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Abstract

Reservoir characterization is an essential part of the hydrocarbon exploration and production workflow
as it plays a significant role in our understanding of underground geological setting, fluid behaviour,
and reservoir properties. Petrophysics is the discipline that allow to develop reservoir models and
estimate their properties. Porosity and permeability assessment plays a significant role in reservoir
characterization. Therefore, the main objective of this thesis is to predict and assess these parameters
using machine learning algorithms.

The primary aim of this thesis is to estimate reservoir properties, including porosity, permeability, and
saturation, utilizing well-log data. The focus lies on the diverse measurements obtained through
various technologies. These measurements are indirect and necessitate interpretation processes
grounded in assumed petrophysical models. Particularly in complex formations like carbonate
reservoirs with intricate and heterogeneous porosity patterns, these models may lack full realism.
Machine learning (ML) emerges as a promising approach in this context, offering multiple benefits. ML
can enhance parameter estimation while also facilitating the extraction of static and dynamic
properties, thereby reducing the need for a plethora of different measurements. For example, ML
techniques can potentially obviate the necessity for NMR logs.

In the first part of the study, various predictive models, including Random Forest (RF), Gradient
Boosting (GB), and K-Nearest Neighbor (K-NN), were developed. The NMR log provides a fairly accurate
measurement of different types of porosity, such as total, effective, and free-fluid porosity. The basic
well log data, such as gamma ray, resistivity, density, neutron porosity, acoustic slowness, and
photoelectric factor, were used as predictors, while the Nuclear Magnetic Resonance (NMR) log was
used as the target variable for the machine learning algorithms. Deterministic models, such as Timur-
Coates, originally developed for sandstone reservoirs, were utilized to estimate permeability and
saturation as functions of the three different porosity types estimated from the predictive models.
Subsequently, the predicted parameters, including free fluid, effective, and total porosities, as well as
permeability and saturation, were compared to the measured data for evaluation purposes.

In the second part of the study, the NMR log was bypassed, and permeability was directly used as the
target variable for machine learning models. Other basic well-log data were utilized as predictors. This
approach allows for the direct estimation of reservoir parameters using machine learning, which can
be highly beneficial as it removes deterministic correlations, such as those found in the Timur-Coates
model. In this part, a machine learning approach called Least Square Support Vector Regressor (LSSVR)
was developed.

The outcomes of each part and the different models were evaluated using various regression metrics,
such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE),
and the Coefficient of Determination (R2) values. The results indicate acceptable to highly accurate
predictions for various cases, ranging from the test dataset to the entire dataset encompassing all five
wells, as well as the evaluation of individual wells included in the training phase. However, when
applying the models to a different well that was not included in the training phase, the results showed
negative but still somewhat acceptable outcomes.
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The Python code in the form of a Jupyter notebook is available on GitHub and is open to the public for
enhanced accessibility and collaboration, facilitating potential future developments.
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1 Introduction

Well log data analysis is a crucial aspect of the exploration and evaluation of hydrocarbon reservoirs,
providing valuable insights into the physical properties and characteristics of subsurface formations.
Traditionally, this analysis has relied on manual interpretation of well log curves and logs, which can be
time-consuming, subjective, and prone to errors (Lee, 2002). Furthermore, manual interpretation does
not facilitate the integration of multiple datasets from different wells or locations, potentially leading
to inconsistent or incomplete results (Bueno, 2014).

Machine learning techniques have emerged as a promising approach to automate and enhance well
log data analysis in the petroleum industry. These computational methods have been applied for
various purposes, including classification, regression, clustering, anomaly detection, feature extraction,
and dimensionality reduction. For instance, demonstrated the integration of well log interpretations
for lithofacies classification and permeability modeling through advanced machine learning algorithmes,
overcoming multicollinearity and enhancing predictive capabilities. Furthermore, machine learning
methods have shown potential for predicting water saturation distribution in reservoirs, offering
valuable insights for reservoir characterization and management (Al-Mudhafar, 2007).

Furthermore, machine learning techniques have been utilized for interval inversion approaches to
improve the interpretation of well logs, reducing the harmful effects of data noise and enhancing the
accuracy of well-logging inverse problems (Mihaly Dobréka, 2016). Additionally, the application of
machine learning algorithms has enabled the prediction of the effectiveness of radial jet drilling
technology in various geological conditions, providing valuable insights for optimizing drilling
operations and production rates (Aleksandr Kochnev, 2021) (Zhao Wang, 2022). also emphasized the
quantitative evaluation of unconsolidated sandstone heavy oil reservoirs based on machine learning,
highlighting the potential of machine learning for reservoir evaluation and production optimization
(Zhao Wang, 2022).

The application of machine learning techniques in the petroleum industry has gained significant
attention for predicting well-log parameters without the need for additional costs or well intervention.
This approach has been facilitated by the utilization of diverse well-log datasets to train machine
learning models, thereby enhancing the accuracy of predictive models. Notably, machine learning
techniques such as Random Forest, Gradient Boosting, K-nearest Neighbour, and Support Vector
Machine have been widely applied in the petroleum industry for this purpose. Additionally, artificial
neural networks have been utilized to analyze and predict trends and patterns in well-log data.

In the previous study, machine learning models such as random forest and gradient boosting were
utilized for the prediction of various well-log data (including porosity, sonic, and NMR) based on basic
well-log data in the Santos Basin. Pellegrini's work demonstrated the effectiveness of these models in
predicting well log data (Pellegrini, 2023).

As a recommendation for future research, Pellegrini suggested that using the predicted NMR values, it
may be possible to calculate additional petrophysical data such as permeability. Building upon this
recommendation, the present thesis aims to further develop the methodology and techniques
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introduced by Pellegrini. The focus of this thesis is to explore the potential for utilizing predicted NMR
data to estimate petrophysical properties, specifically permeability, through the application of machine
learning models. In the first part of this thesis, the basic well-log data are used as input for a machine
learning approach. The goal is to build a model that can predict other specific logs, such as NMR
(Nuclear Magnetic Resonance), from the well-log data. NMR is a non-destructive testing technique that
measures the magnetic properties of fluids in porous media. By analyzing the NMR signals, different
porosities (total, effective, and free fluid porosities) can be estimated. These porosities are important
reservoir parameters that affect the fluid flow and trapping behavior in the subsurface.

The application of machine learning techniques for predicting NMR porosity from well-log data has
been a subject of significant interest in the petroleum industry. This approach involves training and
testing the model on a large dataset of well-log data from different wells and locations to establish the
relationship between input well-log data (e.g., resistivity, sonic, density) and the output NMR porosity.
The trained model can then be utilized to predict NMR porosity for new well-log data without requiring
additional measurements or assumptions.

Rock Bulk Volume

Total Porosity

Hydrocarbon

Effective Porosity Log analysis

Effective Connected

Figure 1-1: Schematic representation of the constituents of a rock; Definition of different porosities

Several studies have contributed to the advancement of machine learning applications in the
petroleum industry, aligning with the objective of predicting reservoir parameters from well-log data.
For instance, the synthesis of Nuclear Magnetic Resonance (NMR) outputs for clastic rocks using
machine learning methods, emphasizing the significance of predicting NMR outputs for wells where
NMR data is unavailable due to tool availability and logging costs (Rezaee, 2022). Additionally, it is
demonstrated a machine learning accelerated approach to infer nuclear magnetic resonance porosity
for a Middle Eastern carbonate reservoir, highlighting the reliability and consistency of the prediction
models with low errors and high 'R' values (Ayyaz Mustafa, 2023). Furthermore, it is presented an
adaptive boosting of the random forest algorithm for automatic petrophysical interpretation of well
logs, showcasing the potential of machine learning techniques in petrophysical interpretation
(Srivardhan, 2022).

The prediction of NMR porosity from well-log data will also lead to other reservoir parameters that can
be derived from it, such as permeability and saturation. Permeability is a measure of how easily fluids
can flow through a porous medium. Saturation is a measure of how much fluid is present in a pore
space. These parameters are also essential for reservoir characterization and evaluation. By comparing
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the predicted NMR porosity with lab data (RCAL), which is obtained by using reference cores or
standard methods to measure porosity directly, acceptable values for permeability and saturation can
be estimated. This will help to validate the accuracy and reliability of the machine learning model and
its predictions.

The application of the least square support vector machine (LSSVM) for predicting permeability directly
from basic well-log data has been a subject of significant interest in the petroleum industry. LSSVM, as
a type of support vector machine (SVM), is capable of solving linear systems of equations by minimizing
a quadratic objective function. It can effectively handle nonlinear and high-dimensional data by utilizing
kernel functions to map the input data into a higher-dimensional feature space. LSSVM has been
demonstrated to be effective and robust for various classification and regression problems in different
domains.

The goal of applying LSSVM to predict permeability from well-log data is to develop a simple and fast
method that does not require any additional measurements or assumptions about the reservoir
properties. However, these methods have some limitations, such as requiring core samples for
validation, being sensitive to noise and outliers, or being dependent on the quality and availability of
well-log data.

The research consists of two main phases. In the first phase, well-log data of different wells are
collected, pre-processed, and visualised. In the second phase, two different approaches to predict
permeability from well-log data are applied and compared. The first approach uses nuclear magnetic
resonance (NMR) log data. The NMR log data are used to estimate the pore size distribution and the
effective porosity of the rock, and then to calculate the permeability using empirical models. The
predicted permeability from NMR log data is compared with the measured permeability from
laboratory tests on core samples taken from the same wells (figure 1-2).

The second approach uses basic well-log data, such as gamma ray, resistivity, density, and neutron
porosity, and Photoelectric which are more widely available. The basic well-log data are used to
estimate the shale volume, water saturation, and porosity of the rock, and then to calculate the
permeability using least square support vector machine (LSSVM). The predicted permeability from
basic well-log data is also compared with the measured permeability from laboratory tests on core
samples (figure 1-2).
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Figure 1-2: the general workflow of the thesis; First and Second Phases
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2 Well-log Data Collection, Goal Definition, and Pre-processing

2.1 Data Collection and Pre-processing

The data collection process involved gathering well-log data from six different wells. Each well had
various logging measurements, such as Gamma Ray (GR), Resistivity (AT), Density (RHOZ), Neutron
Porosity (NPHI), Compressional Slowness (DTCO), Photo-electric Factor (PEFZ), and Nuclear Magnetic
Resonance (NMR). The collected data was stored in a proprietary format called DLIS (Data Log
Interchange Standard).

The initial stage in data preprocessing was to load the DLIS files from each well into a dedicated data
collecting application. This tool allowed for the extraction of individual well-log measurements into
distinct data frames. The following phase entailed removing any missing or incorrect data points. This
was accomplished by recognizing and deleting any data points labeled as Nan (Not a Number) or falling
outside of the expected range of values for the corresponding measurement.

After pre-processing, each well-log data set was represented by a distinct data frame, with each row
representing a single depth measurement and each column representing a different logging
measurement. The data frames were arranged depending on the well depths.

Reservoir Interval Extraction and Data Concatenation: The next step in data processing was to extract
the depth range of the reservoir interval from each well-log data frame. The reservoir interval was
defined as the stratigraphic unit that was the principal focus of the reservoir characterisation research.
Once the reservoir interval was determined, the data points from each well-log data frame were
retrieved and concatenated. This produced a single data frame containing all of the well-log
measurements for the full reservoir interval.

Concatenating data frames required careful consideration of the depth scales utilized in the various
well-log data sets. To ensure compatibility, the depth scales were thoroughly reviewed and changed as
necessary to ensure that the data points were matched.

Visualizing Correlations and Data Distribution: A variety of visualizations were used to acquire a
better understanding of the data and assure its viability for future analyses. Seaborn's pairplot tool was
used to depict the correlation between all pairs of well-log data, revealing information about the
correlations between various logging variables. In addition, histograms were created for each well-log
measurement to examine data distribution and identify probable outliers or data abnormalities. These
visualizations confirmed that the data was consistent, dependable, and appropriate for machine
learning applications.

Final Data Frame and Predictive Modelling: After completing the data pre-processing and
visualization stages, a comprehensive data frame was created, containing all essential well-log
information for the reservoir interval. This data frame was used as the input for predictive machine
learning (ML) models. The machine learning models were trained to infer connections between well-
log values and reservoir parameters of interest, such as porosity, permeability, and hydrocarbon
saturation. The trained ML models were subsequently utilized to predict these qualities at previously
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unrecorded well locations, allowing for reservoir characterization outside the scope of accessible well
data.

By properly collecting, pre-processing, displaying, and exploiting well-log data, a predictive ML model
developed that precisely defines reservoir features during the whole interval. This model offers useful
insights into reservoir management and optimization, allowing for more informed decisions about
drilling, production, and reservoir development strategies (figures 2-1, 2-2, and 2-3).

Santos Basin

(BRsammo-RUS )i i(3BRSAGHARSS ) | i(2BRoAtERS )i

NMR Porosity Log

' @ Permeability @

Figure 2-1: General concept of first part of the predictive model; using basic well log data (input) vs NMR log
data (target) to estimate reservoir characteristics from predicted NMR
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Figure 2-2: General concept of second part of the predictive model; using basic well log data (input) vs

permeability lab data (target) to estimate reservoir permeability directly from well log data
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2.2 Well-Log Data Information

Wireline logging is a crucial technique in the field of petroleum geology and exploration, offering
valuable insights into subsurface formations and reservoir characteristics. Various wireline logging
curves are used to measure different properties of the rock and fluid formations encountered during
drilling and well completion. Each wireline logging curve provides specific information that is essential
for understanding the geological and hydrocarbon potential of a well. Here, we'll briefly explain the
importance of some key wireline logging curves, while more in-depth information can be found in open
sources.

The Gamma-Ray log (GR), is a well logging instrument used in petroleum geology and reservoir
evaluation that measures the natural radioactivity emitted by rock formations in a borehole, usually in
APl units. Its principal applications include detecting shaly zones with high radioactivity, which is useful
for reservoir and formation appraisal. It also helps calculate shale volume, which is an important
statistic for determining reservoir quality and hydrocarbon potential. Furthermore, the variable
radioactivity levels associated with distinct clay minerals enable some degree of clay mineral
identification in shales and clay-rich formations. The GR log is a valuable instrument in the oil and gas
sector, providing critical data for drilling and production decisions in hydrocarbon exploration and
production.

The Resistivity log (RES), is a crucial wireline logging curve used in petroleum geology and reservoir
evaluation. Its major goal is to determine the resistivity of the geological formation, also known as
apparent formation resistivity. This study considers inquiry depths of 10 inches (AT10), 30 inches
(AT30), and 90 inches (AT90), which play an important role in analyzing the attributes of subsurface
formations. The Resistivity log is important because it may be used to determine fluid saturation inside
a formation. This is accomplished using the following principles:

e Resistivity and Formation Fluids: represent resistivity of a formation is highly dependent on the
types and properties of fluids present within it. Different fluids, such as water and hydrocarbons,
have distinct electrical conductivities. Water, being a good conductor, results in low resistivity
values, while hydrocarbons, which are generally poor conductors, lead to high resistivity values.

e Depth Investigation: by measuring resistivity at specific depths, such as 10 inches, 30 inches, and
90 inches, geoscientists can obtain a vertical profile of resistivity variations within the wellbore.
This allows for a more comprehensive assessment of the formation's properties at different
invasion zones.

e Saturation Indication: the resistivity curves obtained at these depths provide valuable insights into
the fluid saturation of the formation. Low resistivity values, as observed in the case of water-
bearing zones, indicate the presence of water or brine, suggesting that these zones may not be
ideal for hydrocarbon production. On the other hand, high resistivity values in the resistivity log
maybe indicative of hydrocarbon-bearing zone, signifying the potential for the presence of oil or
gas.

The Formation Density log, abbreviated as (RHOZ), is a crucial wireline logging tool that assesses
subsurface formations by subjecting them to gamma ray bombardment. Its ability to gauge the degree
of scattering and absorption of gamma rays provides a direct indication of the formation's bulk density,
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revealing insights into lithology, lithological boundaries, and porosity. Particularly valuable in
hydrocarbon exploration, this log helps identify hydrocarbon-bearing zones with distinctive bulk
density characteristics, playing a pivotal role in well placement, reservoir assessment, and the overall
success of oil and gas exploration and production operations.

The Neutron Porosity log, often denoted as (NPHI), is a critical tool in wireline logging that assesses
subsurface formations by exposing them to a controlled source of fast neutrons. It gauges the
formation's response to these neutrons, which in turn serves as a direct indicator of the formation's
porosity. In essence, the log provides the porosity of the formation by evaluating the interaction of fast
neutrons with the hydrogen atomic nuclei in the rock, providing essential data for reservoir
characterization, hydrocarbon potential assessment, and wellbore stability decisions in the field of
petroleum geology.

The Sonic log, specifically the Compressional Wave Slowness (DTCO), is a critical component of
wireline logging in the petroleum industry. It serves as a valuable tool for gathering essential
information about subsurface formations. In particular, it provides measurements related to the
slowness (inverse of seismic velocity), and attenuation, of refracted acoustic waves that traverse the
formation and reach the wellbore wall.

The Photo-Electric Factor log, often abbreviated as (PEFZ), is a significant wireline logging tool used
in geological and petrophysical evaluations of subsurface formations. It operates by measuring the
photo-electric absorption, which refers to the absorption of gamma rays under a specific threshold by
the formation. This absorption response provides a highly valuable indicator of the formation's
lithology, helping geologists and petrophysicists distinguish and characterize different rock types and
mineral compositions within the wellbore. The PEFZ log's capacity to discern lithological variations is
instrumental in making informed decisions related to reservoir mapping, well completion, and the
overall understanding of geological formations in the context of the oil and gas industry.

Nuclear Magnetic Resonance (NMR), logging is a well logging method that measures the induced
magnet moment of hydrogen nuclei (protons) contained within the fluid-filled pore space of porous
media (reservoir rocks). The NMR signal is a function of the number of protons, the distribution of pore
sizes, and the mobility of the fluids in the pore space. NMR logging is a powerful tool for reservoir
characterization because it can provide information about the following:

Total porosity: The total porosity of a rock is the volume of all the pores in the rock divided by the total
volume of the rock. NMR logging can be used to measure total porosity by measuring the total amount
of hydrogen in the pore space and the measure is independent from the matrix properties.

Pore size distribution: The pore size distribution of a rock is the distribution of the sizes of the pores in
the rock. NMR logging can be used to measure pore size distribution by measuring the relaxation times
of the hydrogen protons in the pore space. Relaxation times are shorter for smaller pores and longer
for larger pores.

