scenarios may be generated by deterministic stratification, whereas out-of-sample
scenarios are randomly generated (hence, they have uniform probabilities). The
simulation returns a vector utilVals containing a sample of total discounted utilities
obtained over time, one entry for each sample path starting from state (W0, λ0),
and matrices alphaPaths, consPaths, and wealthPaths that contain the full sample
paths of allocation to the risky asset, consumption, and wealth, respectively.

2.2 Comparing utility functions
The first experiments we can do is to evaluate the expected utility with Tchebycheff
grid in terms of the log utility function and the power utility function

u(x) = log(x); u(x) = x1−δ

1 − δ
, δ < 1.

We are going to run the simulation with fixed values for our parameters as
showed in the figure 2.1

Figure 2.1: Setting the parameters

First, when we compute the average utility values for the log utility and for the
power utility function we get, respectively, 33.6202 and -0.0055. We are going to
keep in mind these values for the next comparisons but we have to dig in a little
further. Due to the ordinal nature of the utility functions, it’s also important to
monitor the avarage sample paths for consumption, wealth and wealth fraction
allocated to the risky asset (called α). In the Fig. 2.5, 2.3 and 2.4 are shown the
paths for the wealth, the consumption and the risky assets fraction.

18

Selecting the best approximation

Figure 2.2: Learning and evaluating the DP policy

We can observe that the consumption increases in time, the wealth is accumulated
and then consumed and alpha decreases in time. This is coherent with intuition
and we can argue that DP approach does not contain any extra insights. To check
if it is or not true, we can try to use other different techniques.
Our degree of freedom are three and they are:

• State space discretization;

• Scenario generation;

• Approximation of the value function.

Concerning the discretization of the state space, as discussed in the previous
chapter, two promising candidates are sparse grids and Tchebysheff grids. We
conducted various experiments altering the utility function and the type of grid,
but fundamentally observed no significant differences in terms of utility function
values. In the Tables 2.1 and 2.2, we can find the values of the utility function
resulting from different combinations of scenarios and grids.

The Tables 2.1 and 2.2 have two rows and three columns. Each row represents the
grid selection (Sparse or Tchebysheff), and each column corresponds to a scenario
generation method. The "Quantile" column signifies the basic scenario generation
approach, where we adopt a quantile-based stratification for the lognormal returns.

19

Selecting the best approximation

Figure 2.3: Wealth path with Tchebychev grid

Table 2.1: Log utility table broken by Grids and Scenarios

Grid Gauss Hermite Quantile Monte Carlo
Tchebysheff Grid 29.4612 33.5292 33.6190
Sparse Grid 29.4515 33.6159 33.6159

Table 2.2: Power utility table broken by Grids and Scenarios

Grid Gauss Hermite Quantile Monte Carlo
Tchebysheff Grid -0.0234 -0.0055 -0.0056
Sparse Grid -0.0055 -0.0055 -0.0056

The "Gauss Hermite" column refers to the scenario generation method used in
chapter 1.An additional column named "Monte Carlo" presents results from a
Monte Carlo simulation, generating 10,000 random samples from the lognormal

20

Selecting the best approximation

Figure 2.4: Consumption path with Tchebychev grid

distribution with a mean of 0.07 and a standard deviation of 0.2. It’s crucial to
compare our results with a Monte Carlo simulation, particularly when risk factors
are high-dimensional, as it might be the only viable alternative.
For the logarithmic utility function, we identified that the best combination (where
"best" denotes the one with the highest expected utility value) is a Monte Carlo
stratification with Tchebysheff Grid. Meanwhile, for the power utility function, the
optimal combination is a Tchebysheff Grid with a Gauss Hermite approach. The
key question now is: which scenario generation method do we choose?
Our decision can be based on the value functions approximation and we are going
to do so. Before delving into that, it’s crucial to consider another fundamental
variable in finance and computer science: the time.
When we adopt numerical approximation techniques, an important role is played by
the total amount of time taken to run the algorithms. This is particularly significant
in dynamic programming problems, where different stages of approximations are
involved. A feasible approach to compute the total running time involves the use
of Matlab functions tic and toc. It’s enough to include the function tic before

21

Selecting the best approximation

Figure 2.5: Alpha path with Tchebychev grid

the code and toc as the final line of the script we want to measure the elapsed
time for. For instance, the running time of the combination Tchebysheff grids and
Monte Carlo sampling is 305.512764 while with Gauss-Hermite is 268.822719. We
could think to prefer the Gauss-Hermite one but we have to keep in mind that
Monte Carlo simulation is costly (in terms of time) by default and when we face
multivariable rsky factors there might be no other choice. In the next section, we
are goig to consider also the value functions approximation keeping in mind the
time evaluation.

