
POLITECNICO DI TORINO

Master’s Degree
in Mathematical Engineering

Master’s Thesis

Dynamic Optimization of Intralogistic Robot
Scheduling

Supervisors Candidate
Prof. Paolo Brandimarte Margherita Battistotti
Dr. Nicolò Mazzi - Spindox, αhead

Academic Year 2023-2024

To my future.
Che io sia accompagnata dalle stesse
persone che mi hanno supportata nei
miei studi, nelle mie passioni, nella
mia vita, fino a questo traguardo.
To whom believes in me,
more than I do.

Abstract

The employment of intralogistic robots in warehouses has become increasingly prevalent
due to technological advancements; in fact, they enable more efficient logistic operations,
increasing productivity and cost-effectiveness.
The research community is showing a keen interest in the subject and directing its at-
tention towards the implementation of risk-aware robots with planning capabilities. Nev-
ertheless, to our knowledge, no one has yet investigated the application of the Dynamic
Programming paradigm for the scheduling of tasks for intralogistic robots. Therefore,
this dissertation focuses on addressing this topic, proposing various resolution methods
for a stochastic dynamic scheduling problem, based on Dynamic Programming and its
approximated versions. We find the paradigm particularly intriguing and deserving of
further exploration because it resides between a static approach and a purely dynamic
one: it promises a greater capacity to account for stochasticity than the former and surely
appears less myopic than the latter.
Although it is well-known that Dynamic Programming is enormously susceptible to the
dimensions of the problem to which it is applied, we are convinced of its efficacy on modest-
scale instances. Therefore, we consider its results on small scale problems as benchmarks
to be compared with the solutions provided by approximate approaches, with the aim of
demonstrating how the latter yield equally valuable outputs. Despite our foremost ob-
jective is to accurately solve the stochastic dynamic scheduling problem, it is also crucial
to rapidly obtain solutions, especially when it comes to larger scale problems. In fact,
an additional goal of ours is to illustrate that such efficiency is exclusively attainable
through the application of Approximate Dynamic Programming, as opposed to the exact
paradigm. However, we do not entirely dismiss exact Dynamic Programming: we partially
exploit it to solve a more intricate version of the scheduling problem that incorporates
prioritizing rules. The rationale behind the introduction of priorities is to closely align
to real-world applications. To this aim, not only we employ resolution methods that use
Dynamic Programming but also present some heuristics.
The results of our thorough experiments allow us to conclude that the Approximate Dy-
namic Programming methods analysed in the dissertation perform admirably, outputting
sub-optimal scheduling sequences that do not excessively deviate from the optimal ones
obtained through the application of the exact Dynamic Programming paradigm. Some of
the presented approaches even exhibit exceptionally fast execution times. Nonetheless, in
our case, speed is a trait resulting from approximation, inevitably leading to a trade-off
with lower performance. In fact, the determination of the most suitable method for solv-
ing an intralogistic robot scheduling problem is subjective. Among the several approaches
we present, the decision on which to use is left to whom must address the real-life problem
and is contingent on specific requirements related to speed and accuracy.

In conclusion, our implemented methods represent a valid choice for solving single-agent
dynamic scheduling problems subjected to risk. We contribute to the state of the art by
providing a novel perspective for the planning of intralogistic robot scheduling, demon-
strating that the Dynamic Programming paradigm and its approximate counterpart reveal
suitable alternatives to standard resolution methods.

Contents

Introduction 3

1 DARKO: the project and the problem definition 5
1.1 Scheduling problem definition . 5

1.1.1 The setting . 6

2 Deterministic and stochastic toy models resolution through Dynamic
Programming 9
2.1 The Dynamic Programming principle . 9
2.2 Dynamic Programming application to toy models 10

2.2.1 Deterministic instance . 13
2.2.2 Stochastic instance . 15

3 Approximate Dynamic Programming for large scale stochastic instances 19
3.1 Approximate Policy Iteration . 21

3.1.1 Features and reward engineering . 22
3.1.2 Exploration in decision making . 28
3.1.3 The algorithm . 28

3.2 Lookahead Policies . 28
3.2.1 Myopic Rollout . 29
3.2.2 Monte Carlo Tree search . 31

3.3 ADP vs DP: comparisons on toy models 35
3.3.1 Accuracy of value function approximations through API 37

3.4 ADP performances on larger scale problems 38

4 Introducing priorities 41
4.1 Problem reintrepretation . 41
4.2 Resolution approaches . 42

4.2.1 Sequential Heuristic . 42
4.2.2 Sequential DP . 43
4.2.3 Prioritizing DP . 44

4.3 Results . 45
4.3.1 Larger Scale Solutions . 49

1

5 Conclusions 52
5.1 Further Developments . 53

A Outputs 55
A.1 Exact DP . 55

A.1.1 Deterministic instance . 55
A.1.2 Stochastic instance . 56

A.2 Problem with priorities . 57
A.2.1 Sequential heuristic . 58
A.2.2 Sequential DP . 58
A.2.3 Prioritizing DP . 59

A.3 Implementation details . 59

2

Introduction

In the era of Industry 4.0, fueled by unprecedented technological advancements in robotics,
we witness a transformative shift where intelligent machines revolutionize industrial pro-
cesses, laying the foundation for a future defined by enhanced efficiency, productivity, and
innovation.
Our dissertation delves into this framework by contributing to a European-funded inter-
national research project on Dynamic Agile production Robots that learn and optimize
Knowledge and Operations (DARKO Project), whose overarching aim is to realize a new
generation of energy-efficient and easy to deploy intralogistic robots, capable of highly
dynamic motions and of operating safely within unknown and changing environments.
Indeed, this thesis work has been conducted under the supervision of αHead Research,
the research division of Spindox, a prominent company in the ICT sector actively engaged
in the project.
In contrast to the current deployment of existing robots within production facilities, dis-
tribution centers, etc., DARKO proposes an innovative perspective. Consider the example
of Amazon, a pioneer in deploying robots in its fulfillment centers. For over a decade, the
colossal online retail store has been researching into a variety of robots to optimize its effi-
ciency, in order to meet the relentlessly growing demands of the e-commerce market. Even
with its most recent strategy, the company has leaned towards robots that are specifically
designed to collaborate with humans and primarily serve as drivers of racks, leaving the
more agile action of directly picking the objects on the shelves to human workers (Allgor
et al. [2023]). Due to its proven success, the same strategy has been embraced by numer-
ous fulfillment centers and ongoing research in the field of robots as collaborative rack
drivers remains highly active (see Rimelé et al. [2022], Wang et al. [2022], Löfflet et al.
[2023]). However, for analogous applications beyond the realm of e-commerce, it may
become necessary for robots to independently perform dynamic motions as well, while
humans take on supervisory roles. For this reason, the DARKO project directs its atten-
tion to agile robots capable of planning not only their routing, but the entire sequence of
tasks involved in the transportation of objects in a warehouse. This topic aligns closely
with other current research trends exploring more agile and flexible robots, which are
showcasing a promising trajectory (Tipary and Erdős [2021], Babin and Gosselin [2021]).
Confident of the simultaneous advancements in the mechatronic and robotic fields, in this
dissertation we specifically address the mathematical segment of the DARKO project ded-
icated to the task scheduling of the robots. For a realistic, yet simplified representation
of the problem, we envision a scenario where a single robot is responsible for collecting

3

Introduction

and transporting objects from specific locations to designated destinations in a warehouse,
while being subjected to risk factors directly associated with the actions that it can per-
form. The main objective of this thesis work is to propose innovative methods based on
the Dynamic Programming paradigm for a low-risk and time-efficient scheduling of tasks
in the described scenario.
Among the various approaches commonly employed for the resolution of robot task schedul-
ing, like genetic algorithms (Zacharia and Aspragathos [2005]), Dynamic Programming is
notably one of the least represented in the literature. Nevertheless, we are convinced of
its suitability for addressing the problem at hand. Indeed, it represents a more precise
method compared to a purely dynamic one where decisions are made greedily, solely based
on the best immediate action, without considering their impact on the future. Moreover,
it is also preferrable to a static scheduling approach that, despite the thorough look-ahead,
typically overlooks stochasticity, necessitating a replanning whenever an unexpected event
occurs. Instead, during the application of a Dynamic Programming approach for the res-
olution of a stochastic scheduling problem, unforeseen realizations of risk factors do not
jeopardize the previously computed optimal solution. These advantages motivate our
attempt of employing the Dynamic Programming paradigm for our problem, despite its
significantly heavy computational workload when it comes large scale instances.
The opening sections of this work accurately describe the problem setting and define the
essential notation. Then, after a brief introduction of the general Dynamic Programming
paradigm, the second chapter focuses on its exact application to both deterministic and
stochastic versions of our scheduling problem. However, due to its excessive resource re-
quirement the exact paradigm is only applied to small and medium-sized instances. In
fact, it is only in the third chapter that we delve into the resolution of larger problems
by applying faster Approximate Dynamic Programming approaches: Approximate Policy
Iteration, Myopic Rollout, and Monte Carlo Tree Search. These approximate methods
are validated on smaller instances through comparisons with the solutions output by the
exact paradigm; subsequently, their performances are compared to each other on larger
instances to determine the most accurate and efficient approach. In the fourth chapter we
introduce the concept of priorities, mirroring some delicate real-world situations and pro-
pose and analyze three alternative resolution methods that we specifically implemented for
the redefined problem. Finally, we conclude by summarizing considerations and findings,
and by providing an overview on potential further developments on the topic.

4

Chapter 1

DARKO: the project and the
problem definition

DARKO, which stands for Dynamic Agile production Robots that learn and optimise
Knowledge and Operations, is an international research project funded by the European
Union. The overarching aim of the project is to research and innovate for efficient and
safe intralogistic robots in agile production. This main goal can be decomposed in five
separate objectives: robots as components of intralogistic processes must possess energy-
efficient elastic actuators to execute highly dynamic motions; be able to operate safely
within unknown, changing environments; be easy (cost-efficient) to deploy; have predictive
planning capabilities to decide for most efficient actions while limiting associated risks; and
be aware of humans and their intentions to smoothly and intuitively interact with them
(DARKO Project). This dissertation specifically focuses on the efficient and risk-aware
scheduling objective, proposing an innovative solution method based on the paradigm of
Dynamic Programming.

1.1 Scheduling problem definition
Agile logistic robots naturally find their employment in manufacturing plants or ware-
houses, that we can assume to be organized in storage areas from where components
or objects must be picked and transported to other specific locations within the same
warehouse, e.g., a conveyor belt. Trusting this assumption, let us consider a warehouse
where each object type has its univocal storing box and there are designated destinations,
referred to as trays, where said objects must be placed, as illustrated in the toy example
in Figure 1.1.
The list of object types to be moved to the trays and the respective quantities are defined
by a set of order lines, i.e., a mission, assigned to a robot, for example: "collect 5 units
of object A and put them in tray 1, 8 units of object D, and put them in tray 2, etc.".
Once received the order, the robot needs to schedule a time-efficient and minimum-risk
sequence of tasks to complete it, while being constrained to a fixed maximum carrying
capacity of c objects, regardless of their type.

5

DARKO: the project and the problem definition

Figure 1.1: Toy example of DARKO use case.

The environment is indeed a three-dimensional space where a single agent, identified as the
robot, can perform four main action types: it can move from one location to another, pick
objects from the boxes, and place or throw them into the trays. Not all actions guarantee
deterministic outcomes because collisions with humans or with shelving units may occur
during navigation, while throws may fail. Collisions and failures represent indeed the
exogenous risk factors affecting the system, and the consequences of their occurrence are,
respectively, a time delay and the loss of the object whose throw was attempted.

1.1.1 The setting
Respecting the assumption of a well-organized plant, we solve the problem on a completely
connected undirected graph G = (N , E), where each vertex n ∈ N represents either
a picking location, uniquely associated to a box containing a specific object type, or a
placing / throwing location. Placing and throwing vertices refer to the same vertices on
the graph, but the different nomenclature is needed to understand that, while a throwing
action can be performed from any throwing vertex, a placing action is only performed
when the placing vertex is the closest to the tray where to place the object at hand.
Another reason for the differentiation of placing and throwing actions is that the former
are associated to no risk, while the latter may cause a failure with a probability dependent
on the distance between the throwing vertex and the tray involved in the action. In the
following, we will first face a deterministic problem in which throwing actions are discarded
and there is no risk in navigation either; later, we will consider a stochastic problem where
placing actions are substituted by throwing actions and navigation risks arise as well.
The set E of edges connecting the vertices represents the optimal paths to follow in terms
of time-efficiency and risk-avoidance: in fact, the completely connected graph G is the
result of a previously solved routing optimization problem. As depicted in Figure 1.2 each
edge e = (n0, n1) ∈ E is indeed associated to two parameters: ∆te, which is the time
needed to go from the start vertex n0 to the destination vertex n1, and re, which is the

6

DARKO: the project and the problem definition

risk the robot will face travelling through e. While solving the deterministic problem we
will discard the parameter re since we assume no navigation risk.
Since the routing optimization problem defining the edges of the graph is solved once
and before the scheduling begins, both parameters re and ∆te are assumed fixed during
the scheduling problem resolution. This choice leads to a static view of the risk factors
associated to moving actions, which are actually dynamic in the real world. Nevertheless,
as we will later see, the time horizons for the mission’s completion are generally set to
be short in our experiments, and a unique snapshot of the initial situation is a close
approximation of the risk throughout the entire scheduling. If deemed necessary, an
option would be to repeatedly solve the routing problem and dynamically adjust the data
associated with the edges of graph G.

Figure 1.2: Partial representation of graph G = (N , E): each edge e ∈ E is associated to
the parameters pair (∆te, re). Central red zones represent risky areas.

7

DARKO: the project and the problem definition

Notation

Let O be the set of O object types and K the set of K trays where objects might need
to be placed into. Each object type is associated to a box where it is stored and from
where it can be picked. Box locations are defined, for the sake of simplicity, by the picking
vertices no ∈ Npick, while trays locations are associated to coordinates (xk, yk), k ∈ K,
that differ from the placing/throwing vertices nk ∈ Nplace. Nevertheless each vertex n ∈ N
is also associated to a pair of coordinates (xn, yn). Let then T = {0,1,2, ..., T} be a set of
discrete time instants, i.e., seconds, with T being the time horizon fixed for the mission’s
completion.
The mission assigned to the robot is defined by a set of order linesM = {(km, om, qm), m =
1, ..., M}, where qm is the quantity of objects of type om to place in tray km.
We are ready to define the state space S. Let s ∈ S be defined as an array of dimension
Ω = 2 + O × (K + 1), resulting from a concatenation of the following:

• s1 ∈ T , which represents the time elapsed from the beginning of the mission;

• s2 ∈ N , which represents the position of the robot on the graph at time s1;

• so ∈ N(K+1)
0 , defined ∀ o ∈ O = {1, ..., O}, such that:

– so
1 ∈ {0, ..., Ō} is the number of objects of type o picked before time s1, where

Ō =
MØ

m=1
qm | om = o represents the total number of objects of type o to pick

during the mission;
– so

k+1 ∈ {0, ..., Ōk} is the number of objects of type o placed in tray k ∈ K =

{1, ..., K} before time s1, where Ōk =
MØ

m=1
qm | om = o, km = k, represents the

total number of objects of type o to place in tray k during the mission.

For example, let O = 2 and K = 2, so that Ω = 2 + 2 × (2 + 1) = 8. A generic state
s ∈ S would be denoted as s = (t ∈ T , n ∈ N , s1, s2) and, given a suitable mission M,
one could have s1 = (4, 2, 1) and s2 = (1, 1, 0). Note that each state records information
about which objects have been picked and/or placed up to a specific time, and enables a
deduction of the remaining tasks required to complete the mission.
Finally, let us define the action space. As previously stated there are four main action
types: move, pick, place, throw, which can further branch off into more specific actions by
associating to each type an additional set. For example, to a moving action type we shall
associate a vertex where to move, and for a picking action type we shall specify which
object has been chosen to be picked. We will work with a set A = Amove∪Apick∪Aplace∪
Athrow, where Amove ⊆ N , Apick ⊆ O and Aplace,Athrow = {(oa, ka), oa ∈ O, ka ∈ K},
and various subsets As ⊂ A only containing the admissible actions given a state s ∈ S.
Furthermore, each action is associated to the time duration of its execution, namely
∆tpt = 5 time units for all placing and throwing actions, ∆tp = 7 for all picking actions,
and ∆te, as previously defined, for moving actions on edge e ∈ E .

