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Abstract 
Reservoir characteriza4on is an essen4al part of the hydrocarbon explora4on and produc4on workflow 
as it plays a significant role in our understanding of underground geological se@ng, fluid behaviour, 
and reservoir proper4es. Petrophysics is the discipline that allow to develop reservoir models and 
es4mate their proper4es. Porosity and permeability assessment plays a significant role in reservoir 
characteriza4on. Therefore, the main objec4ve of this thesis is to predict and assess these parameters 
using machine learning algorithms. 

The primary aim of this thesis is to es4mate reservoir proper4es, including porosity, permeability, and 
satura4on, u4lizing well-log data. The focus lies on the diverse measurements obtained through 
various technologies. These measurements are indirect and necessitate interpreta4on processes 
grounded in assumed petrophysical models. Par4cularly in complex forma4ons like carbonate 
reservoirs with intricate and heterogeneous porosity paGerns, these models may lack full realism. 
Machine learning (ML) emerges as a promising approach in this context, offering mul4ple benefits. ML 
can enhance parameter es4ma4on while also facilita4ng the extrac4on of sta4c and dynamic 
proper4es, thereby reducing the need for a plethora of different measurements. For example, ML 
techniques can poten4ally obviate the necessity for NMR logs. 

In the first part of the study, various predic4ve models, including Random Forest (RF), Gradient 
Boos4ng (GB), and K-Nearest Neighbor (K-NN), were developed. The NMR log provides a fairly accurate 
measurement of different types of porosity, such as total, effec4ve, and free-fluid porosity.  The basic 
well log data, such as gamma ray, resis4vity, density, neutron porosity, acous4c slowness, and 
photoelectric factor, were used as predictors, while the Nuclear Magne4c Resonance (NMR) log was 
used as the target variable for the machine learning algorithms. Determinis4c models, such as Timur-
Coates, originally developed for sandstone reservoirs, were u4lized to es4mate permeability and 
satura4on as func4ons of the three different porosity types es4mated from the predic4ve models. 
Subsequently, the predicted parameters, including free fluid, effec4ve, and total porosi4es, as well as 
permeability and satura4on, were compared to the measured data for evalua4on purposes. 

In the second part of the study, the NMR log was bypassed, and permeability was directly used as the 
target variable for machine learning models. Other basic well-log data were u4lized as predictors. This 
approach allows for the direct es4ma4on of reservoir parameters using machine learning, which can 
be highly beneficial as it removes determinis4c correla4ons, such as those found in the Timur-Coates 
model. In this part, a machine learning approach called Least Square Support Vector Regressor (LSSVR) 
was developed. 

The outcomes of each part and the different models were evaluated using various regression metrics, 
such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), 
and the Coefficient of Determina4on (R2) values. The results indicate acceptable to highly accurate 
predic4ons for various cases, ranging from the test dataset to the en4re dataset encompassing all five 
wells, as well as the evalua4on of individual wells included in the training phase. However, when 
applying the models to a different well that was not included in the training phase, the results showed 
nega4ve but s4ll somewhat acceptable outcomes. 
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The Python code in the form of a Jupyter notebook is available on GitHub and is open to the public for 
enhanced accessibility and collabora4on, facilita4ng poten4al future developments.   
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Nomenclature 
DLIS: Digital Log Interchange Standard 

GR: Gamma Ray Log 

AT: Resis4vity Log 

AT10: Resis4vity Log 10 inches from borehole 

AT30: Resis4vity Log 30 inches from borehole 

AT90: Resis4vity Log 90 inches from borehole 

RHOZ: Density Log 

NPHI: Neutron Porosity Log 

PEFZ: Photoelectric factor log 

DTCO: compressional slowness log 

NMR: nuclear Magne4c Resonance 

ML: Machine Learning  

RF: Random Forest 

GB: Gradient Boos4ng 

K-NN: K-Nearest Neighbor 

SVM: Support Vector Machine 

LSSVR: Least Square Support Vector Regressor 

Pd: Pandas 

Np: Numpy 

Plt: Matplotlib 

Sns: Seaborn 

K-CV: K-fold Cross Valida4on 

COA: Cuckoo Op4miza4on Algorithm 

MSE: Mean Square Error 

RMSE: Root Mean Square Error 

MAE: Mean Absolute Error 

R2: Coefficient of Determina4on 

ARI: Ariri Forma4on 

BVE: Barra Velha Forma4on 
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BRSA: Brazil 

RJS: Rio De Janeiro 

SPS: Sao Paolo 

SDR: Schulmberger-Doll-Research 

BVM: Bulk Volume Movalbe 

BVI: Bulk Volume Irreducible 

CBW: Clay Bound Water Volume 

BF: Bound Fluid 

BFE: Bound Fluid Effec4ve 

𝜙e: Effec4ve Porosity 

𝜙t: Total Porosity 

FF: Free Fluid Porosity 

NMRFF: Free Fluid Porosity 

NMREFF: Effec4ve Porosity 

NMRTOT: Total Porosity 

Swie: Effec4ve Irreducible Water Satura4on 

Swit: Total Irreducible Water Satura4on 

a: Coefficient in Timur-Coates Model 

b: Coefficient in Timur-Coates Model 

c: Coefficient in Timur-Coates Model 

K: Permeability 

DN: The dataset containing N samples 

X: Input feature matrix 

Y: Output SOH values 

Xi: The ith sample point 

Xij: The jth feature value of ith sample point 

Yi: Measured SOH value 

yi: Predicted SOH value 

W: Weight matrix 

β: Output weight matrix 
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k: Time step 

g(·): Ac4va4on func4on 

ψ(·) Mapping from input space to feature space 

K(·) Kernel func4on 
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1 Introduc;on 
Well log data analysis is a crucial aspect of the explora4on and evalua4on of hydrocarbon reservoirs, 
providing valuable insights into the physical proper4es and characteris4cs of subsurface forma4ons. 
Tradi4onally, this analysis has relied on manual interpreta4on of well log curves and logs, which can be 
4me-consuming, subjec4ve, and prone to errors (Lee, 2002). Furthermore, manual interpreta4on does 
not facilitate the integra4on of mul4ple datasets from different wells or loca4ons, poten4ally leading 
to inconsistent or incomplete results (Bueno, 2014).    

Machine learning techniques have emerged as a promising approach to automate and enhance well 
log data analysis in the petroleum industry. These computa4onal methods have been applied for 
various purposes, including classifica4on, regression, clustering, anomaly detec4on, feature extrac4on, 
and dimensionality reduc4on. For instance, demonstrated the integra4on of well log interpreta4ons 
for lithofacies classifica4on and permeability modeling through advanced machine learning algorithms, 
overcoming mul4collinearity and enhancing predic4ve capabili4es. Furthermore, machine learning 
methods have shown poten4al for predic4ng water satura4on distribu4on in reservoirs, offering 
valuable insights for reservoir characteriza4on and management (Al-Mudhafar, 2007). 

Furthermore, machine learning techniques have been u4lized for interval inversion approaches to 
improve the interpreta4on of well logs, reducing the harmful effects of data noise and enhancing the 
accuracy of well-logging inverse problems (Mihály Dobróka, 2016). Addi4onally, the applica4on of 
machine learning algorithms has enabled the predic4on of the effec4veness of radial jet drilling 
technology in various geological condi4ons, providing valuable insights for op4mizing drilling 
opera4ons and produc4on rates (Aleksandr Kochnev, 2021) (Zhao Wang, 2022). also emphasized the 
quan4ta4ve evalua4on of unconsolidated sandstone heavy oil reservoirs based on machine learning, 
highligh4ng the poten4al of machine learning for reservoir evalua4on and produc4on op4miza4on 
(Zhao Wang, 2022).   

The applica4on of machine learning techniques in the petroleum industry has gained significant 
aGen4on for predic4ng well-log parameters without the need for addi4onal costs or well interven4on. 
This approach has been facilitated by the u4liza4on of diverse well-log datasets to train machine 
learning models, thereby enhancing the accuracy of predic4ve models. Notably, machine learning 
techniques such as Random Forest, Gradient Boos4ng, K-nearest Neighbour, and Support Vector 
Machine have been widely applied in the petroleum industry for this purpose. Addi4onally, ar4ficial 
neural networks have been u4lized to analyze and predict trends and paGerns in well-log data. 

In the previous study, machine learning models such as random forest and gradient boos4ng were 
u4lized for the predic4on of various well-log data (including porosity, sonic, and NMR) based on basic 
well-log data in the Santos Basin. Pellegrini's work demonstrated the effec4veness of these models in 
predic4ng well log data (Pellegrini, 2023). 

As a recommenda4on for future research, Pellegrini suggested that using the predicted NMR values, it 
may be possible to calculate addi4onal petrophysical data such as permeability. Building upon this 
recommenda4on, the present thesis aims to further develop the methodology and techniques 
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introduced by Pellegrini. The focus of this thesis is to explore the poten4al for u4lizing predicted NMR 
data to es4mate petrophysical proper4es, specifically permeability, through the applica4on of machine 
learning models. In the first part of this thesis, the basic well-log data are used as input for a machine 
learning approach. The goal is to build a model that can predict other specific logs, such as NMR 
(Nuclear Magne4c Resonance), from the well-log data. NMR is a non-destruc4ve tes4ng technique that 
measures the magne4c proper4es of fluids in porous media. By analyzing the NMR signals, different 
porosi4es (total, effec4ve, and free fluid porosi4es) can be es4mated. These porosi4es are important 
reservoir parameters that affect the fluid flow and trapping behavior in the subsurface. 

The applica4on of machine learning techniques for predic4ng NMR porosity from well-log data has 
been a subject of significant interest in the petroleum industry. This approach involves training and 
tes4ng the model on a large dataset of well-log data from different wells and loca4ons to establish the 
rela4onship between input well-log data (e.g., resis4vity, sonic, density) and the output NMR porosity. 
The trained model can then be u4lized to predict NMR porosity for new well-log data without requiring 
addi4onal measurements or assump4ons. 

 

 

 

 

 

 

 

 

 

Several studies have contributed to the advancement of machine learning applica4ons in the 
petroleum industry, aligning with the objec4ve of predic4ng reservoir parameters from well-log data. 
For instance, the synthesis of Nuclear Magne4c Resonance (NMR) outputs for clas4c rocks using 
machine learning methods, emphasizing the significance of predic4ng NMR outputs for wells where 
NMR data is unavailable due to tool availability and logging costs (Rezaee, 2022). Addi4onally, it is 
demonstrated a machine learning accelerated approach to infer nuclear magne4c resonance porosity 
for a Middle Eastern carbonate reservoir, highligh4ng the reliability and consistency of the predic4on 
models with low errors and high 'R' values (Ayyaz Mustafa, 2023). Furthermore, it is presented an 
adap4ve boos4ng of the random forest algorithm for automa4c petrophysical interpreta4on of well 
logs, showcasing the poten4al of machine learning techniques in petrophysical interpreta4on 
(Srivardhan, 2022).  

The predic4on of NMR porosity from well-log data will also lead to other reservoir parameters that can 
be derived from it, such as permeability and satura4on. Permeability is a measure of how easily fluids 
can flow through a porous medium. Satura4on is a measure of how much fluid is present in a pore 
space. These parameters are also essen4al for reservoir characteriza4on and evalua4on. By comparing 

Figure 1-1: Schema0c representa0on of the cons0tuents of a rock; Defini0on of different porosi0es 
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the predicted NMR porosity with lab data (RCAL), which is obtained by using reference cores or 
standard methods to measure porosity directly, acceptable values for permeability and satura4on can 
be es4mated. This will help to validate the accuracy and reliability of the machine learning model and 
its predic4ons. 

The applica4on of the least square support vector machine (LSSVM) for predic4ng permeability directly 
from basic well-log data has been a subject of significant interest in the petroleum industry. LSSVM, as 
a type of support vector machine (SVM), is capable of solving linear systems of equa4ons by minimizing 
a quadra4c objec4ve func4on. It can effec4vely handle nonlinear and high-dimensional data by u4lizing 
kernel func4ons to map the input data into a higher-dimensional feature space. LSSVM has been 
demonstrated to be effec4ve and robust for various classifica4on and regression problems in different 
domains.   

The goal of applying LSSVM to predict permeability from well-log data is to develop a simple and fast 
method that does not require any addi4onal measurements or assump4ons about the reservoir 
proper4es. However, these methods have some limita4ons, such as requiring core samples for 
valida4on, being sensi4ve to noise and outliers, or being dependent on the quality and availability of 
well-log data. 

The research consists of two main phases. In the first phase, well-log data of different wells are 
collected, pre-processed, and visualised. In the second phase, two different approaches to predict 
permeability from well-log data are applied and compared. The first approach uses nuclear magne4c 
resonance (NMR) log data. The NMR log data are used to es4mate the pore size distribu4on and the 
effec4ve porosity of the rock, and then to calculate the permeability using empirical models. The 
predicted permeability from NMR log data is compared with the measured permeability from 
laboratory tests on core samples taken from the same wells (figure 1-2). 

The second approach uses basic well-log data, such as gamma ray, resis4vity, density, and neutron 
porosity, and Photoelectric which are more widely available. The basic well-log data are used to 
es4mate the shale volume, water satura4on, and porosity of the rock, and then to calculate the 
permeability using least square support vector machine (LSSVM). The predicted permeability from 
basic well-log data is also compared with the measured permeability from laboratory tests on core 
samples (figure 1-2). 
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Figure 1-2: the general workflow of the thesis; First and Second Phases 
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2 Well-log Data Collec;on, Goal Defini;on, and Pre-processing 

2.1 Data Collec-on and Pre-processing 

The data collec4on process involved gathering well-log data from six different wells. Each well had 
various logging measurements, such as Gamma Ray (GR), Resis4vity (AT), Density (RHOZ), Neutron 
Porosity (NPHI), Compressional Slowness (DTCO), Photo-electric Factor (PEFZ), and Nuclear Magne4c 
Resonance (NMR). The collected data was stored in a proprietary format called DLIS (Data Log 
Interchange Standard). 

The ini4al stage in data preprocessing was to load the DLIS files from each well into a dedicated data 
collec4ng applica4on. This tool allowed for the extrac4on of individual well-log measurements into 
dis4nct data frames. The following phase entailed removing any missing or incorrect data points. This 
was accomplished by recognizing and dele4ng any data points labeled as Nan (Not a Number) or falling 
outside of the expected range of values for the corresponding measurement. 

Aser pre-processing, each well-log data set was represented by a dis4nct data frame, with each row 
represen4ng a single depth measurement and each column represen4ng a different logging 
measurement. The data frames were arranged depending on the well depths. 

Reservoir Interval Extrac4on and Data Concatena4on: The next step in data processing was to extract 
the depth range of the reservoir interval from each well-log data frame. The reservoir interval was 
defined as the stra4graphic unit that was the principal focus of the reservoir characterisa4on research. 
Once the reservoir interval was determined, the data points from each well-log data frame were 
retrieved and concatenated. This produced a single data frame containing all of the well-log 
measurements for the full reservoir interval. 

Concatena4ng data frames required careful considera4on of the depth scales u4lized in the various 
well-log data sets. To ensure compa4bility, the depth scales were thoroughly reviewed and changed as 
necessary to ensure that the data points were matched. 

Visualizing Correla4ons and Data Distribu4on: A variety of visualiza4ons were used to acquire a 
beGer understanding of the data and assure its viability for future analyses. Seaborn's pairplot tool was 
used to depict the correla4on between all pairs of well-log data, revealing informa4on about the 
correla4ons between various logging variables. In addi4on, histograms were created for each well-log 
measurement to examine data distribu4on and iden4fy probable outliers or data abnormali4es. These 
visualiza4ons confirmed that the data was consistent, dependable, and appropriate for machine 
learning applica4ons. 

Final Data Frame and Predic4ve Modelling: Aser comple4ng the data pre-processing and 
visualiza4on stages, a comprehensive data frame was created, containing all essen4al well-log 
informa4on for the reservoir interval. This data frame was used as the input for predic4ve machine 
learning (ML) models. The machine learning models were trained to infer connec4ons between well-
log values and reservoir parameters of interest, such as porosity, permeability, and hydrocarbon 
satura4on. The trained ML models were subsequently u4lized to predict these quali4es at previously 
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unrecorded well loca4ons, allowing for reservoir characteriza4on outside the scope of accessible well 
data. 

By properly collec4ng, pre-processing, displaying, and exploi4ng well-log data, a predic4ve ML model 
developed that precisely defines reservoir features during the whole interval. This model offers useful 
insights into reservoir management and op4miza4on, allowing for more informed decisions about 
drilling, produc4on, and reservoir development strategies (figures 2-1, 2-2, and 2-3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-1: General concept of first part of the predic0ve model; using basic well log data (input) vs NMR log 
data (target) to es0mate reservoir characteris0cs from predicted NMR 

Figure 2-2: General concept of second part of the predic0ve model; using basic well log data (input) vs 
permeability lab data (target) to es0mate reservoir permeability directly from well log data 
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Figure 2-3: General workflow of the data collec0on and pre-processing; crea0on of a unique data frame of different wells in the Santos 

basin, for two parts of the thesis (Part 01 and Part 02) 
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2.2 Well-Log Data Informa-on 

Wireline logging is a crucial technique in the field of petroleum geology and explora4on, offering 
valuable insights into subsurface forma4ons and reservoir characteris4cs. Various wireline logging 
curves are used to measure different proper4es of the rock and fluid forma4ons encountered during 
drilling and well comple4on. Each wireline logging curve provides specific informa4on that is essen4al 
for understanding the geological and hydrocarbon poten4al of a well. Here, we'll briefly explain the 
importance of some key wireline logging curves, while more in-depth informa4on can be found in open 
sources. 

The Gamma-Ray log (GR), is a well logging instrument used in petroleum geology and reservoir 
evalua4on that measures the natural radioac4vity emiGed by rock forma4ons in a borehole, usually in 
API units. Its principal applica4ons include detec4ng shaly zones with high radioac4vity, which is useful 
for reservoir and forma4on appraisal. It also helps calculate shale volume, which is an important 
sta4s4c for determining reservoir quality and hydrocarbon poten4al. Furthermore, the variable 
radioac4vity levels associated with dis4nct clay minerals enable some degree of clay mineral 
iden4fica4on in shales and clay-rich forma4ons. The GR log is a valuable instrument in the oil and gas 
sector, providing cri4cal data for drilling and produc4on decisions in hydrocarbon explora4on and 
produc4on. 

The Resis4vity log (RES), is a crucial wireline logging curve used in petroleum geology and reservoir 
evalua4on. Its major goal is to determine the resis4vity of the geological forma4on, also known as 
apparent forma4on resis4vity. This study considers inquiry depths of 10 inches (AT10), 30 inches 
(AT30), and 90 inches (AT90), which play an important role in analyzing the aGributes of subsurface 
forma4ons. The Resis4vity log is important because it may be used to determine fluid satura4on inside 
a forma4on. This is accomplished using the following principles: 

• Resis4vity and Forma4on Fluids: represent resis4vity of a forma4on is highly dependent on the 
types and proper4es of fluids present within it. Different fluids, such as water and hydrocarbons, 
have dis4nct electrical conduc4vi4es. Water, being a good conductor, results in low resis4vity 
values, while hydrocarbons, which are generally poor conductors, lead to high resis4vity values. 

• Depth Inves4ga4on: by measuring resis4vity at specific depths, such as 10 inches, 30 inches, and 
90 inches, geoscien4sts can obtain a ver4cal profile of resis4vity varia4ons within the wellbore. 
This allows for a more comprehensive assessment of the forma4on's proper4es at different 
invasion zones. 

