
POLITECNICO DI TORINO
Master’s Degree in Artificial Intelligence and Data

Analytics

Master’s Degree Thesis

Color-Conditioned Abstract Image
Generation with Diffusion Models

Supervisors

Prof. Tatiana TOMMASI

Prof. Giuseppe RIZZO

Ing. Angelica URBANELLI

Ing. Luca BARCO

Candidate

Christian BARDELLA

07 2023

Abstract

This thesis aims to investigate the promising Diffusion Models (DMs) technology
by developing a prototype that meets the requirements for variability and quality
of generated images.
The ultimate goal is to initiate the technology transition by exploring DMs in
conjunction with the well-established StyleGAN. Through this work, I specifically
examine the behavior of DMs in the "Color to Image" task and their ability to
generate images based on color label conditioning with the final goal of producing
512x512 resolution images.

I adopt a step-by-step approach to gain a thorough understanding of this new
technology, both practically and theoretically. Understanding how I can effectively
condition a diffusion model to enable precise control over the generative process
was an essential step. I implement a basic Diffusion-network, which uses a shallow
vanilla U-net to grasp the functioning of the various components of the model
and I successfully train this network on the "Letters font dataset"1, focusing on
conditional and unconditional generation at a resolution of 32x32.

The problem with this method is that the entire network works on a pixel
level, meaning that the diffusion process is applied to the whole input image. For
high-resolution image production, this approach immediately becomes impractical.

The Latent Diffusion Model by CompVis was a suitable solution, which ap-
plies the diffusion process to a reduced input representation. This model has
demonstrated remarkable results in conditional image generation and has now been
made open source. It comprises 400 million parameters two-stage architecture: an
encoder-decoder network and a Diffusion network. Using a pre-trained encoder, I
trained the diffusion network on a customized version of the Wiki-Art dataset. Still,
the time and resources were insufficient for a complete state-of-the-art comparable
training. This first working prototype is capable of producing well-conditioned
images at a resolution of 256x256, showing that DM beat the previous StyleGAN
in matching the required color and how, with more extended training, more time,
and computational resources, I could achieve comparable performance in terms of
FID.

Given these resource constraints, I have also adapted the Latent Diffusion
code to run on a multi-GPU environment with limited resources exploiting a
fully-sharded-data-parallel strategy.

Overall, this thesis offers a comprehensive exploration of diffusion technology,
encompassing its mathematical foundations and relevant literature background. It

1External Link to the Kaggle Dataset

https://www.kaggle.com/datasets/thomasqazwsxedc/alphabet-characters-fonts-dataset

effectively highlights the strengths and limitations of this approach in the label-to-
image task.

ii

i

Table of Contents

List of Figures iv

1 Introduction 1
1.1 The Era of Generative Model . 1
1.2 Context and Structure of proposed Work 2

2 Mathematical Foundations 5
2.1 Bayes Rule . 5
2.2 Expected Value . 6
2.3 Kullback-Leibler Divergence . 6

2.3.1 Derivation . 6
2.4 Variational Inference and Evidence Lower Bound (ELBO) 8

2.4.1 Variational Inference . 8
2.4.2 ELBO or Variational Lower Bound Derivation 9

3 Literature Background 11
3.1 Auto-encoder (AE) . 11
3.2 Variational Auto-encoder (VAE) . 12

3.2.1 VAE general Architecture 13
3.2.2 Perceptual Loss . 14

3.3 Generative Adversarial Networks (GAN) 15
3.3.1 GANs Instability Problems 16

3.4 Vector Quantized VAE (VQ-VAE): modeling a discrete latent space 16
3.4.1 VQ-GAN . 19

3.5 Denoising Diffusion Probabilistic Models (DDPM) 21
3.5.1 Forward Process . 22
3.5.2 Reparametrization Trick in Diffusion Models 23
3.5.3 Backward Process . 24
3.5.4 Training Objective Function 27
3.5.5 U-Net Architecture . 28

3.6 Latent Diffusion Models (LDM) . 30

ii

3.6.1 Combining Latent Representation with DDPM 30

4 Materials and Methods 32
4.1 Resources . 32
4.2 Dataset . 33

4.2.1 Letters Font Dataset . 33
4.2.2 Wiki-Art Dataset . 33
4.2.3 Pre-Processing . 36

4.3 Experiments Decription . 37
4.3.1 Conditioning the Network 37
4.3.2 Use positional Encoding for time conditioning the network . 38

4.4 Control the Diffusion Process . 40
4.4.1 Guide the Diffusion . 40
4.4.2 Classifier-Guided Diffusion 41
4.4.3 Classifier-Free Diffusion . 41
4.4.4 Cross Attention Mechanism 42
4.4.5 First experimental settings 43
4.4.6 Second experimental settings 44
4.4.7 Latent Diffusion . 44