8

Chapter 2

Deterministic and stochastic
toy models resolution through
Dynamic Programming

The paradigm of Dynamic Programming (DP) has been chosen to innovatively solve the
problem of intralogistic robot scheduling described in the previous chapter because of its
notorious flexibility. Indeed, its applications span across various fields, from operations
research to economics, from control theory to machine learning.
DP is not a fixed and defined algorithm, but rather an optimization principle, and as such
its implementation for a specific problem may require a considerable customization effort
(Brandimarte [2021]) that counterbalances its appealing flexibility. Furthermore, it is as
flexible as computationally expensive: curses of dimensionality are its Achilles’ heel, and
it might prove impractical for larger scale problems. For this reason, in this thesis, exact
DP will only be used to solve toy models that will then be employed as benchmarks to
validate approximate implementations for larger and real scale instances.

2.1 The Dynamic Programming principle

In order to properly present and understand the DP approach, let us first consider a
general discrete-time model describing a stochastic dynamic decision problem with finite
horizon T , such that time flow is completely described by time instants t = 0,1, ..., T at
which we observe the system and time intervals t = (t − 1, t], during which the system
evolves. The fundamental components of the model are the states s of the system collected
in a state space S, and the sets As of admissible actions given a state, that, combined,
define the whole action space A. The transition from a state st of the system to the next
one is defined by a state transition equation

st+1 = gt+1(st, at, wt+1), (2.1)

9

Deterministic and stochastic toy models resolution through Dynamic Programming

and depends on the state st itself, on the chosen action at ∈ Ast , and on the realization of
external risk factors wt+1 that may occur after the decision is made, during the subsequent
time interval from instant t to instant t + 1. The dependence on just the previous state
of the system rather than on the whole path is a common assumption better known as
Markovian property.
The described stochastic problem could be stated as

opt E
C

T −1Ø
t=0

γtCt(st, at, wt+1) + γT FT (sT)
D
, (2.2)

where Ct(st, at, wt+1) is an immediate cost/reward function depending on the action cho-
sen from state st and on the realization of risk factors, FT (·) is a terminal cost/reward
function that assigns values to terminal states at time horizon T , and γ ∈ (0,1] is a dis-
count factor.
The main idea of DP is to recursively solve a multi-stage dynamic decision problem as
the one presented by decomposing it into smaller sub-problems. The key procedure is
to evaluate states based on their appeal through the use of value functions Vt : S → R,
that measure the quality of being in a certain state at time instant t. As for actions,
their quality is somehow evaluated through cost/reward functions Ct(·), as in the general
formulation. More generally, cost/reward functions are referred to as immediate contri-
butions and may be stochastic.
Let us now finally describe how the recursive resolution of the sub-problems is performed
through a backward pass. In finite-horizon problems, a value is assigned to all possible
terminal states based on their quality; then, for each previous state that would bring the
system to a terminal one, the assigned value is the result of an optimization problem over
the admissible actions. The objective of the sub-problem is the expectation of the sum
of the immediate contribution and the discounted future state value, conditional to the
current state and the chosen action. The process is then repeated until the initial state is
reached.
In brief, what just described is the recursive application of the Bellman’s Equation:

VT (sT) = FT (sT)

Vt(st) = opt
at∈Ast

E
#
C(st, at, wt+1) + γVt+1(gt+1(st, at, wt+1))|st, at

$
, t = T − 1, ...,0.

(2.3)
In conclusion, the final optimal solution given by the application of the Dynamic Pro-
gramming principle is defined by one last pass, forward in time. Starting from a given
initial state, for each time instant t at which a decision must be made, the final forward
pass selects the optimal action as the argument satisfying (2.3).

2.2 Dynamic Programming application to toy models
Recalling the problem setting and notation introduced in the previous chapter, Section
1.1.1, what we are left to define to apply DP to the robot scheduling problem are terminal

10

Deterministic and stochastic toy models resolution through Dynamic Programming

value function, immediate contribution and state transition equation. The first has been
chosen as

F (s) = (T − s1)−
Ø

o

! Ø
m

(qm|om = o)−
Ø

k

so
k+1

"
+

Ø
o

so
1, (2.4)

where the term T −s1 linearly rewards the early completion of the mission with respect to
the fixed time horizon T , the first summation over o is a penalization of one unit for every
object that was supposed to be placed but has not (there is no penalty if the mission is
completed before time horizon is reached), while the last summation is a prize of one unit
for every picked object.
As for immediate contribution, the reward engineering behind its definition differs between
deterministic and stochastic instance. Hence, while details are left to the next sections,
let us just introduce the deterministic rewards for each type of action: rpick = 10, rplace =
rthrow = 12, rmove = 0.
Before defining the state transition equations ruling the dynamics of the system for the
deterministic and stochastic instances, it is necessary to briefly dwell on time notation. In
the first chapter, Section 1.1.1, time has been defined as the prime entry of the state of the
system itself and denoted by t ∈ T = {0,1, ..., T} where T is the fixed time horizon. On
the other hand, the time duration of each action type has been defined as a time interval,
whose span varies depending on the action. For this reason, the notation presented in
Section 2.1 for a general dynamic decision problem must be slightly modified in order
to use DP on our specific scheduling problem. Let the time flow be described by time
instants t ∈ T = {0,1, ..., T} and by uneven intervals ∆t ∈ ∆ = {∆tp, ∆tpt, ∆te, e ∈ E},
so that given a state of the system st at time t one can denote a succeeding state as
st+∆t, ∆t ∈ ∆.
A consequence of this adjustment can be noted in (2.4): time indexing is missing from
state notation s, as well as from terminal value function F (·), because a terminal state is
such not only when the system has reached the time horizon, but also when the mission
has been completed in advance. Since for the latter case an indexing by T would not be
accurate, we opted for its dismissal.
We are now ready to define the state transition equation for the deterministic case, as
we will later see in Section 2.2.2 that the stochastic case requires a few adjustments.
Bearing in mind the time notation recently introduced, the state transition equation for
a deterministic instance of our intralogistic robot scheduling problem can be generally
written as

st+∆t = gt+∆t(st, at), ∆t ∈ ∆, (2.5)

since there are no exogenous risk factors.
More specifically, the new state of the system st+∆t at time t + ∆t will depend on the
specific action at chosen at time t:

• if at = n ∈ Ast,move, i.e., the action chosen is to move from s2
t to n along e = (s2

t , n) ∈
E , then

si
t+∆t = si

t+∆te
=

I
s1

t + ∆te, for i = 1
n, for i = 2;

(2.6)

11

Deterministic and stochastic toy models resolution through Dynamic Programming

• if at = o ∈ Ast,pick, i.e., the chosen action is to pick object o ∈ O, then

s1
t+∆t = s1

t+∆tp
= s1

t + ∆tp, (2.7)

so,i
t+∆t = so,i

t+∆tp
=

I
so,i

t , ∀i /= 1
so,i

t + 1, for i = 1;
(2.8)

• if at = (o, k) ∈ Ast,place, i.e., the chosen action is to place object o ∈ O in tray k ∈ K,
then

s1
t+∆t = s1

t+∆tpt
= s1

t + ∆tpt, (2.9)

so,i
t+∆t = so,i

t+∆tpt
=

I
so,i

t , ∀i /= k + 1
so,i

t + 1, for i = k + 1.
(2.10)

Note that all state entries whose transition has not been made explicit in Equations (2.6)-
(2.10) do not vary when the respective action is performed.
Needless to say, if an action is not admissible, a state transition cannot take place. In
general, an action is not admissible whenever the fixed time horizon would be exceeded
if the action was executed, or whenever the robot is not in a suitable location to perform
it; for example, object o ∈ O cannot be placed in tray k if the robot is not in vertex
nk ∈ Nplace. Moreover, there exist one more constraint for picking actions: in fact, they
are not possible whenever the robot has reached its maximum capacity c.

Toy models definition

Finally, let us present the small scale problems chosen for the application of exact DP:

1. Mini instance:

• time horizon T = 120,
• O = 3 object types,
• K = 1 tray,
• |N | = 4 graph vertices,
• mission M = {(1, 1, 3), (1, 2, 2), (1, 3, 2)},
• Q =

Ø
m∈M

qm = 7 total number of objects;

2. Medium-small instance:

• time horizon T = 200,
• O = 5 object types,
• K = 2 trays,
• |N | = 7 graph vertices,
• mission M = {(1, 2, 1), (1, 2, 2), (2, 1, 2), (2, 3, 1), (2, 4, 3)},
• Q =

Ø
m∈M

qm = 9 total number of objects.

12

Deterministic and stochastic toy models resolution through Dynamic Programming

3. Medium instance:

• time horizon T = 230,
• O = 3 object types,
• K = 2 trays,
• |N | = 5 graph vertices,
• mission M = {(1, 1, 3), (1, 2, 1), (1, 3, 2), (2, 1, 2), (2, 2, 2), (2, 3, 1)},
• Q =

Ø
m∈M

qm = 11 total number of objects.

For all instances, immediate deterministic rewards are set to the values introduced previ-
ously in this section, while the maximum capacity c of the robot is fixed to 4 objects.

2.2.1 Deterministic instance
The DP principle is mostly used to solve stochastic dynamic decision problems, since their
deterministic counterparts are easily solvable with many other methods due to their static
nature. In fact, deterministic decision problems are at most multiperiod, meaning that the
decision making can entirely occur at time t = 0, even though actions may be performed
in the future. Since there is no external interference, once a rigid strategy is defined it
proves unnecessary to revise it over time. On the other hand, stochastic decision problems
are multistage problems, meaning that decisions must be made dynamically and adapted
after having observed the realization of external factors. In multistage problems it is not
possible to define at time t = 0 an optimal strategy that will work for every sample path
without being revised over time (Brandimarte [2021]).
For these reasons, it comes natural to seek the help of DP to solve multistage dynamic
decision problems, rather than multiperiod ones. However, given our problem structure
it is possible to treat its deterministic version as a multistage problem and employ DP
for its resolution. In this manner we will establish a foundation, allowing us to gradually
progress towards the resolution of the stochastic instance.
First of all, notice that the absence of external risk factors is explicitly captured in the
state transition equation for a deterministic instance defined in (2.5), where the realization
w is missing with respect to the more general definition of state transition presented in
(2.1). Similarly, also immediate contributions are not affected by any exogenous factors,
thus they are simply identified by the result of the multiplication of the previously defined
deterministic rewards by a factor that decreases with time:

Ct(st, at) =


rpick · (2T −s1

t)
T , if at is a pick action

rplace · (2T −s1
t)

T , if at is a place action
rmove = 0, if at is a move action.

(2.11)

The dependence on the time elapsed from the beginning of the mission, s1
t = t, is used

to emphasize the importance of performing picking and placing actions at the earliest
convenient opportunity.

13

Deterministic and stochastic toy models resolution through Dynamic Programming

The objective of the deterministic problem at hand can be generally stated as:

max
π∈Γ

Ø
t∈I

γtCt(st, πt(st)) + γIF (sI), (2.12)

where Γ is the set of admissible policies, and I ⊆ T is an ordered set of increasing time
instants1, I being the last. A policy is a sequence of functions π = (πt)t∈I⊆T , such that
each πt : S → A maps a state of the system st ∈ S at time t to an admissible action
at ∈ Ast .
However, the paradigm of DP allows to solve (2.12) recursively, by applying the following
adapted Bellman’s equation:

VI(sI) = F (sI)

Vt(st) = max
at∈Ast

#
C(st, at) + γVt+∆t(gt+∆t(st, at))

$
, t ∈ I \ {I}.

(2.13)

Results

Having defined the objective and all the components needed for the implementation of a
DP method for the resolution of deterministic instances, we can finally present the results
of the three chosen toy models. Refer to Appendix A.1.1 for further details on the outputs.

Problem Size State Space Cardinality Mean Execution Time2

MINI(1) 159 360 2.577 s
MEDIUM-SMALL(2) 3 136 000 71.11 s
MEDIUM(3) 7 937 300 106.91s

Table 2.1: Mean execution time over 10 runs of DP principle applied to deterministic
instances of different sizes.

As expected, the results shown in Table 2.1 confirm that execution time increases with
the increase of state space cardinality, but to what extent?
Let us consider the following larger scale model:

4. Large instance:

• time horizon T = 300,
• O = 5 object types,
• K = 3 trays,
• |N | = 8 graph vertices,

1Of course 0 ∈ I, then the following time instant would be t1 = 0 + ∆t, ∆t ∈ ∆, and so on.
2Python Implementation on PyCharm Professional, Version 2022.3.2, on a machine equipped with

RAM 16GB, intelCore i7, intel iRISxe.

14

Deterministic and stochastic toy models resolution through Dynamic Programming

• missionM = {(1,1,1), (1, 2, 2), (1, 5, 1), (2, 2, 2), (2, 3, 1), (2, 4, 3), (3,1,1), (3,2,1),
(3,5,1)},

• Q =
Ø

m∈M
qm = 13 total number of objects;

• maximum robot capacity c = 4;

Apparently it is only slightly larger than Instances 2. and 3., but its state space counts
176 150 400 elements and its resolution time exceeds 4 hours.
The above observations lead to the conclusion that, although DP can be used to solve
deterministic multiperiod problems, it shall not be chosen over other faster, yet equivalent,
optimization methods, like Linear Programming (Hillier and Lieberman [2021]), when
trying to directly solve larger scale instances. On the other hand, a widely spread technique
is to use it for breaking down a large problem into a sequence of smaller ones (Powell
[2011]).

2.2.2 Stochastic instance
While for deterministic instances there are many equivalent methods that would output
an optimal solution faster, for stochastic dynamic decision problems the span of choices
is much tighter. Since the DP paradigm revealed successful for our problem in its deter-
ministic version, it represents a promising resolution method for its stochastic counterpart
as well. Moreover, it is essential to investigate the behaviour of exact DP before seeking
for more time-efficient approximate approaches, in order to be able to make comparisons
using the solutions given by the exact method as benchmarks.
With respect to the deterministic instance there are obviously more challenges, mainly
regarding the dependence of state transition equation and immediate contributions on
external risk factors. Indeed, for a better understanding of the role of such risk factors
in the problem at hand, we analyse stochasticity and how it affects the definition of state
transition and immediate contributions separately for throwing and moving actions. For
what concerns picking actions, they are assumed to always succeed, therefore the state
transition equation and the immediate contribution to them associated are fixed as in the
deterministic instance (see (2.7), (2.8), (2.11)).

Stochasticity in throwing actions

As previously mentioned, for the stochastic version of our problem all placing actions are
substituted by throwing actions, which, unlike the others, may fail. The probability of
success of a throwing action from throwing vertex n ∈ Nplace to tray k is given by:

pthrow =

0, if ||(xn, yn), (xk, yk)||2 ≥ 80
1
72

!
80− ||(xn, yn), (xk, yk)||2

"
, otherwise;

(2.14)

hence, it is inversely proportional to the distance between the throwing location and the
destination, and completely independent of the object thrown.

