
POLITECNICO DI TORINO
Master’s Degree in Ingegneria Matematica

Master’s Degree Thesis

Single-solution Based Metaheuristic
Algorithms for Capacitated Vehicle
Routing Problems: A Comparative

Analysis

Supervisors

Prof. Paolo BRANDIMARTE

Candidate

Giuseppe Biagio LAPADULA

March 2024

Summary

Vehicle Routing Problems (VRP) represent a widely studied class of combinatorial
optimization problems due to their applicability in various real-world contexts,
particularly in commercial settings. The inherent complexity of VRP necessitates
the use of computationally efficient approximation approaches, with metaheuristics
emerging as prominent methods in this domain. This thesis aims to construct and
develop several metaheuristic-based algorithms, primarily focusing on single-solution
approaches, for addressing the Capacitated Vehicle Routing Problem (CVRP).
Subsequently, these algorithms will be systematically compared against each other
and against a state-of-the-art tools (Google Or-tools). Through this comparative
study, insights into the efficacy and performance of different metaheuristic strategies
in solving CVRP will be gained, contributing to the advancement of optimization
methodologies in logistics and transportation management.

ii

Acknowledgements

ACKNOWLEDGMENTS

Sarò breve: ringrazio tutti. Tutti coloro a cui voglio bene, tutti coloro che mi sono
stati vicino, tutti coloro che ci sono e anche chi non c’è più. Tutti coloro che mi

hanno fatto crescere, nel bene, nel male e mi hanno reso la persona che sono oggi.
senza il contributo di ognuno di voi, non sarei arrivato al traguardo. Un

ringraziamento ed un augurio lo faccio a me stesso, che possa affrontare tutte le
sfide, con la mia forza, con tutti voi, Insieme.

iii

Table of Contents

List of Figures vii

1 Introduction 1

2 Problem Description 2
2.1 Travelling Salesman Problem . 2
2.2 Capacitated VRP . 4

2.2.1 Mathematical Formulation 4
2.3 VRP variants . 6

3 Solution Approaches 8
3.1 Constructive Heuristics . 9
3.2 Improvement Heuristics . 11
3.3 Metaheuristics . 13

3.3.1 Single-Solution-Based Methods 14
3.3.2 Population-Based Methods 17

4 Algorithms Modules 18
4.1 Modules . 18

4.1.1 Inspirations . 18
4.1.2 Improvement Heuristics . 18
4.1.3 Improvement and Shaking algorithms 20
4.1.4 Destruction/Reconstruction 25
4.1.5 Crossing-over operators . 28
4.1.6 Starting and Restarting Methods 29

4.2 Algorithm Examples . 31

5 Experiments 37
5.1 Examples . 37
5.2 Statistical Analysis: Non-parametric hypotesis Tests 40

5.2.1 Wilcoxon Signed Rank test 40

v

5.2.2 Friedman test . 41
5.3 Experiments results . 43

5.3.1 Experiment 1 . 44
5.3.2 Experiment 2 . 55
5.3.3 Experiment 3 . 56

6 Conclusions 58

A Code description 59
A.1 Classes . 59

vi

List of Figures

2.1 This is a typical example of a possible solution for this instance of
TSP[wikicommons_example] . 3

3.1 This map summarizes the various kinds of heuristic approaches in
[liu2023heuristics] . 9

3.2 Various intra-route heuristics applications on a route [liu2023heuristics] 12
3.3 Various inter-route heuristics applications between two different

routes [liu2023heuristics] . 13

4.1 An example of three routes structure representation in our work:
grey rectangles with 0 represent the depots, while the other numbers
are the indexes of nodes where we have to pass in a single route. . 19

4.2 [2010], chapter about VNS algorithms: the x and k parameters
represent respectively the current solution and the neighborhood
structure to be used. Nk(x) is referring to the neighborhood function
of current solution for the k-th neighborhood structure. 20

4.3 [2010] . 21
4.4 [2010] . 21
4.5 [Souza_2023], in this example Z is the test solution while Y is the

main solution: it is selected the position (route = 3, route_position =
2); in Z it is equal to c9, while in Y it is equal to c7. Then, we
exchange in Y node c7 with c9, getting a new solution Y ′ 29

5.1 A-n32-k5 orTools . 38
5.2 A-n32-k5 IVNS . 38
5.3 A-n32-k5 VNS1 . 39
5.4 A-n32-k5 VNS2 . 39

vii

Chapter 1

Introduction

Vehicle Routing Problems (VRPs) have increasingly become a class of problems
studied within combinatorial optimization, as the volumes of goods movement have
continued to rise with the advent of globalization. Consequently, the optimization
of freight transport has always been at the forefront of operations research themes,
particularly within combinatorial optimization. Subsequently, these types of prob-
lems have been adapted to various domains, further emphasizing their fundamental
application. The primary challenge that all VRPs face is their computational
complexity, leading researchers to avoid traditional "exact" solving approaches
used in optimization problems. Instead, commonly utilized approaches involve
metaheuristics, algorithms employing approximate methods to reach problem solu-
tions. This thesis will specifically focus on Single Solution Based metaheuristics,
with the aim of creating algorithms capable of constructing metaheuristics based
on this paradigm. The work will primarily analyze the problem we intend to
solve, the Capacitated Vehicle Routing Problem (CVRP), and briefly touch upon
other VRP variants. Subsequently, an overview of solution approaches based on
metaheuristics will be provided. The following chapters will delve into our work:
initially, describing the algorithms produced, followed by conducting tests and
analyses.

1

Chapter 2

Problem Description

In this chapter we are going to give some details on the problem that we want to
solve. Vehicle routing problem(VRP) is a large class of problems in the field of
combinatorial optimization. They aims to find the optimal routes on a map of
points. There exist a large number of different kind of VRP variants, but them
all are characterized by the fact to have as objective a set of optimal routes to be
generated and by the fact that they belong to the NP-hard class of complexity, so
they can’t be solved in polinomial time.

2.1 Travelling Salesman Problem
The Traveling Salesman Problem (TSP) originated in the 19th century through the
work of Irish mathematician William Rowan Hamilton and British mathematician
Thomas Kirkman, who developed Hamilton’s icosian game as a recreational pursuit
centered on identifying a Hamiltonian cycle. It wasn’t until the 1930s, notably in
Vienna and at Harvard, that mathematicians like Karl Menger began to delve into
the TSP’s general form, examining its complexities, including the limitations of
straightforward algorithms like the nearest neighbor heuristic.

The TSP stands as one of the earliest incarnations of Vehicle Routing Problems
(VRP). It involves navigating a map with a defined set of destinations, with the
goal of determining the most efficient route that visits each point exactly once,
minimizing overall travel distance. For these reasons, TSP can be represented as
an undirected weighted graph, where the cities correspond to the graph’s vertices,
the routes between cities represent the graph’s edges, and the length of each route
is considered the weight of the corresponding edge. This problem aims to minimize
the total distance traveled, starting and ending at a designated vertex while passing
through each other vertex exactly once. Typically, the graph is depicted as complete,
meaning there is a direct connection (edge) between every pair of vertices (cities).

2

Problem Description

If there is no direct route between two cities, it’s possible to add an edge with a
sufficiently large weight to create a complete graph without affecting the optimal
tour.

Figure 2.1: This is a typical example of a possible solution for this instance of
TSP[wikicommons_example]

From this ideas a lot of different versions and generalizations of the TSP were
created. In particular, we are going to explore one of the most studied version of
VRP, the Capacitated Vehicle Routing Problem (CVRP).

3

Problem Description

2.2 Capacitated VRP

CVRP is a generalization of TSP, where we insert other issues:

• Now we have to generate more routes.

• Every point of the map represents a client with a certain product quantity
demand.

• Every vehicle for every route in the problem has a maximum transport capacity
that can’t be exceeded by the products.

2.2.1 Mathematical Formulation

Our problem consists in a map of points represented by a complete graph G = (V, E),
where |V | = n. We can find out the formulation of CVRP, given by

minimize
KØ

k=1

nØ
i=1

nØ
j=1

cijxijk

subject to
KØ

k=1

nØ
j=1

xijk = 1 for i = 2, . . . , n

nØ
j=1

xijk =
nØ

j=1
xjhk for i, h = 1, . . . , n, and k = 1, . . . , K

nØ
i=1

dixijk ≤ Qk for k = 1, . . . , K

nØ
j=1

x1jk = 1 for i = 2, . . . , n, and k = 1, . . . , K

nØ
j=1

xi1k = 1 for i = 2, . . . , n, and k = 1, . . . , K

xijk ∈ {0,1} for i, j = 1, . . . , n, and k = 1, . . . , K

4

Problem Description

Where:

n : number of nodes (customers plus depot)
K : number of routes (vehicles)
cij : cost associated with the arc from node i to node j

xijk : binary variable indicating whether there is an arc from node i to node j in route k

di : demand of customer i

Q : maximum vehicle capacity

This model minimizes the total cost of routes while satisfying all customer
demands and respecting the maximum vehicle capacities.

One of these points is the depot, the point from which all routes start. Every
edge connecting nodes i and j in V has a cost cij. For each node in the graph,
there is a specific demand dij, and for every generated route, there is a designated
capacity Q. Regarding this latter point, there are different considerations regarding
capacity. In our case, we assume all vehicles have the same capacity, but this can
be generalized to accommodate different capacities for the vehicles.

Furthermore, we can also discuss the number of routes. Classical versions of
the problem entail a fixed number of routes to be determined in order to find the
optimal solution for these routes. However, in our scenario, we aim to determine
the best solution with an optimal number of routes, determined by the solver.
Thus, the formulation changes in a manner that allows for the generation of the
maximum number of routes, but many of these routes may be "fake" routes as they
are empty. Specifically, we have a maximum number of possible routes equal to n
(we cannot have more, as this choice assigns exactly one point for every route, and
removing a point from a route results in the deletion of the entire route). Clearly,
the inclusion of "fake" routes is permissible by modifying the constraints to allow
for zero values in certain routes.

With these considerations, we make the final version of the model:

5

Problem Description

minimize
KØ

k=1

nØ
i=1

nØ
j=1

cijxijk

subject to
KØ

k=1

nØ
j=1

xijk ≤ 1 for i = 2, . . . , n

nØ
j=1

xijk =
nØ

j=1
xjhk for i, h = 1, . . . , n, and k = 1, . . . , n

nØ
i=1

dixijk ≤ Q for k = 1, . . . , n

nØ
j=1

x1jk ≤ 1 for i = 2, . . . , n, and k = 1, . . . , n

nØ
j=1

xi1k ≤ 1 for i = 2, . . . , n, and k = 1, . . . , n

xijk ∈ {0,1} for i, j = 1, . . . , n, and k = 1, . . . , n

Where:

n : number of nodes (customers plus depot)
cij : cost associated with the arc from node i to node j

xijk : binary variable indicating whether there is an arc from node i to node j in route k

di : demand of customer i

Q : maximum vehicle capacity

We can observe that some constraints that were previously equalities in the general
version have now become inequalities (≤), as we may encounter empty routes.

2.3 VRP variants
The model shown above is the case that we are going to solve. But in the state
of the art, there are a lot of different other cases of VRP problems and variants
that we can encounter, changing various aspects, for example adding constraints or
changing the objective function that are all linked to different aspects we want to
model.

We can see some examples (we can find some of them in [Elatar_2023]):

6

Problem Description

• Time constraints: these constraints are used to model the time interval where
the vehicle can pass to a certain destination. This leads to the Capacitated
Vehicle Routing Problem with Time Windows (CVRPTW).

• Customers returning product: In the VRP with Back-hauls (VRPB),
goods need to be delivered to Line-haul customers while other products must
be picked up from Back-haul customers.

• Occasional Drivers: there can also be some vehicles that are only temporary
in VRP with Occasional Drivers (VRPOD). [icores20]

• Picking possibility: The VRP with pick-up and delivery (VRPPD) shares
similarities with the VRPB, but in this scenario, each customer may both
place orders for certain products and request the pick-up of others.

• Environmental and pollution Regulation: with Green VRP (GVRP) we
have a class of problems where there are some constraints or objectives that
model some environmental aspects, such as pollution level, fuel consumption,
and other.