4.5 Denoising network . 46
4.5.1 Model Structure . 46

4.6 Speed up the sampling . 48
4.6.1 DDIM and PLSM . 48

4.7 Multi GPU computing . 48

5 Results 51
5.1 Evaluation metrics . 51

5.1.1 Fréchet Inception Distance (FID) 51
5.2 LDM Training Results . 52
5.3 Generated Images . 53

5.3.1 Increase the Scale Value . 54
5.4 FID Results . 55

5.4.1 Diffusion Model and StyleGAN Comparison 55

6 Conclusions 64
6.1 Conclusion . 64
6.2 Future Works . 65

Bibliography 66

iii

List of Figures

1.1 Complete Pipeline General Scheme. 2

3.1 Vanilla Convolutional VAE architecture. Image from [3] 13
3.2 High-level functioning scheme of Perceptual Loss. 15
3.3 Scheme of VQ-VAE from the paper [6] 17
3.4 Codebook Loss computation. From line 20 in the code, we can read

the actual implementation of the correspondent formula 3.4 20
3.5 The commitment loss has the effect of moving the encoder outputs

towards an embedding . 21
3.6 VQ-GAN structure presented by the paper [8]. 22
3.7 Vanilla U-Net architecture from the "U-Net: Convolutional Networks

for Biomedical Image Segmentation" [12] paper. Each downsample
step doubles the size of channels and halves the feature’s dimension. 29

4.1 Images of Letters font dataset . 34
4.2 Both images are labeled as Purple but clearly, they are wrongly

matched. 35
4.3 The chart shows how the images are subdivided in the corresponding

color category color by percentage. It is clear how highly unbalanced
the dataset is, where 30% of the images are under the white label,
but only 1% of the images are in the yellow one. 36

4.4 Images of Custom Wiki-Art Dataset. The figure shows four images
per color label. From left to right, top to bottom, we have Yellow,
Orange, Black, Red, White, Green, Blue, and Purple. 37

4.5 Time dependency in positional embeddings. Temporally near em-
beddings will have similar values because spatially near sampling
in the sine/cosine function results in small changes in both low and
high frequencies. 39

4.6 Pseudocode that shows how time embeddings are added together
with the label embedding. 40

4.7 Snippet of code of "Zero Label" assignment. 42

iv

4.8 Generated Letters. Interestingly, the model is trained using a random
Flip transformation on the y-axis and some letters are, in fact,
correctly mirrored. 43

4.9 Qualitative results of VQ-GAN trained from scratch 45
4.10 Structure of the used VQ-GAN [8]. 46
4.11 Simplified Structure of the used model 47
4.12 Images taken from video explanation by Lightning.ai. Link to video. 49

5.1 Each row corresponds to a single color category. From top to bottom,
we have: Orange, Green, Blue, Purple, Yellow, Red, Black, White,
and "Zero-Label". 57

5.2 Generated images with scale factor s = 2 58
5.3 Generated images with scale factor s = 5 58
5.4 Generated images with scale factor s = 15 59
5.5 FID values . 61
5.6 Average mean distance of colors in RGB and LAB color spaces. . . 62
5.7 Average colors distance in RGB and LAB color spaces. 62
5.8 Top row LDM structured images. Bottom row StyleGAN generated

images. 63

v

https://youtu.be/w_CKzh5C1K4

Chapter 1

Introduction

1.1 The Era of Generative Model

In the last two years, we saw a significant rise of generative models, which show
their incredible capabilities in understanding the meaning of a given context to
generate ever more consistent and beautiful content such as images, entire videos,
music but also 3D meshes, animations, and more. They gained immense popularity
due to their remarkable versatility in effectively learning data distributions and
capturing the underlying structure to efficiently extrapolate meaningful information
and correlations to recombine it in an ever-seen manner. Their impact is not limited
to the technological field but extended to the social sphere. For instance, notable
examples like Chat-GPT, renowned for its language modeling capabilities, and
MidJourney, a groundbreaking text-to-image generator, have sparked discussions
on the relevance of certain human tasks and raised concerns about the potential
risks posed by highly intelligent artificial systems in the modern society.

Access to the proper hardware is a challenge that often limits the research
possibilities. Indeed the faster we go, the more we can experiment, the more
memory we have, the bigger the models we will be able to train, and the larger
the amount of data we can fit our model on. Every year GPUs and TPUs become
faster and with more memory, while simultaneously, models become more and
more memory-consuming. Nowadays, the big A.I. tech companies have started
scaling out their models, discovering how, in general, the model’s size can benefit
their performance and precision. Indeed deeper models seem to understand better
the underlying structures of the data giving them the ability to generalize well on
specific tasks.

With generative models, we refer to an entire sub-field of Artificial intelligence in

1

Introduction

which neural networks, once trained on a dataset to satisfy a specific task, become
capable of generating never seen data or, it would be better to say, they become
capable of generating data that has never been seen during their training phase.

Intuitively, they are models able to generate entirely new synthetic data. This
generation capability can also be helpful for other machine learning tasks, for
example, data augmentation but also, if adequately trained, for transforming the
style or domain of the data.

1.2 Context and Structure of proposed Work
I have to point out what was already being done on this project and explain the
role of my thesis in the frame of this work.

This project is based on an existing operative pipeline built on a StyleGan v3.
The purpose of this introductory section aims to enhance comprehension of how
my work contributes positively and identify areas that require further research.

It is essential to provide an introduction to the general structure of the existing
pipeline.

Figure 1.1: Complete Pipeline General Scheme.

2

Introduction

The actual pipeline is composed of two main steps:

1. Given a Sound, it outputs a Color-label (Classifier);

2. Given a Color-label, it outputs the new Image (StyleGan).

In the first stage, a classifier is trained to predict a color given a sound as input. The
primary focus of my work centers around the second stage, as shown in figure 1.1, of
this pipeline, which, as previously mentioned, involves initiating the technological
transition from StyleGAN to Diffusion Models.