Fluid type identification: NMR logging can be used to identify the types of fluids in the pore space by
measuring the chemical shift of the hydrogen protons. The characteristic relaxation time of the NMR
signal and is dependent on the type of molecule that the hydrogen proton is bonded to.

27



Amirhossein Akhondzadeh

Fluid mobility: The fluid mobility in the pore space is a measure of how easily the fluids can flow through
the pores. NMR logging can be used to measure fluid mobility by measuring the diffusion of the
hydrogen protons in the pore space. Diffusion is a process by which hydrogen protons move from areas
of high concentration to areas of low concentration.

The information provided by NMR logging can be used to improve the understanding of reservoir
properties, fluid distributions, and optimize hydrocarbon recovery strategies. For example, the total
porosity and pore size distribution can be used to estimate the reservoir's permeability and irreducible
water saturation. The fluid type identification can be used to identify zones that are likely to produce
oil or gas. And the fluid mobility can be used to identify zones that are likely to be productive and zones
that are likely to be bypassed by fluids.

Here are some specific examples of how NMR logging is used in petroleum geology and reservoir
characterization:

e |dentifying and characterizing different porosity types : NMR logging can be used to identify and
characterize different porosity types, such as intergranular pores, vugs, and fractures. This
information can be used to understand the reservoir's flow characteristics and to identify potential
drilling and production problems.

e Estimating permeability: Permeability is a measure of how easily fluids can flow through a rock.
NMR logging can be used to estimate permeability by measuring the pore size distribution and the
fluid mobility in the pore space.

Here is the available well log data across six different wells (figure 2-4):
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Figure 2-4: Available well log data across all six wells; Gama Ray (GR), Resistivity at 90 inches (AT), Neutron Porosity

28 (NPHI), Compressional Slowness (DTCO), Photoelectric Factor (PEFZ), Nuclear Magnetic Resonance (NMR)
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2.3 Geological history

The Santos Basin is bounded to the west by the Serra do Mar mountain range, and to the east by the
Sdo Paulo Plateau. The basin floor is divided into two main provinces: the Santos High, which is a
shallow-water region, and the Santos Deep, which is a deeper-water region. Here's a summary of the
key points you've highlighted:

Formation During Gondwana Breakup: The Santos Basin formed during the early Jurassic period as a
result of the breakup of the supercontinent Gondwana. This geological event separated what are now
the continents of South America and Africa.

Gondwana's Composition: Gondwana was a vast landmass that included present-day South America,
Africa, India, Australia, and Antarctica. As it began to fragment, rift valleys formed, and the Santos Basin
developed within one of these rift valleys.

Geographical Boundaries: The Santos Basin is geographically bounded by the Serra do Mar mountain
range to the west and the Sdo Paulo Plateau to the east, giving it distinct geographical boundaries.

Basin Floor Divisions: The basin floor of the Santos Basin can be divided into two primary provinces:
Santos High: This region is characterized as a shallow-water area.

Santos Deep: The Santos Deep is situated in deeper-water areas, likely representing greater depths
and different geological features.

2.4 Geological formations

The Santos Basin is home to a variety of geological era’s, including:

e Basement: The basement is composed of metamorphic and igneous rocks that formed during
the Precambrian era. These rocks are located deep beneath the sedimentary rocks of the
Santos Basin.

e Jurassic: The Jurassic section is composed of sandstones, shales, and limestones that were
deposited in a variety of environments, including rivers, lakes, and deltas. These rocks were
deposited during the early stages of the formation of the Santos Basin.

e Cretaceous: The Cretaceous section is composed of a thick layer of salt, followed by a sequence
of sandstones and shales that were deposited in a marine environment. The salt layer was
deposited during a period of restricted marine circulation, and the sandstones and shales were
deposited after the salt layer was deposited.

e Paleogene: The Paleogene section is composed of a sequence of sandstones, shales, and
limestones that were deposited in a variety of environments, including rivers, lakes, and deltas.
These rocks were deposited after the salt layer was deposited and the marine circulation was
restored.
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* Neogene: The Neogene section is composed of a sequence of sandstones, shales, and
limestones that were deposited in a marine environment. These rocks were deposited during
the most recent geological period.

2.5 Geological features

The Santos Basin is also home to several important geological features, including:
Pre-salt reservoirs:

reservoir: Pre-salt reservoirs in the Santos Basin are located beneath a thick layer of salt that was
deposited during the Cretaceous period. This salt layer acted as a seal, preserving organic-rich
sediments deposited before and during its formation.

Hydrocarbon Potential: These reservoirs are known to contain some of the largest oil and gas reserves
in the world. The hydrocarbons within these reservoirs are typically of high quality, with light crude oil
being a common find.

Challenges: Developing pre-salt reservoirs is a formidable task due to their extreme depths, which can
reach several kilometres beneath the seafloor. Drilling through the thick salt layer is technically
challenging, as it requires specialized equipment and expertise to avoid complications like well
instability and pressure imbalances.

»

_ BRAZIL

-
h-‘..-
POt |
Espirito o
°.. Sanfo basin «*
r
~

Vitoria

Rio de Janeiro
Sdo Paulo. '

Curitiba 7
' Santos ./
Basin {

SOUTH ATLANTIC OCEAN

Figure 2-5: General map of Santos Bason and Pre-salt reservoir location on the basin (Santos and Campos)
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Salt diapirs:

Role in Trap Formation: Salt diapirs are of particular interest to the oil and gas industry because they
can create structural traps for hydrocarbons. As the salt moves upward, it deforms the surrounding
sedimentary rocks, causing them to fold and fracture. This deformation can create anticlines, domes,
and other structural traps that are conducive to the accumulation of oil and gas.

Preservation of Hydrocarbons: The impermeable nature of salt layers can also contribute to the
preservation of hydrocarbons. As the salt rises and seals off porous reservoir rocks, it prevents the
escape of hydrocarbons, allowing them to accumulate over geological timeframes.

Common in Santos Basin: Salt diapirs are a common geological feature in the Santos Basin. Their
presence is closely associated with the extensive salt layers found in this basin. These diapirs are often
interconnected with other geological elements, such as faults and stratigraphic traps, further
enhancing their importance in hydrocarbon exploration.

Geological Challenges: While salt diapirs provide opportunities for hydrocarbon exploration, they also
present geological challenges. The complex deformation patterns associated with salt movement can
result in reservoir heterogeneity, making accurate reservoir modeling and drilling planning crucial for
success.

Grabens:

Grabens are structures that form when the Earth's crust is pulled apart. Grabens are common in the
Santos Basin, and they have played an important role in the formation of the pre-salt reservoirs.

Formation Mechanism: Grabens are geological structures that form when the Earth's crust is subjected
to extensional tectonic forces, causing it to be pulled apart. This stretching of the crust results in the
creation of elongated, down-dropped blocks called grabens, often bounded by fault systems.

Role in Pre-salt Formation: Grabens have played a significant role in the formation of pre-salt reservoirs
in the Santos Basin. These structural depressions provided ideal settings for the accumulation of
sediments, including the organic-rich material that eventually became source rocks for hydrocarbons.

Accumulation of Sediments: Within the grabens, sedimentary layers accumulated over geological time.
These layers often include the source rocks that generated the hydrocarbons, as well as reservoir rocks
that can trap oil and gas.

Structural Traps: The faulted boundaries of grabens can create structural traps for hydrocarbons. As
sediments filled the grabens, faulting could create both stratigraphic and structural traps, which are
favorable conditions for the accumulation and retention of oil and gas.

Interaction with Salt Diapirs: Grabens in the Santos Basin are often interconnected with other
geological elements, such as salt diapirs and fault systems. These interactions can further enhance
their importance in hydrocarbon exploration. For example, salt diapirs can rise within grabens, creating
additional structural complexity and trapping opportunities.

Geological Significance: Grabens are essential geological features that have influenced the basin's
sedimentary architecture and hydrocarbon potential. Their presence and interaction with other
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structural elements have contributed to the unique geological setting of the pre-salt play in the Santos
Basin.

Challenges and Opportunities: While grabens provide opportunities for hydrocarbon exploration, they
also present geological challenges. Understanding the complex deformation patterns associated with
grabens is crucial for accurate reservoir modelling, drilling planning, and resource assessment in the
basin.

2.6 Barra Velha Formation:

The Barra Velha Formation is a geological formation located in the southern region of Brazil, specifically
in the Santos Basin offshore the state of Sdo Paulo. This formation is of significant interest in the field
of petroleum geology and exploration due to its hydrocarbon potential.

Here are some key points about the Barra Velha Formation:

Stratigraphy: The Barra Velha Formation is a part of the post-rift section within the Santos Basin. It is
part of the late Cenozoic sedimentary sequence, primarily composed of clays, silts, sands, carbonate
layers.

Hydrocarbon Potential: The Santos Basin, including the Barra Velha Formation, is known for its
substantial hydrocarbon reserves. The formation is associated with both oil and gas deposits.
Exploratory drilling and seismic studies have been conducted to assess the hydrocarbon potential of
the region.

Reservoir Characteristics: The Barra Velha Formation features reservoir rocks with varying porosity
and permeability. Understanding the porosity and fluid distribution within these reservoir rocks is
critical for evaluating their production potential. The use of wireline logs like the Nuclear Magnetic
Resonance (NMR) log, among others, is essential for characterizing these reservoirs.

Reservoir Management: The detailed knowledge of the Barra Velha Formation's lithology, porosity,
and fluid content, obtained through wireline logging and core analysis, guides reservoir management
decisions. This information aids in optimizing well placement, drilling strategies, and production
schemes.

Exploration and Production: As oil and gas companies seek to expand their exploration efforts and
increase production in the Santos Basin, the Barra Velha Formation remains a focal point for geological
and petrophysical analysis. This includes using advanced logging tools like NMR to refine reservoir
understanding and improve hydrocarbon recovery strategies.

the Barra Velha Formation in the Santos Basin, Brazil, is a geological formation of great significance in
the context of hydrocarbon exploration and production. Advanced logging techniques, such as the
Nuclear Magnetic Resonance (NMR) log, are vital for characterizing the reservoir properties within this
formation and optimizing the extraction of oil and gas resources. It plays a central role in enhancing
the petroleum industry's capacity to make informed decisions regarding the Santos Basin's potential
as a valuable hydrocarbon reservoir. The stratigraphical information of Santos Basin has been shown in
figure 2-6.
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Figure 2-6: Stratigraphic chart of the rift and post-rift phases of the Santos Basin, modified (Link)

2.7 Locations and Well-log plots of different wells:

The wells 3-BRSA-944A-RJS, 1-BRSA-1116-RJS, 3-BRSA-1215-RJS, and 9-ITP-1-RJS are strategically
located in the vicinity of Rio de Janeiro, constituting the Itapu field, with the exception of 3-BRSA-944A-
RJS, which is affiliated with the Buzios field. These wells play a pivotal role in the exploration and
production activities within the oil and gas industry, focusing primarily on the Barra Velha Formation.
This formation, recognized as a pre-salt carbonate reservoir, encompasses limestones and
microbialites, contributing significantly to the energy resources in the region (figures 2-7, 2-8).

Specifically, 1-BRSA-1116-RJS represents an exploration well, designed to identify and characterize new
reservoirs of oil or gas. Meanwhile, 3-BRSA-1215-RJS serves as an appraisal well, instrumental in
evaluating the size, production rate, and reserves of the oil or gas field. The production well, 9-ITP-1-
RJS, is crucial for the extraction of oil or gas from the Barra Velha Formation, ensuring a sustainable
supply of energy resources.

On the other hand, the wells 3-EQNR-1-SPS and 3-EQNR-3-SPS are strategically positioned near Sao
Paulo, contributing to the Bacalhau field, formerly known as Carcara. Similar to their Rio de Janeiro
counterparts, these wells tap into the Barra Velha Formation. Notably, they exhibit a higher gas-oil ratio
compared to other wells in the region, introducing a distinctive element to the exploration and
production dynamics.

In this context, the abbreviations are integral to understanding the geographical and operational
aspects:

e BRSA signifies Brazil
e RJS denotes the state of Rio de Janeiro in Brazil
e SPS represents the state of Sao Paulo in Brazil

This exploration and production framework, characterized by exploration, appraisal, and production
wells, underscores the significance of these wells in advancing the oil and gas industry in the region.
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The unique geological characteristics of the Barra Velha Formation further emphasize the importance
of these assets in securing and optimizing energy resources for sustainable development.

VOITE,HEUONaa

da Mpatiqiéita—. ~— RIO 0ap-Ostras.

Braganca

Pindamonhangaba
tatiba_\ Paulista

Taubaté

Atibaia

530 José-dos

idial Carhpos

“Franco da

Rocha
AN VS a e e
Sao PauloT-Suzang
a

imbiental
Marinka
do Litorol

v X Norte -
Sao Bernardo Setor Cunhambebe

. - do.Camp

¥ 1-BRSA-944A-RIS
/ 'raﬁs&wn&ms
' 1-BRSA-1215-RJS

’ 9-TP-1-RJS

' 3-EQNR-1-5PS e

' 3-EQNR-3-SPS

Figure 2-7: Map of six different wells [3-BRSA-944A-RJS, 1-BRSA-1116-RJS, 3-BRSA-1215-RJS, and 9-ITP-1-RJS,
3-EQNR-1-SPS and 3-EQNR-3-SPS] in fields of Itapu, Buzios, Bacalhau (all located in the Santos Basin)

Figure 2-8: Map of three different fields (Itapd, Buzios, Bacalhau); Six different wells are drilled into these three fields.
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The prediction of permeability poses a significant challenge, especially in carbonate reservoirs, which
typically exhibit lower levels of permeability compared to their sandstone counterparts. The
complexity is further compounded by the heterogeneous distribution of vugs and fractures, which
significantly contribute to the overall permeability of carbonate reservoirs. Carbonate reservoirs are
composed of rocks that contain calcium carbonate minerals, such as calcite and dolomite. They are
often more complex and heterogeneous than sandstone reservoirs, which consist of quartz and other
silicate minerals. You can observe the pore size and pore distribution in carbonate reservoirs in the
Santos Basin, specifically for well 9-ITP-RJS, in the provided image (figure 2-9).

Figure 2-9: Pore Distribution in Well 9-ITP-RJS, Santos Basin: A close-up view showcasing the intricate pore structure and distribution.

In Well 3-BRSA-944A-RJS, the geological formations encountered mirrored those in Well 1-BRSA-1116-
RJS to a significant extent. The Ariri formation, between 3444 to 6003.6 meters, shared similarities with
the corresponding depths in the first well, displaying high salinity, lack of porosity, and limited reservoir
potential due to its composition of anhydrite and halite. The Barra Velha formation in this well, ranging
from 5487 to 5782 meters, resembled the favorable reservoir characteristics found in Well 1,
showcasing limestone lithology with high porosity and permeability. Subsequently, the Itapema
formation, occupying 5782 to 6003.6 meters, echoed the same limitations observed in the
corresponding depths of Well 1, featuring calcareous shale with insufficient porosity and permeability
for effective fluid flow (figure 2-10).

In Well 1-BRSA-1116-RJS, the formations encountered spanned varied lithologies and reservoir
potentials. The Ariri formation, ranging from 4050 to 5940 meters, consisted mainly of anhydrite and
halite. Despite its substantial thickness of 1292 meters, this formation lacked porosity, rendering it an
inadequate reservoir rock due to its high salinity and low fluid-transmitting capabilities. Following the
Ariri, the Barra Velha formation, occupying 5342 to 5857 meters, presented limestone lithology
spanning 515 meters. Contrarily, this formation exhibited high porosity and permeability, making it an
excellent reservoir rock for fluid storage and transmission. Lastly, the Itapema formation, lying between
5857 to 5940 meters, predominantly comprised calcareous shale, characterized by low porosity and
permeability, making it unsuitable for fluid flow (figure 2-11).
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Figure 2-10: Composite well-log of well 3-BRSA-944A-RJS (prediction depth interval: 5477 - 5712 m) vs Measured Depth. Track
1: Gamma-Ray (GR). Track 2: Induction Electric Resistivity logs. Investigation depths of 10 (AT10), 30 (AT30), and 90 (AT90)
inches. Track 3: Formation Density (RHOZ), Neutron Porosity (NPHI), and Photoelectric Factor (PEFZ) logs. Track 4:
Compressional Wave Slowness (DTCO). Track 5: Nuclear Magnetic Resonance Porosity logs. Total Porosity (NMRTOT), Effective

Porosity (NMREFF), and Free Fluid (NMRFF). The light green highlight interval which is the reservoir rock.
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Figure 2-11: Composite well-log of well 1-BRSA-1116-RJS (prediction depth interval: 5358 - 5560 m) vs Measured Depth. Track
1: Gamma-Ray (GR). Track 2: Induction Electric Resistivity logs. Investigation depths of 10 (AT10), 30 (AT30), and 90 (AT90)
inches. Track 3: Formation Density (RHOZ), Neutron Porosity (NPHI), and Photoelectric Factor (PEFZ) logs. Track 4:
Compressional Wave Slowness (DTCO). Track 5: Nuclear Magnetic Resonance Porosity logs. Total Porosity (NMRTOT), Effective
Porosity (NMREFF), and Free Fluid (NMRFF). The light green highlight interval which is the reservoir rock.

In Well 3-BRSA-1215-RJS, the geological profile followed a pattern reminiscent of the previous wells.
The Ariri formation, spanning 4709 to 5681 meters, exhibited similarities with Wells 1 and 3 in terms
of high salinity, lack of porosity, and unsuitability as a reservoir rock due to its anhydrite and halite
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content. The subsequent Barra Velha formation, occupying 5412 to 5681 meters, mirrored the
favorable characteristics observed in Wells 1 and 3, presenting limestone lithology with notable
porosity and permeability, rendering it a favorable reservoir rock for fluid storage and transmission

(figure 2-12).
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Figure 2-12: Composite well-log of well 3-BRSA-1215-RJS (prediction depth interval: 5417 - 5650 m) vs Measured Depth. Track
1: Gamma-Ray (GR). Track 2: Induction Electric Resistivity logs. Investigation depths of 10 (AT10), 30 (AT30), and 90 (AT90)
inches. Track 3: Formation Density (RHOZ), Neutron Porosity (NPHI), and Photoelectric Factor (PEFZ) logs. Track 4:
Compressional Wave Slowness (DTCO). Track 5: Nuclear Magnetic Resonance Porosity logs. Total Porosity (NMRTOT), Effective
Porosity (NMREFF), and Free Fluid (NMRFF). The light green highlight interval which is the reservoir rock.
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Figure 2-13: Composite well-log of well 9-ITP-1-RJS (prediction depth interval: 5230 - 5590 m) vs Measured Depth. Track 1:
Gamma-Ray (GR). Track 2: Induction Electric Resistivity logs. Investigation depths of 10 (AT10), 30 (AT30), and 90 (AT90)
inches. Track 3: Formation Density (RHOZ), Neutron Porosity (NPHI), and Photoelectric Factor (PEFZ) logs. Track 4:
Compressional Wave Slowness (DTCO). Track 5: Nuclear Magnetic Resonance Porosity logs. Total Porosity (NMRTOT), Effective
Porosity (NMREFF), and Free Fluid (NMRFF). The light green highlight interval which is the reservoir rock.
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Figure 2-14: Composite well-log of well 3-EQNR-1-SPS (prediction depth interval: 5910 - 6040 m) vs Measured Depth. Track 1:
Gamma-Ray (GR). Track 2: Induction Electric Resistivity logs. Investigation depths of 10 (AT10), 30 (AT30), and 90 (AT90)
inches. Track 3: Formation Density (RHOZ), Neutron Porosity (NPHI), and Photoelectric Factor (PEFZ) logs. Track 4:
Compressional Wave Slowness (DTCO). Track 5: Nuclear Magnetic Resonance Porosity logs. Total Porosity (NMRTOT), Effective

Porosity (NMREFF), and Free Fluid (NMRFF). The light green highlight interval which is the reservoir rock.