• More depots: our vehicles can start from multiple locations for their route,
as in the Multi-depot VRP (MDVRP).

• Planned horizons for routes: in some cases, we may need to model the
routes to be used more than one time, as in Periodic VRP (PVRP).

• Drones: there are particular variants of VRP where we have to manage
drones, for example in [Shi_2023] the UAV routing aims to solve a problem
where the drones have limited battery and they can go to different charge
stations; for that, there are some constraints that manage this aspect.

7

Chapter 3

Solution Approaches

As we sayed in the previous chapter, VRPs are NP-hard problems and for this
reason solving them is a very challenging issue when the dimension of the problem
becomes higher and higher(curse of dimensionality): it isn’t easy use conventional
exact solvers, that result heavy and uneffective for the computational issues. In front
of these problems, a class of different minimizers have been created; these use some
strategies defined "heuristics", that are algorithmic strategies(taken from different
kind of ideas and concepts, as we will see later) that can give us an approximated
result with a certain level of quality, but with good computational properties. In
the case of VRPs we can consider two kind of heuristics [liu2023heuristics]:

• Constructive heuristics: Algorithms in this category build routing solutions
from scratch following fixed empirical heuristic procedures. They typically
generate a feasible solution quickly and are easy to implement across various
VRP variants. However, solutions produced by constructive heuristics often
exhibit a certain gap from the optimal solution

• Improvement heuristics: These iteratively enhance an incumbent routing
solution by conducting a local search in the neighborhood. They are quite
efficient at determining a local optimum. The main limitation is that they
can easily become trapped in local optima, and the final solution’s quality
depends on the starting point of the local search

From these tricks, we can get algorithms that exploits and put togheter them
all in order to get some solvers that points to get good approximated solutions
in brief times, in a more general way, not too much linked to the single problem
but more generalizable. These are called "meta-heuristics". As we can see in
[liu2023heuristics]:

• Metaheuristics differ from constructive heuristics and improvement heuristics in
the fact that they focus on high-level algorithm principles rather than exploiting

8

Solution Approaches

the specific features and structure of the problem. Instead, metaheuristics
draw inspiration from natural phenomena or physical processes to design
optimization algorithm paradigms. They are generally less dependent on
the problem at hand and are known for their efficiency and global search
capabilities.

Figure 3.1: This map summarizes the various kinds of heuristic approaches
in [liu2023heuristics]

3.1 Constructive Heuristics
Constructive heuristics are algorithms that create routing solutions from scratch
based on predefined empirical procedures. While they are able to generate solutions
quickly, there is typically a gap between their results and the optimal solution.
Existing constructive heuristics can be categorized into four main algorithm frame-
works: the nearest neighbor method, the insert method, the saving method, and
the sweep method.

• Nearest neighbor method: the nearest neighbor method is a simple con-
structive heuristic often used for solving VRPs. This method builds routes by
greedily adding the nearest feasible unrouted customer to each route, starting
from the depot. Routes can be built sequentially or in parallel. In sequential
route building, routes are extended one at a time, with a new route initiated

9

Solution Approaches

from the depot when no more customers can be added. However, this approach
may lead to uneven loading among routes, especially for the last vehicle. To
alleviate this issue, parallel route building is employed, where a predetermined
number of vehicles are used, and routes are extended simultaneously. Each
iteration adds the closest unrouted customer to each route, ensuring that
K customers are added in total. This process continues iteratively until all
customers are visited. Although the nearest neighbor method has a time
complexity of O(n2) with n customers, it has been integrated into various
VRP algorithms in recent years. It serves as an initialization technique in
meta-heuristic algorithms like tabu search, simulated annealing, memetic
algorithm, and large neighborhood search, contributing to their effectiveness.

• Insert method:the insert method initializes empty routes and inserts un-
routed customers into them one by one, allowing for insertion at positions
other than the end of each route as in the nearest neighbor method. The
insertion with the minimum cost is performed in each iteration. This method
works by calculating the cost of inserting an unrouted customer into a route
and selecting the insertion position with the lowest cost. This process is
repeated for each unrouted customer. The worst time complexity of the insert
method is O(n3), as it iterates through all customers and calculates insertion
costs for each. Variations of the insert method include the farthest insert and
regret insert. The farthest insert selects the farthest unassigned customer for
insertion in each iteration, while the regret insert extends the greedy insert
by considering regret, which is the difference in cost between the best and
alternative insertion positions. Hybrid implementations of insert methods have
been developed to improve performance. These include combining sequential
and parallel procedures for route construction, using insert heuristics in con-
junction with other algorithms such as ant colony optimization, and implicitly
employing insert methods as recreate operations in large neighborhood search
algorithms.

• Saving method: the saving method, introduced in 1964 by Clarke and Wright
[Clarke_1964], is one of the most well-known constructive heuristics for
solving VRPs. It begins with an initial solution where each customer is served
by a separate route, and then iteratively merges shorter routes into longer
ones to reduce overall costs. This merging process can be performed either
in parallel or sequentially. In the parallel version, the method combines two
routes with endpoints i and j, producing the maximum feasible distance saving.
In the sequential version, each route is considered individually, and feasible
merging operations are applied iteratively until no further improvements
can be made. The time complexity of a straightforward implementation of
the saving method is O(n3), where n is the number of routes. However,

10

Solution Approaches

this complexity can be reduced by precomputing and sorting possible route
combinations at the beginning of the algorithm. Early revisions of the saving
method involved parameterizing the saving equation and considering only
the first-pair calculated savings. Additionally, the saving method has been
combined with other concepts, such as insert methods and matching-based
algorithms, to produce better results with higher computational costs. More
recently, the saving method has been extended and refined by various methods,
including divide-and-conquer procedures, genetic algorithms, and stochastic
versions of the classic heuristic. These advancements have enabled the saving
method to be applied to a wide range of VRP variants and real-world problems,
demonstrating its simplicity and flexibility in implementation.

• Sweep method: The sweep method, introduced in seminal work [Gillett_1974],
involves sorting nodes according to polar angle and adding them to routes in
a circular manner starting from the depot. If insertion is infeasible, a new
route is created. An alternative approach clusters customers based on polar
angle and solves a TSP within each cluster. Performance can be affected
by the depot’s location, with off-centered depots leading to poorer results.
Various reference points can mitigate this issue. The basic sweep method’s
time complexity is O(n), but advanced versions depend on the TSP-solving
method. Two straightforward implementations of the sweep method are the
sweep nearest algorithm and distance-based sweep nearest algorithm. These
algorithms select the next nearest customer in each cluster, outperforming
the basic sweep method and rivaling modern heuristics. The sweep method
has been extended to various VRP variants, including capacitated VRP, mix
vehicle routing problems. These extensions leverage sweep heuristics combined
with local search, integer programming, and genetic algorithms to improve
solution quality and efficiency, as we will see later.

3.2 Improvement Heuristics
Improvement heuristics delve into the vicinity of the current solution to achieve
objective enhancements. They have the capability to swiftly converge towards local
optima, making them effective for addressing extensive routing challenges. These
heuristics are generally classified into two distinct categories: intra-route and inter-
route. The distinction lies in their neighborhood structures. Intra-route heuristics
explore within a single route, whereas inter-route heuristics involve multiple routes.

• Intra-route heuristics: intra-route improvement heuristics focus on explor-
ing the neighborhood within a single route. Many of these techniques have
their origins in local search operators developed for the TSP. For example,

11

Solution Approaches

simple operations involve relocating a single customer to a different position
within the same route or exchanging the positions of two customers within a
route. One of the more versatile intra-route heuristics is the λ-opt heuristic,
which operates on edges. It involves removing λ edges from a route and then
recreating λ to connect disjoint sequences. Given that a full implementation
of λ-opt moves necessitates O(nλ) operations for n customers, smaller values
of λ such as 2-opt, 3-opt, and Or-exchange are commonly used. In the next
image it’s possible to see some examples of intra-route methods and their
applications.

Figure 3.2: Various intra-route heuristics applications on a route
[liu2023heuristics]

• Inter-route heuristics: inter-route heuristics involve local searches spanning
multiple routes, often building upon intra-route counterparts. For instance,
insert and swap operations extend relocate and exchange operations, respec-
tively. Insert removes a customer from one route and inserts it into another,
while swap exchanges two customers from different routes. Additionally, the
exchange of two edges from different routes is termed 2-opt* to distinguish
it from the traditional 2-opt method. CROSS swaps two strings, each con-
taining at most λ customers. λ-interchange further expands upon CROSS by
permitting the exchange of any set of fewer than λ nodes between two routes,
even if they are not consecutive.

12

Solution Approaches

Figure 3.3: Various inter-route heuristics applications between two different routes
[liu2023heuristics]

About improvement heuristics, in the next chapter we will talk more specifically of
some cases that we will use for our algorithms.

3.3 Metaheuristics

Metaheuristics represent a higher-level approach compared to constructive and
improvement heuristics, as they are problem-independent and aim to tackle hard
optimization problems more generally. Widely regarded as effective for various
optimization challenges, metaheuristics are gaining prominence in vehicle routing
research due to their efficiency and scalability. These methods can be catego-
rized based on their population management strategy into single-solution-based
and population-based methods. Single-solution-based methods, also known as
neighborhood-based or local search-based methods, iteratively perform low-level
searches on a single incumbent solution, typically employing improvement heuristics.
High-level rules guide the search process to escape local optima and explore the
search space effectively. Strategies for designing these rules include multiple starts,
changing the landscape, and designing acceptance rules. Population-based searches,
on the other hand, involve approaches like evolutionary algorithms and swarm
intelligence. Evolutionary algorithms, such as genetic algorithms, are inspired by
biological evolution, where individuals better suited to the environment are more

13

Solution Approaches

likely to produce offspring with advantageous traits. Swarm intelligence exam-
ines the cooperative behavior of decentralized systems, drawing inspiration from
social entities like bee colonies and ant colonies. In vehicle routing, widely-used
metaheuristics include simulated annealing, tabu search, iterated local search, large
neighborhood search, variable neighborhood search, genetic algorithm, ant colony
optimization, and memetic algorithm. These algorithms cover various sub-classes of
metaheuristics and are among the most frequently used in vehicle routing research.

3.3.1 Single-Solution-Based Methods
• Simulated annealing: Simulated annealing (SA) originated in the early

1980s as a method for combinatorial optimization, inspired by the physical
process of annealing in materials science. In SA, an incumbent solution is
mutated using local search operators to explore the solution space. The fitness
of the solution corresponds to its energy level, and the algorithm aims to
find the state with the lowest energy, analogous to reaching a stable state
in annealing.The acceptance of new solutions in SA follows a probabilistic
criterion:

– If the new solution improve the objective function value, take the solution.
– If the new solution is worst than the preceeding solution, we have a prob-

ability equal to exp(f(snew)−f(sold))
T

, where T is parameter of the algorithm,
witch inizialization starts with it. Value of T changes during the run,

As the temperature decreases over iterations, the probability of accepting
worse solutions decreases, leading the algorithm to converge towards the
optimal solution while avoiding getting trapped in local optima. In vehicle
routing, SA was first applied in the early 1990s, where it was hybridized with
tabu search for solving CVRP [Osman_1993]. Since then, SA has been
utilized in various VRP variants, including those with time-window and more.
Recent advancements in SA for VRP include adaptive mechanisms for selecting
neighborhood moves and population-based approaches, where a population
of solutions is improved using SA heuristics and crossover operators.Overall,
SA offers a versatile and effective approach for tackling complex optimization
problems like VRP, providing researchers with a valuable tool for finding
high-quality solutions.

• Taboo Search: Tabu search, introduced in 1986 [Glover_1986], offers
a systematic approach to circumvent the issue of local optima in search
algorithms and guide the exploration towards promising directions. A key
feature of tabu search is the tabu lists, which record recent search history and
prevent revisiting previously explored solutions. In the realm of vehicle routing,

14

Solution Approaches

early applications of tabu search were explored in various works. Subsequent
enhancements to the basic framework have been proposed, such as adaptive
memory programming, which leverages a set of memory components for more
efficient search management. Granular tabu search [Toth_2003], introduced
to vehicle routing, restricts the neighborhood to prioritize "short" arcs, based on
the observation that shorter arcs are more likely to contribute to high-quality
solutions. This concept has gained popularity and been integrated into other
local search-based methods. The applications of tabu search extend across
various VRP variants, including multi-depot VRP, periodic VRP, scenarios
involving discrete split deliveries and pickups and others.

