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INTRODUCTION 

 

While the Automotive industry is pushing towards the complete electrification of cars 

and the classics means of transport to reduce the emissions of harmful gases in the 

atmosphere, the actual electricity demand, and the larger upcoming one, is still satisfied 

in its majority by fossil fuels. According to the available data provided by Ember´s 

Yearly Electricity Data, in 2022 behind the 28527.76 TWh of globally produced 

electricity, almost 61% was covered by fossil fuels such as Coal, Gas and Oil [1]. If we 

consider the forecasting provided by McKinsey & Co. on Statista.com, global 

electricity production is expected to increase by 296.5% by 2050 (83000 TWh), [2] the 

same year fixed as a target for Carbon Neutrality by the European Union.  

Given these assumptions, scientists´ efforts moved towards more efficient and 

more environmentally friendly sources of energy. Fuel cells are a highly efficient 

technology for various applications because they generate electricity using a range of 

fuels, including both traditional and eco-friendly options, through electrochemical 

processes. This method allows them to avoid the limitations of the Carnot cycle and 

produce environmentally friendly products. Consequently, fuel cells offer higher 

efficiency compared to conventional power generation methods. The fields of possible 

applications are countless, but considering just the power generation purposes, among 

the different types of fuel cells, high-temperature fuel cells (SOFCs, MCFCs) are the 

most efficient devices and are recently being adopted in the clean distributed generation 

systems. [3] 

The SOFC R&D department in Robert Bosch GmbH gave me the opportunity to 

work on this product fascinating and complex at the same time. In this stimulating 

environment, I had the chance to deepen engineering modeling and work on a possible 
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game changer for green energy production in the near future. This collaboration had 

the scope to extend a physical model, valid in a certain dimension range of the cell, 

towards a larger scale that resulted impossible to simulate via conventional software 

and methods. Due to the impossibility of working with white/grey box models and the 

non-linearity of the physics, it was chosen to try via a black-box modeling approach to 

predict the behavior and create a complete mapping of the interesting properties across 

the single repetitive unit. 

In this study, the development started from the physical model, used to describe 

the single-cell functionality, already implemented and validated through a simulation 

model in COMSOL Multiphysics. The latter was investigated to retrieve the most 

important features among all the actors through a Sensitivity Analysis carried out using 

statistical tools such as the Design of Experiments techniques. Finally, the model was 

extended to a larger scale via the predictions performed by different Machine Learning 

algorithms that will be compared in performance and accuracy. The most accurate 

algorithm resulted in the Histogram-based Gradient Boosting Regressor; the latter was 

trained and implemented in a web application with the scope to create a user-friendly 

prediction tool.  
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1. FUEL CELLS OVERVIEW 

Fuel cells are devices that convert the chemical power of a fuel utilizing electron and 

ion exchange through an electrolyte, the latter is generated by reduction-oxidation 

(RedOx) reactions that take place respectively at the cathode and at the anode of the 

cell. The principle of operation behind fuel cells can be dated to the early 1800s when 

Mr. Henry David announced the principle of reverse electrolysis highlighting the 

possibility to generate electricity by the collection of electrons from the reaction 

between oxygen and hydrogen. Sir William Grove is widely considered the inventor of 

modern fuel cells since he built, tested and demonstrated the first cell stack called 

“voltaic gas battery” back in 1839. His work was then continued and deepened by 

personalities such as Mond and Langer who first used a solid porous non-conductive 

diaphragm impregnated in acid before being plated and placed in contact with the two 

working gases. This solution was the precursor of modern fuel cells that have a 

structure very similar to that presented by the scientists in 1889. Ten years later, in 

1899, William Nernst first used zirconium oxide for the filament of his light bulb after 

carrying out studies on the solid-ionic conductivity of stabilized zirconia (zirconium 

oxide doped with few moles per cent of calcia, magnesia or yttria). As a result of his 

studies, he took advantage of the phenomena of their increasing conductivity with 

rising temperature, creating a very efficient light bulb with respect to the pre-existent 

carbon fiber bulb. By the end of the 1930s, Baur and Preis used doped zirconia to build 

fuel cells and developed the two designs of cells that are still adopted today: Tubular-

shaped and Planar fuel cells. [3] 

 

Figure 1 - Planar type (A) and Tubular type (B) fuel cells   
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Although changing the shape, all fuel cells are composed of the following elements: 

• Electrodes: Anode and Cathode, both usually made of metals. The anode is 

placed in contact with the fuel and the oxidation reaction takes place. The 

cathode is in contact with air to allow the reduction reaction to take place. 

• Electrolyte: it is a key component whose main purpose is to physically separate 

the anode (fuel side) from the cathode (air side) guaranteeing electrical 

insulation and the transport of ions (or protons) according to the reaction 

kinetics. The material of the electrolyte can be different and define the type of 

fuel cell. 

• External circuit: it is an electrical circuit implemented in the design to collect 

and transfer the electrons outside the cell. 

• Catalysts: both for the anode and the cathode. They are important components 

that enhance the efficiency and kinetics of the reactions that take place on the 

electrodes´ surfaces. 

 

1.1 FUEL CELL TYPES 

Currently, the various types of fuel cells can be characterized by the material of the 

electrolyte adopted: 

• Alkaline Fuel Cell – AFC 

• Direct Methanol Fuel Cell – DMFC 

• Molten Carbonate Fuel Cell – MCFC  

• Phosphoric Acid Fuel Cell – PAFC 

• Proton Exchange Membrane Fuel Cell – PEMFC 

• Solid Oxide Fuel Cell – SOFC 

Electrolyte type and material strongly influence some characteristics like the side of 

the fuel cell where the main reactions occur and where the reaction products are 

exhausted (anode or cathode). But the most important property is the conductivity 

which is strictly related to the operational temperature. Therefore, even if different 

types of cells can reach the same conductivity, the operational temperature may vary 

quite largely [3]. In Table 1 can be grouped the main characteristics of the different 

types of fuel cells: 
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 PEMFC PAFC MCFC SOFC 

Electrolyte 
Polymeric 

membrane 

Phosphoric 

Acid 

Liquid 

Carbonate 
Solid Oxide 

Temperature 

°C 
80 200 650 800-1000 

Efficiency % 40-50 40-50 >60 >60 

Ions carrier 
Hydrogen 

protons 

Hydrogen 

protons 

Carbonate 

ions 
Oxygen ions 

Catalysts Platinum Platinum Nickel Perovskite 

Fuel H2 H2 H2, CO, CH4 H2, CO, CH4 

Poisons CO 
CO, Sulfur, 

H2S 
Sulfur, H2S Sulfur, H2S 

State of 

development 

Pre-

commercial 
Commercial Prototype 

Pre-

commercial 

Table 1 - Fuel cell types comparison [3] 

 

1.2 ENERGY CONVERSION EFFICIENCY 

The Energy Conversion Efficiency of a conversion device or process is uniquely 

defined as [4]: 

𝜂𝐸𝐶 =
𝑂𝑢𝑡𝑝𝑢𝑡 𝐸𝑛𝑒𝑟𝑔𝑦

𝐼𝑛𝑝𝑢𝑡 𝐸𝑛𝑒𝑟𝑔𝑦
=

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦

𝐶ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝐹𝑢𝑒𝑙
 

Generally speaking, fuel cells are very efficient devices since they can directly 

transform the chemical power of the fuel into electrical energy via electrochemical 

reactions. The traditional power generation plants (excluding hydraulic and nuclear 

plants) usually require the combustion of fossil fuels to power mechanical systems that 

transform mechanical energy into electrical one. The combustion process itself is a 

very practical and effective way to power mechanical devices such as turbomachines 

or ICEs. Nevertheless, the overall efficiency does not exceed 40%, due to the large 

amount of energy converted and wasted into heat. Fuel cells, which are not related to 

the Carnot Cycle´s limitations and are not paired to other mechanical components, are 

more likely to have efficiencies that range from 35 to 60% considering just the energy 

conversion. The high-temperature cells, such as MCFCs and SOFCs, can also be 

exploited to build hybrid systems (when connected to traditional plants) or in combined 
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Heat&Power configurations that push the overall efficiency up to 85% [3]. However, 

the efficiency of these devices is strictly related to several factors that involve the need 

to adopt complex designs and a fine-tuning of the operating conditions. Some of the 

agents affecting the performances are listed below [5]: 

• Catalysts Efficiency 

• Fuel Utilization (FU) 

• Operating Temperature 

• Ionic Conductivities of the materials 

• Gas Diffusion and Mass Transport properties of the materials 

• Leakages of gas species and current 

• Purity of the gas species (i.e. Fuel, Air) 

• Stack Design and Configuration 

 

1.3 APPLICATIONS AND LIMITS 

Fuel cells are devices, that, compared to the classical solutions for power generation, 

directly transform the chemical power of the fuel into electricity without being paired 

to mechanical systems thus guaranteeing higher energy conversion efficiency. When 

the cells are fueled with hydrogen the main byproduct of the reaction is water vapor 

thus making these devices a clean energy technology, while if we consider all the 

possible fuels that can be employed (like methanol, biofuels, natural gas or hydrogen-

rich gases) the products have only very small percentages of harmful or greenhouse 

gases especially when compared with the classic alternatives. Considering the 

advantages listed above, one of the most popular applications in the future will be the 

Distributed Generation (DG). The research on solutions for distributed generation 

arises from the need to solve problems related to the use of centralized energy systems 

such as the need to predict the annual and daily demand, the use of complex control 

systems in the power grid for the management of consumers and the impossibility of 

free and flexible access to resources by users. High-temperature fuel cells (SOFCs, 

MCFCs) in particular, allow for building systems of energy distribution where the 

production is made locally and the role of the transmission network is eliminated or 

greatly reduced, thus leading to wide flexible ranges of power with higher efficiency, 

higher network efficiencies and maintenance-free operation. These devices also 

guarantee acceptable operation costs while adding the possibility to use the output 
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thermal energy by conveying it to heating systems, increasing the overall efficiency of 

the system. Countless other applications see fuel cells used in sectors such as the 

automotive, aerospace and technology industries [3] [6].  

However, this technology still has several limitations that will be listed below: 

• High Installation costs: although operating and fuel costs can be compared to 

the classical solutions for power generation, the installation cost is still the main 

barrier to their commercialization and it is due to the expensive materials used 

for catalysts (e.g. Platinum, Nickel). 

• Hydrogen-related costs: given the lack of adequate infrastructure and the 

problems related to production, transport and storage, the difference in costs is 

considerable when compared to conventional fuels. 

• Durability and reliability: the studies carried out on the plants installed in the 

past decades, have shown a certain sensitivity to degradation over time 

particularly when used in difficult operating conditions such as high 

temperature and chemical poisoning [4]. 

Although the advantages are greater than the disadvantages, research in this field must 

be pushed forward to enable cost reduction and greater economic benefits for 

customers. Furthermore, must be enhanced the development of adequate infrastructure 

to make access to hydrogen easy and affordable for everyone.  

 

1.4 Solid Oxide Fuel Cell - SOFC 

This chapter aims to analyze more in depth the Solid Oxide Fuel Cells as this thesis 

work was conducted on a single cell of the SOFC engineered by the team of Robert 

Bosch GmbH in collaboration with Ceres Power. Understanding the working principles 

and the materials used is fundamental for the context of this master´s thesis which 

focuses on the modeling and the prediction of the cell´s behavior in terms of 

performance. 

 

1.4.1 SOFC WORKING PRINCIPLE 

The singular cell is composed of three different layers: anode, cathode and electrolyte. 

The cathode is one of the two porous electrodes present in the cell. It works in an 

oxidizing environment with temperatures from 600-1000°C and is responsible for the 



 

9 

 

production of oxygen ions through the electrochemical reaction of oxygen, starting 

from the gaseous phase to oxide ions consuming two electrons. The oxygen ions are 

then incorporated into the electrolyte´s oxygen vacancies to reach the anode. The latter 

is the second porous electrode of the cell and catalyzes the reaction between the fuel 

(pure hydrogen or hydrogen derived from steam reforming processes) and oxygen ions 

producing water and two electrons as byproducts. The electrons produced are then 

collected into the interconnector which is used to connect multiple single repetitive 

units into the so-called “cell stack”. 