Well 3-EQNR-3-SPS revealed a significant geological shift beyond 6315 meters, marked by elevated
gamma ray log values and decreased resistivity log values, attributed to the presence of igneous rock,
specifically basalt formations. Basalt's mineral composition contributes to higher gamma radiation
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readings, while its inherent lower resistivity, compared to sedimentary reservoir rocks, is reflected in
the decreased resistivity log values. Despite these log indications, basalt formations typically lack the
necessary porosity and permeability for effective reservoir capabilities, thereby rendering them
unsuitable as reservoir rocks (figure 2-14).
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Figure 2-15: Composite well-log of well 3-EQNR-3-SPS (prediction depth interval: 6050 - 6315 m) vs Measured Depth. Track 1:
Gamma-Ray (GR). Track 2: Induction Electric Resistivity logs. Investigation depths of 10 (AT10), 30 (AT30), and 90 (AT90)
inches. Track 3: Formation Density (RHOZ), Neutron Porosity (NPHI), and Photoelectric Factor (PEFZ) logs. Track 4:
Compressional Wave Slowness (DTCO). Track 5: Nuclear Magnetic Resonance Porosity logs. Total Porosity (NMRTOT), Effective
Porosity (NMREFF), and Free Fluid (NMRFF). The light green highlight interval which is the reservoir rock.
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2.8 Visualizing Well Log Relationships and Distributions

This section investigates the relationships and distributions of several key well log parameters that are
commonly used in the oil and gas industry to evaluate the subsurface formations and their fluid
contents. These parameters are: gamma ray (GR), deep resistivity (AT90), bulk density (RHOZ), neutron
porosity (NPHI), compressional wave slowness (DTCO), photoelectric factor (PEFZ), free fluid nuclear
magnetic resonance (FFNMR), effective porosity nuclear magnetic resonance (EFFNMR), and total
porosity nuclear magnetic resonance (TOTNMR).

The histograms provide insights into the distributional characteristics of each parameter, including the
central tendency, spread, and shape of the data. For instance, a bimodal histogram of GR may indicate
the presence of shale and sand layers, while a skewed histogram of AT90 may reflect the variation of
resistivity due to different fluid saturations. This analysis provides valuable insights into the behavior
of these parameters and their potential applications in reservoir characterization and fluid property
estimation. By using these graphical tools, it can be identified the lithology, porosity, permeability, and
hydrocarbon potential of the reservoir, as well as detect any anomalies or outliers in the data (figures
2-16, 2-17).

A comprehensive visual analysis is conducted using Seaborn pairplots and histograms to unveil the
interdependencies and patterns of these parameters. The pairplots show the scatter plots of each pair
of parameters, as well as the histograms of each parameter along the diagonal. The pairplots reveal
the correlations between the log parameters, highlighting the strength and direction of these
relationships. For example, a positive correlation between RHOZ and PEFZ indicates a higher density
and photoelectric effect of the rock matrix, while a negative correlation between NPHI and DTCO
suggests a lower porosity and faster acoustic velocity of the formation (figures 2-18, and 2-19).

Also, the importance of ensuring that each well-log data falls within the same range, rather than having
different scales for all six wells, becomes apparent. For instance, having varying gamma-ray (GR) log
ranges for each of the six wells indicates the presence of distinct geological models and petrophysical
regimes in a real-world scenario. This variation can potentially highlight the unreliability of the final
model. Therefore, different histograms, kernel density estimates (KDE), and strip plots were utilized to
demonstrate the consistent range for the specific well-log data across all six wells.

In the process of developing the model, the challenge posed by the existence of diverse well-log data
for each well was addressed through Min-Max normalization. This technique effectively brought all the
well-log data into the same range, ensuring uniformity and comparability across different datasets.
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Figure 2-16: Different Plots (KDE Plot, Histogram, and Strip) for RHOZ on the left and NPHI on the right side. Each of these
plots for different properties (RHOZ & NPHI) show the distribution and comparison the range of the parameters for six
different wells.
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Figure 2-17: Different Plots (KDE Plot, Histogram, and Strip) for NMRFF on the left and NMREFF on the right side. Each of these
plots for different properties (NMRFF & NMREFF) show the distribution and comparison the range of the parameters for six
different wells.
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2.8.1 Part One Correlations

In this section, the correlation between various basic well-log data and NMR log data is depicted using
Seaborn Pair plots. This directly impacts the quality of the predictive model we aim to develop. The
correlation can be positive or negative; a positive correlation indicates a meaningful relationship
between the logs to some extent.

Pairplot of 3-BRSA-944A-RJS
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Figure 2-18: Seaborn Pair plots of well: 3-BRSA-944A-RJS for different well log data (GR, AT90, RHOZ, NPHI, DTCO, PEFZ, and NMRTOT)
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Figure 2-19: Seaborn Pair plots of well: 9-ITP-1-RJS for different well log data (GR, AT90, RHOZ, NPHI, DTCO, PEFZ, and NMRTOT)

Other Histograms and Distributions plot have been shown in Appendix 01.
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2.8.2 Part Two Correlations

In this section, we have explored the relationship between fundamental well-log data and permeability.
The analysis delves into understanding how various essential well-log measurements correspond or
relate to the permeability of the formation. By examining this correlation, we aim to uncover the extent
to which these basic well-log measurements serve as indicators or predictors of permeability within
the geological formations under study (figure 2-20).
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Figure 2-20: Heatmap of correlation of well-log data and laboratory permeability related to the second part of the thesis
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3 Methodologies and Concepts

3.1 Comprehensive Approaches to Permeability Estimation: Leveraging
NMR and Well-Log Data Analysis in Predictive Modeling

In the first part of the study, the permeability estimation process takes an indirect approach by using
Nuclear Magnetic Resonance (NMR) data. The predictors are based on fundamental well-log data,
while the target for estimation is the NMR-derived permeability. By employing deterministic
correlation, such as the Timur-Coates model (Jun Yoneda, 2022), the prediction of permeability is
enabled based on the anticipated NMR values. This approach is rooted in the understanding that NMR
data can offer valuable insights into the pore structure and fluid properties of subsurface formations,
which are crucial for estimating permeability.

Using NMR data in permeability estimation offers several advantages. NMR provides direct
measurements of fluid-filled porosity and pore size distribution, which are crucial factors influencing
permeability. By incorporating NMR data into the predictive models, the estimation of permeability
can benefit from a more comprehensive understanding of the reservoir properties, leading to more
accurate predictions. Additionally, NMR data can capture variations in fluid types and their distribution
within the reservoir, contributing to a more nuanced assessment of permeability across different
geological settings. This means that by using NMR data, we can get a better understanding of the
reservoir and make more accurate predictions of permeability, which is essential for various
applications in the oil and gas industry.

In Part Two of the study, a different approach is taken by excluding NMR data from the well-log
predictors. Instead of relying on NMR-derived values, the focus shifts to predicting permeability
directly using laboratory-derived permeability as the target variable. This unique strategy allows for a
distinct examination of the predictive models and methodologies when NMR-derived data is not
included in the prediction process, offering insights into the direct estimation of permeability from
well-log data without relying on the intermediary step of NMR-derived predictions. This approach
provides a comprehensive analysis of the effectiveness of well-log data alone in predicting
permeability, highlighting the strengths and limitations of using NMR-derived data versus relying solely
on well-log data for permeability estimation.

The exclusion of NMR data from the well-log predictors in Part Two presents an opportunity to assess
the effectiveness of well-log data alone in predicting permeability. This approach is significant as it
provides a comparative analysis of the predictive models and methodologies, highlighting the strengths
and limitations of using NMR-derived data versus relying solely on well-log data for permeability
estimation.

The two parts of the study offer a comprehensive analysis of permeability estimation using different
approaches. Part One demonstrates the indirect estimation of permeability through NMR-derived
data, while Part Two focuses on the direct estimation of permeability from well-log data without the
intermediary step of NMR-derived predictions. This comparative analysis provides valuable insights
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into the role of NMR data in permeability estimation and the potential of well-log data as a standalone
predictor for permeability.

The foundation for predicting permeability based on well-log data involves a comprehensive
understanding of essential concepts such as the utilization of Python libraries and the application of
various model development and optimization techniques. These preliminary discussions serve as
crucial building blocks, providing the necessary groundwork before delving into the intricate process
of permeability prediction.

Python libraries play a pivotal role in providing a versatile toolkit for data manipulation, statistical
analysis, and model implementation. Libraries such as NumPy, Pandas, and Scikit-learn offer powerful
tools for handling and processing large datasets, performing statistical analysis, and implementing
machine learning algorithms for predictive modeling. The utilization of these libraries enables
researchers and practitioners to efficiently preprocess well-log data, extract relevant features, and
build predictive models for permeability estimation.

Furthermore, the application of various model development and optimization techniques is essential
for ensuring the accuracy and efficiency of the predictive models. Techniques such as feature
engineering, model selection, hyperparameter tuning, and cross-validation are integral components of
the model development process. Feature engineering involves transforming raw well-log data into
meaningful predictors that capture the underlying geological properties influencing permeability.
Model selection entails choosing the most appropriate algorithm for the predictive task, considering
factors such as interpretability, scalability, and predictive performance. Hyperparameter tuning aims
to optimize the configuration of the selected model to achieve the best predictive accuracy. Cross-
validation techniques are employed to assess the generalization performance of the models and
mitigate overfitting.
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3.2 Python library

The thesis effectively utilized a suite of Python libraries to address the challenges of data handling,
visualization, and machine learning in scientific research. The following Python libraries were employed
for different tasks:

Data Manipulation and Analysis:

pandas (pd): This extensive library served as the backbone for handling the massive volume of well log
data. Its DataFrames data structure provided a powerful and flexible framework for organizing,
filtering, and manipulating the data, enabling efficient data exploration and analysis.

numpy (np): This fundamental library provided essential numerical capabilities for performing array
operations, calculating statistics, and applying mathematical functions on the extracted numerical
values from the well log data. Its efficient and versatile algorithms significantly streamlined data
processing tasks.

Plotting and Visualization:

matplotlib.pyplot (plt): This foundational module within Matplotlib played a central role in creating a
wide range of visualizations to effectively communicate insights from the data. Its comprehensive
plotting capabilities enabled the creation of insightful charts, graphs, and plots, facilitating data
exploration and interpretation.

seaborn (sns): Building upon Matplotlib's strengths, seaborn offered advanced plotting features,
empowering the creation of aesthetically pleasing and informative statistical graphics. Its ability to
handle categorical data, create joint plots, and provide visual themes enhanced the overall
presentation and communication of data-driven findings.

matplotlib.patches (mpatches): This module within Matplotlib was employed to further enhance the
visual appeal of plots, particularly through the creation of colored boxes for legends.

Customization and Formatting:

matplotlib_inline.backend_inline.set_matplotlib_formats: This  configuration = ensured that
Matplotlib figures were displayed seamlessly within the Jupyter Notebook environment as scalable
vector graphics (SVG). This enabled high-quality image rendering without compromising readability.

gbstyles.mpl_style: This potentially custom style module was applied to Matplotlib plots, customizing
their appearance and presentation to align with the project's visual style guidelines.

Machine Learning and Preprocessing:

scikit-learn (sklearn): This extensive machine learning library provided the necessary tools for building
and evaluating regression models to predict target values from the well log data. Its comprehensive
range of regression algorithms, including RandomForestRegressor and GradientBoostingRegressor,
enabled the exploration of various modeling approaches.

Pickle: This module enabled the serialization and deserialization of Python objects, facilitating the
efficient saving and loading of trained models, preprocessed data, and other intermediate results. Its
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ability to handle large datasets and preserve data integrity was crucial for maintaining reproducible
research workflows.

The use of these libraries facilitated efficient exploration and analysis of well log data, creation of
insightful visualizations, and development of robust machine learning models for predicting target
values from the data.

3.3 Model Development and Optimization Techniques

Data preparation plays a critical role in machine learning by ensuring the quality and consistency of the
data. It involves identifying and addressing data issues such as missing values, outliers, and data
inconsistencies. By ensuring the data is clean and well-structured, the machine learning algorithm can
learn more effectively and produce more accurate predictions.

3.3.1 Normalization

Normalization techniques like Min-Max scaling and StandardScaler are crucial for ensuring robustness
in machine learning models by standardizing variable scales (Ahmed M. Elshewey, 2023). These
methods address challenges posed by predictors with varying magnitudes, enabling effective learning
across diverse feature distributions.

Min-Max scaling, or z-score normalization, adjusts data points to a mean of O and a standard deviation
of 1. This compression of variable ranges facilitates a consistent understanding of feature relationships,
allowing the model to focus on relative differences between features rather than individual
magnitudes.

StandardScaler, in contrast, standardizes features by removing the mean and scaling to unit variance.
Unlike Min-Max scaling, it doesn't confine values to a specific range but ensures features have a mean
of 0 and variance of 1. This method preserves feature variance and is beneficial when data distribution
doesn't conform to a specific range.

In this study, both Min-Max scaling and StandardScaler were utilized, each offering distinct advantages
based on the dataset's characteristics. StandardScaler maintained the inherent distribution and
variance, while Min-Max scaling ensured uniform representation across features, granting equal
weightage to varying feature magnitudes.

The significance of these normalization techniques lies in their crucial roles in enhancing model
performance. Addressing disparate feature scales, they contribute to a comprehensive understanding
of feature relationships, empowering models to make more accurate predictions across varied
datasets.

3.3.2 K-fold cross-validation (K-CV)

K-fold cross-validation (K-CV) is a widely used technique in the field of machine learning and predictive
modeling for assessing the performance and generalization ability of predictive models. In K-fold cross-
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validation, the original dataset is partitioned into K equal-sized subsets, or folds. The model is then
trained on K-1 of the folds and validated on the remaining fold. This process is repeated K times, with
each of the K folds used exactly once as the validation data. The performance of the model is then
averaged over the K iterations to obtain a robust estimate of its predictive capability.

It is highlighted that in K-fold cross-validation, each estimate of a parameter is calculated based on a
part of the dataset, leading to an upward bias in the cross-validation estimate of the prediction error.
This emphasizes the importance of understanding the potential biases and limitations associated with
K-fold cross-validation when evaluating predictive models (Fushiki, 2011).

Furthermore, it is discussed the pitfalls and challenges in selecting and assessing regression and
classification models using cross-validation techniques. They emphasized the impact of high variance
in models generated by current state-of-the-art methods, which can render them unsuitable for
practical applications. This underscores the significance of robust cross-validation techniques such as
K-fold cross-validation in addressing the variance issue and providing reliable estimates of model
performance (Damjan Krstajic, 2014).

A simpler version of K-fold cross-validation exist, where the data are randomly partitioned into K equal-
size subsets. This highlights the flexibility and applicability of K-fold cross-validation in various machine
learning tasks, making it a versatile and widely adopted technique for model evaluation and selection
(Yongli Zhang, 2015).

The K-fold cross-validation is a fundamental technique for assessing the performance of predictive
models, providing a robust estimate of their generalization ability. Understanding the potential biases
and limitations associated with K-fold cross-validation is crucial for ensuring the reliability of model
evaluation and selection in machine learning and predictive modelling (figure 3-1).
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Figure 3-1: K-Fold Cross Validation Concept with K iterations across the Test & Train datasets
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3.3.3 Hyperparameter tuning

Hyperparameter tuning is a crucial process in machine learning, aiming to identify the optimal values
for hyperparameters that significantly influence a model's behavior. Unlike parameters learned during
training, hyperparameters are external settings that impact a model's learning, generalization, and
predictive capabilities. The objective of hyperparameter tuning is to find the combination of
hyperparameter values that maximizes a model's performance on a given task. This process often
involves exploring a range of hyperparameter values using techniques such as grid search, random
search, or Bayesian optimization.

Grid search is a widely used hyperparameter tuning technique that involves evaluating the model's
performance for each combination of hyperparameter values within a predefined grid. On the other
hand, random search involves randomly sampling hyperparameter values and evaluating the model's
performance for each sampled combination. Bayesian optimization leverages probabilistic models to
efficiently search for the optimal hyperparameter values, iteratively selecting values based on the
model's performance and updating the probabilistic model (Jidesh, 2023).

Well-tuned hyperparameters can significantly enhance a model's predictive power, prevent overfitting,
improve generalization, and optimize performance. This is particularly crucial for complex models and
datasets with diverse characteristics, where the choice of hyperparameters can have a substantial
impact on the model's behavior and performance. The impact of hyperparameter tuning on machine
learning models has been studied extensively, demonstrating the significance of this process in
optimizing the performance of machine learning models (Kazi Ekramul HoqueKazi, 2021).

Hyperparameter tuning is a fundamental aspect of machine learning, and the choice of
hyperparameter values significantly influences a model's behavior and performance. Various
techniques such as grid search, random search, and Bayesian optimization are employed to explore
the hyperparameter space and identify the best configuration for a given task, ultimately leading to
improved predictive power, generalization, and overall performance of machine learning models.

COA is a nature-inspired algorithm that is used for solving continuous non-linear optimization
problems, based on the brood parasitism of some cuckoo species. Brood parasitism is a behavior
where cuckoos lay their eggs in the nests of other host birds and let them raise their offspring.

