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Abstract

In recent years, the diffusion of GPS-equipped devices has resulted in the generation of
vast amounts of spatio-temporal data. This data represents a fundamental resource to
conduct analysis on transportation networks. It is therefore of great interest to identify
models capable of distinguishing and classifying trajectories to facilitate decision-making
processes. For example, in traffic management, trajectory classification may assist in
differentiating between different types of transit modes, aiding in congestion prediction
and emissions monitoring. However, many existing algorithms necessitate a complex
feature engineering process and domain knowledge. In this context, this thesis proposes a
neural network-based approach, which eliminates the need for complicated hand-crafted
features, using Gramian angular fields and leveraging possibly pre-trained convolutional
neural networks. Therefore, we combine these tools to tackle the challenge of multiclass
trajectory classification. We demonstrate the effectiveness of our method on an imbalanced
dataset simulated with SUMO by classifying different means of transportation – private
car, taxi, bus, pedestrian, motorcycle, bicycle – achieving good results in terms of accuracy
and F1 score. Our approach is indeed a viable way to harness the power of convolutional
neural networks for the task of trajectory classification.
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Chapter 1

Introduction

Trajectories represent a collection of spatio-temporal data ordered in time. In recent years,
the widespread diffusion of devices equipped with GPS has led to huge quantities of data
being generated and collected. Classifying trajectories has become a crucial task in the
field of transportation, allowing for example to estimate traffic density or monitor emis-
sions. Many of the algorithms in the literature are based on complex feature engineering
processes, such as the one presented in [Landi et al., 2023a], requiring extensive domain
knowledge. Therefore, there is the need to find an approach to classify trajectories that
can be easily applied to different cases.

Over the past decade, deep learning architectures like convolutional neural networks
have gained significant popularity in the field of computer vision. They have been success-
fully applied to address problems such as object detection and face recognition, resulting
in extensive studies in the field. Therefore, it is simple to find in the literature many
neural networks successfully used for different tasks, demonstrating their versatility and
power.

The ambition of this thesis is to combine the need to classify trajectories without
the use of hand-crafted features with the will of leveraging the power of existing deep
learning models. In order to do this, we make use of tools already consolidated in the
literature and proven effective in other fields as well. Among these tools we find Gramian
angular fields and Markov transition field [Wang and Oates, 2015c], which encode both
static and dynamical information of a time series, and the Hilbert’s curve [Hilbert, 1891],
previously used to analyze animals trajectories [Wang and Oates, 2015b], because of the
locality preserving property. These tools can be combined with arbitrary neural networks
to tackle classification problems efficiently.

In our research, we assess and validate our approach using a realistic trace of the Prin-
cipality of Monaco, simulated with SUMO, a tool widely used in the field of telecommu-
nications and urban networks, together with state-of-the-art pre-trained neural networks
such as MobileNetV2 and ResNet18. In particular, we examine how to reduce the dimen-
sionality of trajectories in order to employ time series algorithms, and how to handle data
with varying lengths by testing two compression algorithms. Furthermore, we analyze how
different initialization of neural networks can affect performance. We demonstrate how
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Introduction

this approach is easily implementable and fast, reaching an accuracy of 75% in a trans-
portation mode recognition problem on an imbalanced dataset with six classes: private
car, bus, bicycle, pedestrian, taxi and motorcycle.

Our approach offers a practical method for leveraging the capabilities of convolutional
neural networks in trajectory classification. Furthermore, our methodology works un-
modified for arbitrary convolutional neural networks. Accordingly, we are able to reap
the benefits of future research in the field, including even better-performing DNNs which
have not yet came to light. Last, we mention that our code and implementation are pub-
licly available, making it amenable for comparison with new methodologies as well as for
utilization with future neural networks.

The structure of the thesis is as follows: in Chapter 2 we introduce the fundamental
concepts relating to trajectories, with a review of existing algorithms used for the anal-
ysis and classification of time series, both univariate and multivariate. Furthermore, an
overview of the datasets commonly used for trajectory classification, both real and sim-
ulated, is provided. Chapter 3 focuses on the theory behind neural networks, explaining
how convolutional neural networks work. In Chapter 4 we examine the techniques, known
as Gramian angular fields and Markov transition field, for imaging time series, illustrat-
ing their adaptability to different domains and underlying mathematical foundations. In
Chapter 5 we describe our implemented methodology, by illustrating the process of clas-
sifying the generated images, starting from trajectories. Chapter 6 finally concludes with
the validation of our method, presenting the used dataset and comparing the results.

2



Part I

Background

3



Chapter 2

Time Series Classification
Review

This chapter explores the fundamental concepts of time series and trajectories within
the context of classification. In Section 2.1, we provide a formal definition of time series,
trajectories, and the classification of time series. Understanding these definitions is crucial
as they lay the groundwork for our exploration into the classification of trajectory data.

Section 2.2 summarizes the key components and the general process involved in the
classification of time series. By a brief review of the main approaches introduced in the
literature, we aim to provide a comprehensive understanding of the intricacies involved in
effectively classifying time series data.

A critical aspect of this exploration involves recognizing the challenges associated with
applying non-tailored algorithms for the classification of time series, and in particular tra-
jectory data. Trajectories, being sequences of spatio-temporal information, exhibit unique
characteristics that may be inadequately addressed by generic classification algorithms.
We underline the main difficulties in applying such non-specialized approaches, empha-
sizing the need for tailored methodologies to unlock the full potential of trajectory data
analysis.

The chapter concludes with a discussion on prominent open datasets in the field and
the rationale behind selecting a specific dataset for our purposes. By scrutinizing available
datasets, we aim to align our choice with the objectives of our study, ensuring that the
selected dataset best serves our exploration into the classification of trajectory data.

As we proceed, this chapter lays the groundwork for a detailed examination of time se-
ries classification, paving the way for subsequent discussions on methodologies, challenges,
and practical applications within the realm of trajectory data analysis.

2.1 Preliminaries
In this section, we introduce the fundamental concepts of time series and trajectories,
laying the groundwork for the subsequent discussion on how the thesis will specifically
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focus on the analysis and classification of trajectory data. We define time series and
trajectories, drawing attention to their distinctive characteristics and applications.

Definition 2.1 (Time series). A time series X = (x1, . . . ,xm) ∈ Rn,m is a collection of
m observations measured sequentially in time.

A time series, as defined in Definition 2.1, is a time-ordered sequence. When n = 1
we say that we have a univariate time series and each data point xi is a real number,
otherwise when n > 1 we say that the time series is multivariate and each observation xi
is a vector in Rn.

Time series analysis has wide-ranging applications in various fields such as finance, eco-
nomics, climate science, and healthcare. It enables the exploration of temporal patterns,
trends, and dependencies within the data.

The following definition introduces the concept of trajectory, which is a sequence of
spatio-temporal data sorted by increasing time. Each data point in a trajectory is identi-
fied by its latitude and longitude coordinates alongside temporal information. Trajectory
data is particularly relevant in the context of movement patterns, such as the trajectory
of a moving object over space and time.

Definition 2.2 (Trajectory). A trajectory X = (x1, . . . ,xm) is a sequence of spatio-
temporal data xi = (lati, loni, ti)>, indexed in time order, where lati, loni, ti represent the
latitude, longitude, and timestamp of the data point.

A trajectory is therefore nothing more than a multivariate time series of spatial coor-
dinates ∈ R2.

In the context of time series analysis, classification pertains to the assignment of pre-
defined labels or categories to sequences of observations in a time-ordered dataset. Unlike
regression, which predicts continuous numerical values, classification involves predicting
the discrete class or category to which a given time series belongs.

More formally, we refer to the following definitions.

Definition 2.3 (Time series classification dataset). A time series dataset D = {(Xi, yi), i =
1, . . . , N} is a set of N time series with the corresponding vector of assigned labels y. Each
instance of the dataset is a pair of a time series xi and a class label yi ∈ C, where C is
the set of the possible discrete class labels.

Definition 2.4 (Classification problem). Given a classification dataset D = {(Xi, yi), i =
1, . . . , N}, the task of learning a classifier g, which takes Xi as input and predicts a qual-
itative response variable g(Xi) (i.e. predicts the class), is called a classification problem.

Trajectory classification is of paramount importance in transportation applications.
Identifying patterns in transportation trajectories and categorizing them into discrete
classes facilitates decision-making processes. For example, in traffic management, trajec-
tory classification may assist in distinguishing between different types of vehicle move-
ments, aiding in congestion prediction and route optimization. In public transportation,
it could contribute to the identification of transit modes or the characterization of travel
behavior.
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Figure 2.1 shows a simplified version of a binary classification problem i.e. the classifica-
tion involves only two classes, where the objective is to predict the mode of transportation
of the unknown trajectory (in red), given the other labeled trajectories.
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Figure 2.1: Example of a classification of trajectories.