15

Deterministic and stochastic toy models resolution through Dynamic Programming

The possible outcomes arising from a throwing action are thus binary: success, denoted
by wt+∆tpt = 1, is expected with probability pthrow as defined in (2.14), while failure,
wt+∆tpt = 0, may occur with probability 1− pthrow.
The introduction of the exogenous risk of throwing failures leads to an adjustment in the
state transition equation when the chosen action at is a throw:

st+∆tpt = gt+∆tpt(st, at, wt+∆tpt). (2.15)

Specifically the success of throwing action at = (o, k) ∈ Ast,throw
3 leads to a next state

as defined in (2.9) and (2.10), while the state transition in case of failure is ruled by the
following:

s1
t+∆tpt

= s1
t + ∆tpt, (2.16)

so,i
t+∆tpt

=
I

so,i
t , ∀i /= 1

so,i
t − 1, for i = 1,

(2.17)

which means that the object of type o that the robot tried to throw is lost, e.g., it fell,
hence it is subtracted from the count of objects of that type picked so far. As for the time
elapsed for the action performance, it is consistent regardless of whether the outcome is
successful.
Similarly, the immediate contribution for a throwing action is also affected by its stochastic
outcome:

Ct(st, at, wt+∆tpt) =

12 (2T −s1
t)

T , if wt+∆tpt = 1

0, otherwise.
(2.18)

Stochasticity in moving actions

The risk introduced in moving actions is intrinsic in the action itself. We recall from
Chapter 1, Section 1.1.1 that the graph G = (N , E) is completely connected and each
edge e ∈ E is associated to two parameters: ∆te and re, the travelling time and risk. Both
are set as the results of a previously solved routing optimization and are assumed fixed
throughout the resolution of the scheduling problem.
The parameter re actually indicates a risk percentage, hence the probability of having a
failure wt+∆te = 0, i.e., a collision, when travelling through edge e ∈ E is

pmove = re

100 . (2.19)

Instead, a smooth crossing of edge e happens with probability 1 − pmove, and is denoted
by wt+∆te = 1.

3Recall that throwing actions can be performed from any throwing vertex n ∈ Nplace to any tray
k ∈ K, while placing actions (that are deterministic, hence must always succeed by definition) can only
be performed from a specific vertex nk ∈ Nplace, that is supposedly the closest to tray k. For this
reason it holds Ast,place ⊆ Ast,throw.

16

Deterministic and stochastic toy models resolution through Dynamic Programming

Exactly as highlighted in the previous subsection about the stochasticity of throwing
actions, the introduction of an additional form of exogenous risk factor demands an ad-
ditional definition of the state transition equation. Indeed, for a moving action at = n ∈
Ast,move, that intends for the robot to transition through edge e = (s2

t , n) ∈ E , we have

st+∆te = gt+∆te(st, at, wt+∆te), (2.20)

that, for wt+∆te = 0, leads to:

si
t+∆te

= si
t+∆te+5 =

I
s1

t + ∆te + 5, for i = 1
n, for i = 2,

(2.21)

where the 5 time units added to the first entry of the state represent a penalty that can
be thought as a delay due to the collision caused by the failure.
On the contrary, for wt+∆te = 1, the state transition follows the same rule applied to the
deterministic case (2.6).
Moreover, the distinct realizations of external factors also affect the definition of the
immediate contribution for moving actions, according to:

Ct(st, at, wt+∆te) =

0, if wt+∆te = 1

−2, otherwise.
(2.22)

In conclusion, the overall general objective of the stochastic problem is the following:

max
π∈Γ

E
C Ø

t∈I
γtCt(st, at, wt+∆t) + γIF (sI)

D
, (2.23)

where Γ and I are respectively the policy and time indexing sets as defined for the
deterministic objective (2.12). In this case, the Bellman’s equation needed for the problem
resolution through DP includes, as in its general definition, an expected value:

VI(sI) = F (sI)

Vt(st) = max
at∈Ast

E
#
C(st, at, wt+∆t) + γVt+∆t(gt+∆t(st, at, wt+∆t))|st, at

$
, t ∈ I \ {I}.

(2.24)

Results

As for the deterministic instance, we now present the results output by the application
of the DP paradigm to the three toy versions of the above-described problem, stochastic
in both moving and throwing actions. Refer to Appendix A.1.2 for further details on the
outputs.
The results in Table 2.2 further validate the thesis of the curse of dimensionality of state
space from which the DP paradigm suffers. However, if for a deterministic problem the

17

Deterministic and stochastic toy models resolution through Dynamic Programming

use of DP is not necessary, since there exist many other approaches to solve it exploiting
its actual static nature, for a stochastic problem it is instead worth investigating deeper.
The strong belief that DP is a valid and promising technique for the resolution of our spe-
cific problem, leads us indeed to the next chapter, where we present various approximate
methods and analyse their outputs with validations and comparisons.

Problem Size State Space Cardinality Mean Execution Time4

MINI(1) 159 360 3.18s

MEDIUM-SMALL(2) 3 136 000 204.3s

MEDIUM(3) 7 937 300 255.2s

LARGE(4) 176 150 400 4h22m

Table 2.2: Mean execution time over 10 runs5 of DP principle applied to stochastic
instances of different sizes.

4Python Implementation on PyCharm Professional, Version 2022.3.2, on a machine equipped with
RAM 16GB, intelCore i7, intel iRISxe.

5Except for large instance, whose execution time is given by just one run, due to resources
constraints.

18

Chapter 3

Approximate Dynamic
Programming for large scale
stochastic instances

As we earlier mentioned in Section 2.1 and further proved with the results presented
in Sections 2.2.1 and 2.2.2, DP suffers from a demanding computational expense when
it comes to larger scale problems. For this reason, it reveals necessary to allow sub-
optimal solutions in exchange for faster outputs, and to this aim we resort to Approximate
Dynamic Programming (ADP). ADP is a collection of strategies for solving problems that
suffer from the three curses of dimensionality: exponential growth of 1) state, 2) outcome
and 3) action spaces, given an increase in the variables dimension (Powell [2011]).
Luckily, our specific problem does not suffer from the curse on the outcome space since
outcomes are simply binary. As for the action space, its cardinality is |A| = |N | + O +
O × K, where the number of vertices |N | in graph G defines the number of all possible
moving actions, the amount of object types O represents the picking actions, and the last
multiplicative term reflects the number of throwing actions. As a result, the action space
cardinality does grow in all variables that define it, yet just linearly in all of them, and
this cannot be referred to as a curse. In fact, the real curse is cast on the state space. A
mission defines the total number of objects to collect before time horizon T , ergo, a larger
mission extends the range of potential values for the state entries: suppose that for each
object type there were q items to pick, then the state space cardinality would increase
to more than T · (qO). Other than the exponential growth produced by the state entries
accounting for the number of objects picked (and placed), that causes the curse to happen
in the first place, an extended time horizon, being time an entry of the state, significantly
affects the state space cardinality as well.
It is now clear what motivates us to discard exact DP and seek for approximate techniques.
The term ADP refers to a vast variety of approaches, but in this chapter we focus on
two specific ones: Value Function Approximation (VFA), and Lookahed Policies (LAPs).
The former aims at finding approximations of value functions, as the name suggests,
while the latter are used to optimize a problem over a restricted horizon in order to

19

Approximate Dynamic Programming for large scale stochastic instances

capture the impact of current decisions on the future. What unites these approaches and
generally characterizes ADP as a whole is an algorithmic strategy that steps forward in
time. While the fundamental backward pass of exact DP permits a thorough exploration
that simply assigns to each state or state-action pair a precise value, a learning procedure
through a forward pass requires the definition of sampling and decision-making rules for
its exploration phase. Furthermore, a single forward pass alone would not lead to any
learning, in fact, the process must be repeated iteratively. Despite the impossibility of
visiting the entire state space, a sufficient number of iterations and an adequate rule for
updating the approximations enable an effective learning process.
Before digging into specific methods of VFA and LAPs and analyzing their performance
on various instances of our problem, let us introduce some notation and a few key aspects
of a general procedure with the help of an example (borrowed from Powell [2011]) using
the one-step transition matrix Q(s), whose rows collect all the possible subsequent states
given state s, based on the action chosen. Let V̄t(st) be the approximation of the value
function at time t that must be estimated, and assume to have clever initial approximations
(otherwise simply set V̄ 0

t = 0 ∀ t). At iteration j and time t there are three fundamental
steps to execute:

1. Decision making:

aj
t = arg max

a∈Aj
st

Ct(sj
t , a) + γ

Ø
s′∈S

P(s′|sj
t , a)V̄ j−1

t+∆t(s
′), (3.1)

which is carried out exploiting the information collected until previous iteration j−1
and provides just a partial overview of the whole system.
Be also aware that it is usually bold to assume to be able to compute all one-step
succeeding states, and even bolder to assume to know the conditional probability
of their occurrence. However, for our problem, it is not prohibitive to exploit the
one-step transition matrix since, as noticed, the action and outcome spaces do not
explode and all the exogenous factors distributions are known.

2. Value function approximations update:

V̄ j
t (st) = U

!
st, aj

t , V̄ j−1
t (st)

"
=


max
a∈Ast

Ct(st, a) + γ
Ø
s′∈S

P(s′|st, a)V̄ j−1
t+∆t(s

′) if st = sj
t

V̄ j−1
t (st) otherwise,

(3.2)
which only occurs for current state sj

t for this naive example, although it would be
more useful to have a clever way to also estimate the value of being in states that
have not been visited.

3. Simulation:
sj

t+∆t = gt+∆t(sj
t , aj

t , wj
t+∆t), (3.3)

which outputs the next state given the just chosen optimal action and the realization
of external factors. Note that for our problem, sampling is straightforward since the
distributions of both throwing and moving failures are known. In other cases, one
could resort to computer or Monte Carlo simulations, or to real world processes.

20

Approximate Dynamic Programming for large scale stochastic instances

The efficacy of all three steps of this example is affected by a few drawbacks, some of which
can be mitigated with a smart understanding of the problem structure, of its definition
and assumptions, as it somehow happens for the use of the transition matrix in Step
1 and for the sampling of Step 3. On the other hand, Step 2, for example, can only
be improved by tailoring a more effective updating rule and eventually redefining the
approximating functions’ structure. This would certainly lead to a more general learning
of the system, that would reveal even more effective if paired with a decision-making rule
based on exploration too, rather than solely on exploitation.
Now that the fundamental requirements for the implementation of an efficient approximate
algorithm have been clarified, it is time to introduce three specific methods. The plan is
to test their performances and compare them to the exact solution, when feasible, and
to each other, especially when it comes to larger scale problems. We will first present
the methods separately based on the general approach they follow, and then present the
results altogether at the end of the chapter.
It was implicit so far, but from now on we will solely focus on the stochastic instance of
the problem, it being the most realistic.

3.1 Approximate Policy Iteration
Approximate Policy Iteration (API) falls under the category of VFA techniques, despite
its name may suggest otherwise. In fact, its ultimate goal is to find an optimal or sub-
optimal policy π, which is actually directly determined by value function approximations,
such that:

πt(st) = arg max
a

Ø
w∈Wa

P(w)
è
Ct(st, at, w) + γV̄t+∆t(gt+∆t(st, at, w))

é
, (3.4)

whereWa is the outcome space given action a, that, for our problem is eitherWa = {0,1}
for throwing and moving actions, or Wa = {1} for picking actions.
To accomplish the goal, API iteratively undergoes two phases: policy evaluation and pol-
icy improvement. The former is performed with a (many) forward in time simulation(s) at
the end of which a backward pass on the visited states allows for the learning of the value
functions defining the current policy. The latter consists in updating the policy based on
the information gained during the evaluation phase.
Prior to delving into the details of the API algorithm, it is necessary to define the approx-
imation technique for the value functions, and consequently identify a suitable updating
rule. For the resolution of our specific problem, we have chosen to approximate the value
functions with the following parametric model using Basis Functions (BFs):

V̄t(st) =
Ø
f∈F

θf ϕf (st), (3.5)

where F is the set of features identifying the BFs ϕf (·), and θf , f ∈ F are the associated
parameters. Note that in (3.5) there is no explicit dependence on time for either the
parameters or the BFs, even though the latter depend on the state of the system, which
does depend on time. In a more general framework time-dependence should be explicitly

21

Approximate Dynamic Programming for large scale stochastic instances

considered for both the parameters and the BFs, but we will later discover that for our
problem this is not necessary.
The approximations are thus linear and we can use Recursive Least Square (RLS) to
update the parameters. Specifically for the implementation of our API algorithm, we
refer to the RLS algorithm proposed in Powell [2019]. Let V̄ j

t (st) = V̄t(st|θj) = ϕ(st)Tθj

be the approximation in vector form of the value function at time t and iteration j, and
let v̂j denote a real observation of the value of state st at iteration j. The update of the
parameters is defined by:

θj = θj−1 −Hjϕ(st)êj , (3.6)

where
êj = V̄t(st|θj−1)− v̂j (3.7)

and
Hj = 1

λj
Bj−1, (3.8)

with
Bj = Bj−1 − 1

λj

1
Bj−1 − ϕ(st)(ϕ(st))TBj−1

2
(3.9)

and
λj = 1 + (ϕ(st))TBj−1ϕ(st). (3.10)

Having defined the updating rule for the parameters associated to the BFs, what is left
to present is the choice of the BFs themselves.

3.1.1 Features and reward engineering
The selection of the BFs is a very critical step when dealing with approximations through
parametric models as the one defined above, since they must reflect intrinsic features
(from which their alternative name) of the system, and poor choices may lead to poor
approximations. For this reason we dedicated a generous amount of time to the analysis of
the exact values output by the DP algorithm. We observed their dependence on the state
entries and tried to capture significant behaviours, in order to replicate such behaviours
within the BFs. To this aim we created a new instance of the problem, with the unique
scope of using it to study the above-mentioned aspects, that is:

5. API Test instance:

• time horizon T = 300,
• O = 2 object types,
• K = 2 trays,
• |N | = 4 graph vertices,
• mission M = {(1,1,4), (1, 2, 4), (2, 1, 4), (2, 2, 4)},
• Q =

Ø
m∈M

qm = 16 total number of objects,

• maximum robot capacity c = 4.

22

Approximate Dynamic Programming for large scale stochastic instances

Its peculiarity is being characterized by a mission with fewer object types but more items
to collect with respect to the instances presented in Chapter 2, Section 2.2.1, and this
permits, in some cases, to capture more information.
We also defined and used the following new terminal value function:

F (s) = 5(T − s1)− rthrow
Ø

o

! Ø
m

(qm|om = o)−
Ø

k

so
k+1

"
+ rpick

Ø
o

so
1, (3.11)

for reasons that will later become clear.
The analyses consist of various plots displaying the behaviour of the exact values asso-
ciated to each state, obtained through the DP paradigm application to the stochastic
version of API Test instance(5), when a state entry is let free while all others are fixed, in
order to create 2-dimensional visualizations for a better understanding.
The heaviest dependence of exact values is the one on the first entry of the state of the
system, i.e., the dependence on time, clearly visible from Figure 3.1, that shows the mono-
tone decrease of the exact values when the time elapsed from the beginning of the mission
increases.

Figure 3.1: Value functions dependence on time. Each one of the ten plots represents the
variation of the value associated to a randomly chosen state when varying its time entry.

A less obvious behaviour is captured in Figure 3.2, and is influenced by the position of
the robot on the graph. Out of the ten plots, three display slightly higher values when the
robot is in a placing/throwing vertex, while six show higher values associated to picking
locations. Despite such variations could be considered almost negligible, they provided us
with a valuable clue. The thesis is that higher values are assigned to a state associated to
a placing location only if the robot is carrying a considerate number of items that have
yet to be placed; on the contrary, picking vertices are more promising when the robot is
far from reaching its carrying capacity. Convinced of this intuition, we plotted six graphs
showing the values dependence on the positional entry of states for which the robot has
reached maximum capacity, and six graphs for when it is empty-handed: Figures 3.3a and
3.3b confirm the thesis.

23

Approximate Dynamic Programming for large scale stochastic instances

Figure 3.2: Value functions dependence on position. Each one of the ten plots represents
the variation of the value associated to a randomly chosen state when varying its positional
entry.

(a) Value functions dependence on position,
when the robot has reached maximum ca-
pacity.

(b) Value functions dependence on position,
when the robot is carrying no items.

Figure 3.3: Each one of the twelve plots represents the variation of the value associated
to a randomly chosen state between the ones identifying situations where the robot has
reached maximum capacity (a) or where the robot is empty-handed (b), when varying its
positional entry.