• Iterated Local Search: Iterated local search (ILS) operates on the principle
of iteratively generating a sequence of solutions using underlying heuristics.
Unlike simulated annealing (SA) and tabu search (TS), ILS employs per-
turbation to escape local optima instead of modifying fitness or acceptance
criteria. Perturbation methods range from random restarts to more structured
strategies, often leveraging various neighborhood search heuristics.ILS finds
application across a wide range of VRP variants, including time-dependent
VRP, VRP with backhauls, and others. Recent enhancements to the basic ILS
framework include memory-based ILS[Brand_o_2020], which utilizes opti-
mization history for defining perturbation procedures, and population-based
ILS [Sabar_2022], which maintains a population of promising solutions and
employs evolutionary operators for dynamic VRP. Additionally, adaptive ILS
with diversity control methods has shown competitive results, particularly for
large-scale problems.

• Large Neighborhood Search: Large Neighborhood Search (LNS) (seen
in [Shaw1997ANL]) capitalizes on the concept that a larger neighborhood
increases the likelihood of containing high-quality local optima. While any
neighborhood structure can be employed in the LNS framework, for vehicle
routing problems, it typically involves two primary procedures: ruin and
recreate, also known as destroy and repair. Ruin entails removing a portion of
the current solution, while recreate reinserts the removed portion to form a
new solution. The ruin phase often considers the interrelatedness of removed
customers, typically measured by factors like distance and other similarities.
The recreate phase commonly employs constructive heuristics, such as insert
methods, to reinsert the removed portion. Adaptive Large Neighborhood
Search (ALNS), an extension of LNS, as discussed in [Ropke_2006], incor-
porates multiple ruin and recreate operators and dynamically selects these
operators in each iteration. The selection probability for each operator is
adjusted based on its historical performance during optimization, leading to
enhanced adaptability and performance. Conversely, in [Christiaens_2020]

15

Solution Approaches

proposed an LNS heuristic without multiple operators or adaptive weighting.
This approach utilizes adjacent string removal for ruin and a greedy insert
with blinks for recreate, demonstrating superior performance compared to
other state-of-the-art methods. This study highlights that simplicity and
reproducibility can sometimes yield competitive solutions without sacrificing
quality. Anyway, this concept to ruin and recreate the solution will be used in
the next chapter.

• Variable Neighborhood Search: Variable Neighborhood Search (VNS)
method, formally introduced in [Mladenovi__1997]. In each iteration of a
VNS-based heuristic, the following three steps are executed sequentially until
a termination condition is met:

1. Shaking Procedure: Introduces randomness or perturbations into the
current solution.

2. Improvement Procedure: Applies local search to enhance the solution
quality.

3. Neighborhood Change: Shifts to a different neighborhood structure to
explore diversified solution spaces.

This iterative process requires an initial feasible solution, typically randomly
chosen, from which iterations commence. VNS leverages the understand-
ing that local minima differ across various neighborhood structures, under-
scoring the importance of exploring multiple neighborhoods to avoid being
trapped in suboptimal solutions. By simplifying the approach and requir-
ing minimal parameters, VNS not only yields competitive solutions but also
provides insights into its performance, facilitating the development of more
efficient implementations. At the core of VNS lies the neighborhood change
function, which evaluates improvements in solution quality across different
neighborhoods. Depending on the problem at hand, VNS can operate de-
terministically, stochastically, or through a combination of both approaches.
Extensions to the basic VNS framework include variants such as descent-ascent
methods, first-improvement methods, and strategies involving multiple local
searches from randomly generated solutions. Each variant offers unique ad-
vantages, contributing to the versatility and adaptability of VNS in solving
optimization problems. For instance, in solving VRP, such as the VRPTW
[Macrina_2020] [Ferreira_2018], VNS is widely utilized. By providing
efficient and effective solutions, VNS has established itself as a prominent
metaheuristic approach, offering a robust framework for tackling complex
optimization challenges.

16

Solution Approaches

3.3.2 Population-Based Methods
• Genetic Algorithms: Genetic algorithms (GA) have been a prevalent op-

timization method for decades, drawing inspiration from natural evolution
to maintain a balance between population diversity and adaptiveness. The
idea involves generating a pool of solutions with the aim of enhancing a
fitness function, ultimately identifying the most optimal solutions through
an evolutionary process that harnesses genetic mechanisms. Key to GA are
two fundamental evolutionary operations: crossover and mutation. Mutation
involves permutation on a solution to generate new offspring, with various
permutation operators considered as types of mutation. Crossover, on the
other hand, facilitates an exchange between solutions to produce offspring from
two selected parents. Common crossover operators in vehicle routing, inherited
from those used in genetic algorithms for the TSP, include Order Crossover,
Partially Mapped Crossover, Edge Recombination Crossover, Cycle Crossover,
and Alternating Edges Crossover. The application of GA in solving vehicle
routing (for instance [Baker_2003]) gained traction about twenty years ago .
As GA was applied to various modern VRP variants such as multi-depot VRP,
pickup and delivery problems, green VRP, and multiobjective VRPTW, new
crossover and mutation operators were developed. Recognizing that traditional
GA may not be aggressive enough for combinatorial optimization problems,
integrating GA with different search techniques has become a popular trend.
Integrated methods include combining GA with particle swarm optimization,
simulated annealing, and sweep-based techniques to enhance performance on
challenging routing problems.

• Ant Colony Optimization : Ant colony optimization (ACO) draws inspi-
ration from the behavior of real ants, which communicate using pheromones.
ACO constructs solutions to optimization problems based on these pheromones,
updating them during the search process to reflect search history. The pioneer-
ing ant system applied this concept to the TSP. Expanding ACO to VRPs,
[Bell_2004] introduced a method for searching multiple routes. Building
upon this, recent research has focused on combining ACO with other algorithms
to tackle challenging VRPs . Applications of ACO include multi-compartment
VRP, VRP with simultaneous pickup and delivery, heterogeneous VRP with
mixed backhaul, multi-depot green VRP with multiple objectives, multiobjec-
tive VRP with flexible time windows, periodic VRP with a time window and
service choice, dynamic VRPs, and capacitated electric VRP.

17

Chapter 4

Algorithms Modules

In this section, we will describe the various algorithmic structures we have developed,
mainly derived from Single Solution Methods (which we will examine in more detail
later). These algorithmic structures can actually be thought of as "modules" that
can be inserted into a general algorithm aimed at finding a solution. Therefore, once
these "modules" are described, we will proceed to describe some Single Solution-
based metaheuristics constructed by leveraging them. All the algorithms are written
using python language.

4.1 Modules
4.1.1 Inspirations
The algorithms that we drew inspiration from to build these modular structures
come, as mentioned earlier, from other well-known metaheuristics. In particular,
the main references were the Variable Neighborhood Search (VNS) and the Iterated
Local Search (ILS). Additionally, other borrowed structures come from different
paradigms such as Large Neighborhood Search (LNS), Differential Evolution (DE)
(the only structure that arises from "Population Based" metaheuristics) and a little
from other.

4.1.2 Improvement Heuristics
Since our algorithms are primarily based on local search structures, the first thing
to discuss is the local search structures we have developed. Local search algorithms
aim to explore at every iteration the solutions near to the current explored solution
and these are called Neighborhood . We should note that, given the considered
problem (CVRP), we wanted to choose a "geometrically" intuitive way to represent
the solutions. Indeed, our final solution is a set of routes that start from a depot

18

Algorithms Modules

and return to it. Therefore, for search and representation purposes, the solutions
are represented with lists of arrays of integers (routes), where the first and last
value is 0. The integers contained in each individual route correspond to indices
referring to the position of the explored destination; the indices are assigned to the
destinations based on the order of appearance in the matrix of points corresponding
to the destinations, whose index 0 indicates the position of the depot.

Figure 4.1: An example of three routes structure representation in our work: grey
rectangles with 0 represent the depots, while the other numbers are the indexes of
nodes where we have to pass in a single route.

So, local heuristic algorithms will essentially be variations of the geometric
structure of the routes (provided they respect the constraints), and they can
employ various strategies. In particular, we have developed several structures
and their generalizations, which we can summarize based on these "neighborhood
movements"(we take inspiration for some structures from [Macrina_2020]):

• Intra route movements:

– Swapping nodes in a route.
– Node relocation movements: taking a node and putting it in the best

position in the route.
– 2-Opt exchange: splitting a route in 3 parts and reconstruct it with the middle

piece inverted in direction.

• Inter route movements:

– Moving nodes from a route to another.

19

Algorithms Modules

– Swapping nodes between routes.
– 2-Opt* exchange: taking two routes, splitting them in two pieces and then

merge the first part of first route with the last part of the second route
and vice-versa.

– Creating new routes taking nodes or edges from the other routes.
– Creating a new route merging two routes that have more exploitable

capacity.
– Breaking one route in two route pieces.

In the various developed algorithms we choose between these heuristic what to
be used to search locally the solution.

4.1.3 Improvement and Shaking algorithms
The heuristics described in the last section have been built in order to be used
in the improvement and shaking algorithms, two algorithms belonging to VNS
paradigma. These represent two phases of the VNS: shaking phase is used to
explore the neighborhoods while the improvement phase is used to do the local
search of solution.

Shaking phase can be designed in different ways: we choose to use a randomic
approach, that uses to apply on the current solution one o more improvement
heuristic functions in order to get new restarting solution for the improvement
phase. The basic structure can be seen as in [2010]:

Figure 4.2: [2010], chapter about VNS algorithms: the x and k parameters
represent respectively the current solution and the neighborhood structure to be
used. Nk(x) is referring to the neighborhood function of current solution for the
k-th neighborhood structure.

Improvement phases, as shaking phase, applies improvement heuristic algorithms
to explore it’s neighborhood, but it’s ojective is different: it works as a local search
engine, that applies heuristics in order to cause the descent of objective function.
We can build it in a lot of different ways. In our case, we have chosen to exploit
the two standard versions of improvements:

20

Algorithms Modules

• Best improvement: we explore all our neighborhood in order to find the best
solution.

Figure 4.3: [2010]

• First improvement: at this iteration we accept the first solution that descend
our objective function value.

Figure 4.4: [2010]

As we can see, First Improvement can be a faster algorithm compared to Best
Improvement because it has to explore less neighbours, but it doesn’t find the best
neighbour in the improvement running, so it could need more application then best
improvement in order to find the best solution.

Another function used in VNS is the Neighborhood change algorithm, that allows
to change the neighborhood structure at each iteration. In this case, we choose tho
not deploy this function apart of the other, but integrate it into both shaking and
improvement phases.