• Satura4on Indica4on: the resis4vity curves obtained at these depths provide valuable insights into 
the fluid satura4on of the forma4on. Low resis4vity values, as observed in the case of water-
bearing zones, indicate the presence of water or brine, sugges4ng that these zones may not be 
ideal for hydrocarbon produc4on. On the other hand, high resis4vity values in the resis4vity log 
maybe indica4ve of hydrocarbon-bearing zone, signifying the poten4al for the presence of oil or 
gas. 

The Forma4on Density log, abbreviated as (RHOZ), is a crucial wireline logging tool that assesses 
subsurface forma4ons by subjec4ng them to gamma ray bombardment. Its ability to gauge the degree 
of scaGering and absorp4on of gamma rays provides a direct indica4on of the forma4on's bulk density, 
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revealing insights into lithology, lithological boundaries, and porosity. Par4cularly valuable in 
hydrocarbon explora4on, this log helps iden4fy hydrocarbon-bearing zones with dis4nc4ve bulk 
density characteris4cs, playing a pivotal role in well placement, reservoir assessment, and the overall 
success of oil and gas explora4on and produc4on opera4ons. 

The Neutron Porosity log, osen denoted as (NPHI), is a cri4cal tool in wireline logging that assesses 
subsurface forma4ons by exposing them to a controlled source of fast neutrons. It gauges the 
forma4on's response to these neutrons, which in turn serves as a direct indicator of the forma4on's 
porosity. In essence, the log provides the porosity of the forma4on by evalua4ng the interac4on of fast 
neutrons with the hydrogen atomic nuclei in the rock, providing essen4al data for reservoir 
characteriza4on, hydrocarbon poten4al assessment, and wellbore stability decisions in the field of 
petroleum geology. 

The Sonic log, specifically the Compressional Wave Slowness (DTCO), is a cri4cal component of 
wireline logging in the petroleum industry. It serves as a valuable tool for gathering essen4al 
informa4on about subsurface forma4ons. In par4cular, it provides measurements related to the 
slowness (inverse of seismic velocity), and aGenua4on, of refracted acous4c waves that traverse the 
forma4on and reach the wellbore wall. 

The Photo-Electric Factor log, osen abbreviated as (PEFZ), is a significant wireline logging tool used 
in geological and petrophysical evalua4ons of subsurface forma4ons. It operates by measuring the 
photo-electric absorp4on, which refers to the absorp4on of gamma rays under a specific threshold by 
the forma4on. This absorp4on response provides a highly valuable indicator of the forma4on's 
lithology, helping geologists and petrophysicists dis4nguish and characterize different rock types and 
mineral composi4ons within the wellbore. The PEFZ log's capacity to discern lithological varia4ons is 
instrumental in making informed decisions related to reservoir mapping, well comple4on, and the 
overall understanding of geological forma4ons in the context of the oil and gas industry. 

Nuclear Magne4c Resonance (NMR), logging is a well logging method that measures the induced 
magnet moment of hydrogen nuclei (protons) contained within the fluid-filled pore space of porous 
media (reservoir rocks). The NMR signal is a func4on of the number of protons, the distribu4on of pore 
sizes, and the mobility of the fluids in the pore space. NMR logging is a powerful tool for reservoir 
characteriza4on because it can provide informa4on about the following: 

Total porosity: The total porosity of a rock is the volume of all the pores in the rock divided by the total 
volume of the rock. NMR logging can be used to measure total porosity by measuring the total amount 
of hydrogen in the pore space and the measure is independent from the matrix proper4es. 

Pore size distribu2on: The pore size distribu4on of a rock is the distribu4on of the sizes of the pores in 
the rock. NMR logging can be used to measure pore size distribu4on by measuring the relaxa4on 4mes 
of the hydrogen protons in the pore space. Relaxa4on 4mes are shorter for smaller pores and longer 
for larger pores. 

Fluid type iden2fica2on: NMR logging can be used to iden4fy the types of fluids in the pore space by 
measuring the chemical shis of the hydrogen protons. The characteris4c relaxa4on 4me of the NMR 
signal and is dependent on the type of molecule that the hydrogen proton is bonded to. 
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Fluid mobility: The fluid mobility in the pore space is a measure of how easily the fluids can flow through 
the pores. NMR logging can be used to measure fluid mobility by measuring the diffusion of the 
hydrogen protons in the pore space. Diffusion is a process by which hydrogen protons move from areas 
of high concentra4on to areas of low concentra4on. 

The informa4on provided by NMR logging can be used to improve the understanding of reservoir 
proper4es, fluid distribu4ons, and op4mize hydrocarbon recovery strategies. For example, the total 
porosity and pore size distribu4on can be used to es4mate the reservoir's permeability and irreducible 
water satura4on. The fluid type iden4fica4on can be used to iden4fy zones that are likely to produce 
oil or gas. And the fluid mobility can be used to iden4fy zones that are likely to be produc4ve and zones 
that are likely to be bypassed by fluids. 

Here are some specific examples of how NMR logging is used in petroleum geology and reservoir 
characteriza4on: 

• Iden4fying and characterizing different porosity types : NMR logging can be used to iden4fy and 
characterize different porosity types, such as intergranular pores, vugs, and fractures. This 
informa4on can be used to understand the reservoir's flow characteris4cs and to iden4fy poten4al 
drilling and produc4on problems. 

• Es4ma4ng permeability: Permeability is a measure of how easily fluids can flow through a rock. 
NMR logging can be used to es4mate permeability by measuring the pore size distribu4on and the 
fluid mobility in the pore space. 

Here is the available well log data across six different wells (figure 2-4): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2-4: Available well log data across all six wells; Gama Ray (GR), Resis0vity at 90 inches (AT), Neutron Porosity 

(NPHI), Compressional Slowness (DTCO), Photoelectric Factor (PEFZ), Nuclear Magne0c Resonance (NMR) 
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2.3 Geological history 

The Santos Basin is bounded to the west by the Serra do Mar mountain range, and to the east by the 
São Paulo Plateau. The basin floor is divided into two main provinces: the Santos High, which is a 
shallow-water region, and the Santos Deep, which is a deeper-water region. Here's a summary of the 
key points you've highlighted: 

Forma4on During Gondwana Breakup: The Santos Basin formed during the early Jurassic period as a 
result of the breakup of the supercon4nent Gondwana. This geological event separated what are now 
the con4nents of South America and Africa. 

Gondwana's Composi4on: Gondwana was a vast landmass that included present-day South America, 
Africa, India, Australia, and Antarc4ca. As it began to fragment, ris valleys formed, and the Santos Basin 
developed within one of these ris valleys. 

Geographical Boundaries: The Santos Basin is geographically bounded by the Serra do Mar mountain 
range to the west and the São Paulo Plateau to the east, giving it dis4nct geographical boundaries. 

Basin Floor Divisions: The basin floor of the Santos Basin can be divided into two primary provinces: 

Santos High: This region is characterized as a shallow-water area. 

Santos Deep: The Santos Deep is situated in deeper-water areas, likely represen4ng greater depths 
and different geological features. 

 

2.4 Geological forma-ons 

The Santos Basin is home to a variety of geological era’s, including: 

• Basement: The basement is composed of metamorphic and igneous rocks that formed during 
the Precambrian era. These rocks are located deep beneath the sedimentary rocks of the 
Santos Basin. 

• Jurassic: The Jurassic sec4on is composed of sandstones, shales, and limestones that were 
deposited in a variety of environments, including rivers, lakes, and deltas. These rocks were 
deposited during the early stages of the forma4on of the Santos Basin. 

• Cretaceous: The Cretaceous sec4on is composed of a thick layer of salt, followed by a sequence 
of sandstones and shales that were deposited in a marine environment. The salt layer was 
deposited during a period of restricted marine circula4on, and the sandstones and shales were 
deposited aser the salt layer was deposited. 

• Paleogene: The Paleogene sec4on is composed of a sequence of sandstones, shales, and 
limestones that were deposited in a variety of environments, including rivers, lakes, and deltas. 
These rocks were deposited aser the salt layer was deposited and the marine circula4on was 
restored. 
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• Neogene: The Neogene sec4on is composed of a sequence of sandstones, shales, and 
limestones that were deposited in a marine environment. These rocks were deposited during 
the most recent geological period. 

 

2.5 Geological features 

The Santos Basin is also home to several important geological features, including: 

Pre-salt reservoirs:  

reservoir: Pre-salt reservoirs in the Santos Basin are located beneath a thick layer of salt that was 
deposited during the Cretaceous period. This salt layer acted as a seal, preserving organic-rich 
sediments deposited before and during its forma4on. 

Hydrocarbon Poten2al: These reservoirs are known to contain some of the largest oil and gas reserves 
in the world. The hydrocarbons within these reservoirs are typically of high quality, with light crude oil 
being a common find. 

Challenges: Developing pre-salt reservoirs is a formidable task due to their extreme depths, which can 
reach several kilometres beneath the seafloor. Drilling through the thick salt layer is technically 
challenging, as it requires specialized equipment and exper4se to avoid complica4ons like well 
instability and pressure imbalances. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-5: General map of Santos Bason and Pre-salt reservoir loca0on on the basin (Santos and Campos) 
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Salt diapirs: 

Role in Trap Forma2on: Salt diapirs are of par4cular interest to the oil and gas industry because they 
can create structural traps for hydrocarbons. As the salt moves upward, it deforms the surrounding 
sedimentary rocks, causing them to fold and fracture. This deforma4on can create an4clines, domes, 
and other structural traps that are conducive to the accumula4on of oil and gas. 

Preserva2on of Hydrocarbons: The impermeable nature of salt layers can also contribute to the 
preserva4on of hydrocarbons. As the salt rises and seals off porous reservoir rocks, it prevents the 
escape of hydrocarbons, allowing them to accumulate over geological 4meframes. 

Common in Santos Basin: Salt diapirs are a common geological feature in the Santos Basin. Their 
presence is closely associated with the extensive salt layers found in this basin. These diapirs are osen 
interconnected with other geological elements, such as faults and stra4graphic traps, further 
enhancing their importance in hydrocarbon explora4on. 

Geological Challenges: While salt diapirs provide opportuni4es for hydrocarbon explora4on, they also 
present geological challenges. The complex deforma4on paGerns associated with salt movement can 
result in reservoir heterogeneity, making accurate reservoir modeling and drilling planning crucial for 
success. 

Grabens:  

Grabens are structures that form when the Earth's crust is pulled apart. Grabens are common in the 
Santos Basin, and they have played an important role in the forma4on of the pre-salt reservoirs. 

Forma2on Mechanism: Grabens are geological structures that form when the Earth's crust is subjected 
to extensional tectonic forces, causing it to be pulled apart. This stretching of the crust results in the 
crea4on of elongated, down-dropped blocks called grabens, osen bounded by fault systems. 

Role in Pre-salt Forma2on: Grabens have played a significant role in the forma4on of pre-salt reservoirs 
in the Santos Basin. These structural depressions provided ideal se@ngs for the accumula4on of 
sediments, including the organic-rich material that eventually became source rocks for hydrocarbons. 

Accumula2on of Sediments: Within the grabens, sedimentary layers accumulated over geological 4me. 
These layers osen include the source rocks that generated the hydrocarbons, as well as reservoir rocks 
that can trap oil and gas. 

Structural Traps: The faulted boundaries of grabens can create structural traps for hydrocarbons. As 
sediments filled the grabens, faul4ng could create both stra4graphic and structural traps, which are 
favorable condi4ons for the accumula4on and reten4on of oil and gas. 

Interac2on with Salt Diapirs: Grabens in the Santos Basin are osen interconnected with other 
geological elements, such as salt diapirs and fault systems. These interac4ons can further enhance 
their importance in hydrocarbon explora4on. For example, salt diapirs can rise within grabens, crea4ng 
addi4onal structural complexity and trapping opportuni4es. 

Geological Significance: Grabens are essen4al geological features that have influenced the basin's 
sedimentary architecture and hydrocarbon poten4al. Their presence and interac4on with other 
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structural elements have contributed to the unique geological se@ng of the pre-salt play in the Santos 
Basin. 

Challenges and Opportuni2es: While grabens provide opportuni4es for hydrocarbon explora4on, they 
also present geological challenges. Understanding the complex deforma4on paGerns associated with 
grabens is crucial for accurate reservoir modelling, drilling planning, and resource assessment in the 
basin. 

2.6 Barra Velha Forma-on: 

The Barra Velha Forma4on is a geological forma4on located in the southern region of Brazil, specifically 
in the Santos Basin offshore the state of São Paulo. This forma4on is of significant interest in the field 
of petroleum geology and explora4on due to its hydrocarbon poten4al. 

Here are some key points about the Barra Velha Forma4on: 

Stra4graphy: The Barra Velha Forma4on is a part of the post-ris sec4on within the Santos Basin. It is 
part of the late Cenozoic sedimentary sequence, primarily composed of clays, silts, sands, carbonate 
layers. 

Hydrocarbon Poten4al: The Santos Basin, including the Barra Velha Forma4on, is known for its 
substan4al hydrocarbon reserves. The forma4on is associated with both oil and gas deposits. 
Exploratory drilling and seismic studies have been conducted to assess the hydrocarbon poten4al of 
the region. 

Reservoir Characteris4cs: The Barra Velha Forma4on features reservoir rocks with varying porosity 
and permeability. Understanding the porosity and fluid distribu4on within these reservoir rocks is 
cri4cal for evalua4ng their produc4on poten4al. The use of wireline logs like the Nuclear Magne4c 
Resonance (NMR) log, among others, is essen4al for characterizing these reservoirs. 

Reservoir Management: The detailed knowledge of the Barra Velha Forma4on's lithology, porosity, 
and fluid content, obtained through wireline logging and core analysis, guides reservoir management 
decisions. This informa4on aids in op4mizing well placement, drilling strategies, and produc4on 
schemes. 

Explora4on and Produc4on: As oil and gas companies seek to expand their explora4on efforts and 
increase produc4on in the Santos Basin, the Barra Velha Forma4on remains a focal point for geological 
and petrophysical analysis. This includes using advanced logging tools like NMR to refine reservoir 
understanding and improve hydrocarbon recovery strategies. 

the Barra Velha Forma4on in the Santos Basin, Brazil, is a geological forma4on of great significance in 
the context of hydrocarbon explora4on and produc4on. Advanced logging techniques, such as the 
Nuclear Magne4c Resonance (NMR) log, are vital for characterizing the reservoir proper4es within this 
forma4on and op4mizing the extrac4on of oil and gas resources. It plays a central role in enhancing 
the petroleum industry's capacity to make informed decisions regarding the Santos Basin's poten4al 
as a valuable hydrocarbon reservoir. The stra4graphical informa4on of Santos Basin has been shown in 
figure 2-6. 
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2.7 Loca-ons and Well-log plots of different wells: 

The wells 3-BRSA-944A-RJS, 1-BRSA-1116-RJS, 3-BRSA-1215-RJS, and 9-ITP-1-RJS are strategically 
located in the vicinity of Rio de Janeiro, cons4tu4ng the Itapù field, with the excep4on of 3-BRSA-944A-
RJS, which is affiliated with the Búzios field. These wells play a pivotal role in the explora4on and 
produc4on ac4vi4es within the oil and gas industry, focusing primarily on the Barra Velha Forma4on. 
This forma4on, recognized as a pre-salt carbonate reservoir, encompasses limestones and 
microbialites, contribu4ng significantly to the energy resources in the region (figures 2-7, 2-8). 

Specifically, 1-BRSA-1116-RJS represents an explora4on well, designed to iden4fy and characterize new 
reservoirs of oil or gas. Meanwhile, 3-BRSA-1215-RJS serves as an appraisal well, instrumental in 
evalua4ng the size, produc4on rate, and reserves of the oil or gas field. The produc4on well, 9-ITP-1-
RJS, is crucial for the extrac4on of oil or gas from the Barra Velha Forma4on, ensuring a sustainable 
supply of energy resources. 

On the other hand, the wells 3-EQNR-1-SPS and 3-EQNR-3-SPS are strategically posi4oned near Sao 
Paulo, contribu4ng to the Bacalhau field, formerly known as Carcara. Similar to their Rio de Janeiro 
counterparts, these wells tap into the Barra Velha Forma4on. Notably, they exhibit a higher gas-oil ra4o 
compared to other wells in the region, introducing a dis4nc4ve element to the explora4on and 
produc4on dynamics. 

In this context, the abbrevia4ons are integral to understanding the geographical and opera4onal 
aspects: 

• BRSA signifies Brazil 
• RJS denotes the state of Rio de Janeiro in Brazil 
• SPS represents the state of Sao Paulo in Brazil 

This explora4on and produc4on framework, characterized by explora4on, appraisal, and produc4on 
wells, underscores the significance of these wells in advancing the oil and gas industry in the region. 

Figure 2-6: Stra0graphic chart of the ri] and post-ri] phases of the Santos Basin, modified (Link) 

https://www.sciencedirect.com/science/article/pii/S089598112200236X
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The unique geological characteris4cs of the Barra Velha Forma4on further emphasize the importance 
of these assets in securing and op4mizing energy resources for sustainable development. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-7: Map of six different wells [3-BRSA-944A-RJS, 1-BRSA-1116-RJS, 3-BRSA-1215-RJS, and 9-ITP-1-RJS, 
3-EQNR-1-SPS and 3-EQNR-3-SPS] in fields of Itapù, Bùzios, Bacalhau (all located in the Santos Basin) 

Figure 2-8: Map of three different fields (Itapù, Bùzios, Bacalhau); Six different wells are drilled into these three fields. 

https://petroleohoje.editorabrasilenergia.com.br/buzios-vira-gerencia-executiva/
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The predic4on of permeability poses a significant challenge, especially in carbonate reservoirs, which 
typically exhibit lower levels of permeability compared to their sandstone counterparts. The 
complexity is further compounded by the heterogeneous distribu4on of vugs and fractures, which 
significantly contribute to the overall permeability of carbonate reservoirs. Carbonate reservoirs are 
composed of rocks that contain calcium carbonate minerals, such as calcite and dolomite. They are 
osen more complex and heterogeneous than sandstone reservoirs, which consist of quartz and other 
silicate minerals. You can observe the pore size and pore distribu4on in carbonate reservoirs in the 
Santos Basin, specifically for well 9-ITP-RJS, in the provided image (figure 2-9). 

 

 

 

 

 

 

 

 

 

In Well 3-BRSA-944A-RJS, the geological forma4ons encountered mirrored those in Well 1-BRSA-1116-
RJS to a significant extent. The Ariri forma4on, between 3444 to 6003.6 meters, shared similari4es with 
the corresponding depths in the first well, displaying high salinity, lack of porosity, and limited reservoir 
poten4al due to its composi4on of anhydrite and halite. The Barra Velha forma4on in this well, ranging 
from 5487 to 5782 meters, resembled the favorable reservoir characteris4cs found in Well 1, 
showcasing limestone lithology with high porosity and permeability. Subsequently, the Itapema 
forma4on, occupying 5782 to 6003.6 meters, echoed the same limita4ons observed in the 
corresponding depths of Well 1, featuring calcareous shale with insufficient porosity and permeability 
for effec4ve fluid flow (figure 2-10). 

In Well 1-BRSA-1116-RJS, the forma4ons encountered spanned varied lithologies and reservoir 
poten4als. The Ariri forma4on, ranging from 4050 to 5940 meters, consisted mainly of anhydrite and 
halite. Despite its substan4al thickness of 1292 meters, this forma4on lacked porosity, rendering it an 
inadequate reservoir rock due to its high salinity and low fluid-transmi@ng capabili4es. Following the 
Ariri, the Barra Velha forma4on, occupying 5342 to 5857 meters, presented limestone lithology 
spanning 515 meters. Contrarily, this forma4on exhibited high porosity and permeability, making it an 
excellent reservoir rock for fluid storage and transmission. Lastly, the Itapema forma4on, lying between 
5857 to 5940 meters, predominantly comprised calcareous shale, characterized by low porosity and 
permeability, making it unsuitable for fluid flow (figure 2-11). 