As for the other entries of the state of the system there is no intuitive influence on the exact
values associated to the states. However, one last interesting fact regards the dependence
of the values on the total number of objects picked and on the total number of objects
placed when changing the terminal value function. To analyse this kind of dependence
a new plot is created: 50 random states with fixed time and position are generated and
sorted in increasing order based on the total number of objects picked and/or placed; then,
the behaviour of the values with respect to the state sorting rule is observed. Results are

24

Approximate Dynamic Programming for large scale stochastic instances

shown in Figures 3.4a and 3.4b, for the total number of picked objects only, since for the
total number of placed objects the values present a similar behaviour.

(a) Value functions dependence on total number of objects picked, when using the old
definition of terminal value function.

(b) Value functions dependence on total number of objects picked, when using the new
definition of terminal value function.

Figure 3.4: Each one of the twenty plots represents the variation of the values associated
to randomly chosen states with fixed time and position when sorted in increasing order
of total number of objects picked. Figure (a) shows the behaviour caused by the use of
terminal value function (2.4), while Figure (b) the one caused by (3.11).

If the terminal value function defined in (2.4) is used we notice a slight monotonic decrease
of the exact values when a moderate amount of time is elapsed, which is cancelled, if not
inverted, when approaching the time horizon. On the other hand, terminal value function
(3.11) guarantees a monotone increasing behaviour in all situations. Since this general
analysis reflects the more specific dependence of the values on the state entries that refer

25

Approximate Dynamic Programming for large scale stochastic instances

to the number of items picked and placed, separately for object type and tray, the second
terminal function is preferred for an API algorithm through basis function because it leads
to more linear and monotone behaviours overall.
Based on the results of the conducted analyses we identified the following BFs:

• ϕ1(s) =
I

1 if 0 ≤ s1 ≤ T
3

0 otherwise;

• ϕ2(s) =
I

1 if T
3 ≤ s1 ≤ 2T

3
0 otherwise;

• ϕ3(s) =
I

1 if 2T
3 ≤ s1 ≤ T

0 otherwise;

• ϕ4(s) = s1;

• ϕ4+i(s) = s2+i, for i = 1, .., Ω− 2;

• ϕ2+Ω+n(s) =
I

1 if s2 = n ∈ N
0 otherwise,

for n = 1, ..., |N |;

• ϕ2+Ω+|N |+nt
(s) = 1 if s2 = nt ∈ Nplace = {1, ..., |Nplace|} and the robot is at maxi-

mum carrying capacity or it has already collected all items requested by the mission,
while some still need to be placed; it is null otherwise;

• ϕ2+Ω+|N |+|Nplace|+o(s) = 1 if s2 = no ∈ Npick, the robot has not reached maximum
capacity, and items of object type o ∈ O = {1, ..., O} still need to be picked; it is
null otherwise.

The first three BFs, ϕ1, ϕ2, ϕ3, define the time-varying intercept of the model, in fact they
are indicator functions associated to three discretized intervals of the time horizon; ϕ4 and
ϕ4+i simply return the entries of the state except for the positional entry that is one-hot
encoded by the functions ϕ2+Ω+n, because the positional entry is actually defined with a
string. However, we can also sort vertices and identify them by their index, mirroring the
notation used in the BFs definition. The last two types of BFs are the direct consequence
of our analysis on the effects caused by the position of the robot on the value functions
behaviour. They both are a collection of indicator functions whose value depends on the
robot being in a picking or placing vertex and on the collected number of items related
to its maximum capacity.
Moreover, as a consequence of a further analysis on the performances of the API al-
gorithm with the VFA through the above-introduced BFs, the deterministic immediate
rewards have been changed to rpick = 20, rthrow = 25, rmove = 0, affecting the definition
(3.11) of the new terminal value function and of the immediate contributions (2.11), (2.18)
chosen for implementation.

26

Approximate Dynamic Programming for large scale stochastic instances

Algorithm 1 API with BFs
1: Initialization. Set initial state S, initial parameters θ0

f = 0, ∀f
2: Iteration counter. j ← 1
3: while j ≤ 2000 do
4: Simulation counter. m← 1
5: while m ≤ 10 do
6: Time index. t← 0
7: Initial state reset. sj

t ← S

8: while sj
t is not terminal do ▷ Forward Simulation

9: aj
t ←

random.choice(Aj
st

), if random() ≤ E
(3.1), otherwise

10: Exogenous factor realization. Simulate outcome wj
t+∆t

11: sj
t+∆t ← gt+∆t(sj

t , aj
t , wj

t+∆t)
12: t← t + ∆t

13: end while
14: v̂j

t ← F (sj
t)

15: t← t−∆t

16: while t ≥ 0 do ▷ Backward pass
17: v̂j

t ← Ct(sj
t , aj

t) + γv̂j
t+∆t

18: Parameters update. Update θj
f with RLS ((3.6) - (3.10))

19: t← t−∆t

20: end while
21: m← m + 1
22: end while
23: E ← 0.995× E
24: j ← j + 1
25: end while

27

Approximate Dynamic Programming for large scale stochastic instances

3.1.2 Exploration in decision making
The use of the BFs approach for approximating the value functions in our API algorithm
satisfies the need of having function approximations that could output updated and rea-
sonable values for all states, even for the ones that are not visited during the simulations.
This requirement was introduced in the beginning of the chapter when listing the funda-
mental steps of a general ADP paradigm (Step 2) but it was not the only drawback of
the proposed example. In fact, a closer look on Step 1 steers the attention to the problem
of making decisions solely exploiting the information collected in the previous iterations.
This technique for choosing the best action to perform may guide the algorithm to an
impasse, where the most promising states are simply the ones that are visited more fre-
quently: there might be better states, whose potential is not known because they have
never been visited, that will keep being discarded.
It becomes essential to define an alternative decision-making rule that accounts for the
exploration of states beyond the ones that just seem more promising. To this aim we
define an exploration parameter E ∈ (0,1) that defines the probability under which the
decision is randomly made between all the available actions. On the other hand, with
probability 1−E , the best action is chosen based on past experience, hence following the
naive exploitation-based decision making defined by Equation (3.1).
In conclusion, we opt for an E-annealing exploration rule, that causes the gradual decrease
of the parameter as the algorithm gains more information about the problem at hand;
specifically, E is scaled by a multiplicative factor less than 1, that we set to 0.995.

3.1.3 The algorithm
Finally, we can present the algorithmic structure of the Approximate Policy Iteration
method with Basis Functions, whose results are presented at the end of the chapter, in
Sections 3.3 and 3.4.
Pseudo-Algorithm 1 collects the fundamental passages of our API approach. Note that
the forward simulation process is repeated 10 times (line 5), and each time is accompanied
by a backward pass (line 16-20) during which, at each iteration, a parameters update is
performed (line 18). However, the decision-making rule used in line 8 keeps depending on
the old parameters θj−1

f , that indeed define V̄ j−1
t+∆t(s′) = ϕ(s′)Tθj−1 in Equation (3.1). The

updated BFs parameters θj
f are then used in the next iteration j +1, after the exploration

parameter E has been revised as well (line 23).
Of course, once the learning procedure has terminated, the obtained approximations are
used to finally make the actual decisions for the problem.

3.2 Lookahead Policies
As mentioned when introduced, Lookahead Policies manage to capture the impact that
making a certain decision at a certain moment has on the future. There are various
approaches to collect such information, but it is common to simulate a path with a pre-
determined and limited number of time steps in the future. Then, exploiting the informa-
tion captured on the future effects of many possible decisions, LAPs help to choose which

28

Approximate Dynamic Programming for large scale stochastic instances

decision is actually the best at that certain moment.
They are simple and are usually used when other more complex approximation methods
seem to not be working. With LAPs, it is not necessary to define any approximating
structure for value or policy functions, but it is sufficient to produce a decision rule by
roughly peeking in the future.
We decided to also investigate this kind of approach because, as we will later see, de-
spite the run-times of the API algorithm are noticeably faster than the ones of the DP
paradigm, still their speed is not exceptional. In general, LAPs should be computationally
hard since they are technically brute-force methods (Powell [2019]), but the two we opted
to implement are as naive as fast, nevertheless quite accurate. Furthermore, we were
guided by the intuition that they would prove suitable for our problem, given its limited
action space, and even more restricted outcome space, where there are at most two ele-
ments per action type, one of which presents a much higher probability of happening: it
seems like a prefect context for simulations to provide valid estimate of what could really
happen.
Based on this intuition we decided to apply to our dynamic scheduling problem two Looka-
head Policies: a Myopic Rollout (MR), an improved version of the most naive existing
approach, and a Monte Carlo Tree search (MCTS), a slightly more complex and clever
method, which employs MR itself in its implementation.

3.2.1 Myopic Rollout
The adjective Myopic describes the activity of making a decision just by looking roughly
into the future, without a crystal ball. Note that we introduced MR as an improved version
of a more naive algorithm: we were referring to a Myopic Policy that only relies on the
values of immediate contributions to define its decision-making rule. The improvement is
reflected in the noun Rollout, which stands for the recursive procedure of rolling to the
next state after making the myopic decision and then repeating the process for a fixed
number of steps. During this phase an estimate of the value of being in the state from
where the rollout has started is produced, based on a probable future path. If, given
a state s, the MR procedure is performed for all the states deterministically reachable
from s, a sub-optimal action can be chosen as the one that would lead the system to the
succeeding state with the highest value produced.
The approach is thus almost entirely portrayed by its own name, and this fact suggests
the simplicity of the algorithm, whose implementation only requires the definition of a few
parameters. It is essential to define how far in the future to "roll" and how to myopically
choose between a set of available actions. For the decision rule we simply opted for a
Myopic Policy as the one previously mentioned, that outputs an action solely based on
its deterministic immediate contribution, i.e.,:

a⋆
t = arg max

a∈Ast

Ct(st, a) = arg max
a∈Ast

·ra(2T − s1
t)

T
, (3.12)

where ra ∈ {rpick = 10, rthrow = 12, rmove = 0} depends on action a.

29

Approximate Dynamic Programming for large scale stochastic instances

Algorithm 2 Decision making through MR
1: procedure BestDecision(s)
2: BestValue ← 0
3: for a ∈ As do
4: s′ = gt+∆t(s, a)
5: V ′ =MyopicRollout(s′, 0)
6: if V ′ > BestValue then
7: BestValue ← V ′

8: BestAction ← a

9: end if
10: end for
11: return BestAction
12: end procedure
13:

14: procedure MyopicRollout(s, r)
15: a = (3.12)
16: Contribution = Ct(s, a)
17: if r ≤ R then
18: Exogenous factor realization. Simulate outcome w

19: s′ = gt+∆t(s, a, w)
20: RealContribution = Ct(s, a, w)
21: r ← r + 1
22: if s is not terminal then
23: V ′ =MyopicRollout(s, j)
24: V = RealContribution +γV ′

25: else V = F (s)
26: end if
27: else V = Contribution
28: end if
29: return V

30: end procedure

30

Approximate Dynamic Programming for large scale stochastic instances

The choice of the myopic decision rule directly affects the estimates of the values of the
states produced during the rollout. In fact, after every myopic decision, the estimates are
recursively defined as:

V̄ (st) = Ct(st, a⋆
t , wt+∆t) + γV̄ (gt+∆t(st, a⋆

t , wt+∆t)). (3.13)

As for the number of recursion steps to perform, denoted by R, its choice may vary
depending on the problem: in general R should increase with the problem size. However,
its choice is slightly more complicated. In fact, we noticed that an increase in the value of
parameter R does not negatively affect the performances of the algorithm on small scale
problems, but, if significant, it may worsen them for larger scale problems. Supposedly,
such behaviour is caused by the distorted effects of noisy estimates, because the further
in the future we myopically look, the less accurate are the values produced by the MR.
Accounting for the attentive considerations, we set R = 15 for all problem’s instances, but
what if the rollout reaches a terminal state while the number of recursive steps performed
so far is below R? Of course, once the rollout approaches the time horizon or reaches a
terminal state it cannot proceed, and a precise value must be assigned to the terminal
state reached. To this aim, we introduce another terminal value function:

F (s) = 0.5(T − s1)−
Ø

o

! Ø
m

(qm|om = o)−
Ø

k

so
k+1

"
+

Ø
o

so
1, (3.14)

whose alternative definition with respect to the terminal functions so far presented revealed
necessary. Indeed, for LAPs, it is common to simply assign a null value to all terminal
states of the system, at the expenses of evaluating their appeal. Partially respecting this
practice, Equation (4.2) defines a "soft" value function, that assigns moderate values to
the states while still capturing useful information for distinguishing them.
Finally, we conclude the subsection by summarizing the overall decision-making procedure
through MR in Pseudo-Algorithm 2.

3.2.2 Monte Carlo Tree search
MCTS is a search method based on a randomized exploration of the state space. Its
algorithm uses the results of previous explorations to gradually build up a tree in mem-
ory, hence it progressively becomes better at accurately estimating the values of the most
promising actions (Winands [2015]).
It performs admirably for problems affected by risk factors with a multitude of random
outcomes, as long as they present a conservative number of actions per state. As noticed
at the beginning of the chapter, our dynamic scheduling problem has indeed a limited
action space’s cardinality, therefore we supposed that a MCTS would reveal a good fit for
its resolution.
As the name implies, the search is performed by means of a gradually constructed decision
tree, but before introducing the overall procedure of building it, let us define its nodes.
There are two types of nodes in a decision tree: the decision nodes, at which decisions
are made, and the outcome nodes, at which new random information becomes available.
In a DP context like the one we are dealing with, the decision nodes identify the stan-
dard states of the system, while the outcome nodes represent the post-decision states. A

31

Approximate Dynamic Programming for large scale stochastic instances

post-decision state is the state that the system intends to reach when a specific action is
performed, as if there were no exogenous risk factors. For example, in our problem, the
choice of moving action a ∈ Amove when in state st|s1

t = t, s2
t = n, is made with the inten-

tion of reaching state st+∆te |s1
t+∆te

= t + ∆te, s2
t+∆te

= a, e = (n, a) ∈ E , which is indeed a
post-decision state, more precisely denoted by sa

t to emphasize the dependence on chosen
action a. After reaching a post-decision state, information on the realization of external
factors becomes available and determines the actual transition to another standard state,
that we refer to as pre-decision state. In the previous example, the next pre-decision state
may be equal to the post-decision one, if no collision takes place during navigation, or it
can result in st+∆te+5 /= sa

t when a failure occurs.
From now on, in our MTCS, the transition from a pre-decision state st (decision node)
to the next one st+∆t is thus divided into two steps: first, an action at is chosen and the
algorithm transitions to a post-decision state sa

t (outcome node) following the determin-
istic transition equations defined in (2.5)-(2.10) (with sa

t replacing st+∆t); then, after the
random realizations of the risk factors, it proceeds according to the transitions defined for
(2.15) and (2.20), for which we use the novel notation:

st+∆t = ga
t+∆t(st, at, wt+∆t). (3.15)

It is worth noting that the concept of post-decision state fits like a glove for the modelling
of board games. This, coupled with their typically moderate number of actions, explains
the frequent employment of MCTS in software developed to play (and win) them. In fact,
in board games, a post-decision state identifies the effects of the action of a player before
knowing the opponent’s move, which represents the only exogenous risk factor.
Unluckily, our real-life intralogistic robot scheduling problem is not a game, however,
MCTS still seems a reasonable choice for solving it. Regardless the application for which
it is employed, the algorithm always follows four main steps iteratively. In fact, after
having identified as the tree root the state at which the robot needs to choose the best
action to perform, the MCTS begins and repeatedly undergoes the phases of selection,
expansion, simulation and backpropagation.
In the following, a precise and problem-driven description for arbitrary iteration j.