2.2 Classification of Time Series
Conventional classification algorithms encounter challenges when applied to time series
data due to the intricate temporal structure characterized by ordered features. To effec-
tively address Time Series Classification (TSC) problems, modifications are imperative.

Similar to [Middlehurst et al., 2023, Ruiz et al., 2020], we present a taxonomy that
categorizes classification algorithms into subgroups based on their employed feature ex-
traction techniques. This taxonomy serves as a valuable framework for understanding and
navigating the diverse landscape of time series classification methodologies.
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Whole series classifiers Whole series classifiers rely their performance on a similarity
measure assessing the distance between two given time series. Dynamic Time Warping
(DTW) [Sakoe and Chiba, 1978] stands out in this category, frequently employed with
the One-Nearest Neighbors (1-NN)1 classifier as a benchmark in TSC problems. These
distances, often referred to as elastic, possess a unique capability to account for misalign-
ments between time series. They can compensate for shifts in the time axis by not rigidly
comparing series point by point. This flexibility makes them particularly well-suited for
comparing temporally ordered data. Over the years a lot of variations have been proposed,
including those aimed at enhancing performance [Jeong et al., 2011, Cuturi and Blondel,
2017] or the approach developed to address the challenges associated with handling mul-
tivariate time series [Shokoohi-Yekta et al., 2017].

Subsequence based classifiers Subsequence based classifiers, rather than using the
entire time series, focus on portions of it. This category encompasses four distinct ap-
proaches: interval based classifiers, shapelet based classifiers, dictionary based classifiers
and finally convolution based classifiers. Interval based classifiers divide the time series
into intervals, from which discriminatory features are extracted. For instance, summary
statistics are computed like mean, standard deviation and slope [Deng et al., 2013]. A
popular approach belonging to this group, also extended to multivariate time series clas-
sification, was introduced in [Middlehurst et al., 2020]. The core concept of shapelet based
classifiers [Ye and Keogh, 2011] lies on the presence, or absence, of distinctive phase
independent patterns i.e. distinctive subsequences could be found at any point in the
time series. On the other hand, dictionary based classifiers utilize the frequency of subse-
quences to distinguish the classes, these classifiers rely on a process which approximates
and transforms the time series into words and counts their frequencies. Examples within
this category icnlude Bag of SFA Symbols (BOSS) [Schäfer, 2015]. Furthermore, convo-
lution based classifiers derive discriminatory features via convolutions of the time series
with chosen kernels, each kernel is convolved with the time series using a sliding dot prod-
uct. The most popular algorithm in this category is the Random Convolutional Kernel
Transform (ROCKET) [Dempster et al., 2020].

Deep learning based classifiers Over the past decade, deep learning has exploded
in popularity, achieving notable successes in fields such as computer vision, natural lan-
guage processing and speech recognition (see also Chapter 3). The adoption of Convolu-
tional Neural Networks (CNNs) has increased since the breakthrough success of AlexNet
[Krizhevsky et al., 2012], which won the ImageNet competition in 2012. Increasing data
availability and the rise of Graphical Processing Units (GPUs) have made it possible to
train Deep Neural Networks (DNNs) and learn hidden discriminative features in time
series. Many studies have extended deep learning techniques to time series analysis.
Adopting the terminology of [Fawaz et al., 2018], it is possible to distinguish two main
approaches: end-to-end ones and those based on feature extraction such as image based

1Classification, using the k-nearest neighbours algorithm, relies on the majority class of the k nearest
neighbours.
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classifiers. End-to-end approaches involve the direct use of raw time series without any
feature engineering process. For example, in [Wang et al., 2017], the authors have suc-
cessfully adapted a Multi-Layer Perpetron (MLP), a Fully Convolutional Network (FCN)
and a Residual Network (ResNet) to propose a deep learning baseline for TSC problems.
In [Ismail Fawaz et al., 2020], InceptionTime was proposed, an ensemble of five deep
learning classifiers built specifically to handle time series data. Moreover TapNet [Zhang
et al., 2020] was designed for multivariate TSC problems. For the purposes of this thesis,
we mainly focus on image based classifiers, since they offer more flexibility, allowing the
use of existing DNNs, regardless the domain and the specific task. In particular, we will
explore these techniques as a way to better exploit the capabilities of neural networks in
time series analysis. Image based classifies rely on imaging time series, Gramian angular
fields and Markov transition field, originally proposed in [Wang and Oates, 2015c], are
used to retain both static and dynamical information. The static aspect is represented
using a Gram matrix, while the dynamical one is captured by discretizing the time series
into quantile bins and counting the relative frequency of the transitions from a quantile
bin to another. This category is more detailed in Chapter 4.

Hybrid classifiers Into this category fall those classifiers which don’t belong to only one
category and employ hybrid approaches. An algorithm which combines multiple feature
extraction techniques is the Collective of Transformation Ensembles (COTE) [Bagnall
et al., 2015].

2.3 Classification of Trajectories
Due to the diffusion of GPS (Global Positioning System)-equipped devices, like mobile
phones or vehicles, a huge volume of spatio-temporal data are being generated and col-
lected every day.

This data represents a fundamental resource for researchers and industries to conduct
analysis on transportation network. It is therefore of great interest to identify mod-
els capable of distinguishing and classifying trajectories. Some examples of trajectory
classification include transportation mode recognition, such as car, bus or train, or the
identification of the user which generated the trajectory. Determining the mode of trans-
portation can be crucial for a transportation agency to monitor emissions or for traffic
density estimation.

Trajectory classification methods often utilize either global features extracted from
the entire trajectory, or local features derived from subtrajectories. However, it has been
proven that these approaches have some weaknesses: global features such as speed, ac-
celeration, etc. present a high sensitivity to traffic congestion [Sun and Ban, 2013], while
local features could be really specific to a task, not generalizing very well [Leite da Silva
et al., 2019].

In recent years, new tailored algorithms have been proposed to handle trajectory classi-
fication problems, from those that exploit computer vision models to obtain better results,
such as the ones presented in [Dabiri and Heaslip, 2018, Kontopoulos et al., 2023], to Ge-
olet [Landi et al., 2023b], a new shapelet-based interpretable machine learning model.
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In [Wang and Oates, 2015b], the authors adapted GAFs + MTF, an approach originally
proposed for time series classification, to spatio-temporal data, by using Hilbert’s curve.
Unfortunately, they tested the method on very small datasets, which produced poor results
and were prone to overfitting, however they suggested the extension of their approach to
a variety of time series data, including spatio-temporal one.

In this thesis, we adapt GAFS, to the domain of vehicular trajectories, in order to find
a method which is not case specific and which could be generalized to different trajectory
classification problems, without the use of complicated hand-crafted features.

2.4 Open Datasets
The availability of trajectory data is limited, while many studies rely on private datasets,
others use small public one, making comparisons between algorithms difficult. Addition-
ally, public real-world datasets, due to possible sensor errors, require a careful cleaning
step or a filling strategy to estimate the lack of information. Among the real-world open
datasets available, we find:

• GeoLife2: A dataset frequently used for transportation mode recognition, comprised
by daily trajectories of 182 users.

• Taxi3: A dataset composed by the trajectories of 442 taxis running in the city of
Porto (Portugal).

To overcome these limitations, and since neural networks require a large volume of data
to train effectively, realistic simulated datasets can be adopted. In particular, SUMO
(Simulation of Urban Mobility) can be a useful tool to generate synthetic datasets that
reproduce specific scenarios, with a possible sampling rate of 0.01 s.

2https://www.microsoft.com/en-us/download/details.aspx?id=52367
3https://www.kaggle.com/datasets/crailtap/taxi-trajectory
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Chapter 3

Neural Networks

In this chapter, we investigate the core concepts behind neural networks, their architec-
tures, and the mechanisms by which they learn and make predictions.

Deep learning has become increasingly popular in the field of machine learning, thanks
to the increase of computational power and the larger availability of data. Artificial neural
networks are deep learning models inspired by biological brain. The first artificial neuron
was invented with the intent of simulating the behaviour of biological neurons [McCulloch
and Pitts, 1943]. Deep feedforward neural networks, often called multi-layer perceptrons
are built by stacking layers of multiple neurons. MLPs are organized into an input layer,
one or multiple hidden layers, and then the output layer. Each neuron in the input layer
corresponds to an input feature (the variables which we are able to observe), while those in
subsequent layers perform computations on these inputs to generate output (their values
are not given in the data). Figure 3.1 shows an example of multi-layer perceptron with
two hidden layers, each comprised of 3 neurons.