 

Figure 2 - Scheme of a singular fuel cell and main reactions 

1.4.2 MATERIALS FOR SOFCs 

The materials that compose the different elements of the SOFCs play a key role in the 

cells' performance and are an active component in the reactions´ kinetics. The goal of 

this paragraph is to underline the main characteristics required for each material, based 

on the role it plays in the cell.  

 

1.4.2.1 CATHODE 

SOFC cathode materials must be catalytically active for oxygen reduction furthermore, 

they must be able to bear a constant oxidizing atmosphere with temperature that ranges 
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from 600 to 1000°C. Other important requirements for the correct air electrode 

functioning are listed below: 

1. High electronic conductivity: the cathode material must be able to provide 

pathways for the electrons between the reaction site and the external circuit. 

2. High ionic conductivity: it is required to facilitate the transport of oxygen 

anions towards the electrolyte contact interface. 

3. Chemical and dimensional stability: these are important characteristics to be 

met to guarantee the correct production and functioning during operation. 

4. Sufficient porosity: fundamental to obtain the transport of the gas phase to the 

electrolyte interface. 

5. Low activation overpotential: to reduce the activation losses. 

The suitable materials that meet the requirements above are mostly oxide-based, 

therefore Doped Perovskite oxides (i.e. LSM, LSFCO, LSCM) are adopted for this 

purpose since they guarantee good mixed conductivity as well as sufficient thermal 

stability and compatibility with the other interfacing materials [7]. 

 

1.4.2.2 ELECTROLYTE 

The electrolyte has the main role of conducting the anions from the cathode to the 

anode, without proper conduction properties the voltage generated by the cell would 

be too low to be exploited. The SOFCs use an oxide-based electrolyte in the solid phase 

which must guarantee a porous-free layer between different gaseous phases. Other 

important characteristics that must be met are [7]: 

1. High ionic conductivity at the desired operating temperature. 

2. Negligible electronic conductivity: must isolate the anode from the cathode 

avoiding the short-circuiting of the system. 

3. Chemical and Mechanical compatibility. 

4. Thermal stability and expansion compatibility: must be stable at the desired 

temperature and have a thermal expansion compatible with the other actors. 

5. Easy fabrication into a dense and very thin membrane: the lowest thickness 

and uniformity are fundamental to reduce ohmic losses. 

For these purposes, the material that complies the most is the Yttria-Stabilized Zirconia 

(YSZ) which is the state of art of electrolyte currently used in SOFCs. However new 
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materials are being studied due to the key role that this layer has in the cell functionality 

such as perovskite oxides [7]. 

 

1.4.2.3 ANODE  

The materials employed to produce the anode electrode must satisfy some requirements 

such as to be stable in a reducing environment and to be catalytically active for the fuel 

oxidation process [7]. Other requirements that must be met are: 

1. High electronic and ionic conductivity: they must be able to receive the 

anions from the electrolyte and guarantee the flow of electrons and byproducts. 

2. Chemical and physical compatibility with the other components. 

3. Sufficient porosity: to reduce the losses associated with the diffusion of the 

species from the interface. 

4. Thermal and dimensional stability: to be compatible with the expansion of 

the other materials. 

5. Easily produced in thin layers: to reduce ohmic losses. 

The materials suitable for these requirements are just a few types of composite 

materials made by metallic and ceramic phases called “cermet”. The metallic phase is 

usually fulfilled by Nickel or Nickel Oxide particles since Nickel is a cheap and 

efficient catalyzer for the division of the hydrogen atoms and guarantees a low carbon 

deposition, that causes clogging of the pores when hydrocarbons are used. The ceramic 

phase is made with Yttria-Stabilized Zirconia since it guarantees good ionic 

conductivity in the operating temperature range [7]. 

 

 

 

 

 

 

 



 

12 

 

2. ENGINEERING MODELING 

A System can be defined as: “[…] entirety of elements that relate with each other and 

interact in such a way that they can be regarded as a unit with a specific task, sense or 

purpose, and in this way differentiate themselves from the environment that surrounds 

them.” (BES-PE Glossary issue n.3-2009/11). According to this definition, a system 

can be imagined as a box filled with different actors that are interacting with each other, 

and the scientists or engineers are the observers that a looking from the outside. Most 

of the times the connections and the interactions between these objects are not 

immediately clear or simple to understand, therefore the need for another 

representation is somehow unavoidable. A Model can be defined as: “[…] 

representation of reality that is reduced to relevant characteristics.” (BES-PE 

Glossary issue n.3-2009/11). This definition anticipates one of the key points of the 

System Analysis, often referred to as Modeling: simplify the reality. The other reasons 

why scientists need to model a real system are: to acquire some knowledge and explain 

the behavior of the system through simulations (when studies of the real system are 

impossible or uneconomical) and to predict and optimize the system behavior before 

the system physically exists. The general procedure for modeling requires the 

following steps [8]: 

1. Creation of the model: it is an iterative and heuristic process to adapt the model 

based on the knowledge of reality. The creation stops when the model itself can 

accomplish the task that was intended for. 

2. Validation: it is based on the comparison between the observed properties and 

the predicted properties resulting from the model. If the predictions are correct 

the model can be considered “valid”, otherwise it will require more experiments 

to be validated. 

3. Simulation: it is the implementation of the model for predicting the behavior 

of the system to acquire more knowledge. 

4. Further developing: the model can be extended to different scales of reality, 

but it will require a new validating procedure. 

 

2.1 TYPES OF MODELING 

From the creation of the Scientific Method born by the genius of Galileo Galilei to the 

more contemporary Data Science, enormous steps have been carried out to allow more 
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efficient modeling, less time-consuming and adaptable to the more complex meanders 

of reality. Since the modeling procedure foresees the synergetic combination of 

experimentation and analysis, it therefore involves an expenditure in terms of money 

and time. Most of the time scientists and engineers face the need to find a suitable 

tradeoff between monetary resources and time expenditure in order to acquire a 

sufficient amount of knowledge to push forward their studies. Other times, they are 

forced to face real and physical limits that do not allow the analysis of a phenomenon 

through its pure observation with real experiments. Therefore, during the years and 

thanks to new technologies development, three main categories of modeling were born 

and are presented below: 

• White-Box Modeling 

• Black-Box Modeling 

• Gray-Box Modeling 

The intrinsic difference between categories can be summarized in Figure 3: 

 

Figure 3 - Types of Modeling [8] 

In the next subchapters, all the categories will be described, and some interesting tools 

will be explained more in detail for a better understanding of the following steps. 

2.1.1 WHITE-BOX MODELING 

White-Box Modeling, also called Physical Modeling, denotes a deductive process 

(from the general to the specific) on the basis of general natural laws and principles 

(e.g. laws of conservation, laws from chemistry, physics or thermodynamics), and 

structural knowledge of the system. Here the function of the system elements which 

correlates the output to the inputs, must be fully known in order to deduct the whole 

system behavior at the chosen level of observation. Model parameters must be defined 

on the basis of physical constants and very frequently the system can be represented as 
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a set of complex partial differential equations (PDEs). One of the strengths of this 

method is that the model can be applied over a wide spectrum of parameters since the 

applicability of the approach is only limited by its laws. Physical Modeling may be 

employed for technical questions if the state-of-the-art is adequate for the knowledge 

that needs to be acquired and for the task to be accomplished. Very often this approach 

does not apply to quantitative statements (i.e. knowledge retrieved from large amounts 

of data) since it will be time-consuming and not cost-effective. This approach will also 

lack precision if Variance affects the analyzed data, in that case, other types of 

approaches better suit the analyses. However qualitative analysis as well as the 

parameters interactions can be achieved through the study. [8] 

 

2.1.2 BLACK BOX MODELING 

Black box Modeling, also known as Empirical Modeling or System Identification, is 

an inductive approach (from the specific to the general) whereby a model is created 

only by recording the system inputs and outputs by way of an experiment in a finite 

number of discrete cases, e.g. through measurements and observation. This model then 

describes in the best possible way the relationships between inputs and outputs using a 

Transfer Function. The transfer function is calculated via a mathematical approach 

which usually involves a simple algebraic equation, e.g. a polynomial of the first or 

second order. Subsequent system identification is then achieved by determining the 

free model parameters (coefficients of the equation) so that the transfer function 

describes the system behavior within the framework of the model accuracy. The main 

advantage is that the procedure is usually faster because it does not require prior 

knowledge of the system´s structure or the governing physical laws of the phenomena 

involved. Therefore, empirical modeling can provide the basis of physical modeling 

when the system is completely unknown and usually is used as the basis of the classical 

statistical experimental design (e.g. Factorial experimental designs). However, the 

model itself is valid inside narrow confines since the limited order of the model 

equation cannot be extended to the global system behavior. In that case, through Taylor 

Expansion, is possible to generalize the model up to a higher-order error [8]. 
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2.1.2.1 DATA-DRIVEN MODELS 

In the last thirty years, the technological evolution that involved the computer industry 

led to the complete digitalization of almost every aspect of our lives. To efficiently run 

these eco-systems of data-acquiring sensors the hardware of the computers (e.g. CPUs, 

RAMs, GPUs) was developed to such an extent that operations with a large amount of 

data and complexity can be performed in the order of microseconds. This evolution 

also touched the scientific world leading to the possibility of implementing 

mathematical algorithms to large amounts of data with a better fitting of the 

relationships between outputs and inputs, thus giving birth to Machine Learning (ML), 

Deep Learning (DL) and Artificial Intelligence (AI). These modeling approaches are 

defined as Data-driven models since they can retrieve patterns, relationships and 

knowledge from data they are trained on and perform predictions on different and 

unknown datasets (Supervised Learning). This procedure does not require any previous 

explicit programming with rules or assumptions [9]. 

In this dissertation different Machine Learning algorithms were implemented therefore 

a brief explanation is necessary for further understanding. Below is the classification 

of the ML algorithms used: 

• Linear Models: These algorithms exploit Regression in order to correlate 

independent variables (also called “features”) to a dependent continuous output. 

The prediction power of this method is based on the degree of the polynomial 

used for the interpolation of the data. Polynomials with degree “d” equal to one 

are defined as “Linear Regression Models” while polynomials with a higher 

degree are defined generally as “Polynomial Regression Models”. An increase 

in the degree of the polynomial function at the base of the regression will 

produce a better fitting of the output data with the respective inputs since they 

will include also the interaction terms that arise from the polynomial 

construction. Figure 4 below shows the difference in the data interpolation 

between a Linear Regression and a Polynomial Regression. Another Linear 

Model is the Bayesian Regression which adds a probabilistic approach (i.e. 

considers the uncertainties related to the features) to the regression by adding a 

prior distribution over the parameters (typically a Gaussian Distribution) and 

retrieve the probabilistic distribution of the results [10] [11] [12]. 
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Figure 4 - Linear Regression (d=1) and Polynomial Regression (d=2) comparison 

The Linear Models implemented in this thesis work are retrieved from the Python´s 

library “Scikit-Learn” and can be recalled using their function´s name as: 

LinearRegression(degree =1) for linear regression, LinearRegression(degree =2,3) to 

call a polynomial regression, Bayesian RegressionRidge to call a Bayesian regression 

with a Ridge regression feature that allows to determine the best degree of the regressor 

and to deal with correlated inputs [11] [12] [13]. 

 

• Classification Models: are Machine Learning models which use the principle 

of classification, i.e. a supervised algorithm trained to predict a correct “label” 

of a given input data. A “label” is a category that is assigned to the input data 

and will be used by the algorithm during the learning and the prediction 

procedure. The output of these models can be either discrete (e.g. binary, 

true/false, M/F) or continuous as for the linear models. If the output is 

continuous these models are considered meta-models since are still based on 

the regression of the data, but the decision is taken via categorized choices. The 

latter that can aim to a specific target such as the minimization of the residuals 

or the minimization of a loss function specifically designed for that algorithm. 

The simplest model is the Decision Tree, which is also called “weak learner” 

or “base learner” since it is the basic decision method employed in all the 

algorithms of this category. The intrinsic difference among all the algorithms is 

how the weak learner is arranged or shaped and how the decision is taken 

starting from the result of the decision tree implemented. As an example, 

Random Forest model implements multiple decision trees in parallel and takes 
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the decision basing on the average of the results of all the trees in the “forest”. 