2.3 Value functions approximation and utility
function evaluation

In the previous chapter, we performed some experiments concerning how to ap-
proximate value functions. In particular, we focused on cubic and piecewise cubic
Hermite interpolating polynomial (PCHIP) splines. Another possibility is to use

22

Selecting the best approximation

Modified Akima piecewise cubic Hermite interpolation (makima). The ’makima’
cubic interpolation method was introduced in MATLAB in the R2017b release
as a new option in interp1, interp2, interp3, interpn, and griddedInterpolant. In
a nutshell, it represents a MATLAB-specific modification of Akima’s derivative
formula and has the following key properties:

• It produces undulations which find a nice middle ground between ’spline’ and
’pchip’;

• It is a local cubic interpolant which generalizes to 2-D grids and higher-
dimensional n-D grids;

• It increases the robustness of Akima’s formula in the edge case of equal side
slopes;

• It eliminates a special type of overshoot arising when the data is constant for
more than two consecutive nodes.

We are not going into deeper details because we are interested in how we can
use it in our model. For our purpose, it is important to highlight the differences
between the pchip, spline, and makima functions as we intend to use them in
our experiments. Initially, we compare them using sample data that connects flat
regions.

1 x = -3:3;
2 y = [-1 -1 -1 0 1 1 1];
3 xq1 = -3:.01:3;
4 p = pchip(x,y,xq1);
5 s = spline(x,y,xq1);
6 m = makima(x,y,xq1);
7 plot(x,y,'o',xq1 ,p,'-',xq1 ,s,'-.',xq1 ,m,'--',LineWidth =

3)
8 legend('Sample Points ','pchip ','spline ','makima ','

Location ','SouthEast ')
9 %% Figure 2.7

10 x = 0:15;
11 y = besselj (1,x);
12 xq2 = 0:0.01:15;
13 p = pchip(x,y,xq2);
14 s = spline(x,y,xq2);
15 m = makima(x,y,xq2);

23

Selecting the best approximation

16 plot(x,y,'o',xq2 ,p,'-',xq2 ,s,'-.',xq2 ,m,'--',LineWidth
=3)

17 legend('Sample Points ','pchip ','spline ','makima ','
Location ','NorthEast ','FontSize ' ,16)

The results are shown in Fig.2.6

Figure 2.6: Comparison between pchip, spline and makima over flat regions

In this case, pchip and makima have similar behavior in that they avoid over-
shoots and can accurately connect the flat regions. If we perform another compari-
son, using an oscillatory sample function, we get the graph in Fig 2.7

When the underlying function is oscillatory, spline and makima capture the
movement between points better than pchip, which is aggressively flattened near
local extrema.
In the last section, we have used the spline function to run our experiments. Let’s
see what happens if we use makima or pchip. Since we are using two utility
functions, the idea is to represent the data in four tables, where for each table we
have a fixed utility function and a fixed value function approximation method:

Table 2.3: Power utility-makima table broken by Grids and Scenarios

Grid Gauss Hermite Quantile Monte Carlo
Tchebysheff Grid −0.023 -0.0055 -0.0056
Sparse Grid −0.024 -0.0056 -0.0056

24

Selecting the best approximation

Figure 2.7: Comparison between pchip, spline and makima using an oscillatory
function

Table 2.4: Power utility-pchip table broken by Grids and Scenarios

Grid Gauss Hermite Quantile Monte Carlo
Tchebysheff Grid −0.023 -1.1791 -0.0059
Sparse Grid −0.024 -0.0055 -0.0056

Table 2.5: Log-makima table broken by Grids and Scenarios

Grid Gauss Hermite Quantile Monte Carlo
Tchebysheff Grid 29.461 33.6187 33.6199
Sparse Grid 29.451 33.6113 33.6203

Table 2.6: Log-pchip table broken by Grids and Scenarios

Grid Gauss Hermite Quantile Monte Carlo
Tchebysheff Grid 29.458 0.3234 27.78
Sparse Grid 29.449 33.624 33.627

From the tables, we observe that the couple (Sparse Grid, Monte Carlo) seems
the one that maximize the utility function for each value function approximation
method. We can try to play a little bit with the scenrio generation methods and the

25

Selecting the best approximation

grids looking for strategies to improve our results. Since the Monte Carlo approach
is computational expensive, first we can try with low discrepancy sequences as we
are going to see in the next section.