During the course of this thesis, the field of generative A.I. has witnessed expo-
nential advancement. While this growth has provided abundant learning resources
and ample experimental examples, achieving competitive levels of precision and
accuracy of the generated sample remains challenging due to several factors, in-
cluding limited computational resources, lack of adequate comprehension of some
concepts, and time constraints.

In the following chapter, I explain the mathematical theory behind generative
models and all the other required building blocks, aiming to gain a comprehen-
sive understanding of the statistical concepts behind the variational inference
approximation that lead to the diffusion process’s development and how it can be
reversed.

The literature background chapter briefly overviews the previous generative
models, serving two primary purposes. Firstly, understanding the limitations
and capabilities of alternative technologies assists us in making decisions about
which method to employ based on specific requirements. Secondly, recognizing
the contributions of previous models is crucial as they shape the development and
practical implementation of new models.

Subsequently, in the Materials and Methods 4 chapter, I explore the key compo-
nents and intuitions that make the Latent Diffusion (LDM) approach preferable
and more feasible than pixel-level Diffusion. I present different experiments and
architectures employed during the prototyping phase. I also focus on the problems
arising from hardware constraints and some solutions I use to solve them. I discuss
some multi-GPU algorithms to spread a very weighty model on a node of N GPU
with limited VRAM.

In the Results chapter 5, I thoroughly analyze the performance of state-of-the-
art class conditional latent Diffusion applied to the Wiki-art dataset against the
StyleGan v3, demonstrating whether these architectures can enhance the quality
and diversity of image generation. I provide results and insights on where this
technology outperforms its predecessors and where it does not. I also show how
the diffusion model properly understands the conditioning on color-label, exposing
it as the primary color on the generated images.

3

Introduction

In chapter 6, I propose several potential improvements for the developed project
and explore alternative approaches that can be explored by leveraging existing
implementations. Lastly, I briefly introduce ideas inspired by state-of-the-art
research in the Variational-Auto-Encoder (VAE) field on which I focus.

4

Chapter 2

Mathematical Foundations

In this section, we introduce and summarize some key mathematical concepts,
which are the necessary building blocks to understand better how models work. It
is crucial to remember where the math came from and how it is derived to remain
focused and understand the design choices behind the new models.

2.1 Bayes Rule
Bayes Rule is a fundamental key concept in everything that concerns statistical
analysis. It is a counter-intuitive concept that needs time to be understood and
fully appreciated.

It describes the relationship between an event conditioned to the probability of
another event.

Given X, Z representing two Random Variables:

Pθ(Z|X) = Pγ(X|Z) · Pσ(Z)
Pβ(X) (2.1)

Where:

- Pθ(Z|X) is the "Posterior Probability" (Conditioned probability of Z given X).

- Pγ(X|Z) is the "Likelihood" (Conditioned probability of X given Z).

- Pσ(Z) is the "Prior" (Marginal Probability of the event Z ignoring all the condi-
tioning).

- Pβ(X) is the "Evidence" or "Marginal Probability" or "Normalization Term."

5

Mathematical Foundations

2.2 Expected Value
The expected value of a random variable X represents the average value obtained
from its possible outcomes, where each outcome is weighted by its corresponding
probability of occurrence. It is a weighted average defined by the formula in the
discrete and continuous form, respectively:

E[X] =
∞Ø

i=1
xi · pθ(xi) E[X] =

Ú +∞

−∞
x · pθ(x) dx (2.2)

We can easily extend this form to functions of Random Variables (R.V.).
For example, defining h(X) a function of R.V. we can rewrite the equations as:

E[h(X)] =
∞Ø

i=1
h(xi) · pθ(xi) E[h(X)] =

Ú +∞

−∞
h(x) · pθ(x) dx (2.3)

2.3 Kullback-Leibler Divergence
Kullback-Leibler Divergence is a useful measure that tells us how two distributions
are similar to each other and, in general, is defined with the equation below:

DKL(q∥p) = Ex

C
log

A
pθ(x)
qϕ(x)

BD
=
Ú

log
C

qϕ(x)
pθ(x)

D
qϕ(x) dx (2.4)

2.3.1 Derivation
Given an R.V. X = {x1, x2, ..., xn} and two distributions of our R.V. pθ(X) and
qϕ(X), we want to know how similarly they model the distribution over X. In this
case, we can say that we want to take a realization of x = x1 and know how well
our two distributions p(.)θ and qϕ(.) perform (where θ and ϕ are the parameters of
the distribution).

We can easily compute the difference between the value of the two distributions
plugging in a realization of X:

pθ(x1) − qϕ(x1)

This term will be zero if the two values are equal. Now we can generalize it to all
the realizations of X:

pθ(xi) − qϕ(xi)

6

Mathematical Foundations

and then take the log values of the term in order to avoid numerical instability due
to the fact that often these numbers are very close to zero:

log(pθ(xi)) − log(qϕ(xi))

And for the logarithm properties, we can rewrite it as:

log
A

pθ(xi)
qϕ(xi)

B
= h(X)

We are interested in the average difference between all the realizations for our two
distributions. Taking as reference what was said before about expected value, we
can see the log-likelihood ratio as a function of Random Variables, and always from
the definition of expected value 2.2 in the continuous form, we can write:

Ex[h(X)] =
Ú

log
A

pθ(xi)
qϕ(xi)

B
pθ(xi) dx (2.5)

It is important to notice the fact that it is called divergence and not distance
because it is not a symmetric measure. For a metric to be considered as such, it
must satisfy certain properties:

1. Non-negativity: for any pair of points x, y the metric d(x, y) ≥ 0 ;

2. Identity: for any point x the metric d(x, x) = 0 ;

3. Symmetry: for any pair of points x, y the metric d(x, y) = d(y, x) ;

4. Triangle inequality: for any triplet of points x, y, z the metric should satisfy
the inequality d(x, z) ≤ d(x, y) + d(y, z).