Now, we will show some examples of shake and improvement algorithm developed
by us, exploiting also the fact to integrate in them the neighborhood change

21

Algorithms Modules

Algorithm 1 Shake
Input: sol, routes, points, demands, Q, probs
Data: eps = 0.05; structs array of indices of neighborhood structures to pass to

neighborhood;
1 if length of probs = 0 then
2 probs← an array of length len(structs) with all values equal to 1

length of structs ;
3 end
4 neighstruct← randomly select an element from structs with probability
5 (routes, difference)← apply the neighbor function with parameters neighstruct,

routes, points, demands, Q;
6 N ← randomly select an integer between 2 and 30;
7 i← 0;
8 while i < N do
9 neighstruct← randomly select an element from structs with probability probs;

10 (routes, difference) ← apply the neighbor function with parameters:
neigh_struct, routes, points, demands, Q

11 if difference < 0 then
12 neg_pos← find the index of neigh_struct in structs
13 p← probs[neg_pos]
14 restarter ← p < 1

1+eps

15 if not restarter then
16 probs[neg_pos]← min((1 + eps) · p, 1)
17 β ← (1−(1−eps)·p)

(1−p) Update the values of probs except for the index
neigh_struct according to the rule β

18 end
19 end
20 sol← sol + difference
21 i← i + 1
22 end

Output: routes, sol, probs

The shake function in the algorithms selects one of the possible neighbors
contained in the structure struct randomly using a probability vector probs. In
the case of a solution descent, the neighborhood structure is updated by increasing
the probability of selecting the good neighborhood by an ε fraction (and adjusting
the other probabilities accordingly). This technique is known as adaptive shaking
[Brimberg_2023]. The "neighborhood" function has to link the shaking procedure
with the respective chosen neighbour structure. The inputs of the shaking function
sol, routes, points, demands, Q are respectively current value of objective function,
current solution of routes, points of the maps, demand vector and capacity for

22

Algorithms Modules

every route. For improvement I will show you two variants. You can build a lot of
different possibilities. We will show you two of our improvement structural ideas:

Algorithm 2 improvement
Input: sol, routes, points, demands, Q, hmax, first
Data: n_str indici strutture di vicinato da esplorare;
new_sol← una copia di sol
best_solution← una copia di sol
best_routes← una copia di routes
h← 0

1 foreach neigh_struct in n_str do
2 while h < hmax do
3 new_routes, difference← neighbour(neigh_struct, routes, points, demands, Q)
4 if difference < 0 then
5 new_sol← sol + difference
6 if new_sol < best_solution then
7 best_solution← una copia di new_sol
8 best_routes← una copia di new_routes
9 if first then

10 break
11 end
12 end
13 end
14 h← h + 1
15 end
16 end
17 feasible, best_routes, _← constraints(best_routes, demands, Q)
18 if feasible then

Output: best_routes, best_solution
19

20 end

In this case we can see that we are using only one kind of local solution search,
based on the neighborood in n_str. Let’s see another case, that splits the search
in two parts:

23

Algorithms Modules

Algorithm 3 improvement
Input: sol, routes, points, demands, Q, hmax, first
Data: diversification, intensification array di indici delle strutture di vicinato

per diversificazione e intensificazione best_solution← una copia di sol
new_sol← una copia di sol best_routes← una copia di routes

1 foreach neigh_struct in diversification do
2 h← 0
3 while h < hmax do
4 (new_routes, difference)← neighbour(neigh_struct, routes, points, demands, Q)
5 if difference < 0 then
6 new_sol← sol + difference
7 if new_sol < best_solution then
8 best_solution← una copia di new_sol
9 best_routes← una copia di new_routes

10 if first then
11 break
12 end
13 end
14 end
15 h← h + 1
16 end
17 end
18 d_routes← una copia di best_routes new_sol← una copia di best_solution
19 foreach neigh_struct in intensification do
20 h← 0
21 while h < hmax do
22 (new_routes, difference)← neighbour(neigh_struct, d_routes, points, demands, Q)

if difference < 0 then
23 new_sol← diverse_sol + difference
24 if new_sol < best_solution then
25 best_solution← una copia di new_sol
26 best_routes← una copia di new_routes
27 if first then
28 break
29 end
30 end
31 end
32 h← h + 1
33 end
34 end

Output: best_routes, best_solution
35 if feasible; 24

Algorithms Modules

In this case, we can see that there are two phases of improvement: the first phase
is called diversification: here to improve solution only inter route neighborhood are
used, in a way to improve route clusters; the second phase is the intensification
phase, where are used intra route neighborhood structures, in such a way to get
routes shapes of better quality.

In both our improvement algorithms and the shake function, we use a similar
method to select neighborhoods, but in different ways. Also, in the improvement
algorithms, there’s a function to check if the solution works for the problem. Overall,
our algorithms calculate the difference between two solutions when exploring
the neighborhood. This is easier computationally because we can just find the
difference in distance values where the current routes and the new solution are
different (computing the difference for entire solution on large instances can be very
impacting on computation time). These calculations are part of each neighborhood
function. Once we have the difference value, we can find the new solution value by
adding it to the old solution.

4.1.4 Destruction/Reconstruction
In some contexts, perturbing the solution solely by exploring neighborhoods using
the shaking function could be too conservative, and it might not facilitate the
exploration of new solutions effectively. In this sense, drawing inspiration from
some Large Neighborhood Search algorithms, we have devised a destruction/recon-
struction framework to significantly perturb our current solution during iterations.
This paradigm can be divided into two main stages:

• Destruction phase: we take a solution and, based on certain criteria, remove
some points from the routes.

• Reconstruction phase: here, we take the destroyed routes and re-add all the
missing points following specific rules.

More in detail, we can show the pseudocodes of this two phases:

25

Algorithms Modules

Algorithm 4 Destroy
Input : routes, points, demands, Q
Output : candidateRoutes, toBeRemoved

1 total← size of the points array;
2 candidateRoutes← a copy of routes;
3 val← 0;
4 toBeRemoved← an empty array;
5 while stopping condition for feasibility do
6 candidateRoutes← a copy of routes;
7 movement← randomly choose a number between 0 and 3
8 if movement == 0 then
9 candidateRoutes, tBR← random_client_removal(routes, points, demands, Q)

10 end
11 else if movement == 1 then
12 candidateRoutes, tBR← zone_removal(routes, points, demands, Q)
13 end
14 else if movement == 2 then
15 candidateRoutes, tBR← prox_based_removal(routes, points, demands, Q)
16 end
17 else if movement == 3 then
18 candidateRoutes, tBR← random_route_removal(routes, points, demands, Q)
19 end
20 end
21 toBeRemoved← convert tBR into an array of integers;
22 return candidateRoutes, toBeRemoved;

As you can see in the destroy algorithm, we have 4 ways to destroy our routes,
we take inspirations from [Shi_2023]:

• random client removal: it chooses random clients to be removed from the
routes.

• zone removal: it chooses one client, simulates a rectangular zone around it,
simulating x and y axis extension following a normal distribution based on the
distances of all points from the center(calculating their sampling mean and
sampling variance); after this, it selects some points from those contained in
the the zone.

• prox_based_removal: similar to random removal, it allows to remove randomly
some edges(couples of points one next to the other in the routes).

• random_route_removal: it removes a randomly chosen entire route.
These algorithms give in output modified routes and a list of the removed nodes.

26

Algorithms Modules

Algorithm 5 repair
Input : removed, routes, points, demands, Q
Output : Repaired routes routesMod

1 total← size of points
2 remotion← copy of removed
3 feasible← true
4 routes_trunk ← list of middle parts of routes
5 monoRoute← concatenation of routes_trunk
6 routesMod← copy of routes
7 remotionMod← copy of remotion
8 while size of remotionMod > 0 and feasible do
9 movement← random choice from the insertion structures indexes

10 inputStruct← [remotionMod, routesMod, points, demands, Q]
11 switch movement do
12 case 0 do
13 routesNew, remotion← greedy_ insertion(inputStruct)
14 end
15 case 1 do
16 routesNew, remotion← fastGreedy_ insertion(inputStruct)
17 end
18 case 2 do
19 routesNew, remotion← random_ insertion(inputStruct)
20 end
21 case 3 do
22 routesNew, remotion← randomGreedy_ insertion(inputStruct)
23 end
24 case 4 do
25 routesNew, remotion← newRoute insertion(inputStruct)
26 end
27 end
28 if feasibility conditions then
29 routesMod← copy of routesNew
30 remotionMod← copy of remotion

31 end
32 end
33 return routesMod

27

Algorithms Modules

As is possible to see, reconstruction phases applies reconstruction operators
until the remaining points vector has no more points, so the new routes are full.
These reconstruction operators are (some of them comes from [Shi_2023]):

• greedy_ insertion : the operator computes the insertion cost for each removed
destination in the best insertion position, and iteratively inserts the node with
the lowest insertion cost into its feasible positions within the current solution.

• fast_greedy_insertion : similar to greedy_insertion more randomical.

• random_ insertion : totally random insertion.

• random_greedy_insertion : it’s a version of random_insertion hybridated with
greedy insertion

• newRoute_insertion : it initializes and inserts points in a new route while they
respect the capacity constraint.

In order to get new solutions, the procedures destroy and reconstruct are
concatenated.

4.1.5 Crossing-over operators

When we perturb the solution to expand the search, could be important also
improve the quality of the new starting solution for the local search "hybridizing" it
with the best solutions found in past iterations. For this reason, we were inspired
by a Differential Evolution algorithm in [Souza_2023] to create an operator that
applies the crossing-over operator. In our context, we use crossing-over in two
ways:

• When we perturb a solution, we use it to improve the quality of perturbation.

• When we get a new solution from improvement, we try to improve it hybridizing
it with the other solutions computed before.

The perturbation scheme functions as follows: we start with our main reference
solution and another solution that we’ll call the test solution. The aim is to
randomly select a position within the routes of both solutions. If a corresponding
position (route, position within the route) exists in both the main solution and the
test solution for the selected position, we swap the node from the main solution
with the node found at the corresponding position in the test solution, all within
the main solution.

28

Algorithms Modules

Figure 4.5: [Souza_2023], in this example Z is the test solution while Y is the
main solution: it is selected the position (route = 3, route_position = 2); in Z it
is equal to c9, while in Y it is equal to c7. Then, we exchange in Y node c7 with
c9, getting a new solution Y ′

This procedure will be applied for different randomly chosen nodes, with a prob-
ability value that allows to randomly choose if apply the crossing node procedure
that is given in input.

4.1.6 Starting and Restarting Methods

For metaheuristic algorithms, it’s also important to have starting points from we
start a local search or we restart it(in the case of ILS framework). In order to have
starting routes, we have to consider some aspects, based on how much we want
to be greedy or random in starting solution generation. In this sense, we have to
consider two aspects to be controlled in the routes generation:

• Clustering strategy: before we have to divide points between clusters that
respect the capacity costraints, and we can clusterize point with different
strategies:

– Totally random approach;

– Sweep algorithm based: in this case we use the Sweep Algorithm heuristic;
In particular, this algorithm sorts customers based on their angular position
in relation to the central depot. This angle is determined by computing
the arctangent of the differences in the x and y coordinates between each
customer and the depot, atan2(y_c− y_d, x_c− x_d), where:

29

Algorithms Modules

atan2(y, x) =



arctan
1

y
x

2
se x > 0

arctan
1

y
x

2
+ π se x < 0 e y ≥ 0

arctan
1

y
x

2
− π se x < 0 e y < 0

+π
2 se x = 0 e y > 0
−π

2 se x = 0 e y < 0
undefined se x = 0 e y = 0

Consequently, customers are ordered in ascending order according to the
angle formed by their location with respect to the depot. This sorting
method, based on angular positioning, facilitates the creation of efficient
routes, as it ensures that customers closer to the depot are visited first.
Subsequently, after sorting customers by angle, the Sweep algorithm al-
locates customers to vehicles while considering each vehicle’s maximum
capacity.

– Density-based clustering: DBSCAN algorithm can be employed to gen-
erate clusters. We utilized a version similar to the one described in
[inproceedings]. This version takes two parameters as input: eps, repre-
senting the radius value, and min_points, indicating the minimum number
of points required for each cluster. The algorithm begins by designating
a point as the center of each cluster. It then proceeds to examine the
other points: for each cluster, it identifies the nearest neighbors of the
selected point within a circle of radius eps. If this circle contains at least
min_points points, the current point is considered part of the cluster.
Once a cluster reaches its capacity, the process is restarted. This continues
until all clusters meet their capacity constraints.

– Random zones generation: it generates some rectangular zone in a simi-
lar way as the zone_removal function described in destroy/reconstruct
chapter, then it adds point until the capacity constraints are met.

– Random radial generation: similar to the last mechanism, but we consider
circular zones, in a radial way.

• Route generation in clusters: this can happen in two ways: or totally random,
or greedy (we take for every visited point the nearest as next point in the
route).