The main features of COA are:

e |t starts with an initial population of cuckoos, divided into two types: mature cuckoos and eggs.

e The cuckoos compete for survival and reproduction, based on their fitness values. Some of them
die or their eggs are discovered and eliminated by the host birds.

e The survived cuckoos migrate to better habitats and lay eggs. The eggs hatch and become new
cuckoos.

e The algorithm converges when there is only one cuckoo society, all with the same fitness values.

COA has been applied to various engineering and scientific problems, such as parameter optimization,
scheduling, control, and image processing.
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3.3.4 Data Splitting

Data splitting is a fundamental step in machine learning that involves dividing the dataset into training,
testing, and sometimes validation sets. These subsets serve distinct purposes in the model
development process.

Training Set:

The training set plays a crucial role in enabling the machine learning algorithm to learn the patterns
and relationships within the data. It represents the majority of the dataset, typically comprising around
70-80% of the total data points. By exposing the algorithm to this portion of the data, it can effectively
identify the underlying structure and relationships between the predictor variables (inputs) and the
target variables (outputs).

Testing Set:

Distinct from the training set, the testing set serves as an unbiased evaluator of the trained model's
performance on unseen data. This set, containing the remaining 20-30% of the data, is withheld from
the training process and only used after the algorithm has been finalized. By feeding the testing set's
data to the trained model, we can assess its ability to generalize to new data that it has not encountered
during training. This evaluation process helps identify potential overfitting issues.

The testing set is essential for evaluating the model's generalization ability, which is its ability to
perform well on new data that it has not been trained on. By comparing the model's performance on
the test data to its performance on the training data, we can determine how well it generalizes to
unseen data. A well-generalized model will perform similarly on both the training and testing data,
indicating that it has learned the underlying patterns of the data without overfitting to the specific
training data.

Data splitting is a critical technique for evaluating the performance of machine learning models and
ensuring that they can effectively handle unseen data and provide reliable predictions in real-world
applications.

54



Amirhossein Akhondzadeh

3.4 Part one (Prediction of Permeability from predicted NMR)

This section provides a comprehensive review of the methodologies and machine learning approaches
utilized in Part 01.

1+ Final dataframe for E
i+ Machine Learning (ML)
' Part 01 :

i | 5

------------------------- E [ [ [ ’ [ | T :
Data Collection | | [ ___________ | 1 ______ !

5 X Y] i

Figure 3-2: Definition of Predictors and Target for the process of Machine Learning (Part 01)

In this study, the dataset obtained from five wells has been meticulously pre-processed, segregating
the dataset into two crucial components: predictors and a target variable. The predictors encompass
fundamental geophysical parameters including GR (gamma ray), AT (Resistivity Log), RHOZ (bulk
density), NPHI (neutron porosity), PEFZ (photoelectric factor), and DTCO (compressional wave
slowness). These variables are strategically selected for their potential influence on the target variable.
The target variable of interest is NMR (nuclear magnetic resonance), which holds significant
importance in this context. This division sets the stage for employing predictive modeling techniques,
wherein the aim is to utilize the values of these predictors to accurately forecast the NMR values. The
subsequent analysis and modeling processes will be guided by the relationships and patterns discerned
between these predictors and the target variable, facilitating a comprehensive understanding of the
predictive capabilities within this geological context (figures 3-2, 3-3).
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Figure 3-3: General workflow of the first part of thesis; train-test the data set contain five wells and prediction of permeability from output
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3.4.1 Defining Machine Learning (ML) Model:

3.4.1.1 Random forest:

Random Forest is a powerful ensemble learning algorithm that combines the predictions of multiple
decision trees to improve accuracy and reduce overfitting. It works by averaging the predictions of
individual decision trees, each built using a random sample of the training data and a random subset
of features. This randomness helps prevent overfitting and improves the model's stability and
reliability. Random Forests are versatile and can be used for both classification and regression tasks.
They have various applications in fields like natural language processing, computer vision, finance, and
medicine. The algorithm has adjustable parameters such as the number of trees, tree depth, minimum
sample size, bootstrapping, and feature subsampling, which can be fine-tuned to optimize model
performance based on specific requirements (the architecture of Random Forest is shown in figure 3-
4).

Decision Tree / w@m Tree-2 Decision Tree - N

Figure 3-4: Schematic of Random Forest (RF) decision tree Architecture.

3.4.1.2 Gradient Boosting:

Gradient Boosting is a powerful ensemble method that improves predictions by sequentially correcting
the errors of preceding models. Unlike Random Forests that aggregate predictions in parallel, Gradient
Boosting creates an ensemble by iteratively fitting new models to the residual errors of the previous
ones. This iterative learning process gradually enhances the model's predictive accuracy by minimizing
a loss function. Gradient Boosting algorithms like XGBoost, LightGBM, and AdaBoost are known for
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their ability to handle complex data patterns and produce highly accurate predictions. They offer
adjustable parameters such as learning rate, number of trees, tree complexity, regularization
parameters, and subsampling to enhance model performance. These parameters control the
contribution of each model, the number of models used, the ability to capture intricate patterns,
prevention of overfitting, and diversity of the model. (the architecture of Gradient Boosting is shown
in figure 3-5).
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Figure 3-5: Schematic of Gradient Boosting (GB) decision tree Architecture.

3.4.1.3 k-nearest neighbor regression (k-NN):

K-nearest neighbor (k-NN) regression is a non-parametric method used in various fields, known for its
simplicity and successful applications. It works by computing the k nearest neighbors of a query point
and using their information to make predictions. In classification, it leverages the proximity of
neighboring points to classify new data, while in regression, it estimates the response of a new data
point by calculating a weighted average of the responses of its k nearest neighbors. The algorithm
calculates the weighted Euclidean distance between each training point and the new data point,
assigns weights to the neighbors using a kernel function, and predicts the response by computing the
weighted sum of the known responses of the k nearest neighbors. The parameter k influences the
flexibility of the model, with higher values resulting in smoother models (figure 3-6).
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Figure 3-6: The illustration of K-Nearest Neighbor Regressor (K-NN).

The methodologies and concepts of K-NN approach is shown in Appendix 03.

3.4.2 Data Preparation and Splitting for NMR Fluid Prediction

Data preparation is a crucial step in machine learning, ensuring the quality and consistency of data to
train accurate models. In this case, the data consists of geophysical log measurements (predictors) and
NMR fluid parameters (target variables) collected from various boreholes.

Predictors (Input Variables), the provided data comprises six predictor variables extracted from
geophysical logs:

e GR: Gamma Ray: Measures the natural radioactivity and provides lithlogy (Shale vs. sand).

e AT90: Measures resisitivity of the formation and provides water saturation.

e RHOZ: Measures bulk Density of the formation that can also provide porosity.

e NPHI: Neutron Porosity: Measures the hydrogen content of the formation and provides porosity.
e DTCO: Delta-T (Interval Transit Time P-Waves): Reflects the meachanical properties.

e PEFZ: Photoelectric Factor: Assists in determining the lithology of the formation.
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These predictor variables provide valuable insights into the characteristics of the subsurface geology,
which can be used to predict NMR fluid parameters.

Target Variables (Outputs), the target variables represent the NMR fluid parameters to be predicted:

e NMREFF: Effective Nuclear Magnetic Resonance: Indicates the total amount of hydrocarbon
saturation in the formation.

e NMRFF: Free Fluid Volume using NMR: Measures the amount of free fluid (oil and gas) in the pores.

e NMRTOT: Total Nuclear Magnetic Resonance: Represents the total NMR signal strength,
encompassing all hydrocarbon and liquid saturations.

These target variables are crucial for understanding the hydrocarbon distribution and potential
reservoir quality.

Data Splitting:

To effectively train and evaluate the machine learning model, the data is split into training and testing
sets using an 80/20 split.

e Training Data:

The training data consists of 8340 samples, each containing six predictor variables and corresponding
values for the three target variables. This portion of the data is used to train the machine learning

algorithm, allowing it to learn the patterns and relationships between the predictors and the target
variables.

e Testing Data:
The testing data comprises 2086 samples, again with six predictor variables and matching values for
the three target variables. This set is withheld from the training process and used to evaluate the

performance of the trained model. The model's predictions on the testing data provide an unbiased
assessment of its generalizability to unseen data.

e Shapes of Data:
The original data, before splitting, comprises 10,426 samples for the predictors (X) and 10,426 samples

for the target variables (y). This indicates that each sample has data for all six predictors and all three
target variables.

3.4.3 Hyperparameter Optimization Across Models

Random Forest:

e Ensemble Size (n_estimators): The number of decision trees in the random forest ensemble was
systematically varied from 100 to 400 in increments of 50, examining how the ensemble size
influenced the overall performance of the model.

e Decision Tree Complexity (max_depth): The maximum depth of each decision tree in the ensemble
was explored across a range of values from 5 to 25, aiming to balance the model's ability to capture
complex patterns without overfitting to the training data.
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e Loss Function (criterion): The default criterion for evaluating splits in the decision trees,
'squared_error', was investigated to determine its effectiveness in minimizing the loss function and
improving the model's predictive accuracy.
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Figure 3-7: Train-test splitting configuration

Gradient Boosting:

e Ensemble Size, Tree Depth, and Learning Rate: The number of trees ('n_estimators'), maximum
depth of each tree ('max_depth'), and learning rate ('learning_rate') were jointly tuned to optimize
the performance of the gradient boosting algorithm. The 'learning_rate' parameter controls the
step size in the gradient descent optimization process, ranging from 0.1 to 0.6 to find the optimal
balance between convergence speed and overfitting tendency.

e Loss Function (criterion): Similar to Random Forest, the default criterion for evaluating splits in the
gradient boosting trees, 'squared_error', was evaluated to assess its impact on the model's
predictive performance.

K-Nearest Neighbors (KNN):

When working with the K-nearest neighbors (KNN) algorithm, several hyperparameters can be
adjusted to optimize its performance. The number of nearest neighbors (n_neighbors) determines the
size of the neighborhood considered for classification or regression tasks. Neighbor weighting (weights)
assigns weights to each neighbor in the KNN calculation, influencing the model's behavior. The distance
metric (p) measures the similarity between points and affects the model's performance. The leaf size
(leaf _size) determines the granularity of the representation and impacts the model's generalization
ability. Different algorithms (algorithm) can be used for optimizing the nearest neighbor search. By
exploring and selecting appropriate values for these hyperparameters, the KNN model can be fine-
tuned to achieve better results for specific datasets and tasks.

The exploration of hyperparameters in machine learning algorithms emphasizes the significance of
optimizing model configurations for optimal performance and generalization. By systematically varying
the hyperparameters, the study aimed to identify configurations that enhance predictive accuracy and

61


https://www.machinelearningplus.com/machine-learning/train-test-split/?utm_content=cmp-true

Amirhossein Akhondzadeh

robustness across different parameter spaces, leading to effective models with consistent performance
in various applications.

3.4.4 Well-log data organisation (Test and all datasets)

The effective utilization of machine learning models hinges on a meticulous selection of training,
validation, and test wells. These wells represent distinct data subsets, each fulfilling a crucial role in
model development and evaluation.

The training well serves as the cornerstone of model building, providing the data the model utilizes to
decipher the intricate relationships between input and target variables. It acts as a microcosm where
the model observes patterns, identifies correlations, and develops predictive mechanisms.

The validation well, distinct from the training well, plays a pivotal role in model selection and
hyperparameter tuning. Representing unseen data, it provides an unbiased assessment of the model's
performance on novel data. By comparing the model's predictions on the validation well to the actual
values, we can evaluate its generalizability and identify optimal hyperparameter settings.

The test well, entirely separate from the model-building process, assumes the role of an independent
measure of the model's generalizability. Representing entirely new data, never encountered during
training, it serves as the ultimate arbiter of the model's true predictive power. By comparing the
model's predictions on the test well to the actual values, we can assess its ability to generalize beyond
the training data and apply its learnings to real-world scenarios.

A summarized view of the well-log predictors and outputs of part 01 are shown in figure 3-8:

Well Names Lithology Well-log Predictor Well-log Output

| 3-BRSA-944ARJS |

. 1-BRSA-IME-RIS —— | GR
B AT
3-BRSA12I6-RS ——— e
i —— {Limestone; —— - NMR
o-TP4-RJS ——f T ' e
"""""""" DTCO
3-EQNR--SPS PEFZ
3-EONR-3-8P§ —

Figure 3-8: General description of wells, geology types, predictors, and target data (part
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3.4.5 The Timur-Coates model; Permeability & Saturation estimation

The Timur-Coates model is a widely used method for estimating permeability in petrophysics. It is
important to note that the Timur-Coates model is one of the major methods for estimating
permeability, alongside the Schlumberger-Doll-Research (SDR) model (Jun Yoneda, 2022). This model
has been applied in various geological settings, including the estimation of permeability in tight
reservoirs (Razieh Solatpour, 2018), mudrocks, and fine-grained sandstones in coal reservoirs (Na
Zhang, 2018). Additionally, it has been used for estimating the permeability coefficient of artificial
clayey soil (Zhen Lu, 2020) and in the construction of a petrophysical model for a heterogeneous
reservoir in the South China Sea (Xing Lei, 2021).

Rock Bulk Volume
Hydrocarbon
Total Porosity
Effective Porosity
BVM : Bulk Volume Movable
BVI: Bulk Volume Irreducible
CBW: Clay Bound Water Volume CBwW BVI BVM

Figure 3-9: Schematic representation of the constituents of a rock; Definition of different porosities; definition of BYM, BVI, CBW.

The Timur-Coates model is particularly valuable due to its application in estimating permeability from
nuclear magnetic resonance (NMR) data (figure 3-9). It has been used to calculate reservoir porosity
and permeability from NMR logs, providing a non-destructive and cost-effective alternative to
traditional core analysis and well testing methods. The Timur-Coates model plays a crucial role in the
field of petrophysics, offering a valuable tool for estimating permeability in diverse geological settings.
Its utilization in NMR analysis and its cost-effectiveness makes it an essential method for characterizing
reservoir properties and evaluating the potential for hydrocarbon production. The equations 3-1 to 3-
8 show the Timur-Coates correlations for petrophysical properties estimation:

by = Movable Volume + Immovable Volume = BVM + (BVI + CBW)

Equation 3-1

&, = BVM + (BVI + CBW)

Equation 3-2
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Equation 3-3
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Equation 3-4
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Equation 3-5
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Equation 3-6
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Equation 3-7
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3.5 Part two (Prediction of Permeability directly from well-log data)

This section provides a comprehensive review of the methodologies and machine learning approaches
utilized in Part 02 (figure 3-10).

+ Final dataframe for E
 Machine Learning (ML) :
. Part 02 !

Figure 3-10:Definition of Predictors and Target for the process of Machine Learning (Part 02)

In this study, the dataset obtained from four wells has been meticulously pre-processed, segregating
the dataset into two crucial components: predictors and a target variable. The predictors encompass
fundamental geophysical parameters including GR (gamma ray), AT (acoustic travel time), RHOZ (bulk
density), NPHI (neutron porosity), PEFZ (photoelectric factor), and DTCO (compressional wave
slowness). These variables are strategically selected for their potential influence on the target variable.
The target variable of interest is permeability (K) from laboratory data, which holds significant
importance in this context. This division sets the stage for employing predictive modelling techniques,
where the aim is to utilize the values of these predictors to accurately forecast the Permeability values.
The subsequent analysis and modelling processes will be guided by the relationships and patterns
discerned between these predictors and the target variable, facilitating a comprehensive
understanding of the predictive capabilities within this geological context (figure 3-11).
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Figure 3-11: General workflow of the second part of thesis; train-test the data set contain five wells and prediction of permeability
from output

3.5.1 Defining Machine Learning (ML) Model:

Selecting suitable machine learning (ML) algorithms for the analysis of a cleaned well-log dataset is a
crucial step in the data analysis process. In this part of the thesis, we implement LSSVM approach.

Least Square Support vector machine (LSSVM)

Least Square Support Vector Machine (LSSVM) has gained attention in various fields due to its superior
prediction accuracy and efficiency. The LSSVM has been successfully utilized in the petroleum industry
to predict permeability impairment caused by scale deposition during a water injection process. It has
been applied in control theory for induction motor drives in electric vehicles and integrated with other
models for time series prediction. LSSVM is a reformulation of support vector machines (SVM) and its
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versatility and potential for addressing complex prediction and estimation challenges make it a widely
adopted method (the architecture of LSSVM methodologies is show in figure 3-12).
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Figure 3-12: The illustration of Support Vector Machine (SVM).

The methodologies and concepts of SVM approach is shown in Appendix 03.

3.5.2 Data Preparation and Splitting for Permeability Prediction

Data preparation is a crucial step in machine learning, ensuring the quality and consistency of data to
train accurate models. In this case, the data consists of geophysical log measurements (predictors) and
NMR fluid parameters (target variables) [peameability] collected from various boreholes.
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Predictors (Input Variables), the provided data comprises six predictor variables extracted from
geophysical logs:

e GR: Gamma Ray: Measures the natural radioactivity and provides lithlogy (Shale vs. sand).

e AT90: Measures resisitivity of the formation and provides water saturation.

e RHOZ: Measures bulk Density of the formation that can also provide porosity.

e NPHI: Neutron Porosity: Measures the hydrogen content of the formation and provides porosity.
e DTCO: Delta-T (Interval Transit Time P-Waves): Reflects the meachanical properties.

e PEFZ: Photoelectric Factor: Assists in determining the lithology of the formation.

These predictor variables provide valuable insights into the characteristics of the subsurface geology,
which can be used to predict NMR fluid parameters.

Target Variables (Outputs), the target variables represent the NMR fluid parameters to be predicted:

e Permeability (K): Permeability from laboratory data Indicates the ability to flow the hydrocarbon

These target variables are crucial for understanding the hydrocarbon distribution and potential
reservoir quality.

Data Splitting:
For the machine learning model, the data was split into training and testing sets using a 70/30 split.
e Training Data:

The training data comprises 191 samples, each containing six predictor variables: RHOZ, GR, AT90,
NPHI, DTCO, and PEFZ. These variables are used to train the machine learning algorithm, enabling it to
learn the relationships between the predictors and the target variable 'k'.

e Testing Data:

The testing data consists of 82 samples, also with the same six predictor variables. This data is held
back from the training process and employed to evaluate how well the trained model performs. The
model's predictions on the testing data offer an impartial assessment of its ability to generalize to new,
unseen data.

e Shapes of Data:

The original dataset contained 273 samples for the predictors (X) and 273 samples for the target
variable 'k'. Each sample in this dataset included data for all six predictors and the single target variable.