The model can be tuned by defining some characteristics, known as 

“hyperparameters”, such as the number of trees in the forest, number of 

“leaves” on each tree, loss function to be averaged for the prediction. Other 

very common models are based on the Gradient Boosting method which 

involves the sequential (in series) training of base learners to fit the gradient of 

the loss function. Basically, the model assigns some “weights” to the input 

features and calculates the loss function of the error (e.g. residuals, mean 

squared error), then it finds the gradient of the function to know the direction 

of the maximum error. This optimization technique will induce the algorithm 

to set the parameters in such a way as to travel toward the opposite direction 

defined by the gradient until convergence is reached. In this way, the minimum 

of the loss function is searched thus resulting in more accurate predictions [14]. 

How the trees for different algorithms are managed is shown in the following 

Figure 5. 

 

 

Figure 5 - Classification Models comparison 

 The classification algorithms treated in this dissertation are recalled from the 

Scikit-Learn library in Python and are: DecisionTreeRegressor, 

RandomForestRegressor, GradientBoostingRegressor and 

HistGradientBoostingRegressor [11] [12]. 
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• Artificial Neural Networks: are computational algorithms that are composed 

with a structure similar to the human brain network of neurons. Indeed, this 

model is characterized by the presence of nodes called “neurons” and is 

structured in layers, the first one is called the “input layer” and the last one is 

called the “output layer”. In between there are multiple layers called “hidden 

layers”, the number of hidden layers defines the type of the algorithm: if the 

number of hidden layers is between one and three the algorithm belongs to 

Machine Learning while, if this number is larger than three, the algorithm is 

considered as a Deep Learning model. The connection between the neurons is 

called “weight” and multiple neurons can be linked together. An important 

characteristic is the presence of an Activation Function that introduce the non-

linearity therefore allowing the network to learn complex patterns, the latter is 

influenced by the input weights and can autonomously adapt to the nature of 

the problem. The parameters that can be controlled are the number of neurons 

in each layer, the number of hidden layers and the type of the activation 

function. Artificial Neural Network can be use either for classification, if the 

output is discrete, or for Regression if the output is continuous [3] [14]. Very 

unusual and powerful feature of this model is that the outputs can be multiple. 

MLPRegressor from Scikit-Learn was used for the analysis in the next chapters 

[11] [12]. The general structure of a Neural Network can be represented as in 

Figure 6: 

 

Figure 6 - Structure of an Artificial Neural Network 
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2.1.3 GRAY BOX MODELING 

In addition to the two modeling approaches described above, various mixed forms 

exist, which come under the term “gray-box modeling”. The need of these models 

arises from the limitations of the other modeling approaches such as: white-box can be 

applied only in exceptional cases, black-box does not give back the right amount of 

knowledge to the scientist that is using it. Therefore, Design of Experiments (DoE) 

techniques are often a useful remedy to these issues. In particular DoE techniques can 

be used to explain the behavior of systems treated with black-box models that can only 

describe the behavior, or they can be coupled to computer-based experiments (e.g. 

finite element method CAEs) that can simulate and solve the partial differential 

equations derived from a physical model. Considering the latter case, very often the 

coupled systems of partial differential equations make it difficult to understand the 

relationships between inputs and response variables thus the physical model must be 

implemented on CAE software. Thanks to numerical solvers, these software are able 

to return a clearer vision of the output effects. When scientists are approaching 

something completely new or when complex systems are described by a large number 

of input variables, DoE tools offer procedures to retrieve the free parameters of the 

model or “Screening”– in the first case - and the important parameters identification or 

“Sensitivity Analysis” for the second case [8]. The advantages of the DoE are [8]: 

• It is an Objective and Systematic procedure: it offers a clear path to follow for 

planning and evaluation of the results.  

• Offers the possibility to predict and optimize products and process 

characteristics. 

• Offers Screening solutions easy to interpret (Factorial Designs). 

• Helps Modeling by acquiring knowledge from cause-effect relationships. 

• Helps to reduce the timings during the project lifetime (e.g. during the design, 

testing and quality controls).  

• Reduces the costs of the experiments since it limits the required number of 

samples needed to extrapolate all the parameters interactions (D-Optimal 

Designs). 

• Can deal with variance-affected parameters. 
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Some limitations of DoE techniques [8]: 

• Require previous knowledge and solid expertise to comprehend the results that 

are not always obvious. 

• The results are linked to the parameter ranges chosen for the experimental 

design therefore the experience of the experts is fundamental to find useful 

experimental outcomes. 

• The extrapolated results can be nonphysical so they must be compared with 

white or black-box models. 

• The costs of the required experiments can be still excessive due to the different 

samples required or the time required to carry out the experiments. 

• The results must be interpreted via dedicated software (e.g. CornerStone, 

MiniTab, ETAS ASCMO) in order to be easily read via graphic tools.  

An example of the possible DoE designs is shown in the Figure 7:  

      

Figure 7 - Examples of DoE designs [15] 
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3. SOFC PHYSICAL MODEL 

In this chapter will be analyzed the white-box model used to describe the behavior of 

the SOFC´s single cell developed by Bosch and Ceres Power. Understanding the 

physical laws governing the behavior of the cell is fundamental for the extraction of 

the interesting parameters and for interpreting the results. The aim is to describe in 

detail the model by retrieving all the characteristic equations, parameters, factors 

involved and give a first overlook on how they affect the cell behavior. 

 

3.1 CELL VOLTAGE 

Considering the fuel cell as a device that can be powered by different types of fuel, 

such as hydrogen or hydrocarbons, it´s important to define the generalized equation 

that governs the electrochemical aspects before analyzing in detail their difference. The 

main concept is the definition of the maximum voltage, also called Reversible Voltage 

or Nernst Potential, that can be generated from an electrochemical reaction. In 

Equation 1, is possible to define it as [16]: 

 

𝐸𝑅𝑒𝑣(𝑇) = 𝐸0 +  ∆𝐸(𝑇) =
∆𝐺0

𝑛𝐹
+

∆𝐺

𝑛𝐹
=

∆𝐺0

𝑛𝐹
+

𝑅𝑇

𝑛𝐹
ln (

𝑃𝑖𝑛

𝑃𝑜𝑢𝑡
)     (1) 

 

Where: 

• 𝐸𝑅𝑒𝑣 is the Nernst reversible potential, i.e. the maximum voltage generated 

from an ideal reversible reaction (dS = 0, with S = Entropy). 

• 𝐸0 is the characteristic potential of the reaction generated in standard conditions 

(i.e. T = 298,15 K and P = 1 atm), this value is known and can be retrieved from 

tables.  

• ∆𝐸 is the difference in potential generated by the reaction according to the 

absolute temperature at which the reaction is taking place. 

• ∆𝐺0, ∆𝐺 is respectively the Free Gibbs Energy at standard conditions and with 

temperature dependence. Both describe reactions that take place at constant 

temperature and pressure, such as in the case of the SOFC. 

• 𝑇 is the Absolute Temperature and is expressed in Kelvin [K]. 

• 𝑅 is the Universal Gas Constant and is equal to 8,314 [J/mol*K]. 



 

22 

 

• 𝑛 represents the number of electrons that are exchanged in the electrochemical 

reaction. 

• 𝐹 is the Faraday´s Constant and is equal to 96487 [C/mol]. 

• 𝑃𝑖𝑛 is the partial pressure of the species of the reactants. 

• 𝑃𝑜𝑢𝑡 is the partial pressure of the species of the products. 

 

In the following Table 2 are defined the two reaction that can take place in a SOFC, 

depending on the type of fueling, and their relative Nernst equation of the 

electrochemical potentials. 

 

Fuel cell Reaction Nernst Equation 
𝑬𝑹𝒆𝒗  (293,15 K, 

1 atm) 

𝑯𝟐 +  
𝟏

𝟐
𝑶𝟐 →  𝑯𝟐𝑶    

𝒏 = 𝟐 
𝐸𝑅𝑒𝑣 = 𝐸0 +

𝑅𝑇

2𝐹
ln (

𝑃𝐻2 ∙ 𝑃𝑂2

1
2

𝑃𝐻2𝑂
) 

1,229 V (H2O 

liquid) 

1,180 V (H2O 

gas) 

𝑪𝑯𝟒 +  𝟐𝑶𝟐 →  𝟐𝑯𝟐𝑶 + 𝑪𝑶𝟐   
𝒏 = 𝟖 

𝐸𝑅𝑒𝑣 = 𝐸0 +
𝑅𝑇

8𝐹
ln (

𝑃𝐶𝐻4 ∙ 𝑃𝑂2
2

𝑃𝐻2𝑂2 ∙ 𝑃𝐶𝑂2
2) 

1,060 V (H2O 

liquid) 

Table 2  - Reactions and Nernst Potential of SOFC electrochemical reactions [16] 

Reading the Nernst equation in terms of Gibbs´ Free Energy is possible to understand 

the maximum potential of the reaction with respect to the temperature. Indeed, Gibbs´s 

free energy decreases as the temperature increases resulting into a lower cell voltage. 

This phenomenon is more visible for high temperature fuel cells and SOFCs where, 

due to the high temperature, water as byproduct is always in the gaseous form resulting 

into an H2 oxidation potential always lower than 1,229 V [16]. 

Although the equations are well defined for each type of reaction taking place in the 

cell, the cell voltage cannot be described only by its reversible potential. Indeed, fuel 

cell modeling is based on the approximation of the current-voltage curve 𝐸 = 𝑓(𝑖) 

(also called “polarization curve”) derived from experimental data [3]. Since the curve 

approximates the real cell voltage behavior all the sources of loss must be considered. 

The first irreversibility is the presence of an internal resistance of the components and 

leakages that absorb part of the current, therefore lowering the available generated 

voltage. The latter can be defined as Open Circuit Voltage 𝐸𝑂𝐶𝑉. Starting from the open 

circuit voltage the curve shows a non-linear behavior due to the presence of three main 
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sources of losses: Activation, Ohmic and Concentration losses. These losses are always 

present with different magnitudes along the whole polarization curve although each of 

them is more dominant in a specific region. Equation 2 is representative of the SOFC 

voltage and in Figure 8 is presented the current-voltage curve.  

 

𝐸𝐶𝑒𝑙𝑙 = 𝐸𝑅𝑒𝑣 − 𝜂𝐿𝑜𝑠𝑠𝑒𝑠 = 𝐸𝑂𝐶𝑉 − 𝜂𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 − 𝜂𝑂ℎ𝑚𝑖𝑐 − 𝜂𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛   (2) 

 

 
Figure 8 - Polarization curve of a SOFC 

 

3.2 ACTIVATION LOSSES 

The activation losses are dominant in the left part of the polarization curve. Their 

behavior can be described by the Butler-Volmer formulation presented in Equation 3 

[17]. 

𝑖 = 𝑖0,𝑒𝑙 (𝑒− 
𝛼𝑒𝑙∙𝑛𝐹

𝑅𝑇
𝜂𝐴𝑐𝑡,𝑒𝑙 − 𝑒

(1−𝛼𝑒𝑙)𝑛𝐹
𝑅𝑇

𝜂𝐴𝑐𝑡,𝑒𝑙) (3) 

 

Where: 

• 𝛼𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 is the transfer coefficient that must be known for both electrodes. 
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• 𝑖0,𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 is the electrode exchange-current density which must be determined 

for both the electrodes through the formulas: 

𝑖0,𝑎𝑛𝑜𝑑𝑒 = (𝛾0,𝑎𝑛𝑇) ∙ (
𝑝𝐻2

𝑃𝑎𝑛
)

𝑎

∙ (
𝑝𝐻2𝑂

𝑃𝑎𝑛
)

𝑏

𝑒
(− 

𝐸𝑎𝑐𝑡,𝑎𝑛
𝑅𝑇

)
 

 

𝑖0,𝑐𝑎𝑡ℎ𝑜𝑑𝑒 = (𝛾0,𝑐𝑎𝑡𝑇) ∙ (
𝑝𝑂2

𝑃𝑐𝑎𝑡
)

𝑐

𝑒
(− 

𝐸𝑎𝑐𝑡,𝑐𝑎𝑡
𝑅𝑇

)
 

Considering: 

1. 𝛾0,𝑎𝑛, 𝛾0,𝑐𝑎𝑡, 𝑎, 𝑏, 𝑐 are values specific for the electrode and derived from 

experimental analyses. 