 

Figure 2-9: Pore Distribu,on in Well 9-ITP-RJS, Santos Basin: A close-up view showcasing the intricate pore structure and distribu,on. 
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Figure 2-10: Composite well-log of well 3-BRSA-944A-RJS (predic0on depth interval: 5477 - 5712 m) vs Measured Depth. Track 
1: Gamma-Ray (GR). Track 2: Induc0on Electric Resis0vity logs. Inves0ga0on depths of 10 (AT10), 30 (AT30), and 90 (AT90) 

inches. Track 3: Forma0on Density (RHOZ), Neutron Porosity (NPHI), and Photoelectric Factor (PEFZ) logs. Track 4: 
Compressional Wave Slowness (DTCO). Track 5: Nuclear Magne0c Resonance Porosity logs. Total Porosity (NMRTOT), Effec0ve 

Porosity (NMREFF), and Free Fluid (NMRFF). The light green highlight interval which is the reservoir rock. 
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In Well 3-BRSA-1215-RJS, the geological profile followed a paGern reminiscent of the previous wells. 
The Ariri forma4on, spanning 4709 to 5681 meters, exhibited similari4es with Wells 1 and 3 in terms 
of high salinity, lack of porosity, and unsuitability as a reservoir rock due to its anhydrite and halite 

Figure 2-11: Composite well-log of well 1-BRSA-1116-RJS (predic0on depth interval: 5358 - 5560 m) vs Measured Depth. Track 
1: Gamma-Ray (GR). Track 2: Induc0on Electric Resis0vity logs. Inves0ga0on depths of 10 (AT10), 30 (AT30), and 90 (AT90) 

inches. Track 3: Forma0on Density (RHOZ), Neutron Porosity (NPHI), and Photoelectric Factor (PEFZ) logs. Track 4: 
Compressional Wave Slowness (DTCO). Track 5: Nuclear Magne0c Resonance Porosity logs. Total Porosity (NMRTOT), Effec0ve 

Porosity (NMREFF), and Free Fluid (NMRFF). The light green highlight interval which is the reservoir rock. 
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content. The subsequent Barra Velha forma4on, occupying 5412 to 5681 meters, mirrored the 
favorable characteris4cs observed in Wells 1 and 3, presen4ng limestone lithology with notable 
porosity and permeability, rendering it a favorable reservoir rock for fluid storage and transmission 
(figure 2-12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-12: Composite well-log of well 3-BRSA-1215-RJS (predic0on depth interval: 5417 - 5650 m) vs Measured Depth. Track 
1: Gamma-Ray (GR). Track 2: Induc0on Electric Resis0vity logs. Inves0ga0on depths of 10 (AT10), 30 (AT30), and 90 (AT90) 

inches. Track 3: Forma0on Density (RHOZ), Neutron Porosity (NPHI), and Photoelectric Factor (PEFZ) logs. Track 4: 
Compressional Wave Slowness (DTCO). Track 5: Nuclear Magne0c Resonance Porosity logs. Total Porosity (NMRTOT), Effec0ve 

Porosity (NMREFF), and Free Fluid (NMRFF). The light green highlight interval which is the reservoir rock. 
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Figure 2-13: Composite well-log of well 9-ITP-1-RJS (predic0on depth interval: 5230 - 5590 m) vs Measured Depth. Track 1: 
Gamma-Ray (GR). Track 2: Induc0on Electric Resis0vity logs. Inves0ga0on depths of 10 (AT10), 30 (AT30), and 90 (AT90) 

inches. Track 3: Forma0on Density (RHOZ), Neutron Porosity (NPHI), and Photoelectric Factor (PEFZ) logs. Track 4: 
Compressional Wave Slowness (DTCO). Track 5: Nuclear Magne0c Resonance Porosity logs. Total Porosity (NMRTOT), Effec0ve 

Porosity (NMREFF), and Free Fluid (NMRFF). The light green highlight interval which is the reservoir rock. 
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Well 3-EQNR-3-SPS revealed a significant geological shis beyond 6315 meters, marked by elevated 
gamma ray log values and decreased resis4vity log values, aGributed to the presence of igneous rock, 
specifically basalt forma4ons. Basalt's mineral composi4on contributes to higher gamma radia4on 

Figure 2-14: Composite well-log of well 3-EQNR-1-SPS (predic0on depth interval: 5910 - 6040 m) vs Measured Depth. Track 1: 
Gamma-Ray (GR). Track 2: Induc0on Electric Resis0vity logs. Inves0ga0on depths of 10 (AT10), 30 (AT30), and 90 (AT90) 

inches. Track 3: Forma0on Density (RHOZ), Neutron Porosity (NPHI), and Photoelectric Factor (PEFZ) logs. Track 4: 
Compressional Wave Slowness (DTCO). Track 5: Nuclear Magne0c Resonance Porosity logs. Total Porosity (NMRTOT), Effec0ve 

Porosity (NMREFF), and Free Fluid (NMRFF). The light green highlight interval which is the reservoir rock. 
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readings, while its inherent lower resis4vity, compared to sedimentary reservoir rocks, is reflected in 
the decreased resis4vity log values. Despite these log indica4ons, basalt forma4ons typically lack the 
necessary porosity and permeability for effec4ve reservoir capabili4es, thereby rendering them 
unsuitable as reservoir rocks (figure 2-14). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-15: Composite well-log of well 3-EQNR-3-SPS (predic0on depth interval: 6050 - 6315 m) vs Measured Depth. Track 1: 
Gamma-Ray (GR). Track 2: Induc0on Electric Resis0vity logs. Inves0ga0on depths of 10 (AT10), 30 (AT30), and 90 (AT90) 

inches. Track 3: Forma0on Density (RHOZ), Neutron Porosity (NPHI), and Photoelectric Factor (PEFZ) logs. Track 4: 
Compressional Wave Slowness (DTCO). Track 5: Nuclear Magne0c Resonance Porosity logs. Total Porosity (NMRTOT), Effec0ve 

Porosity (NMREFF), and Free Fluid (NMRFF). The light green highlight interval which is the reservoir rock. 
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2.8 Visualizing Well Log Rela-onships and Distribu-ons 

This sec4on inves4gates the rela4onships and distribu4ons of several key well log parameters that are 
commonly used in the oil and gas industry to evaluate the subsurface forma4ons and their fluid 
contents. These parameters are: gamma ray (GR), deep resis4vity (AT90), bulk density (RHOZ), neutron 
porosity (NPHI), compressional wave slowness (DTCO), photoelectric factor (PEFZ), free fluid nuclear 
magne4c resonance (FFNMR), effec4ve porosity nuclear magne4c resonance (EFFNMR), and total 
porosity nuclear magne4c resonance (TOTNMR).  

The histograms provide insights into the distribu4onal characteris4cs of each parameter, including the 
central tendency, spread, and shape of the data. For instance, a bimodal histogram of GR may indicate 
the presence of shale and sand layers, while a skewed histogram of AT90 may reflect the varia4on of 
resis4vity due to different fluid satura4ons. This analysis provides valuable insights into the behavior 
of these parameters and their poten4al applica4ons in reservoir characteriza4on and fluid property 
es4ma4on. By using these graphical tools, it can be iden4fied the lithology, porosity, permeability, and 
hydrocarbon poten4al of the reservoir, as well as detect any anomalies or outliers in the data (figures 
2-16, 2-17). 
A comprehensive visual analysis is conducted using Seaborn pairplots and histograms to unveil the 
interdependencies and paGerns of these parameters. The pairplots show the scaGer plots of each pair 
of parameters, as well as the histograms of each parameter along the diagonal. The pairplots reveal 
the correla4ons between the log parameters, highligh4ng the strength and direc4on of these 
rela4onships. For example, a posi4ve correla4on between RHOZ and PEFZ indicates a higher density 
and photoelectric effect of the rock matrix, while a nega4ve correla4on between NPHI and DTCO 
suggests a lower porosity and faster acous4c velocity of the forma4on (figures 2-18, and 2-19). 

Also, the importance of ensuring that each well-log data falls within the same range, rather than having 
different scales for all six wells, becomes apparent. For instance, having varying gamma-ray (GR) log 
ranges for each of the six wells indicates the presence of dis4nct geological models and petrophysical 
regimes in a real-world scenario. This varia4on can poten4ally highlight the unreliability of the final 
model. Therefore, different histograms, kernel density es4mates (KDE), and strip plots were u4lized to 
demonstrate the consistent range for the specific well-log data across all six wells. 

In the process of developing the model, the challenge posed by the existence of diverse well-log data 
for each well was addressed through Min-Max normaliza4on. This technique effec4vely brought all the 
well-log data into the same range, ensuring uniformity and comparability across different datasets. 
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 Figure 2-16: Different Plots (KDE Plot, Histogram, and Strip) for RHOZ on the le] and NPHI on the right side. Each of these 
plots for different proper0es (RHOZ & NPHI) show the distribu0on and comparison the range of the parameters for six 

different wells. 
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 Figure 2-17: Different Plots (KDE Plot, Histogram, and Strip) for NMRFF on the le] and NMREFF on the right side. Each of these 
plots for different proper0es (NMRFF & NMREFF) show the distribu0on and comparison the range of the parameters for six 

different wells. 
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2.8.1 Part One Correlations 

In this sec4on, the correla4on between various basic well-log data and NMR log data is depicted using 
Seaborn Pair plots. This directly impacts the quality of the predic4ve model we aim to develop. The 
correla4on can be posi4ve or nega4ve; a posi4ve correla4on indicates a meaningful rela4onship 
between the logs to some extent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-18: Seaborn Pair plots of well: 3-BRSA-944A-RJS for different well log data (GR, AT90, RHOZ, NPHI, DTCO, PEFZ, and NMRTOT) 
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Other Histograms and Distribu4ons plot have been shown in Appendix 01. 

 

 

 

 

 

Figure 2-19: Seaborn Pair plots of well: 9-ITP-1-RJS for different well log data (GR, AT90, RHOZ, NPHI, DTCO, PEFZ, and NMRTOT) 
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2.8.2 Part Two Correlations 

In this sec4on, we have explored the rela4onship between fundamental well-log data and permeability. 
The analysis delves into understanding how various essen4al well-log measurements correspond or 
relate to the permeability of the forma4on. By examining this correla4on, we aim to uncover the extent 
to which these basic well-log measurements serve as indicators or predictors of permeability within 
the geological forma4ons under study (figure 2-20). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2-20: Heatmap of correla0on of well-log data and laboratory permeability related to the second part of the thesis 
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3 Methodologies and Concepts 

3.1 Comprehensive Approaches to Permeability Es-ma-on: Leveraging 
NMR and Well-Log Data Analysis in Predic-ve Modeling 

In the first part of the study, the permeability es4ma4on process takes an indirect approach by using 
Nuclear Magne4c Resonance (NMR) data. The predictors are based on fundamental well-log data, 
while the target for es4ma4on is the NMR-derived permeability. By employing determinis4c 
correla4on, such as the Timur-Coates model (Jun Yoneda, 2022), the predic4on of permeability is 
enabled based on the an4cipated NMR values. This approach is rooted in the understanding that NMR 
data can offer valuable insights into the pore structure and fluid proper4es of subsurface forma4ons, 
which are crucial for es4ma4ng permeability. 

Using NMR data in permeability es4ma4on offers several advantages. NMR provides direct 
measurements of fluid-filled porosity and pore size distribu4on, which are crucial factors influencing 
permeability. By incorpora4ng NMR data into the predic4ve models, the es4ma4on of permeability 
can benefit from a more comprehensive understanding of the reservoir proper4es, leading to more 
accurate predic4ons. Addi4onally, NMR data can capture varia4ons in fluid types and their distribu4on 
within the reservoir, contribu4ng to a more nuanced assessment of permeability across different 
geological se@ngs. This means that by using NMR data, we can get a beGer understanding of the 
reservoir and make more accurate predic4ons of permeability, which is essen4al for various 
applica4ons in the oil and gas industry. 

In Part Two of the study, a different approach is taken by excluding NMR data from the well-log 
predictors. Instead of relying on NMR-derived values, the focus shiss to predic4ng permeability 
directly using laboratory-derived permeability as the target variable. This unique strategy allows for a 
dis4nct examina4on of the predic4ve models and methodologies when NMR-derived data is not 
included in the predic4on process, offering insights into the direct es4ma4on of permeability from 
well-log data without relying on the intermediary step of NMR-derived predic4ons. This approach 
provides a comprehensive analysis of the effec4veness of well-log data alone in predic4ng 
permeability, highligh4ng the strengths and limita4ons of using NMR-derived data versus relying solely 
on well-log data for permeability es4ma4on. 

The exclusion of NMR data from the well-log predictors in Part Two presents an opportunity to assess 
the effec4veness of well-log data alone in predic4ng permeability. This approach is significant as it 
provides a compara4ve analysis of the predic4ve models and methodologies, highligh4ng the strengths 
and limita4ons of using NMR-derived data versus relying solely on well-log data for permeability 
es4ma4on. 

The two parts of the study offer a comprehensive analysis of permeability es4ma4on using different 
approaches. Part One demonstrates the indirect es4ma4on of permeability through NMR-derived 
data, while Part Two focuses on the direct es4ma4on of permeability from well-log data without the 
intermediary step of NMR-derived predic4ons. This compara4ve analysis provides valuable insights 
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into the role of NMR data in permeability es4ma4on and the poten4al of well-log data as a standalone 
predictor for permeability. 

The founda4on for predic4ng permeability based on well-log data involves a comprehensive 
understanding of essen4al concepts such as the u4liza4on of Python libraries and the applica4on of 
various model development and op4miza4on techniques. These preliminary discussions serve as 
crucial building blocks, providing the necessary groundwork before delving into the intricate process 
of permeability predic4on. 

Python libraries play a pivotal role in providing a versa4le toolkit for data manipula4on, sta4s4cal 
analysis, and model implementa4on. Libraries such as NumPy, Pandas, and Scikit-learn offer powerful 
tools for handling and processing large datasets, performing sta4s4cal analysis, and implemen4ng 
machine learning algorithms for predic4ve modeling. The u4liza4on of these libraries enables 
researchers and prac44oners to efficiently preprocess well-log data, extract relevant features, and 
build predic4ve models for permeability es4ma4on. 

Furthermore, the applica4on of various model development and op4miza4on techniques is essen4al 
for ensuring the accuracy and efficiency of the predic4ve models. Techniques such as feature 
engineering, model selec4on, hyperparameter tuning, and cross-valida4on are integral components of 
the model development process. Feature engineering involves transforming raw well-log data into 
meaningful predictors that capture the underlying geological proper4es influencing permeability. 
Model selec4on entails choosing the most appropriate algorithm for the predic4ve task, considering 
factors such as interpretability, scalability, and predic4ve performance. Hyperparameter tuning aims 
to op4mize the configura4on of the selected model to achieve the best predic4ve accuracy. Cross-
valida4on techniques are employed to assess the generaliza4on performance of the models and 
mi4gate overfi@ng. 
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3.2 Python library 

The thesis effec4vely u4lized a suite of Python libraries to address the challenges of data handling, 
visualiza4on, and machine learning in scien4fic research. The following Python libraries were employed 
for different tasks: 

Data Manipula2on and Analysis: 

pandas (pd): This extensive library served as the backbone for handling the massive volume of well log 
data. Its DataFrames data structure provided a powerful and flexible framework for organizing, 
filtering, and manipula4ng the data, enabling efficient data explora4on and analysis. 

numpy (np): This fundamental library provided essen4al numerical capabili4es for performing array 
opera4ons, calcula4ng sta4s4cs, and applying mathema4cal func4ons on the extracted numerical 
values from the well log data. Its efficient and versa4le algorithms significantly streamlined data 
processing tasks. 

PloJng and Visualiza2on: 

matplotlib.pyplot (plt): This founda4onal module within Matplotlib played a central role in crea4ng a 
wide range of visualiza4ons to effec4vely communicate insights from the data. Its comprehensive 
plo@ng capabili4es enabled the crea4on of insighaul charts, graphs, and plots, facilita4ng data 
explora4on and interpreta4on. 

seaborn (sns): Building upon Matplotlib's strengths, seaborn offered advanced plo@ng features, 
empowering the crea4on of aesthe4cally pleasing and informa4ve sta4s4cal graphics. Its ability to 
handle categorical data, create joint plots, and provide visual themes enhanced the overall 
presenta4on and communica4on of data-driven findings. 

matplotlib.patches (mpatches): This module within Matplotlib was employed to further enhance the 
visual appeal of plots, par4cularly through the crea4on of colored boxes for legends.  

Customiza2on and FormaJng: 

matplotlib_inline.backend_inline.set_matplotlib_formats: This configura4on ensured that 
Matplotlib figures were displayed seamlessly within the Jupyter Notebook environment as scalable 
vector graphics (SVG). This enabled high-quality image rendering without compromising readability. 

qbstyles.mpl_style: This poten4ally custom style module was applied to Matplotlib plots, customizing 
their appearance and presenta4on to align with the project's visual style guidelines.  

Machine Learning and Preprocessing: 

scikit-learn (sklearn): This extensive machine learning library provided the necessary tools for building 
and evalua4ng regression models to predict target values from the well log data. Its comprehensive 
range of regression algorithms, including RandomForestRegressor and GradientBoos4ngRegressor, 
enabled the explora4on of various modeling approaches. 

Pickle: This module enabled the serializa4on and deserializa4on of Python objects, facilita4ng the 
efficient saving and loading of trained models, preprocessed data, and other intermediate results. Its 
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ability to handle large datasets and preserve data integrity was crucial for maintaining reproducible 
research workflows. 

The use of these libraries facilitated efficient explora4on and analysis of well log data, crea4on of 
insighaul visualiza4ons, and development of robust machine learning models for predic4ng target 
values from the data. 

 

3.3 Model Development and Op-miza-on Techniques 

Data prepara4on plays a cri4cal role in machine learning by ensuring the quality and consistency of the 
data. It involves iden4fying and addressing data issues such as missing values, outliers, and data 
inconsistencies. By ensuring the data is clean and well-structured, the machine learning algorithm can 
learn more effec4vely and produce more accurate predic4ons. 

3.3.1 Normalization 

Normaliza4on techniques like Min-Max scaling and StandardScaler are crucial for ensuring robustness 
in machine learning models by standardizing variable scales (Ahmed M. Elshewey, 2023). These 
methods address challenges posed by predictors with varying magnitudes, enabling effec4ve learning 
across diverse feature distribu4ons. 

Min-Max scaling, or z-score normaliza4on, adjusts data points to a mean of 0 and a standard devia4on 
of 1. This compression of variable ranges facilitates a consistent understanding of feature rela4onships, 
allowing the model to focus on rela4ve differences between features rather than individual 
magnitudes. 

StandardScaler, in contrast, standardizes features by removing the mean and scaling to unit variance. 
Unlike Min-Max scaling, it doesn't confine values to a specific range but ensures features have a mean 
of 0 and variance of 1. This method preserves feature variance and is beneficial when data distribu4on 
doesn't conform to a specific range. 

In this study, both Min-Max scaling and StandardScaler were u4lized, each offering dis4nct advantages 
based on the dataset's characteris4cs. StandardScaler maintained the inherent distribu4on and 
variance, while Min-Max scaling ensured uniform representa4on across features, gran4ng equal 
weightage to varying feature magnitudes. 

The significance of these normaliza4on techniques lies in their crucial roles in enhancing model 
performance. Addressing disparate feature scales, they contribute to a comprehensive understanding 
of feature rela4onships, empowering models to make more accurate predic4ons across varied 
datasets. 