3.5.3 Hyperparameter Optimization Across Models

Least Square Support Vector Machine (LSSVM):

e Gamma Variance (gamma): The gamma parameter, set at 1.0, plays a pivotal role in the LSSVR
model, influencing the width of the radial basis function kernel. This parameter governs the
influence of individual training samples in the model. The exploration of this parameter aims to
ascertain its impact on the model's performance across various datasets.
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e Regularization Parameter (C): The regularization parameter C, set at 100.0, is another crucial factor
in the LSSVR model. It controls the trade-off between achieving a low training error and minimizing
model complexity. Systematic variations in the C parameter were executed to evaluate its influence
on model performance.

e Kernel Function (kernel): The radial basis function (RBF) kernel, chosen for this LSSVR
implementation, offers flexibility in capturing non-linear relationships between the predictors and
the target variable. The 'rbf' kernel type was utilized to build the LSSVR model and its effectiveness
was assessed in modeling complex patterns within the data.

3.5.4 Well-log data organisation (Test and all datasets)

The training subset serves as the foundation for constructing the LSSVR model, enabling it to discern
intricate patterns between input predictors and the target variable. Within this subset, the model
deciphers correlations, learns predictive mechanisms, and establishes its understanding of the data.

Distinct from the training set, the validation subset assumes a crucial role in selecting the optimal LSSVR
model configuration. It mirrors unseen data, allowing an unbiased evaluation of the model's
performance. By comparing the model's predictions on this subset with actual values, we gauge its
generalizability and identify the most effective parameter settings.

As an independent entity from the model development phase, the test subset acts as a litmus test for
the model's real-world predictive prowess. Comprising entirely new data, it remains unseen during
model training or validation. Assessing the model's predictions on this subset against actual values
provides a final measure of its ability to generalize beyond the training data, ensuring its applicability
in real-world scenarios.

A summarized view of the well-log predictors and outputs of part 02 is shown in figure 3-13:

Well Names Lithology Well-log Predictor Well-log Output
3-BRSA-044A-RJS GR
................................ AT
1-BRSA-1116-RJS RHOZ |
________________________________ — iLimestonei —— —— | Permeability (K) }
3-BRSAI2I-RIS —— e Eh
""""""""""""""""" ' DTCO
9-ITP-1-RJS PEFZ

Figure 3-13: General description of wells, geology types, predictors, and target data (part 02)
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4 Methodology Application & Outcomes

4.1 Partone

4.1.1 Evaluation of different model performances using the test dataset

4.1.1.1 Scatter plots

These scatter plots represent different porosities (free fluid, effective, and total) of predicted and
measured which is show in figures 4-1, 4-2, 4-3:
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Random Forest Scatter Plots (Test Dataset)
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Figure 4-1: Scatter plots of predicted versus measured NMR porosity, for the RF Model, applied to the test dataset of the original dataset contain
whole five wells; Left plot: NMR Effective Porosity (m3/m3). Middle plot: NMR Free Fluid (m3/m3). Right plot: NMR Total Porosity (m3/m3).
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Figure 4-2: Scatter plots of predicted versus measured NMR porosity, for the GB Model, applied to the test dataset of the original dataset contain
whole five wells: Left plot: NMR Effective Porosity (m3/m3). Middle plot: NMR Free Fluid (m3/m3). Right plot: NMR Total Porosity (m3/m3).
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Figure 4-3: Scatter plots of predicted versus measured NMR porosity, for the K-NN Model, applied to the test dataset of the original dataset contain
whole five wells. Left plot: NMR Effective Porosity (m3/m3). Middle plot: NMR Free Fluid (m3/m3). Right plot: NMR Total Porosity (m3/m3).

e Model Deviation:

Scatter plots are graphical representations showcasing the variance or deviation between the
predicted values from a model and the actual measured data points. When these data points form a
straight line at a 45-degree angle, aligning with the ideal diagonal, it signifies a strong accuracy
between the model predictions and the observed data.

e Test Dataset Density:

The model is developed based on an 80/20 splitting ratio, dividing the dataset into training (80%) and
testing (20%) subsets. Consequently, the resulting test dataset might be relatively smaller, leading to
a less densely populated scatter plot. This reduced density can affect the clarity and strength of the
observed trends, potentially resulting in a weaker trend line representation within the scatter plot.

e Distribution of Porosity Types and Their Positioning:

Within the dataset, total porosity tends to possess higher numerical values compared to effective and
free fluid porosities. Consequently, when visualized on the scatter plot, the data points representing
total porosity often cluster towards the higher value range. This tendency places total porosity data
points on the right side of the plot due to their higher magnitude, delineating their dominance in the
dataset distribution.

Visually, the Random Forest (RF) and Gradient Boosting (GB) show a better performance in comparison
to K-nearest Neighbours (K-NN)
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4.1.1.2 Well-log Plots

These plot showcases the comparison between predicted and measured porosities encompassing
effective, free fluid, and total porosities. As models inherently contain some margin of error and
imprecision, the predicted porosity doesn't perfectly align with the measured well-log data. You can
find these plots in figures 4-4, 4-5, and 4-6.

Random Forest Well-log Plots (Test Dataset)
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Figure 4-4: Comparing the match between the predicted and measured NMR porosity, for the RF Model, across the Test Dataset
Index of the original dataset contain whole five wells. Left track: Predicted and Measured NMR Effective Porosity (m3/m3). Middle
track: Predicted and Measured NMR Free Fluid (m3/m3). Right track: Predicted and Measured NMR Total Porosity (m3/m3).
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Gradient Boosting Well-log Plots (Test Dataset)
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Figure 4-5: Comparing the match between the predicted and measured NMR porosity, for the GB Model, across the Test Dataset
Index of the original dataset contain whole five wells. Left track: Predicted and Measured NMR Effective Porosity (m3/m3). Middle
track: Predicted and Measured NMR Free Fluid (m3/m3). Right track: Predicted and Measured NMR Total Porosity (m3/m3).
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K-Nearest Neighbors Well-log Plots (Test Dataset)
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Figure 4-6: Comparing the match between the predicted and measured NMR porosity, for the K-NN Model, across the Test Dataset
Index of the original dataset contain whole five wells. Left track: Predicted and Measured NMR Effective Porosity (m3/m3). Middle
track: Predicted and Measured NMR Free Fluid (m3/m3). Right track: Predicted and Measured NMR Total Porosity (m3/m3).

There are a number of factors that can contribute to the inaccuracy of porosity models. These include:

e Theinherent complexity of the geology: The rock formations that make up a reservoir can be very
complex and heterogeneous, which makes it difficult to create a model that accurately captures
all of the variations in porosity.

e The limitations of the data: The data that is used to train the model may not be perfect, and it may
not be representative of all the conditions that exist in the reservoir.
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4.1.2 Evaluation of different model performances using the entire dataset

4.1.2.1 Scatter plots

By applying entire dataset on different models for prediction of porosities, more correlated and clearer
trend between predicted and measured well-log data have been presented. Due to the methodology
of gradient boosting, a more correlated trend is shown. The gradient boosting model, which combines
weak learners into a strong learner by optimizing a loss function, performs better than the other
models in terms of correlation coefficient and mean squared error. This indicates that the gradient
boosting model can capture the complex relationship between the input features and the output
variable more effectively. You can find these plots in figures 4-7, 4-8, and 4-9.

Random Forest Scatter Plots (Entire Dataset)
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Figure 4-7: Scatter plots of predicted versus measured NMR porosity, for the RF Model, applied to the entire dataset of the original
dataset contain whole five wells: Left plot: NMR Effective Porosity (m3/m3). Middle plot: NMR Free Fluid (m3/m3). Right plot: NMR
Total Porosity (m3/m3).

In the scatter plots of K-nearest neighbour model, there are some over-fittings and this will generally
lead to lower accurate model. Overfitting occurs when a model learns the training data too well,
capturing not just the underlying patterns but also the noise or random fluctuations. In the context of
scatter plots in K-nearest neighbor (KNN) models, overfitting might be observed when the decision
boundary (or separation between classes) becomes overly complex and fits intricacies in the training
data that don't generalize well to new, unseen data.
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Gradient Boosting Scatter Plots (All Dataset)
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Figure 4-8: Scatter plots of predicted versus measured NMR porosity, for the GB Model, applied to the entire dataset of the original
dataset contain whole five wells: Left plot: NMR Effective Porosity (m3/m3). Middle plot: NMR Free Fluid (m3/m3). Right plot: NMR
Total Porosity (m3/m3).

K-Nearest Neighbors Scatter Plots (All Dataset)
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Figure 4-9: Scatter plots of predicted versus measured NMR porosity, for the K-NN Model, applied to the entire dataset of the original
dataset contain whole five wells: Left plot: NMR Effective Porosity (m3/m3). Middle plot: NMR Free Fluid (m3/m3). Right plot: NMR
Total Porosity (m3/m3).

lower accuracy. It's essential to balance model complexity and generalization by tuning
hyperparameters, like the number of neighbors (K) in KNN, or using techniques like cross-validation
and regularization to prevent overfitting and build a more accurate model.
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4.1.2.2 Well-log Plots

Using the entire dataset for modeling presents a comprehensive view of the predictive capabilities
across the entire range of available data. While this approach can provide insights into overall trends
and patterns, it carries risks. Over-reliance on the entire dataset might lead to overfitting, where the
model becomes too tailored to the specific intricacies of the data, potentially hindering its ability to
generalize well to new, unseen cases. The plots of measured and predicted porosities can be found in
figures 4-10, 4-11, and 4-12.

Random Forest Well-log Plots (Entire Dataset)
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Figure 4-10: Comparing the match between the predicted and measured NMR porosity, for the RF Model, across the Entire dataset
index of the original dataset contain whole five wells. Left track: Predicted and Measured NMR Effective Porosity (m3/m3). Middle
track: Predicted and Measured NMR Free Fluid (m3/m3). Right track: Predicted and Measured NMR Total Porosity (m3/m3).
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Gradient Boosting Well-log Plots (All Dataset)
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Figure 4-11: Comparing the match between the predicted and measured NMR porosity, for the GB Model, across the Entire dataset
index of the original dataset contain whole five wells. Left track: Predicted and Measured NMR Effective Porosity (m3/m3). Middle
track: Predicted and Measured NMR Free Fluid (m3/m3). Right track: Predicted and Measured NMR Total Porosity (m3/m3).

The discrepancy observed between predicted and measured porosities underscores the inherent
limitations of models in capturing the complexities of geological formations. Highlighting these
limitations is crucial; it acknowledges the margin of error and imprecision that inherently exists in
predictive models. By acknowledging these limitations, researchers can refine models and data
collection strategies, seeking more robust approaches to improve predictive accuracy and account for
variability in porosity estimation.
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K-Nearest Neighbors Well-log Plots (All Dataset)
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Figure 4-12: Comparing the match between the predicted and measured NMR porosity, for the K-NN Model, across the Entire dataset
index of the original dataset contain whole five wells. Left track: Predicted and Measured NMR Effective Porosity (m3/m3). Middle
track: Predicted and Measured NMR Free Fluid (m3/m3). Right track: Predicted and Measured NMR Total Porosity (m3/m3).

The observed higher deviation in predicted porosities from measured values in the K-Nearest
Neighbors (K-NN) model compared to Random Forest (RF) and Gradient Boosting (GB) models
suggests that K-NN might struggle to capture the intricate relationships present in the porosity data.
K-NN relies heavily on the proximity of data points, potentially making it more susceptible to noise or
outliers, which could contribute to larger prediction errors. On the other hand, Random Forest and
Gradient Boosting models might have better accommodated the complexities within the dataset,
leading to lower deviations between predicted and measured porosities.
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4.1.3 Evaluation of different model performances using the different dataset [1-BRSA-
1116-RJS] (Not included in training-test)

4.1.3.1 Scatter plots

When using a model with a dataset it hasn't seen before, lower accuracy is common. The model might
struggle to generalize to new data points because it hasn't learned patterns specific to that new
dataset. The scatter plots reflecting this mismatch between predicted and measured values often
indicate a lack of a clear trend line, showing the disparities between predicted and actual values. The
scatter plots of predicted and measured porosities can be found in figures 4-13, 4-14, and 4-15.

This discrepancy could occur due to various reasons:

e Lack of Generalization: The model might have learned specific patterns or nuances from the
training data that don't hold true in the new dataset. Consequently, its predictions might not align
well with this unseen data.

e Dataset Differences: The new dataset could have different distributions, ranges, or outliers
compared to the training data. These disparities can significantly impact the model's ability to
make accurate predictions.

e Feature Variability: Features in the new dataset might possess characteristics that the model
wasn't trained to handle. It might require additional feature engineering or adjustments to the
model architecture to effectively learn these new patterns.

e Overfitting or Underfitting: The model might suffer from overfitting (being too specific to the
training data) or underfitting (not capturing enough patterns), affecting its performance on new

data.
Random Forest Scatter Plots, Different Well : (1-BRSA-1116-RJS)
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Figure 4-13: Scatter plots of predicted versus measured NMR porosity, for the RF Model, applied to the different well (1-BRSA-1116-RJS) not included in
training phase: Left plot: NMR Effective Porosity (m3/m3). Middle plot: NMR Free Fluid (m3/m3). Right plot: NMR Total Porosity (m3/m3)
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Gradient Boosting Scatter Plots, Different Well : (1-BRSA-1116-RJS)
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Figure 4-14: Scatter plots of predicted versus measured NMR porosity, for the GB Model, applied to the different well (1-BRSA-1116-RJS) not included
in training phase: Left plot: NMR Effective Porosity (m3/m3). Middle plot: NMR Free Fluid (m3/m3). Right plot: NMR Total Porosity (m3/m3).

K-Nearest Neighbors Scatter Plots (Test Dataset)

NMR Effective Porosity (m3/m3) NMR Free Fluid (m3/m3) NMR Total Porosity (m3/m3)
0.225 0.225
0.225 o o 0.200 | 0.200 o
| o ©

0.200 s o o Q;) 0.175 e} 0175 7
C 0175 o Qp c c
2 [e] 68 8 o © 0150 -
= Og =1 =
Y paso H g a = L
E 8 B 0125 —
& 0125 - a 5
o Bo o a) o o 0.100
<] ] <]
= 0100 - 8 == -
g o QO (o]} g g 0.075 -

0.075 +

0, O 9 o
0,050 | 0.050 |
o2
0.025 —f (o] 0.025 o
o o) o}
0.000 T T T T T T T T T 0.000 T T T T T T T T
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.000 0.025 0.050 0.075 0.100 0125 0.150 0.175 0.200 0.225 0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225
Well-log measurement Well-log measurement Well-log measurement

Figure 4-15: Scatter plots of predicted versus measured NMR porosity, for the K-NN Model, applied to the different well (1-BRSA-1116-RJS) not
included in training phase: Left plot: NMR Effective Porosity (m3/m3). Middle plot: NMR Free Fluid (m3/m3). Right plot: NMR Total Porosity (m3/m3).

To address this issue, several steps can be taken:

e More Diverse Training Data: Incorporate more diverse and representative data during the model
training phase to improve its ability to generalize to new datasets.

e Fine-tuning or Retraining: Retrain the model using the new dataset or fine-tune it by using
transfer learning techniques to adapt it to the characteristics of the new data.

e Feature Engineering: Modify or engineer features to better capture the nuances of the new
dataset, ensuring the model can learn relevant patterns.

e Regularization Techniques: Apply regularization methods to prevent overfitting or underfitting,
enabling the model to generalize better to unseen data.
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4.1.3.2 Well-log Plots

In Figure , while examining the Free Fluid, Effective, and Total porosities, it becomes evident that
despite discrepancies existing within each metric, there are specific segments where the model's
predictions notably align better with the measured data. These instances of improved alignment
between predicted and measured values are observable across all three porosity types. The plots of
measured and predicted porosities can be found in figures 4-16, 4-17, and 4-18.
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Figure 4-16: Comparing the match between the predicted and measured NMR porosity, for the RF Model, applied to the
different well (1-BRSA-1116-RJS): Left track: Predicted and Measured NMR Effective Porosity (m3/m3). Middle track: Predicted
and Measured NMR Free Fluid (m3/m3). Right track: Predicted and Measured NMR Total Porosity (m3/m3).
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Figure 4-17: Comparing the match between the predicted and measured NMR porosity, for the GB Model, applied to the different
well (1-BRSA-1116-RJS): Left track: Predicted and Measured NMR Effective Porosity (m3/m3). Middle track: Predicted and Measured
NMR Free Fluid (m3/m3). Right track: Predicted and Measured NMR Total Porosity (m3/m3).

Although discrepancies persist within Free Fluid, Effective, and Total porosity predictions, there are
identifiable areas where the model demonstrates a closer match with the actual measured values.
These segments might represent specific conditions or characteristics within the well that the model
accurately captures, indicating localized instances of enhanced predictive accuracy across all porosity
metrics. ldentifying these areas of improved alignment could offer valuable insights into the factors
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influencing the model's performance and highlight regions where it excels in predicting porosity

characteristics within the 1-BRSA-1116-RJS well.
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Figure 4-18: Comparing the match between the predicted and measured NMR porosity, for the K-NN Model, applied to the different
well (1-BRSA-1116-RJS): Left track: Predicted and Measured NMR Effective Porosity (m3/m3). Middle track: Predicted and Measured
NMR Free Fluid (m3/m3). Right track: Predicted and Measured NMR Total Porosity (m3/m3).
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4.1.4 Evaluation of different model performances using single well [3-BRSA-1215-RJS]

4.1.4.1 Scatter plots

(Included in training-test)

Using the well 3-BRSA-1215-RJS in the training set is a deliberate choice aimed at strengthening my
model. This well stands out due to its unique formation, differing from others in the dataset. Its
inclusion during training allows the model to adapt to this distinct geological aspect, enhancing its
ability to handle varied formations and potentially improving its overall predictive capability. The
scatter plots of predicted and measured porosities can be found in figures 4-19, 4-20, and 4-21.
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Figure 4-19: Scatter plots of predicted versus measured NMR porosity, for the RF Model, applied to one of the well (3-BRSA-1215-RJS) included
in training phase: Left plot: NMR Effective Porosity (m3/m3). Middle plot: NMR Free Fluid (m3/m3). Right plot: NMR Total Porosity (m3/m3).
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Figure 4-20: Scatter plots of predicted versus measured NMR porosity, for the GB Model, applied to one of the well (3-BRSA-1215-RJS) included
in training phase: Left plot: NMR Effective Porosity (m3/m3). Middle plot: NMR Free Fluid (m3/m3). Right plot: NMR Total Porosity (m3/m3).
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K-Nearest Neighbors (KNN) Scatter Plots (3-BRSA-1215-RJS)
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Figure 4-21: Scatter plots of predicted versus measured NMR porosity, for the K-NN Model, applied to one of the well (3-BRSA-1215-RJS) included
in training phase: Left plot: NMR Effective Porosity (m3/m3). Middle plot: NMR Free Fluid (m3/m3). Right plot: NMR Total Porosity (m3/m3).