Input layer

Hidden layers

Output layer

Figure 3.1: A simple deep feedforward neural network with two hidden layers.
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These models are called feedforward because during the forward propagation phase,
input data are fed into the network, and computation are performed layer by layer to
generate predictions i.e. information flows forward through the network. The values
of the hidden layers are computed with an activation function, allowing the network to
learn highly complex mappings between inputs and outputs. Each neuron receives inputs,
applies its activation function and then passes the produced output to the next layer.
Artificial neurons of the hidden layers, also called hidden units, rely on two operations:

• Preactivation: it consists in computing the weighted sum of the input signals.

• Activation: after the preactivation, the output is computed through the activation
function.

In other words, given the input vector x, the matrix of the weights W, and the bias vector
b, an affine transformation z = W>x + b is computed and then the activation function
g(z) is applied element-wise. The activation function introduces non-linearity into the
network’s computations. Popular activation functions include the sigmoid, hyperbolic
tangent (tanh), and Rectified Linear Unit (ReLU). We have examined in details the for-
ward propagation phase. In order to asses the performance of a neural network a loss
function is used to measure the accuracy of the predicted response variable with respect
to the actual one. The common loss-function for classification tasks is the cross entropy
loss. Finally, we have to introduce the back-propagation algorithm to understand how
neural networks work. The back-propagation is the cornerstone algorithm for training
neural networks, it allows the information to flow backwards through the network from
the computed loss function, in order to compute the gradient. This process relies on the
chain rule from calculus to compute the gradient of the loss function with respect to the
network parameters. Then, optimization algorithms, such as stochastic gradient descent
or Adam, use the gradient to update the network’s weights, minimizing the loss function.

The process of forward propagation, loss calculation, and back-propagation is repeated
iteratively for multiple epochs until the model converges to a satisfactory level of perfor-
mance.

3.1 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are a type of deep learning algorithms designed to
recognize patterns within data with a grid-like topology, such as images. They are widely
adopted in computer vision tasks like image classification, object detection, and image
segmentation. Typically, the input to a CNN is a multi-dimensional array representing
an image (height × width × channels), where each element corresponds to the intensity
value of a pixel. Convolutional layers extract features from the input image, such as
edges. Subsequently, pooling layers downsample the extracted feature maps, resulting in
a lower computational complexity. After convolution and pooling operations, the output
is flattened into a one-dimensional array, ready to be fed into fully connected layers. Then,
the flattened feature vector is processed by the fully connected layers in order to make
predictions.

Therefore, three types of layers compose the CNN architecture.
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Input Convolutional layer

Pooling layer

Flattened

Activation

Fully Connected layers

Output

Figure 3.2: Architecture of a convolutional neural network.

• Convolutional layers: a single convolutional layer consist in a set of learnable filters,
also known as kernels, which slide over the input data (the image) to produce the
output. Each kernel is usually smaller than the input image, resulting in simply a
weighted sum over a smaller region. If the kernel does not go outside the image we
have a “valid” convolution1, otherwise the border of the input can be padded in some
ways. The output of the convolution operation is a feature map, which represents the
presence of specific features within the image, each kernel extracts different features
from the input data. Before passing the output to the pooling layer an activation
function is applied, commonly the Rectified Linear Unit (ReLU).
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3
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Figure 3.3: Valid convolution. The output is computed by pointwise multiplying the 3×3
kernel weights with the 3× 3 regions of the input image and summing.

1However, many machine learning libraries implement the cross-correlation instead of the convolu-
tion operation [Goodfellow et al., 2016, Prince, 2023].
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• Pooling layers: these layers perform pooling operations, in order to reduce the spatial
dimension of the feature maps, while retaining the most important information. Max
pooling and average pooling are common pooling operations, these operations consist
in downsampling the feature maps by selecting the maximum or average value within
a specific region.

3 4 3

3 3 4

3 2 4

Feature map

3

3

4

5232

4 4

3 5

Output

Max pooling

Figure 3.4: Max pooling.

• Fully connected layers: they are typically placed at the end of the CNN architecture.
As the name suggests, every neuron in one layer is connected to every neuron in the
next layer. They take the flattened output from the preceding layers and perform
classification or regression tasks.

As said before, convolutional neural networks are widely used and proven effective for
addressing various problems in the field of computer vision. Two popular architectures
are MobileNet [Howard et al., 2017] and ResNet [He et al., 2016], the first one is a small
model originally proposed for mobile vision applications, which uses depthwise separable
convolutions. On the other hand, ResNet was created to make the training of deep
neural network easier. For the aims fo this thesis we want to exploit the power of these
architectures by extending it to the context of vehicular trajectories.
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Chapter 4

Imaging Time Series

In this chapter, our focus is on the applications and theory of Gramian angular fields and
Markov transition field.

In Section 4.1, we explore the primary applications of these techniques in the literature,
to investigate their adaptable nature in various fields.

Subsequently, in Section 4.2 and Section 4.3, we explore the theory underlying these
approaches, offering a detailed overview of how these images are generated from time
series. Additionally, we highlight the properties of these matrices using practical and
easily understandable examples, aiming for a deeper and more intuitive comprehension of
the discussed methodologies.

4.1 Related Work
In [Wang and Oates, 2015a], a novel methodology was proposed to encode time series as
images by converting them into a matrix representation, enabling the use of computer vi-
sion models for imputation and classification. The authors demonstrated the effectiveness
of their technique for both univariate and multivariate time series classification [Wang
and Oates, 2015b]. They paired Gramian Angular Fields (GAFs) with Markov Transition
Field (MTF) to create three-channel images (RGB) and fed convolutional neural networks.

Since then, GAFs, MTF or the combination of the two, have been widely used to carry
out different tasks, across various domains, showcasing their versatility and efficacy. In
the medical field, they have been employed for detecting myocardial infarction risk from
electrocardiogram (ECG) signals [Zhang et al., 2019] and motor imagery recognition from
electroencephalogram (EEG) signals [Bragin and V.G., 2019]. Moreover, their application
extends to forecasting day-ahead solar irradiation [Hong et al., 2020], market financial
forecasting [Barra et al., 2020] and fault diagnosis [Li et al., 2020, Han et al., 2021]. Beyond
these applications, they have proven effective in classifying anomalous diffusion trajectories
[Garibo i Orts et al., 2023], in the analysis of autonomous vehicle (AV) driving behavior
[You et al., 2023] and imputation of traffic data [Huang et al., 2023]. Nevertheless, as far
as we know, this represents the first application of GAFs and MTF in the classification of
vehicular trajectories to recognise different means of transportation.
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4.2 Gramian Angular Fields
Gramian angular fields derive from the Gram matrix, so now we have to introduce the
concept of Gram matrix, which paves the way for the new approach based on a “quasi”
Gramian matrix (the term “quasi” is used because the inner products of the GAFs do not
satisfy all the properties of inner products).

4.2.1 Gram Matrix
Definition 4.1 (Gram matrix). Given a matrix X ∈ Cn,m, then the Gram matrix G ∈
Cm,m is defined as

G = X†X, (4.1)
where each entry gij = x̄>i xj is the standard inner product1 on Cn between column j and
column i of the original matrix X. Since we only consider the case where X ∈ Rn,m, then
the Gram matrix reduces to G = X>X 2 [Lay et al., 2016].

Remark 4.1. The above definition can be written as a function Φ : Rn,m → Rm,m whose
image’s elements are symmetric positive semidefinite matrices. It can be proven that this
function is not a linear transformation. We recall the definition of a linear transformation.

Definition 4.2 (Linear transformation). Given two vector spaces V,W over the field F, a
function f : V → W is called a linear transformation, if the following properties hold:

1. Additivity: f(x + y) = f(x) + f(y), for all x,y ∈ V .

2. Homogeneity: f(αx) = αf(x), for all x ∈ V, α ∈ F.

But, we have:

1.

Φ(A + B) = (A + B)>(A + B)
= (A> + B>)(A + B)
= A>A + B>B + A>B + B>A
/= A>A + B>B = Φ(A) + Φ(B).

2.

Φ(αA) = (αA)>(αA)
= α2A>A
/= αA>A = αΦ(A),with α ∈ R.

1The standard inner product on Cn is the function 〈·, ·〉 : Cn × Cn → C defined by 〈x, y〉 =∑n
k=1 xnȳn [Rynne and Youngson, 2000].
2The standard inner product on Rn (also referred as dot product) is the function 〈·, ·〉 : Rn×Rn → R

defined by 〈x, y〉 =
∑n

k=1 xnyn [Rynne and Youngson, 2000].
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As stated before, Gram matrices are symmetric positive semidefinite matrices. The Gram
matrix G is symmetric by definition, because of the symmetry of the standard inner
product on Rn, now we prove that it is also positive semidefinite3. Given X ∈ Rn,m and
v ∈ Rm, then

v>Gv = v>X>Xv = (Xv)>(Xv) = 〈Xv,Xv〉 ≥ 0.