3.3.2 K-fold cross-validation (K-CV) 

K-fold cross-valida4on (K-CV) is a widely used technique in the field of machine learning and predic4ve 
modeling for assessing the performance and generaliza4on ability of predic4ve models. In K-fold cross-
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valida4on, the original dataset is par44oned into K equal-sized subsets, or folds. The model is then 
trained on K-1 of the folds and validated on the remaining fold. This process is repeated K 4mes, with 
each of the K folds used exactly once as the valida4on data. The performance of the model is then 
averaged over the K itera4ons to obtain a robust es4mate of its predic4ve capability. 

It is highlighted that in K-fold cross-valida4on, each es4mate of a parameter is calculated based on a 
part of the dataset, leading to an upward bias in the cross-valida4on es4mate of the predic4on error. 
This emphasizes the importance of understanding the poten4al biases and limita4ons associated with 
K-fold cross-valida4on when evalua4ng predic4ve models (Fushiki, 2011). 

Furthermore, it is discussed the piaalls and challenges in selec4ng and assessing regression and 
classifica4on models using cross-valida4on techniques. They emphasized the impact of high variance 
in models generated by current state-of-the-art methods, which can render them unsuitable for 
prac4cal applica4ons. This underscores the significance of robust cross-valida4on techniques such as 
K-fold cross-valida4on in addressing the variance issue and providing reliable es4mates of model 
performance (Damjan Krstajic, 2014). 

A simpler version of K-fold cross-valida4on exist, where the data are randomly par44oned into K equal-
size subsets. This highlights the flexibility and applicability of K-fold cross-valida4on in various machine 
learning tasks, making it a versa4le and widely adopted technique for model evalua4on and selec4on 
(Yongli Zhang, 2015). 

The K-fold cross-valida4on is a fundamental technique for assessing the performance of predic4ve 
models, providing a robust es4mate of their generaliza4on ability. Understanding the poten4al biases 
and limita4ons associated with K-fold cross-valida4on is crucial for ensuring the reliability of model 
evalua4on and selec4on in machine learning and predic4ve modelling (figure 3-1). 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 3-1: K-Fold Cross Valida0on Concept with K itera0ons across the Test & Train datasets 
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3.3.3 Hyperparameter tuning  

Hyperparameter tuning is a crucial process in machine learning, aiming to iden4fy the op4mal values 
for hyperparameters that significantly influence a model's behavior. Unlike parameters learned during 
training, hyperparameters are external se@ngs that impact a model's learning, generaliza4on, and 
predic4ve capabili4es. The objec4ve of hyperparameter tuning is to find the combina4on of 
hyperparameter values that maximizes a model's performance on a given task. This process osen 
involves exploring a range of hyperparameter values using techniques such as grid search, random 
search, or Bayesian op4miza4on. 

Grid search is a widely used hyperparameter tuning technique that involves evalua4ng the model's 
performance for each combina4on of hyperparameter values within a predefined grid. On the other 
hand, random search involves randomly sampling hyperparameter values and evalua4ng the model's 
performance for each sampled combina4on. Bayesian op4miza4on leverages probabilis4c models to 
efficiently search for the op4mal hyperparameter values, itera4vely selec4ng values based on the 
model's performance and upda4ng the probabilis4c model (Jidesh, 2023). 

Well-tuned hyperparameters can significantly enhance a model's predic4ve power, prevent overfi@ng, 
improve generaliza4on, and op4mize performance. This is par4cularly crucial for complex models and 
datasets with diverse characteris4cs, where the choice of hyperparameters can have a substan4al 
impact on the model's behavior and performance. The impact of hyperparameter tuning on machine 
learning models has been studied extensively, demonstra4ng the significance of this process in 
op4mizing the performance of machine learning models (Kazi Ekramul HoqueKazi, 2021). 

Hyperparameter tuning is a fundamental aspect of machine learning, and the choice of 
hyperparameter values significantly influences a model's behavior and performance. Various 
techniques such as grid search, random search, and Bayesian op4miza4on are employed to explore 
the hyperparameter space and iden4fy the best configura4on for a given task, ul4mately leading to 
improved predic4ve power, generaliza4on, and overall performance of machine learning models. 

COA is a nature-inspired algorithm that is used for solving continuous non-linear optimization 
problems, based on the brood parasitism of some cuckoo species. Brood parasitism is a behavior 
where cuckoos lay their eggs in the nests of other host birds and let them raise their offspring. 

The main features of COA are: 

• It starts with an ini4al popula4on of cuckoos, divided into two types: mature cuckoos and eggs. 
• The cuckoos compete for survival and reproduc4on, based on their fitness values. Some of them 

die or their eggs are discovered and eliminated by the host birds. 
• The survived cuckoos migrate to beGer habitats and lay eggs. The eggs hatch and become new 

cuckoos. 
• The algorithm converges when there is only one cuckoo society, all with the same fitness values. 

COA has been applied to various engineering and scientific problems, such as parameter optimization, 
scheduling, control, and image processing. 
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3.3.4 Data Splitting 

Data spli@ng is a fundamental step in machine learning that involves dividing the dataset into training, 
tes4ng, and some4mes valida4on sets. These subsets serve dis4nct purposes in the model 
development process. 

Training Set: 

The training set plays a crucial role in enabling the machine learning algorithm to learn the paGerns 
and rela4onships within the data. It represents the majority of the dataset, typically comprising around 
70-80% of the total data points. By exposing the algorithm to this por4on of the data, it can effec4vely 
iden4fy the underlying structure and rela4onships between the predictor variables (inputs) and the 
target variables (outputs). 

Tes2ng Set: 

Dis4nct from the training set, the tes4ng set serves as an unbiased evaluator of the trained model's 
performance on unseen data. This set, containing the remaining 20-30% of the data, is withheld from 
the training process and only used aser the algorithm has been finalized. By feeding the tes4ng set's 
data to the trained model, we can assess its ability to generalize to new data that it has not encountered 
during training. This evalua4on process helps iden4fy poten4al overfi@ng issues. 

The tes4ng set is essen4al for evalua4ng the model's generaliza4on ability, which is its ability to 
perform well on new data that it has not been trained on. By comparing the model's performance on 
the test data to its performance on the training data, we can determine how well it generalizes to 
unseen data. A well-generalized model will perform similarly on both the training and tes4ng data, 
indica4ng that it has learned the underlying paGerns of the data without overfi@ng to the specific 
training data. 

Data spli@ng is a cri4cal technique for evalua4ng the performance of machine learning models and 
ensuring that they can effec4vely handle unseen data and provide reliable predic4ons in real-world 
applica4ons. 
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3.4 Part one (Predic-on of Permeability from predicted NMR) 

This sec4on provides a comprehensive review of the methodologies and machine learning approaches 
u4lized in Part 01. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this study, the dataset obtained from five wells has been me4culously pre-processed, segrega4ng 
the dataset into two crucial components: predictors and a target variable. The predictors encompass 
fundamental geophysical parameters including GR (gamma ray), AT (Resis4vity Log), RHOZ (bulk 
density), NPHI (neutron porosity), PEFZ (photoelectric factor), and DTCO (compressional wave 
slowness). These variables are strategically selected for their poten4al influence on the target variable. 
The target variable of interest is NMR (nuclear magne4c resonance), which holds significant 
importance in this context. This division sets the stage for employing predic4ve modeling techniques, 
wherein the aim is to u4lize the values of these predictors to accurately forecast the NMR values. The 
subsequent analysis and modeling processes will be guided by the rela4onships and paGerns discerned 
between these predictors and the target variable, facilita4ng a comprehensive understanding of the 
predic4ve capabili4es within this geological context (figures 3-2, 3-3). 

 

 

 

 

 

 

Figure 3-2: Defini0on of Predictors and Target for the process of Machine Learning (Part 01) 
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Figure 3-3: General workflow of the first part of thesis; train-test the data set contain five wells and predic0on of permeability from output 
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3.4.1 Defining Machine Learning (ML) Model: 

3.4.1.1 Random forest: 

Random Forest is a powerful ensemble learning algorithm that combines the predic4ons of mul4ple 
decision trees to improve accuracy and reduce overfi@ng. It works by averaging the predic4ons of 
individual decision trees, each built using a random sample of the training data and a random subset 
of features. This randomness helps prevent overfi@ng and improves the model's stability and 
reliability. Random Forests are versa4le and can be used for both classifica4on and regression tasks. 
They have various applica4ons in fields like natural language processing, computer vision, finance, and 
medicine. The algorithm has adjustable parameters such as the number of trees, tree depth, minimum 
sample size, bootstrapping, and feature subsampling, which can be fine-tuned to op4mize model 
performance based on specific requirements (the architecture of Random Forest is shown in figure 3-
4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.1.2 Gradient Boos6ng: 

Gradient Boos4ng is a powerful ensemble method that improves predic4ons by sequen4ally correc4ng 
the errors of preceding models. Unlike Random Forests that aggregate predic4ons in parallel, Gradient 
Boos4ng creates an ensemble by itera4vely fi@ng new models to the residual errors of the previous 
ones. This itera4ve learning process gradually enhances the model's predic4ve accuracy by minimizing 
a loss func4on. Gradient Boos4ng algorithms like XGBoost, LightGBM, and AdaBoost are known for 

Figure 3-4: Schema0c of Random Forest (RF) decision tree Architecture. 
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their ability to handle complex data paGerns and produce highly accurate predic4ons. They offer 
adjustable parameters such as learning rate, number of trees, tree complexity, regulariza4on 
parameters, and subsampling to enhance model performance. These parameters control the 
contribu4on of each model, the number of models used, the ability to capture intricate paGerns, 
preven4on of overfi@ng, and diversity of the model. (the architecture of Gradient Boos4ng is shown 
in figure 3-5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.1.3 k-nearest neighbor regression (k-NN): 

K-nearest neighbor (k-NN) regression is a non-parametric method used in various fields, known for its 
simplicity and successful applica4ons. It works by compu4ng the k nearest neighbors of a query point 
and using their informa4on to make predic4ons. In classifica4on, it leverages the proximity of 
neighboring points to classify new data, while in regression, it es4mates the response of a new data 
point by calcula4ng a weighted average of the responses of its k nearest neighbors. The algorithm 
calculates the weighted Euclidean distance between each training point and the new data point, 
assigns weights to the neighbors using a kernel func4on, and predicts the response by compu4ng the 
weighted sum of the known responses of the k nearest neighbors. The parameter k influences the 
flexibility of the model, with higher values resul4ng in smoother models (figure 3-6). 

Figure 3-5: Schema0c of Gradient Boos0ng (GB) decision tree Architecture. 
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The methodologies and concepts of K-NN approach is shown in Appendix 03. 

 

3.4.2 Data Preparation and Splitting for NMR Fluid Prediction 

Data prepara4on is a crucial step in machine learning, ensuring the quality and consistency of data to 
train accurate models. In this case, the data consists of geophysical log measurements (predictors) and 
NMR fluid parameters (target variables) collected from various boreholes. 

Predictors (Input Variables), the provided data comprises six predictor variables extracted from 
geophysical logs: 

• GR: Gamma Ray: Measures the natural radioac4vity and provides lithlogy (Shale vs. sand). 
• AT90: Measures resisi4vity of the forma4on and provides water satura4on.  
• RHOZ: Measures bulk Density of the forma4on that can also provide porosity. 
• NPHI: Neutron Porosity: Measures the hydrogen content of the forma4on and provides porosity. 
• DTCO: Delta-T (Interval Transit Time P-Waves): Reflects the meachanical proper4es. 
• PEFZ: Photoelectric Factor: Assists in determining the lithology of the forma4on. 

Figure 3-6: The illustra0on of K-Nearest Neighbor Regressor (K-NN).   
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These predictor variables provide valuable insights into the characteris4cs of the subsurface geology, 
which can be used to predict NMR fluid parameters. 

 

Target Variables (Outputs), the target variables represent the NMR fluid parameters to be predicted: 

• NMREFF: Effec4ve Nuclear Magne4c Resonance: Indicates the total amount of hydrocarbon 
satura4on in the forma4on. 

• NMRFF: Free Fluid Volume using NMR: Measures the amount of free fluid (oil and gas) in the pores. 
• NMRTOT: Total Nuclear Magne4c Resonance: Represents the total NMR signal strength, 

encompassing all hydrocarbon and liquid satura4ons. 

These target variables are crucial for understanding the hydrocarbon distribu4on and poten4al 
reservoir quality. 

Data Spli@ng: 

To effec4vely train and evaluate the machine learning model, the data is split into training and tes4ng 
sets using an 80/20 split. 

• Training Data: 

The training data consists of 8340 samples, each containing six predictor variables and corresponding 
values for the three target variables. This por4on of the data is used to train the machine learning 
algorithm, allowing it to learn the paGerns and rela4onships between the predictors and the target 
variables. 

• Tes4ng Data: 

The tes4ng data comprises 2086 samples, again with six predictor variables and matching values for 
the three target variables. This set is withheld from the training process and used to evaluate the 
performance of the trained model. The model's predic4ons on the tes4ng data provide an unbiased 
assessment of its generalizability to unseen data. 

• Shapes of Data: 

The original data, before spli@ng, comprises 10,426 samples for the predictors (X) and 10,426 samples 
for the target variables (y). This indicates that each sample has data for all six predictors and all three 
target variables.  

3.4.3 Hyperparameter Optimization Across Models 

Random Forest: 

• Ensemble Size (n_es4mators): The number of decision trees in the random forest ensemble was 
systema4cally varied from 100 to 400 in increments of 50, examining how the ensemble size 
influenced the overall performance of the model. 

• Decision Tree Complexity (max_depth): The maximum depth of each decision tree in the ensemble 
was explored across a range of values from 5 to 25, aiming to balance the model's ability to capture 
complex paGerns without overfi@ng to the training data. 
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• Loss Func4on (criterion): The default criterion for evalua4ng splits in the decision trees, 
'squared_error', was inves4gated to determine its effec4veness in minimizing the loss func4on and 
improving the model's predic4ve accuracy. 

 

 

 

 

 

 

 

 

 

 

 

Gradient Boos4ng: 

• Ensemble Size, Tree Depth, and Learning Rate: The number of trees ('n_es4mators'), maximum 
depth of each tree ('max_depth'), and learning rate ('learning_rate') were jointly tuned to op4mize 
the performance of the gradient boos4ng algorithm. The 'learning_rate' parameter controls the 
step size in the gradient descent op4miza4on process, ranging from 0.1 to 0.6 to find the op4mal 
balance between convergence speed and overfi@ng tendency. 

• Loss Func4on (criterion): Similar to Random Forest, the default criterion for evalua4ng splits in the 
gradient boos4ng trees, 'squared_error', was evaluated to assess its impact on the model's 
predic4ve performance. 

K-Nearest Neighbors (KNN): 

When working with the K-nearest neighbors (KNN) algorithm, several hyperparameters can be 
adjusted to op4mize its performance. The number of nearest neighbors (n_neighbors) determines the 
size of the neighborhood considered for classifica4on or regression tasks. Neighbor weigh4ng (weights) 
assigns weights to each neighbor in the KNN calcula4on, influencing the model's behavior. The distance 
metric (p) measures the similarity between points and affects the model's performance. The leaf size 
(leaf_size) determines the granularity of the representa4on and impacts the model's generaliza4on 
ability. Different algorithms (algorithm) can be used for op4mizing the nearest neighbor search. By 
exploring and selec4ng appropriate values for these hyperparameters, the KNN model can be fine-
tuned to achieve beGer results for specific datasets and tasks. 

The explora4on of hyperparameters in machine learning algorithms emphasizes the significance of 
op4mizing model configura4ons for op4mal performance and generaliza4on. By systema4cally varying 
the hyperparameters, the study aimed to iden4fy configura4ons that enhance predic4ve accuracy and 

Figure 3-7:  Train-test splilng configura0on 

https://www.machinelearningplus.com/machine-learning/train-test-split/?utm_content=cmp-true
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robustness across different parameter spaces, leading to effec4ve models with consistent performance 
in various applica4ons. 

3.4.4 Well-log data organisation (Test and all datasets) 

The effec4ve u4liza4on of machine learning models hinges on a me4culous selec4on of training, 
valida4on, and test wells. These wells represent dis4nct data subsets, each fulfilling a crucial role in 
model development and evalua4on. 

The training well serves as the cornerstone of model building, providing the data the model u4lizes to 
decipher the intricate rela4onships between input and target variables. It acts as a microcosm where 
the model observes paGerns, iden4fies correla4ons, and develops predic4ve mechanisms. 

The valida4on well, dis4nct from the training well, plays a pivotal role in model selec4on and 
hyperparameter tuning. Represen4ng unseen data, it provides an unbiased assessment of the model's 
performance on novel data. By comparing the model's predic4ons on the valida4on well to the actual 
values, we can evaluate its generalizability and iden4fy op4mal hyperparameter se@ngs. 

The test well, en4rely separate from the model-building process, assumes the role of an independent 
measure of the model's generalizability. Represen4ng en4rely new data, never encountered during 
training, it serves as the ul4mate arbiter of the model's true predic4ve power. By comparing the 
model's predic4ons on the test well to the actual values, we can assess its ability to generalize beyond 
the training data and apply its learnings to real-world scenarios. 

A summarized view of the well-log predictors and outputs of part 01 are shown in figure 3-8: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-8: General descrip0on of wells, geology types, predictors, and target data (part 
01) 
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3.4.5 The Timur-Coates model; Permeability & Saturation estimation 

The Timur-Coates model is a widely used method for es4ma4ng permeability in petrophysics. It is 
important to note that the Timur-Coates model is one of the major methods for es4ma4ng 
permeability, alongside the Schlumberger-Doll-Research (SDR) model (Jun Yoneda, 2022). This model 
has been applied in various geological se@ngs, including the es4ma4on of permeability in 4ght 
reservoirs (Razieh Solatpour, 2018), mudrocks, and fine-grained sandstones in coal reservoirs (Na 
Zhang, 2018). Addi4onally, it has been used for es4ma4ng the permeability coefficient of ar4ficial 
clayey soil (Zhen Lu, 2020) and in the construc4on of a petrophysical model for a heterogeneous 
reservoir in the South China Sea (Xing Lei, 2021). 

 

 

 

 

 

 

 

 

 

 

The Timur-Coates model is par4cularly valuable due to its applica4on in es4ma4ng permeability from 
nuclear magne4c resonance (NMR) data (figure 3-9). It has been used to calculate reservoir porosity 
and permeability from NMR logs, providing a non-destruc4ve and cost-effec4ve alterna4ve to 
tradi4onal core analysis and well tes4ng methods. The Timur-Coates model plays a crucial role in the 
field of petrophysics, offering a valuable tool for es4ma4ng permeability in diverse geological se@ngs. 
Its u4liza4on in NMR analysis and its cost-effec4veness makes it an essen4al method for characterizing 
reservoir proper4es and evalua4ng the poten4al for hydrocarbon produc4on. The equa4ons 3-1 to 3-
8 show the Timur-Coates correla4ons for petrophysical proper4es es4ma4on: 

 

ɸ! = 𝑀𝑜𝑣𝑎𝑏𝑙𝑒	𝑉𝑜𝑙𝑢𝑚𝑒 + 𝐼𝑚𝑚𝑜𝑣𝑎𝑏𝑙𝑒	𝑉𝑜𝑙𝑢𝑚𝑒 = 𝐵𝑉𝑀 + (𝐵𝑉𝐼 + 𝐶𝐵𝑊) 

Equa0on 3-1 

 

ɸ! = 𝐵𝑉𝑀 + (𝐵𝑉𝐼 + 𝐶𝐵𝑊) 

Equa0on 3-2 

 

Figure 3-9: Schema0c representa0on of the cons0tuents of a rock; Defini0on of different porosi0es; defini0on of BVM, BVI, CBW. 
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𝐶𝐵𝑊 = ɸ! − ɸ"  

Equa0on 3-3 

 

𝐵𝐹𝐸 = ɸ" − 𝐹 

Equa0on 3-4 

 

𝐵𝐹 = 	ɸ! − 𝐹𝐹 

Equa0on 3-5 

 

𝑆𝑤𝑖! = <1 −
ɸ! − 𝐹𝐹
ɸ!