2. 𝑃𝑎𝑛, 𝑃𝑐𝑎𝑡  is the total pressure in each of the electrodes. 

3. 𝑝𝐻2, 𝑝𝐻2𝑂, 𝑝𝑂2 are the partial pressure of the species on the interfaces. 

4. 𝐸𝑎𝑐𝑡,𝑎𝑛, 𝐸𝑎𝑐𝑡,𝑐𝑎𝑡 are the activation energies typical of the material. 

 

The complexity of the function renders it impossible to retrieve a direct formulation 

for 𝜂𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛. Therefore two possible paths can be followed:  

• Retrieve the value from the solution of the ODEs at the triple phase boundaries 

(i.e. the interface between the electrode and the electrolyte).  

• Linearize the equation in the Tafel form [3]: 

𝜂𝐴𝑐𝑡,𝑒𝑙 =
𝑅𝑇

𝛼𝑒𝑙𝑛𝐹
ln (

𝑖0

𝑖
)   (4) 

 

The second one only approximates a certain portion of the activation losses 𝜂𝐴𝑐𝑡 <

0.01 𝑉. The first one is more precise but more computational expensive, due to the 

nature of the losses this procedure was used. 

 

3.3 OHMIC LOSSES 

Ohmic Loss occurs for two main reasons: electrical resistance and conductivity 

resistance of the materials. The electrical resistance can be approximated to the 

thickness of the components 𝛿, while their ionic conductivity 𝜎 must be calculated 

basing on experimental data. Ohmic Losses show a linear behavior and can be 
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represented by Equation 5. They are dominant in the middle range of the polarization 

curve [3]. 

𝜂𝑂ℎ𝑚 = 𝑅𝑘 ∙ 𝑖 = ∑ 𝑑𝑉𝑘

𝑁 𝑙𝑎𝑦𝑒𝑟𝑠

𝑘

    (5) 

 

Where: 

• 𝑅𝑘 is the so-called Mixed Conductivity Resistance of each component and is 

equal to 𝑅𝑘 =  𝛿/𝜎 [m2/S]. 

• 𝛿 is the thickness of the layer [m]. 

• 𝜎 is the ionic conductivity and is dependent on the temperature and the material 

used, e.g.  𝜎(𝑇) = 𝜎0 ∙ 𝑒− 
𝐸𝑎𝑐𝑡

𝑅𝑇  [S/m] for the Solid Oxide electrolyte. 

 

3.4 CONCENTRATION LOSSES  

In the last part of the curve, the Concentration losses (or Diffusion losses) are dominant. 

These losses depend on the type of reaction and on the current drawn from the cell. In 

particular, the latter occur due to the transport of gases in a perpendicular direction with 

respect to the surface of the electrodes. The flow is described by diffusion laws since 

the electrodes are made of porous material, i.e. the path to be traveled is a duct with 

irregular shape and a very small diameter. Due to the complexity of the phenomenon, 

different considerations and experimental evaluations are needed before choosing the 

correct model available in literature. Hereafter different diffusion models with their 

respective applicability are presented [3]: 

• Fick´s Laws: describe molecular diffusion through pores with diameter larger 

than the average length of the path (𝑑 >> 𝑙).  These laws connect the transport 

of mass to the concentration gradient with the mass balance inside the layer. 

The objective is to retrieve a “D” diffusion coefficient that approximates the 

experimental data. Fast and easy to implement. 

• Stefan-Maxwell equations: describe diffusion in multicomponent systems for 

diluted gas and liquids. These equations are quite complex and require different 

coefficients to be determined a priori. 

• Dusty Gas Model (Knudsen Diffusion): this model is implemented when the 

radial size of the pores is comparable to the path to be traveled by the molecule. 
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Due to the nature of the thicknesses and the porosity of the electrodes in the 

SOFC, this model was employed in order to describe the diffusion processes in 

the physical model [17]. In the Equation the diffusion coefficient 𝐷 is 

presented: 

𝐷 =
𝜆𝑝𝑎𝑡ℎ

3
√

8𝑅𝑇

𝜋𝑀𝑖
   (6) 

Where: 

 

1. 𝜆𝑝𝑎𝑡ℎ: is an empirical parameter that is linked to the diameter of the pores (d), 

the porosity of the material (defined as percentage of the void space with respect 

to the volume), the tortuosity 𝜏 of the duct (defined from experimental data and 

describes the irregularity of the path and its friction). 

2. 𝑅: is the universal gas constant. 

3. 𝑇: is the absolute temperature expressed in Kelvins. 

4. 𝑀𝑖: is the molecular mass of the species in exam. 

 

Starting from the Knudsen Diffusion model, different empirical models and equations 

can be used to determine the diffusion losses. In Equation 7 is presented the equation 

used to determine the overpotential resulting from diffusion and mass transport [17]: 

𝜂𝐶𝑜𝑛𝑐  =
𝑅𝑇

2𝐹
ln (

𝑝𝐻2𝑂𝑇𝑃𝐵 ∙  𝑝𝐻2

𝑝𝐻2𝑂 ∙  𝑝𝐻2𝑇𝑃𝐵

) +
𝑅𝑇

4𝐹
 ln (

𝑝𝑂2

𝑝𝑂2𝑇𝑃𝐵

)  (7) 

 

Where the subscript 𝑇𝑃𝐵 identifies the partial pressures of the species at the Triple 

Phase Boundary. The equation can be read from left to right as the summation of the 

anode and cathode concentration losses respectively. The partial pressures of the 

species at the TPB can be written as function of the current density 𝑖,  as [17]: 

• 𝑝𝐻2𝑇𝑃𝐵
=  𝑝𝐻2 −

𝑅𝑇∙𝜏∙𝑖

2𝐷𝐹
 : 𝐷 as diffusion coefficient and 𝜏 as the tortuosity both 

for the anode. 

• 𝑝𝐻2𝑂𝑇𝑃𝐵 =  𝑝𝐻2𝑂 +
𝑅𝑇∙𝜏∙𝑖

2𝐷𝐹
 : 𝐷 as diffusion coefficient and 𝜏 as the tortuosity 

both for the anode. 
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• 𝑝𝑂2𝑇𝑃𝐵
=  𝑃 − (𝑃 − 𝑝𝑂2) 𝑒(

𝑅𝑇∙𝜏∙𝑖

4𝐷𝐹𝑃
) : with 𝑃 as Total Pressure and 𝐷 as 

diffusion coefficient both for the cathode, 𝜏 as the tortuosity of the cathode 

pores. 

 

3.5 DISCUSSION ON THE PHYSICAL MODEL 

Due to the very complex multi-physical nature of the model, it is clear the need to adopt 

different modeling solutions that don´t require solving systems of PDEs or ODEs every 

iteration. Another problem arises from the non-homogeneous operating conditions, 

such as temperature, molar fraction of hydrogen and current density. This issue force 

to apply the model multiple times for different points of the cell surface in the form 

𝑋𝑖(𝑇, 𝑖, 𝑝𝐻2). Therefore, the model was implemented in COMSOL MultiPhysics in 

order to simulate the cell in its entirety. In Figure 9 is presented a schematic view of 

the average operating conditions with respect to the cell length coordinate “X”: 

 

 
Figure 9 - Average operating conditions across the cell length 

Although was possible to connect the model to a FEM software, engineers had to face 

the limits imposed by the time and the model validation procedures. The latter implies 

the simulation of a very limited geometry that could limit the time expenditure of the 
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computation, while guaranteeing a limited error on the output. In the following chapters 

the multi-physics model, exploited in the next steps, will be described in detail with a 

particular focus on the governing parameters and boundary conditions applied. 

Nevertheless, the knowledge of physical model is fundamental to retrieve the important 

actors for the cell voltage and establish the correctness of the results obtained from 

simulations or other modeling solutions. Some considerations can be made starting 

from the physical model: 

• Geometrical parameters, such as thicknesses or radial dimensions, play a key 

role in affecting the voltage losses. As an example, ohmic losses are directly 

linked to the thicknesses of the layers in analysis. 

• The activation losses are governed by factors linked to the material properties 

such as activation energies, pre-exponential factors and operating conditions 

like Temperature. 

• Diffusion losses depend upon the porous materials characteristics such as 

thickness, porosity, tortuosity of the pores and operating conditions. 
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4. SOFC SIMULATION MODEL 

In this chapter will be analyzed the COMSOL MultiPhysics model used to evaluate the 

cell voltage and the losses breakdown. As discussed before, this model was built to 

evaluate these properties considering all the design features, the material properties and 

the real operating conditions. Due to the complexity of the phenomenon and the relative 

long computational time required, the scale of this model represents a very small 

portion of the cell.  

 

4.1 GEOMETRY 

The model´s geometry represents the four main components of the single repetitive 

unit: Anode´s substrate, Anode electrode, Solid Oxide Electrolyte and Cathode 

electrode. The substrate is a particular characteristic of this product and fulfils different 

roles: it supports the three active layers, it´s responsible for the cooldown of the cell 

thanks to its high thermal conductivity and it delivers the fuel to the anode through 

laser drilled holes. The geometry was designed to exploit axial rotational symmetry 

which is able to reduce the computational load of the simulations. The radial volume 

analyzed is chosen as the half of the laser drilled holes distance 𝑑 to maximize the 

coverage of the active surface of the cell. In Figure 10 is presented the model geometry: 

 

Figure 10 - Simulation geometry 
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Where: 

• "ℎ_" represents the thicknesses of the different components. 

• 𝑅1 is the radius of the laser drilled hole at the Substrate outlet. 

• 𝑅2 is the radius at the inlet of the substrate, dependent on R1. 

• 𝑑 is distance between two drilled holes. 

 

4.2 PHYSICS AND BOUNDARY CONDITIONS 

Setting the boundary conditions is a fundamental step in the FEM evaluations. This 

model requires the definitions of different physics that can be set by the following 

COMSOL features: Chemistry of species, Electric Current and Transport of 

Concentrated Species (TCS). The first feature is used to set the gas species 

characteristics according to their chemical properties, the second one determines the 

exchanged current direction and magnitude across the surfaces. The latter defines the 

transport of the gas species according to the diffusion laws and the mass conservation 

equation. Since every of these features requires specific boundary conditions, the latter 

are treated for every component in the next subchapters. 

 

4.2.1 CATHODE DOMAIN 

 

Figure 11 - Cathode´s Domain 

Considering that the Cathode is a porous layer, Transport of Concentrated Species 

describes the mass transport according to the imposed Knudsen Diffusion model. The 

equation solved by this feature over the domain is: 

∇ ∙ Ji + 𝜌(𝑢 ∙ ∇)𝜔𝑖 = 𝑅𝑖     (8) 
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i.e. the Continuity or Transport Equation in case of a Convection-Diffusion problem in 

Steady State conditions, where: 

• ∇ ∙ Ji is the Diffusion Term and it´s defined with the divergence of the Diffusion 

Flux Ji, specific of the species. The Diffusion Flux Ji is linked to the Knudsen 

diffusion model via the diffusion coefficient 𝐷 previously discussed in Equation 

(6). 

• 𝜌(𝑢 ∙ ∇)𝜔𝑖 is the Convection Term composed by the average density of the gas 

𝜌, (𝑢 ∙ ∇)𝜔𝑖 is the gradient of the velocity field 𝑢 and the mass fraction 𝜔𝑖. 

• 𝑅𝑖 is the Source Term linked to the Cathode´s Reduction reaction. 

Regarding the Electric Currents module also the Continuity Equation is imposed as: 

∇ ∙ J = 𝑄𝑗     (9) 

Where: 

• ∇ ∙ J is the divergence of the Current density flux where J is the generalized 

Ohm´s law in the form: J = 𝜎𝐸 + 𝐽𝑒, where 𝜎 is the Electrical conductivity 

[S/m2],  𝐸 is the electric potential [V] and 𝐽𝑒 is an external source of current. 

• 𝑄𝑗 represents the Source Term. 