1. Selection) It is the first phase of the MCTS and aims at selecting the most suitable
action to perform at a pre-decision state sj

t , in order to keep exploring the tree. If the
number of children for the decision node identified by sj

t is less than a fixed allowed
offspring limit, the action is chosen among the available ones. The decision is based
on a one-step simulation followed by a MR, as in:

aj,⋆
t = arg max

a∈Aj
st

Ct(sj
t , a) + MyopicRollout(gt+∆t(sj

t , a, wj
t+∆t)). (3.16)

On the other hand, if the offspring limit has already been reached in earlier iterations,
the action is chosen among the previously visited ones, collected in Āsj , according
to the Upper Confidence bounding for Trees (UCT) (Kocsis and Szepesvári [2006]):

aj,∗
t = arg max

a∈Āj
s

Q̂(sj
t , a) + ϵ

öõõô2 ln N(sj
t)

N(sa,j
t)

. (3.17)

32

Approximate Dynamic Programming for large scale stochastic instances

The exploration coefficient ϵ and the number of visits N(sj
t) and N(sa,j

t) of the
decision node identified by sj

t and of the outcome node identified by sa,j
t respectively,

define an exploration term voluntarily biased towards post-decision states that have
been visited less frequently. On the contrary, the term Q̂(sj

t , a) = Ct(sj
t , a)+V̂ a(sa,j

t),
where V̂ a(sa,j

t) indicates the approximate value assigned to post-decision state sj
t up

until iteration j, steers the choice towards actions so far considered more promising.

2. Expansion) Right after the action selection, it comes the expansion phase, whose
procedure differs depending on earlier explorations. In fact:

• if the selected action has never been tried before, the outcome node correspond-
ing to the post-decision state is created. Then, an outcome is uniformly sampled
among the available ones and the corresponding pre-decision state is created.
At this point, the search enters its next phase;

• if the selected action has already been tried, there are two further distinct
situations:

– all outcomes have been visited. In this case, an outcome simulation is
performed, that will bring the search to a next pre-decision state, from
which a new selection phase will begin;

– not all outcomes have been visited. Therefore, an outcome is uniformly
sampled among the ones not yet explored, and the corresponding next pre-
decision state is created, leading the search to its next phase.

Note that, while a limit is set for the number of actions to try at each state, i.e.,
for the offspring of the corresponding decision node, all outcomes are potentially
explored. The choice is due to the fact that, in our specific problem, the admissi-
ble outcome space given a state is at most binary. For this same reason, there is
no negative effect in uniformly sampling the outcomes during the expansion phase,
actually we think it may fasten the initial exploration.
Nevertheless, after having sampled all the possible realizations given an action, ex-
ternal risk factors are simulated according to their real probability distributions.

3. Simulation) Whenever a new pre-decision state is created during expansion, this
last phase stops and a simulation begins: a value estimated through a MR is associ-
ated to the state representing the new leaf node.

4. Backpropagation) During this last phase of the MCTS, the newly simulated value
associated to the newly created leaf node is back-propagated towards the parent-
node, iteratively until the root, following the path sampled during the previous
phases of the current iteration, j. In the meanwhile, also the counters of the number
of visits for each node in the path are updated. The overall procedure is illustrated
in Pseudo-Algorithm 3, where W̄j

a denotes the set of outcomes visited after the play
of action a up until iteration j, and is similar to the approach proposed in Powell
[2019], but specifically adapted for single temporal step updates.

33

Approximate Dynamic Programming for large scale stochastic instances

Algorithm 3 Backpropagation phase of MCTS
1: procedure BackPropagation(sj

t)
2: N(sj

t)← N(sj
t) + 1

3: while sa,j
t−∆t is not null do

4: N(sa,j
t−∆t)← N(sa,j

t−∆t) + 1

5: V̂ a(sa,j
t−∆t) = 1Ø

w∈W̄j
a

P(w)
Ø

w∈W̄j
a

P(w)V̂ (ga
t (sj

t−∆t, aj
t−∆t, w))

6: reward = Ct−∆t(sj
t−∆t, aj

t−∆t, wj
t)

7: delta = V̂ a,j(sa,j
t−∆t)

8: V̂ (sj
t−∆t)← V̂ (sj

t−∆t) + (delta−V̂ (sj
t−∆t

))
N(sj

t−∆t
)+1

9: BackPropagation(sj
t−∆t)

10: end while
11: end procedure

Once the four phases of the search are repeated for a fixed time of iterations, (J = 100
in our experiments), the policy, guiding the choice of the best action to perform when in
state st0 , corresponding to the root node of the just created Monte Carlo Tree, is:

π⋆(st0) = arg max
a∈Ast0

Q̂(st0 , a) = arg max
a∈Ast0

Ct0(st0 , a) + V̂ a(sa
t0). (3.18)

Let us conclude by focusing in detail on a couple of essential hyperparameters that have
been mentioned when explaining the MCTS phases: the exploration parameter ϵ and the
maximum number of children per decision node.
Both parameters define the exploration degree of the search but to different extents.
Exploration factor ϵ affects the selection phase of the algorithm by means of the choice
of the action to perform, attributing weight to actions that have been previously, but
less frequently, selected. The offspring limit per decision node represents the maximum
number of actions to explore given a state, hence it influences the selection phase, too, and
also affects the tree width. The construction of a wider tree may significantly compromise
its depth, therefore it is necessary to elevate the number of iterations J when a less
conservative offspring limit is chosen, if one wants to maintain a fixed lookahead in the
future.
However, the number of iterations is not the only parameter to adjust when modifying
the offspring limit per decision node. In fact, the choices of the two presented parameters
defining the exploration degree of the search strictly depend on each other. There are,
indeed, two situations that are preferably to be avoided during a MCTS, and that can
be partially dodged with a reasonable tuning of the exploration factor ϵ and the offspring
limit (from now on denoted as L). The first inconvenient situation consists in iteratively
lowering the approximate value of a state, up until its exclusion from further exploration,

34

Approximate Dynamic Programming for large scale stochastic instances

although it may lead to a very promising future state when the correct action is selected.
In fact, during backpropagation, the value of a state can be repeatedly compromised by the
values of its other, less promising offspring, if numerous. On the contrary, the algorithm
might become interested in visiting states that only appear as favorable, when it neglects
less frequently visited, yet better, actions.
The first scenario is likely to happen when ϵ and L are set to elevate values, whilst the
second is mainly caused by the lowering of the former. Thus, it is naturally inferred that
the two parameters shall be antithetically fixed: an excessive exploration factor should
be accompanied by a conservative offspring limit, and viceversa. We opted for the first
alternative and set ϵ = 3.5 and L = 5 in all our experiments, conscious of the necessity of
increasing both of them, and consequently the number of iterations J , when dealing with
significantly larger scale problems. Note that our choice for the value of the two parameters
might appear excessive for small instances, nevertheless a thorough exploration degree is
nothing but an advantage when paired with an adequate number of iterations, that must
not be unreasonable for small problems.
The above analysis concludes the detailed description of the MCTS algorithm and of its
application to our scheduling problem. Its performances are presented in the following
sections, alongside the results of the other approximate approaches covered so far.

3.3 ADP vs DP: comparisons on toy models
When it comes to the validation of ADP methods, comparing their performances with
the results output by the exact DP counterpart applied to the same problems might
seem the most natural choice. Nevertheless, it represents a complicated matter because
the curses of dimensionality we desperately attempt to avoid by applying ADP methods
deeply affect the computational expense of the exact DP paradigm, as we have already
highlighted a couple of times earlier in the dissertation. Therefore, the direct comparison
between the performances of approximate and exact DP methods is only computationally
possible on small scale instances. Indeed, we will commence the experimental analysis for
the validation of the approximate methods presented earlier in this chapter, by comparing
their results to the exact ones, exclusively for Instances 1., 2., 3., 4., presented in Chapter
2, Section 2.2, with the only adjustment of setting rpick = 20, rthrow = 25 when the
problems are solved with the API. We leave further considerations on their performances
on larger scale instances to the next section.
We gathered information about the mean execution times of our approximate algorithms
and about the accuracy of their output with respect to the benchmark results given
by the DP approach (Chapter 2, Section 2.2.2) in Tables 3.1-3.4. For all methods, the
performance assessment is based on the evaluation of the terminal state of the system
output when using the specific method for scheduling tasks throughout a simulation. Such
evaluation is computed by means of an evaluating function that we set as the terminal
value function of Equation (3.11), with rpick = 20, rthrow = 25, whose choice considerably
affects the percentage accuracies with respect to the benchmark results. In fact, different
evaluating functions reflect different characteristics about the terminal states and assign
different weights to specific details. With our choice, for example, we decided to let time

35

Approximate Dynamic Programming for large scale stochastic instances

play a massive role, and a 5 seconds delay in completing the mission results in a penalty of
25 points for the corresponding terminal state evaluation. Moreover, also coefficients rpick
and rthrow, that respectively assign a reward for having picked an object and a penalty for
not having it placed, are set to significant values, but they counterbalance each other’s
weight in most situations. Therefore, one should choose an evaluating function based on
their needs and on the focuses of their analysis, ergo, the choice is left to the implementer.
Since we only require the evaluation to validate the overall functioning of the approaches,
the evaluating method we defined by recycling the terminal value function used in API is
enough for the purpose.

Resolution
Method

Mean Execution
Time6

Terminal State
Evaluation7

Percentage
Accuracy

DP 3.18s 226 -
API 68s 207.5 91.8%
MR 1.03s 208.3 92.2%
MCTS 5s 221.3 97.9%

Table 3.1: Comparison of the performances of our approximate methods with the results
given by the application of exact DP, for a Mini instance(1) with state space cardinality
equal to 159 360.

Resolution
Method

Mean Execution
Time6

Terminal State
Evaluation7

Percentage
Accuracy

DP 204.3s 453.5 -
API 143s 348.9 76.9%
MR 1.06s 305.7 67.4%
MCTS 15s 323.3 71.3%

Table 3.2: Comparison of the performances of our approximate methods with the results
given by the application of exact DP, for a Medium-small instance(2) with state space
cardinality equal to 3 136 000.

For what concerns execution times, the results are presented in the second column of each
table, for all methods. It is immediate to notice that, except for the Mini instance of Table
3.1, for whose resolution one might definitely want to use the exact method if available,
the execution times for the approximate approaches are faster than the ones observed for
DP. Moreover, the divergence becomes tremendously substantial with the increase in the
problem’s size.
Note that the worst performing algorithm in terms of execution speed is the API, while
the fastest is the MR; however, the ranking is inverted when observing their percentage
accuracy. In fact, the overall results, compared to the DP benchmark, are very promising
for all methods on all instances, but the performances of our API stand out.

36

Approximate Dynamic Programming for large scale stochastic instances

Resolution
Method

Mean Execution
Time6

Terminal State
Evaluation7

Percentage
Accuracy

DP 255.2s 503.2 -
API 110s 421.4 83.7%
MR 1.03s 346.9 68.9%
MCTS 11s 410.8 81.6%

Table 3.3: Comparison of the performances of our approximate methods with the results
given by the application of exact DP, for a Medium instance(3) with state space cardinality
equal to 7 937 300.

Resolution
Method

Mean Execution
Time6

Terminal State
Evaluation8

Percentage
Accuracy

DP 4h22m 625 -
API 261s 574.5 91.9%
MR 1.11s 392.1 62.7%
MCTS 45s 389.6 62.3%

Table 3.4: Comparison of the performances of our approximate methods with the results
given by the application of exact DP, for a Large instance(4) with state space cardinality
equal to 176 150 400.

3.3.1 Accuracy of value function approximations through API

The protagonism of the performances of the API algorithm is worth investigating, al-
though its execution times are far from desirable. Indeed, staring at the tables presented
in the previous section, it comes natural to wonder to what are due its superior results
compared to the other methods’.
With the aim of providing a satisfactory explanation to the matter, we performed an anal-
ysis on the value function approximations output by our API. Figure 3.5 depicts a graph
showing the values assigned by the VFA produced with the API to 100 randomly sampled
states of the API Test instance(5), compared with the corresponding exact values output
by the DP paradigm. The accuracy of the approximations is astonishing and provides a
strong motivation for the algorithm’s outstanding results.

6Mean execution over at least 10 runs per method. Python Implementation on PyCharm Profes-
sional, Version 2022.3.2, on a machine equipped with RAM 16GB, intelCore i7, intel iRISxe.

7Mean evaluation over 50 runs for DP, API and MR, and over 30 for MCTS
8Mean evaluation over 50 runs for API and MR, and over 30 for MCTS. For DP the value is the

output of a single run.

37

Approximate Dynamic Programming for large scale stochastic instances

Figure 3.5: In red, the values produced by the API VFA and, in blue, the exact DP values
for 100 randomly sampled states of the API Test instance(5).

3.4 ADP performances on larger scale problems
We premised that it becomes intractable to carry out experiments using the exact DP
paradigm when it comes to larger scale problems. Nevertheless, in the previous section
we have already established the validity of our approximate methods through comparisons
with the exact results on various restrained instances. Thus, we are free to continue to
analyse their performances without the juxtaposition to DP. In fact, we will now discuss
additional results output by our approximate approaches when applied to larger scale
problems, compare them solely to each other and raise further considerations.
First of all, let us introduce the two large scale instances on which the further experiments
are conducted:

6. Large instance I:

• time horizon T = 360,
• O = 3 object types,
• K = 3 trays,
• |N | = 6 graph vertices,
• mission M = {(1,1,3), (1, 2, 2), (1,3,2), (2, 2, 2), (2,3,4), (3,1,1), (3,2,4)},
• Q =

Ø
m∈M

qm = 18 total number of objects,

• maximum robot capacity c = 4,
• rewards rpick = 10, rthrow = 12 for MR and MCTS, rpick = 20, rthrow = 25 for

API, and rmove = 0 for all,
• state space cardinality |S| = 279 899 040;

38

Approximate Dynamic Programming for large scale stochastic instances

7. Large instance II:

• time horizon T = 360,
• O = 5 object types,
• K = 3 trays,
• |N | = 8 graph vertices,
• mission M = {(1,1,2), (1, 2, 2), (1,4,1), (1,5,2), (2, 2, 2), (2,3,3), (2,4,2), (3,1,4),

(3,2,1), (3,3,2), (3,5,1)},
• Q =

Ø
m∈M

qm = 16 total number of objects,

• maximum robot capacity c = 4,
• rewards rpick = 10, rthrow = 12 for MR and MCTS, rpick = 20, rthrow = 25 for

API, and rmove = 0 for all,
• state space cardinality |S| = 1 516 308 000.

The two chosen problems differ in the number of object types, hence of the graph vertices,
and in the total number of items to collect during the mission. Surprisingly, we notice that
this last input does not significantly influence the increase in the state space cardinality,
which, instead, seems to be caused by a combination of the total number of object types
and the nature of the mission (of its being compact or sparse). Indeed, the number of
object types does affect the dimension of a state and the mission defines the values that
each one of its entries can assume; therefore, they both contribute to variations of the
state space cardinality.
The comparison of the second column of Table 3.5 with the same column of Table 3.6
proves that all methods present slower execution times when applied to Large instance II.
We deduce that the state space dimension affects the computational expense of approx-
imate methods, as it does with exact DP. Nevertheless, in this case, the effects are not
intractable and represent a natural consequence of the enlargement in the problem size.
Concluded the brief consideration on the connection between state space cardinality and
computational expense, let us return to our main focus: identifying the best method in
terms of quality of results and resolution speed.
In the previous section, we learned how our API algorithm outputs exceptional results on
medium scale instances, although its execution times are not as appreciable as the ones of
other methods, e.g., MR. In this section, we partially confirm the same thesis, especially
when observing the results projected in Table 3.6, that prove the superior performance of
API on Large instance II(7) with respect to the other approximate methods. However, its
mean terminal state evaluation for Large instance I(6) is less optimal than the one of the
MCTS algorithm, suggesting a vulnerability to problems with more compact missions.
Hence, MCTS eventually outshines API while utilizing considerably fewer temporal re-
sources, and thus represents an equivalently promising resolution approach.
For what concerns MR, its employment as dynamic decision-making method is worth to
be considered for its impressive speed rather than for its results, fine but generally out-
performed by both API and MCTS.