Remark 4.2. From a geometric point of view, given two vectors x = (x1, . . . , xd)> and
y = (y1, . . . , yd)> in R2 or R3, then the dot product 〈x,y〉 =

∑d
k=1 xkyk satisfies

〈x,y〉 = ‖x‖ ‖y‖ cos θ,

where θ is the angle (expressed in radians) between them, and ‖x‖ =
√
〈x,x〉, ‖y‖ =√

〈y,y〉 are the lengths of x and y respectively. If x and y are unit vectors, then 〈x,y〉 =
cos θ.

Taken X ∈ R2,m, if each column of X has been normalized, then the entry gij of the
Gram matrix reduces to the cosine of the angle between xi and xj, and it measures how
similar the two columns are, obtaining

G =

 cos θ1,1 cos θ1,2 . . . cos θ1,m
...

... . . . ...
cos θm,1 cos θm,2 . . . cos θm,m

 ,
where a value of cos θ = 0 means that the two column vectors are orthogonal.

Now, focusing on time series analysis, we get deeper in the theory of GAFs.

4.2.2 Gramian Angular Fields Construction
Given a univariate time series x = (x1, . . . , xm), which takes values on real numbers, it
can be rescaled to the range [0, 1] or [−1, 1] in order to have the same order of magnitude
for all the observations and to not have a biased scalar product in favor of the greater
value.

We have 
x∗i = xi − xmin

xmax − xmin
if the target interval is [0,1]

x∗i = 2xi − (xmin + xmax)
xmax − xmin

otherwise,

where xmin and xmax are respectively the minimum and the maximum value of the time
series x.

Example 4.1. From now on, we take the time series of the cosine function xi = cos ti for
demonstration purposes (Figure 4.1).

3A symmetric matrix X ∈ Rn,n such that v>Av ≥ 0 for every v ∈ Rn, is said to be positive
semidefinite [Lay et al., 2016].
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Figure 4.1: Cosine time series xi = cos ti before and after the rescaling to the range [0,1].

The Gram matrix can be now computed, but it is reasonably to observe that since
the time series is univariate, the resulting inner product and Gram matrix is simply the
product between two real numbers, in details we have

G =

x1 · x1 x1 · x2 . . . x1 · xm
...

... . . . ...
xm · x1 xm · x2 . . . xm · xm

 .
We can easily show that, if the time series is periodic, then the Gram matrix shows the
same periodic pattern by rows and by columns.

Example 4.2. Given a time series x = (x1, x2, . . . , xm−1, xm) = (x1, x2, . . . , xm/2, x1, x2, . . . , xm/2),
composed by a time series which repeats itself after m/2 observations (period equal to
m/2), then

G =



x1 · x1 x1 · x2 . . . x1 · xm/2 x1 · x1 x1 · x2 . . . x1 · xm/2
x2 · x1 x2 · x2 . . . x2 · xm/2 x2 · x1 x2 · x2 . . . x2 · xm/2

...
... . . . ...

...
... . . . ...

xm/2 · x1 xm/2 · x2 . . . xm/2 · xm/2 xm/2 · x1 xm/2 · x2 . . . xm/2 · xm/2
x1 · x1 x1 · x2 . . . x1 · xm/2 x1 · x1 x1 · x2 . . . x1 · xm/2
x2 · x1 x2 · x2 . . . x2 · xm/2 x2 · x1 x2 · x2 . . . x2 · xm/2

...
... . . . ...

...
... . . . ...

xm/2 · x1 xm/2 · x2 . . . xm/2 · xm/2 xm/2 · x1 xm/2 · x2 . . . xm/2 · xm/2


,

and it is clear the repetition of the smaller m
2 ×

m
2 matrix. This consideration is evident

in Figure 4.2.

Example 4.3. For the sake of visualization, we plot the Gram matrix of the cosine time
series and of the cosine time series rescaled to [0,1] (see Figure 4.2) .
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Figure 4.2: Gram matrix computed from the cosine time series and from the cosine time
series rescaled to the range [0, 1].

The time series x is now transformed into another coordinate system in order to exploit
the angular perspective.

Definition 4.3. We define a function f as

f : N× [−1, 1] ⊂ N× R −→ R× R
(t, x) −→ (r, φ),

in this polar coordinate system the value xi is encoded as the angular cosine and the time
stamp ti as the radius, such as  φi = arccos(xi)

ri = ti
N
,

(4.2)

where N is a regularization factor. Without loss of generality we assume that the time
stamp of the time series is in the interval [0,m], so the last value m could be used as the
constant factor N to scale the radius to the range [0, 1], while the range for the angle is
[0, π/2] if xi is in [0, 1] or [0, π] if xi is in [−1, 1].

Remark 4.3. The function f1(x) = cosx is strictly decreasing on the interval [0, π] and
when it is restricted to that interval, the arccosine function is the inverse of it. The
function f is therefore a bijection from N× [−1, 1] to [0, 1]× [0, π].

Example 4.4. We show the transformation in the new polar coordinate system in Figure
4.3.

With this transformation we can introduce new “inner products” which leverages the
angular perspective by considering the trigonometric sum or difference between two points.
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Figure 4.3: Cosine time series before and after the rescaling to the range [0,1], after the
transformation in polar coordinates.

Definition 4.4 (Summation inner product). The function 〈x, y〉s : R × R → R defined
by

〈x, y〉s = cos(φx + φy) = cos(arccos x+ arccos y)
= cos(arccosx) · cos(arccos y)− sin(arccosx) · sin(arccos y)

= x · y −
√

1− cos2(arccosx) ·
√

1− cos2(arccos y)

= x · y −
√

1− x2 ·
√

1− y2,

is the inner product for the Gramian summation angular field.

Definition 4.5 (Difference inner product). The function 〈x, y〉d : R×R→ R defined by

〈x, y〉d = sin(φx − φy) = sin(arccosx− arccos y)
= sin(arccos x) · cos(arccos y)− cos(arccosx) · sin(arccos y)

=
√

1− cos2(arccosx) · y − x ·
√

1− cos2(arccos y)

=
√

1− x2 · y − x ·
√

1− y2,

is the inner product for the Gramian difference angular field.

We recall the definition of inner product ([Rynne and Youngson, 2000]).

Definition 4.6 (Inner product). Let X be a vector space over R, then a function 〈·, ·〉 :
X × X → R is said to be an inner product on X if the following conditions hold for all
x,y, z ∈ X and α, β ∈ R:
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1. 〈x,x〉 ≥ 0;

2. 〈x,x〉 = 0 if and only if x = 0;

3. 〈αx + βy, z〉 = α〈x, z〉+ β〈y, z〉;

4. 〈x,y〉 = 〈y,x〉.

It is easy to see that the function 〈·, ·〉s is not an inner product on R (the same
consideration also applies to 〈·, ·〉d).

The resulting matrices are the Gramian Summation Angular Field (GASF) and the
Gramian Difference Angular Field (GADF):

GASF =

 cos(φ1 + φ1) cos(φ1 + φ2) . . . cos(φ1 + φm)
...

... . . . ...
cos(φm + φ1) cos(φm + φ2) . . . cos(φm + φm)

 ; (4.3)

GADF =

 sin(φ1 − φ1) sin(φ1 − φ2) . . . sin(φ1 − φm)
...

... . . . ...
sin(φm − φ1) sin(φm − φ2) . . . sin(φm − φm)

 . (4.4)

Example 4.5. In Figure 4.4 we can see the GASF and the GADF computed from the
cosine time series rescaled to the range [0, 1].
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Figure 4.4: Gramian summation angular field and gramian difference angular field com-
puted from the cosine time series rescaled to the range [0, 1].

Remark 4.4. The GAFs provide a useful technique for time series, but we need to analyse
the benefits and limitations

• Benefits:
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– The GAFs maintains the temporal information in the matrix, since time aug-
ments from the upper-left to the bottom-right and the entry gij||j−i|=k represents
the relation between points with respect to time interval equal to k.

– The main diagonal of the GASF (gij||j−i|=0) contains the data which allow us to
reconstruct the original time series. When the angle φ is in [0, π] then 2φ is in
[0, 2π] and the inverse of cos(2φ) is not unique at the endpoints of the interval
[0, 2π], reasonably because the function cos(2φ) is monotonic only for values of
φ in the range [0, π/2].
So this ambiguity does not arise if φ is in [0, π/2], and we can recover the time
series by

cos(φ) =

√
cos(2φ) + 1

2 , φ ∈ [0, π/2];

in other words, we can recover the original values only for the time series rescaled
to the range [0, 1].
We can not come to the same conclusion with the GADF, because by definition
the elements of the main diagonal are all equal to 0 and they do not add any
distinctive information to reconstruct the original series.