4.1.4.2 Well-log Plots

The comprehensive assessment of the Random Forest, Gradient Boosting, and K-nearest Neighbour
model's predictive capacity for key petrophysical parameters—NMR porosity (Effective, Free fluid,
Total), as well as Predicted Permeability and Saturation Using the Timur-Coates Correlation—offers
invaluable insights into its efficacy. Analyzing the match between predicted and measured NMR
porosities across multiple tracks illuminates the model's performance. The first three tracks portray
the comparison between predicted and measured NMR Effective, Free Fluid, and Total Porosities
(measured in m3/ m3). These tracks highlight the model's ability to capture the nuances of porosity
distribution within the well (3-BRSA-1215-RJS) utilized within the training set. The fourth track extends
this evaluation by putting together the model's predictions of Effective, Free Fluid, and Total Porosities,
providing a holistic view of its overall estimation capabilities. Moreover, the subsequent tracks, the
fifth and sixth ones, exhibit the model's forecasted values for permeability (mD) and irreducible water
saturation (expressed as a percentage) based on the Timur-Coates Correlation. The plots of predicted
and measured porosities and Peameability can be found in figures 4-22, 4-23, and 4-24.

86



Amirhossein Akhondzadeh

Random Forest:

Random Forest Well-log Plots (3-BRSA-1215-RJS)
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Figure 4-22: Comparing the match between the predicted and measured NMR porosity (Effective, Free fluid Total), and Predicted
Permeability & Saturation Using Timur-Coates Correlation, for the RF Model, applied to the well (3-BRSA-1215-RJS) included in training
phase: (From left to right) 1t track: Predicted and Measured NMR Effective Porosity (m3/m3). 2nd track: Predicted and Measured NMR Free
Fluid (m3/m3). 37 track: Predicted and Measured NMR Total Porosity (m3/m3). 41 track: Predicted Effective, Free Fluid, Total Porosities
(m3/m3), 5t track: Timur-Coates Predicted Permeability (mD), 6% track: Timur-Coates Predicted Irreducible water Saturation (%)
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Gradient Boosting:

Gradient Boosting Well-log Plots (3-BRSA-1215-RJS)
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Figure 4-23: Comparing the match between the predicted and measured NMR porosity (Effective, Free fluid Total), and Predicted
Permeability & Saturation Using Timur-Coates Correlation, for the GB Model, applied to the well (3-BRSA-1215-RJS) included in training
phase: (From left to right) 1t track: Predicted and Measured NMR Effective Porosity (m3/m3). 2nd track: Predicted and Measured NMR Free
Fluid (m3/m3). 37 track: Predicted and Measured NMR Total Porosity (m3/m3). 41 track: Predicted Effective, Free Fluid, Total Porosities
(m3/m3), 5t track: Timur-Coates Predicted Permeability (mD), 6% track: Timur-Coates Predicted Irreducible water Saturation (%)
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K-Nearest Neighbor (KNN):

K-Nearest Neighbors (KNN) Well-log Plots (3-BRSA-1215-RJS)
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Figure 4-24: Comparing the match between the predicted and measured NMR porosity (Effective, Free fluid Total), and Predicted
Permeability & Saturation Using Timur-Coates Correlation, for the K-NN Model, applied to the well (3-BRSA-1215-RJS) included in training
phase: (From left to right) 1t track: Predicted and Measured NMR Effective Porosity (m3/m3). 2nd track: Predicted and Measured NMR Free
Fluid (m3/m3). 37 track: Predicted and Measured NMR Total Porosity (m3/m3). 4% track: Predicted Effective, Free Fluid, Total Porosities
(m3/m3), 5t track: Timur-Coates Predicted Permeability (mD), 6% track: Timur-Coates Predicted Irreducible water Saturation (%)
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4.1.4.3 Well-log and Lab data plots

The comprehensive assessment across the Random Forest, Gradient Boosting, and K-nearest
Neighbour models on the well (3-BRSA-1215-RJS) brings to light their predictive abilities for
permeability and porosity against laboratory measurements. Through the initial tracks, the models'
proximity to laboratory-measured values for permeability (mD) and porosity percentages
demonstrates their adeptness in estimating fluid flow characteristics and available pore space within
the rock. The inclusion of a scatter plot in the third track enriches this evaluation, visually representing
the relationship between permeability and porosity and allowing insight into how well the models
capture intrinsic correlations seen in laboratory data. Furthermore, the subsequent histograms
depicting the distributions of porosity and permeability values, both predicted and laboratory-based,
facilitate a comparative analysis of their patterns. This comprehensive assessment delves not only into
the alignment between predicted and laboratory values but also scrutinizes the models' abilities to
replicate trends and distribution patterns. Ultimately, this multifaceted evaluation provides a
comprehensive understanding of the models' reliability in estimating these fundamental rock
properties.
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Figure 4-25: The reservoir interval of the well 3-BRSA-1215-RJS
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permeabilty [predicted vs. lab]

5500 —

Depth

5550 —

5600 —

5650

Permeability (mD)
107 10° 100 100 10° 104

Porosity [predicted vs. lab]

o O i g e e N—
=

Depth Shift

permeability [predicted vs. lab] Porosity [predicted vs. lab]

Permeability (mD)
017 100 10t o s
d 1 1

Porosity (%)
1015 220 25 30
1 1 1 1

10 107 107 107 10°
5400 —|+suund s svond s essed 4 susne

5450

S P |

F\Wmf‘" : P

5500

gm

grwwwﬂ

.ﬁ
|

5550 —

%ﬁ
?

¥

iy

5600 —

i

Wiy

5650 —

Figure 4-26: Investigation of depth shift on log data in the well 3-BRSA-1215-RJS

It is quite common to be some discrepancies between predicted results from logging operations and
actual laboratory measurements. This is because there are a number of factors that can affect the
accuracy of logging data, including cable length, logging standards, and the type of rock being logged.

In the case of well 3-BRSA-1215-RJS, it appears that the depth shift on the lab data has helped to
improve the coherency between predicted and actual results. This suggests that the original logging
data may have been inaccurate due to the differences in cable length and logging standards between
the logging operation and the laboratory measurement.

The plots of predicted and measured porosities and permeability versus laboratory data can be found
in figures 4-27, 4-28, and 4-29.
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Random Forest:

Random Forest Well-log & Lab. Plots (3-BRSA-1215-RJS)
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Figure 4-27: Comparing the match between the predicted & laboratory measurement of permeability and porosity, Comparing scatter
plot permeability-porosity of predicted and laboratory data, Histogram of Porosity and Permeability distribution of predicted and
laboratory data, for the RF Model, applied to the well (3-BRSA-1215-RJS) included in training set (for Permeability Prediction Timur-
Coates Correlation has been used): (From left to right) 1t track: Predicted and laboratory Permeability (mD). 2" track: Predicted and
Measured Porosity (%). 3™ track: Scatter plot of permeability-porosity of predicted and laboratory data (mD vs. %), 4t track:
Histogram of Porosity of predicted and laboratory data (%), 51 track Histogram of Permeability of predicted and laboratory data (mD)
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Gradient Boosting:

Gradient Boosting Well-log & Lab. Plots (3-BRSA-1215-RJS)
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Figure 4-28: Comparing the match between the predicted & laboratory measurement of permeability and porosity, Comparing scatter
plot permeability-porosity of predicted and laboratory data, Histogram of Porosity and Permeability distribution of predicted and
laboratory data, for the GB Model, applied to the well (3-BRSA-1215-RJS) included in training set (for Permeability Prediction Timur-
Coates Correlation has been used): (From left to right) 1t track: Predicted and laboratory Permeability (mD). 2" track: Predicted and
Measured Porosity (%). 3™ track: Scatter plot of permeability-porosity of predicted and laboratory data (mD vs. %), 4t track:
Histogram of Porosity of predicted and laboratory data (%), 51" track Histogram of Permeability of predicted and laboratory data (mD)
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K-Nearest Neighbor (KNN):
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K-Nearest Neighbors (KNN) Well-log & Lab. Plots (3-BRSA-1215-RJS)
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Figure 4-29: Comparing the match between the predicted & laboratory measurement of permeability and porosity, Comparing scatter
plot permeability-porosity of predicted and laboratory data, Histogram of Porosity and Permeability distribution of predicted and
laboratory data, for the K-NN Model, applied to the well (3-BRSA-1215-RJS) included in training set (for Permeability Prediction Timur-
Coates Correlation has been used): (From left to right) 1t track: Predicted and laboratory Permeability (mD). 2" track: Predicted and
Measured Porosity (%). 3™ track: Scatter plot of permeability-porosity of predicted and laboratory data (mD vs. %), 4t track:
Histogram of Porosity of predicted and laboratory data (%), 51 track Histogram of Permeability of predicted and laboratory data (mD)
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4.1.5 Evaluation of different model performances using single well [1-BRSA-1116-RJS]
(Not included in training-test)

4.1.5.1 Well-log Plots

Random Forest:

Random Forest Well-log Plots (1-BRSA-1116-RJS)
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Figure 4-30: Comparing the match between the predicted and measured NMR porosity (Effective, Free fluid Total), and Predicted
Permeability & Saturation Using Timur-Coates Correlation, for the RF Model, applied to a different well (3-BRSA-1116-RJS) not included in
training phase: (From left to right) 1t track: Predicted and Measured NMR Effective Porosity (m3/m3). 27 track: Predicted and Measured
NMR Free Fluid (m3/m3). 3/ track: Predicted and Measured NMR Total Porosity (m3/m3). 4" track: Predicted Effective, Free Fluid, Total

Porosities (m3/m3), 5t track: Timur-Coates Predicted Permeability (mD), 6t track: Timur-Coates Predicted Irreducible water Saturation (%)
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Gradient Boosting:

Gradient Boosting Well-log Plots (1-BRSA-1116-RJS)
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Figure 4-31: Comparing the match between the predicted and measured NMR porosity (Effective, Free fluid Total), and Predicted
Permeability & Saturation Using Timur-Coates Correlation, for the GB Model, applied to a different well (3-BRSA-1116-RJS) not included in
training phase: (From left to right) 1%t track: Predicted and Measured NMR Effective Porosity (m3/m3). 27 track: Predicted and Measured
NMR Free Fluid (m3/m3). 3/ track: Predicted and Measured NMR Total Porosity (m3/m3). 4" track: Predicted Effective, Free Fluid, Total

Porosities (m3/m3), 5t track: Timur-Coates Predicted Permeability (mD), 6t track: Timur-Coates Predicted Irreducible water Saturation (%)
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K-Nearest Neighbor (KNN):

Depth

0.4

K-Nearest Neighbors (KNN) Well-log Plots (1-BRSA-1116-RJS)
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Figure 4-32: Comparing the match between the predicted and measured NMR porosity (Effective, Free fluid Total), and Predicted
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Permeability & Saturation Using Timur-Coates Correlation, for the K-NN Model, applied to a different well (3-BRSA-1116-RJS) not included in
training phase: (From left to right) 1t track: Predicted and Measured NMR Effective Porosity (m3/m3). 27 track: Predicted and Measured
NMR Free Fluid (m3/m3). 3/ track: Predicted and Measured NMR Total Porosity (m3/m3). 4" track: Predicted Effective, Free Fluid, Total

Porosities (m3/m3), 5t track: Timur-Coates Predicted Permeability (mD), 6t track: Timur-Coates Predicted Irreducible water Saturation (%)
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4.1.5.2 Well-log and Lab data plots

Random Forest:

Random Forest Well-log & Lab. Plots (1-BRSA-1116-RJS)
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Figure 4-33: Comparing the match between the predicted & laboratory measurement of permeability and porosity, Comparing scatter
plot permeability-porosity of predicted and laboratory data, Histogram of Porosity and Permeability distribution of predicted and
laboratory data, for the RF Model, applied to a different well (3-BRSA-1116-RJS) not included in training set (for Permeability Prediction
Timur-Coates Correlation has been used): (From left to right) 15t track: Predicted and laboratory Permeability (mD). 2@ track: Predicted
and Measured Porosity (%). 3 track: Scatter plot of permeability-porosity of predicted and laboratory data (mD vs. %), 4t track:
Histogram of Porosity of predicted and laboratory data (%), 51 track Histogram of Permeability of predicted and laboratory data (mD)
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Gradient Boosting:

Gradient Boosting Well-log & Lab. Plots (1-BRSA-1116-RJS)
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Figure 4-34: Comparing the match between the predicted & laboratory measurement of permeability and porosity, Comparing scatter
plot permeability-porosity of predicted and laboratory data, Histogram of Porosity and Permeability distribution of predicted and
laboratory data, for the GB Model, applied to a different well (3-BRSA-1116-RJS) not included in training set (for Permeability Prediction
Timur-Coates Correlation has been used): (From left to right) 15t track: Predicted and laboratory Permeability (mD). 2@ track: Predicted
and Measured Porosity (%). 3 track: Scatter plot of permeability-porosity of predicted and laboratory data (mD vs. %), 4t track:
Histogram of Porosity of predicted and laboratory data (%), 51 track Histogram of Permeability of predicted and laboratory data (mD)
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K-Nearest Neighbor (KNN):

Depth

Figure 4-35: Comparing the match between the predicted & laboratory measurement of permeability and porosity, Comparing scatter
plot permeability-porosity of predicted and laboratory data, Histogram of Porosity and Permeability distribution of predicted and
laboratory data, for the GB Model, applied to a different well (3-BRSA-1116-RJS) not included in training set (for Permeability Prediction
Timur-Coates Correlation has been used): (From left to right) 15t track: Predicted and laboratory Permeability (mD). 2@ track: Predicted
and Measured Porosity (%). 3 track: Scatter plot of permeability-porosity of predicted and laboratory data (mD vs. %), 4t track:
Histogram of Porosity of predicted and laboratory data (%), 51 track Histogram of Permeability of predicted and laboratory data (mD)

K-Nearest Neighbors (KNN) Well-log & Lab. Plots (1-BRSA-1116-RJS)
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The results of two other wells, 3-BRSA-944A-RJS and 9_ITP_RJS is shown in the Appendix 02.
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4.2 Part two

4.2.1 Evaluation of different model performances using the test dataset

Machine learning methods have emerged as powerful tools for estimating permeability directly from
well log data. These methods leverage the wealth of information contained in well logs to predict
permeability, thereby bypassing the need for costly and time-consuming laboratory measurements.
Machine learning models can be trained on a dataset comprising well log data as inputs and
laboratory-measured permeability as outputs. Once trained, these models can predict permeability
for new, unseen well log data, providing a rapid and cost-effective means of permeability estimation.
This approach holds great promise for enhancing our understanding of reservoir properties and
optimizing oilfield development strategies.

4.2.1.1 Scatter Plot of Predicted and Measured permeability

Generation of a predictive model using machine learning for the direct prediction of permeability from
well log data as predictors and permeability as target data; bypassing the NMR log to calculate
permeability and predicting it directly. By employing the LSSVR (Least Squares Support Vector
Regressor), we develop a model that correlates well log data to permeability. The below scatter plot
demonstrates how predicted and measured permeabilities correlate with each other. The scatter plots
of predicted and measured permeability can be found in figures 4-36.

LSSVR (Least-Square Support Vector Regressor) Scatter Plots
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Figure 4-36: Scatter plots of predicted versus measured Permeability (mD), for the LSSVR Model, applied to four
101 wells [(3-BRSA-944A-RJS), (1-BRSA-1116-RJS), (9-ITP-RJS), (3-BRSA-1215-RJS)] included in training phase.
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4.2.1.2 Histogram of Predicted and Measured permeability

In this section, the histograms of LSSVR for both Laboratory Permeability and Predicted Permeability
depict the frequency distribution of permeability values within specific ranges. This graphical
representation is crucial for assessing the model's performance, as it visually illustrates how well the
predicted permeability values align with the actual laboratory measurements. The significance lies in
the ability to observe whether the predicted values fall within the same or, at the very least, a
comparable range, indicating acceptable results. Essentially, the histogram serves as a valuable tool
for gauging the accuracy and reliability of the predictive model in capturing the inherent patterns and
variations in permeability across the dataset. The histogram of predicted and measured permeability
can be found in figures 4-37.

LSSVR (Least-Square Support Vector Regressor) Histograms
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Figure 4-37: Comparative Histogram Analysis: LSSVR Predicted Permeability vs. Lab Permeability. Assessing the
Frequency Distribution to Validate Model Performance
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4.3 Using different regression metrics for model Evaluation

To assess the effectiveness of the RF, GB, and K-NN models utilized in our thesis, we employ several
regression metrics. These metrics include Root Mean Squared Error (RMSE), Mean Squared Error
(MSE), and Mean Absolute Error (MAE), the Coefficient of Determination (R2). Through the analysis of
these metrics, we can evaluate and compare the performance of the models, allowing us to gauge
their accuracy and predictive capabilities.

The Root Mean Squared Error (RMSE) is calculated by taking the square root of the Mean Squared
Error (MSE). This metric measures the average squared difference between the predicted and
measured values. The RMSE ranges between 0.00 and positive infinity, with a smaller value indicating
a better fit. It is important to note that the RMSE uses the same scale as the measured data, allowing
for easier interpretation and comparison.

ZéV(YPredicted - yMeasured)2
N

RMSE =

Equation 4-1

Similarly, the MSE represents the average squared difference between predicted and measured values,
but it is not square rooted. Like the RMSE, the MSE ranges from 0.00 to positive infinity, with a smaller
value indicating a better fit. However, the MSE is expressed in the squared units of the measured data,
emphasizing the squared difference between the predictions and the actual values.

Zév(yPredicted - yMeasured)2
N

MSE =

Equation 4-2

The Mean Absolute Error (MAE) calculates the average absolute difference between the predicted and
measured values. It is a metric that ranges from 0.00 to positive infinity, with a lower value indicating
a better fit. The MAE uses the same scale as the measured data, making it easier to interpret and
compare. Unlike the squared differences in MSE and RMSE, the MAE considers the absolute
differences, giving equal weight to both positive and negative deviations from the actual values.
Therefore, the MAE provides a measure of the average magnitude of errors in the predictions, without
considering their direction.