39

Approximate Dynamic Programming for large scale stochastic instances

Bear in mind that different users may express different personal preferences on the method
to employ for the resolution of their intralogistic robot scheduling problem based on their
necessities. For example, if they absolutely require an immediate resolution and are will-
ing to settle for lower-quality results, they would certainly opt for the MR approach. On
the contrary, if time resources do not represent an issue, one might embrace the API
algorithm. An evergreen valid compromise would be to apply a MCTS, whose execution
time is moderately fast with respect to API, and whose quality of results exceeds the one
of MR.

Resolution Method Execution Time Terminal State Evaluation9

API 277.1s 447.7
MR 1.11s 419.9
MCTS 31.7s 505.0

Table 3.5: Overall comparisons between the performances of our approximate approaches
on Large instance I(6).

Resolution Method Execution Time Terminal State Evaluation9

API 433.6s 548.5
MR 1.27s 493.3
MCTS 58.25s 499.6

Table 3.6: Overall comparisons between the performances of our approximate approaches
on Large instance II(7).

Finally, it appears necessary to specify that the expression "API resolution time", as
used thus far, refers to the execution speed of its learning process, defined in Pseudo-
Algorithm 1. The learning procedure must indeed be repeated whenever a mission is
changed. Nevertheless, if a warehouse is used to always satisfy the same orders, its
repetition would result unnecessary, and a sequence of live schedules could be performed
by using the VFA output by a single learning process. On the other hand, it is not possible
to immediately identify the optimal task to perform in a state when using a MCTS. In
fact, this approach involves the time-consuming steps of construction and search of a novel
tree for every single decision.
These last observations strengthen the argument that the suitability of an approximate
method substantially depends on the applications and the objective of the problem.

9Mean evaluation over 30 runs for API and MR, and over 15 runs for MCTS. Python Implementation
on PyCharm Professional, Version 2022.3.2, on a machine equipped with RAM 16GB, intelCore i7,
intel iRISxe.

40

Chapter 4

Introducing priorities

The problem definition on which we have focused so far quite reflects a real-world situation
despite the various assumptions, e.g., the static nature of risk factors and the knowledge
of their probability distributions. Whilst maintaining such simplifying assumptions, we
will now modify the problem definition by adding one real-world complication: priorities.
By definition, the term priority refers to the right of being considered as more important
than others, and different levels of priority define indeed a ranking of importance. We are
interested in investigating how this concept aligns with our problem and how it leads to
its redefinition by introducing rules of precedence for the objects to pick and place.

4.1 Problem reintrepretation
Consider the warehouse introduced in Chapter 1 as a distribution center responsible for
assembling orders from clients, defined as demands of the kind d = {(o, qo)|o = 1, ...O},
where qo is the required number of items of object type o ∈ O. Thus, the robot’s task
remains the transportation of objects to designated trays, which now symbolize assembly
areas. An assembly area is the location where the various items of an order must be
gathered in specified amounts.
Such reinterpretation of the problem prompts a redefinition of the mission as a primary
step: instead of thinking it as a series of order lines let it be organized based on the
orders assigned to the trays, as M = ∪k∈K Mk, where Mk = {(ok, qok

)|o = 1, ...O} ≡
{(km, om, qm)|km = k} in the old definition.
Note that at most a number of orders equivalent to the number of available trays can define
a mission and, hence, be served simultaneously. However, in real-world applications there
are usually more orders than available assembly spots and, in fact, a queue of requests is
created. In our setting we define the queue as a previously defined static list of D > K
orders sorted by their delivery times Td, d = 1, ..., D. Delivery times may be regarded
as deadlines for the completion of the orders’ assembly and considered as an additional
request from demanding clients. Bear in mind that the definition of a static queue, as for
the risk factors, depends on the the fact that time horizons are generally set to be short in
our experiments. An easily scalable alternative for a more realistic, dynamic queue would

41

Introducing priorities

be to define a stochastic process for new orders’ arrival; then, an order should be inserted
in the correct position of the queue based on its delivery time, as soon as it arrives.
Respecting our assumption on the static nature of the queue, we create an initial mission
by placing the first K orders in the K available trays. Whenever an order is assembled and
a tray is thus emptied, the next order in the queue is served and the mission is updated.
In the just described setting, we let the priority of an order in the service queue being
uniquely determined by its delivery time: the closer it is, the earlier the order is served.
We will later discuss how delivery times should also affect the priority definition for the
completion of an order while it is being served concurrently with others.

4.2 Resolution approaches
We now present three different approaches to solve the redefined intralogistic robot schedul-
ing problem with priorities. We start by introducing a naive sequential heuristic and later
improve it with the addition of the DP paradigm. Finally, we will move beyond the basic
sequential rule and propose a more general DP approach that addresses tray-filling prior-
ities other than solely serving precedence.
The implementation of a heuristic is mainly needed to characterize an extremely fast,
yet quite accurate, scheduling procedure to be employed for the resolution of larger scale
problems and, in general, as a benchmark for analyzing the execution times of the other
more complex methods. In fact, as we pointed out in the previous chapter while evalu-
ating the performances of the ADP methods, in real-world applications it is sometimes
necessary to establish a trade-off between execution time and optimality of the output,
especially when it comes to larger scale problems.
Further considerations and overall results will be discussed in Section 4.3.

4.2.1 Sequential Heuristic
A sequential serving and tray-filling procedure requires just one assembly spot. In fact,
once the order with highest priority is served, the robot’s gathering of objects focuses
solely one its items until completion. Only after having completed the request associated
to the first order, a tray substitution takes place, and the procedure is repeated. As
previously mentioned, the serving rule is based on priorities uniquely determined by the
orders’ delivery times.
So far, we presented an intuitive and simple way of modelling the precedence of orders in
a distribution center when a sequential rule is applied. In fact, a similar reasoning would
(and will, in the next subsection) be employed for analogous situations. Undoubtedly, a
more curious aspect of this approach is the heuristic procedure applied to the filling of
the one tray available, which is tailored to our specific problem setting.
The procedure is based on the exploitation of the proximity of the boxes. Each time a
robot is assigned an order, it is initially guided towards a vertex corresponding to a box
in a marginal position. From there, it starts picking items of the object type associated
to the box if any are demanded, otherwise it moves to the next, adjacent box. Let us
suppose some items are actually requested: the robot continues to pick the needed items

42

Introducing priorities

until it reaches the required number or its capacity. In the former case, it quit picking and
moves towards the next, adjacent box to repeat the procedure for a different object type.
In the latter case, it must move to the assembly area to unload all the items collected; the
same action is also performed when the robot has visited all the vertices associated to the
boxes. After the entire load has been placed in or thrown to the tray, if there are missing
items to meet the order’s demand, the robot returns to the box from where the picking
was interrupted. On the other hand, when the mission is completed, the robot recedes to
the initial marginal box’s location in order to repeat the procedure for the immediately
succeeding order. The process is repeated for all orders in the queue or until a fixed time
horizon is reached, and is summarized in the Flowchart of Figure 4.1.
Naturally, a scheduling output by the just described heuristic may hardly ever result op-
timal, mostly due to the constraints of visiting all boxes and of always restarting from a
marginally located one, despite there might be no objects to collect from there. Never-
theless, our heuristic represents a clever procedure for not missing requests and it does
lead to a time-efficient scheduling whenever the picking spots are approximately lined up,
which is the case for our setting. In opposite contexts, where for instance boxes are sparse
around the warehouse, the robot would be far from following a sub-optimal path, causing
a poor scheduling of tasks. For this reason, we formerly referred to our heuristic procedure
as specifically tailored for our problem.

4.2.2 Sequential DP

Our second approach is based on a sequential serving rule identical to the one presented
for the heuristic. Once more, we consider a unique assembly spot and serve the orders
consecutively, removing them one at a time from a queue where they are sorted by their
delivery times. The fundamental difference from the previous approach regards the tray-
filling rule: the robot schedules its tasks relying on the application of the exact DP
paradigm. Indeed, we consider this approach far more intriguing than the heuristic, and
expect superior performances.
Let us summarize the procedure and point out some considerations. The order with the
highest priority is served and a one-tray mission is defined. The robot’s scheduling for the
order’s completion is performed as we have learned, applying the DP paradigm defined
in Chapter 2. Each time a demand is fulfilled and a new order is assigned to the again
available tray, an additional backward pass must be performed. Although it represents
the most time-consuming step of the paradigm, we are less concerned about the curses of
dimensionality than we were for the standard problem definition, because the sequential
serving significantly reduces the mission’s size, the state’s dimension and the state space
cardinality consequently. Moreover, as more substitutions are carried out, the backward
pass accelerates since it only requires backtracking in time until the moment of the last
substitution; for this reason, it reveals necessary to retain a record of the orders’ entering
times. The procedure concludes when all orders have been fulfilled or the predetermined
time horizon is reached.

43

Introducing priorities

Figure 4.1: Sequential Heuristic’s algorithmic flowchart. The condition on not having
reached the time horizon is implicit: it is not shown in the flowchart but it is intrinsically
verified at every step.

4.2.3 Prioritizing DP
For the presentation of this last method we return to a setting where we have more than
one tray and some orders are thus assembled concurrently. Therefore, the definition of a
priority rule for the assembling of the orders becomes necessary.
The robot’s scheduling output by this last approach is derived from an adjusted version
of the resolution method based on the exact DP paradigm defined in Chapter 2. In fact,
we characterize a tray-filling priority rule by modifying the immediate contributions of
throwing actions, while leaving the ones of picking and moving actions as defined in (2.11)
and (2.22) respectively. For a throwing action of the type at = (o, k) we have:

Ct(st, at, wt+∆tpt) =

rthrow
1
1− s1

t

Td

2
− (s1

t − T E
k)

1000 − 100
Td
· ✶(s1

t >Td), if wt+∆tpt = 1

0, if wt+∆tpt = 0,

(4.1)

44

Introducing priorities

where Td and T E
k are the delivery time and the entering time of the order d associated to

tray k. The multiplicative term affecting the deterministic reward rthrow causes a mono-
tone decrease, and even switches to a negative value as soon as the order’s delivery time
is surpassed. When this happens, the immediate contribution is further penalized by a
constant term, which is greater for orders with earlier delivery times. Instead, the impact
of the penalty associated to the order’s waiting time s1

t − T E
k is relatively minor with

respect to the overall context.
As for the case without priorities, the forcing of a decrease with time in the value of im-
mediate contributions for throwing actions has once again proved necessary to emphasize
the importance of placing objects at the earliest convenient opportunity. Moreover, in
this novel scenario with priorities, the extent to which immediate contributions depend
on time is determined by, and varies with, delivery times. In fact, the introduction of this
dependence contributes to giving precedence to the fulfillment of orders with a closest
deadline.
It is worth mentioning that the decision of solely modifying the immediate contribution of
throwing actions was dictated by the fact that the picking of an object is always executed
before the respective throw. Since in a DP paradigm the values associated to the states
are assigned through a backward pass, the priority of a throwing action athrow = (o, k) is
inevitably backtracked to the respective, previously executed, picking action apick = o.
For what concerns the serving rule, it is simply based on the delivery times of the orders in
the queue, as it is for the other two presented approaches. Accordingly, an initial mission
is defined by assigning to all K available trays the K most urgent orders in the queue.
Then, after a first backward pass, the definitive scheduling begins. When the demand of
an order d is fulfilled, and a tray becomes available again, the placement of a new order
leads to a redefinition of the mission and another backward pass is required. In this case,
although the new pass only necessitate backtracking until the time at which the latest
substitution takes place, we expect its execution time to be longer than the one of Se-
quential DP. In fact, a greater quantity of available trays entails more extensive missions,
higher-dimensional states and, consequently larger state spaces.

4.3 Results
The moment has come to showcase the performances of the three novel approaches for
the redefined intralogistic robot scheduling problem with priorities. At first, we will focus
on the analysis of the results of experiments on medium scale instances, with the aim of
comparing the multiple strategies. Later on, we will discuss which techniques could be
applied to solve larger scale problems and how.
Let us commence by introducing the problem’s instances on which experiments are con-
ducted. There are three scenarios, all having in common the following input data:

• time horizon T = 230,

• O = 5 object types,

• K = 1 tray for the sequential approaches, K = 2 tray for Prioritizing DP,

45

Introducing priorities

• |N | = 6 graph vertices for the sequential approaches, |N | = 7 graph vertices for
Prioritizing DP,

• D = 3 orders,

• maximum robot capacity c = 4,

Moreover, for all experiments regarding the approaches employing the DP paradigm, the
terminal value function has been set to:

F (s) = 0.5(T − s1)− 15
Ø

o

! Ø
m

(qm|om = o)−
Ø

k

so
k+1

"
, (4.2)

while all other specifics about rewards, state transitions, etc., are left as presented in
Chapter 2, except for the immediate contributions of the Prioritizing DP.
Each instance is mainly characterized by the definition of the orders in its queue and
the corresponding delivery times. In fact, queues serve as primary distinguishing factors
among the scenarios listed below:

8a. Priority instance I:
Queue Obj 1 Obj 2 Obj 3 Obj 4 Obj 5 Delivery time

Order 1 1 1 0 2 0 90s
Order 2 0 1 2 0 0 120s
Order 3 1 1 1 0 2 210s

with total number of items to collect Q =
Ø
d∈D

Ø
o∈O

qd
o = 12;

8b. Priority instance II:
Queue Obj 1 Obj 2 Obj 3 Obj 4 Obj 5 Delivery time

Order 1 1 1 0 0 1 70s
Order 2 1 2 0 0 1 100s
Order 3 0 2 1 3 0 150s

with total number of items to collect Q =
Ø
d∈D

Ø
o∈O

qd
o = 13;

8c. Priority instance III:
Queue Obj 1 Obj 2 Obj 3 Obj 4 Obj 5 Delivery time

Order 1 0 1 2 0 1 120s
Order 2 1 1 1 0 2 130s
Order 3 1 1 0 3 0 190s

with total number of items to collect Q =
Ø
d∈D

Ø
o∈O

qd
o = 14.

Before showing and discussing the results of the application of our approaches to the
aforementioned problem’s instances, it is important to address the challenge of making

46

Introducing priorities

comparisons. In fact, for each scenario, we would like to compare the orders’ actual com-
pletion times, output when scheduling with a specific approach, with their delivery times
and with the completion times output by the other approaches. However, in a stochastic
context it is almost impossible to get the same number of incidents (collisions and failed
throws), whose occurrences inevitably cause delays, when repeating experiments. For this
reason, to get more homogeneous and comparable results, at the beginning of each exper-
iment the seeds for two Pseudo Random Number Generator (PRNG) streams, used for
the simulation of collisions and throwing successes, are fixed.
Despite the decision of fixing the same two seeds when different approaches are applied
to the same instance, we still cannot observe the exact same outcomes. We find the ex-
planation lying in the different scheduling of tasks that each approach outputs for the
robot. In fact, a variation in the timing of performing a specific risky action can result
in a shift within the associated stream’s sequence and cause a different outcome; on the
other hand, also the execution of distinct actions at the same step of a scheduling, and
indeed associated to the same output of a stream, can affect a simulation. For example,
let us consider a scheduling rule that, as first action, requires the robot to move to a
position adjacent to the initial one. The risk associated to such moving action is indeed
very low; in fact, let us suppose it being re = 10, i.e., with probability pmove = 0.1 the
robot collides with a human or a shelving unit. Then, let the first output of the PRNG
stream for moving actions be equal to 0.15: no collision happens during the simulation
because 0.15 > 0.1. Now, if we used a different scheduling rule that would guide the robot
to move to a further location, with an associated navigation risk of 0.25, the robot would
collide with a human or a shelve and cause a delay. Therefore, during the discussion of
the results we will take into account the occurrences of incidents.

Resolution Method Instance Execution Time10

Sequential Heuristic Priority instance I8(a) 1.007s

Priority instance II8(b) 1.008s

Priority instance III8(c) 1.005s

Sequential DP Priority instance I8(a) 4.28s

Priority instance II8(b) 4.51s

Priority instance III8(c) 5.41s

Prioritizing DP Priority instance I8(a) 106s

Priority instance II8(b) 244s

Priority instance III8(c) 394s

Table 4.1: Execution times of all three approaches for every instance of the redefined
scheduling problem with priorities.