• Limitations:

– With the GAFs we transform a univariate time series into a matrix, so the size
increases from m to m×m.

– In addition we can notice that, if x is a univariate time series, and αx is the
same time series multiplied by α then they produce different Gram matrix, but
when they are rescaled to the range [0,1] or [−1, 1] there is no difference between
the two time series and so they produce the same Gram matrix.
In the case of study, when dealing with vehicular trajectories we need to preserve
the relative distances, instead of a minimum value xmin and a maximum xmax
for each time series we use a global minimum and a global maximum, taking
into account all the time series.

4.3 Markov Transition Field
As we said in the previous section, the GAFs are usually combined together with the so
called Markov Transition Field (MTF), in a way that GAFs encode static information
while MTF encodes dynamical information. The first appearance of a similar framework
in the literature is found in [Campanharo et al., 2011].

Given a univariate time series x = (x1, . . . , xm), a number Q of quantile bins are
identified and so each xi results to be assigned in the corresponding quantile qi, where
i ∈ [1, Q]. Then the frequency wij relative to the transition from qi to qj (qi → qj) is
computed by

wij = Nij∑
j Nij

,
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where Nij is the number of transitions from qi to qj and the denominator counts all the
transition from the quantile qi, in the manner that two consecutive measurements xi ∈ qi

and xj ∈ qj count as a transition qi → qj . The resulting matrix W is a Q×Q matrix

W =



N11∑
j

N1j

N12∑
j

N1j
. . .

N1Q∑
j

N1j

N21∑
j

N2j

N22∑
j

N2j
. . .

N2Q∑
j

N2j

...
... . . . ...

NQ1∑
j

NQj

NQ2∑
j

NQj
. . .

NQQ∑
j

NQj

 .

The process is illustrated in Figure 4.5.
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Figure 4.5: Framework for the construction of the matrix W from the cosine time series
rescaled to the range [0, 1], using 5 quantile bins.

The MTF matrix M is instead an m × m matrix where each entry mij is equal to
wqxi qxj

, or rather it is equal to the transition frequency from the quantile bin of xi to the
one of xj .

Example 4.6. Figure 4.6 shows the MTF of the cosine time series used in the previous
section.
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Figure 4.6: Markov transition field computed from the cosine time series xi = cos ti
rescaled to the range [0, 1], with number of bins equal to 5.
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Chapter 5

Proposed Methodology

In this chapter, we dscribe the approach used for classifying vehicular trajectories, com-
bining GAFs with deep learning architectures. We explore different strategies to generate
the three-channel images to feed DNNs, evaluating the impact of the use of GAFs, without
and in combination with MTF.

Trajectory data, which represent the movement of vehicles over time, usually have
different lengths, to address this variability, it is necessary to compress and uniform the
lengths of the trajectories. We study two compression techniques, including uniform sam-
pling and a new one that, while involving some loss of information, manages to maintain
the shape and the relative time spent in a certain location, in a way that a relative speed
of the trajectory is retained.

Subsequently, we evaluate our method using two neural network models widely used in
the literature: MobileNetV2 and ResNet18. We analyze the performance of these models
in the context of vehicle trajectories classification, comparing the results obtained with
the different configurations and strategies explored. The implemented methodology is
summarized in Figure 5.1.

5.1 Trajectory Extraction
Step 1. in Figure 5.1 concerns the extraction of trajectories from a dataset of geographic
coordinates. It is possible to group the data using a unique identifier (e.g. vehicle ID) to
obtain a new dataset composed of trajectories.

Let us now assume that the dataset has been cleaned of anomalous measurements and
that there are no gaps to be filled.

5.2 Imaging Trajectories
In this section, which corresponds to step 2. in Figure 5.1, we discuss the tested and
implemented methodology for dealing with trajectories and for extracting the data that
constitute the input of the neural networks. In particular, starting from a trajectory
dataset, we obtain a dataset composed by three-channel images.
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Figure 5.1: Flow chart for the proposed and implemented methodology.

5.2.1 Trajectory Preparation
The datasets containing trajectories often consist of data with varying lengths. Further-
more classification models present in the literature, such as neural networks, require the
input data to have a certain size. To address this issue, data compression may be neces-
sary for longer trajectories, whereas shorter ones might need to be filled to reach a certain
length. Moreover, to leverage existing algorithms designed forunivariate time series data,
we might consider applying dimensionality reduction techniques. This phase corresponds
to step 2.1. in Figure 5.1, where the input is a set of trajectories with varying lengths and
the output is a set of univariate time series with a predefined length.

Dimensionality Reduction

By the Definition 2.2, a trajectory is a multivariate time series, which contains information
concerning the latitude and the longitude. The task of transforming a trajectory into a
univariate time series, in order to allow the use of time series algorithms such as GAFs,
is challenging but not impossible and it is usually completed using Hilbert’s curve.
Towards the end of the 19th century, Georg Cantor proved that the interval [0, 1] and the
unit square [0, 1]2 have the same cardinality, suggesting the existence of a bijective map
between them.

A few years later, an Italian mathematician named Giuseppe Peano, demonstrated the
existence of a continuous surjective map between the unit interval and the unit square
[Peano, 1890], constructing the first space-filling curve. The curve that is of particular
interest for this thesis is Hilbert’s space-filling curve [Hilbert, 1891], which leverages the
idea that if the line segment can be mapped onto a square, then, after partitioning the line
segment into four subintervals and the square into four subsquares, is it possible to map
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each subinterval to the corresponding subsquare, with adjacent subintervals mapped onto
adjacents subsquares as well. In particular, starting with the unit square, then Hilbert’s
space-filling curve is recursively constructed. At each iteration, the side length of the
parent square is halved and it is divided into four subsquares, consequently, a space-filling
curve is obtained for each subsquare by scaling-down, reflecting or rotating the original
curve. At the limiting case, where the number of iterations goes to infinity, the size of
the square shrink to zero, defining a unique point and the Hilbert’s curve is built. If the
recursion is early stopped, and the squares contain multiple points, then a representative
point for each square is chosen. The construction is shown in Figure 5.2.

Definition 5.1 (Hilbert’s curve). We can define the Hilbert’s curve with the following
mapping algorithm, taken from Bader [2012].

• For each parameter t ∈ [0, 1], then a sequence of nested intervals

[0, 1] ⊃ [a1, b1] ⊃ · · · ⊃ [an, bn] ⊃ . . . ,

exists and each interval is obtained by splitting its predecessor into four subintervals
of equal size and taking the one which contains t.

• Any sequence of intervals can be mapped to a sequence of nested subsquares.

• The constructed nested subsquares will converge to a uniquely defined point which
is the image of t.
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Figure 5.2: First three iterations of Hilbert’s space-filling curve, originally depicted in
[Hilbert, 1891].

We have defined the process which maps a given parameter t onto a point of the unit
square. But now, we are interested in the inverse problem, given a point of the unit square
(x, y), we want to find the parameter t. The Hilbert’s curve is surjective, so there exist
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points of the unit square which are images of multiple parameters t (in Figure 5.2 is it
possible to see that the center of the unit square lies in the corner of three non-adjacent
squares, leading to three values of t with the same image). So an inverse mapping does
not exist in the strict sense, but it is forced to be unique.
The inverse mapping is called the Hilbert’s index, and given a point (x, y) of the unit
square, it computes the parameter t via a recursion algorithm which works similar to
the one of the Hilbert’s curve. We follow the implementation given in [Bader, 2012] (see
Algorithm 1). To generate at least 4ni different indexes, given ni the number of iterations,

Algorithm 1: Algorithm to compute the Hilbert’s index, given a point of the
unit square and a given accuracy [Bader, 2012].

1 Function hilbertIndex (x, y, eps);
Input : x, y: coordinates of the point (x, y) ∈ [0, 1]2,

eps: required accuracy
2 if eps > 1 then
3 return 0;
4 end
5 if x < 0.5 then
6 if y < 0.5 then
7 return (0 + hilbertIndex(2 ∗ y, 2 ∗ x, 4 ∗ eps))/4;
8 else
9 return (1 + hilbertIndex(2 ∗ x, 2 ∗ y − 1, 4 ∗ eps))/4;

10 end
11 else
12 if y ≥ 0.5 then
13 return (2 + hilbertIndex(2 ∗ x− 1, 2 ∗ y − 1, 4 ∗ eps))/4;
14 else
15 return (3 + hilbertIndex(1− 2 ∗ y, 2− 2 ∗ x, 4 ∗ eps))/4;
16 end
17 end

the accuracy eps cannot exceed epsmaxni
= 4−(ni−1).