2.4 Refinements
To adjust the script for deterministic discretization using low discrepancy sequences,
we can replace the random sampling part with the generation of quasi-random
points using a low discrepancy sequence. One common choice for this purpose
is the Sobol sequence. MATLAB provides the sobolset and sobol functions for
generating Sobol sequences. To do that, we can use the following Matlab script

1 function [values , probs] = MakeScenariosQ (
numScenarios , mu , sigma)

2 % Initialize output
3 probs = ones(numScenarios , 1) / numScenarios ;
4 values = zeros(numScenarios , 1) ';
5
6 % Generate Sobol sequence points
7 sobolPoints = sobolset (1, 'Skip ', 1e3 , 'Leap ', 1e2);
8 sobolSamples = net(sobolPoints , numScenarios);
9

10 % Find extreme points of subintervals
11 y = zeros(numScenarios + 1, 1);
12 for h = 1:(numScenarios - 1)
13 P = h / numScenarios ;
14 y(h + 1) = logninv (P, mu , sigma);
15 end
16 y(numScenarios + 1) = exp(mu + 20 * sigma);
17
18 f = @(x) x .* lognpdf (x, mu , sigma);
19
20 % Find expected values by integrating pdf on each

subinterval
21 for h = 1: numScenarios
22 intervalStart = y(h);
23 intervalEnd = y(h + 1);
24
25 % Map Sobol samples to the specified interval

26

Selecting the best approximation

26 mappedSamples = intervalStart + (intervalEnd -
intervalStart) * sobolSamples (h);

27
28 % Calculate expected values using the mapped

samples
29 values(h) = mean(f(mappedSamples)) * (

intervalEnd - intervalStart);
30 end
31 end

In this script, the Sobol sequence is utilized to generate quasi-random points
(sobolSamples), which are then mapped to the specified subintervals. Expected
values are computed using the mapped samples and the specified probability density
function. We can extract the optimal results from the previous section by running
simulations using the low discrepancy approach instead of the Monte Carlo one. In
the case of the power utility function, each value function approximation method
yields -0.0061. For the log utility function, the results are 32.7568 for the pchip
function, 32.7557 for makima, and 32.7582 for spline. In both cases, we do not
observe superior results compared to the Monte Carlo approach.
Another approach could involve using Voronoi cell sampling 2. The Voronoi cell
sampling method entails generating random points in a space and assigning each
point to the nearest cell boundary. Here, we will employ this approach to create
scenarios for lognormal variables.

1 function [values , probs] = MakeScenariosQ (
numScenarios , mu , sigma)

2 % Initialize output
3 probs = ones(numScenarios , 1) / numScenarios ;
4 values = zeros(numScenarios , 1) ';
5
6 % Generate Sobol sequence points
7 sobolPoints = sobolset (1, 'Skip ', 1e3 , 'Leap ', 1e2);
8 sobolSamples = net(sobolPoints , numScenarios);
9

10 % Find extreme points of subintervals
11 y = zeros(numScenarios + 1, 1);

2see [5] for further details

27

Selecting the best approximation

12 for h = 1:(numScenarios - 1)
13 P = h / numScenarios ;
14 y(h + 1) = logninv (P, mu , sigma);
15 end
16 y(numScenarios + 1) = exp(mu + 20 * sigma);
17
18 f = @(x) x .* lognpdf (x, mu , sigma);
19
20 % Find expected values by integrating pdf on each

subinterval
21 for h = 1: numScenarios
22 intervalStart = y(h);
23 intervalEnd = y(h + 1);
24
25 % Map Sobol samples to the specified interval
26 mappedSamples = intervalStart + (intervalEnd -

intervalStart) * sobolSamples (h);
27
28 % Calculate expected values using the mapped

samples
29 values(h) = mean(f(mappedSamples)) * (

intervalEnd - intervalStart);
30 end
31 end

Table 2.7: Log-Sparse grid table with Voronoi cell sampling broken by approxi-
mation functions

function Value
pchip 32.7635
makima 32.7624
spline -75.8984

From 2.7 and 2.8 we can infer that we are not able to do better than the Monte
Carlo approach and in general we have poor results comparing the Voronoi cell
sampling with the low discrepancy method. It’s interesting to underline the nasty
effects that we get when we combine the Voronoi cell sampling with the spline.
This is linked with the oscillatory behaviour of the spline an the possibility of

28

Selecting the best approximation

Table 2.8: Power utility-Sparse grid table with Voronoi cell sampling broken by
approximation functions

function Value
pchip -0.0061
makima -0.0061
spline −3.89 × 1010

having flat regions when using Voronoi cell sampling.