> × 100 = <
𝐵𝐹
ɸ!
> × 	10 

Equa0on 3-6 

 

𝑆𝑤𝑖" = <1 −
𝐹𝐹
ɸ"
> × 100 = <	

ɸ" − 𝐹𝐹
ɸ"

> × 100 = <
𝐵𝐹𝐸
ɸ"

> × 100 

Equa0on 3-7 

𝐾 = 𝑎 × <
𝐹𝐹
𝐵𝐹>

#

× ɸ!
$ 			, 𝑎 = 10000, 𝑏 = 2, 𝑐 = 4 

Equa0on 3-8 
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3.5 Part two (Predic-on of Permeability directly from well-log data) 

This sec4on provides a comprehensive review of the methodologies and machine learning approaches 
u4lized in Part 02 (figure 3-10). 

 

 

 

 

 

 

 

 

 

 

 

 

In this study, the dataset obtained from four wells has been me4culously pre-processed, segrega4ng 
the dataset into two crucial components: predictors and a target variable. The predictors encompass 
fundamental geophysical parameters including GR (gamma ray), AT (acous4c travel 4me), RHOZ (bulk 
density), NPHI (neutron porosity), PEFZ (photoelectric factor), and DTCO (compressional wave 
slowness). These variables are strategically selected for their poten4al influence on the target variable. 
The target variable of interest is permeability (K) from laboratory data, which holds significant 
importance in this context. This division sets the stage for employing predic4ve modelling techniques, 
where the aim is to u4lize the values of these predictors to accurately forecast the Permeability values. 
The subsequent analysis and modelling processes will be guided by the rela4onships and paGerns 
discerned between these predictors and the target variable, facilita4ng a comprehensive 
understanding of the predic4ve capabili4es within this geological context (figure 3-11). 

 

 

 

 

 

 

 

Figure 3-10:Defini0on of Predictors and Target for the process of Machine Learning (Part 02) 
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3.5.1 Defining Machine Learning (ML) Model: 

Selec4ng suitable machine learning (ML) algorithms for the analysis of a cleaned well-log dataset is a 
crucial step in the data analysis process. In this part of the thesis, we implement LSSVM approach. 

Least Square Support vector machine (LSSVM) 

Least Square Support Vector Machine (LSSVM) has gained aGen4on in various fields due to its superior 
predic4on accuracy and efficiency. The LSSVM has been successfully u4lized in the petroleum industry 
to predict permeability impairment caused by scale deposi4on during a water injec4on process. It has 
been applied in control theory for induc4on motor drives in electric vehicles and integrated with other 
models for 4me series predic4on. LSSVM is a reformula4on of support vector machines (SVM) and its 

Figure 3-11: General workflow of the second part of thesis; train-test the data set contain five wells and predic0on of permeability 
from output 
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versa4lity and poten4al for addressing complex predic4on and es4ma4on challenges make it a widely 
adopted method (the architecture of LSSVM methodologies is show in figure 3-12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The methodologies and concepts of SVM approach is shown in Appendix 03. 

3.5.2 Data Preparation and Splitting for Permeability Prediction 

Data prepara4on is a crucial step in machine learning, ensuring the quality and consistency of data to 
train accurate models. In this case, the data consists of geophysical log measurements (predictors) and 
NMR fluid parameters (target variables) [peameability] collected from various boreholes. 

Figure 3-12: The illustra0on of Support Vector Machine  (SVM).   
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Predictors (Input Variables), the provided data comprises six predictor variables extracted from 
geophysical logs: 

• GR: Gamma Ray: Measures the natural radioac4vity and provides lithlogy (Shale vs. sand). 
• AT90: Measures resisi4vity of the forma4on and provides water satura4on.  
• RHOZ: Measures bulk Density of the forma4on that can also provide porosity. 
• NPHI: Neutron Porosity: Measures the hydrogen content of the forma4on and provides porosity. 
• DTCO: Delta-T (Interval Transit Time P-Waves): Reflects the meachanical proper4es. 
• PEFZ: Photoelectric Factor: Assists in determining the lithology of the forma4on. 

These predictor variables provide valuable insights into the characteris4cs of the subsurface geology, 
which can be used to predict NMR fluid parameters. 

Target Variables (Outputs), the target variables represent the NMR fluid parameters to be predicted: 

• Permeability (K): Permeability from laboratory data Indicates the ability to flow the hydrocarbon 

These target variables are crucial for understanding the hydrocarbon distribu4on and poten4al 
reservoir quality. 

Data Spli@ng: 

For the machine learning model, the data was split into training and tes4ng sets using a 70/30 split. 

• Training Data: 

The training data comprises 191 samples, each containing six predictor variables: RHOZ, GR, AT90, 
NPHI, DTCO, and PEFZ. These variables are used to train the machine learning algorithm, enabling it to 
learn the rela4onships between the predictors and the target variable 'k'. 

• Tes4ng Data: 

The tes4ng data consists of 82 samples, also with the same six predictor variables. This data is held 
back from the training process and employed to evaluate how well the trained model performs. The 
model's predic4ons on the tes4ng data offer an impar4al assessment of its ability to generalize to new, 
unseen data. 

• Shapes of Data: 

The original dataset contained 273 samples for the predictors (X) and 273 samples for the target 
variable 'k'. Each sample in this dataset included data for all six predictors and the single target variable. 

 

3.5.3 Hyperparameter Optimization Across Models 

Least Square Support Vector Machine (LSSVM): 

• Gamma Variance (gamma): The gamma parameter, set at 1.0, plays a pivotal role in the LSSVR 
model, influencing the width of the radial basis func4on kernel. This parameter governs the 
influence of individual training samples in the model. The explora4on of this parameter aims to 
ascertain its impact on the model's performance across various datasets. 
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• Regulariza4on Parameter (C): The regulariza4on parameter C, set at 100.0, is another crucial factor 
in the LSSVR model. It controls the trade-off between achieving a low training error and minimizing 
model complexity. Systema4c varia4ons in the C parameter were executed to evaluate its influence 
on model performance. 

• Kernel Func4on (kernel): The radial basis func4on (RBF) kernel, chosen for this LSSVR 
implementa4on, offers flexibility in capturing non-linear rela4onships between the predictors and 
the target variable. The 'rbf' kernel type was u4lized to build the LSSVR model and its effec4veness 
was assessed in modeling complex paGerns within the data. 

3.5.4 Well-log data organisation (Test and all datasets) 

The training subset serves as the founda4on for construc4ng the LSSVR model, enabling it to discern 
intricate paGerns between input predictors and the target variable. Within this subset, the model 
deciphers correla4ons, learns predic4ve mechanisms, and establishes its understanding of the data. 

Dis4nct from the training set, the valida4on subset assumes a crucial role in selec4ng the op4mal LSSVR 
model configura4on. It mirrors unseen data, allowing an unbiased evalua4on of the model's 
performance. By comparing the model's predic4ons on this subset with actual values, we gauge its 
generalizability and iden4fy the most effec4ve parameter se@ngs. 

As an independent en4ty from the model development phase, the test subset acts as a litmus test for 
the model's real-world predic4ve prowess. Comprising en4rely new data, it remains unseen during 
model training or valida4on. Assessing the model's predic4ons on this subset against actual values 
provides a final measure of its ability to generalize beyond the training data, ensuring its applicability 
in real-world scenarios. 

A summarized view of the well-log predictors and outputs of part 02 is shown in figure 3-13: 

 

 

 

 

 

 

 

 

 

 

  

Figure 3-13: General descrip0on of wells, geology types, predictors, and target data (part 02) 
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4 Methodology Applica;on & Outcomes 

4.1 Part one 

4.1.1 Evaluation of different model performances using the test dataset 

4.1.1.1 ScaAer plots 

These scaGer plots represent different porosi4es (free fluid, effec4ve, and total) of predicted and 
measured which is show in figures 4-1, 4-2, 4-3: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1: Scamer plots of predicted versus measured NMR porosity, for the RF Model, applied to the test dataset of the original dataset contain 
whole five wells; Le] plot: NMR Effec0ve Porosity (m3/m3). Middle plot: NMR Free Fluid (m3/m3). Right plot: NMR Total Porosity (m3/m3). 

Figure 4-2: Scamer plots of predicted versus measured NMR porosity, for the GB Model, applied to the test dataset of the original dataset contain 
whole five wells: Le5 plot: NMR Effec0ve Porosity (m3/m3). Middle plot: NMR Free Fluid (m3/m3). Right plot: NMR Total Porosity (m3/m3). 
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• Model Devia6on: 

ScaGer plots are graphical representa4ons showcasing the variance or devia4on between the 
predicted values from a model and the actual measured data points. When these data points form a 
straight line at a 45-degree angle, aligning with the ideal diagonal, it signifies a strong accuracy 
between the model predic4ons and the observed data. 

• Test Dataset Density: 

The model is developed based on an 80/20 spli@ng ra4o, dividing the dataset into training (80%) and 
tes4ng (20%) subsets. Consequently, the resul4ng test dataset might be rela4vely smaller, leading to 
a less densely populated scaGer plot. This reduced density can affect the clarity and strength of the 
observed trends, poten4ally resul4ng in a weaker trend line representa4on within the scaGer plot. 

 

• Distribu6on of Porosity Types and Their Posi6oning: 

Within the dataset, total porosity tends to possess higher numerical values compared to effec4ve and 
free fluid porosi4es. Consequently, when visualized on the scaGer plot, the data points represen4ng 
total porosity osen cluster towards the higher value range. This tendency places total porosity data 
points on the right side of the plot due to their higher magnitude, delinea4ng their dominance in the 
dataset distribu4on. 

Visually, the Random Forest (RF) and Gradient Boos4ng (GB) show a beGer performance in comparison 
to K-nearest Neighbours (K-NN) 

Figure 4-3: Scamer plots of predicted versus measured NMR porosity, for the K-NN Model, applied to the test dataset of the original dataset contain 
whole five wells. Le] plot: NMR Effec0ve Porosity (m3/m3). Middle plot: NMR Free Fluid (m3/m3). Right plot: NMR Total Porosity (m3/m3). 
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4.1.1.2 Well-log Plots 

These plot showcases the comparison between predicted and measured porosi4es encompassing 
effec4ve, free fluid, and total porosi4es. As models inherently contain some margin of error and 
imprecision, the predicted porosity doesn't perfectly align with the measured well-log data. You can 
find these plots in figures 4-4, 4-5, and 4-6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-4: Comparing the match between the predicted and measured NMR porosity, for the RF Model, across the Test Dataset 
Index of the original dataset contain whole five wells. Le] track: Predicted and Measured NMR Effec0ve Porosity (m3/m3). Middle 

track: Predicted and Measured NMR Free Fluid (m3/m3). Right track: Predicted and Measured NMR Total Porosity (m3/m3). 
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Figure 4-5: Comparing the match between the predicted and measured NMR porosity, for the GB Model, across the Test Dataset 
Index of the original dataset contain whole five wells. Le] track: Predicted and Measured NMR Effec0ve Porosity (m3/m3). Middle 

track: Predicted and Measured NMR Free Fluid (m3/m3). Right track: Predicted and Measured NMR Total Porosity (m3/m3). 
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There are a number of factors that can contribute to the inaccuracy of porosity models. These include: 

• The inherent complexity of the geology: The rock forma4ons that make up a reservoir can be very 
complex and heterogeneous, which makes it difficult to create a model that accurately captures 
all of the varia4ons in porosity. 

• The limita4ons of the data: The data that is used to train the model may not be perfect, and it may 
not be representa4ve of all the condi4ons that exist in the reservoir. 

Figure 4-6: Comparing the match between the predicted and measured NMR porosity, for the K-NN  Model, across the Test Dataset 
Index of the original dataset contain whole five wells. Le] track: Predicted and Measured NMR Effec0ve Porosity (m3/m3). Middle 

track: Predicted and Measured NMR Free Fluid (m3/m3). Right track: Predicted and Measured NMR Total Porosity (m3/m3).  
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4.1.2 Evaluation of different model performances using the entire dataset 

4.1.2.1 ScaAer plots  

By applying en4re dataset on different models for predic4on of porosi4es, more correlated and clearer 
trend between predicted and measured well-log data have been presented. Due to the methodology 
of gradient boos4ng, a more correlated trend is shown. The gradient boos4ng model, which combines 
weak learners into a strong learner by op4mizing a loss func4on, performs beGer than the other 
models in terms of correla4on coefficient and mean squared error. This indicates that the gradient 
boos4ng model can capture the complex rela4onship between the input features and the output 
variable more effec4vely. You can find these plots in figures 4-7, 4-8, and 4-9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the scaGer plots of K-nearest neighbour model, there are some over-fi@ngs and this will generally 
lead to lower accurate model. Overfi@ng occurs when a model learns the training data too well, 
capturing not just the underlying paGerns but also the noise or random fluctua4ons. In the context of 
scaGer plots in K-nearest neighbor (KNN) models, overfi@ng might be observed when the decision 
boundary (or separa4on between classes) becomes overly complex and fits intricacies in the training 
data that don't generalize well to new, unseen data. 

 

 

 

 

 

Figure 4-7: Scamer plots of predicted versus measured NMR porosity, for the RF Model, applied to the en0re dataset of the original 
dataset contain whole five wells: Le] plot: NMR Effec0ve Porosity (m3/m3). Middle plot: NMR Free Fluid (m3/m3). Right plot: NMR 

Total Porosity (m3/m3). 
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This complexity can result in poor performance when the model encounters new data, causing  

 

lower accuracy. It's essen4al to balance model complexity and generaliza4on by tuning 
hyperparameters, like the number of neighbors (K) in KNN, or using techniques like cross-valida4on 
and regulariza4on to prevent overfi@ng and build a more accurate model. 

 

 

 

Figure 4-8: Scamer plots of predicted versus measured NMR porosity, for the GB Model, applied to the en0re dataset of the original 
dataset contain whole five wells: Le] plot: NMR Effec0ve Porosity (m3/m3). Middle plot: NMR Free Fluid (m3/m3). Right plot: NMR 

Total Porosity (m3/m3). 

Figure 4-9: Scamer plots of predicted versus measured NMR porosity, for the K-NN Model, applied to the en0re dataset of the original 
dataset contain whole five wells: Le] plot: NMR Effec0ve Porosity (m3/m3). Middle plot: NMR Free Fluid (m3/m3). Right plot: NMR 

Total Porosity (m3/m3). 
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4.1.2.2 Well-log Plots 

Using the en4re dataset for modeling presents a comprehensive view of the predic4ve capabili4es 
across the en4re range of available data. While this approach can provide insights into overall trends 
and paGerns, it carries risks. Over-reliance on the en4re dataset might lead to overfi@ng, where the 
model becomes too tailored to the specific intricacies of the data, poten4ally hindering its ability to 
generalize well to new, unseen cases. The plots of measured and predicted porosi4es can be found in 
figures 4-10, 4-11, and 4-12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-10: Comparing the match between the predicted and measured NMR porosity, for the RF Model, across the En0re dataset 
index of the original dataset contain whole five wells. Le] track: Predicted and Measured NMR Effec0ve Porosity (m3/m3). Middle 

track: Predicted and Measured NMR Free Fluid (m3/m3). Right track: Predicted and Measured NMR Total Porosity (m3/m3). 
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The discrepancy observed between predicted and measured porosi4es underscores the inherent 
limita4ons of models in capturing the complexi4es of geological forma4ons. Highligh4ng these 
limita4ons is crucial; it acknowledges the margin of error and imprecision that inherently exists in 
predic4ve models. By acknowledging these limita4ons, researchers can refine models and data 
collec4on strategies, seeking more robust approaches to improve predic4ve accuracy and account for 
variability in porosity es4ma4on. 

 

Figure 4-11: Comparing the match between the predicted and measured NMR porosity, for the GB Model, across the En0re dataset 
index of the original dataset contain whole five wells. Le] track: Predicted and Measured NMR Effec0ve Porosity (m3/m3). Middle 

track: Predicted and Measured NMR Free Fluid (m3/m3). Right track: Predicted and Measured NMR Total Porosity (m3/m3). 
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The observed higher devia4on in predicted porosi4es from measured values in the K-Nearest 
Neighbors (K-NN) model compared to Random Forest (RF) and Gradient Boos4ng (GB) models 
suggests that K-NN might struggle to capture the intricate rela4onships present in the porosity data. 
K-NN relies heavily on the proximity of data points, poten4ally making it more suscep4ble to noise or 
outliers, which could contribute to larger predic4on errors. On the other hand, Random Forest and 
Gradient Boos4ng models might have beGer accommodated the complexi4es within the dataset, 
leading to lower devia4ons between predicted and measured porosi4es. 

Figure 4-12: Comparing the match between the predicted and measured NMR porosity, for the K-NN Model, across the En0re dataset 
index of the original dataset contain whole five wells. Le] track: Predicted and Measured NMR Effec0ve Porosity (m3/m3). Middle 

track: Predicted and Measured NMR Free Fluid (m3/m3). Right track: Predicted and Measured NMR Total Porosity (m3/m3). 
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4.1.3 Evaluation of different model performances using the different dataset [1-BRSA-
1116-RJS] (Not included in training-test)  

4.1.3.1 ScaAer plots  

When using a model with a dataset it hasn't seen before, lower accuracy is common. The model might 
struggle to generalize to new data points because it hasn't learned paGerns specific to that new 
dataset. The scaGer plots reflec4ng this mismatch between predicted and measured values osen 
indicate a lack of a clear trend line, showing the dispari4es between predicted and actual values. The 
scaGer plots of predicted and measured porosi4es can be found in figures 4-13, 4-14, and 4-15. 

This discrepancy could occur due to various reasons: 

• Lack of Generaliza4on: The model might have learned specific paGerns or nuances from the 
training data that don't hold true in the new dataset. Consequently, its predic4ons might not align 
well with this unseen data. 

• Dataset Differences: The new dataset could have different distribu4ons, ranges, or outliers 
compared to the training data. These dispari4es can significantly impact the model's ability to 
make accurate predic4ons. 

• Feature Variability: Features in the new dataset might possess characteris4cs that the model 
wasn't trained to handle. It might require addi4onal feature engineering or adjustments to the 
model architecture to effec4vely learn these new paGerns. 

• Overfi@ng or Underfi@ng: The model might suffer from overfi@ng (being too specific to the 
training data) or underfi@ng (not capturing enough paGerns), affec4ng its performance on new 
data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-13: Scamer plots of predicted versus measured NMR porosity, for the RF Model, applied to the different well (1-BRSA-1116-RJS) not included in 
training phase: Le] plot: NMR Effec0ve Porosity (m3/m3). Middle plot: NMR Free Fluid (m3/m3). Right plot: NMR Total Porosity (m3/m3) 
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To address this issue, several steps can be taken: 

• More Diverse Training Data: Incorporate more diverse and representa4ve data during the model 
training phase to improve its ability to generalize to new datasets. 

• Fine-tuning or Retraining: Retrain the model using the new dataset or fine-tune it by using 
transfer learning techniques to adapt it to the characteris4cs of the new data. 

• Feature Engineering: Modify or engineer features to beGer capture the nuances of the new 
dataset, ensuring the model can learn relevant paGerns. 

• Regulariza4on Techniques: Apply regulariza4on methods to prevent overfi@ng or underfi@ng, 
enabling the model to generalize beGer to unseen data. 

 

Figure 4-14: Scamer plots of predicted versus measured NMR porosity, for the GB Model, applied to the different well (1-BRSA-1116-RJS) not included 
in training phase: Le] plot: NMR Effec0ve Porosity (m3/m3). Middle plot: NMR Free Fluid (m3/m3). Right plot: NMR Total Porosity (m3/m3). 