Hilbert space-filling curves has proven to be versatile in multiple applications due to its
locality preserving property, such as clustering [Moon et al., 2001] or to transform animal
trajectories [Wang and Oates, 2015b], thus we can exploit this characteristic to allow the
conversion of a trajectory into a time series, while retaining spatio-temporal information.
Example 5.1. We illustrate the process of converting a trajectory into a time series with
a simple example. Given the trajectory depicted in Figure 5.3:

X = (x1, . . . ,xm) =
( 0.1 0.15 0.45 0.6 0.3 0.35 0.6

0.05 0.5 0.15 0.3 0.55 0.8 0.95

)
,

using 42 = 16 different zones, the resulting univariate time series is

x = (x1, . . . , xm) =
(

0.0, 0.0, 0.0625, 0.8125, 0.4375, 0.375, 0.5625
)
.
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Figure 5.3: Example of how the function to map a trajectories into a time series works.

At the first iteration, the four zones are mapped into 0, 0.25, 0.5, 0.75 by dividing the unit
interval into four subintervals, the last point of the trajectory is in the zone numbered with
3, which corresponds to 0.5; at the second iteration it is in the zone 10, which corresponds
to the second square of the parent square, leading to a result of 0.5+0.0625, where 0.0625
is the length of each subintervals.

Compression and Filling Strategies

When considering compressing a trajectory, we could easily think to trim it up to a
certain length. However, with the advances in GPS technology, we expect to acquire
and collect spatio-temporal data almost in real-time. Consequently, small sampling rates
(e.g. a sampling rate of 0.001 s) could result in static patterns since changes might not
occur frequently. Hence, it is desirable to account for variations when employing GAFs
to generate images with different pixel values.

The most straightforward approach is the uniform sampling, which consists in down-
sampling the data i.e. only points at fixed time intervals are retained from the original
trajectory. Nevertheless, this leads to excessive loss of information, as changes may occur
between two sampled points and not be recorded. In particular, after the transformation
with the Hilbert’s curve, the time series can only takes values in sets with cardinality
equal to a power of four, so uniform sampling is not the best choice because we might lose
points which are visited.

To address this problem, we introduce a new compression algorithm named squeeze
that takes into account the permanence of a vehicle in a location while maintaining the
original shape of the time series. This is clear in Example 5.2.

Example 5.2. Given a time series x, we compare the behaviour of the uniform sampling
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algorithm with the one of the squeeze algorithm.

x =
(

0.0, 0.0, 0.0625, 0.0625, 0.0625, 0.8125, 0.375, 0.375, 0.375, 0.375
)
,

the compressed trajectory using the uniform sampling algorithm, by imposing the final
length equal to five, is

x′ =
(

0.0, 0.0625, 0.0625, 0.375, 0.375
)
,

while with the squeeze algorithm is

x′′ =
(

0.0, 0.0625, 0.8125, 0.375, 0.375
)
,

we can easily see that with the uniform sampling we lose the point with value 0.8125, while
with squeeze we retain all the information about visited locations and also the relative
time spent in them, in fact the point with value 0.375 is still the one with the greatest
frequency of occurence.

We have discussed how to compress longer trajectories, now we examine how to deal
with shorter ones. The simple strategy is to fill them with mirrored copies, like a vehicle
which travels the same path in reverse. This strategy is intuitively better than appending
the original copy of them, because it avoids spatial jumps (see Example 5.3).

Example 5.3. Given the time series x, we show how the filling strategy works.

x =
(

0.0, 0.0625, 0.375
)
,

the filled times series up to a length equal to five is

x′ =
(

0.0, 0.0625, 0.8125, 0.8125, 0.0625
)
.

5.2.2 Image Generation
Now, we study the various ways of composing three-channel images. As stated in Chapter
4, from the GASF matrix it is possible to reconstruct the original time series, we therefore
focus only on those approaches that allow us to obtain the data used to generate the
images, which paves the way to the generation of synthetic data. The input of this phase,
which is the step 2.2. in Figure 5.1, is a set of univariate time series and the output is a
set of three-channel images.

In order to make the discussion more understandable, we adopt the following notation
to give a name to different strategies: the name of a strategy is equal to “trajectory prepa-
ration + construction of image”. For the step 2.1. in Figure 5.1, the possible values are
“SQ/US” to say which of the compression algorithms is involved, between squeeze (“SQ”)
and uniform sampling (“US”). For the step 2.2. we use the notation “(channel1 + channel2
+ channel3)”, where the possible values for each channel are “GASF/GADF/MTF/0”,
where “0” means a matrix with all entries equal to 0.
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1. US + (GASF + GADF + 0): this approach consists in transforming the trajectory
into a univariate time series with Hilbert’s curve, compress it with uniform sampling
and finally generate the three-channel image by stacking together the GASF, the
GADF and the 0-value matrix.

Example 5.4. We use the same trajectory of Example 5.1 and the resulting time
series. Figure 5.4 shows the three-channel image.

+ +

Channel 1 Channel 2 Channel 3

--

Three-channel image

Figure 5.4: Construction of the colored image, which is composed by GASF, GADF and
0-value matrix.

2. SQ + (GASF + GADF + 0): with this approach the colored image is generated
similar to the previous one, with the difference that instead of involving the use of
the uniform sampling, the squeeze algorithm is employed.

3. US + (GASF + GADF + MTF): similar to the second approach, after the transfor-
mation with the Hilbert’s curve, the time series is therefore compressed with uniform
sampling, and the three-channel image is constituted by GASF, GADF and MTF.

Example 5.5. We use the same time series of Example 5.4, the final colored image
is depicted in Figure 5.5.

+ +

Channel 1 Channel 2 Channel 3

--

Three-channel image

Figure 5.5: Construction of the colored image, which is composed by GASF, GADF and
MTF.
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4. SQ + (GASF + GADF + MTF): this strategy is similar to the previous one, and
it involves the transformation with the Hilbert’s curve, the compression with the
squeeze algorithm and the stacking of GASF, GADF and MTF matrices.

In order to better account for the implemented methodology we show in Table 5.1 the
input and the output of the main steps.

Table 5.1: Input and output for the main steps of the methodology.

Step Input Output

1. Trajectory Extraction Set of geographic
coordinates

Set of trajectories with
varying lengths

2.1. Trajectory Preparation
Set of trajectories

with varying
lengths

Set of univariate time series
of equal length

2.2. Image Generation
Set of univariate
time series of
equal length

Set of colored images

5.3 Classification
The classification is carried out in python language, using PyTorch for DNNs architectures
and the pyts library [Faouzi and Janati, 2020] for imaging time series.

5.3.1 Hyperparameters and Models Selection
We train and validate two architectures of the literature: MobileNetV2 [Sandler et al.,
2018] and ResNet18 [He et al., 2016].
The main hyperparameters to consider are the ones concerning the imaging of the trajec-
tories. In particular, we try two values for the epsilon parameter of the Hilbert’s curve
which lead to: {45, 46} different indexes. The final length of the trajectories is fixed to
224, since the chosen neural networks support images of size 224× 224.

We chose to test 4 different settings:

• MobileNetV2 pre-trained on ImageNet-1K dataset (default setting for weights): in-
stead of using random weights, we finetune the MobileNetV2 network by initializing
it with the pre-trained network on the ImageNet-1K dataset.

• MobileNetV2 not pre-trained: MobileNetV2 with random initialization.

• ResNet18 pre-trained on ImageNet-1K dataset (default setting for weights).

• ResNet18 not pre-trained.
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We use the Cross-Entropy Loss as the loss function for each configuration, defined by

LCE = −
∑N

n=1
∑C

c=1 tc,n log(pc,n)
N

,

where C is the set of possible class labels, N is the number of instances, pc,n is the
probability for instance n to be in the class c and tc,n is equal to 1 if the target class of
the instance n is c, while is 0 otherwise.
We use Adam optimizer with default settings [Kingma and Ba, 2014] and we fix the batch
size to 20 items.

5.3.2 DNN Training
We split our dataset into:

• Training set: composed by the 60% of the original dataset.

• Validation set: the 20% of the original dataset.

• Test set: the remaining 20%.

The model is trained using the training set, we fix the maximum number of epochs to
50, but in order to avoid overfitting the optimum number of epochs is decided with early
stopping (when the validation loss does not decrease anymore). The performance of the
model is then evaluated using the test set.
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Chapter 6

Results

As discussed in Chapter 5 we have implemented different approaches to obtain three-
channel images to feed DNNs.
In this chapter we focus on the evaluation of the proposed methodology. Section 6.1
summarizes the main characteristics of the used dataset to test our approach. In Section
6.2 we define the metrics which allow us to evaluate and compare the diverse implemented
strategies, then, this chapter concludes with a discussion and comparison of them.

We test our models on a machine with Tesla V100 GPU and IBM POWER9 processor.