2.4.1 Scenario generation alternatives
We can explore alternative approaches to the sparse grid method, investigating
whether we can achieve better results or not. An idea is to employ a "Convex" grid.
Recall that Wmax and Wmin are respectively the maximum and minimum values of
wealth W (in our experiments, we will continue to set Wmin = 1 and Wmax = 200).
We can use the nthroot function from Matlab to construct an adaptive grid based
on a geometric progression. A possible implementation in MATLAB could be the
following script:

1 % Calculate the progression factor to achieve exactly
numPoints values

2 alpha = nthroot (Wmax / Wmin , numPoints);
3
4 % Geometric progression for adaptive grid with exactly

numPoints values
5 wealthValues = Wmin * alpha .^(1: numPoints); %convex
6
7 % Ensure the last value is not greater than Wmax
8 wealthValues (end) = min(wealthValues (end), Wmax);
9

10 wealthGrid = repmat ({ wealthValues (:)}, timeHorizon , 1);

In our experiments we set numPoints = 30. It’s interesting to see the results when
run simulations using the Monte Carlo approach and the different types of value
function approximation methods as shown in Table 2.9 and Table 2.10.

We observe that we are really close to what we have found combining the other
methods. Since we are running simulation and the value are relatively close, how

29

Selecting the best approximation

Table 2.9: Log-Adaptive grid table with Monte Carlo sampling broken by approx-
imation functions

function Value
pchip 33.6265
makima 33.6265
spline 33.5961

Table 2.10: Power utility-Adaptive grid table with Monte Carlo sampling broken
by approximation functions

function Value
pchip -0.0056
makima -0.0056
spline -0.0056

do we select the best method ? A metric that we could take into account is the
average elapsed time of a method, as we will see in the next chapter.

30

Chapter 3

Time analysis

In the previous chapter, we selected the pair (Sparse Grid, Monte Carlo) as the one
that maximizes our utility function. However, there were other combinations that
achieved either the same or close values of the utility function. To choose which of
these combinations is suitable for applications, a crucial variable to consider is the
execution time of these methods. We will treat these times as random variables and
aim to understand which one is the fastest and provides the right trade-off between
utility function maximization and execution time. Every simulation will be run
with the same default parameters used in the previous chapter. It’s essential to
emphasize that these time values are not absolute, as they depend on the device used
for the simulation. What truly matters is that we conduct a comparison between
them with the same input parameters and on the same computer. In this case, the
comparison and analysis make sense and can provide a better understanding of the
speed of convergence of our algorithms.

3.1 Sparse Grid - Monte Carlo time analysis
Let’s focus on the Sparse Grid-Monte Carlo approach, considering that it yielded
the best results for the log-utility function with each value function approximation.
Assuming we fix pchip as the value function approximation method and the log as
the utility function, we can run the method multiple times, noting the elapsed times.
Let’s consider running our script 10 times and recording the elapsed time each
time. We can model the elapsed time T1 as a random variable. Our goal initially is
to test if it’s reasonable to assume that T1 follows a normal distribution. If this
assumption holds, we can consider the sampling mean as a representative value for
T1. To check if T1 is normally distributed, we can employ the Anderson-Darling test.
A possible implementation of this test in MATLAB is provided in the following
script:

31

Time analysis

1 %% Time Analysis of Sparse Grid , pchip , Monte Carlo
2
3 data = [205.632836 , 204.033521 , 204.472278 , 204.6828 ,

204.149618 , 204.116087 , 202.880624 , 204.297133 ,
204.665476 , 204.770684];

4 mean(data)
5 std(data)
6 % Anderson - Darling test
7 [h_ad , p_ad , stat_ad , crit_ad] = adtest(data);
8
9 % Normal probability plot