Taking Figure 11 as a reference for indexes, the boundary conditions applied to the 

domain are: 

1. Axial Symmetry condition was imposed for all the physics. 

2. Initial conditions such as Pressure (𝑃), Temperature (𝑇) and Air Mass Flow 

Rate (�̇�𝑎𝑖𝑟) were imposed for the TCS physics, while a Floating Potential was 

defined in order to retrieve the relative electrical potential from equations. 

3. No Flux condition and Electrical Insulation were imposed on this boundary. 

4. Mass Flux at the interface was imposed equal to the equivalent mass of the 

Oxygen ions that reacted in the cathode taken as the result of the diffusion in 

the material. For the electrical side, the Voltage was set as the electrolyte 

potential subtracted from the ODE´s result. 
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4.2.2 ELECTROLYTE DOMAIN 

 

Figure 12 – Electrolyte´s Domain 

Considering the Electrolyte domain in Figure 12, on boundaries 6 and 8 were imposed 

two Ordinary Differential Equations that are responsible for the evaluation of each of 

the electrode´s overpotential at each triple phase boundary. The latter were imposed as: 

𝑓𝑇𝑃𝐵 = 𝐶
(𝑑𝐸𝑑𝑙)𝑇𝑃𝐵

𝑑𝑡 
 

Where: 

• 𝑓𝑇𝑃𝐵 is the Source Term represented by the Current Density difference in 

boundary [A/m2]. 

• 𝐶 is the specific double layer Capacitance [F/m2]. 

• 𝑑𝐸𝑑𝑙 is the Voltage generated over the boundary [V]. 

Since the analysis was carried in Steady State, the last term of the equation is null thus 

reducing the equation to an equivalence between the two currents at the interface. 

Considering the indexing in Figure 12: 

1. Axial Symmetry condition was applied. 

2. In the TCS module the direction of the current density was imposed towards 

the cathode. The boundary ODE was imposed at the triple boundary interface. 

3. No Flux conditions imposed for both physics. 

4. Boundary ODE was set to account for the triple boundary interface between 

electrolyte and anode. Its result was used to set the voltage at the interface. 
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4.2.3 ANODE DOMAIN 

For this domain, the same equations as for the Cathode´s Domain were solved thus 

Convection-Diffusion Equation (8) for the TCS module and the Continuity Equation 

(9) for the Electric Current Module. 

The boundary conditions imposed are referred to the indexing used in Figure 13: 

 

 

Figure 13 – Anode´s Domain 

1. Axial Symmetry condition applied. 

2. Mass flow rate of the species was imposed as the result of the anode´s reaction 

for the TCS feature. The normal direction of the current was imposed in the 

electric module. 

3. No flux condition and Electrical Insulation were applied on this boundary. 

4. Fuel mass flow rate (�̇�𝑓𝑢𝑒𝑙) was imposed for the TCS and Electrical Insulation 

for the current. 

 

4.2.4 SUBSTRATE DOMAIN 

Considering the indexes in Figure 14: 
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Figure 14 – Substrate´s Domain 

1. Axial Symmetry condition was applied. 

2. Fuel mass flow rate (�̇�𝑓𝑢𝑒𝑙) was imposed for the TCS and Electrical Insulation 

for the current module. 

3. No Flux condition was applied for the TCS feature. 

4. No Flux and Electrical Insulation were imposed on this boundary. 

5. Ground condition was imposed (𝑉 = 0). 

6. Were imposed the Inlet initial conditions and the concentration of the fuel 

species 𝜒𝑓𝑢𝑒𝑙. 

 

4.3 WORKFLOW AND EXPECTED RESULTS 

The purpose of this steady-state model is to evaluate the cell behavior in different 

scenarios. Due to the nature of the equations presented in the physical model section 

and the boundary conditions previously discussed, we need to make a distinction 

according to the type of fuel provided to the cell, in particular: 

• Humidified Hydrogen: the model requires a manual setting of the molar 

fraction 𝜒 of the fuel species, in this case only H2 and H2O. The current density 

𝑖 is set in order to simulate the absorbed by the load connected to the SOFC 
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stack. The temperature 𝑇 and the molar fraction determine which part of the 

cell is being simulated. 

• Hydrocarbon based (WGSR): the species composition of the fuel is linked to 

the Fuel Utilization Factor 𝐹𝑈 which determines the real mass flow rate of fuel 

that reach the anode side. 𝑇 and 𝑖 are also varied accordingly to the purpose of 

the investigation. 

The workflow followed by the software is hereby presented: 

i. The model is set according to the fuel that is being studied. The input operating 

conditions are set according to the position coordinate to be investigated. 

ii. The mass flow rate of the fuel and air species is set for both the electrodes´ inlet 

boundaries. 

iii. Ordinary Differential Equations are solved at the two triple phase boundaries 

of the electrodes and the results determine the potential for each layer interface. 

iv. Activation Losses are calculated for each current density value for both the 

electrodes with Equation (3). 

v. Ohmic Losses are evaluated according as the sum of the over-voltages 

generated in each layer, as in Equation (5). 

vi. Concentration Losses are evaluated basing on the solution of the Transport of 

Concentrated Species imposed on the electrodes, as Equation (7). 

vii. The cell voltage is evaluated as the difference of the anode and cathode´s 

voltage.  

It´s important to remark that, due to the small dimension scale of the simulation model 

and the different operating conditions across the cell, it is necessary to run a large 

number of simulations to cover completely the cell surface. Therefore, different 

modeling approaches will be investigated and compared in the following chapters. 
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5. SENSITIVITY ANALYSIS 

Sensitivity Analysis is a decision-making tool which helps the scientists to understand 

the effects of an independent variable change (input) on a dependent variable (output). 

This analysis is pursued to investigate new designs as well as the effect of 

manufacturing tolerances ranges on the current design parameters. The latter is also 

referred to as Screening Procedure of a model and it aims to identify and select the 

most impactful parameters from a large pool.  

The aim of the next subchapters is to review the Sensitivity Analysis procedure in all 

its steps, from the preliminary parameter selection to its results.  

 

5.1 PRELIMINARY PARAMETER SELECTION 

To get an overlook of the parameters affecting the SOFC voltage behavior is therefore 

important to make a first selection from all the actors of the multi-physical model. This 

is done in order to limit the number of simulations (and the relative time expenditure) 

however keeping the focus on the model understanding and a future design 

improvement. Therefore, the selection was made according to the following criteria: 

• Are investigated only the parameters that can be controlled and varied on 

further steps. (e.g. Activation Energies were not investigated since cannot be 

modified except by changing the layer´s material. Geometrical design 

parameters or characteristics were prioritized instead.) 

• The parameter´s investigation range is chosen according to the respective 

manufacturing tolerances or statistical scatter. 

• In order to get a meaningful comparison between the two types of fuel 

investigated, six common operating points were selected according to the 

temperature, hydrogen concentration and current density. For the humidified 

hydrogen model the hydrogen molar fraction was directly imposed, while for 

hydrocarbon-based fuel, the 𝐹𝑈 that guaranteed the same hydrogen molar 

fraction was retrieved. 

 Given these assumptions, the investigated parameters and relative scatters ±𝛿 from 

their nominal values are listed in Table 3: 
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PARAMETER NAME SCATTER 𝜹 

Anode thickness (h_anode) ± 17,65% [m] 

Cathode thickness (h_cathode) ± 20% [m] 

Electrolyte thickness (h_electrolyte) ± 20% [m] 

Substrate thickness (h_substrateblock) ± 5% [m] 

Radius of the laser drilled holes (r_LDH) ± 8,70% [m] 

Anode´s porosity (eps_poreanode) ± 21,2% [-] 

Anode´s pores tortuosity (tau_poreanode) ± 10% [-] 

Anode´s pore radius (r_poreanode) ± 15% [m] 

Cathode´s porosity (esp_porecathode) ± 21,2% [-] 

Cathode´s pores tortuosity (tau_porecathode) ± 10% [-] 

Cathode´s pore radius (r_porecathode) ± 15% [m] 

Geometrical parameter 1 (GP1)  ± 20% [m] 

Geometrical parameter 2 (GP2)  ± 20% [m] 

Geometrical parameter 3 (GP3)  ± 20% [m] 

Material parameter 1 (MP1)  ± 21,2% [-] 
Table 3 - Parameters and ranges preliminary selection 

The geometrical parameters called with the acronym “GPX” represents the thickness 

of some of the active layers that are active in the single repetitive unite. The material 

parameter MP1 at the end of the table represents the porosity of the active layer GP1. 

The information regarding these layers is not shared since the latter are part of a 

patented design. Regarding the operating conditions, the latter can be summarized in 

Table 4: 

Test Case 𝝌𝑯𝟐 𝑻 [K] 𝒊 [A/m2] 𝑭𝑼 

A 0,2884 821,15 1584 0,307 

B 0,1802 876,45 2008 0,570 

C 0,2600 843,75 1867 0,376 

D 0,2767 817,35 1485,7 0,335 

E 0,2480 873,65 2202,5 0,405 

F 0,1880 891,15 2079 0,551 

Table 4 - Test cases for different fuel models 
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5.2 PROCEDURE 

In this thesis work was performed a One-At-Time (OAT) Sensitivity, a local-

evaluation method, which consists of changing one parameter at the time and then 

evaluate the output fluctuations accordingly. For this purpose, a code in Python was 

created to run the COMSOL simulation models for all the parameters and collect the 

cell voltage and the losses breakdown as simulations outputs. The simulations were run 

for six operational points and three geometrical dimensions for each parameter, for a 

total of 270 runs per fuel model (circa 2 hours). 

Once the results were stored, a derivative approach was used in order to represent the 

output change as a percentage of the input. This approach consists in determining the 

first derivative of the function in the nominal point of the range, then multiplying it by 

the overall explored range. The latter can be expressed by the formula: 

 

𝑆 [%] =
𝑑𝑦

|𝑑𝑥|
|

𝑥𝑛𝑜𝑚

∙ ∆𝑥 ∙ 100 =
𝑦𝑖 − 𝑦𝑛𝑜𝑚

|𝑥𝑖 − 𝑥𝑛𝑜𝑚|
∙ (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) ∙ 100 

Where: 

• 𝑦𝑖 is the output that is being evaluated (e.g. cell voltage or one of three losses). 

• 𝑥𝑖 is the input parameter that is currently being evaluated. 

• 𝑥𝑚𝑎𝑥 , 𝑥𝑚𝑖𝑛 are respectively the maximum and the minimum value in the 

parameter range. (i.e. 𝑥𝑚𝑎𝑥 =  𝑥𝑛𝑜𝑚 + 𝛿, 𝑥𝑚𝑖𝑛 =  𝑥𝑛𝑜𝑚 − 𝛿). 

• 𝑥𝑛𝑜𝑚, 𝑦𝑛𝑜𝑚 are respectively the center of the input range and its relative output 

value. 

 

 5.3 RESULTS 

To obtain a good overlook over the parameters change influence on the cell voltage, 

the Voltage Sensitivity was averaged over the six test cases. In this way was possible 

to obtain only two plots establishing the percentual change in the output, for both the 

Humidified Hydrogen fuel model and the Hydrocarbon Based fuel model. The results 

are presented in the so-called “Tornado Plots” in Figure 15 and 16: 
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Figure 15 - Parameter Voltage Sensitivity Humidified Hydrogen  

 

Figure 16 - Parameters Voltage Sensitivity Hydrocarbon Based 

From the previous plots is possible to determine which are the parameters that most 

affect the cell voltage and its relative variation magnitude. One of the major differences 

denoted from the two types of fuel studied, is the magnitude change for the geometrical 

parameter identified by GP3 that appears heavier for hydrocarbon-based fuel model. 

The latter can be addressed to the nature of the material that characterize the layer 

which heavily affects the Ohmic Losses in a way directly proportional to its thickness. 

Another important result is the magnitude difference of the parameters related to the 
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Anode with respect to the Cathode electrode. This can be addressed to the strong 

importance that the fuel electrode plays in fuel cells. Indeed, the Cathode most of the 

times works with an excess of air, therefore never face problems such as lack of oxygen 

or concentration gradients. The Anode characteristics instead, strongly influences the 

Concentration losses as well as the Activation losses. For this reason, the Anode is the 

only geometrical parameter that will induce a loss decrease with an increasing 

thickness. If we focus on the material parameters such as porosity, tortuosity and radius 

of the pores, in general we can affirm they all show the same trend connected to the 

reduction in Concentration losses. By imposing shorter and larger pore paths with 

lower tortuosity is possible to obtain the best condition to minimize this type of losses. 