6.1 Description of the Used Dataset
In order to evaluate our approach we use a synthetic dataset generated with SUMO, which
is an open source traffic simulation package widely used in telecommunication and urban
mobility fields. SUMO networks are encoded in Cartesian coordinates, using the UTM
projection. The origin is shifted by making the lower left corner of the network corre-
sponds to the point (0,0). The simulated scenario is the one concerning the Principality
of Monaco: MoST [Codecá and Härri, 2017]. The simulated dataset contains a large num-
ber of classes with imbalanced distribution, so we aggregate some of them and we retain
only information regarding coordinate x, coordinate y, time, the ID of the vehicle and the
class label.

Each instance of the dataset is characterized by:

• VehicleID: the ID of the vehicle;

• Coordinate x: the value of the coordinate x in meters (m);

• Coordinate y: the value of the coordinate y in meters (m);

• Time: the time in seconds (s);

• Class: the transportation mode.

The data are collected with a sampling rate of 0.25 s, so after grouping by VehicleID,
trajectories with lengths less than 4 i.e. trajectories less than 1 s are discarded, since
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they could be vehicles simulated at the end of the simulation. We show the trajectories
in Figure 6.1, after rescaling them into [0,1].

0.0 0.2 0.4 0.6 0.8 1.0
Coordinate x

0.0
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0.6

0.8

1.0
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na
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bycicle
motorcycle
pedestrian
private_car
taxi_or_uber

Figure 6.1: Trajectories in the space colored by class label.

We can easily observe in Figure 6.2 that the resulting dataset is not well-balanced, this
could potentially lead to further issues when attempting to classify the data, because the
model may be biased in favor of larger classes.

As we expected, trajectories have also very different lengths, we show the average
trajectory length per class in Table 6.1. In Chapter 5 we have discussed different strategies
to compress the trajectories up to a certain length, the considered approaches are now
validated in 6.3 using the metrics defined in Section 6.2.
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Figure 6.2: Bar plot of instances per class.

Class Average length
Bus 3718.79

Bicycle 1366.82
Motorcycle 2217.74
Pedestrian 408.54
Private Car 2549.83
Taxi/Uber 1004.61

Table 6.1: Average length per class.

6.2 Evaluation Metrics
To effectively asses the performance of our methodology we employ Accuracy and F1
score:

Accuracy = #Correct predections
#Predictions ,

F1j = 2× Precisionj ×Recallj
Precisionj +Recallj

,

P recisionj = TPj

TPj + FPj
,

Recallj = TPj

TPj + FNj
,

where, TPj is the number of samples correctly classified as category j, while TNj quantifies
the instances accurately identified as not belonging to category j. FPj represents the
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number of samples incorrectly categorized as j, and FNj denotes the quantity of samples
inaccurately classified as not j, despite belonging to category j. The F1 score is the
harmonic mean of precision and recall, thus making it much better as an evaluation
metric when dealing with imbalanced datasets.

6.3 Comparison of Results
In Chapter 5 we presented four different approaches to generate an image from a trajectory.
Additionally, we discussed using two different epsilon values for the Hilbert’s curve and
two distinct neural network models, pre-trained or not. So, in this section, our aim is
to compare the performance of different settings using the F1 score and the accuracy as
evaluation metrics. We also take into account the time taken to train the neural networks
and retain the loss values.

We focus whether our approach shows good performance , highlighting how an accu-
racy of 75% can be achieved with just a few training epochs. Since we tested 32 different
setting, starting from the configuration with the best performance, we show how the re-
sults change by varying only one parameter at once. We introduce a notation similar to
the one of Chapter 5 to differentiate the settings: the name of a configuration is equal
to “trajectory preparation + construction of image + employed architecture”. Differently
from the previous chapter, we add “1024/4096” based on the choice of the epsilon value
for the Hilbert’s curve, resulting in “1024 US/1024 SQ/ 4096 US/4096 SQ”. The archi-
tecture can be “MOB Y/MOB N/RES Y/RES N”, whether the employed architecture is
MobileNetV2, pre-trained or not, or ResNet18.

We now show the graphics for the best result obtained.
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Figure 6.3: Training accuracy and validation accuracy in function of time (s) for the
best-performing configuration. Markers correspond to epochs.

37



Results

Figure 6.3 shows the accuracy for both the validation and training sets for the best
configuration i.e. 4096 SQ + (GASF + GADF + MTF) + MOB Y, which is the one
combining Hilbert’s curve with 46 different indexes, the squeeze algorithm as compression
strategy, GAFs + MTF to build the colored images, and the pre-trained MobileNetV2
architecture. Each point represents an epoch for a total of 50. We can notice that the
model converges in very few epochs, reaching an accuracy around 75 %. In less than 10
minutes it has completed all the training and validation phase. In later steps the two lines
begin to separate, showing the typical behavior of neural networks, learning too much
from the training set and no longer being able to generalize correctly.

We now investigate the confusion matrix, to analyze how the different labels are clas-
sified.
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Figure 6.4: Confusion matrix for the best-performing configuration.

In Figure 6.4 it is possible to notice that, despite the dataset is not well-balanced, the
model correctly classifies the instances of the most numerous classes, but also for the least
numerous one i.e. “taxi or uber”, the fraction of items correctly classified is larger than 0.
Thus it confirms that out methodology is a viable way to address a multiclass classification
problem. Moreover in Figure 6.5 we can observe that the loss function initially decreases
quickly, both for the training and for the validation set. After 30 epochs the loss of the
validation set no longer decreases, but rather begins to increase.
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Figure 6.5: Training loss and validation loss in function of time (s) for the best-performing
configuration. Markers corresponds to epochs.

As anticipated, now we empirically evaluate how the change in one step of the method-
ology can influence the results.

In Figure 6.6 we can notice that just the change of the initialization of the weights
from the pre-trained network to random initialization can affect a lot the performance.
The accuracy is lower compared to the one of the best configuration and the accuracy of
the validation set suffers from this different initialization of weights showing oscillating
behavior. As displayed in Figure 6.7, the number of correct prediction has decreased for
all the classes, except for the two largest classes. In fact, this model cannot classify very
well because it identifies everything with the largest classes.

Changing now the employed architecture in pre-trained ResNet18, we can notice in
Figure 6.8 and Figure 6.9 that a simpler model with fewer parameters is to be preferred
to a more complicated one, because the use of ResNet18 does not improve our performance
either in terms of accuracy or in terms of recall.

We can investigate the impact of the MTF by replacing it with a matrix with all
the entries equal to 0. The results seem to be very similar in terms of accuracy (Figure
6.10), but we should not rely only on accuracy, since we have an imbalanced dataset.
Looking carefully to the confusion matrix depicted in Figure 6.11, we can observe that
the model never predicts the taxi class, preferring all the others. Therefore we can state
that the channel relating to MTFs is fundamental for capturing dynamical information of
the trajectories.

We have shown models with 4096 zones of the Hilbert’s curve. Intuitively we might
think that reducing the number of different zones from 4096 to 1024 could lead to univari-
ate time series that are very similar to each other, because many two-dimensional points
are mapped into the same index, but overall the Hilbert’s curve is effective in retaining
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Figure 6.6: Training accuracy and validation accuracy in function of time (s) for the
configuration 4096 SQ + (GASF + GADF + MTF) + MOB N, compared to the best
one. Markers corresponds to epochs.
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Figure 6.7: Confusion matrix for the configuration 4096 SQ + (GASF + GADF + MTF)
+ MOB N.

the spatio-temporal information of the trajectories (see Figure 6.12 and Figure 6.13).
Finally, we expected that uniform sampling is not the best way to compress trajectories

40



Results

0 100 200 300 400 500 600
Elapsed Time [s]

0.45

0.50

0.55

0.60

0.65

0.70

0.75
Ac

cu
ra

cy

Training Acc Best
Validation Acc Best
Training Acc Current
Validation Acc Current

Figure 6.8: Training accuracy and validation accuracy in function of time (s) for the
configuration 4096 SQ + (GASF + GADF + MTF) + RES Y, compared to the best one.
Markers correspond to epochs.
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Figure 6.9: Confusion matrix for the configuration 4096 SQ + (GASF + GADF + MTF)
+ RES Y.

because it leads to excessive loss of information. In fact, as we can notice in Figure 6.14
and Figure 6.15, smaller classes are disadvantaged in favor of the larger ones, leading
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Figure 6.10: Training accuracy and validation accuracy in function of time (s) for the
configuration 4096 SQ + (GASF + GADF + 0) + MOB Y, compared to the best one.
Markers correspond to epochs.
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Figure 6.11: Confusion matrix for the configuration 4096 SQ + (GASF + GADF + 0) +
MOB Y.

to very similar accuracy (Figure 6.14), but lower recall for classes like “bus” or “taxi or
uber”.
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Figure 6.12: Training accuracy and validation accuracy in function of time (s) for the
configuration 1024 SQ + (GASF + GADF + MTF) + MOB Y, compared to the best
one. Markers correspond to epochs.
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Figure 6.13: Confusion matrix for the configuration 1024 SQ + (GASF + GADF + MTF)
+ MOB Y.
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Figure 6.14: Training accuracy and validation accuracy in function of time (s) for the
configuration 4096 US + (GASF + GADF + MTF) + MOB Y, compared to the best
one. Markers correspond to epochs.
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Figure 6.15: Confusion matrix for the configuration 4096 US + (GASF + GADF + MTF)
+ MOB Y.