The KL divergence does not satisfy the symmetric properties. Is indeed true
the following:

DKL(p∥q) /= DKL(q∥p) (2.6)

We have two distinct possibilities for computing the KL divergence from the
equation above.
There is also another important property of the KL-Divergence:

DKL(p∥q) ≥ 0 (2.7)

It is essential to bear in mind the above properties 2.7 since it will be very useful
as we proceed to the following sections.

7

Mathematical Foundations

2.4 Variational Inference and Evidence Lower
Bound (ELBO)

2.4.1 Variational Inference
Variational Inference is an important concept when we talk about probabilistic
inference tasks, which are at the base of VAE, GAN, D.M., and other probabilistic
models. It is an optimization procedure whose purpose is to approximate an
unknown, complex distribution through another parameterized known one.

Let’s define a random variable (R.V.) denoted as X, representing our observed
data. Additionally, we introduce another R.V. named Z, which represents some
other data characteristics but, in this case, their realizations remain unobserved
(or latent; in fact, we refer to Z as a latent variable).

In our case is convenient to re-think this concept using a data-based example.
We can think of X as the R.V. that represents all the data and p(X) as the
distribution which models his behavior, while Z is an unknown R.V. on which our
known data depends. For example we can say that X = {x1, x2, ..., xn} represent
any image and xi represent a specific realization of X while Z represent important
features.

We do not have a tractable posterior term pθ(Z|X) because, as we can see from
the 2.1, the divisor term, which is called Evidence, does not have a close form.
We can write the evidence term as the marginalization integral:

pθ(X) =
Ú

Z
pθ(X, Z) dZ =

Ú
Z

pθ(X|Z) · pθ(Z) dZ (2.8)

This term is completely intractable for high dimensional latent spaces Z and in
everyday use cases is always unmanageable.

Summarizing we want to model our posterior, which has an intractable evidence
term, in order to make predictions. We will estimate the posterior probability
introducing a new distribution q which will serve to approximate our "true" posterior
so that:

pθ(Z|X) ≃ qϕ(Z) (2.9)

In practice, we want to minimize the differences between two distributions, the
unknown and the one we choose. We can do this operation by exploiting the KL
divergence measure: So from the equation 2.5:

∗
q(z) := argminq KL(qϕ(z) || pθ(z | x)) (2.10)

8

Mathematical Foundations

DKL(qϕ(z)∥pθ(z|x)) =
Ú

z0
...
Ú

zd−1
log

A
qϕ(z)

pθ(z|x)

B
qϕ(z) dz0...dzd−1

=
Ú

Z
log

A
qϕ(z)

pθ(z|x)

B
qϕ(z) dZ

(2.11)

In this way, we rewrote our intractable problem into another intractable one.
In-fact we still do not have access to the posterior pθ(z|x) and the marginal pθ(x)
but we have the joint distribution pθ(z, x).
Using the Bayes Rule 2.1 we know that:

pθ(z|x) = pθ(z, x)
pθ(x) (2.12)

So we can rearrange the formula substituting 2.12 in the 2.11:

DKL(qϕ(z)∥pθ(z|x)) =
Ú

Z
log

A
qϕ(z) pθ(x)

pθ(z, x)

B
qϕ(z) dZ (2.13)

2.4.2 ELBO or Variational Lower Bound Derivation
The ELBO is a very useful mathematical result [1]. It gives us a tractable lower
bound over an intractable value, enabling Variational inference to train models.
Starting from the equation 2.13, we can split the integral into two different integrals.
One which has only tractable terms and another one that has intractable ones:

DKL(qϕ(z)∥pθ(z|x)) =
Ú

Z
log

A
qϕ(z)

pθ(z, x)

B
qϕ(z) dZ +

Ú
Z

log (pθ(x)) qϕ(z) dZ

= EZ∼q

C
log

A
qϕ(z)

pθ(z, x)

BD
+ EZ [log (pθ(x))]

= EZ∼q

C
log

A
qϕ(z)

pθ(z, x)

BD
+ log (pθ(x))

(2.14)

Since the second term does not depend on Z we can remove the expected value
and write only the log (pθ(x)).
We then call the first term L(q):

L(q) = EZ∼q [log (qϕ(z))] − EZ∼q [log (pθ(z, x))] (2.15)

Now we can rewrite everything in the reduced form:

9

Mathematical Foundations

DKL(qϕ(z)∥pθ(z|x)) = −L(q) + log (pθ(x)) (2.16)

It is useful to point out the following facts that help us to derive the final ELBO:

1. DKL(qϕ(z)∥pθ(z|x)) ≥ 0 by definition (2.7) and as consequence we can write;

−L(q) + log (pθ(x)) ≥ 0 (2.17)