30

Algorithms Modules

4.2 Algorithm Examples

In this section we will show two examples of metaheuristic algorithms built using
as building blocks the modules described in the last section. The first and the
second algorithms are based on the VNS paradigm, with some differences from
standard VNS. In this initial VNS framework (Algorithm 6), we incorporate all
the characteristic features of VNS, with several additional enhancements. For
instance, we integrate a hill-climbing mechanism to handle situations where there’s
no improvement in the solution. This mechanism operates with a probability
derived from the Simulated Annealing algorithm. Furthermore, our shaking phase
is slightly modified; it has a "boosted" aspect, wherein there’s a probability, de-
pendent on the number of iterations, for the shaking phase to transition into a
destruction/reconstruction phase. The probability distribution utilized in this
context is specifically designed to initiate with a probability of 0.5 at the outset,
peak in the middle phase, and gradually decrease towards the end of the iterations.
This ensures fewer destructions towards the end of the algorithm run.Furthermore,
we introduce another mechanism: the incorporation of improved solutions into a
taboo list (inspired by Taboo Search). From this list, two options are available:
firstly, it can be utilized in conjunction with the crossover option, allowing for
crossover operations if the taboo list exceeds a certain length defined by lentaboo
and the crossover option is set to true. The other use is the classical function taken
from Taboo Search, if the improvement phase takes to a yet explored solution.

31

Algorithms Modules

Algorithm 6 Variable Neighborhood Search 1 (VNS1)
Routes routes, solution sol, points points, demands demands, capacity Q, itera-
tions T , max improvement steps hmax, temperature temperature, length of taboo
list len_taboo, improvement options improvement, cross-over option cross_over
Optimal routes routes, optimal solution sol

Initialize taboo list taboo as empty
t← 0
tp← temperature

while t < T do
destruction_prob ← exp(−(5/2× t/T − 0.8325)2)
(x1, sol1)← Shake(sol, routes, points, demands, Q, destruction_prob)
(x2, sol2)← Improve(sol1, x1, points, demands, Q, hmax, improvement[1],
improvement[0])
feasible ← CheckConstraints(x2, demands, Q)
if sol2− sol < 0 and feasible then

routes← x2
sol← sol2
Add (routes, sol) to taboo
if length of taboo = len_taboo and t < T − 1 and cross_over then

(routes, sol)← CrossOver(taboo, points, demands, Q)
end

end
else if sol2− sol ≥ 0 and feasible then

annealing_prob ← exp((sol − sol2) / tp)
hill_climb← Randomly choose 0 or 1 with probabilities (1−annealing_prob)
and
annealing_prob
if hill_climb = 1 then

routes← x1
sol← sol1

end
end
Increment t by 1
Update temperature tp

end
if taboo is not empty then

Find best solution in taboo based on sol values
return Optimal routes and solution

end
else

return routes and sol
end 32

Algorithms Modules

Algorithm 7 Variable Neighborhood Search 2 (VNS2)
Input : Routes routes, solution sol, points points, demands demands, capacity

Q, number of iterations T , maximum number of improvement steps
hmax,length of taboo list lentaboo, improvement options improvement,
cross-over option cross_over

Output : Optimal routes routes, optimal solution sol
1 Initialize taboo list taboo with empty list
2 t← 0
3 while t < T do
4 Apply destroy/repair operation to routes and sol
5 Apply improvement operation to the obtained solution
6 if new solution is better and feasible then
7 Update routes and sol
8 if taboo list is full and cross_over option is active then
9 Apply cross-over using the taboo list

10 end
11 Add the new solution to the taboo list
12 Increment t by 1
13 else
14 while new solution is not better do
15 Apply another improvement operation
16 if new solution is better and feasible then
17 Update routes and sol
18 if taboo list is full and cross_over option is active then
19 Apply cross-over using the taboo list
20 end
21 Add the new solution to the taboo list
22 Increment t by 1
23 break
24 end
25 end
26 end
27 end
28 return Best solution from the taboo list

As you can observe, there’s no shaking phase in this process; instead, solution
perturbation occurs through a destroy/repair phase. Additionally, we don’t apply
the perturbation phase in every iteration due to its intensity. Instead, we continue
applying improvements until further enhancement becomes impossible. At that
point, we increment a counter and initiate the destruction/reconstruction phase.

33

Algorithms Modules

Differently from the first algorithm, the incorporation of improved solutions into
a taboo list (inspired by taboo search) is used only for crossing-over operations.
This approach may appear similar to ILS, but it differs significantly. In ILS, the
solution is completely reshaped during each restart, while in this case, we heavily
perturb the current local solution while retaining some elements from the original.
However, for ILS framework, we deployed something:

Algorithm 8 Iterated Local Neighborhood Search (ILNS)
Input: points, demands, Q, T, hmax, lentaboo, improvement, crossover
Output: routes, sol

1 t← 0;
2 sols← [];
3 while t < T do
4 Generate clusters around points and obtain initial routes;
5 sql Copy code if length(sols) == len_taboo and cross_over then
6 Apply cross-over using solutions in the taboo list
7 end
8 taboo ← []
9 taboo_violated ← False

10 Add initial routes to the taboo list
11 while not taboo_violated do
12 Apply improvements to the routes and obtain a new solution
13 if the new solution is improved and feasible then
14 Update the routes and the solution
15 Add the new solution to the taboo list
16 if length(taboo) == len_taboo and cross_over then
17 Apply cross-over using solutions in the taboo list
18 end
19 end
20 else if the new solution is not improved and feasible then
21 Check if the solution is already in the taboo list
22 If not, add it and terminate the loop
23 end
24 end
25 Increment t
26 end
27 if there are valid solutions in the taboo list then
28 Find the best solution in the taboo list;
29 Return the routes and the best solution
30 end

34

Algorithms Modules

This algorithm is quite similar to the one developed before, but the difference is
that we not perturb our solution when it stops to improve, but we generate another
one.

Algorithm 9 Iterated Variable Neighborhood Search (IVNS)
Input: Routes routes, solution sol, points points, demands demands, capac-

ity Q, number of iterations T , maximum number of improvement steps
hmax, length of taboo list len_taboo, improvement options improvement,
crossover option cross_over, shake flag shak

Output: Optimal routes routes, optimal solution sol
1 Initialize taboo list taboo as an empty list
2 Initialize iteration counter t← 0
3 while t < T do
4 Calculate crossover probability crossProb =

exp
3
−

1
5
2

t
T
− 0.8325546111576977

22
4

5 if shak then
6 Perform shake operation: x1, sol1, probs =

shake(sol, routes, points, demands, Q,
7 "perturb"=0, "probs"=probs) end
8 else
9 x1← routes

10 sol1← sol

11 end
12 Perform improvement operation: x2, sol2 =

improve(sol1, x1, points, demands, Q, hmax, "first" =
improvement[1], "mode" = improvement[0])

13 Check feasibility of the new solution: feasible, _, _ =
constraints(x2, demands, Q)

14 if sol2− sol < 0 and feasible then
15 Update routes and sol: routes← x2, sol← sol2
16 Add the new solution to taboo list: taboo.append((routes, sol))
17 if length of taboo list == len_taboo and t < T − 1 and cross_over

then
18 Apply crossover using taboo list: routes, sol← mixing(taboo, points,

demands, Q, crossProb)
19 end
20 end

35

Algorithms Modules

else if sol2− sol ≥ 0 and feasible then
Check if the solution violates taboo
if taboo is violated and t < T − 1 then

Reset to a previous solution
while feasibility is not achieved do

Generate clusters: labels← generate_clusters(points, demands, Q)
Obtain initial routes: routes, sol ← first_route(points, labels,
max(labels) + 1)
Check feasibility: feasible, _, _← constraints(routes, demands, Q)

end
Continue to the next iteration

end
end
Increment iteration counter: t← t + 1

end
if taboo is not empty then

Find the best solution in the taboo list
Return the optimal routes and solution

end
else

Return the current routes and solution
end

The last algorithm that we will discuss is the Iterated Variable Neighborhood
Search, which is a hybrid creature between VNS and ILS. Here we have some
characteristics from both the "parent" algorithms: we have the shaking phase from
VNS and a new starting routes generation phase as in ILS (which is activated when
we have no more improvements). Also, in this algorithm, we have the chance to
have a cross-over between solutions, but in this case, it can happen when we have
an improvement of our solution (in order to perturb the solution in a beneficial
manner).

36

Chapter 5

Experiments

In this chapter we will go to do some tests on our tools, in order to evaluate some
aspects of their performances.

5.1 Examples

We can see four example solutions from the [Uchoa_2017] dataset of instances,
in particular the A-n32-k5:

37

Experiments

Figure 5.1: A-n32-k5 orTools

Figure 5.2: A-n32-k5 IVNS

38

Experiments

Figure 5.3: A-n32-k5 VNS1

Figure 5.4: A-n32-k5 VNS2

39

Experiments

5.2 Statistical Analysis: Non-parametric hypote-
sis Tests

In this part we will do a statistical analysis in order to test different aspects of our
algorithms. In particular, as you’ll going to see in the next section, we will take
some Non-parametric Statistical Tests in order to compare our results.

In inferential statistics, hypothesis testing is used to draw conclusions about
populations based on sample data. This involves defining two hypotheses: the null
hypothesis (H0), suggesting no effect or difference, and the alternative hypothesis
(H1), indicating the presence of an effect or difference (such as significant differences
between algorithms). A significance level (α) is chosen to determine when to reject
the null hypothesis. Instead of predefining α, the p-value can be computed,
representing the probability of obtaining a result as extreme or more extreme than
the observed result, assuming H0 is true. As seen in [Derrac_2011], nonparametric
tests, originally for nominal or ordinal data, can be adapted for continuous data using
ranking-based transformations. They can conduct pairwise comparisons or multiple
comparisons. Pairwise tests compare two algorithms at a time, while multiple
comparisons tests compare more than two algorithms. In 1 × N comparisons,
a control method (the best-performing algorithm) is identified, and post-hoc
procedures test for equality between the control method and the others. N ×N
comparisons consider equality hypotheses between all pairs of algorithms, with
specific post-hoc procedures for this purpose.

In our analysis we are going to use two kinds of test in particular: the Wilcoxon
Signed Rank test and the Friedman test.

5.2.1 Wilcoxon Signed Rank test
The Wilcoxon signed ranks test answers the following question: "do two samples
represent two different populations? " [Derrac_2011] It is a statistical pairwise
rank test used to compare the performance of two algorithms across a set of
problems. Here’s an elaboration of the test procedure:

1. Calculating Differences: For each problem in the dataset, compute the
difference (di) between the performance scores of the two algorithms. If the
scores are on different scales, consider normalizing them to the interval [0, 1]
to ensure fair comparison.

2. Ranking Differences: Rank the absolute values of the differences obtained
in the previous step. In case of ties (i.e., when multiple differences have the
same absolute value), various methods from the literature can be employed to
handle ties. It’s recommended to use average ranks for dealing with ties.

40

Experiments

3. Summing Ranks: Calculate the sum of ranks for the positive differences
(R+) and the sum of ranks for the negative differences (R−) as follow:

R+ =
Ø
di>0

rank(di) + 1
2

Ø
di=0

rank(di)

R− =
Ø
di<0

rank(di) + 1
2

Ø
di=0

rank(di)

R+ represents the sum of ranks for cases where the first algorithm outperformed
the second, while R− represents the sum of ranks for cases where the second
algorithm outperformed the first. Ranks of di = 0 are evenly distributed
between R+ and R−, with any odd number of zero differences disregarded.

4. Test Statistic: Compute the test statistic (T) as min{R+, R−}. If T is less
than or equal to the critical value from the Wilcoxon distribution for n degrees
of freedom, the null hypothesis of equality of means is rejected. This indicates
that one algorithm significantly outperforms the other, with the associated
p-value providing further statistical significance.

The Wilcoxon signed ranks test is more sensitive than the t-test and does not
assume normal distributions, making it a safer option for comparing algorithms. It
also handles outliers more effectively. It’s important to ensure that the differences
(di) are continuous and not rounded, as rounding may decrease the test’s power,
especially in the case of ties.