6.3.1 Summary
In Table 6.2 we compare the weighted F1 score, the accuracy, and the loss computed on
the test set, and the time for the training and validation phase of all the implemented and
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tested settings. In particular the best five values for each column are colored in green,
while the worst five are colored in orange, to make the comparison easier.

Index F1 Acc Loss Elapsed Time (s)
4096 SQ + (GASF + GADF + MTF) + MOB Y 0.741 0.749 0.801 652.259
4096 SQ + (GASF + GADF + MTF) + MOB N 0.692 0.726 0.855 648.856
4096 SQ + (GASF + GADF + MTF) + RES Y 0.710 0.743 0.802 547.177
4096 SQ + (GASF + GADF + MTF) + RES N 0.654 0.700 0.886 547.087
4096 SQ + (GASF + GADF + 0) + MOB Y 0.737 0.756 0.657 683.384
4096 SQ + (GASF + GADF + 0) + MOB N 0.545 0.642 1.000 683.669
4096 SQ + (GASF + GADF + 0) + RES Y 0.709 0.741 0.731 555.286
4096 SQ + (GASF + GADF + 0) + RES N 0.599 0.667 1.001 558.305

1024 SQ + (GASF + GADF + MTF) + MOB Y 0.727 0.743 0.753 651.867
1024 SQ + (GASF + GADF + MTF) + MOB N 0.664 0.721 0.847 651.473
1024 SQ + (GASF + GADF + MTF) + RES Y 0.668 0.687 0.933 583.002
1024 SQ + (GASF + GADF + MTF) + RES N 0.583 0.654 0.975 577.568
1024 SQ + (GASF + GADF + 0) + MOB Y 0.697 0.726 0.791 652.398
1024 SQ + (GASF + GADF + 0) + MOB N 0.645 0.704 0.880 652.500
1024 SQ + (GASF + GADF + 0) + RES Y 0.706 0.730 0.778 576.443
1024 SQ + (GASF + GADF + 0) + RES N 0.659 0.700 0.901 577.167

4096 US + (GASF + GADF + MTF) + MOB Y 0.733 0.762 0.722 686.629
4096 US + (GASF + GADF + MTF) + MOB N 0.649 0.702 0.915 695.882
4096 US + (GASF + GADF + MTF) + RES Y 0.733 0.754 0.776 537.496
4096 US + (GASF + GADF + MTF) + RES N 0.612 0.667 0.911 537.630
4096 US + (GASF + GADF + 0) + MOB Y 0.737 0.754 0.740 661.851
4096 US + (GASF + GADF + 0) + MOB N 0.566 0.654 0.976 703.964
4096 US + (GASF + GADF + 0) + RES Y 0.725 0.752 0.781 529.151
4096 US + (GASF + GADF + 0) + RES N 0.599 0.659 0.965 537.976

1024 US + (GASF + GADF + MTF) + MOB Y 0.695 0.723 0.806 683.272
1024 US + (GASF + GADF + MTF) + MOB N 0.630 0.680 0.918 682.742
1024 US + (GASF + GADF + MTF) + RES Y 0.730 0.752 0.792 561.957
1024 US + (GASF + GADF + MTF) + RES N 0.611 0.672 0.971 564.601
1024 US + (GASF + GADF + 0) + MOB Y 0.712 0.736 0.785 680.260
1024 US + (GASF + GADF + 0) + MOB N 0.588 0.659 0.982 649.259
1024 US + (GASF + GADF + 0) + RES Y 0.633 0.682 0.847 555.016
1024 US + (GASF + GADF + 0) + RES N 0.576 0.655 0.982 565.933

Table 6.2: Performance metrics of different settings. Green and orange background cor-
respond to the five best- and worst-performing configurations.
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Chapter 7

Conclusion

We have proposed a methodology that leverages deep learning models and avoids the use
of complex feature extraction processes. In particular, our main tools include Gramian
angular fields, Markov transition field, and the Hilbert’s curve. We combine these tools to
reduce the dimensionality of the trajectories, allowing the use of time series algorithms,
and to generate three-channel images to feed possibly pre-trained neural networks such
as MobileNetV2 and ResNet18.

We have demonstrated the effectiveness of our methodology in the context of trajectory
classification, reaching an accuracy of 75% (and an F1 score equal to 0.74) on a realistic
dataset of the Principality of Monaco (simulated with SUMO) for a transportation mode
recognition problem.

Our research is linked to many future research possibilities. We can extend our ap-
proach to other classification scenarios or validating it with real-world datasets. Further-
more, it may be useful to further investigate the impact of different neural network models
and configurations. Additionally, it would also be interesting to explore strategies to deal
with imbalanced datasets, such as random over sampling the smaller classes or employ
loss functions which take in consideration different weights for the classes, in order to
obtain a more robust classifier.

This work therefore represents a contribution to the field of trajectory classification,
laying groundwork for further research to improve traffic monitoring, aiding to more effi-
cient urban planning.
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Appendix A

Code

Our code, as well as the used dataset, is available through the following GitHub profile:
https://github.com/SalThesis.

In this appendix we show the main functions implemented and used in the step 2.1.
Trajectory Preparation (see Figure 5.1). In particular we show the compression algorithm
and the one for duplicating the time series. Here follows the definition of the function to
duplicate our time series.

1 def duplicate (my_list , K):
2 list_new = my_list
3 if len( list_new ) > K:
4 print(’The list exceeds the limit ’)
5 return list_new
6 while len( list_new ) < K:
7 list_new = list_new + list_new [:: -1]
8 list_new = list_new [0:K]
9 return list_new

Now we show the compression algorithm with the definition of the squeeze function.

1 import numpy as np
2 import math
3

4

5 def ceil_list (my_list , final_length ):
6 if len( my_list ) <= final_length :
7 final_list = my_list
8 return final_list
9

10 old_length = len( my_list )
11 final_list = []
12 seg_length = 1
13 for index , value in enumerate ( my_list ):
14 if index != len( my_list ) - 1:
15 if value == my_list [index + 1]:
16 seg_length += 1
17 else:
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18 final_list = final_list + [value] * math.ceil ((
seg_length * final_length / old_length ))

19 seg_length = 1
20 else:
21 final_list = final_list + [value] * math.ceil (( seg_length *

final_length / old_length ))
22 seg_length = 1
23 return final_list
24

25 def index_and_length ( my_list ):
26

27 list_start_index = []
28 list_length = []
29 seg_length = 1
30 for index , value in enumerate ( my_list ):
31 if index != len( my_list ) - 1:
32 if value == my_list [index + 1]:
33 seg_length += 1
34 else:
35 list_start_index . append (index + 1 - seg_length )
36 list_length . append ( seg_length )
37 seg_length = 1
38 else:
39 list_start_index . append (index + 1 - seg_length )
40 list_length . append ( seg_length )
41 seg_length = 1
42 return list_start_index , list_length , my_list
43

44 def squeeze (my_list , final_length ):
45 my_list = ceil_list (my_list , final_length )
46 list_start_index , list_length , my_list = index_and_length ( my_list )
47

48 index = sorted (range(len( list_length )), key = lambda k: list_length [
k], reverse = True)

49 list_start_index = [ list_start_index [i] for i in index]
50 list_length = [ list_length [i] for i in index]
51

52 list_length_updated = list_length .copy ()
53

54 j = 0
55 while( (np.isnan(np.array( my_list )).sum () < len( my_list ) -

final_length ) and (len( my_list ) > final_length )):
56 if all(item == 1 for item in list_length_updated ) == True:
57 print(’The list cannot be compressed ’)
58 break
59 else:
60 if list_length_updated [j] > 1:
61 removed_index = list_start_index [j]
62 my_list [ removed_index ] = float(’nan ’)
63 list_start_index . append ( list_start_index [j] + 1)
64 list_length_updated . append ( list_length_updated [j] - 1)
65 list_start_index .pop (0)
66 list_length_updated .pop (0)
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67 else:
68 list_start_index . append ( list_start_index [j])
69 list_length_updated . append ( list_length_updated [j])
70 list_start_index .pop (0)
71 list_length_updated .pop (0)
72 my_list = list( filter ( lambda x: not math.isnan(x), my_list ))
73

74 return my_list
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