An ulterior search was performed focusing on the losses type and its results are 

summarized in Table 5: 

Parameter  
Activation 

Losses 

Ohmic 

Losses 

Concentration 

Losses 

Anode thickness (h_anode) ✓  ✓ 

Cathode thickness (h_cathode) ✓  ✓ 

Electrolyte thickness (h_electrolyte)  ✓  

Substrate thickness (h_substrateblock) ✓  ✓ 

Radius of the laser drilled holes 

(r_LDH) 
✓ ✓ ✓ 

Anode´s porosity (eps_poreanode) ✓  ✓ 

Anode´s pores tortuosity 

(tau_poreanode) 
✓  ✓ 

Anode´s pore radius (r_poreanode) ✓  ✓ 

Cathode´s porosity (esp_porecathode) ✓  ✓ 

Cathode´s pores tortuosity 

(tau_porecathode) 
✓  ✓ 

Cathode´s pore radius (r_porecathode) ✓  ✓ 

Geometrical parameter 1 (GP1) ✓ ✓ ✓ 

Geometrical parameter 2 (GP2)  ✓  

Geometrical parameter 3 (GP3)  ✓ ✓ 

Material parameter 1 (MP1) ✓  ✓ 
Table 5 – Parameter variation influence on the losses 
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From this analysis it is possible to establish the correctness of the results basing on the 

physical model discussed before. Anyway, is possible to underline the influence of 

almost every parameter over the activation losses which equation was not explicitly 

linked to other parameters than the electrodes. It is important to keep in mind that the 

results of the previous analysis consider the output changes when only one input 

parameter is varied every time. Therefore, if the purpose of the analysis is to investigate 

the model behavior after multiple changes (e.g. design optimization), the scientist 

needs to refer to other types of modeling, since the interactions cannot be directly 

evaluated from the results presented above. Indeed, the influence of a multiple 

parameter change can result, instead, into a different or opposite cell behavior, with a 

relative different magnitude compared to the more obvious “sum” of the multiple OAT 

Sensitivities. In the next chapter is presented the Gray-Box analysis with the respective 

global Sensitivity screening and the full interactions matrix. 

Although the results are limited to the single parameter influence the analysis is still 

very useful for a general model understanding and can be also exploited to lower the 

number of investigated parameters during the Black-Box training procedure, leading 

to better accuracies and time expenditure optimization. 

Is also essential to remind that the results are linked to the specific SOFC product in 

analysis via a simulation model which also carries, due to its mathematical nature, a 

linear error in the results. Therefore, all the results obtained need to be proved by 

experimental results carried out on a real cell prototype. 
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6. SOFC GREY-BOX MODEL 

In this section will be analyzed the grey-box modeling of the SOFC single cell. As 

previously mentioned, these techniques allow scientists to explain the model behavior 

through a synergetic combination of statistical analysis and physical laws. This 

modeling approach was pursued mainly due to:  

• Create a random simulation database with multiple parameters combinations to 

be used as a training set for the black-box modeling of the cell. 

• Having a solid reference for comparison during the black-box testing, since the 

DoE software is also able to make predictions based on the regression of the 

provided data. 

• Create a first connection between the smaller dimension scale of the simulation 

model and the larger one represented by the complete cell. 

• Derive a new Sensitivity Analysis with higher resolution (due to the larger 

dataset provided) and compare it with the previous results. 

 

6.1 SIMULATION DATASET 

The very first step for a numerical design of experiments is the creation of a large 

quantity of data. This is because having as much data as possible allows to approximate 

complex systems with better results and reliability. The latter is also taken as a rule for 

black-box training procedures.  

As previously discussed, the model in analysis deals with 15 different design 

parameters and 3 different operating conditions (i.e. 

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (𝑇), 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑖) and 𝑀𝑜𝑙𝑎𝑟 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (𝜒𝐻2) for the 

humidified hydrogen or 𝐹𝑢𝑒𝑙 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟(𝐹𝑈) for the WGSR model).  

Each one of these is defined into a specific range delimited with a minimum and a 

maximum value, thus the output resolution is strictly related to the number of points 𝛾 

(also called “levels”) selected between the two extremes. If we want to use a full-

factorial design to have all the possible combinations of the model parameters on 𝛾 

levels, we will need 18𝛾 simulations, each one with a duration between 20 and 30 

seconds. Taking 𝛾 = 3 as a minimum, the simulations would require just 48,6 hours, 

increasing this value to 𝛾 = 5 can be easily determined that the plan would require just 
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2624,4 days (the equivalent of 7,2 years). Therefore, it is unavoidable to apply a 

fractional-factorial design (also called the Space-Filling approach) with a fixed number 

of simulation points which span on different 𝛾 levels over the parameters´ ranges.  

The selection of the simulation points was based on the tradeoff between data and time 

expenditure, thus choosing 𝑛 = 10000 unique combinations as the data dimension. To 

have a random dataset with the highest coverage of all the possible cases, the latter was 

built using Sobol´s Sequence which is a mathematical series that is also used in 

cybersecurity for One-Time-Password (OTP) generation. This series creates a quasi-

random dataset, with a resolution directly proportional to 𝑛, combining all the 

parameters on the selected levels. Therefore guaranteeing the right level of randomness 

to avoid fake pattern recognition in both the grey and black-box models. In the next 

Figure 17 is shown a schematic representation of the combinations treated, for both 

fuel models, in the three-dimensional space of the operating conditions. 

           

Figure 17 - Schematic view of the Space-Filling plan for both fuel simulation models 

Once the dataset was defined, the simulations were run on COMSOL MultiPhyiscs 

through a code developed in Python based on the Mph library [18]. The output of the 

simulations (i.e. Cell voltage and Losses Breakdown) was stored and evaluated through 

a DoE Analysis software ETAS-ASCMO of the Bosch Group. 

 

6.2 EVALUATIONS 

After collecting the results of 20000 runs in total for both models, the data was treated 

in the ETAS-ASCMO environment. The software provides many different options for 
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the statistical regression of the input data either with proprietary or Machine Learning 

based models. Also, other options can be used in the post-processing phase such as the 

Sensitivity Analysis and the full interaction matrix for multiple parameters. For the 

sake of clearness, the results will be divided into two different subchapters based on 

the fuel type simulation model that is being analyzed. 

 

6.2.1 HUMIDIFIED HYDROGEN MODEL 

The model was run for different values of hydrogen fraction and complementary water 

steam concentration for a total of 8996 meaningful runs out. Figure 18 shows the 

behavior of the model after the regression made by the default process embedded in 

ASCMO (Gaussian Process). 

 

Figure 18 - NDoE results Humidified Hydrogen 

In this section of the software is possible to get all the predictions by varying manually 

all the parameters and reading the relative outcome on the left-hand side of the screen. 

It is important to remember that the predictions are made only for a pre-defined range 

and dataset, thus no extrapolation can be made. The model´s regression performance 

can be accessed by the appropriate command and the results are shown in Figure 19: 
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Figure 19 – Prediction Performance GP, Humidified Hydrogen 

The good performance of a Regression in general can be evaluated mostly through two 

parameters: 

• RMSE (Root Mean Squared Error) that can be evaluated with the formula and 

establish the mean error of the predictions: 

 

𝑅𝑀𝑆𝐸 =  √
∑ 𝐸𝑟𝑟𝑖

2𝑁
𝑖

𝑁
=  √∑ (𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑟𝑢𝑒)

2𝑁
𝑖

𝑁
 =  √𝑀𝑆𝐸 

The lower the RMSE the lower the error derived from the prediction. 

• R^2 (Coefficient of Determination) that establishes the distance of the residuals 

from the data interpolated through the regression:  

 

𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
= 1 −  

∑ (𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑟𝑢𝑒)
2𝑁

𝑖

∑ (𝑦𝑝𝑟𝑒𝑑 − �̅�𝑡𝑟𝑢𝑒)
2𝑁

𝑖
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On the basis of the parameters explained before, we can assess that the model returns 

a good interpolation of the input data, thus we had a confirmation that the number of 

points chosen and the randomness of the dataset worked properly. 

Going back to the cell model analysis, we were able to access the full interaction matrix 

for multiple parameters. This is a very strong and meaningful graph that shows in a 

matrix all the possible combinations of two-parameter interactions, nevertheless, the 

power of this plot is not easily accessible to an unexperienced “eye”. Figure 20 below 

shows the interaction matrix plot for the cell voltage only considering the Anode and 

Cathode parameters: 

 

Figure 20 - Interaction matrix for the electrodes related parameters 

On the Y-axis is shown the cell voltage, while the three lines represent the extremes 

and mean value for each parameter on the X-axis. Each i-th row displays the cell 

voltage behavior keeping the i-th parameter constant while varying the j-th parameter 

dimension in its relative column. From this plot is possible to assess that the anode´s 

material parameters such as the radius of the pores, porosity and tortuosity have a major 

impact on the cell voltage compared to the cathode´s. The second parameter by 

importance is the anode´s thickness. 

These evaluations can be also confirmed by the global Sensitivity Analysis (called 

Input Relevance) derived from the software. As specified in the User Guide, the 

relevance of the inputs over the output is checked by a stepwise regression where the 



 

47 

 

inputs with relevance < 5% are ignored. After that, the inputs columns are permuted 

and a pseudo-RMSE is calculated thus getting a heuristic of the input´s relevance [19]. 

The results for this model are shown in Figure 21 below: 

 

 

Figure 21 - Sensitivity Analysis Humidified Hydrogen 

As it is possible to notice, the three operating conditions have a major role in affecting 

the cell voltage. This result is somehow obvious if we consider the physical model 

discussed before where every equation was based on Temperature, Hydrogen Molar 

fraction and current density. Although excluding these three parameters, the last 

analysis identifies the same parameters as the previous chapter´s but with different 

weights. Anyway, considering that the software works with a much larger amount of 

data, the latest results are considered more accurate.  

 

6.2.2 HYDROCARBON BASED MODEL 

This model resulted in 8412 positive runs with respect to the 10000 planned in the 

dataset. The interpolation and relative performance, resulting from the Gaussian 

Process operated by ASCMO, are shown in Figure 22 and 23 below. 
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Figure 22 - NDoE Hydrocarbon Based fuel model 

 

Figure 23 - Prediction performance GP, Hydrocarbon Based 

From the pictures above is possible to derive the high precision in prediction operated 

by the GP model. Also, in this case, it was possible to derive the input full interaction 

matrix for the Anode and the Cathode parameters. The resulting plot is shown below 

in Figure 24. 
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Figure 24 - Interaction matrix for anode´s and cathode´s parameters 

The results are very similar to the humidified hydrogen model, where the anode´s 

material properties are leaders in influencing the cell voltage. Anyway, the behavior is 

not more approximated by a second-order function (e.g. a Parabola) but it shows a 

higher-order interaction probably due to the different species present in the fuel 

composition. The results of the relative Input Relevance are shown below: 

 

Figure 25 - Sensitivity Analysis Hydrocarbon Based fuel model 
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For this type of fuel, the relevance of the geometrical parameter GP3 is still higher than 

GP2 and the humidified hydrogen model, confirming the previous chapter´s results. 

Indeed, the GP3 parameter affects mostly the Ohmic Losses generation of the cell due 

to its material characteristics and role. 

Comparing these results with the humidified hydrogen ones in this section, the most 

influencing parameters are the same, but they show different importance magnitudes. 

Anyway, also, in this case, the Anode´s related parameters play a key role as well as 

the radius of the laser-drilled holes (r_LDH). 

 

6.3 COMMENTS 

Grey-box techniques are very useful tools that can be employed by scientists in 

different scenarios. First of all, they are used for planning the experiments in the 

validation phase of a pre-existent physical model, here they provide strong fundaments 

for the experiment construction and results evaluation. Another scenario of application 

is when, due to the lack of prior knowledge or time, grey-box modeling is utilized to 

approximate and describe the behavior of complex systems while identifying their 

governing parameters. 