5.2.2 Friedman test
The Friedman test is a multiple test, before talking about it, we have to make
few consideration. n pairwise analysis, attempting to draw conclusions involving
multiple pairwise comparisons results in an accumulated error stemming from their
combination. In statistical terms, this means losing control over the Family-Wise
Error Rate (FWER), which is defined as the probability of making one or more
false discoveries among all the hypotheses when conducting multiple pairwise tests:

p = P (Reject H0|H0 true) = 1− P (Accept H0|H0 true)

= 1− P (Accept Ak = Ai, i = 1, . . . , k − 1|H0 true)

= 1−
k−1Ù
i=1

P (Accept Ak = Ai|H0 true)

= 1−
k−1Ù
i=1

[1− P (Reject Ak = Ai|H0 true)]

41

Experiments

= 1−
k−1Ù
i=1

(1− pHi)

This value computed above is the probability of reject the Null Hypotesis, given
that it’s true(first type error). As you can see, for multiple test, we can get an
high probability(values close to 1) to make a type I error. Therefore, employing a
pairwise comparison test, such as Wilcoxon’s test, to perform multiple comparisons
across a set of algorithms is not advisable, as it does not control the FWER. In
order to face this issue, we can use 1 × N comparisons.Here, a control method
is defined as one algorithm of primary interest, as the best performing algorithm
. The Friedman test is used to answer the following question ([Derrac_2011]):
"in a set of k samples (where k ≥ 2), do at least two of the samples represent
populations with different median values?".

The Friedman test serves as the nonparametric equivalent of the repeated
measures ANOVA, enabling the detection of significant differences among the
performance of two or more algorithms. The null hypothesis of Friedman’s test
posits equality of medians across the populations, while the alternative hypothesis
is non-directional.

To calculate the test statistic, the original results are first converted into ranks
following these steps:

1. Gather observed results for each algorithm/problem pair.
2. Rank values from 1 (best result) to k (worst result) for each problem i. Denote

these ranks as rji, where 1 ≤ j ≤ k.
3. Average the ranks obtained for each algorithm j across all problems to obtain

the final rank Rj = 1
n

q
i rji. In case of ties, computing average ranks is

recommended.
Under the null hypothesis, where all algorithms behave similarly and their ranks
Rj should be equal, the Friedman statistic Ff can be computed as:

Ff = 12n

k(k + 1)

Ø
j

R2
j −

k(k + 1)2

4


This statistic follows a chi-squared distribution with k − 1 degrees of freedom

when both n and k are sufficiently large (typically n > 10 and k > 5).
The main drawback of the Friedman test is its inability to establish proper

comparisons between some of the algorithms considered, as it can only detect
significant differences over the entire multiple comparison. When the goal of
applying multiple tests is to compare a control method with a set of algorithms,
a family of hypotheses can be defined, all related to the control method. Then,
the application of a post-hoc test can provide a p-value determining the degree of
rejection of each hypothesis.

42

Experiments

A family of hypotheses consists of logically interrelated comparisons, wherein
1×N comparisons compare the k − 1 algorithms of the study (excluding the
control) with the control method, and N×N comparisons consider the k(k−1)

2
possible comparisons among algorithms. Consequently, the family comprises k − 1
or k(k−1)

2 hypotheses, respectively, ordered by their p-values from lowest to highest.
The p-value of each hypothesis in the family can be obtained by converting the

rankings computed by each test using a normal approximation. The test statistic
for comparing the ith algorithm and jth algorithm, denoted by z, depends on the
primary nonparametric procedure used. In this case, using Friedman Statistic:

z = (Ri −Rj)ñ
k(k+1)

6n

When a p-value is considered in a multiple test, it reflects the probability error of
a certain comparison, but it does not take into account the remaining comparisons
belonging to the family. If k algorithms are being compared and in each comparison
the level of significance is α, then in a single comparison the probability of not
making a Type I error (rejecting a true null hypothesis) is (1α), and the probability
of not making a Type I error in the k 1 comparison is (1α)(k1). Therefore, the
probability of making one or more Type I error is 1(1α)(k1).

The z-value in all cases is used to find the corresponding probability (p-value)
from the table of normal distribution N(0, 1), which is then compared with an
appropriate level of significance α . The post-hoc tests differ in the way they adjust
the value of α to compensate for multiple comparisons.

Between the possible p-value corrections, we chose the Holm Post-hoc procedure.
The Holm Post-hoc procedure uses a step-down approach to apply the corrections:
let p1, p2, . . . , pk−1 be the ordered p-values (smallest to largest), so that p1 ≤ p2 ≤
· · · ≤ pk−1, and let H1, H2, . . . , Hk−1 be the corresponding hypotheses. The Holm
procedure rejects H1 to Hi−1 if i is the smallest integer such that pi > α/(k − 1).
Holm’s step-down procedure starts with the most significant p-value. If p1 is below
α/(k − 1), the corresponding hypothesis is rejected and we are allowed to compare
p2 with α/(k − 2). If the second hypothesis is rejected, the test proceeds with the
third, and so on. As soon as a certain null hypothesis cannot be rejected, all the
remaining hypotheses are retained as well.

5.3 Experiments results
In order to do some tests on our algorithms, we have to different instances of the
CVRP problem. We used instances taken from [Uchoa_2017]: the instances
described here comes from different sets generated in the years. We used instances
from these sets: set A, set B, set E, set P and set CMT (we have about 103

43

Experiments

instances to be tested). Before talking about experiments, we have to say that our
experiments are taken using an Acer Nitro 5 with an AMD Ryzen 7 5800H (3.20
GHz), and 16 GB.

5.3.1 Experiment 1
A first experiment has been taken running the OrTools solver in automatic mode
against three of our algorithms; in particular, we used VNS1,VNS2 and IVNS
described in the Chapter 3. In this case, we used these sets of parameters for every
algorithm:

• VNS1: T: 10, hmax: 10, temperature: 20, len_taboo: 10, improvement:
(’3bis’, False),cross_over: False

• VNS2: T: 5, hmax: 10, temperature: 20, len_taboo: 10, improvement: (’3bis’,
False),cross_over: False

• IVNS: T: 10, hmax: 10, temperature: 20, len_taboo: 10, improvement: (’3bis’,
False),cross_over: False

The parameter improvement given as the tuple "(’3bis’, False)" means that we
are using an improvement algorithm with diversification and intensification phase
with best improvement choice cryteria. The starting solution of all our algorithms
has been found using sweep algorithm initialization.

In this test, firstly we take 10 repetitions for every tested instance, because for
different tests our algorithms can give slightly different results.

44

Experiments

Table of average test results for every instance

InstanceName orTools VNS1 VNS2 IVNS
A-n62-k8 1491 1794.496535 2257.418974 1648.606403
A-n34-k5 842 896.8505891 919.791782 822.4983152
A-n45-k6 1049 1199.10867 1293.805111 1026.319145
A-n33-k5 761 787.6574833 851.1978253 721.3509776
A-n65-k9 1258 1457.184303 1657.759698 1336.123692
A-n33-k6 797 875.3616018 908.9787625 800.4170787
A-n39-k6 883 1073.413187 1207.978065 913.4509548
A-n69-k9 1203 1477.017694 1673.84738 1310.267719
A-n36-k5 853 958.4813399 1143.379111 888.7114965
A-n37-k5 721 854.5904692 939.1207003 772.8580969
A-n63-k10 1400 1720.428882 2029.44528 1601.839782
A-n46-k7 1038 1186.450568 1353.436445 1061.236829
A-n54-k7 1226 1604.787655 1889.367299 1401.241494
A-n45-k7 1148 1416.083014 1608.013015 1316.061848
A-n63-k9 1799 2305.534787 2596.662257 1976.774502
A-n48-k7 1145 1310.993737 1615.338963 1210.981358
A-n37-k6 1011 1221.513758 1379.753226 1048.92581
A-n64-k9 1477 2029.37495 2387.516528 1835.219801
A-n39-k5 861 999.8565589 1115.773839 904.8154337
A-n80-k10 1915 2983.456708 3203.043554 2398.375354
A-n44-k6 995 1260.792864 1401.14992 1055.692839
A-n53-k7 1098 1340.501411 1463.334932 1129.694789
A-n32-k5 782 1087.17936 1243.628311 876.1122758
A-n61-k9 1189 1327.039948 1386.425484 1177.744934
A-n60-k9 1494 1852.992369 2097.529975 1636.675245
A-n38-k5 821 993.7565437 1119.345715 842.8556829
A-n55-k9 1148 1408.933633 1535.745506 1236.763166

45

Experiments

As seen in the last section, we are going to do some nonparametric tests on our
data, in order to know something about our algorithms performances. In this case,
we have to compare 4 algorithms, so that we have to use an 1 × N comparison,
following this path as shown in [Derrac_2011]. Before computing our tests, we
normalize our datas, in order scale problem instances differences and we can focus
only on the performance of the algorithms relative to each other. The normalization
for every simulation taken is calculated in this way:

x̃i = xi − xmin

xmax − xmin

Where x̃i is normalized value and it is in [0,1] ; xi, xmin and xmax are respectively
the value of our simulation for algorithm i, minimum value in the simulation and
maximum value in the simulation. Same normalization technique has been used
for computation times.

First of all, we compute average ranks of our algorithms.
After that we compute the value of the Friedman Statistic and calculate it’s

value of CDF chi-squared distribution with k = 4 degrees of freedom(we are testing
4 algorithms): if our Friedman statistics values allow to have values of 1− cdf(F)
greater then our Family-wise error rate (α = 0.1 in this case, we can claim that
the samples have different median value with that significance(rejecting the null
hypotesis), so that it has sense proceeding the paired tests and post-hoc procedures.
In this experiments we got:

Fsolutions = 2569.2288349514565
Ftimes = 2875.6310679611647

Both the values are showing us that there are difference between populations,
so we can continue our tests.

In this case we will apply paired tests computing p-values using firstly a Z-statistic
ad-hoc computed for Friedman ranks, as explained in the Friedman test description.
Then, when we will get the p-values, we can apply our Holm-Bonferroni corrections.
We apply these procedures with 3 different alpha levels (α = 0.1, 0.05, 0.01.

As it’s possible to see, we can see that the most powerful algorithm is the
oR-tools framework, as predicted. Focusing our analysis on our algorithms, we
can see that in terms of solution minimization the best performing algorithm is
IVNS while the worst performing is VNS2 in the pairwise tests. In the context of
solution time, the best performing algorithm is newly IVNS and the worst times in
this case are from VNS2. VNS2 is the worst because it needs more iterations to
complete the search, so in this case it doesn’t work very well.