2. Given the two previous statements, in order to verify the equation, the following
must be true:

log (pθ(x)) ≥ L(q) (2.18)

We can derive from the last equation that L(q) (tractable) is the lower bound
of the evidence term (intractable) and from this the name: Evidence Lower
Bound.
So the ELBO is defined as:

ELBO := L(q) = EZ∼q [log (pθ(z, x))] − EZ∼q [log (qϕ(z))] (2.19)

From the equation 2.16 we can easily derive:

DKL(qϕ(z) || pθ(z|x)) = log (pθ(x)) − ELBO

log (pθ(x)) = K (intractable but constant)
DKL(qϕ(z) || pθ(z|x)) = ✘✘✘✘✘✘log (pθ(x)) − ELBO

(2.20)

We just derived the ELBO from the Variational Inference. Consequently, we
can notice that minimizing the KL divergence between these two distributions is
the same as maximizing the Evidence Lower Bound.

∗
q(z) := argmaxq ELBOq = argminq DKL(qϕ(z) || pθ(z|x)) (2.21)

10

Chapter 3

Literature Background

This section is focused on explaining some important building blocks that lead to
the development of Diffusion Models. My purpose is to give a general understanding
of everything that is needed summarizing all the concepts I have encountered during
the investigation phase of the Thesis.

3.1 Auto-encoder (AE)
The idea of the Variational Auto-encoder came from the previous concept of Auto-
Encoder. An Auto-encoder maps the data we give as input in points in a latent
low-dimensional space finding the right mapping transformation. The model is
trained using a simple reconstruction loss:

Loss(L2) = ||x − x̂||2 = ||x − d(z)||2

Where x̂ is the reconstructed data and d(z) is the decoder transformation applied
on the latent variable z.

If we want to generate new data using this approach, we encounter some problems.
This model’s main issue relies on how it shapes the latent space. Indeed, when we
sample the latent space in a zone that has not been modeled, the network output
will be completely non-sense. To permit the sample, a latent space must satisfy
two main properties:

1. Continuity: two close points in the latent space should give similar outputs;

2. Completeness: any point in the space should give meaningful outputs.

We can say that the Auto-Encoder does not respect both of these properties because
it is not trained to have any structure in how it organizes the latent space.

11

Literature Background

Researchers aim to solve this problem by introducing a probabilistic approach to
the Auto-Encoders: the Variational Auto-Encoders.

3.2 Variational Auto-encoder (VAE)
In contrast to what was done before, a variational Auto-Encoder is trained to
model the latent space distribution over the data, postulating that the data we are
trying to learn depends on a multidimensional latent (unknown) R.V. Z, which
represents some data characteristics such as orientation, position, etc.

As we have already seen in the Variational Inference derivation, we want to model
an unknown/intractable distribution pθ(z|x) by employing a parameterized known
distribution selected from a specific family. In this case, a Gaussian distribution
was used.
The Objective can be derived by minimizing the K.L. divergence between the
approximating qϕ(z|x) distribution and the true one pθ(z|x).

DKL(qϕ(z|x)∥pθ(z|x)) =
Ú

qϕ(z|x) log
A

qϕ(z|x)
pθ(z|x)

B
dz

Following the same procedure used for the ELBO derivation, exposed in the
Mathematical foundation section 2.4 we can write:

log pθ(x) ≥
ELBO, L(x,θ,ϕ)ú ýü û

EZ∼q [log (pθ(x|z))]ü ûú ý
Reconstruction Term

− DKL(qϕ(z|x)∥pθ(z))ü ûú ý
Normalization Term

∗
θ,

∗
ϕ = argmaxθ,ϕ L(x, θ, ϕ) (3.1)

The K.L. divergence term is minimized and tells us how much the true prior pθ(z)
and the approximating posterior qϕ(z|x) differ from each other. The expected value
of the likelihood is maximized and tells us how well the data is reconstructed.

We can also see the loss’s K.L. divergence term as a regularization term for
the modeled latent space, ensuring that the model will learn a well-structured
continuous and complete (in section [3.1]) latent space. Thanks to that, if we want
to sample an ever-seen point in the distribution, the generation does not produce
meaningless data but can blend through the latent space modeled characteristics.
In order to generate new data from a VAE, we can randomly sample a set of
parameters θ, ϕ from the latent space to use then the trained decoder network
which will produce new data.

12

Literature Background

3.2.1 VAE general Architecture
The Variational Auto-encoder is often implemented using two deep described
in the paper [2], symmetrical neural networks structure composed of a convolu-
tional encoder and a convolutional decoder. We have an encoder Network that
works by modeling the posterior distribution qϕ(z|x) while the decoder network is
trained to reconstruct the original data modeling the likelihood distribution pθ(x|z).

Figure 3.1: Vanilla Convolutional VAE architecture. Image from [3]

Since its discovery, numerous variations of this approach have been explored
to enhance its performance on reconstruction capabilities. A VAE can also be
considered as a data compressor or a feature reduction method that encodes input
values into a numerical representation with lower dimensionality compared to the
original data. This is achieved through the convolutional nature of the down-
sampling structure, which extracts the most crucial features contributing to the
image composition while disregarding irrelevant information. By doing so, the
decoder can faithfully reconstruct the images. Furthermore, it is frequently utilized
as an intermediate step for preprocessing data into a low-dimensional form, thereby
enabling resource savings in more computationally intensive stages of complex
pipelines.