Figure 4-15: Scamer plots of predicted versus measured NMR porosity, for the K-NN Model, applied to the different well (1-BRSA-1116-RJS) not 
included in training phase: Le] plot: NMR Effec0ve Porosity (m3/m3). Middle plot: NMR Free Fluid (m3/m3). Right plot: NMR Total Porosity (m3/m3). 
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4.1.3.2 Well-log Plots 

In Figure , while examining the Free Fluid, Effec4ve, and Total porosi4es, it becomes evident that 
despite discrepancies exis4ng within each metric, there are specific segments where the model's 
predic4ons notably align beGer with the measured data. These instances of improved alignment 
between predicted and measured values are observable across all three porosity types. The plots of 
measured and predicted porosi4es can be found in figures 4-16, 4-17, and 4-18. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-16: Comparing the match between the predicted and measured NMR porosity, for the RF Model, applied to the 
different well (1-BRSA-1116-RJS): Le] track: Predicted and Measured NMR Effec0ve Porosity (m3/m3). Middle track: Predicted 

and Measured NMR Free Fluid (m3/m3). Right track: Predicted and Measured NMR Total Porosity (m3/m3). 
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Although discrepancies persist within Free Fluid, Effec4ve, and Total porosity predic4ons, there are 
iden4fiable areas where the model demonstrates a closer match with the actual measured values. 
These segments might represent specific condi4ons or characteris4cs within the well that the model 
accurately captures, indica4ng localized instances of enhanced predic4ve accuracy across all porosity 
metrics. Iden4fying these areas of improved alignment could offer valuable insights into the factors 

Figure 4-17: Comparing the match between the predicted and measured NMR porosity, for the GB Model, applied to the different 
well (1-BRSA-1116-RJS): Le] track: Predicted and Measured NMR Effec0ve Porosity (m3/m3). Middle track: Predicted and Measured 

NMR Free Fluid (m3/m3). Right track: Predicted and Measured NMR Total Porosity (m3/m3). 
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influencing the model's performance and highlight regions where it excels in predic4ng porosity 
characteris4cs within the 1-BRSA-1116-RJS well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-18: Comparing the match between the predicted and measured NMR porosity, for the K-NN Model, applied to the different 
well (1-BRSA-1116-RJS): Le] track: Predicted and Measured NMR Effec0ve Porosity (m3/m3). Middle track: Predicted and Measured 

NMR Free Fluid (m3/m3). Right track: Predicted and Measured NMR Total Porosity (m3/m3). 



Amirhossein Akhondzadeh 

85 

 

4.1.4 Evaluation of different model performances using single well [3-BRSA-1215-RJS] 
(Included in training-test)  

4.1.4.1 ScaAer plots  

Using the well 3-BRSA-1215-RJS in the training set is a deliberate choice aimed at strengthening my 
model. This well stands out due to its unique forma4on, differing from others in the dataset. Its 
inclusion during training allows the model to adapt to this dis4nct geological aspect, enhancing its 
ability to handle varied forma4ons and poten4ally improving its overall predic4ve capability. The 
scaGer plots of predicted and measured porosi4es can be found in figures 4-19, 4-20, and 4-21. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-19: Scamer plots of predicted versus measured NMR porosity, for the RF Model, applied to one of the well (3-BRSA-1215-RJS) included 
in training phase: Le] plot: NMR Effec0ve Porosity (m3/m3). Middle plot: NMR Free Fluid (m3/m3). Right plot: NMR Total Porosity (m3/m3). 

Figure 4-20: Scamer plots of predicted versus measured NMR porosity, for the GB Model, applied to one of the well (3-BRSA-1215-RJS) included 
in training phase: Le] plot: NMR Effec0ve Porosity (m3/m3). Middle plot: NMR Free Fluid (m3/m3). Right plot: NMR Total Porosity (m3/m3). 
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4.1.4.2 Well-log Plots  

The comprehensive assessment of the Random Forest, Gradient Boos4ng, and K-nearest Neighbour 
model's predic4ve capacity for key petrophysical parameters—NMR porosity (Effec4ve, Free fluid, 
Total), as well as Predicted Permeability and Satura4on Using the Timur-Coates Correla4on—offers 
invaluable insights into its efficacy. Analyzing the match between predicted and measured NMR 
porosi4es across mul4ple tracks illuminates the model's performance. The first three tracks portray 
the comparison between predicted and measured NMR Effec4ve, Free Fluid, and Total Porosi4es 
(measured in m3/ m3). These tracks highlight the model's ability to capture the nuances of porosity 
distribu4on within the well (3-BRSA-1215-RJS) u4lized within the training set. The fourth track extends 
this evalua4on by pu@ng together the model's predic4ons of Effec4ve, Free Fluid, and Total Porosi4es, 
providing a holis4c view of its overall es4ma4on capabili4es. Moreover, the subsequent tracks, the 
fish and sixth ones, exhibit the model's forecasted values for permeability (mD) and irreducible water 
satura4on (expressed as a percentage) based on the Timur-Coates Correla4on. The plots of predicted 
and measured porosi4es and Peameability can be found in figures 4-22, 4-23, and 4-24. 

 

 

 

 

 

 

Figure 4-21: Scamer plots of predicted versus measured NMR porosity, for the K-NN Model, applied to one of the well (3-BRSA-1215-RJS) included 
in training phase: Le] plot: NMR Effec0ve Porosity (m3/m3). Middle plot: NMR Free Fluid (m3/m3). Right plot: NMR Total Porosity (m3/m3). 
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Random Forest: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-22: Comparing the match between the predicted and measured NMR porosity (Effec0ve, Free fluid Total), and Predicted 
Permeability & Satura0on Using Timur-Coates Correla0on, for the RF Model, applied to the well (3-BRSA-1215-RJS) included in training 

phase: (From le] to right) 1st track: Predicted and Measured NMR Effec0ve Porosity (m3/m3). 2nd track: Predicted and Measured NMR Free 
Fluid (m3/m3). 3rd  track: Predicted and Measured NMR Total Porosity (m3/m3). 4th  track: Predicted Effec0ve, Free Fluid, Total Porosi0es 

(m3/m3), 5th  track: Timur-Coates Predicted Permeability (mD), 6th track: Timur-Coates Predicted Irreducible water Satura0on (%) 
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Gradient Boos4ng: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-23: Comparing the match between the predicted and measured NMR porosity (Effec0ve, Free fluid Total), and Predicted 
Permeability & Satura0on Using Timur-Coates Correla0on, for the GB Model, applied to the well (3-BRSA-1215-RJS) included in training 

phase: (From le] to right) 1st track: Predicted and Measured NMR Effec0ve Porosity (m3/m3). 2nd track: Predicted and Measured NMR Free 
Fluid (m3/m3). 3rd  track: Predicted and Measured NMR Total Porosity (m3/m3). 4th  track: Predicted Effec0ve, Free Fluid, Total Porosi0es 

(m3/m3), 5th  track: Timur-Coates Predicted Permeability (mD), 6th track: Timur-Coates Predicted Irreducible water Satura0on (%) 
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K-Nearest Neighbor (KNN): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-24: Comparing the match between the predicted and measured NMR porosity (Effec0ve, Free fluid Total), and Predicted 
Permeability & Satura0on Using Timur-Coates Correla0on, for the K-NN Model, applied to the well (3-BRSA-1215-RJS) included in training 

phase: (From le] to right) 1st track: Predicted and Measured NMR Effec0ve Porosity (m3/m3). 2nd track: Predicted and Measured NMR Free 
Fluid (m3/m3). 3rd  track: Predicted and Measured NMR Total Porosity (m3/m3). 4th  track: Predicted Effec0ve, Free Fluid, Total Porosi0es 

(m3/m3), 5th  track: Timur-Coates Predicted Permeability (mD), 6th track: Timur-Coates Predicted Irreducible water Satura0on (%) 
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4.1.4.3 Well-log  and Lab data plots  

The comprehensive assessment across the Random Forest, Gradient Boos4ng, and K-nearest 
Neighbour models on the well (3-BRSA-1215-RJS) brings to light their predic4ve abili4es for 
permeability and porosity against laboratory measurements. Through the ini4al tracks, the models' 
proximity to laboratory-measured values for permeability (mD) and porosity percentages 
demonstrates their adeptness in es4ma4ng fluid flow characteris4cs and available pore space within 
the rock. The inclusion of a scaGer plot in the third track enriches this evalua4on, visually represen4ng 
the rela4onship between permeability and porosity and allowing insight into how well the models 
capture intrinsic correla4ons seen in laboratory data. Furthermore, the subsequent histograms 
depic4ng the distribu4ons of porosity and permeability values, both predicted and laboratory-based, 
facilitate a compara4ve analysis of their paGerns. This comprehensive assessment delves not only into 
the alignment between predicted and laboratory values but also scru4nizes the models' abili4es to 
replicate trends and distribu4on paGerns. Ul4mately, this mul4faceted evalua4on provides a 
comprehensive understanding of the models' reliability in es4ma4ng these fundamental rock 
proper4es. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4-25: The reservoir interval of the well 3-BRSA-1215-RJS 
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It is quite common to be some discrepancies between predicted results from logging opera4ons and 
actual laboratory measurements. This is because there are a number of factors that can affect the 
accuracy of logging data, including cable length, logging standards, and the type of rock being logged. 

In the case of well 3-BRSA-1215-RJS, it appears that the depth shis on the lab data has helped to 
improve the coherency between predicted and actual results. This suggests that the original logging 
data may have been inaccurate due to the differences in cable length and logging standards between 
the logging opera4on and the laboratory measurement. 

The plots of predicted and measured porosi4es and permeability versus laboratory data can be found 
in figures 4-27, 4-28, and 4-29. 

 

 

 

 

 

Figure 4-26: Inves0ga0on of depth shi] on log data in the well 3-BRSA-1215-RJS 



Amirhossein Akhondzadeh 

92 

 

Random Forest: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-27: Comparing the match between the predicted & laboratory measurement of permeability and porosity, Comparing scamer 
plot permeability-porosity of predicted and laboratory data, Histogram of Porosity and Permeability distribu0on of predicted and 

laboratory data, for the RF Model, applied to the well (3-BRSA-1215-RJS) included in training set (for Permeability Predic0on Timur-
Coates Correla0on has been used): (From le] to right) 1st track: Predicted and laboratory Permeability (mD). 2nd track: Predicted and 

Measured Porosity (%). 3rd  track: Scamer plot of permeability-porosity of predicted and laboratory data (mD vs. %), 4th  track: 
Histogram of Porosity of predicted and laboratory data (%), 5th  track Histogram of Permeability of predicted and laboratory data (mD) 
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Gradient Boos4ng: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-28: Comparing the match between the predicted & laboratory measurement of permeability and porosity, Comparing scamer 
plot permeability-porosity of predicted and laboratory data, Histogram of Porosity and Permeability distribu0on of predicted and 

laboratory data, for the GB Model, applied to the well (3-BRSA-1215-RJS) included in training set (for Permeability Predic0on Timur-
Coates Correla0on has been used): (From le] to right) 1st track: Predicted and laboratory Permeability (mD). 2nd track: Predicted and 

Measured Porosity (%). 3rd  track: Scamer plot of permeability-porosity of predicted and laboratory data (mD vs. %), 4th  track: 
Histogram of Porosity of predicted and laboratory data (%), 5th  track Histogram of Permeability of predicted and laboratory data (mD) 
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K-Nearest Neighbor (KNN): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-29: Comparing the match between the predicted & laboratory measurement of permeability and porosity, Comparing scamer 
plot permeability-porosity of predicted and laboratory data, Histogram of Porosity and Permeability distribu0on of predicted and 

laboratory data, for the K-NN Model, applied to the well (3-BRSA-1215-RJS) included in training set (for Permeability Predic0on Timur-
Coates Correla0on has been used): (From le] to right) 1st track: Predicted and laboratory Permeability (mD). 2nd track: Predicted and 

Measured Porosity (%). 3rd  track: Scamer plot of permeability-porosity of predicted and laboratory data (mD vs. %), 4th  track: 
Histogram of Porosity of predicted and laboratory data (%), 5th  track Histogram of Permeability of predicted and laboratory data (mD) 
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4.1.5 Evaluation of different model performances using single well [1-BRSA-1116-RJS] 
(Not included in training-test)  

4.1.5.1 Well-log Plots  

Random Forest: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-30: Comparing the match between the predicted and measured NMR porosity (Effec0ve, Free fluid Total), and Predicted 
Permeability & Satura0on Using Timur-Coates Correla0on, for the RF Model, applied to a different well (3-BRSA-1116-RJS) not included in 
training phase: (From le] to right) 1st track: Predicted and Measured NMR Effec0ve Porosity (m3/m3). 2nd track: Predicted and Measured 
NMR Free Fluid (m3/m3). 3rd  track: Predicted and Measured NMR Total Porosity (m3/m3). 4th  track: Predicted Effec0ve, Free Fluid, Total 

Porosi0es (m3/m3), 5th  track: Timur-Coates Predicted Permeability (mD), 6th track: Timur-Coates Predicted Irreducible water Satura0on (%) 
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Gradient Boos4ng: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-31: Comparing the match between the predicted and measured NMR porosity (Effec0ve, Free fluid Total), and Predicted 
Permeability & Satura0on Using Timur-Coates Correla0on, for the GB Model, applied to a different well (3-BRSA-1116-RJS) not included in 
training phase: (From le] to right) 1st track: Predicted and Measured NMR Effec0ve Porosity (m3/m3). 2nd track: Predicted and Measured 
NMR Free Fluid (m3/m3). 3rd  track: Predicted and Measured NMR Total Porosity (m3/m3). 4th  track: Predicted Effec0ve, Free Fluid, Total 

Porosi0es (m3/m3), 5th  track: Timur-Coates Predicted Permeability (mD), 6th track: Timur-Coates Predicted Irreducible water Satura0on (%) 
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K-Nearest Neighbor (KNN): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-32: Comparing the match between the predicted and measured NMR porosity (Effec0ve, Free fluid Total), and Predicted 
Permeability & Satura0on Using Timur-Coates Correla0on, for the K-NN Model, applied to a different well (3-BRSA-1116-RJS) not included in 

training phase: (From le] to right) 1st track: Predicted and Measured NMR Effec0ve Porosity (m3/m3). 2nd track: Predicted and Measured 
NMR Free Fluid (m3/m3). 3rd  track: Predicted and Measured NMR Total Porosity (m3/m3). 4th  track: Predicted Effec0ve, Free Fluid, Total 

Porosi0es (m3/m3), 5th  track: Timur-Coates Predicted Permeability (mD), 6th track: Timur-Coates Predicted Irreducible water Satura0on (%) 
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4.1.5.2 Well-log  and Lab data plots 

Random Forest: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-33: Comparing the match between the predicted & laboratory measurement of permeability and porosity, Comparing scamer 
plot permeability-porosity of predicted and laboratory data, Histogram of Porosity and Permeability distribu0on of predicted and 

laboratory data, for the RF Model, applied to a different well (3-BRSA-1116-RJS) not included in training set (for Permeability Predic0on 
Timur-Coates Correla0on has been used): (From le] to right) 1st track: Predicted and laboratory Permeability (mD). 2nd track: Predicted 

and Measured Porosity (%). 3rd  track: Scamer plot of permeability-porosity of predicted and laboratory data (mD vs. %), 4th  track: 
Histogram of Porosity of predicted and laboratory data (%), 5th  track Histogram of Permeability of predicted and laboratory data (mD) 
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Gradient Boos4ng: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-34: Comparing the match between the predicted & laboratory measurement of permeability and porosity, Comparing scamer 
plot permeability-porosity of predicted and laboratory data, Histogram of Porosity and Permeability distribu0on of predicted and 

laboratory data, for the GB Model, applied to a different well (3-BRSA-1116-RJS) not included in training set (for Permeability Predic0on 
Timur-Coates Correla0on has been used): (From le] to right) 1st track: Predicted and laboratory Permeability (mD). 2nd track: Predicted 

and Measured Porosity (%). 3rd  track: Scamer plot of permeability-porosity of predicted and laboratory data (mD vs. %), 4th  track: 
Histogram of Porosity of predicted and laboratory data (%), 5th  track Histogram of Permeability of predicted and laboratory data (mD) 
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K-Nearest Neighbor (KNN): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results of two other wells, 3-BRSA-944A-RJS and 9_ITP_RJS is shown in the Appendix 02.  

Figure 4-35: Comparing the match between the predicted & laboratory measurement of permeability and porosity, Comparing scamer 
plot permeability-porosity of predicted and laboratory data, Histogram of Porosity and Permeability distribu0on of predicted and 

laboratory data, for the GB Model, applied to a different well (3-BRSA-1116-RJS) not included in training set (for Permeability Predic0on 
Timur-Coates Correla0on has been used): (From le] to right) 1st track: Predicted and laboratory Permeability (mD). 2nd track: Predicted 

and Measured Porosity (%). 3rd  track: Scamer plot of permeability-porosity of predicted and laboratory data (mD vs. %), 4th  track: 
Histogram of Porosity of predicted and laboratory data (%), 5th  track Histogram of Permeability of predicted and laboratory data (mD) 
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4.2 Part two 

4.2.1 Evaluation of different model performances using the test dataset 

Machine learning methods have emerged as powerful tools for es4ma4ng permeability directly from 
well log data. These methods leverage the wealth of informa4on contained in well logs to predict 
permeability, thereby bypassing the need for costly and 4me-consuming laboratory measurements. 
Machine learning models can be trained on a dataset comprising well log data as inputs and 
laboratory-measured permeability as outputs. Once trained, these models can predict permeability 
for new, unseen well log data, providing a rapid and cost-effec4ve means of permeability es4ma4on. 
This approach holds great promise for enhancing our understanding of reservoir proper4es and 
op4mizing oilfield development strategies. 

4.2.1.1 ScaAer Plot of Predicted and Measured permeability 

Genera4on of a predic4ve model using machine learning for the direct predic4on of permeability from 
well log data as predictors and permeability as target data; bypassing the NMR log to calculate 
permeability and predic4ng it directly. By employing the LSSVR (Least Squares Support Vector 
Regressor), we develop a model that correlates well log data to permeability. The below scaGer plot 
demonstrates how predicted and measured permeabili4es correlate with each other. The scaGer plots 
of predicted and measured permeability can be found in figures 4-36. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-36: Scamer plots of predicted versus measured Permeability (mD), for the LSSVR Model, applied to four 
wells [(3-BRSA-944A-RJS), (1-BRSA-1116-RJS), (9-ITP-RJS), (3-BRSA-1215-RJS)] included in training phase. 
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4.2.1.2 Histogram of Predicted and Measured permeability 

In this sec4on, the histograms of LSSVR for both Laboratory Permeability and Predicted Permeability 
depict the frequency distribu4on of permeability values within specific ranges. This graphical 
representa4on is crucial for assessing the model's performance, as it visually illustrates how well the 
predicted permeability values align with the actual laboratory measurements. The significance lies in 
the ability to observe whether the predicted values fall within the same or, at the very least, a 
comparable range, indica4ng acceptable results. Essen4ally, the histogram serves as a valuable tool 
for gauging the accuracy and reliability of the predic4ve model in capturing the inherent paGerns and 
varia4ons in permeability across the dataset. The histogram of predicted and measured permeability 
can be found in figures 4-37.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-37: Compara0ve Histogram Analysis: LSSVR Predicted Permeability vs. Lab Permeability. Assessing the 
Frequency Distribu0on to Validate Model Performance 
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4.3 Using different regression metrics for model Evalua-on 

To assess the effec4veness of the RF, GB, and K-NN models u4lized in our thesis, we employ several 
regression metrics. These metrics include Root Mean Squared Error (RMSE), Mean Squared Error 
(MSE), and Mean Absolute Error (MAE), the Coefficient of Determina4on (R2). Through the analysis of 
these metrics, we can evaluate and compare the performance of the models, allowing us to gauge 
their accuracy and predic4ve capabili4es.  