10Python Implementation on PyCharm Professional, Version 2022.3.2, on a machine equipped with
RAM 16GB, intelCore i7, intel iRISxe.

47

Introducing priorities

Having highlighted the difficulty of making comparisons and suggested a solution to the
challenge, we can now finally focus on the analysis of the results. First of all, recall that
while introducing the resolution approaches we anticipated that we would expect longer
execution times for the Prioritizing DP approach, due to its recurrent application of a
backward pass on a larger state space: Table 4.1 confirms the intuition.
On the other hand, as shown in Tables 4.2, 4.3 and 4.4, where the entries in bold represent
the finest results for the columns to which they belong, Prioritizing DP is undoubtedly
the best performing approach in terms of time taken to fulfill all the orders, despite a few
difficulties in respecting the deadlines set by delivery times. However, the main purpose of
delivery times within our experiments is to define priorities, and they might be myopically
set for guaranteeing the fulfillment of demands in time, especially when they are very close
to the beginning of the mission and/or to each other, as in the second instance for example.
In real-world applications, similar situations may happen and what becomes of primary
importance is the completion ranking of the orders: in all our cases it is in line with the
delivery times.

Resolution Method Completion of
Order 1 (90s)

Completion of
Order 2 (120s)

Completion of
Order 3 (210s)

Sequential Heuristic 57s 110s 211s

Sequential DP 57s 104s 190s

Prioritizing DP 57s 123s 186s

Table 4.2: Comparison of the performances of our approaches on Priority instance I8(a).
Seeds are set to 1609 and 793 for the PRNG streams for moving and throwing actions
respectively. Two collisions happened during the simulation with the Sequential Heuristic;
no incidents took place when applying the Sequential DP; just one collision happened while
simulating with the Prioritizing DP. For further details on the outputs of our approaches
on this instance refer to Appendix A.2.

Resolution Method Completion of
Order 1 (70s)

Completion of
Order 2 (100s)

Completion of
Order 3 (150s)

Sequential Heuristic 52s 122s 228s

Sequential DP 47s 112s 211s

Prioritizing DP 93s 103s 197s

Table 4.3: Comparison of the performances of our approaches on Priority instance II8(b).
Seeds are set to 2404 and 610 for the PRNG streams for moving and throwing actions re-
spectively. Many collisions happened during the simulation with the Sequential Heuristic;
just one collision happened while simulating with the Sequential DP; no incidents took
place when applying the Prioritizing DP.

48

Introducing priorities

Resolution Method Completion of
Order 1 (120s)

Completion of
Order 2 (130s)

Completion of
Order 3 (190s)

Sequential Heuristic 59s 150s 244s

Sequential DP 59s 146s 230s

Prioritizing DP 121s 166s 222s

Table 4.4: Comparison of the performances of our approaches on Priority instance III8(c).
Seeds are set to 1505 and 191 for the PRNG streams for moving and throwing actions re-
spectively. Juts one collision happened during the simulation with the Sequential Heuris-
tic; no incidents took place when applying the Sequential DP; two collisions happened
while simulating with the Prioritizing DP.

Let us continue the discussion on how the Prioritizing DP approach enables achieving
an overall demand fulfillment sooner, compared to employing the alternative sequential
methods. In particular, we notice that for Priority instance I8(a) and III8(c), whose results
are presented in Tables 4.2 and 4.4 respectively, the earlier completion is evident, despite
collisions happened during the simulation. Moreover, we observe from Table 4.3 that the
Prioritizing DP outperforms the sequential approaches also for Priority instance II8(b).
However, we know that no incidents occurred during the simulation of its scheduling,
while a collision took place when employing the Sequential DP, for example. Nevertheless,
even in the absence of such collision, we would still observe superior performances for the
Prioritizing DP, because the overall completion time for the sequential approach would
decrease only to 206s.
Applying the same rationale of balancing the results considering the collisions and failures
happened during the simulations, we can also infer that the Sequential DP outperforms
the Sequential Heuristic. However, the latter proves very fast and indeed represents a
promising choice for the resolution of larger scale problems.

4.3.1 Larger Scale Solutions
As earlier mentioned, we are convinced that the Sequential Heuristic would represent a
valid choice for quite accurately solving larger scale problems. This section serves to prove
our thesis.
Furthermore, we also believe it is worth analysing the performances of the Sequential DP
approach on larger instances. In fact, being its scheduling finer than the heuristic’s and
its resolution time faster than the Prioritizing DP’s, its application to our problem could
offer a trade-off of speed and accuracy. On the other hand, we will refrain from further
examining the Prioritizing DP’s performances, since in the last section the method already
proved excessively computationally expensive.
The two large scale instances employed for the analysis are both characterized by

• O = 5 object types,

• K = 1 tray,

49

Introducing priorities

• |N | = 6 graph vertices,

• maximum robot capacity c = 4.

Specifically, they are:

9a. Large Priority instance I:
Queue Obj 1 Obj 2 Obj 3 Obj 4 Obj 5 Delivery time

Order 1 1 2 3 2 3 230s
Order 2 3 2 1 2 1 370s
Order 3 2 2 4 3 0 550s

• time horizon T = 600,

• D = 3 orders,
• total number of items to collect Q =

Ø
d∈D

Ø
o∈O

qd
o = 31;

9b. Large Priority instance II:
Queue Obj 1 Obj 2 Obj 3 Obj 4 Obj 5 Delivery time

Order 1 0 0 1 2 2 100s
Order 2 0 2 1 1 1 150s
Order 3 3 0 0 0 0 230s
Order 4 1 2 0 0 1 300s
Order 5 2 0 2 0 1 390s

• time horizon T = 430,

• D = 5 orders,
• total number of items to collect Q =

Ø
d∈D

Ø
o∈O

qd
o = 22.

The problems defined above are large in different ways. Large Priority instance I9(a)

presents a copious amount of items to collect during the entire mission, consequently
requiring a longer-term time horizon. Instead, Large Priority instance II9(b)’s main char-
acteristic is the elevate number of more modest orders. Such difference greatly affects
the execution time of the Sequential DP. In fact, Table 4.5 shows that the approach is
extremely slow for Large Priority instance I9(a), while its speed is acceptable for the other
instance. Nevertheless, Sequential DP surely presents better performances for both cases,
as expected (bold entries of Tables 4.6 and 4.7 refer to finer results).
We conclude by noticing that the Sequential Heuristic is highly efficient in all situa-
tions. Its results may not match the superior performance achieved when applying the
DP paradigm, but are sufficiently close. Therefore, it stands out as the preferred choice
when dealing with larger scale instances, especially if characterized by a significant number
of objects to collect. However, in the case of low-quantity orders, one could still exploit
the sequential approach with DP if seeking for superior results.

50

Introducing priorities

Resolution Method Instance Execution Time11

Sequential Heuristic Large Priority instance I9(a) 1.081s

Large priority instance II 9(b) 1.002s

Sequential DP Large Priority instance I9(a) 15m49s

Large Priority instance II9(b) 16.87s

Table 4.5: Execution times of the sequential approaches for larger scale instances of the
redefined scheduling problem with priorities.

Resolution
Method

Completion of
Order 1 (230s)

Completion of
Order 2 (370s)

Completion of
Order 3 (550s)

Heuristic 120s 322s 495s

DP 164s 313s 484s

Table 4.6: Comparison of the performances of our sequential approaches on Large Priority
instance I9(a). Seeds are set to 2404 and 610 for the PRNG streams for moving and
throwing actions respectively. Three collisions happened during the simulation with the
Sequential Heuristic; two took place when applying the Sequential DP.

Resolution
Method

Order 1
(100s)

Order 2
(150s)

Order 3
(230s)

Order 4
(300s)

Order 5
(390s)

Heuristic 95s 184s 237s 302s 389s

DP 81s 165s 213s 278s 362s

Table 4.7: Comparison of the performances of our sequential approaches on Large Priority
instance II9(b). Columns refer to completion times of respective orders. Seeds are set to
2404 and 610 for the PRNG streams for moving and throwing actions respectively. Two
collisions happened during the simulation with the Sequential Heuristic; none took place
when applying the Sequential DP.

11Python Implementation on PyCharm Professional, Version 2022.3.2, on a machine equipped with
RAM 16GB, intelCore i7, intel iRISxe.

51

Chapter 5

Conclusions

Throughout the dissertation we have discussed the application of the Dynamic Pro-
gramming paradigm and of its Approximate counterpart on a specific intralogistic robot
scheduling problem. We envisioned a scenario where a single agent, referred to as robot,
was tasked with the transportation of objects from boxes to trays situated in a warehouse.
We modelled the warehouse as a completely connected undirected graph, on which edges
the robot could move along, from vertices corresponding to box locations, where the robot
could pick the various object types, to vertices corresponding to trays, where the robot
could place or throw the items collected. We let the system be subjected to static risk
factors associated to moving and throwing actions and distributed as Bernoulli random
variables. The problem’s main objective was to define a time-efficient and risk-aware
scheduling of tasks for the robot.
We first observed that the chosen paradigm, in its exact version, provides optimal schedul-
ing of tasks when employed for solving both deterministic and stochastic versions of our
problem. However, due to the curses of dimensionality from which it suffers, its applica-
tion revealed possible solely on small scale instances. Therefore, for the resolution of larger
scale stochastic instances we relied on Approximate Dynamic Programming: we presented
an Approximate Policy Iteration algorithm, and two look-ahead techniques, the Myopic
Rollout and the Monte Carlo Tree Search. Through juxtaposition with the performances
of the exact Dynamic Programming paradigm on small and medium scale instances we
validated the approximate methods and demonstrated their accuracy. Later, we compared
their performances to each other when applied to larger scale instances, analysing their
execution times and evaluating the terminal states output by their scheduling simulations.
The experiments conducted on the approximated approaches showed a significant reduc-
tion in execution times with respect to the application of the exact paradigm. Moreover,
their solutions on small and medium instances presented a noteworthy accuracy com-
pared to the solutions given by the application of exact Dynamic Programming, used as
benchmarks. Furthermore, we observed an evident trade-off between the optimality of the
scheduling and the time required for its planning, even in the case of larger scale instances.
For example, the Approximate Policy Iteration algorithm generally exhibits performances
closely aligned with the benchmark, but its runtime seems excessively expensive with re-
spect to the more rapid Myopic Rollout, which in exchange presents slightly less accurate

52

Conclusions

results. Since such trade-off is inevitably encountered whenever it is required to solve a
real-life instance of our problem, we concluded that the choice of the most suitable ap-
proach depends on specific necessities; if immediate outputs are needed one might opt
for a less accurate resolution method, and, vice versa, if performances are of essential
importance longer execution times are tolerated. However, the Monte Carlo Tree Search
proved to be an adequate compromise in all analysed scenarios.
In the last chapter, our focus shifted to the real-life complication of priorities, whose in-
troduction forced a conceptual reformulation of the problem. Henceforth we regarded the
problem’s mission as a list of orders to be fulfilled within specified deadlines, i.e., delivery
times, and the trays as assembly spots for the orders. Moreover, we defined a static queue
where demands were sorted by their delivery times, so as to define a service precedence.
Then, for the resolution of such redefined scheduling problem with priorities, whose objec-
tive became the completion of the orders before (or close to) the associated deadlines, we
proposed three different approaches. We implemented two sequential methods that serve
the orders in the queue one at a time, starting from the most urgent, and a more com-
plex approach serving more orders simultaneously. Among the two sequential techniques,
one follows a heuristic procedure for the filling of the unique tray, while the other one
relies on the application of the exact Dynamic Programming paradigm, as also does the
third method. In alignment with the findings of the other chapters, we observed how the
application of the Dynamic Programming paradigm yields superior results, unfortunately
counterbalanced by slower execution times. Nevertheless, we succeeded in defining two
sequential methods that, other than respecting our priorities assumptions, can generally
be applied for the resolution of larger scale instances due to their acceptable runtimes.
Be aware that many of the considerations we discussed throughout the thesis still hold
for alternative task scheduling scenarios with similar problem definitions. In fact, all our
methods can be extended to situations where certain restricting assumptions are discarded,
as we hinted on how to overcome eventual issues.

5.1 Further Developments
We extensively analysed the application of Dynamic and Approximate Dynamic Program-
ming to our scheduling problem, despite the reliance on various constraining assumptions.
For instance, we treated risk factors as static in nature and thus maintained them fixed
throughout our simulations. However, over longer time horizons, it is plausible that they
may dynamically change, particularly those linked to moving actions involving collisions
with humans, who are mobile as well. A future topic of research could indeed involve
more extensive experimentation with dynamic risks and incorporate a suitable rolling
procedure to our scheduling problem. The values of risk factors could be left unchanged
for a specified duration, then redefined as a consequence of the resolution of an updated
routing optimization problem on the graph modelling the warehouse.
Similarly, for the redefined scheduling problem with priorities, the queue could be regarded
as dynamic, and further experiments could be conducted after having defined a suitable
stochastic process for the arrival of the orders.

53

Conclusions

Regarding the implementation of the algorithms we opted for native Python language.
However, speed-enhancing techniques, as leveraging Python packages like Numba, could
be employed to optimize execution times. In fact, immediate solutions may reveal es-
sential in a real-life application, in which case one might even consider opting for more
efficient languages and software to enhance performance. Nevertheless, our choice does
not compromise the validity of our conclusions: our experiments enable valuable compar-
isons under a time perspective despite the overall slower runtimes.
A last further development could concern a more extensive search of the optimal param-
eters for the approximated approaches since our focus on reward and feature engineering
was constrained by our limited resources. Even though we succeeded in presenting valuable
results, we are confident that allocating the deserved additional resource to the selection
of certain parameters could enhance the performances of our presented methods.

54

Appendix A

Outputs

For the overall clarity of the work, it is of essential importance to present a selection of the
outputs of some of the methods discussed in the dissertation. The only aim is to make the
reader aware of the kind of results we refer to in the text, hence it will not be necessary
to present all of them.

A.1 Exact DP
A.1.1 Deterministic instance
This section presents the results output by the application of the exact DP paradigm to
the deterministic version of the four toy instances introduced in Chapter 2, Section 2.2.
MINI INSTANCE

Scheduled sequence of tasks
[’pick 0’, ’pick 0’, ’pick 0’, ’move np1 ’, ’pick 1’, ’move nt0 ’,
’place (0, 0)’, ’place (0, 0)’, ’place (0, 0)’, ’place (1, 0)’,
’move np2 ’, ’pick 2’, ’pick 2’, ’move np1 ’, ’pick 1’, ’move nt0 ’,
’place (1, 0)’, ’place (2, 0)’, ’place (2, 0)’]

Terminal state
[101 , ’nt0 ’, 3, 3, 2, 2, 2, 2]

MEDIUM -SMALL INSTANCE

Scheduled sequence of tasks
[’pick 0’, ’pick 0’, ’move np1 ’, ’move np2 ’, ’pick 2’, ’move np3 ’,
’pick 3’, ’move np4 ’, ’move nt1 ’, ’place (0, 1)’, ’place (0, 1)’,
’place (2, 1)’, ’place (3, 1)’, ’move np3 ’, ’pick 3’, ’move np2 ’,
’pick 2’, ’pick 2’, ’move np1 ’, ’pick 1’, ’move nt0 ’, ’place (1, 0)’,
’place (2, 0)’, ’place (2, 0)’, ’move np2 ’, ’move np3 ’, ’pick 3’,
’move np4 ’, ’move nt1 ’, ’place (3, 1)’, ’place (3, 1)’]

Terminal state
[142 , ’nt1 ’, 2, 0, 2, 1, 1, 0, 3, 2, 1, 3, 0, 3, 0, 0, 0]

55

Outputs

MEDIUM INSTANCE

Scheduled sequence of tasks
[’pick 0’, ’pick 0’, ’pick 0’, ’move np1 ’, ’pick 1’, ’move nt0 ’,
’place (0, 0)’, ’place (0, 0)’, ’place (0, 0)’, ’place (1, 0)’,
’move np1 ’, ’pick 1’, ’pick 1’, ’move np0 ’, ’pick 0’, ’pick 0’,
’move nt1 ’, ’place (0, 1)’, ’place (0, 1)’, ’place (1, 1)’,
’place (1, 1)’, ’move np2 ’, ’pick 2’, ’pick 2’, ’pick 2’, ’move nt0 ’,
’place (2, 0)’, ’place (2, 0)’, ’move nt1 ’, ’place (2, 1)’]

Terminal state
[168 , ’nt1 ’, 5, 3, 2, 3, 1, 2, 3, 2, 1]

LARGE INSTANCE

Scheduled sequence of tasks
[’pick 0’, ’move np1 ’, ’pick 1’, ’pick 1’, ’move nt0 ’, ’place (0, 0)’,
’place (1, 0)’, ’place (1, 0)’, ’move np2 ’, ’pick 2’, ’move np3 ’,
’pick 3’, ’pick 3’, ’pick 3’, ’move np4 ’, ’move nt1 ’, ’place (2, 1)’,
’place (3, 1)’, ’place (3, 1)’, ’place (3, 1)’, ’move np4 ’, ’pick 4’,
’pick 4’, ’move np1 ’, ’pick 1’, ’move np0 ’, ’pick 0’, ’move nt2 ’,
’place (0, 2)’, ’place (1, 2)’, ’place (4, 2)’, ’move np1 ’, ’pick 1’,
’pick 1’, ’move nt0 ’, ’place (4, 0)’, ’move nt1 ’, ’place (1, 1)’,
’place (1, 1)’]

Terminal state
[202 , ’nt1 ’, 2, 1, 0, 1, 5, 2, 2, 1, 1, 0, 1, 0, 3, 0, 3, 0, 2, 1, 0, 1]

Bear in mind that, in a deterministic context, the scheduling never depends on the evolu-
tion of the system. An optimal sequence of tasks is determined through a backward pass
before starting the scheduling and it does not vary dynamically. Therefore, the outputs
presented above do not change if experiments are repeated.