In the context of this thesis work, the Design of Experiment was exploited to create a 

reference for the upcoming steps and to define a random dataset for a Black-box model 

training and testing. Anyway, without the help of appropriate software, all the 

information gained and provided in this section most probably would still be hidden in 

the large amount of data analyzed. Indeed, the use of these software is somehow 

unavoidable and however, without a good amount of prior knowledge, the results can 

still be misleading or difficult to grasp. 

When working in a collaborative environment made up of different people and 

independent teams, the second most challenging step is often to present the results of 

the work done making them accessible to others in a simple and immediate way. 

Machine Learning tools can be implemented in a coding environment accessible to 

everyone -and most importantly free of charge- like Python. Especially when paired to 

a custom user interface or embedded into a website, these black-box models can be 

accessed by everyone with any digital device. Therefore, the mathematical models 

investigated in the next chapter offer, besides the scientific interest behind this research 

topic, a practical gain that can be left to the colleagues of the SOFC R&D department. 
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7. SOFC BLACK-BOX MODELS 

Mathematical models offer the possibility to describe complex systems with good 

accuracies in a matter of a few milliseconds. Concerning this research, a trial-and-error 

procedure was applied to test different Machine Learning models comparing them in 

terms of accuracy with the scope of finding the best model that could approximate the 

SOFC cell behavior. Different models were tested: 

• Linear Models 

• Classification Algorithms  

• Artificial Neural Networks 

All the models tested were implemented in Python through the library Scikit-Learn 

which offers, in addition to the command to recall algorithms, solutions to avoid 

common problems such as underfitting and overfitting. Once the best algorithm was 

found, the latter was analyzed to retrieve its applicability range as it is a fundamental 

part of the modeling procedure.  

 

7.1 LINEAR MODELS 

Linear models are one of the simplest algorithms available for data regression. Their 

working principle is based on the definition of an approximating function which is 

responsible for the data interpolation. The algorithms tested that belong to this category 

are: 

• Linear Regression 

• Bayesian Ridge Regression 

• Polynomial Regression 

Even if these models are “basic”, they can predict with good reliability simple models. 

Nevertheless, their performance degrades increasing the complexity of the analyzed 

model also due to the lack of hyperparameters used to perform finer tuning [13]. 
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7.1.1 LINEAR REGRESSION 

Linear Regression algorithm uses a polynomial function of first degree for the 

prediction of the continuous target function. A polynomial with degree 1 is simply 

represented by the equation of a straight line, id est: 

𝑦 = 𝑚𝑥 + 𝑏 

Where: 

• 𝑦 is the continuous target variable. 

• 𝑥 is a discrete input vector. 

• 𝑚 is the slope of the line. 

• 𝑏  is the Y-intercept i.e. the value of the function when the input is null. 

In case of multiple inputs (𝑛) the algorithm searches for the best coefficients for the 

equation:  

𝑦 = 𝑚1𝑥1+ . . . +𝑚𝑛𝑥𝑛 + 𝑏 

The objective of the algorithm is the optimization of the slope coefficients 𝑚𝑛 and the 

intercept 𝑏 to minimize the residuals i.e. the difference between the predicted output 

𝑦𝑝 and the true output 𝑦. This algorithm was implemented in Python via the command 

LinearRegression() and the input data was preprocessed through the function 

PolynomialFeatures(d=1), which determines the shapes of the input vector 𝑥 based on 

the degree of the polynomial function used for the regression [11] [12]. The results of 

the algorithms are presented, for both the fuel models, below in Figures 26 and 27: 
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Figure 26 - Linear Regression performance, Humidified Hydrogen 
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Figure 27 - Linear Regression performance, Hydrocarbon-based fuel 

The simplicity of this algorithm is reflected in its poor performance evaluated through 

the 𝑅2  and 𝑀𝑆𝐸 coefficients. But what appears more clearly is its residual distribution 

compared with the Actual and the Predicted values which, in both cases, shows a 

parabola-shaped pattern which is a symptom of a bad regression. That can be addressed 

to the higher complexity of the SOFC model which cannot be approximated by a linear 

function. 
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7.1.2 BAYESIAN RIDGE REGRESSION 

The Bayesian Ridge Regression, performed with the command 

linear_model.BayesianRidge(), offers a probabilistic prediction of the continuous 

output. In this model the output is calculated via a linear combination of the inputs, the 

latter are treated considering their probabilistic distribution which can account for prior 

knowledge of the input data. This allows to calculate the probabilistic distribution of 

the output as well as the model uncertainty at the cost of a slight increase in the 

computing time [11] [12] [13]. 

As it is possible to assess from the performances shown in Figures 28 and 29, poor 

regression performances were obtained due to the simplicity of the algorithm used. 

Also in this case, a non-random pattern is present for the residuals. 

 

 

Figure 28 - Bayesian Ridge Regression performance, Humidified Hydrogen 
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Figure 29 - Bayesian Ridge Regression performance, Hydrocarbon-based fuel 

 

7.1.3 POLYNOMIAL REGRESSION 

Polynomial Regression algorithm interpolates the data through a higher-order 

polynomial function which includes all the higher-interaction terms. An example of a 

third-degree interpolating function can be shown in the equation below, which is 

defined for two inputs 𝑥1, 𝑥2: 

𝑦 = 𝑓(𝑥1, 𝑥2) =  𝑚1𝑥1
3 + 𝑚2𝑥2

3 + 𝑚3𝑥1
2𝑥2 + 𝑚4𝑥1𝑥2

2+ . . . + 𝑘 
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Where: 

• 𝑦 is the continuous output function. 

• 𝑥1, 𝑥2 are the discrete inputs with their relative degree. 

• 𝑥1
2𝑥2, 𝑥1𝑥2

2 are the interaction terms of the input variables. 

• 𝑚1, . . . , 𝑚2𝑑+1 are the coefficients of the polynomial function. 

• 𝑘 is the intercept of the function. 

The number of terms and coefficients of the function is directly proportional to its 

number of inputs. Therefore, during the implementation in Python, the function 

PolynomialFeatures(d=2,3) is used to evaluate all the interaction terms as well as the 

input terms with a degree higher than one. Finally, the best coefficients and the 

intercept, that minimize the residuals, can be calculated by recalling the command 

LinearRegression() [11] [12] [13].  

It is important to underline that in theory every degree can be chosen for the polynomial 

function shape, but degrees higher than 4 can induce Overfitting of the data. Hence, the 

analysis was conducted with a polynomial degree equal to 2 and 3 and the respective 

results are shown in the next Figures 30 and 31. 
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Figure 30 - Polynomial Regression d=2, Humidified Hydrogen 
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Figure 31 - Polynomial Regression d=2, Hydrocarbon-based fuel 

The analysis of the residuals highlights the presence of non-random patterns in the 

residuals of both models, thus leading to extending the research to higher-order 

polynomial models. Figures 32 and 33 show the performance results for the 

Polynomial Regression with degree 3. 
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Figure 32 - Polynomial Regression d=3, Humidified Hydrogen 
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Figure 33 - Polynomial Regression d=3, Hydrocarbon-based fuel 

The use of a third-degree polynomial led to better results for the algorithm predictions, 

but the analysis of the residuals still cannot be considered satisfying because: 

1. In the Humidified Hydrogen the model error is quite large and more evident in 

the left-handed half of the analyzed voltage range. 

2. Instead, in the WGSR model, the non-random pattern is more evident even if 

the error is widespread in the voltage range. 
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7.2 CLASSIFICATION ALGORITHMS 

The second type of algorithms tested is the category of Classification Algorithms. 

These Machine Learning models have a wide range of uses, in particular, they can be 

employed to make predictions on discrete outputs (e.g. binary or multiple choices), 

make decisions or for image recognition. In this research work, a particular sub-

category of the Classification Algorithms was used to predict the continuous behavior 

of the dependent output (i.e. Cell Voltage). The regressors tested are: 

• Decision Trees 

• Gradient Boosting 

• Random Forest  

• Histogram-based Gradient Boosting 

A major difference between these algorithms and the linear models is the presence of 

multiple hyperparameters that can be tuned to perform better predictions. In particular, 

using some functions such as GridSearchCV() of the Scikit-Learn library is possible to 

automatically tune the hyperparameters to avoid problems such as Overfitting while 

guaranteeing the best performance in terms of 𝑅2 and 𝑀𝑆𝐸 [11] [12]. 

 

7.2.1 DECISION TREES 

Decision Trees are the most basic models able to perform classification/regression. Due 

to their extreme simplicity, further algorithms were developed using the Decision Trees 

principle with the scope of capturing the behavior of more complex systems. 

DecisionTreeRegressor was tuned through Grid Search Cross Validation optimizing 

hyperparameters that control the size of the trees, such as max_depth (i.e. the maximum 

depth of the tree) and max_leaf (i.e. maximum number of nodes in the tree). In addition, 

the train_test_split() function was used to split the dataset in two: 80% dedicated to the 

training procedure and 20% dedicated to the testing procedure, both chosen randomly 

in the dataset [11] [12] [13]. The results, for both fuel models, are presented in Figures 

34 and 35: 
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Figure 34 - Decision Trees performance, Humidified Hydrogen 
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Figure 35 - Decision Trees performance, Hydrocarbon-based fuel 

From the performance analysis is possible to assess that the algorithms are performing 

better predictions due to their residual distribution that appears to be more random and 

better centered concerning the linear models. 

 

7.2.2 GRADIENT BOOSTING  

GradientBoostingRegressor sets different Decision Trees in series performing the 

minimization of the loss function through its gradient. Different hyperparameters can 
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be tuned in addition to the ones related to the tree shaping: some examples are 

n_estimators (which defines the number of boosting stages to perform), loss (which 

defines the loss function type) and learning_rate (which shrinks the contribution of 

each tree avoiding Overfitting issues). Also in this case, hyperparameters were tuned 

with the GridSearchCV function and a train/test split was performed on the dataset with 

the specific function [11] [12]. The algorithm´s performances are shown in Figure 36 

and 37: 

 

Figure 36 - Gradient Boosting performance, Humidified Hydrogen 
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Figure 37 - Gradient Boosting performance, Hydrocarbon-based fuel 

The results show good performances in terms of accuracy and averaged squared error, 

although some patterns can be recognized in the region included in between the range 

0,15/0,65 V that results to be too large to have good applicability of the model. The 

reason behind this could be the large amount of data fed to the algorithm. Therefore, 

as suggested by the user´s guide of Scikit-Learn, Histogram-based Gradient Boosting 

could be a solution and for this reason, it will be tested in the following subchapters. 
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7.2.3 RANDOM FOREST 

RandomForestRegressor uses a multiplicity of individual Decision Trees in a parallel 

configuration, inhibiting the mutual interference between the trees during “the forest” 

generation. The algorithm is considered a meta-estimator since it averages all the 

decisions taken by all the individual trees. The hyperparameters are set to tune the 

forest generation, while Overfitting is prevented by the fact that each tree takes a 

random sample of the train set to build its structure (e.g. branches, leaves), thus 

reducing correlations within the estimators in the forest. The hyperparameters are tuned 

with RandomizedsearchCV() which finds the best values for max_depth and 

n_estimators that shape the forest by determining respectively the depth of each tree 

and the relative number of trees that ran in parallel [11] [12] [14]. The results for the 

Random Forest algorithm are presented below, in Figures 38 and 39: 

 

Figure 38 - Random Forest performance, Humidified Hydrogen 
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Figure 39 - Random Forest performance, Hydrocarbon-based fuel 

Results show better predictions for the Humidified Hydrogen model, even if the 

residual distribution shows some pattern-based deviation in the left part of the 

evaluation range (i.e. from 0,2 to 0,7 V). In the WGSR model same pattern is present, 

but the cloud is more widespread from the zero-error line. 
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7.2.4 HISTOGRAM-BASED GRADIENT BOOSTING 

This algorithm is optimized for medium-large databases (e.g. > 9500 lines) because it 

uses “binning” (i.e. the principle of the histogram plots) to reduce the number of trees 

sequentially generated during the training procedure. The hyperparameters can be 

tuned by GridSearchCV and mostly define the shape of the trees. Learning_rate 

hyperparameter coupled with StandardScaler() were used to prevent Overfitting [11] 