Ziv I Ypredicted — YMeasured I
N

MAE =

Equation 4-3

The Coefficient of Determination (R2) is a numerical measure that indicates the predictive strength of
a model, ranging between negative infinity and 1.00. A higher value closer to 1.00 signifies a stronger
prediction. Conversely, a negative R2 value suggests that the model does not align with the data trend,
which can occur in non-linear regression models. R2 is typically expressed as a percentage and is
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calculated using a specific formula to quantify the proportion of the variance in the dependent variable
that can be explained by the independent variables.

Zév(yPredicted - yMeasured)2

Z?’(yPredicted - :VMean)z

R2=1-

Equation 4-4

4.3.1 Regression metrics evaluation on the test data

The succinct presentation of results encompasses the R2, MSE, RMSE, and MAE scores, obtained
through the utilization of the most effective hyperparameter configuration. These scores are explicitly
associated with predictions made on the test dataset, with a focus on the Random Forest (RF), Gradient
Boosting (GB), and k-Nearest Neighbors (KNN) models. The R2, MSE, RMSE, and MAE scores of different
porosities for different models of the test dataset can be found in table 4-1 and figures 4-38, 4-39, and
4-40.

Regression Metrics of RF, GB, and K-NN Models for estimation of Porosity on the Test Dataset

Machine Learning Algorithm Typespz::srii;‘iicted R2 (%) RMSE (m%m3) | MSE (m3/m3)2 MAE (m3/m3)
Effective 0.0179 0.0003 0.0117
Random Forest (RF) Free Fluid 0.016 0.0003 0.0105
Total 0.018 0.0003 0.012
Effective 0.018 0.0003 0.0117
Gradient Boosting (GB) Free Fluid 0.0161 0.0003 0.0105
Total 0.0188 0.0004 0.0123
Effective 0.0271 0.0007 0.018
K-Nearest Neighbour (K-NN) Free Fluid 0.0254 0.0006 0.0164
Total 0.0269 0.0007 0.0181

Table 4-1: Random Forest (RF), Gradient Boosting (GB), and K-Nearest Neighbour Regression (K-NN) Metrics on Test Dataset:
Comparative Analysis of Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), and
Coefficient of Determination (R?) for Different Porosity Types.

Moreover, we provide bar plots that visually represent the significance of each input feature in
predicting the output parameters. These graphical representations assist in discerning the most
influential features contributing to the model's predictions.
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Different Errors for Random Forest (RF) for Different Porosities (Test Dataset)
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Figure 4-38: Random Forest Regression Metrics Histogram on Test Dataset: Comparative Analysis of Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), Mean Squared Error (MSE), and Coefficient of Determination (R?) for Different Porosity Types.

Different Errors for Gradient Boosting (GB) for Different Porosities (Test Dataset)
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Figure 4-39: Gradient Boosting Regression Metrics Histogram on Test Dataset: Comparative Analysis of Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), and Coefficient of Determination (R?) for Different Porosity Types.

While both Random Forest (RF) and Gradient Boosting (GB) exhibit closely comparable results, the
Random Forest model marginally outperforms the Gradient Boosting model, displaying superior
outcomes with a higher coefficient of determination and lower root mean square error (RMSE). In
contrast, the K-Nearest Neighbour (K-NN) model demonstrates the least accuracy, as indicated by the
R? (Coefficient of Determination).
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Different Errors for K-Nearest Neighbor (K-NN) for Different Porosities (Test Dataset)
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Figure 4-40: K-Nearest Neighbour Regression Metrics Histogram on Test Dataset: Comparative Analysis of Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), and Coefficient of Determination (R?) for Different Porosity Types.

The observed disparities in model performance may be attributed to the varying degrees of correlation
between the well log data and NMR Free Fluid. Notably, all three models display competence in
predicting Free Fluid Porosity, but the Random Forest model stands out with its slightly better
predictive accuracy, emphasizing its efficacy in capturing the nuanced relationships within the dataset.
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4.3.2 Regression metrics evaluation on the entire dataset

The concise summary of outcomes encapsulates the R2, MSE, RMSE, and MAE metrics achieved by
employing the most optimal hyperparameter settings. These scores are specifically linked to
predictions made across the entire dataset, emphasizing the performance of the Random Forest (RF),
Gradient Boosting (GB), and k-Nearest Neighbors (KNN) models. The R2, MSE, RMSE, and MAE scores
of different porosities for different models of the entire dataset can be found in table 4-2 and figures

4-41, 4-42, and 4-43.

Free Fluid
Porosities

Total

Regression Metrics of RF, GB, and K-NN Models for estimation of Porosity on the Entire Dataset

Machine Learning Algorithm

Types of Predicted
Porosity

Random Forest (RF)

Effective
Free Fluid
Total

Gradient Boosting (GB)

Effective
Free Fluid
Total

K-Nearest Neighbour (K-NN)

Effective
Free Fluid
Total

Table 4-2: Random Forest (RF), Gradient Boosting (GB), and K-Nearest Neighbour Regression (K-NN) Metrics on Entire Dataset:

R2 (%)

RMSE (m%ms3) | MSE (m3/m3)2 | MAE (m3/m3)
0.0103 0.0001 0.006
0.0093 0.0001 0.0054
0.0103 0.0001 0.0061
0.0084 0.0001 0.004
0.0161 0.0001 0.0036
0.0089 0.0001 0.0044
0.0121 0.0001 0.0036
0.0114 0.0001 0.0033

0.012 0.0001 0.0036

Comparative Analysis of Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), and

Coefficient of Determination (R?) for Different Porosity Types.
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Furthermore, the presentation includes graphical representations in the form of bar plots, effectively
depicting the significance of each input feature in predicting the output parameters. These visual aids
serve the purpose of discerning the pivotal features that play a substantial role in influencing the
model's predictions.

Different Errors for Random Forest (RF) for Different Porosities (Entire Dataset)
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Figure 4-41: Random Forest Regression Metrics Histogram on Entire Dataset: Comparative Analysis of Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), and Coefficient of Determination (R?) for Different Porosity Types.

Different Errors for Gradient Boosting (GB) for Different Porosities (Entire Dataset)
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Figure 4-42: Gradient Boosting Regression Metrics Histogram on Entire Dataset: Comparative Analysis of Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), and Coefficient of Determination (R?) for Different Porosity Types.
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Different Errors for K-Nearest Neighbour (K-NN) for Different Porosities (Entire Dataset)
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Figure 4-43: K-Nearest Neighbour Regression Metrics Histogram on Entire Dataset: Comparative Analysis of Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), and Coefficient of Determination (R?) for Different Porosity Types.

Compared to the test dataset, the entire dataset yields significantly improved results across all three
models, showcasing a notable enhancement in the coefficient of determination by approximately 30-
40%. Among the models, Gradient Boosting stands out as the top performer, surpassing the other two.
Consistent with the test dataset, the models continue to demonstrate a superior performance in
predicting free fluid porosities compared to effective total porosities.

This robust performance on the entire dataset underscores the generalizability and effectiveness of
the models in capturing the underlying patterns within the broader dataset. The heightened accuracy,
particularly in the case of Gradient Boosting, signifies its prowess in handling a more extensive range
of data, emphasizing its potential for reliable predictions in real-world scenarios. Furthermore, the
continued trend of better performance in predicting free fluid porosities suggests a consistent strength
in capturing the nuances of this specific porosity type across various datasets.
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4.3.3 Regression metrics evaluation on the different datasets (1-BRSA-1116-RJS)

To assess the models'generalizability, a separate well data set that was not used in training was
employed. The models were evaluated using R2, MSE, RMSE, and MAE metrics obtained with the
optimal hyperparameter settings. This evaluation method provided a realistic assessment of the
models'generalizability. The R2, MSE, RMSE, and MAE scores of different porosities for different models
of the different dataset (not included in training the models) can be found in table 4-3 and figures 4-

44, 4-45, and 4-46.

Regression Metrics of RF, GB, and K-NN Models for estimation of Porosity on the Different Dataset

Machine Learning Algorithm

Types of Predicted
Porosity

Random Forest (RF)

Effective
Free Fluid
Total

Gradient Boosting (GB)

Effective
Free Fluid
Total

K-Nearest Neighbour (K-NN)

Effective
Free Fluid
Total

R2 (%)

RMSE (m¥m3) | MSE (m3/m3)> | MAE (m3/m3)
0.0695 0.0048 0.0504
0.045 0.002 0.036
0.0672 0.0045 0.0473
0.071 0.005 0.0512
0.0471 0.0022 0.0386
0.0694 0.0048 0.0493
0.0882 0.0078 0.0663
0.0603 0.0036 0.0491
0.0831 0.0069 0.061

Table 4-3: Random Forest (RF), Gradient Boosting (GB), and K-Nearest Neighbour Regression (K-NN) Metrics on Different
Dataset (Not Included in training phase): Comparative Analysis of Root Mean Squared Error (RMSE), Mean Absolute Error
(MAE), Mean Squared Error (MSE), and Coefficient of Determination (R?) for Different Porosity Types.

the presentation includes graphical representations in the form of bar plots are shown below:

Different Errors for Random Forest (RF) for Different Porosities (Different Dataset)
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Figure 4-44: Random Forest Regression Metrics Histogram on Different Dataset (Not Included in training phase):
Comparative Analysis of Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), and
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Different Errors for Gradient Boosting (GB) for Different Porosities (Different Dataset)

0 —
007 W RMSE
MSE 10
. MAE
0.06 —
-20
0.05 —
0.04 — —a0
-50 |
0.03 —

|

w

S
|

Error Values

0.02 —

R-squared (R2) Values

0.01 —

0.00 - T T T
Effective Free Fluid Total Effective Free Fluid Total
Porosities Porosities

Figure 4-45: Gradient Boosting Regression Metrics Histogram on Different Dataset (Not Included in training phase):
Comparative Analysis of Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), and
Coefficient of Determination (R?) for Different Porosity Types.

Different Errors for K-Nearest Neighbour (K-NN) for Different Porosities (Different Dataset)
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Figure 4-46: K-Nearest Neighbour Regression Metrics Histogram on Different Dataset (Not Included in training phase):
Comparative Analysis of Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), and
Coefficient of Determination (R?) for Different Porosity Types.

Apply a different dataset not including in training the model, show negative coefficient of
determination for all models and for different types of porosities. This indicates that the models
struggle to accurately predict the output parameters on the test well. There are several reasons for
this lack of accuracy in the validation phase. Firstly, the training dataset partly consists of non-reservoir
rock in some wells, making it challenging for the models to generalize to the test dataset, which is
almost entirely composed of reservoir rock (90%), even if they are made of the same lithology.

Secondly, the training dataset itself is limited. The small size of the training dataset restricts the
model’s ability to capture the underlying relationships between the input features and the output
parameters, accurately.
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5 Conclusion

In this study, the main objective was to develop machine learning models for the prediction of
petrophysical data using Random Forest (RF), Gradient Boosting (GB), K-Nearest Neighbors (K-NN), and
Least Square Support Vector Regressor (LSSVR) algorithms. The models were trained using data
indirectly obtained from predicted NMR well-log data and laboratory permeability. The evaluation of
the models was performed on different types of porosities (free fluid, effective, total) using both test
and entire datasets. Additionally, the study compared the predicted permeability using predicted NMR
and Timur-Coates correlation with laboratory permeability. Finally, LSSVR was used to predict
permeability directly from well-log data.

It was concluded that:

1. In the first part of the thesis, three different models (Random Forest, Gradient Boosting, and K-
Nearest Neighbour) were evaluated using test dataset, entire dataset, and a different dataset not
included in the training model. It has been shown that there are acceptible and cohesive scatter
plots (measured vs. predicted) and log plots (measured vs. predicted) for each models.

2. Generally, Random Forest and Gradient Boosting showed a better results in comparison to K-
Nearest Neighbour model; The test dataset showed that the Random Forest model slightly
outperformed the Gradient Boosting model in terms of coefficient of determination and root mean
square error. The entire dataset depicted that all three models showed significantly improved
results compared to the test dataset. However, application of different dataset, not included in the
model training, all models yielded negative coefficients of determination for different types of
porosities.

3. However, the K-Nearest Neighbour model demonstrated the least accuracy. The reseaon behind
this is the limititaion of K-Nearest Neighbour in dealing with high number of data (the number of
data in the first part is around 10000).

4. Application of Random Forest, Gradient Boosting, and K-Nearest Neighbour on each well
(expecially for well: 3-BRSA-1215-RIS), separately, show good matches for predicted and measured
permeability anfd porosities using Timur-Coates correlations. Other wells (3-BRSA-944A-RJS and 9-
ITP-RJS) also depicted close matches and acceptible results, while application of the differnet well
not included in the developement of model (1-BRSA-1116-RJS) show less accurate results, the
results are totally acceptible.

5. Inthe second part of the thesis, an acceptible close matches has been shown; direct permeability
prediction from basic well-log data is an valuable predciton and a big step in reservoir
characterization. However, there are some inaccuracies in the results mainly due to the lack of
sufficient data.

Below are some notes pertaining to existing inaccuracies in the thesis, as well as suggestions for
improving the research and recommendations for potential future research:

e There are some inaccuracies in the results, especially in the second part that predicts permeability
directly from basic well-log data. This is mainly due to the lack of sufficient data; the training data
comprises 191 samples, and the testing data consists of 82 samples, giving us a total of 273
samples. The higher the number of data, the better, more coherent, and accurate the machine
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learning model. The reason for the low number of data is that the dataset for the second part
comes from the concentration of well-log data and laboratory data, and in this case, laboratory
data was the limiting factor due to a limited number of lab data.

Depth shiftin laboratory results show the better alignment of laboratory results and predicted data.
This inaccuracy can be due to the differences between loggers and drillers depths are due to
different stretch in the drilling string when drilling, and the wire line entered into the bore hole
during wireline logging operations. This shift can suggest a more refined synchronization, indicating
an enhanced accuracy and reliability in the predictive model.

While the application of the Timur-Coates correlation has yielded good and generally acceptable
results in predicting permeability, it is essential to note that the model is deterministic and may not
be exact for all cases. Originally developed for sandstone reservoirs, its application to carbonate
reservoirs could potentially introduce errors. One consideration to address this limitation involves
modifying the model based on geological features, specifically by adjusting the coefficients of the
Timur-Coates correlation (a, b, and c) to better suit carbonate reservoir conditions.

Due to the inaccuracy of the Timur-Coates correlation that has been mentioned, and considering
the fact that it serves as the link between the two results — predicted permeability (first part) and
laboratory permeability — it could be critically asserted that in instances where the predicted
permeability deviates from the laboratory permeability, the predicted results may not necessarily
be inaccurate. Instead, it is plausible that the laboratory measurements themselves are inaccurate.
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Appendix

Appendix 01: (Histogram & Distributions plots)

Pairplot of 1-BRSA-1116-RJS
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Figure A-1: Seaborn Pair plots of well: 1-BRSA-1116-RJS for different well log data (GR, AT90, RHOZ, NPH|, DTCO, PEFZ, and NMRTOT)
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Pairplot of 3-BRSA-1215-RJS
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Figure A-2: Seaborn Pair plots of well: 3-BRSA-1215-RJS for different well log data (GR, AT90, RHOZ, NPH|, DTCO, PEFZ, and NMRTOT)
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Pairplot of 3-EQNR-1-SPS
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Figure A-3: Seaborn Pair plots of well: 3-EQNR-1-SPS for different well log data (GR, AT90, RHOZ, NPHI, DTCO, PEFZ, and NMRTOT)
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Pairplot of 3-EQNR-3-SPS
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Figure A-4: Seaborn Pair plots of well: 3-EQNR-3-SPS for different well log data (GR, AT90, RHOZ, NPHI, DTCO, PEFZ, and NMRTOT)
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Figure A-5: Different Plots (KDE Plot, Histogram, and Strip) for GR on the left and AT90 on the right side. Each of these plots for
different properties (GR & AT90) show the distribution and comparison the range of the parameters for six different wells.
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Figure A-6: Different Plots (KDE Plot, Histogram, and Strip) for DTCO on the left and PEFZ on the right side. Each of these plots for
different properties (DTCO & PEFZ) show the distribution and comparison the range of the parameters for six different wells.
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Comparison of NMRTOT across Wells
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Figure A-7: Different Plots (KDE Plot, Histogram, and Strip) for NMRTOT show the
119 distribution and comparison the range of the parameters for six different wells.
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Appendix 02: (Well-log plots)

Evaluation of different model performances using the different dataset [3-BRSA-944A-RJS] (Not
included in training-test)

Scatter plots

Random Forest Scatter Plots (3-BRSA-944A-RJS)
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Figure A-8: Scatter plots of predicted versus measured NMR porosity, for the RF Model, applied to one of the well (3-BRSA-944A-RJS) included
in training phase: Left plot: NMR Effective Porosity (m3/m3). Middle plot: NMR Free Fluid (m3/m3). Right plot: NMR Total Porosity (m3/m3).