The Root Mean Squared Error (RMSE) is calculated by taking the square root of the Mean Squared 
Error (MSE). This metric measures the average squared difference between the predicted and 
measured values. The RMSE ranges between 0.00 and posi4ve infinity, with a smaller value indica4ng 
a beGer fit. It is important to note that the RMSE uses the same scale as the measured data, allowing 
for easier interpreta4on and comparison. 

𝑅𝑀𝑆𝐸 = G∑ (𝑦%&"'($!"' − 𝑦)"*+,&"')-.
(

𝑁  

Equa0on 4-1 

Similarly, the MSE represents the average squared difference between predicted and measured values, 
but it is not square rooted. Like the RMSE, the MSE ranges from 0.00 to posi4ve infinity, with a smaller 
value indica4ng a beGer fit. However, the MSE is expressed in the squared units of the measured data, 
emphasizing the squared difference between the predic4ons and the actual values. 

𝑀𝑆𝐸 =
∑ (𝑦%&"'($!"' − 𝑦)"*+,&"')-.
(

𝑁  

Equa0on 4-2 

The Mean Absolute Error (MAE) calculates the average absolute difference between the predicted and 
measured values. It is a metric that ranges from 0.00 to posi4ve infinity, with a lower value indica4ng 
a beGer fit. The MAE uses the same scale as the measured data, making it easier to interpret and 
compare. Unlike the squared differences in MSE and RMSE, the MAE considers the absolute 
differences, giving equal weight to both posi4ve and nega4ve devia4ons from the actual values. 
Therefore, the MAE provides a measure of the average magnitude of errors in the predic4ons, without 
considering their direc4on. 

𝑀𝐴𝐸 =
∑ |𝑦%&"'($!"' − 𝑦)"*+,&"'|.
(

𝑁  

Equa0on 4-3 

The Coefficient of Determina4on (R2) is a numerical measure that indicates the predic4ve strength of 
a model, ranging between nega4ve infinity and 1.00. A higher value closer to 1.00 signifies a stronger 
predic4on. Conversely, a nega4ve R2 value suggests that the model does not align with the data trend, 
which can occur in non-linear regression models. R2 is typically expressed as a percentage and is 
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calculated using a specific formula to quan4fy the propor4on of the variance in the dependent variable 
that can be explained by the independent variables. 

𝑅- = 1 −
∑ (𝑦%&"'($!"' − 𝑦)"*+,&"')-.
(

∑ (𝑦%&"'($!"' − 𝑦)"*/)-.
(

 

Equa0on 4-4 

 

4.3.1 Regression metrics evaluation on the test data 

The succinct presenta4on of results encompasses the R2, MSE, RMSE, and MAE scores, obtained 
through the u4liza4on of the most effec4ve hyperparameter configura4on. These scores are explicitly 
associated with predic4ons made on the test dataset, with a focus on the Random Forest (RF), Gradient 
Boos4ng (GB), and k-Nearest Neighbors (KNN) models. The R2, MSE, RMSE, and MAE scores of different 
porosi4es for different models of the test dataset can be found in table 4-1 and figures 4-38, 4-39, and 
4-40. 

 

 

 

 

 

 

 

 

 

 

 

 

Moreover, we provide bar plots that visually represent the significance of each input feature in 
predic4ng the output parameters. These graphical representa4ons assist in discerning the most 
influen4al features contribu4ng to the model's predic4ons. 

 

 

 

 

 

Table 4-1:  Random Forest (RF), Gradient Boos0ng (GB), and K-Nearest Neighbour Regression (K-NN) Metrics on Test Dataset: 
Compara0ve Analysis of Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), and 

Coefficient of Determina0on (R²) for Different Porosity Types. 
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While both Random Forest (RF) and Gradient Boos4ng (GB) exhibit closely comparable results, the 
Random Forest model marginally outperforms the Gradient Boos4ng model, displaying superior 
outcomes with a higher coefficient of determina4on and lower root mean square error (RMSE). In 
contrast, the K-Nearest Neighbour (K-NN) model demonstrates the least accuracy, as indicated by the 
𝑅-  (Coefficient of Determina4on). 

 

 

 

Figure 4-38: Random Forest Regression Metrics Histogram on Test Dataset: Compara0ve Analysis of Root Mean Squared Error (RMSE), 
Mean Absolute Error (MAE), Mean Squared Error (MSE), and Coefficient of Determina0on (R²) for Different Porosity Types. 

Figure 4-39: Gradient Boos0ng Regression Metrics Histogram on Test Dataset: Compara0ve Analysis of Root Mean Squared Error 
(RMSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), and Coefficient of Determina0on (R²) for Different Porosity Types. 
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The observed dispari4es in model performance may be aGributed to the varying degrees of correla4on 
between the well log data and NMR Free Fluid. Notably, all three models display competence in 
predic4ng Free Fluid Porosity, but the Random Forest model stands out with its slightly beGer 
predic4ve accuracy, emphasizing its efficacy in capturing the nuanced rela4onships within the dataset. 

4.3.2 Regression metrics evaluation on the entire dataset 

The concise summary of outcomes encapsulates the R2, MSE, RMSE, and MAE metrics achieved by 
employing the most op4mal hyperparameter se@ngs. These scores are specifically linked to 
predic4ons made across the en4re dataset, emphasizing the performance of the Random Forest (RF), 
Gradient Boos4ng (GB), and k-Nearest Neighbors (KNN) models. The R2, MSE, RMSE, and MAE scores 
of different porosi4es for different models of the en4re dataset can be found in table 4-2 and figures 
4-41, 4-42, and 4-43. 

 

 

 

 

 

 

 

 

 

 

Figure 4-40: K-Nearest Neighbour Regression Metrics Histogram on Test Dataset: Compara0ve Analysis of Root Mean Squared Error 
(RMSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), and Coefficient of Determina0on (R²) for Different Porosity Types. 

Table 4-2:  Random Forest (RF), Gradient Boos0ng (GB), and K-Nearest Neighbour Regression (K-NN) Metrics on En0re Dataset: 
Compara0ve Analysis of Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), and 

Coefficient of Determina0on (R²) for Different Porosity Types. 
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Furthermore, the presenta4on includes graphical representa4ons in the form of bar plots, effec4vely 
depic4ng the significance of each input feature in predic4ng the output parameters. These visual aids 
serve the purpose of discerning the pivotal features that play a substan4al role in influencing the 
model's predic4ons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-41: Random Forest Regression Metrics Histogram on En0re Dataset: Compara0ve Analysis of Root Mean Squared Error 
(RMSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), and Coefficient of Determina0on (R²) for Different Porosity Types. 

Figure 4-42: Gradient Boos0ng Regression Metrics Histogram on En0re Dataset: Compara0ve Analysis of Root Mean Squared Error 
(RMSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), and Coefficient of Determina0on (R²) for Different Porosity Types. 
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Compared to the test dataset, the en4re dataset yields significantly improved results across all three 
models, showcasing a notable enhancement in the coefficient of determina4on by approximately 30-
40%. Among the models, Gradient Boos4ng stands out as the top performer, surpassing the other two. 
Consistent with the test dataset, the models con4nue to demonstrate a superior performance in 
predic4ng free fluid porosi4es compared to effec4ve total porosi4es. 

This robust performance on the en4re dataset underscores the generalizability and effec4veness of 
the models in capturing the underlying paGerns within the broader dataset. The heightened accuracy, 
par4cularly in the case of Gradient Boos4ng, signifies its prowess in handling a more extensive range 
of data, emphasizing its poten4al for reliable predic4ons in real-world scenarios. Furthermore, the 
con4nued trend of beGer performance in predic4ng free fluid porosi4es suggests a consistent strength 
in capturing the nuances of this specific porosity type across various datasets. 

 

 

 

 

 

 

 

 

 

 

Figure 4-43: K-Nearest Neighbour Regression Metrics Histogram on En0re Dataset: Compara0ve Analysis of Root Mean Squared Error 
(RMSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), and Coefficient of Determina0on (R²) for Different Porosity Types. 
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4.3.3 Regression metrics evaluation on the different datasets (1-BRSA-1116-RJS) 

 

To assess the models'generalizability, a separate well data set that was not used in training was 
employed. The models were evaluated using R2, MSE, RMSE, and MAE metrics obtained with the 
op4mal hyperparameter se@ngs. This evalua4on method provided a realis4c assessment of the 
models'generalizability. The R2, MSE, RMSE, and MAE scores of different porosi4es for different models 
of the different dataset (not included in training the models) can be found in table 4-3 and figures 4-
44, 4-45, and 4-46. 

 

 

 

 

 

 

 

 

 

 

 

the presenta4on includes graphical representa4ons in the form of bar plots are shown below: 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-3: Random Forest (RF), Gradient Boos0ng (GB), and K-Nearest Neighbour Regression (K-NN) Metrics on Different 
Dataset (Not Included in training phase): Compara0ve Analysis of Root Mean Squared Error (RMSE), Mean Absolute Error 

(MAE), Mean Squared Error (MSE), and Coefficient of Determina0on (R²) for Different Porosity Types. 

Figure 4-44: Random Forest Regression Metrics Histogram on Different Dataset (Not Included in training phase): 
Compara0ve Analysis of Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), and 

Coefficient of Determina0on (R²) for Different Porosity Types. 
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Apply a different dataset not including in training the model, show nega4ve coefficient of 
determina4on for all models and for different types of porosi4es. This indicates that the models 
struggle to accurately predict the output parameters on the test well. There are several reasons for 
this lack of accuracy in the valida4on phase. Firstly, the training dataset partly consists of non-reservoir 
rock in some wells, making it challenging for the models to generalize to the test dataset, which is 
almost en4rely composed of reservoir rock (90%), even if they are made of the same lithology. 

Secondly, the training dataset itself is limited. The small size of the training dataset restricts the 
model’s ability to capture the underlying rela4onships between the input features and the output 
parameters, accurately.  

Figure 4-45: Gradient Boos0ng Regression Metrics Histogram on Different Dataset (Not Included in training phase): 
Compara0ve Analysis of Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), and 

Coefficient of Determina0on (R²) for Different Porosity Types. 

Figure 4-46: K-Nearest Neighbour Regression Metrics Histogram on Different Dataset (Not Included in training phase): 
Compara0ve Analysis of Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), and 

Coefficient of Determina0on (R²) for Different Porosity Types. 
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5 Conclusion 
In this study, the main objec4ve was to develop machine learning models for the predic4on of 
petrophysical data using Random Forest (RF), Gradient Boos4ng (GB), K-Nearest Neighbors (K-NN), and 
Least Square Support Vector Regressor (LSSVR) algorithms. The models were trained using data 
indirectly obtained from predicted NMR well-log data and laboratory permeability. The evalua4on of 
the models was performed on different types of porosi4es (free fluid, effec4ve, total) using both test 
and en4re datasets. Addi4onally, the study compared the predicted permeability using predicted NMR 
and Timur-Coates correla4on with laboratory permeability. Finally, LSSVR was used to predict 
permeability directly from well-log data. 

It was concluded that: 

1. In the first part of the thesis, three different models (Random Forest, Gradient Boos4ng, and K-
Nearest Neighbour) were evaluated using test dataset, en4re dataset, and a different dataset not 
included in the training model. It has been shown that there are accep4ble and cohesive scaGer 
plots (measured vs. predicted) and log plots (measured vs. predicted) for each models. 

2. Generally, Random Forest and Gradient Boos4ng showed a beGer results in comparison to K-
Nearest Neighbour model; The test dataset showed that the Random Forest model slightly 
outperformed the Gradient Boos4ng model in terms of coefficient of determina4on and root mean 
square error. The en4re dataset depicted that all three models showed significantly improved 
results compared to the test dataset. However, applica4on of  different dataset, not included in the 
model training, all models yielded nega4ve coefficients of determina4on for different types of 
porosi4es. 

3. However, the K-Nearest Neighbour model demonstrated the least accuracy. The reseaon behind 
this is the limi4taion of K-Nearest Neighbour in dealing with high number of data (the number of 
data in the first part is around 10000). 

4. Applica4on of Random Forest, Gradient Boos4ng, and K-Nearest Neighbour on each well 
(expecially for well: 3-BRSA-1215-RJS), separately, show good matches for predicted and measured 
permeability anfd porosi4es using Timur-Coates correla4ons. Other wells (3-BRSA-944A-RJS and 9-
lTP-RJS) also depicted close matches and accep4ble results, while applica4on of the differnet well 
not included in the developement of model (1-BRSA-1116-RJS) show less accurate results, the 
results are totally accep4ble. 

5. In the second part of the thesis, an accep4ble close matches has been shown; direct permeability 
predic4on from basic well-log data is an valuable predciton and a big step in reservoir 
characteriza4on. However, there are some inaccuracies in the results mainly due to the lack of 
sufficient data. 

Below are some notes pertaining to exis4ng inaccuracies in the thesis, as well as sugges4ons for 
improving the research and recommenda4ons for poten4al future research: 

• There are some inaccuracies in the results, especially in the second part that predicts permeability 
directly from basic well-log data. This is mainly due to the lack of sufficient data; the training data 
comprises 191 samples, and the tes4ng data consists of 82 samples, giving us a total of 273 
samples. The higher the number of data, the beGer, more coherent, and accurate the machine 
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learning model. The reason for the low number of data is that the dataset for the second part 
comes from the concentra4on of well-log data and laboratory data, and in this case, laboratory 
data was the limi4ng factor due to a limited number of lab data. 

• Depth shis in laboratory results show the beGer alignment of laboratory results and predicted data. 
This inaccuracy can be due to the differences between loggers and drillers depths are due to 
different stretch in the drilling string when drilling, and the wire line entered into the bore hole 
during wireline logging opera4ons. This shis can suggest a more refined synchroniza4on, indica4ng 
an enhanced accuracy and reliability in the predic4ve model. 

• While the applica4on of the Timur-Coates correla4on has yielded good and generally acceptable 
results in predic4ng permeability, it is essen4al to note that the model is determinis4c and may not 
be exact for all cases. Originally developed for sandstone reservoirs, its applica4on to carbonate 
reservoirs could poten4ally introduce errors. One considera4on to address this limita4on involves 
modifying the model based on geological features, specifically by adjus4ng the coefficients of the 
Timur-Coates correla4on (a, b, and c) to beGer suit carbonate reservoir condi4ons. 

• Due to the inaccuracy of the Timur-Coates correla4on that has been men4oned, and considering 
the fact that it serves as the link between the two results – predicted permeability (first part) and 
laboratory permeability – it could be cri4cally asserted that in instances where the predicted 
permeability deviates from the laboratory permeability, the predicted results may not necessarily 
be inaccurate. Instead, it is plausible that the laboratory measurements themselves are inaccurate. 
 
 

 

 



Amirhossein Akhondzadeh 

113 

 

Appendix 

Appendix 01: (Histogram & Distribu-ons plots) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-1: Seaborn Pair plots of well: 1-BRSA-1116-RJS for different well log data (GR, AT90, RHOZ, NPHI, DTCO, PEFZ, and NMRTOT) 
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Figure A-2: Seaborn Pair plots of well: 3-BRSA-1215-RJS for different well log data (GR, AT90, RHOZ, NPHI, DTCO, PEFZ, and NMRTOT) 
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Figure A-3: Seaborn Pair plots of well: 3-EQNR-1-SPS for different well log data (GR, AT90, RHOZ, NPHI, DTCO, PEFZ, and NMRTOT) 
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Figure A-4: Seaborn Pair plots of well: 3-EQNR-3-SPS for different well log data (GR, AT90, RHOZ, NPHI, DTCO, PEFZ, and NMRTOT) 
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 Figure A-5: Different Plots (KDE Plot, Histogram, and Strip) for GR on the le] and AT90 on the right side. Each of these plots for 
different proper0es (GR & AT90) show the distribu0on and comparison the range of the parameters for six different wells. 
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Figure A-6: Different Plots (KDE Plot, Histogram, and Strip) for DTCO on the le] and PEFZ on the right side. Each of these plots for 

different proper0es (DTCO & PEFZ) show the distribu0on and comparison the range of the parameters for six different wells. 
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Figure A-7: Different Plots (KDE Plot, Histogram, and Strip) for NMRTOT show the 
distribu0on and comparison the range of the parameters for six different wells. 
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Appendix 02: (Well-log plots) 

Evalua4on of different model performances using the different dataset [3-BRSA-944A-RJS] (Not 
included in training-test)  

ScaGer plots  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-8: Scamer plots of predicted versus measured NMR porosity, for the RF Model, applied to one of the well (3-BRSA-944A-RJS) included 
in training phase: Le] plot: NMR Effec0ve Porosity (m3/m3). Middle plot: NMR Free Fluid (m3/m3). Right plot: NMR Total Porosity (m3/m3). 

Figure A-9: Scamer plots of predicted versus measured NMR porosity, for the GB Model, applied to one of the well (3-BRSA-944A-RJS) included 
in training phase: Le] plot: NMR Effec0ve Porosity (m3/m3). Middle plot: NMR Free Fluid (m3/m3). Right plot: NMR Total Porosity (m3/m3). 
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Figure A-10: Scamer plots of predicted versus measured NMR porosity, for the K-NN Model, applied to one of the well (3-BRSA-944A-RJS) included 
in training phase: Le] plot: NMR Effec0ve Porosity (m3/m3). Middle plot: NMR Free Fluid (m3/m3). Right plot: NMR Total Porosity (m3/m3). 
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Well-log Plots 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-11: Comparing the match between the predicted and measured NMR porosity (Effec0ve, Free fluid Total), and Predicted 
Permeability & Satura0on Using Timur-Coates Correla0on, for the RF Model, applied to the well (3-BRSA-944A-RJS) included in training 

phase: (From le] to right) 1st track: Predicted and Measured NMR Effec0ve Porosity (m3/m3). 2nd track: Predicted and Measured NMR Free 
Fluid (m3/m3). 3rd  track: Predicted and Measured NMR Total Porosity (m3/m3). 4th  track: Predicted Effec0ve, Free Fluid, Total Porosi0es 

(m3/m3), 5th  track: Timur-Coates Predicted Permeability (mD), 6th track: Timur-Coates Predicted Irreducible water Satura0on (%) 
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Figure A-12: Comparing the match between the predicted and measured NMR porosity (Effec0ve, Free fluid Total), and Predicted 
Permeability & Satura0on Using Timur-Coates Correla0on, for the GB Model, applied to the well (3-BRSA-944A-RJS) included in training 

phase: (From le] to right) 1st track: Predicted and Measured NMR Effec0ve Porosity (m3/m3). 2nd track: Predicted and Measured NMR Free 
Fluid (m3/m3). 3rd  track: Predicted and Measured NMR Total Porosity (m3/m3). 4th  track: Predicted Effec0ve, Free Fluid, Total Porosi0es 

(m3/m3), 5th  track: Timur-Coates Predicted Permeability (mD), 6th track: Timur-Coates Predicted Irreducible water Satura0on (%) 
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Figure A-13: Comparing the match between the predicted and measured NMR porosity (Effec0ve, Free fluid Total), and Predicted 
Permeability & Satura0on Using Timur-Coates Correla0on, for the K-NN Model, applied to the well (3-BRSA-944A-RJS) included in training 

phase: (From le] to right) 1st track: Predicted and Measured NMR Effec0ve Porosity (m3/m3). 2nd track: Predicted and Measured NMR Free 
Fluid (m3/m3). 3rd  track: Predicted and Measured NMR Total Porosity (m3/m3). 4th  track: Predicted Effec0ve, Free Fluid, Total Porosi0es 

(m3/m3), 5th  track: Timur-Coates Predicted Permeability (mD), 6th track: Timur-Coates Predicted Irreducible water Satura0on (%) 
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Figure A-14: Comparing the match between the predicted & laboratory measurement of permeability and porosity, Comparing scamer 
plot permeability-porosity of predicted and laboratory data, Histogram of Porosity and Permeability distribu0on of predicted and 

laboratory data, for the RF Model, applied to the well (3-BRSA-944A-RJS) included in training set (for Permeability Predic0on Timur-
Coates Correla0on has been used): (From le] to right) 1st track: Predicted and laboratory Permeability (mD). 2nd track: Predicted and 

Measured Porosity (%). 3rd  track: Scamer plot of permeability-porosity of predicted and laboratory data (mD vs. %), 4th  track: 
Histogram of Porosity of predicted and laboratory data (%), 5th  track Histogram of Permeability of predicted and laboratory data (mD) 
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Figure A-15: Comparing the match between the predicted & laboratory measurement of permeability and porosity, Comparing scamer 
plot permeability-porosity of predicted and laboratory data, Histogram of Porosity and Permeability distribu0on of predicted and 

laboratory data, for the GB Model, applied to the well (3-BRSA-944A-RJS) included in training set (for Permeability Predic0on Timur-
Coates Correla0on has been used): (From le] to right) 1st track: Predicted and laboratory Permeability (mD). 2nd track: Predicted and 

Measured Porosity (%). 3rd  track: Scamer plot of permeability-porosity of predicted and laboratory data (mD vs. %), 4th  track: 
Histogram of Porosity of predicted and laboratory data (%), 5th  track Histogram of Permeability of predicted and laboratory data (mD) 
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Figure A-16: Comparing the match between the predicted & laboratory measurement of permeability and porosity, Comparing scamer 
plot permeability-porosity of predicted and laboratory data, Histogram of Porosity and Permeability distribu0on of predicted and 

laboratory data, for the K-NN Model, applied to the well (3-BRSA-944A-RJS) included in training set (for Permeability Predic0on Timur-
Coates Correla0on has been used): (From le] to right) 1st track: Predicted and laboratory Permeability (mD). 2nd track: Predicted and 

Measured Porosity (%). 3rd  track: Scamer plot of permeability-porosity of predicted and laboratory data (mD vs. %), 4th  track: 
Histogram of Porosity of predicted and laboratory data (%), 5th  track Histogram of Permeability of predicted and laboratory data (mD) 



Amirhossein Akhondzadeh 

128 

 

 

Evalua4on of different model performances using the different dataset [9-ITP-RJS] (Not included in 
training-test)  

ScaGer plots  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-18: Scamer plots of predicted versus measured NMR porosity, for the GB Model, applied to one of the well (9-ITP-RJS) included in 
training phase: Le] plot: NMR Effec0ve Porosity (m3/m3). Middle plot: NMR Free Fluid (m3/m3). Right plot: NMR Total Porosity (m3/m3). 