For example, we can encode a 512x512x3 image in a low dimensional matrix
(64x64x4) and then use this new compressed data to shrink down the information
to the most important one and train other networks to preserve computational
power.

Posterior Collapse Problem

One of the main problems while training a VAE is called posterior collapse [4] [5].
This occurs when the learned variational distribution becomes very similar to the
prior distribution. As a result, the generative model loses its ability to utilize all
the information in the latent dimensions. The latents are ignored when they are

13

Literature Background

paired with a mighty auto-regressive decoder.

Blur Effect on generated Images

Another commonly encountered issue is the generation of images with a blurred
effect on the reconstructed data. This problem arises due to the pixel-wise or
element-wise reconstruction loss which promotes smoother and more averaged
images rather than sharp and realistic ones. Furthermore, VAEs rely on the
assumption that both the latent variables and the data conform to Gaussian
distributions, which might fail to capture the true complexity and diversity present
in the data, resulting in a loss of information during the encoding and decoding
stages.
One way to address this issue can be done by using a "Perceptual Loss" instead of
using a L2 reconstruction loss.

3.2.2 Perceptual Loss
The underlying concept behind Perceptual Loss is easily comprehensible. Employing
an element-wise reconstruction loss might fall short of capturing the true essence of
image dissimilarity. In fact, it is possible for two entirely distinct images to exhibit
similar pixel values, leading them to be erroneously perceived as similar, despite
their significant dissimilarities.

As shown in 3.2, instead of using a straightforward L2 Loss, which focuses on
pixel level computing the element-wise difference between pixels, we use another
network trained to extract high-level features of images, to then compute the L2

loss on the features level. Usually, the VGG16 model is used. This process
evaluates the difference between two images focusing on their general structure
favoring the perceptual similarity (from here the name "Perceptual loss") over their
pixel value similarity.

14

Literature Background

Figure 3.2: High-level functioning scheme of Perceptual Loss.

3.3 Generative Adversarial Networks (GAN)

In the landscape of the generative models, we can’t avoid mentioning the Generative
Adversarial Networks, otherwise called GANs. They remain the undefeated state-
of-the-art generative model in terms of the quality of the synthetically generated
data. Today they have widely used thanks to their generation process’s extreme
efficiency and velocity. In fact, they need only one pass through the network to
produce new samples, which is in contrast with the DM technology analyzed in
this thesis.

We have a Generator network that needs to improve at producing even more
realistic images and a Discriminator network that has to improve its discrimination
capabilities in trying to choose if a generated image is from the dataset (Real) or
generated by the network (Fake). The two networks are jointly optimized using
a min-max algorithm where, while a network minimizes its objective, the other
network, in parallel, maximizes its loss. The GAN loss is composed of two main

15

Literature Background

terms:

ObjectiveGAN(G, D) = Ex∼p(x) [log D(x)] + Ez∼p(z) [log(1 − D(G(x)))]

LossGAN = minüûúý
G

maxü ûú ý
D

ObjectiveGAN(G, D)
(3.2)

Where:

• D(x) is the Discriminator Output for the real Data taken from the dataset;

• D(G(x)) is the Discriminator Output when it is given synthetically generated
data from our generator.

In a nutshell, the Generator has to fool the Discriminator.
Once trained, we can discard the discriminator remaining with the trained convo-
lutional generator network only. The beauty of this model lies in its conceptual
simplicity.

3.3.1 GANs Instability Problems
Usually, GANs suffer from instability during training, resulting in the model never
converging. Moreover, the model can also collapse its representation capabilities,
reducing the produced outputs’ variability. These problems are usually challenging
to control and prevent. Indeed GANs need a lot of tuning and time. This lack of
controllability puts the need to find new generative models that can offer more
control both during training and inference time.

3.4 Vector Quantized VAE (VQ-VAE): modeling
a discrete latent space

The need to introduce the GAN and the VAE has the final purpose of giving the
correct intuition and knowledge behind the next concept: VQ-VAE. The VQ-VAE
introduced by Van Den Oord et al.[6], and further improved by the "Generating
Diverse High-Fidelity Images with VQ-VAE-2" [7], is a method to learn a discrete
latent space instead of a continuous one. According to the authors, this would help
mitigate the posterior collapse problem, which, as previously explained, is one of
the main issues of VAEs. Structurally is very similar to a vanilla VAE, where we
have a symmetrical convolutional structure with an encoder and a decoder network
but with an important difference.

16

Literature Background

Figure 3.3: Scheme of VQ-VAE from the paper [6]

17

Literature Background

After the encoder forward step, the continuous latent space is transformed
through a discretization step. This new representation is then given to the decoder
network, which will learn how to decode the data starting from a discrete one.
One of the main issues is that since we are working with discrete space, during
the backward pass, we have to back-propagate a piece of information that is not
differentiable.

The Code-Book

To make this happen, we need to describe the quantization procedure and illustrate
how learning a usable representation from data can be possible.