A.1.2 Stochastic instance
This section presents the results output by the application of the exact DP paradigm to
the stochastic version of the four toy instances introduced in Chapter 2, Section 2.2.
In this case, each output sequence of tasks is dynamic and depends on the realization
of external risk factors during the specific simulation. Note that failures are explicitly
indicated in the solution through the use of brackets.
MINI INSTANCE

Dynamic sequence of tasks
[’pick 0’, ’pick 0’, ’pick 0’, ’move nt0 (COLLISION)’, ’throw (0, 0)’,
’throw (0, 0)’, ’throw (0, 0)’, ’move np1 ’, ’pick 1’, ’pick 1’,
’move np2 ’, ’pick 2’, ’pick 2’, ’move nt0 ’, ’throw (1, 0)’,
’throw (1, 0)’, ’throw (2, 0)’, ’throw (2, 0)’]

Terminal state
[106 , ’nt0 ’, 3, 3, 2, 2, 2, 2]

56

Outputs

MEDIUM SMALL INSTANCE

Dynamic sequence of tasks
[’move np1 ’, ’pick 1’, ’move np2 ’, ’pick 2’, ’pick 2’, ’pick 2’,
’move nt0 ’, ’throw (1, 0)’, ’throw (2, 0)’, ’throw (2, 0)’, ’move np0 ’,
’pick 0’, ’pick 0’, ’move nt1 ’, ’throw (0, 1)’, ’throw (0, 1)’,
’move np3 (COLLISION)’, ’pick 3’, ’pick 3’, ’pick 3’, ’move nt1 ’,
’throw (2, 1)’, ’throw (3, 1)’, ’throw (3, 1)’, ’throw (3, 1)’]

Terminal state
[146 , ’nt1 ’, 2, 0, 2, 1, 1, 0, 3, 2, 1, 3, 0, 3, 0, 0, 0]

MEDIUM INSTANCE

Dynamic sequence of tasks
[’pick 0’, ’pick 0’, ’pick 0’, ’move np1 ’, ’pick 1’, ’move nt0 ’,
’throw (1, 1) (FAILED)’, ’throw (0, 1)’, ’throw (0, 0)’, ’throw (0, 0)’,
’move np2 ’, ’pick 2’, ’pick 2’, ’move np1 ’, ’pick 1’, ’move np0 ’,
’pick 0’, ’move nt0 ’, ’throw (0, 0)’, ’throw (1, 0)’, ’throw (2, 0)’,
’throw (2, 0)’, ’move np1 ’, ’pick 1’, ’pick 1’, ’move np0 ’, ’pick 0’,
’move np1 ’, ’move np2 ’, ’pick 2’, ’move nt1 ’, ’throw (0, 1)’,
’throw (1, 1)’, ’throw (1, 1)’, ’throw (2, 1)’]

Terminal state
[178 , ’nt1 ’, 5, 3, 2, 3, 1, 2, 3, 2, 1]

LARGE INSTANCE

Dynamic sequence of tasks
[’pick 0’, ’pick 0’, ’move np1 ’, ’pick 1’, ’pick 1’, ’move nt0 ’,
’throw (1, 1)’, ’throw (1, 1)’, ’throw (0, 2) (FAILED)’, ’throw (0, 0)’,
’move np2 ’, ’pick 2’, ’move np3 ’, ’pick 3’, ’pick 3’, ’pick 3’,
’move nt1 ’, ’throw (2, 1)’, ’throw (3, 1)’, ’throw (3, 1)’,
’throw (3, 1)’, ’move np4 ’, ’pick 4’, ’pick 4’, ’move np1 ’, ’pick 1’,
’move np0 ’, ’pick 0’, ’move nt2 ’, ’throw (4, 0) (FAILED)’,
’throw (0, 2)’, ’throw (1, 2)’, ’throw (4, 2)’, ’move np1 ’, ’pick 1’,
’pick 1’, ’move np2 ’, ’move np3 ’, ’move np4 ’, ’pick 4’, ’move nt0 ’,
’throw (1, 0)’, ’throw (1, 0)’, ’throw (4, 0)’]

Terminal state
[227 , ’nt0 ’, 2, 1, 0, 1, 5, 2, 2, 1, 1, 0, 1, 0, 3, 0, 3, 0, 2, 1, 0, 1]

A.2 Problem with priorities
In the following, the scheduling produced by the three different approaches chosen to solve
the redefined version of the intralogistic robot scheduling problem with priorities (Chapter
4). All three outputs regard the application of the methods on Priority instance I8(a).

57

Outputs

A.2.1 Sequential heuristic
The sequences below represent the output given by the naive Sequential Heuristic ap-
proach. There are three distinct sequences because orders are served sequentially, being
there a single available tray. Note, in fact, that for throwing actions the associated tray
is not specified.
First order ’s dynamic sequence of tasks
[’pick 0’, ’move np1 ’, ’pick 1’, ’move np2 ’, ’move np3 ’, ’pick 3’,
’pick 3’, ’move nt0 ’, ’throw 0’, ’throw 1’, ’throw 3’, ’throw 3’]
Intermediate state reached
[57, ’nt0 ’, 1, 1, 1, 1, 0, 0, 2, 2, 0, 0]]

Second order ’s dynamic sequence of tasks
[’move np0 ’, ’move np1 ’, ’pick 1’, ’move np2 ’, ’pick 2’, ’pick 2’,
’move np3 ’, ’move np4 ’, ’move nt0 ’, ’throw 1’, ’throw 2’, ’throw 2’]
Intermediate state reached
[110 , ’nt0 ’, 0, 0, 1, 1, 2, 2, 0, 0, 0, 0]]

Third order ’s dynamic sequence of tasks
[’move np0 (COLLISION)’, ’pick 0’, ’move np1 ’, ’pick 1’, ’move np2 ’,
’pick 2’, ’move np3 ’, ’move np4 ’, ’pick 4’, ’move nt0 ’, ’throw 0’,
’throw 1’, ’throw 2’, ’throw 4’, ’move np4 (COLLISION)’, ’pick 4’,
’move nt0 ’, ’throw 4’]
Terminal state
[211 , ’nt0 ’, 1, 1, 1, 1, 1, 1, 0, 0, 2, 2]]

A.2.2 Sequential DP
The sequences below represent the output given by the Sequential DP approach. Being it
sequential, as for the approach whose output are presented above, there are three distinct
sequences and a single tray, which is thus not specified when referring to throwing actions.
First order ’s dynamic sequence of tasks
[’pick 0’, ’move np1 ’, ’pick 1’, ’move np2 ’, ’move np3 ’, ’pick 3’,
’pick 3’, ’move nt0 ’, ’throw 0’, ’throw 1’, ’throw 3’, ’throw 3’]
Intermediate state reached
[57, ’nt0 ’, 1, 1, 1, 1, 0, 0, 2, 2, 0, 0]]

Second order ’s dynamic sequence of tasks
[’move np2 ’, ’pick 2’, ’pick 2’, ’move np1 ’, ’pick 1’, ’move nt0 ’,
’throw 1’, ’throw 2’, ’throw 2’]
Intermediate state reached
[104 , ’nt0 ’, 0, 0, 1, 1, 2, 2, 0, 0, 0, 0]]

Third order ’s dynamic sequence of tasks
[’move np2 ’, ’pick 2’, ’move np3 ’, ’move np4 ’, ’pick 4’, ’pick 4’,
’move nt0 ’, ’throw 2’, ’throw 4’, ’throw 4’, ’move np1 ’, ’pick 1’,
’move np0 ’, ’pick 0’, ’move nt0 ’, ’throw 0’, ’throw 1’]
Terminal state
[190 , ’nt0 ’, 1, 1, 1, 1, 1, 1, 0, 0, 2, 2]]

58

Outputs

A.2.3 Prioritizing DP
This section presents the result output by the application of the exact DP paradigm to
the redefined problem with priorities. Here, only one sequence of tasks is presented, since
orders are served simultaneously and substituted as soon as a tray becomes available.
Note that the output shows when a tray is full, i.e., an order’s demand is fulfilled.
Dynamic sequence of tasks
[’pick 0’, ’move np1 ’, ’pick 1’, ’move np2 ’, ’move np3 ’, ’pick 3’,
’pick 3’, ’move nt0 ’, ’throw (0, 0)’, ’throw (1, 0)’, ’throw (3, 0)’,
’throw (3, 0)’, ’tray0 is full! Must change it.’, "Now tray0 contains a
new order {’ objectA ’: 1, ’objectB ’: 1, ’objectC ’: 1, ’objectD ’: 0,
’objectE ’: 2}", ’move np1 (COLLISION)’, ’pick 1’, ’pick 1’, ’move np2 ’,
’pick 2’, ’pick 2’, ’move nt1 ’, ’throw (1, 0)’, ’throw (1, 1)’,
’throw (2, 1)’, ’throw (2, 1)’, ’tray1 is full!’, ’move np4 ’, ’pick 4’,
’pick 4’, ’move np2 ’, ’pick 2’, ’move np0 ’, ’pick 0’, ’move nt0 ’,
’throw (0, 0)’, ’throw (2, 0)’, ’throw (4, 0)’, ’throw (4, 0)’]

Terminal state
[186 , ’nt0 ’, 1, 1, 0, 2, 1, 1, 3, 1, 2, 0, 0, 0, 2, 2, 0]

A.3 Implementation details
Note that in the printed outputs object types are referred to as numbers from 0 to 4
instead of 1 to 5, and trays as numbers from 0 to 2 instead of 1 to 3: Python was chosen
as implementation language. All code implementation and further details can be found at
https://github.com/margheritabattistotti/opt_robot_scheduling-withADP.git.

59

https://github.com/margheritabattistotti/opt_robot_scheduling-withADP.git

Bibliography

Russel Allgor, Tolga Cezik, and Daniel Chen. Algorithm for robotic picking in amazon
fulfillment centers enables humans and robots to work together effectively. INFORMS
Journal on Applied Analytics, 53(4):266–282, 2023. doi: https://doi.org/10.1287/inte.
2022.1143.

αHead Research. About αHead. https://ahead-research.com/en/
discover-spindox/. Accessed: 2023-09-29.

Vincent Babin and Clément Gosselin. Mechanisms for robotic grasping and manipulation.
Annual Review of Control, Robotics, and Autonomous Systems, 4(1):573–593, 2021. doi:
https://doi.org/10.1146/annurev-control-061520-010405.

Paolo Brandimarte. From Shortest Paths to Reinforcement Learning. Springer, 2021.

EU DARKO Project. About DARKO. https://darko-project.eu/about/. Accessed:
2024-02-16.

Frederick Hillier and Gerald Lieberman. Introduction to Operations Research. McGraw-
Hill Education, 2021.

Levente Kocsis and Csaba Szepesvári. Bandit Based Monte-Carlo Planning, pages 282–
293. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006. doi: https://doi.org/10.
1007/11871842_29.

Maximillian Löfflet, Nils Boysen, and Micheal Schneider. Human-robot cooperation: Co-
ordinating autonomous mobile robots and human orders pickers. Transportation Sci-
ence, 57(4):979–998, 2023. doi: https://doi.org/10.1287/trsc.2023.1207.

Warren B. Powell. Approximate Dynamic Programming: Solving the Curses of Dimen-
sionality. Wiley, 2011.

Warren B. Powell. Reinforcement Learning and Stochastic Optimization: A unified frame-
work for sequential decisions. Wiley, 2019.

Adrien Rimelé, Michel Gamache, Michel Gendreau, Grangier Philippe, and Rousseaus
Louis-Martin. Robotic mobile fulfillment systems: a mathematical modelling framework
for e-commerce applications. Taylor Francis Journals, 60(11):3589–3605, 2022. doi:
https://doi.org/10.1080/00207543.2021.1926570.

60

https://ahead-research.com/en/discover-spindox/
https://ahead-research.com/en/discover-spindox/
https://darko-project.eu/about/

BIBLIOGRAPHY

Spindox. When the challenge for innovation becomes serious, Spindox begins to stand
out. https://www.spindox.it/en/. Accessed: 2024-02-16.

Bence Tipary and Gábor Erdős. Generic development methodology for flexible robotic
pick-and-place workcells based on digital twin. Robotics and Computer-Integrated Man-
ufacturing, 71, 2021. doi: https://doi.org/10.1016/j.rcim.2021.102140.

Zheng Wang, Jiuh-Biing Sheu, Chung-Piaw Teo, and Guiqin Xue. Robot scheduling for
mobile-rack warehouses: Human–robot coordinated order picking systems. Prod Oper
Manag, 31:98–116, 2022. doi: https://doi.org/10.1111/poms.13406.

Mark H. M. Winands. Monte-Carlo Tree Search, pages 1–6. Springer International Pub-
lishing, Cham, 2015. doi: https://doi.org/10.1007/978-3-319-08234-9_12-1.

P.Th. Zacharia and N.A. Aspragathos. Optimal robot task scheduling based on genetic
algorithms. Robotics and Computer-Integrated Manufacturing, 21(1):67–79, 2005. doi:
https://doi.org/10.1016/j.rcim.2004.04.003.

61

https://www.spindox.it/en/

	Introduction
	DARKO: the project and the problem definition
	Scheduling problem definition
	The setting

	Deterministic and stochastic toy models resolution through Dynamic Programming
	The Dynamic Programming principle
	Dynamic Programming application to toy models
	Deterministic instance
	Stochastic instance

	Approximate Dynamic Programming for large scale stochastic instances
	Approximate Policy Iteration
	Features and reward engineering
	Exploration in decision making
	The algorithm

	Lookahead Policies
	Myopic Rollout
	Monte Carlo Tree search

	ADP vs DP: comparisons on toy models
	Accuracy of value function approximations through API

	ADP performances on larger scale problems

	Introducing priorities
	Problem reintrepretation
	Resolution approaches
	Sequential Heuristic
	Sequential DP
	Prioritizing DP

	Results
	Larger Scale Solutions

	Conclusions
	Further Developments

	Outputs
	Exact DP
	Deterministic instance
	Stochastic instance

	Problem with priorities
	Sequential heuristic
	Sequential DP
	Prioritizing DP

	Implementation details