10 figure;
11 qqplot(data);
12 title('Normal Probability Plot ');
13
14 % Display results of the Anderson - Darling test
15 fprintf ('Anderson - Darling Test :\n');
16 fprintf ('Test Statistic : %f\n', stat_ad);
17 fprintf ('p-value: %f\n', p_ad);
18
19 % Display result based on significance level (e.g.,

0.05)
20 if p_ad < 0.05
21 fprintf ('The data does not appear to be from a

normal distribution .\n');
22 else
23 fprintf ('The data appears to be from a normal

distribution .\n');
24 end

The outcome of the test is:
Anderson-Darling Test:

Test Statistic: 0.457316
p-value: 0.215949
The data appears to be from a normal distribution.

We can resonably consider the mean of our sample, that in our case is 204.3701

32

Time analysis

seconds. Matlab allows us to plot the normal probability plot. In this case the
normal probability plot is shown in Fig. 3.1

Figure 3.1: Normplot of the sample data taken from T1

3.2 Comparing more methods
As we have done in the previous section, we can use the same strategy for other
methods. Let’s always consider the log-utility function and we are going to consider
the following methods:

1. Sparse Grid, pchip, Monte Carlo

2. Sparse Grid, pchip, low discrepancy

3. Adaptive Grid, pchip, Monte Carlo

4. Tchebysheff Grid, makima, Monte Carlo

We can map each of these methods in a couple of real numbers (ui, ti) where
ui is the utility function value and ti is the mean elapsed time for i = 1, . . . ,4.
For the first one, in the last section we had t1 = 204.3701. For the other three
methods, the strategy is always the same. We have performed an Anderson-Darling
test on every sample data of size 10. As in the first case, we can consider that
the samples are taken from a normal distribution and their sampling mean times
are t2 = 199.3491, t3 = 207.9577, t4 = 213.7311. If we recall that u1 = 33.627,

33

Time analysis

Figure 3.2: Comparison of the four methods

u2 = 32.7568, u3 = 33.6265, u4 = 33.6199 we can plot the points ui, ti on a plane
as swown in Fig. 3.2.

We can observe that the low discrepancy one (labeled as a green square) is in
the left bottom corner, as expected. In general, the low discrepancy approach is
less time-consuming than the Monte Carlo one. It’s also true that we have worse
performances in terms of the utility function value.
On the other hand, the Tchebysheff approach is the most time-consuming (violet
rhombus), and compared to the other two, it gives a lower utility function value.
The Adaptive Grid (blue triangle) and Sparse Grid (orange circle) are really close
in terms of the utility function (33.6265 vs. 33.627), but the Sparse Grid one is
faster.
So, a possible choice among all the methods could be the Sparse Grid-pchip-Monte
Carlo one.

34

Bibliography

[1] Paolo Brandimarte. «From Shortest Paths to Reinforcement Learning A
MATLAB-Based Tutorial on Dynamic Programming». In: 20 (Nov. 1999),
pp. 569–571 (cit. on pp. 1, 4, 9, 12, 17).

[2] John Y. Campbell and Luis M. Viceira. «Strategic Asset Allocation: Portfolio
Choice for Long-Term Investors». In: (Apr. 2001), pp. 174–197 (cit. on p. 1).

[3] Zachary Battle† and Lloyd N. Trefethen. «AN EXTENSION OF MATLAB
TO CONTINUOUS FUNCTIONS AND OPERATORS». In: SIAM J. SCI.
COMPUT 25 (2004), pp. 1743–1770 (cit. on p. 4).

[4] Garcke Jochen. «Sparse Grids and Applications». In: (2012), pp. 57–80 (cit. on
p. 5).

[5] Nils Löhndorf. «An empirical analysis of scenario generation methods for
stochastic optimization.» In: European Journal of Operational Research 255
(2016), pp. 121–132 (cit. on p. 27).

35

	List of Tables
	List of Figures
	Acronyms
	Investing for Retirement
	Introduction to the problem
	Approximating the Optimal Policy by Numerical DP
	State space discretization
	Sparse Grid discretization
	Approximation architectures for the value functions

	Scenario Generation

	Selecting the best approximation
	Implementation in Matlab
	Comparing utility functions
	Value functions approximation and utility function evaluation
	Refinements
	Scenario generation alternatives

	Time analysis
	Sparse Grid - Monte Carlo time analysis
	Comparing more methods

	Bibliography