Firstly, we must define what a Discrete Embedding Space is. We can see
this space as an ensemble of K vectors of dimension D which compose the Discrete
latent space R of dimensionality KxD. This space is commonly referred to as the
Code-Book in literature, characterized by a dimension of RKxD.
The quantization algorithm can be described as follows:

1. Subdivide the continuous latent space into continuous sub-vectors;

2. For each continuous sub-vector find the nearest using L2distance discrete
vector in the Code-book;

3. Substitute the continuous sub-vector with the corresponding discrete vector
in the Code-book

We have to denote that we can choose to use multiple discrete Code-Book
vectors to represent each encoder output. This choice expands the range of possible
combinations of discrete vectors available to the model, resulting in an increased
capacity to encode a greater amount of information within the Code-Book
maintaining a relatively small dimension for the Code-Book. Intuitively, the biggest
the Code-Book, the more information can store.

Formally:

zq(x) = argmin∥ze(x) − ej∥
zq(x) ∼ qϕ(z|x)

(3.3)

Where:

• ze(x) is the output of the encoder.

• zq(x) is the output of the quantizer.

18

Literature Background

• ej is the jth vector and j ∈ R = {0, 1, ..., R − 1}. Each vector has dimension
D;

In the long run zq(x) will be a discrete approximation of the continuous qϕ(z|x)
which is the encoder approximating posterior.

The objective function should take into account the fact that the discretization
operation is not differentiable, so the researcher decided to compute the Gradient
of the objective

Loss = log p(x| zq(x))ü ûú ý
Reconstruction Loss

+ ∥sg[ze(x)] − e∥2
2ü ûú ý

Code-book Loss

+ β ∥ze(x) − sg[e] ∥2
2ü ûú ý

Commitment Loss

(3.4)

The sg term stand for Stop gradient and mean that the gradient, on that
term, will not be computed.
The decoder optimizes the reconstruction loss term only, the encoder optimizes the
reconstruction and the Commitment loss terms, while the embeddings are instead
optimized by the code-book loss term.

In section 3.2 of the paper [6] we can read:

"The gradient of the loss ∇Loss will be passed unaltered to the encoder.
Since ... the gradients contain useful information for how the encoder
has to change its output to lower the reconstruction loss."

Below I reported a snippet of code that contains the actual implementation of
the Code-book loss from the Quantizer class to demonstrate and visualize how to
implement the Stop Gradient terms of the loss equation.

The code-book loss is used to move the embeddings toward the encoder outputs.
The commitment loss is important not to make the loss diverge by encouraging
the encoder to "commit" to a specific vector in the code book rather than mapping
it to an arbitrary location. By penalizing deviations from the chosen code-book
vectors, the commitment loss pushes the encoder to learn embeddings that are
closer to the selected code-book vectors.

3.4.1 VQ-GAN
This model was well studied and analyzed in the paper "Taming Transformer" by
Patrick Esser et al. [8]. VQ-GANs structure is very similar to the VQ-VAE. The
two main differences between these two models are the addition of a patch-based
discriminator and a perceptual loss. Obviously, the model, such as in the vanilla
GAN case, is trained in an adversarial way.

19

Literature Background

1 import torch , torch . nn as nn
2

3 c l a s s Quantizer (nn . Module) :
4 de f __init__(s e l f , n_e , e_dim , . . .) :
5 . . .
6 # Def ine the codeBook space
7 # n_e = K and e_dim = D
8 s e l f . embedding = nn . Embedding (s e l f . n_e , s e l f . e_dim)
9 . . .

10

11 de f forward (s e l f , z , . . .) :
12 z = rear range (z , ’b c h w −> b h w c ’) . cont iguous ()
13 z_f la t t ened = z . view (−1 , s e l f . e_dim)
14 . . .
15 # d = Distances from z to embeddings e_j
16 # = (z − e) ^2 = z^2 + e^2 − 2 e ∗ z
17 min_encoding_indices = torch . argmin (d , dim=1)
18 z_q = s e l f . embedding (min_encoding_indices) . view (z . shape)
19

20 # Compute l o s s f o r embedding
21 l o s s = s e l f . beta ∗ \
22 # Commitment Loss
23 torch . mean ((z_q . detach ()−z) ∗∗2) +\
24 # Code−book Loss
25 torch . mean ((z_q − z . detach ()) ∗∗ 2)
26 . . .

Figure 3.4: Codebook Loss computation. From line 20 in the code, we can read
the actual implementation of the correspondent formula 3.4

First of all, they substitute the reconstruction loss term log p(x| zq(x)) with a
perceptual loss which allows the model to not only learn pixel-level information but
also helps focus on an image structure level increasing the sharpen and decreasing
the blurriness of the generated images.

The Loss for the VQ-GAN is indeed composed of two main parts:

1. The already presented VQ-VAE loss 3.4;

2. The GAN loss is defined as:

Lossd = log D(x) + log(1 − D(x̂))ü ûú ý
Discriminator Loss

20

Literature Background

Latent Space at t = 0

Code-Book entries

Encoder output

Latent Space at t = 1

Code-Book entries

Encoder output

Figure 3.5: The commitment loss has the effect of moving the encoder outputs
towards an embedding

Total VQ-GAN total Loss is the sum of the two:

LossvqGan = LossvqV ae + λ · Lossd (3.5)

Where λ is a weight on the Discriminator loss computed on each iteration- It is
called "adaptive weight" and serves as a trade-off between the two losses.