Figure A-17: Scamer plots of predicted versus measured NMR porosity, for the RF Model, applied to one of the well (9-ITP-RJS) included in 
training phase: Le] plot: NMR Effec0ve Porosity (m3/m3). Middle plot: NMR Free Fluid (m3/m3). Right plot: NMR Total Porosity (m3/m3). 
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Well-log Plots 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-19: Scamer plots of predicted versus measured NMR porosity, for the K-NN Model, applied to one of the well (9-ITP-RJS) included in 
training phase: Le] plot: NMR Effec0ve Porosity (m3/m3). Middle plot: NMR Free Fluid (m3/m3). Right plot: NMR Total Porosity (m3/m3). 
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Figure A-20: Comparing the match between the predicted and measured NMR porosity (Effec0ve, Free fluid Total), and Predicted 
Permeability & Satura0on Using Timur-Coates Correla0on, for the RF Model, applied to the well (9-ITP-RJS) included in training phase: 

(From le] to right) 1st track: Predicted and Measured NMR Effec0ve Porosity (m3/m3). 2nd track: Predicted and Measured NMR Free Fluid 
(m3/m3). 3rd  track: Predicted and Measured NMR Total Porosity (m3/m3). 4th  track: Predicted Effec0ve, Free Fluid, Total Porosi0es 
(m3/m3), 5th  track: Timur-Coates Predicted Permeability (mD), 6th track: Timur-Coates Predicted Irreducible water Satura0on (%) 
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Figure A-21: Comparing the match between the predicted and measured NMR porosity (Effec0ve, Free fluid Total), and Predicted 
Permeability & Satura0on Using Timur-Coates Correla0on, for the GB Model, applied to the well (9-ITP-RJS) included in training phase: 

(From le] to right) 1st track: Predicted and Measured NMR Effec0ve Porosity (m3/m3). 2nd track: Predicted and Measured NMR Free Fluid 
(m3/m3). 3rd  track: Predicted and Measured NMR Total Porosity (m3/m3). 4th  track: Predicted Effec0ve, Free Fluid, Total Porosi0es 
(m3/m3), 5th  track: Timur-Coates Predicted Permeability (mD), 6th track: Timur-Coates Predicted Irreducible water Satura0on (%) 



Amirhossein Akhondzadeh 

132 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-22: Comparing the match between the predicted and measured NMR porosity (Effec0ve, Free fluid Total), and Predicted 
Permeability & Satura0on Using Timur-Coates Correla0on, for the K-NN Model, applied to the well (9-ITP-RJS) included in training phase: 
(From le] to right) 1st track: Predicted and Measured NMR Effec0ve Porosity (m3/m3). 2nd track: Predicted and Measured NMR Free Fluid 

(m3/m3). 3rd  track: Predicted and Measured NMR Total Porosity (m3/m3). 4th  track: Predicted Effec0ve, Free Fluid, Total Porosi0es 
(m3/m3), 5th  track: Timur-Coates Predicted Permeability (mD), 6th track: Timur-Coates Predicted Irreducible water Satura0on (%) 
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Figure A-23: Comparing the match between the predicted & laboratory measurement of permeability and porosity, Comparing scamer 
plot permeability-porosity of predicted and laboratory data, Histogram of Porosity and Permeability distribu0on of predicted and 

laboratory data, for the RF Model, applied to the well (3-BRSA-944A-RJS) included in training set (for Permeability Predic0on Timur-
Coates Correla0on has been used): (From le] to right) 1st track: Predicted and laboratory Permeability (mD). 2nd track: Predicted and 

Measured Porosity (%). 3rd  track: Scamer plot of permeability-porosity of predicted and laboratory data (mD vs. %), 4th  track: 
Histogram of Porosity of predicted and laboratory data (%), 5th  track Histogram of Permeability of predicted and laboratory data (mD) 
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Figure A-24: Comparing the match between the predicted & laboratory measurement of permeability and porosity, Comparing scamer 
plot permeability-porosity of predicted and laboratory data, Histogram of Porosity and Permeability distribu0on of predicted and 

laboratory data, for the GB Model, applied to the well (3-BRSA-944A-RJS) included in training set (for Permeability Predic0on Timur-
Coates Correla0on has been used): (From le] to right) 1st track: Predicted and laboratory Permeability (mD). 2nd track: Predicted and 

Measured Porosity (%). 3rd  track: Scamer plot of permeability-porosity of predicted and laboratory data (mD vs. %), 4th  track: 
Histogram of Porosity of predicted and laboratory data (%), 5th  track Histogram of Permeability of predicted and laboratory data (mD) 
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Figure A-25: Comparing the match between the predicted & laboratory measurement of permeability and porosity, Comparing scamer 
plot permeability-porosity of predicted and laboratory data, Histogram of Porosity and Permeability distribu0on of predicted and 

laboratory data, for the K-NN Model, applied to the well (3-BRSA-944A-RJS) included in training set (for Permeability Predic0on Timur-
Coates Correla0on has been used): (From le] to right) 1st track: Predicted and laboratory Permeability (mD). 2nd track: Predicted and 

Measured Porosity (%). 3rd  track: Scamer plot of permeability-porosity of predicted and laboratory data (mD vs. %), 4th  track: 
Histogram of Porosity of predicted and laboratory data (%), 5th  track Histogram of Permeability of predicted and laboratory data (mD) 
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Appendix 03: (Machine Learning Model approaches) 

Support Vector Machine (SVM) 

SVM was first proposed by Vapnik in and has been successfully applied to regression problems 
including grid load forecas4ng, fault diagnosis, and image processing. SVM shows great performance 
in high-dimensional func4on approxima4on problems due to the use of the kernel technique, which 
maps feature vectors to a higher-dimensional space. It is one of the most popular and versa4le models 
in ML, suitable for both classifica4on and regression of complex small datasets. Hence, many 
researchers use SVM to es4mate the SOH of baGeries. The architecture of the SVM method for 
regression is shown in Fig. 10. In general, the SVM model is defined as: 

𝑦M = 𝑤0 . 𝜓(𝑥) + 𝑏, 𝑥 ∊ 𝑅' , 𝜓(𝑥) ∊ 𝑅'1 , 𝑏 ∊ 𝑅 

Equa0on A-1 

where 𝜓(. ) is a mapping that makes the input data linear in a new feature space with dimension 𝑑S. 
Different from the general linear regression models, the SVM model uses the ε-insensi4ve loss 
func4on. This states that any error larger than ε is deemed unacceptable. That is, the objec4ve of the 
basic SVM is to find the op4mal coefficients w and b such that the func4on, f, does not contain errors 
larger than ε. This is, therefore, also called the hard-margin SVM. The hard-margin SVM leads to the 
following constrained op4miza4on problem. 

min
1
2𝑤

0𝑤 

𝑠. 𝑡. Y
	𝑦( −𝑤0 . 𝜓(𝑥() − 𝑏 ≤ 𝜀	
	𝑤0 . 𝜓(𝑥() + 𝑏 − 𝑦( ≤ 𝜀

				,										∀𝑖 ∈ {1, 2, … , 𝑁} 

Equa0on A-2 

However, it is not always feasible to find a minimum under these constraints. Therefore, the following 
loss func4on is introduced: 

𝜉∈(𝑦3b, 𝑦() = 	 c
	0																						, |𝑦( − 𝑦3b|−∈

	
|𝑦( − 𝑦3b|−∈			, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑧𝑒

		, ∀𝑖 ∈ {1, 2, … , 𝑁} 

Equa0on A-3 

Based on Equa4on 3, the samples with the predicted error less than ε are deemed acceptable, while 
the samples outside of the ε band will increase the regression error. Slack variables 𝜉(  and 𝜉(

∗ are 
introduced to create a sos-margin and allowing for measurement errors, making the op4miza4on 
feasible with otherwise infeasible constraints. The primal SVM op4miza4on problem has the following 
form:  

 

min 			 
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𝑤 ∊ 𝑅'1  

𝜉( , 𝜉(
∗ ∈ 	𝑅. 

 

1
2𝑤

0𝑤 + 𝐶h(𝜉( + 𝜉(
∗)	𝑠. 𝑡.		 i

𝑦( −𝑤0 . 𝜓(𝑥() − 𝑏 ≤ 𝜖 + 𝜉( 																																			
𝑤0 . 𝜓(𝑥() + 𝑏 − 𝑦( ≤ 𝜖 + 𝜉(

∗	, ∀𝑖 ∈ {1, 2, … , 𝑁}
𝜉( 	, 𝜉(

∗ ≥ 0																																																																				

.

(

 

Equa0on A-4 

where C is a posi4ve constant regula4ng the penalty, it determines the trade-off between the flatness 
of the regression func4on and the amount to which devia4ons larger than ε are tolerated. Flatness in 
the case of equa4on 4 means a small ‖𝑤‖.In order to solve this problem, the Lagrange mul4pliers 
𝛼( , 𝛼(∗, 𝛽( , 𝛽(

∗ ≥ 0	are introduced, and the Lagrangian can be expressed as follows: 

min 				 

𝑤 ∊ 𝑅'1 	 

𝜉( , 𝜉(
∗ ∈ 	𝑅. 

max	
α, β ∈ [0 +∞]! 			L

(w, b, ξ"	, ξ"
∗, α", α"∗, β", β"

∗)

= 	
1
2w

$w+ C8(ξ" + ξ"
∗)

!

"%&

−8	:β"ξ" + β"
∗ξ"

∗;
!

"%&

−8α"	(ϵ + ξ" − y" +w$. ψ(x") + b) −
!

"%&

8α"∗	(ϵ + ξ"
∗ + y" −w$. ψ(x") − b)

!

"%&

 

Equa0on A-5 

The min–max problem can be transferred into its dual max–min problem which sa4sfies the Karushe-
Kuhne-Tucker (KKT) condi4ons. The first KKT condi4on states that the gradients of the primal variables 
are equal to zero i.e., ∇5L = 0, ∇6L = 0, ∇7'L = 0, ∇7'∗L = 0. 

The second KKT condi4on called the complementary condi4ons states that mul4plying the constraint 
by its Lagrange mul4plier has to equal zero in the op4mum. That is, either the constraint is ac4ve, or 
the Lagrange mul4plier is zero. As a consequence of the second KKT condi4on, the Lagrange mul4plier 
	𝛼( 	and 𝛼(∗ for the samples inside the 𝜀–tube will vanish; while when |𝑦( − 𝑦3b| ≥ 𝜀, the mul4pliers 
	𝛼( 	and 𝛼(∗ are nonzero. Therefore, only the samples 𝑥(  with non-vanishing coefficients are enough to 
describe w, and these samples are commonly called the support vectors (SVs). The primal SVM 
op4miza4on problem is converted into the following dual SVM op4miza4on problem 
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max	
α, α∗ 		hy8(α8∗ − α8)

9

8:;

−h	ϵ(α8∗ + α8)
9

8:;

−
1
2hh(α8∗ − α8)(α<∗ − α<)Kwx8, x<x

9

8:;

	s. t. { h(α8∗ − α8) = 0
9

8:;
0 ≤ α8	, α8∗ ≤ C

9

8:;

 

Equa0on A-6 

 

Aser op4mizing equa4on 6, w.r.t. the Lagrange mul4pliers 	𝛼( 	and 𝛼(∗, the coefficients 𝑤 and 𝑏 can 
be computed from the 𝛼‘s using equa4on 7 and 8, respec4vely. 

w =h(α8 − α8∗). ψ(x8)
9

8:;

 

Equa0on A-7 

b = y" −8(αi−αi∗)ψ(xi)T. ψ(xi),									for	example	i	where	0 < αi∗, αi < C
N

i=1
 

Equa0on A-8 

Finally, the regression func4on can be described as: 

𝑓(𝑥) = 𝑤(. 𝜓(𝑥𝑖)+𝑏 =8(𝛼𝑖∗−𝛼𝑖)
𝑇. 𝐾:𝑥𝑖, 𝑥𝑗;

𝑁

𝑖=1
 

Equa0on A-9 

Where 𝐾(𝑥( , 𝑥) = ⟨𝜓(𝑥(), 𝜓(𝑥)⟩ is the kernel func4on. The kernel func4on implicitly maps the input 
to the high-dimensional feature space. This method has higher computa4onal efficiency than if the 
features were first mapped using 𝜓(∙), thereby, overcoming the curse of dimensionality. Common 
kernel func4ons 𝐾w𝑥(( , 𝑥FFx used in SVM are: 

• Polynomial kernel: 

𝐾w𝑥(( , 𝑥FFx = (𝑥((0 . 𝑥FF + 1)) 

Equa0on A-10 

 

• Gaussian radial basis func4on: 

𝐾w𝑥(( , 𝑥FFx = <−
1
2𝜎- �𝑥(( − 𝑥FF�

-> 

Equa0on A-11 

 

• Hyperbolic tangent kernel: 
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The Hyperbolic tangent kernel osen used as an ac4va4on func4on for ar4ficial neurons, expressed 
as: 

 

𝐾w𝑥(( , 𝑥FFx = 𝑡𝑎𝑛ℎw𝜅𝑥((0 . 𝑥FF + 𝑐x 

Equa0on A-12 

where 𝑀, 𝜎, 𝜅, 𝑐 are adjustable parameters of the above kernel func4ons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compared with the op4miza4on problem of the standard SVM, given in equa4on 4, LS-SVM has a less 
computa4onal burden and faster solving speed because it solves linear equa4ons instead of quadra4c 

Figure A-26: The illustra0on of Support Vector Machine (SVM).   



Amirhossein Akhondzadeh 

140 

 

programming problems. Before the model training, the kernel principal components analysis (PCA) 
algorithm was introduced to fuse these features. As a result, the obtained self-adap4ve feature shows 
higher relevance to the baGery capacity than most of the single features. Also, the LS-SVM model is 
op4mized by the par4cle swarm op4miza4on (PSO) algorithm.  

 

K-Nearest Neighbour Regression (KNN) 

K-NN is efficient for classifica4on purposes in paGern recogni4on. As a kind of lazy learning, k-NN uses 
the k closest neighbors in the feature space to classify a new point. When used for regression, as 
presented in Fig. 11, k-NN first finds the 𝑘 closest points	
x;, x-, …, xG of a new point 𝑥/"H based on a distance measure, and calculates the weighted average 
of their response to predict the response of 𝑥/"H. For a given training dataset with N points X =
{𝑥;, 𝑥-, … , 𝑥.}, where each point possessesd features, the response of a new data 𝑥/"H can be 
es4mated by k-NN as follows. 

First, in order to describe how close each training points 𝑥; is to the tes4ng points 𝑥/"H, the weighted 
Euclidean distance between them is calculated, which can be expressed as 

 

𝑑(𝑥( , 𝑥/"H) = �h𝑤F(𝑥/"HF − 𝑥( F)-
'

F:;

 

Equa0on A-13 

Where 𝑥/"H,F  and 𝑥(,F  are the 𝑗!J feature of the new point 𝑥/"H and the training points 𝑥(, respec4vely. 
Besides, wj is the weight of 𝑗!J feature, with the weights being subjected to the constraint 
∑ 𝑤F = 1'
F:; . The weight 𝑤F  reflects the importance of the feature and can be found using an 

op4miza4on algorithm, such as PSO, or differen4al evolu4on (DE) algorithm. According to the distance 
d, the k training points 𝑍 = {𝑥(;), 𝑥(-), … , 𝑥(.)} ordered from the nearest to furthest are obtained. 
These are called the k nearest neighbour of 𝑥/"H. A kernel func4on is then used to assign weights to 
each neighbour (the kernel is usually dependent on the calculated distance), and the predic4on for 
new sample 𝑥/"H can be obtained by: 

𝑦M/"H =
∑ 𝐾(𝑥/"H , 𝑥(())𝑦(M
(:;

∑ 𝐾(𝑥/"H , 𝑥(())M
(:;

 

Equa0on A-14 

where 𝜅 represents the number of nearest neighbors which controls the flexibility of the model (the 
higher k is the smoother the model is going to be). 𝑦(() represents the known response of 𝑦((), 𝑦M/"H 
the predicted response of 𝑥/"H, and 𝐾(𝑥/"H , 𝑥(()) denotes the kernel func4on, as given in equa4ons 
10-12. The principle of k-NN regression is simple and is easy to be implemented. The PSO algorithm 
obtained the op4mal combina4on of the feature weight. It not only shows the rela4ve importance of 
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each feature but also ensures accurate capacity es4ma4on. Even though the k-NN regression model 
is simple and an accurate SOH es4ma4on is easily obtained, the algorithm has a clear disadvantage: 
the en4re range of the baGery degrada4on has to be known, as the k-NN model cannot predict values 
outside of the observed range. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-27: The illustra0on of K-Nearest Neighbor Regressor (K-NN).   
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Appendix 04: (Developing Machine Learning Model) 

We have included specific lines of Python code that were wriGen for predic4ng NMR porosity logs 
and permeability from well-log data. 

 The complete Python code can be accessed through the following link (GitHub Repository): 

Link to Git HUB 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://github.com/Amirhosseinakhondzadeh/Well-log-Analysis-Reservoir-Properties
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