[12] [14]. The results are shown in the following Figures 40 and 41: 

 

Figure 40 – HistGradientBoosting performance, Humidified Hydrogen 
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Figure 41 - HistGradientBoosting performance, Hydrocarbon-based fuel 

So far, this algorithm showed the best values for the performance indicator 𝑅2 and the 

lowest average squared error 𝑀𝑆𝐸 for both the fuel models. Nevertheless, from the 

residual analysis is possible to notice the presence of the same pattern on the left-hand 

side of the Voltage range explored, thus requiring ulterior data analyses for better 

understanding. 
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7.3 ARTIFICIAL NEURAL NETWORKS 

Artificial Neural Networks (ANNs) are known to be the most flexible and the fastest 

high-level algorithm used for Machine Learning and Deep Learning. ANNs use 

neurons organized in layers, also called “nodes”, which can be represented by a 

regression model as a standalone. Each node is composed of input data, weights, output 

data, and a threshold. Once the input is defined, the weights are assigned, and the node 

calculates the output. The output of the node is then processed by the activation 

function, if its value exceeds the threshold fixed by the “bias”, the information is then 

passed to the subsequent node which uses the data as an input. Concerning the previous 

regression algorithms, the main difference is the possibility of determining multiple 

outputs at the same time by imposing the shape of the output layer during the network 

tuning step. This is the basic working principle of a feedforward network (or Multi-

Layer Perceptron) that can be recalled in Python by the command MLPregressor() of 

the Scikit-Learn library. The latter can be tuned by multiple hyperparameters such as 

regressor__hidden_layer_sizes, which defines the number of hidden layers and 

neurons in each of them; regressor__activation, which sets the activation function 

for each layer; regressor__learning_rate_init and regressor__max_iter, which are 

imposed to avoid Overfitting. The network was tuned using Pipeline() which divided 

the dataset into different portions using a train/test split in the selected data; the data in 

each portion was then standardized using StandardScaler() and finally the best 

hyperparameters were searched using GridSearchCV() [11] [12] [13]. To have a 

comparison with other Machine Learning models, the performance was tested for the 

prediction of the Cell Voltage as a single output. In addition, the algorithm was tested 

for the prediction of all four outputs, i.e. Cell Voltage, Ohmic, Activation and 

Concentration losses.  
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Figure 42 - ANN performance, Cell Voltage, Humidified Hydrogen 

Figure 42 presents the results obtained from a two-hidden layers network made by 12 

and 3 neurons in each layer. The algorithm works with 18 input neurons and 1 output 

neuron for the Cell Voltage prediction. The residual analysis shows a pattern-based 

distribution and confirms the poor prediction performances evaluated with 

𝑅2 parameter. 
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Figure 43 - ANN performance, Cell Voltage, Hydrocarbon-based fuel 

Figure 43 shows the results obtained for the WGSR model, with a three hidden layers 

network made by respectively 16, 10 and 4 neurons in each layer. Also, this neural 

network works with 18 input neurons and 1 output neuron for the Cell Voltage 

prediction. The residual analysis shows the same pattern-based distribution as the 

Humidified Hydrogen model. In the following figures are presented the results for the 

4-outputs ANNs. 
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Figure 44 - ANN performance, Humidified Hydrogen, Voltage and Losses 
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Figure 45 - ANN performance, Hydrocarbon-based fuel, Voltage and Losses 

The results in the previous Figures 44 and 45 show, surprisingly, better prediction 

performance with respect to the single-output case. In the first case, the network was 

built with three hidden layers with 24,7 and 5 neurons; instead, for the WGSR model a 

single hidden layer network with 36 neurons was used. Although the results are better 

than the single output case, the neural networks studied cannot be considered enough 

accurate to be employed for predictions. The reason behind these poor performances is 

due to the presence of more than 13 different hyperparameters that must be investigated 

and tested for multiple values, while during this thesis work, only 4 of them were 
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treated. Just regressor__hidden_layer_sizes required a trial-and-error procedure, 

which involved 30 different configurations to reach every result presented before. 

Therefore, it is obvious that, with a finer tuning of the hyperparameters, this algorithm 

may produce excellent results but, due to the limited time available for the 

experimentation, any further trial was considered unnecessary. 

 

7.4 RESULTS 

The results related to the previous analysis are listed in Table 6: 

SOFC MODEL 
Humidified 

Hydrogen 
WGSR 

ML MODEL Algorithm 𝑹𝟐 𝑹𝑴𝑺𝑬 𝑹𝟐 𝑹𝑴𝑺𝑬 

LINEAR  

MODELS 

Linear Regression 0.702 0.01742 0.707 0.00374 

Bayesian Ridge 

Regressor 
0.718 0.00162 0.697 0.00379 

Polinomial 

Regression 

degree 2 

0.890 0.00064 0.930 0.00089 

Polinomial 

Regression  

degree 3 

0.928 0.00042 0.969 0.00038 

CLASSIFICATION  

ALGORITHMS 

Decision Tree 0.907 0.00054 0.876 0.00158 

Gradient Boosting 

Regressor 
0.965 0.00020 0.944 0.00070 

Random Forest 

Regressor 
0.956 0.00025 0.934 0.00083 

Histogram-based 

Gradient Boosting 
0.972 0.00016 0.971 0.00036 

NEURAL 

NETWORKS 

Multi-Layer 

Perceptron 

 (single output) 

0.809 0.00112 0.800 0.00239 

Multi-Layer 

Perceptron 

(4 outputs) 

0.844 0.00032 0.831 0.00083 

Table 6 - ML algorithms performance results 
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From the results presented in Table 6, it is possible to assess that Classification 

Algorithms returned the best prediction accuracies and the lowest errors. Anyway, the 

analysis of the residuals showed that the best option among the algorithms is 

Histogram-based Gradient Boosting since the error is lower and randomly spread 

across all the Voltage range considered. 

 

7.5 MODEL APPLICABILITY 

The outcomes of the analyses carried out in this section prove that Histogram-based 

Gradient Boosting is the best algorithm to employ for Cell Voltage behavior 

predictions. The following step of the modeling procedure is the evaluation of the so-

called Model Applicability. This study is performed to evaluate the extent to which a 

specific model can be effectively used to make predictions or take decisions in 

particular scenarios. The procedure involves an in-depth overlook of the residuals, i.e. 

the errors, to define safe limits that the scientist can apply to the model without 

incurring large results uncertainty. The most immediate approach is to compare the 

prediction error with the predictors, i.e. the input parameter or independent variables 

of the model. The results for the HGB algorithm are presented in Figures 46 and 47. 

 

Figure 46 - HGB residual distribution, Humidified Hydrogen 
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Figure 47 - HGB residuals distribution, Hydrocarbon-based fuel 

Considering the plots presented above, is possible to evaluate the magnitude of the 

error based on the value of the independent variable chosen. It is clear, just by looking 

at the images, that most of the outliers are randomly spread on the various parameter 

ranges, except for the Hydrogen molar fraction 𝜒𝐻2
 and the Fuel Utilization factor 𝐹𝑈. 

In the first case, too low concentration of Hydrogen will induce larger prediction errors. 

In the second case, the relation between 𝐹𝑈 and the error is directly proportional since 

𝐹𝑈 is defined as: 

𝐹𝑈 =
𝑛𝐻2,𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑

𝑛𝐻2,𝑢𝑠𝑒𝑑
 

Therefore, confirming that the lower the Hydrogen concentration, the larger the 

resulting error. These assumptions can also be confirmed by carrying out an analysis 

of the algorithm input dataset with the scope of investigating the causes of the “NaNs” 

resulting from the COMSOL Multiphysics simulations. Figure 48 was produced using 

the Pair-Plot command in Python and highlights the statistical frequency of the 

parameters that led to a successful simulation (Run = 1) and vice versa (Run = 0). As 

it is possible to notice, the abnormal distribution is only linked to the hydrogen 
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concentration and the frequency is higher when the concentration is close to zero, 

resulting in a compiler error. Therefore, it is safe to assess that, for lower concentrations 

of hydrogen, the outcomes of the Multiphysics simulations were already affected by a 

significant linear error, thus causing poor interpolation from the ML model. 

Consequently, the black-box model can be safely used for Hydrogen molar fraction 

values close to its nominal value or higher ones, vice versa is recommended to use the 

Fuel Utilization Factor for values close to the nominal one or lower. 

 

 

Figure 48 - Pair Plot for "NaNs" identification, Humidified Hydrogen 
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CONCLUSIONS 

This research work was conducted on the SOFC, developed by Robert Bosch GmbH in 

a joint venture with Ceres Power, to retrieve a suitable Machine Learning model able 

to predict the cell voltage and the relative losses. To fulfill this objective, different 

modeling techniques were investigated to find all the important actors involved in the 

power generation process.  

The first step involved the analysis of the physical model of the fuel cell with the 

identification of the process parameters, as well as the governing laws. All equations 

showed explicit relationships with operating conditions such as temperature, current 

density and fuel/air concentrations. Instead, the relationships with the design 

parameters were not clearly defined for all the actors involved, thus requiring further 

analyses. The parameter selection was based on the possibility of performing a future 

design improvement, while the operating conditions were investigated by selecting 

different points on the cell surface. After the parameter identification, a Sensitivity 

Analysis was performed through simulations carried out on two validated COMSOL 

MultiPhysics models, according to the type of fuel fed to the cell. The results indicated 

a strong influence of the anode-related parameters such as porosity, tortuosity, radius 

of the pores, and thickness compared to the cathode. Furthermore, the analysis revealed 

that the parameter sensitivity magnitude changed according to the fuel model studied. 

The need for a dataset to train and test the mathematical models analyzed in the final 

part of this thesis work led to the involvement of the Design of Experiments techniques. 

This gray-box modeling was used for the creation of a random dataset with 10,000 

different parameter combinations that were simulated on COMSOL through a Python 

script. The simulation outcomes were evaluated with ETAS-ASCMO, the latter created 

a predictive model able to evaluate all the interactions between parameters as well as 

its own Sensitivity Analysis which confirmed previously obtained results. 

The dataset and the relative outcomes were used to train and test different Machine 

Learning algorithms such as Linear Models, Classification algorithms and Neural 

Networks. Linear models proved to be too simple to correctly predict the cell behavior, 

thus resulting in large prediction errors and bad residuals distribution. Neural Networks 

instead, were governed by a multiplicity of hyperparameters not fully investigated due 

to the lack of available time. In total 120 network shapes were tested, but the results 

never crossed 82% of accuracy score for the cell voltage prediction. The best option 

resulted in Histogram-based Gradient Boosting, which was able to predict the cell 

voltage with an accuracy score larger than 96% for both fuel models. This classification 
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algorithm can work with medium-large datasets and has few hyperparameters (easily 

tuned with a Grid Search function) able to increase the prediction accuracy while 

avoiding overfitting issues. This SOFC black-box model was further analyzed to define 

its application limits which resulted being Hydrogen concentration values between zero 

and 15%. However, the model needs to be validated through a dedicated experimental 

procedure. 

This thesis work has been really stimulating as it has allowed to cross all the fields of 

modeling, from the complexity of the physical models to the new machine learning 

techniques. Working with complex physical systems often requires the use of 

mathematical models that allow you to discover otherwise invisible relationships. The 

latter, however, need to be read and used in a conscious way in order to best express 

their predictive potential, so previous knowledge is fundamental in order to understand 

the results obtained.  

The main limits came from the usual tradeoff between performance and time that did 

not leave space for a more precise setting of the hyperparameters for the algorithms 

treated. Further research could be focused on the fine-tuning of neural networks which, 

if properly implemented, would lead to the creation of a single model capable of 

predicting multiple outputs with higher accuracy. The latter would also be able to speed 

up computational times, which would make it usable within loops for real-time control 

for a possible implementation in the fuel cell stack system. However, the produced 

results allowed the creation of a web application via the Streamlit library implemented 

in Python. This tool offers an easy and user-friendly interface to the upscaled model 

where the user can select the desired fuel, set any parameter value, and visualize the 

resultant Polarization Curves in a matter of a few seconds. Any colleague of the SOFC 

R&D department can access the tool from any digital device, without the need of a 

specific software license or prior knowledge in the field of simulation. 
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