Gradient Boosting Scatter Plots (3-BRSA-944A-RJS)
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Figure A-9: Scatter plots of predicted versus measured NMR porosity, for the GB Model, applied to one of the well (3-BRSA-944A-RJS) included
in training phase: Left plot: NMR Effective Porosity (m3/m3). Middle plot: NMR Free Fluid (m3/m3). Right plot: NMR Total Porosity (m3/m3).
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K-Nearest Neighbors (KNN) Scatter Plots (3-BRSA-944A-RJS)
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Figure A-10: Scatter plots of predicted versus measured NMR porosity, for the K-NN Model, applied to one of the well (3-BRSA-944A-RJS) included
in training phase: Left plot: NMR Effective Porosity (m3/m3). Middle plot: NMR Free Fluid (m3/m3). Right plot: NMR Total Porosity (m3/m3).
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Well-log Plots
Random Forest Well-log Plots (3-BRSA-944A-RJS)
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Figure A-11: Comparing the match between the predicted and measured NMR porosity (Effective, Free fluid Total), and Predicted
Permeability & Saturation Using Timur-Coates Correlation, for the RF Model, applied to the well (3-BRSA-944A-RJS) included in training
phase: (From left to right) 1t track: Predicted and Measured NMR Effective Porosity (m3/m3). 2nd track: Predicted and Measured NMR Free
Fluid (m3/m3). 37 track: Predicted and Measured NMR Total Porosity (m3/m3). 41 track: Predicted Effective, Free Fluid, Total Porosities
(m3/m3), 5t track: Timur-Coates Predicted Permeability (mD), 6% track: Timur-Coates Predicted Irreducible water Saturation (%)
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Gradient Boosting Well-log Plots (3-BRSA-944A-RJS)
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Figure A-12: Comparing the match between the predicted and measured NMR porosity (Effective, Free fluid Total), and Predicted
Permeability & Saturation Using Timur-Coates Correlation, for the GB Model, applied to the well (3-BRSA-944A-RJS) included in training
phase: (From left to right) 1t track: Predicted and Measured NMR Effective Porosity (m3/m3). 2nd track: Predicted and Measured NMR Free
Fluid (m3/m3). 37 track: Predicted and Measured NMR Total Porosity (m3/m3). 4% track: Predicted Effective, Free Fluid, Total Porosities
(m3/m3), 5t track: Timur-Coates Predicted Permeability (mD), 6% track: Timur-Coates Predicted Irreducible water Saturation (%)
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K-Nearest Neighbors (KNN) Well-log Plots (3-BRSA-944A-RJS)
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Figure A-13: Comparing the match between the predicted and measured NMR porosity (Effective, Free fluid Total), and Predicted
Permeability & Saturation Using Timur-Coates Correlation, for the K-NN Model, applied to the well (3-BRSA-944A-RJS) included in training
phase: (From left to right) 1t track: Predicted and Measured NMR Effective Porosity (m3/m3). 2nd track: Predicted and Measured NMR Free
Fluid (m3/m3). 37 track: Predicted and Measured NMR Total Porosity (m3/m3). 4% track: Predicted Effective, Free Fluid, Total Porosities
(m3/m3), 5t track: Timur-Coates Predicted Permeability (mD), 6% track: Timur-Coates Predicted Irreducible water Saturation (%)
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Random Forest Well-log & Lab. Plots (3-BRSA-944A-RJS)
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Figure A-14: Comparing the match between the predicted & laboratory measurement of permeability and porosity, Comparing scatter
plot permeability-porosity of predicted and laboratory data, Histogram of Porosity and Permeability distribution of predicted and
laboratory data, for the RF Model, applied to the well (3-BRSA-944A-RJS) included in training set (for Permeability Prediction Timur-
Coates Correlation has been used): (From left to right) 1t track: Predicted and laboratory Permeability (mD). 2" track: Predicted and
Measured Porosity (%). 3™ track: Scatter plot of permeability-porosity of predicted and laboratory data (mD vs. %), 4t track:
Histogram of Porosity of predicted and laboratory data (%), 51 track Histogram of Permeability of predicted and laboratory data (mD)
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Gradient Boosting Well-log & Lab. Plots (3-BRSA-944A-RJS)
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Figure A-15: Comparing the match between the predicted & laboratory measurement of permeability and porosity, Comparing scatter
plot permeability-porosity of predicted and laboratory data, Histogram of Porosity and Permeability distribution of predicted and
laboratory data, for the GB Model, applied to the well (3-BRSA-944A-RJS) included in training set (for Permeability Prediction Timur-
Coates Correlation has been used): (From left to right) 1t track: Predicted and laboratory Permeability (mD). 2" track: Predicted and
Measured Porosity (%). 3™ track: Scatter plot of permeability-porosity of predicted and laboratory data (mD vs. %), 4t track:
Histogram of Porosity of predicted and laboratory data (%), 51 track Histogram of Permeability of predicted and laboratory data (mD)
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K-Nearest Neighbors (KNN) Well-log & Lab. Plots (3-BRSA-944A-RJS)
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Figure A-16: Comparing the match between the predicted & laboratory measurement of permeability and porosity, Comparing scatter
plot permeability-porosity of predicted and laboratory data, Histogram of Porosity and Permeability distribution of predicted and
laboratory data, for the K-NN Model, applied to the well (3-BRSA-944A-RJS) included in training set (for Permeability Prediction Timur-
Coates Correlation has been used): (From left to right) 1t track: Predicted and laboratory Permeability (mD). 2" track: Predicted and
Measured Porosity (%). 3™ track: Scatter plot of permeability-porosity of predicted and laboratory data (mD vs. %), 4t track:
Histogram of Porosity of predicted and laboratory data (%), 51 track Histogram of Permeability of predicted and laboratory data (mD)
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Evaluation of different model performances using the different dataset [9-ITP-RJS] (Not included in
training-test)
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Figure A-17: Scatter plots of predicted versus measured NMR porosity, for the RF Model, applied to one of the well (9-ITP-RJS) included in
training phase: Left plot: NMR Effective Porosity (m3/m3). Middle plot: NMR Free Fluid (m3/m3). Right plot: NMR Total Porosity (m3/m3).
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Figure A-18: Scatter plots of predicted versus measured NMR porosity, for the GB Model, applied to one of the well (9-ITP-RJS) included in
training phase: Left plot: NMR Effective Porosity (m3/m3). Middle plot: NMR Free Fluid (m3/m3). Right plot: NMR Total Porosity (m3/m3).

128



Amirhossein Akhondzadeh

0.225

0.200

0175

0.150

0125

0.100

Well-log prediction

0.075
\ 0.050
0.025

0.000

K-Nearest Neighbors (KNN) Scatter Plots (9_ITP_RJS)

NMR Effective Porosity (m3/m3)

T T T T T T T T
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225

Well-log measurement

Well-log prediction

0175

0150

0.125

0.100

0.075

0.050

0.025

0.000

NMR Free Fluid (m3/m3)

T T T T T T
0.000 0025 0050 0075 0100 0.125 0150 0.175

Well-log measurement

Well-log prediction

NMR Total Porosity (m3/m3)

0.175 —

0.150 +

0.125

0.100 —

0.075 <

0.050

0.025 —

0.000

0.000 0025 0050 0075 0100 0.125 0150 0.175

Well-log measurement

Figure A-19: Scatter plots of predicted versus measured NMR porosity, for the K-NN Model, applied to one of the well (9-ITP-RJS) included in
training phase: Left plot: NMR Effective Porosity (m3/m3). Middle plot: NMR Free Fluid (m3/m3). Right plot: NMR Total Porosity (m3/m3).
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Random Forest Well-log Plots (9_ITP_RJS)
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Figure A-20: Comparing the match between the predicted and measured NMR porosity (Effective, Free fluid Total), and Predicted
Permeability & Saturation Using Timur-Coates Correlation, for the RF Model, applied to the well (9-ITP-RJS) included in training phase:
(From left to right) 1t track: Predicted and Measured NMR Effective Porosity (m3/m3). 2@ track: Predicted and Measured NMR Free Fluid
(m3/m3). 31 track: Predicted and Measured NMR Total Porosity (m3/m3). 4t track: Predicted Effective, Free Fluid, Total Porosities
(m3/m3), 5t track: Timur-Coates Predicted Permeability (mD), 6% track: Timur-Coates Predicted Irreducible water Saturation (%)
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Gradient Boosting Well-log Plots (9_ITP_RJS)
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Figure A-21: Comparing the match between the predicted and measured NMR porosity (Effective, Free fluid Total), and Predicted
Permeability & Saturation Using Timur-Coates Correlation, for the GB Model, applied to the well (9-ITP-RJS) included in training phase:
(From left to right) 1%t track: Predicted and Measured NMR Effective Porosity (m3/m3). 2@ track: Predicted and Measured NMR Free Fluid
(m3/m3). 31 track: Predicted and Measured NMR Total Porosity (m3/m3). 4t track: Predicted Effective, Free Fluid, Total Porosities
(m3/m3), 5t track: Timur-Coates Predicted Permeability (mD), 6t track: Timur-Coates Predicted Irreducible water Saturation (%)
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K-Nearest Neighbors (KNN) Well-log Plots (9_ITP_RJS)
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Figure A-22: Comparing the match between the predicted and measured NMR porosity (Effective, Free fluid Total), and Predicted
Permeability & Saturation Using Timur-Coates Correlation, for the K-NN Model, applied to the well (9-ITP-RJS) included in training phase:
(From left to right) 1t track: Predicted and Measured NMR Effective Porosity (m3/m3). 2@ track: Predicted and Measured NMR Free Fluid
(m3/m3). 31 track: Predicted and Measured NMR Total Porosity (m3/m3). 4t track: Predicted Effective, Free Fluid, Total Porosities
(m3/m3), 5t track: Timur-Coates Predicted Permeability (mD), 6t track: Timur-Coates Predicted Irreducible water Saturation (%)
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Random Forest Well-log & Lab. Plots (9_ITP_RJS)
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Figure A-23: Comparing the match between the predicted & laboratory measurement of permeability and porosity, Comparing scatter
plot permeability-porosity of predicted and laboratory data, Histogram of Porosity and Permeability distribution of predicted and
laboratory data, for the RF Model, applied to the well (3-BRSA-944A-RJS) included in training set (for Permeability Prediction Timur-
Coates Correlation has been used): (From left to right) 1t track: Predicted and laboratory Permeability (mD). 2" track: Predicted and
Measured Porosity (%). 3™ track: Scatter plot of permeability-porosity of predicted and laboratory data (mD vs. %), 4t track:
Histogram of Porosity of predicted and laboratory data (%), 51 track Histogram of Permeability of predicted and laboratory data (mD)
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Gradient Boosting Well-log & Lab. Plots (9_ITP_RJS)
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Figure A-24: Comparing the match between the predicted & laboratory measurement of permeability and porosity, Comparing scatter
plot permeability-porosity of predicted and laboratory data, Histogram of Porosity and Permeability distribution of predicted and
laboratory data, for the GB Model, applied to the well (3-BRSA-944A-RJS) included in training set (for Permeability Prediction Timur-
Coates Correlation has been used): (From left to right) 1t track: Predicted and laboratory Permeability (mD). 2" track: Predicted and
Measured Porosity (%). 3™ track: Scatter plot of permeability-porosity of predicted and laboratory data (mD vs. %), 4t track:
Histogram of Porosity of predicted and laboratory data (%), 51 track Histogram of Permeability of predicted and laboratory data (mD)
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K-Nearest Neighbors (KNN) Well-log & Lab. Plots (9_ITP_RJS)
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Figure A-25: Comparing the match between the predicted & laboratory measurement of permeability and porosity, Comparing scatter
plot permeability-porosity of predicted and laboratory data, Histogram of Porosity and Permeability distribution of predicted and
laboratory data, for the K-NN Model, applied to the well (3-BRSA-944A-RJS) included in training set (for Permeability Prediction Timur-
Coates Correlation has been used): (From left to right) 1t track: Predicted and laboratory Permeability (mD). 2" track: Predicted and
Measured Porosity (%). 3™ track: Scatter plot of permeability-porosity of predicted and laboratory data (mD vs. %), 4t track:
Histogram of Porosity of predicted and laboratory data (%), 51 track Histogram of Permeability of predicted and laboratory data (mD)
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Appendix 03: (Machine Learning Model approaches)

Support Vector Machine (SVM)

SVM was first proposed by Vapnik in and has been successfully applied to regression problems
including grid load forecasting, fault diagnosis, and image processing. SVM shows great performance
in high-dimensional function approximation problems due to the use of the kernel technique, which
maps feature vectors to a higher-dimensional space. It is one of the most popular and versatile models
in ML, suitable for both classification and regression of complex small datasets. Hence, many
researchers use SVM to estimate the SOH of batteries. The architecture of the SVM method for
regression is shown in Fig. 10. In general, the SVM model is defined as:

y=wl.y¥(x) +b, x € RY, Y(x) e RY, beR

Equation A-1

where ¥ (.) is a mapping that makes the input data linear in a new feature space with dimension d.
Different from the general linear regression models, the SVM model uses the e-insensitive loss
function. This states that any error larger than € is deemed unacceptable. That is, the objective of the
basic SVM is to find the optimal coefficients w and b such that the function, f, does not contain errors
larger than €. This is, therefore, also called the hard-margin SVM. The hard-margin SVM leads to the
following constrained optimization problem.

1

mininW

{)’i —whp(x) —b<e
s.t.

) vie{1,2, .., N}
wlhy(x)+b—y <e

Equation A-2

However, it is not always feasible to find a minimum under these constraints. Therefore, the following
loss function is introduced:

0 Ny — yil—€
$SeOy) = ., Vie{1,2, .., N}
ly; — ¥,|—€ , Otherwize

Equation A-3
Based on Equation 3, the samples with the predicted error less than € are deemed acceptable, while
the samples outside of the & band will increase the regression error. Slack variables &; and &;" are
introduced to create a soft-margin and allowing for measurement errors, making the optimization

feasible with otherwise infeasible constraints. The primal SVM optimization problem has the following
form:

min
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w € R¢

§,6° € RY

1 N yi—whp(x) —b<e+¢
EWTW + CZ(;- + &) st Swlp(x) +b—y; <e+&",vie{1,2,..,N}
t i, =0

Equation A-4

where Cis a positive constant regulating the penalty, it determines the trade-off between the flatness
of the regression function and the amount to which deviations larger than € are tolerated. Flatness in
the case of equation 4 means a small ||w||.In order to solve this problem, the Lagrange multipliers
a;, a;*, B, B;" = 0 are introduced, and the Lagrangian can be expressed as follows:

min
WER&
&, € RN
max L b ) . X
a,B € [0+ oo]N (w, b, &, &, o, 067, By, Bi)
N N
1
— T . .* _ 3 -* .*
= Zw w+CZ(a+zl) Z (B +B:'5")
N N

_Zai (e+&—yi +wh.y(x) +b) _Z o (e+& +y; —wh.P(x) —b)

i=1

Equation A-5

The min—max problem can be transferred into its dual max—min problem which satisfies the Karushe-
Kuhne-Tucker (KKT) conditions. The first KKT condition states that the gradients of the primal variables
are equal to zeroi.e,, V,,L =0,V,L =0, Ve L = 0, VEi*L = 0.

The second KKT condition called the complementary conditions states that multiplying the constraint
by its Lagrange multiplier has to equal zero in the optimum. That is, either the constraint is active, or
the Lagrange multiplier is zero. As a consequence of the second KKT condition, the Lagrange multiplier
a; and a;* for the samples inside the e—tube will vanish; while when |y; — 3,| = &, the multipliers
a; and a;* are nonzero. Therefore, only the samples x; with non-vanishing coefficients are enough to
describe w, and these samples are commonly called the support vectors (SVs). The primal SVM
optimization problem is converted into the following dual SVM optimization problem
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max Zyl(a —Q;) — ZG(O( + ;)

1 N N X ( ) 0
z : z : . E of — ) =

E ai)(a]‘ — (X]')K(Xi,X]') s.t. ol ! !
i=1i=1 0< Q; , (Xi* <C

Equation A-6

After optimizing equation 6, w.r.t. the Lagrange multipliers a; and «;", the coefficients w and b can
be computed from the a’s using equation 7 and 8, respectively.

N
W= Z(ai — o). P(xy)

Equation A-7

N
=y, — Z(ai — O(i*)L|J(Xi)T.L|J(Xi), for example i where 0 < a;*, a; < C

Equation A-8

Finally, the regression function can be described as:

N
fO)=wr. () +b = Z(ai* - ai)T'K(xi' x;)
i=1
Equation A-9

Where K (x;,x) = (¥ (x;), Y (x)) is the kernel function. The kernel function implicitly maps the input
to the high-dimensional feature space. This method has higher computational efficiency than if the
features were first mapped using ¥(+), thereby, overcoming the curse of dimensionality. Common
kernel functions K(xii,xjj) used in SVM are:

e Polynomial kernel:
K(xii,x]'j) = (xiiT.xJ'j + 1)M

Equation A-10

e Gaussian radial basis function:

2
Kt ) = (3 o = 1)

Equation A-11

e Hyperbolic tangent kernel:
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The Hyperbolic tangent kernel often used as an activation function for artificial neurons, expressed
as:

K(xil',x]'j) = tanh(KxiiT.ij + C)
Equation A-12

where M, o, k, ¢ are adjustable parameters of the above kernel functions.

............................................................

€ s .
/ ., %= wh.px) +b+e Loss Function
3

L y =yl<e
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Figure A-26: The illustration of Support Vector Machine (SVM).

Compared with the optimization problem of the standard SVM, given in equation 4, LS-SVM has a less
computational burden and faster solving speed because it solves linear equations instead of quadratic
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programming problems. Before the model training, the kernel principal components analysis (PCA)
algorithm was introduced to fuse these features. As a result, the obtained self-adaptive feature shows
higher relevance to the battery capacity than most of the single features. Also, the LS-SVM model is
optimized by the particle swarm optimization (PSO) algorithm.

K-Nearest Neighbour Regression (KNN)

K-NN is efficient for classification purposes in pattern recognition. As a kind of lazy learning, k-NN uses
the k closest neighbors in the feature space to classify a new point. When used for regression, as
presented in Fig. 11, k-NN first finds the k closest points
x1 x2 .. xX of a new point x,., based on a distance measure, and calculates the weighted average
of their response to predict the response of x,,,. For a given training dataset with N points X =
{x1, x5, ..., Xy}, Where each point possessesd features, the response of a new data x,.,, can be
estimated by k-NN as follows.

First, in order to describe how close each training points x; is to the testing points x,.,,, the weighted
Euclidean distance between them is calculated, which can be expressed as

d
d(xi;xnew) = z Wj(xnewj - xij)z
j=1

Equation A-13

Where Xy, ; and x; j are the ji;, feature of the new point x,,,, and the training points x;, respectively.
Besides, wj is the weight of j., feature, with the weights being subjected to the constraint

?:1 w; = 1. The weight w; reflects the importance of the feature and can be found using an
optimization algorithm, such as PSO, or differential evolution (DE) algorithm. According to the distance
d, the k training points Z = {xX(1), X2, ---» X(vy} ordered from the nearest to furthest are obtained.
These are called the k nearest neighbour of x,,.,,. A kernel function is then used to assign weights to
each neighbour (the kernel is usually dependent on the calculated distance), and the prediction for
new sample x,,,, can be obtained by:

57 _ Z?:l K(xnew' x(i))yi
e {'c=1 K(xnewr x(i))

Equation A-14

where k represents the number of nearest neighbors which controls the flexibility of the model (the
higher k is the smoother the model is going to be). ¥(;) represents the known response of ¥y, Ynew
the predicted response of Xp,,,, and K (Xpew, X(;)) denotes the kernel function, as given in equations
10-12. The principle of k-NN regression is simple and is easy to be implemented. The PSO algorithm
obtained the optimal combination of the feature weight. It not only shows the relative importance of
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each feature but also ensures accurate capacity estimation. Even though the k-NN regression model
is simple and an accurate SOH estimation is easily obtained, the algorithm has a clear disadvantage:
the entire range of the battery degradation has to be known, as the k-NN model cannot predict values
outside of the observed range.

............................................................................................................
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Figure A-27: The illustration of K-Nearest Neighbor Regressor (K-NN).
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Appendix 04: (Developing Machine Learning Model)
We have included specific lines of Python code that were written for predicting NMR porosity logs
and permeability from well-log data.

The complete Python code can be accessed through the following link (GitHub Repository):
Link to Git HUB
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