Last but not least, we make a pairwise test using a non parametric test, the
Wilcoxon test, and applying on it Holm corrections, as in [Souza_2023]. These
are the results:

46

Experiments

Table of average test results for every instance
InstanceName orTools VNS1 VNS2 IVNS
B-n63-k10 1600 1943.670482 2005.913758 1811.319539
B-n43-k6 755 895.8178567 927.8966126 848.555234
B-n52-k7 742 901.6224899 911.2131056 855.6070509
B-n57-k7 1137 1366.350248 1421.856297 1246.043839
B-n45-k5 790 980.2636894 1082.467977 893.5521465
B-n56-k7 756 895.1043214 975.9191382 803.1514304
B-n78-k10 1272 1507.991575 1683.00878 1453.616824
B-n35-k5 983 1087.495266 1118.696392 1046.612076
B-n67-k10 1084 1256.816506 1322.47078 1186.844017
B-n41-k6 854 989.1025853 1021.99331 980.1486111
B-n45-k6 700 819.7430413 877.6129911 772.9240391
B-n64-k9 1078 1009.343417 1018.548062 970.7416247
B-n38-k6 866 885.7753401 926.6882709 834.4984453
B-n68-k9 1356 1625.206719 1824.458137 1487.946598
B-n44-k7 929 1126.250202 1265.280099 1064.261603
B-n51-k7 1135 1281.142278 1291.928288 1217.336839
B-n57-k9 1662 1913.911888 2100.672926 1770.15092
B-n34-k5 811 952.8073316 976.0872646 913.9035379
B-n39-k5 601 790.5846646 874.9953482 706.653451
B-n66-k9 1366 1479.708775 1569.073879 1428.003351
B-n50-k7 742 921.5675221 998.1638576 847.9386545
B-n31-k5 668 839.4331673 926.0874982 733.7239465
B-n50-k8 1311 1510.209409 1734.368311 1406.714146

Table of average test results for every instance
InstanceName orTools VNS1 VNS2 IVNS
E-n76-k7 718 1047.731654 1144.012837 861.6294189
E-n76-k14 1189 1297.484674 1504.1321 1222.714474
E-n33-k4 879 1088.662372 1235.38634 935.738517
E-n76-k10 885 1099.189183 1258.072128 987.0985989
E-n22-k4 425 425.1172306 429.121522 400.494638
E-n76-k8 754 1019.221074 1200.157286 909.4423236
E-n23-k3 559 599.7139542 622.5857964 594.5187361
E-n101-k8 845 1128.40402 1335.785432 1062.214661
E-n30-k3 531 653.7806189 739.8806448 569.260037
E-n51-k5 568 683.5612911 789.0553832 617.21473
E-n101-k14 1133 1433.049969 1657.225029 1390.768086

47

Experiments

Table of average test results for every instance
InstanceName orTools VNS1 VNS2 IVNS
P-n20-k2 222 299.2244899 323.6047567 256.7594554
P-n70-k10 898 1071.055068 1167.475376 935.2526665
P-n60-k15 1003 1193.773599 1304.394934 1113.131659
P-n76-k5 687 916.9800643 1040.243839 821.2898889
P-n19-k2 222 273.4000364 299.9846594 250.4396755
P-n55-k10 720 896.9569559 984.1906514 769.5886745
P-n51-k10 818 922.3986252 1022.435056 860.2461536
P-n22-k8 583 671.2770837 680.0616196 671.0750963
P-n22-k2 212 274.6150297 310.571317 221.4577595
P-n101-k4 767 1007.875302 1223.450865 971.6600368
P-n50-k8 665 779.1390904 913.7297157 697.983893
P-n21-k2 208 261.5080323 306.0866455 216.819447
P-n40-k5 449 575.8571862 642.4623107 515.913487
P-n60-k10 824 993.7486808 1127.369044 856.889331
P-n55-k15 968 1143.865526 1215.01845 1080.842224
P-n23-k8 530 626.1916859 657.5600357 616.7067482
P-n65-k10 826 958.7263869 1099.541634 865.2634822
P-n50-k7 559 717.9526211 798.0464466 616.6728528
P-n76-k4 655 781.347489 1012.922829 795.1705004
P-n45-k5 533 675.4294065 719.6409244 570.2460832
P-n55-k7 561 753.9105076 865.4309413 645.4964257
P-n50-k10 759 890.4709556 965.7660899 789.2854755
P-n55-k8 607 743.4627428 880.6017014 663.3723822

48

Experiments

Table of average test results for every instance
InstanceName orTools VNS1 VNS2 IVNS
CMT5 1411 2342.936411 2563.748521 2100.23106
CMT4 1092 1722.928981 2104.408847 1591.736948
CMT2 885 1121.656439 1221.989646 981.1835279
CMT13 1058 2063.005221 3064.108193 2090.920389
CMT11 1058 2262.829871 2993.831252 2101.669984
CMT6 568 692.3888339 790.4232874 616.1034828
CMT1 568 690.0795287 797.9156114 618.7928406
CMT8 845 1152.072426 1326.311771 1062.649433
CMT7 885 1084.712328 1238.107714 982.2678601
CMT9 1092 1547.948444 2126.530483 1594.885697
CMT3 845 1145.975595 1331.722311 1061.789806
CMT14 910 1106.115789 1174.649188 1061.974693
CMT12 910 1136.381238 1176.025438 1060.894122
CMT10 1411 2051.996009 2622.351323 2116.446969

49

Experiments

Table of average test time executions for every instance(in seconds)

InstanceName orTools VNS1 VNS2 IVNS
A-n62-k8 0.26840564 3.51545959 1.50604888 3.01736504
A-n34-k5 0.07081066 1.70438014 0.7950107 1.62472454
A-n45-k6 0.15735312 2.29730819 1.05431362 2.00181949
A-n33-k5 0.06781842 1.58126767 0.74064297 1.55741365
A-n65-k9 0.30588381 3.37368755 1.60482402 2.92115646
A-n33-k6 0.06356641 1.48608601 0.70838998 1.42417538
A-n39-k6 0.1008356 2.00086966 0.89482581 1.8884321
A-n69-k9 0.34141649 3.65500008 1.78689146 3.15479044
A-n36-k5 0.09738043 2.07722266 0.89652523 1.98843448
A-n37-k5 0.11048875 2.06454754 0.93932859 2.10334845
A-n63-k10 0.29858019 3.35880588 1.57732476 2.67214738
A-n46-k7 0.14107238 2.37391127 1.0170197 1.98733511
A-n54-k7 0.27455175 2.87664079 1.34698389 2.53720145
A-n45-k7 0.15843117 2.25341208 1.11971902 2.04548936
A-n63-k9 0.25936826 3.08964434 1.48843133 2.70054527
A-n48-k7 0.1488731 2.56392764 1.16085273 2.26825916
A-n37-k6 0.14922079 1.82874614 0.8064266 1.55672201
A-n64-k9 0.28065541 3.33825575 1.55433571 2.84359939
A-n39-k5 0.08977566 2.0617489 0.9693572 1.94778319
A-n80-k10 0.50144553 4.41496912 2.08269095 3.82149493
A-n44-k6 0.14335713 2.27574103 1.06349887 2.07734182
A-n53-k7 0.25156392 2.98115506 1.31951837 2.58297301
A-n32-k5 0.08453157 1.51780257 0.70015807 1.44074119
A-n61-k9 0.29033682 3.1429132 1.35848338 2.59401691
A-n60-k9 0.23933668 3.03931359 1.47055297 2.60382401
A-n38-k5 0.09337327 1.91123508 0.87592272 1.83101126
A-n55-k9 0.20630359 2.74343634 1.27432065 2.37746044

50

Experiments

Table of average test time executions for every instance(in seconds)
InstanceName orTools VNS1 VNS2 IVNS
B-n63-k10 0.41643657 3.06020015 1.53091081 2.80261992
B-n43-k6 0.25518623 2.29109687 1.0896064 2.07904145
B-n52-k7 0.27415766 2.78000951 1.32780829 2.55218597
B-n57-k7 0.24267793 3.00072826 1.49328092 2.71573035
B-n45-k5 0.19940461 2.48250867 1.15639371 2.29358499
B-n56-k7 0.1842562 3.10922224 1.4645811 2.86941175
B-n78-k10 0.46081389 4.72219491 2.01474536 3.8303909
B-n35-k5 0.08934885 1.76469594 0.77239644 1.60138158
B-n67-k10 0.40561551 3.94673902 1.72888402 3.10945669
B-n41-k6 0.11125838 1.94017191 0.90250727 1.94012081
B-n45-k6 0.15653813 2.26967153 1.06636392 2.01956849
B-n64-k9 0.39634036 3.4638299 1.59938003 2.91736419
B-n38-k6 0.08203495 1.83116756 0.8114557 1.64685678
B-n68-k9 0.38354748 3.88777197 1.69077528 3.18053441
B-n44-k7 0.17868628 2.26153348 0.98808908 1.9505202
B-n51-k7 0.14691705 2.64787915 1.21408579 2.29174932
B-n57-k9 0.22877392 2.9091741 1.36129028 2.51372905
B-n34-k5 0.06105837 1.62568887 0.79620012 1.55854589
B-n39-k5 0.0908738 2.05535062 0.92758102 1.8870465
B-n66-k9 0.30860868 3.49151959 1.67703034 3.09808092
B-n50-k7 0.21088095 2.67066696 1.2221663 2.48586042
B-n31-k5 0.05451231 1.41363905 0.69040514 1.33136096
B-n50-k8 0.28685657 2.4799803 1.21031135 2.20610812

Table of average test time executions for every instance(in seconds)
InstanceName orTools VNS1 VNS2 IVNS
E-n76-k7 0.77619076 11.65920753 5.28494582 11.25377392
E-n76-k14 0.76010841 10.2827449 5.06423803 8.84505755
E-n33-k4 0.20377105 4.1250141 1.88766106 4.01923816
E-n76-k10 1.4142915 10.9255346 5.06332843 9.29147078
E-n22-k4 0.03688593 0.95000096 0.45227441 0.97210596
E-n76-k8 1.14599668 11.45349897 4.92534279 9.77355079
E-n23-k3 0.03420376 1.52894843 0.70163404 1.70450183
E-n101-k8 0.90520719 7.30397385 3.26506915 6.5271502
E-n30-k3 0.16106929 4.60246055 1.87582241 4.71551929
E-n51-k5 0.4881226 6.63708344 3.06676499 6.372933
E-n101-k14 0.77183944 5.81119022 2.69264786 4.71761738

51

Experiments

Table of average test time executions for every instance(in seconds)
InstanceName orTools VNS1 VNS2 IVNS
P-n20-k2 0.02488078 1.07033461 0.49894967 1.35036184
P-n70-k10 0.34479056 3.72023209 1.60083583 3.2233343
P-n60-k15 0.22534516 2.75271281 1.33752462 2.3472114
P-n76-k5 0.50697037 6.36749965 2.55556511 5.87925194
P-n19-k2 0.03702522 1.04444499 0.46675049 1.23554723
P-n55-k10 0.1658497 2.51877914 1.20507026 2.28326265
P-n51-k10 0.22051633 2.22307333 1.06416599 2.1576255
P-n22-k8 0.03271257 0.91594081 0.48101543 0.9037541
P-n22-k2 0.0329244 1.4216605 0.65804403 1.85839263
P-n101-k4 0.69425242 14.01204244 5.29263503 14.89160901
P-n50-k8 0.16426155 2.25174001 1.06698225 2.01495598
P-n21-k2 0.02943732 1.33580618 0.5810703 1.63833387
P-n40-k5 0.12350357 2.07730538 0.97300477 1.996304
P-n60-k10 0.22417144 2.81579797 1.36450849 2.54173794
P-n55-k15 0.19173995 2.40955684 1.24385882 2.22301919
P-n23-k8 0.04116628 0.94897762 0.45982233 0.88232223
P-n65-k10 0.46247905 3.29518461 1.53463971 2.86074769
P-n50-k7 0.20436216 2.39004053 1.12071202 2.28067492
P-n76-k4 0.43053157 8.67402202 3.22263106 7.69715938
P-n45-k5 0.12443104 2.43411175 1.11896796 2.5978495
P-n55-k7 0.21034111 2.91747279 1.34388875 2.66687075
P-n50-k10 0.20005682 2.29805713 1.11054709 2.05985701
P-n55-k8 0.18299914 2.89116506 1.3022401 2.66912642

52

Experiments

Table of average test time executions for every instance(in seconds)
InstanceName orTools VNS1 VNS2 IVNS
CMT5 3.00040086 19.98776783 8.36640486 42.06073544
CMT4 1.8104656 13.66240313 6.01880438 11.14295624
CMT2 0.57166575 4.21609132 1.99684959 3.65293351
CMT13 1.04505769 11.87911777 4.70295699 10.00895643
CMT11 1.03828959 10.81802167 4.76041042 9.80813436
CMT6 0.51524196 8.02347172 3.69875247 7.51636043
CMT1 0.19875095 2.72158285 1.27453668 2.70472969
CMT8 2.37855773 23.51340177 10.06839839 20.49450077
CMT7 1.44867598 11.33820257 5.57696796 9.42337568
CMT9 4.60320061 39.41257391 16.37902542 30.83443658
CMT3 0.95168337 8.19664093 3.45380852 7.2479982
CMT14 0.69723368 7.21823555 2.99935201 5.97802245
CMT12 0.69154124 6.75093215 2.98893864 5.91968441
CMT10 2.99937465 21.74737476 8.45042884 15.58288148

53

Experiments

Average ranks for solution results values
InstanceName orTools VNS1 VNS2 IVNS
Average Ranks 1.11456311 2.92135922 3.87524272 2.08883495

Average ranks for computation times values
InstanceName orTools VNS1 VNS2 IVNS
Average Times 1. 3.77669903 2. 3.22330097

Z-test on solutions’ values
Test alpha = 0.1 alpha = 0.05 alpha = 0.01
oR-tools < VNS1 TRUE TRUE TRUE
oR-tools < VNS2 TRUE TRUE TRUE
oR-tools < IVNS TRUE TRUE TRUE
VNS1 < VNS2 TRUE TRUE TRUE
VNS1 < IVNS FALSE FALSE FALSE
VNS2 < IVNS FALSE FALSE FALSE
oR-tools > VNS1 FALSE FALSE FALSE
oR-tools > VNS2 FALSE FALSE FALSE
oR-tools > IVNS FALSE FALSE FALSE
VNS1 > VNS2 FALSE FALSE FALSE
VNS1 > IVNS TRUE TRUE TRUE
VNS2 > IVNS TRUE TRUE TRUE

Z-test on computing times
Test alpha = 0.1 alpha = 0.05 alpha = 0.01
oR-tools < VNS1 TRUE TRUE TRUE
oR-tools < VNS2 TRUE TRUE TRUE
oR-tools < IVNS TRUE TRUE TRUE
VNS1 < VNS2 FALSE FALSE FALSE
VNS1 < IVNS FALSE FALSE FALSE
VNS2 < IVNS TRUE TRUE TRUE
oR-tools > VNS1 FALSE FALSE FALSE
oR-tools > VNS2 FALSE FALSE FALSE
oR-tools > IVNS FALSE FALSE FALSE
VNS1 > VNS2 TRUE TRUE TRUE
VNS1 > IVNS TRUE TRUE TRUE
VNS2 > IVNS FALSE FALSE FALSE

As it’s possible to see, Wilcoxon rank tests confirm the results seen in Z-tests.

54

Experiments

Wilcoxon rank test on solutions’ values
Test alpha = 0.1 alpha = 0.05 alpha = 0.01
oR-tools < VNS1 TRUE TRUE TRUE
oR-tools < VNS2 TRUE TRUE TRUE
oR-tools < IVNS TRUE TRUE TRUE
VNS1 < VNS2 TRUE TRUE TRUE
VNS1 < IVNS FALSE FALSE FALSE
VNS2 < IVNS FALSE FALSE FALSE
oR-tools > VNS1 FALSE FALSE FALSE
oR-tools > VNS2 FALSE FALSE FALSE
oR-tools > IVNS FALSE FALSE FALSE
VNS1 > VNS2 FALSE FALSE FALSE
VNS1 > IVNS TRUE TRUE TRUE
VNS2 > IVNS TRUE TRUE TRUE

Wilcoxon rank test on computing times
Test alpha = 0.1 alpha = 0.05 alpha = 0.01
oR-tools < VNS1 TRUE TRUE TRUE
oR-tools < VNS2 TRUE TRUE TRUE
oR-tools < IVNS TRUE TRUE TRUE
VNS1 < VNS2 FALSE FALSE FALSE
VNS1 < IVNS FALSE FALSE FALSE
VNS2 < IVNS TRUE TRUE TRUE
oR-tools > VNS1 FALSE FALSE FALSE
oR-tools > VNS2 FALSE FALSE FALSE
oR-tools > IVNS FALSE FALSE FALSE
VNS1 > VNS2 TRUE TRUE TRUE
VNS1 > IVNS TRUE TRUE TRUE
VNS2 > IVNS FALSE FALSE FALSE

5.3.2 Experiment 2

In these experiments, we want to see on an algorithms, for example the IVNS, what
is the best improvement pattern between a mixed movement strategy, that we will
call mix (intra route and inter route movements are used all together in one only
phase) or splitting in diversification and intensification phases, that we call di . The
algorithm we are using is IVNS with the same parameters used in the Experiment 1.
The only difference between the two taken algorithms is the parameter improvement,
that has to respect the objective of this experiment. We use same pre-processing
technique used in Experiment 1 to scale our simulations’data.

55

Experiments

Running Wilcoxon rank test took us this results:
For the solution value:

• Two-tailed: We obtain a p-value for the Wilcoxon test equal to 2.577387199554837e−
145, which is a very low value, even for significance levels α of very low order,
so we can proceed with one-tailed tests.

• One-tailed (<0) : In the one-tailed we easily note a p−value = 1.2886935997774184e−
145 (very low) for the hypotyesis H0 " di−mix ≥ 0 ", that can be rejected, so
we can claim that di get better solutions than mix.

For the computing times:

• Two-tailed: We obtain a p-value for the Wilcoxon test equal to 3.629745791625171e−
228, which is a very low value, even for significance levels α of very low order,
so we can proceed with one-tailed tests.

• One-tailed (<0) :In the one-tailed we easily note a p− value = 1.0 (very high)
for the hypotyesis H0 " di−mix ≥ 0 ", that can’t be rejected, so we have to
do the hypotesis test for the opposite hypotesis.

• One-tailed (>0) :In the opposite H0 " di−mix ≤ 0 " we have a p-value equal
to 1.8148728958125854e − 228, that is very low: we can claim that in this
context the mix performs better than di in terms of computing times.

In this case, dividing two phases of search was better in terms of solution quality
then mixing all neighborhood structures, but this involves two searchs, so it is more
expensive in computational sense.

5.3.3 Experiment 3
In this experiment we want to test how introducing in our runs crossing-over
operator can improve our solution. In this case, we will use IVNS algorithm with
same parameters setting used in Experiment 1, but activating or deactivating the
parameter cross-over and reducing the parameter len_taboo, that allows us to
augment the cross-over operations that can happen in the algorithm. We will work
in the same way as in the experiment 2, computing the Wilcoxon rank test to
normalized solution values and computing times.

Test for solution value:

• Two-tailed: we obtain a p-value for the Wilcoxon test equal to 0.5258539548517263:
this is an high p-value, and it is saying to us that there aren’t sifgnificant
differences between having cross-over or not having in terms of quality of
solution, so we can’t stop here the analysis.

Test or the computing times:

56

Experiments

• Two-tailed: we obtain a p-value for the Wilcoxon test equal to 0.23639872922467442
that, as before, is higher than statistically significant levels (maximum level as
α = 0.1). Also in this case, there aren’t statistical differencies between using
crossing over phase or not using it, and we stop the analysis.

These tests demonstrate the varying utility of different algorithmic modules.
They highlight that the optimal choice, such as the inclusion of a crossing-over
phase, should be assessed for each specific problem instance. This is because
statistically significant differences may not always be present.

57

Chapter 6

Conclusions

The modular structure of our algorithms has allowed us to explore a wide range of
algorithmic possibilities by creating new algorithms from our modules. Additionally,
we conducted demonstrative analyses to illustrate how the behavior of a Single
Solution Based solver can vary by modifying a few characteristics of the algorithm.
Specifically, the modules we developed enabled us to implement the following
algorithmic phases: improvement heuristics, improvement and shaking phases,
destroy and repair phase, crossing-over phases, and route initialization. With these
tools, we were able to construct several "hybrid" algorithms from classical single
solution metaheuristics.

Clearly, compared to state-of-the-art solvers, our work is still in its infancy,
as there are many areas for improvement in terms of computation and strategies.
However, the utilization of these algorithmic structures certainly holds promise
for enhancement by adding additional features. From what is evident in our work,
there is potential for generalization using these tools to create new algorithms.

Furthermore, while our work focused on the CVRP, it is potentially generalizable
to any type of VRP problem by making appropriate modifications to the calculation
of the objective function and the study of constraints. For instance, extending
the algorithm to the well-known CVRPTW problem is feasible with suitable
adjustments.

In conclusion, our research lays the groundwork for further exploration and
refinement of algorithmic solutions for VRP problems, offering avenues for future
research and application in a broader context.

58

Appendix A

Code description

In our work we used python language to write the algorithms described in the
last chapters. In particular, in this appendix we are going to describe briefly our
code general informations.

A.1 Classes
These classes are part of a solution framework for solving routing problems. Here’s
a breakdown of what each class does:

Class Instance
Class Instance allows to manage and use in our solvers the CVRP instances.

• __init__: Initializes instance variables such as maps (coordinates matrix of
clients), demands (list of demands for each customer), and vcapacities(listofvehiclecapacities).distance_matrix :
CalculatestheEuclideandistancematrixbetweenallpairsofpoints.

•• compute_sol: Computes a solution for the routing problem using our algo-
rithms, and returns the solution as an instance of class Solution.

• compute_ortSol: Computes an alternative solution using the google’s orTools
solver (orTSolution) and returns it as an instance of class orTSolution.

• plot_map: Plots the map with the routes.

Class Solution (inherits from Instance)
Class Solution is used to solve and manage solutions from our solvers.

• __init__: Initializes instance variables inherited from Instance, along with
additional variables specific to a solution such as routes, value, feasible,
and time_execution.

59

Code description

• constraints: Checks if the routes in the solution satisfy certain constraints.

• standard_form_sol: Converts the solution into a standard form (solution
formulated with mixed-integer variables as in chapter 1).

• route_form_sol: Converts the solution into route form (solution given as a
list of arrays containing the nodes indexes contained in the routes, as shown in
the third chapter).

• constraint_standard: Checks if the solution satisfies standard constraints.

• standard_form_solHigh: Converts the solution into a specific standard form,
possibly handling special or complex situations.

• route_form_solHigh: Converts the solution into a specific route form, possibly
handling special or complex situations.

• constraint_standardHigh: Checks if the solution satisfies standard con-
straints with specific handling for special or complex situations.

• plot_routes: Plots the routes on the map, with an option to indicate the
direction of the routes with arrows.

The orTSolution Class

The orTSolution class is designed to solve the CVRP using the ORTools library.

• get_solution(): Solves the CVRP problem using ORTools, calculating the
execution time.

• constraints(): Checks for any constraint violations in the solution.

• standard_form_sol(), route_form_sol(), constraint_standard(): Meth-
ods for manipulating the problem solution(similar to the other class Solution).

• plot_routes(): Visualizes the vehicle routes on a map.

The class offers an abstraction for solving CVRP problems using ORTools,
providing methods to manipulate and analyze the obtained solution.

The testAlgorithms Class
The testAlgorithms class is designed to execute and analyze different algorithms
for solving a problem using the provided instance.

60

Code description

Methods:
• __init__(file): Initializes the class instance with a file path pointing to the

problem instance. The file is used to create an instance of the problem.
• executeTest(kind, par, reps): Executes a test with the specified kind of

algorithm (kind), parameters (par), and number of repetitions (reps). It
stores the results for further analysis.

• export2dataFrame(): Generates data frames containing information about
the instance, solver, trials, and statistics of the results. This data can be
exported for further analysis or visualization.

• plot_result(): Plots the results obtained from the executed tests, visualizing
the routes.

The class provides functionality for testing and analyzing different algorithms’
performance on the given problem instance.

Algorithms
Moreover, our algorithms described in Chapter 3 are written in some modules:

• clustering.py and sweepAlgorith.py: these two classes are used to generate
new solutions or cluster points (united by the function "first_route".

• heuristics.py for improvement heuristic deployments.
• destroyRepair.py : destroy and repair operations.
• improvements.py: improvements structures functions.
• shakes.py: shakes structures functions.
• populationPhase.py: crossing-over operations.
• ClusterVNS.py: this modules is the most general, where our solvers’ algorithms

are built and all the functions contained in the above modules are used in
order to find the solutions.

61

	List of Figures
	Introduction
	Problem Description
	Travelling Salesman Problem
	Capacitated VRP
	Mathematical Formulation

	VRP variants

	Solution Approaches
	Constructive Heuristics
	Improvement Heuristics
	Metaheuristics
	Single-Solution-Based Methods
	Population-Based Methods

	Algorithms Modules
	Modules
	Inspirations
	Improvement Heuristics
	Improvement and Shaking algorithms
	Destruction/Reconstruction
	Crossing-over operators
	Starting and Restarting Methods

	Algorithm Examples

	Experiments
	Examples
	Statistical Analysis: Non-parametric hypotesis Tests
	Wilcoxon Signed Rank test
	Friedman test

	Experiments results
	Experiment 1
	Experiment 2
	Experiment 3

	Conclusions
	Code description
	Classes