3.5 Denoising Diffusion Probabilistic Models
(DDPM)

Denoising Diffusion Probabilistic Models are the new state-of-the-art model in
terms of output quality. They are now the current running model at the base of very
famous architectures such as Stable-Diffusion, by Stability AI, Dall-E 2 by OpenAI,
and MidJourney. DDPM shows a groundbreaking capability in text-to-image tasks
because they are very good at modeling the latent space where to sample from,

21

Literature Background

Figure 3.6: VQ-GAN structure presented by the paper [8].

given a large amount of data. A diffusion model takes inspiration from the physics
concept of diffusion. It can be seen as a Markov chain of events where we go,
step by step, from one distribution to another. In a Markov chain, each event at
time-step t depends only on the event at time-step t − 1.

3.5.1 Forward Process
We want to corrupt our initial data with Gaussian noise to have pure isotropic
Gaussian noise at the end of the procedure. [9] [10] [11] Isotropic Gaussian noise is
a Gaussian that has the Covariance matrix in the form: Σ = σ2I. So at each time
step, we add Gaussian noise to the distribution creating a new distribution from
which we will sample from the next time-step.

Given an R.V. X, representing our input data, we call q(X) the distribution
that models our data.
We denote also xt a sample from the distribution q(xt) such as:

x0 ∼ q(x0) and in general xt ∼ q(xt)

where t is the ith time-step in the interval [0, T].

Here we can note that the actual sampling operation depends on the previous
time step through the previous distribution state.

If we say that q(.) is on the family of the Gaussian distribution, we can write:

q(x) ∼ N (x; µ, Σ) (3.6)

We define the µ and β depending from the current time-step:

µt =
ñ

1 − βtxt

Σt = βtI
(3.7)

22

Literature Background

The variance β lies in the interval [0,1] and, by coupling it with the identity matrix,
we can extend the variance on a multi-dimensional model which has the same
variance on each feature. By so, the Covariance Matrix is defined as Σ = βI.
Varying the variance we can control the amount of noise we add at each time step.
In this way, we can schedule the quantity of noise we add at each time step.

So given the Markov chain of events, we can define the sampling operation as
follows:

Sampling: xt ∼ q(xt|xt−1)

Let’s connect the above consideration in one equation. We can write:

q(xt|xt−1) = N (xt;
ñ

1 − βtxt−1, βtI) (3.8)

The above equation represents one step of the Diffusion Process where we modify
the data distribution by injecting at each time-step Gaussian Noise.

3.5.2 Reparametrization Trick in Diffusion Models
We can exploit the fact that a sampling in an R.V. modeled by a Gaussian can be
written as a function of a deterministic term and a stochastic one that can not be
learned. To obtain a sample at a random time-step t, we can generally write:

x = µ + Σ · ξ

xt =
ñ

1 − βtxt−1 +
ñ

βt · ξ

=
ñ

(1 − βt)(1 − βt−1)xt−2 +
ñ

βtβt−1 · ξ

= ...

=
ñ

(1 − βt)...(1 − β1)x0 +
ñ

βt...β1 · ξ

We can do a smart variable renaming calling:

αt = 1 − βt

ᾱt =
tÙ

s=0
αs

The term ᾱt is the cumulative product from 0 to t. Denoting that ξ does not
depend from time (ξ = ξt = ξt−1 = ... = ξ0) we can elegantly rewrite everything as:

xt =
√

ᾱtx0 +
√

1 − ᾱt · ξ

And we can derive the sampling equation in the new form:

23

Literature Background

q(xt|x0) = N (xt;
√

ᾱtx0, (1 − ᾱt)I) (3.9)
The advantages of this reparametrization are that we can pre-compute all the ᾱ

terms and, by doing so, we can sample the distribution in whatever time-step we
want, enabling training the network using random time-step as input. The other
important characteristic is that the sample at time t always depends on the initial
data x0 and not on the sample at the previous time-step xt−1.

The 3.9 formula can be summarized in one equation which takes into account
every time-steps and this final equation is called: trajectory.
The name trajectory derives from the fact it gives us a step-by-step view of the
way the distribution changes over time into another distribution.

q(x1:T |x0) =
TÙ

t=1
q(xt|xt−1) (3.10)

It can also be visualized as trajectories of the values of the random variable X
because, through time, it draws a path, a specific route, of R.V. realizations that
characterize the final value of that X

There is a problem though that if we want our distribution q(xt) at a random
time-step in this format we are obliged to start from time-step 0 until we reach
our chosen t. This operation is time-consuming and computationally expensive.
Moreover, the linearity in the training can not allow us to generalize well on the
time dimension during the training phase.

The solution is to re-parameterize the forward process in a way that will depend
only on the initial data x0 and the current time step t.

3.5.3 Backward Process
With the forward process, we learned a way to create a close-form trajectory
equation that samples into a data distribution that changes over time into pure
Gaussian distribution. But how we can reverse this process and how we can make
the network learn from it?

We have seen how q(xt|xt−1) is the sampling procedure in the forward process.
We can think of it as sampling from the posterior distribution defined by the
following Bayes Rule:

q(xt|xt−1) = q(xt−1|xt)q(xt)
q(xt−1)

So we can write the equation to extract the reverse process posterior.

q(xt−1|xt) = q(xt|xt−1)q(xt−1)
q(xt)

(3.11)

24

Literature Background

The problem that arises from that equation is that we do not have a close-form
for the posterior of the reverse process and for the normalization term as they
would require to know the distribution over our data input, which we do not have.
In particular:

• q(xt−1|xt) is our need reverse process posterior;

• q(xt|xt−1) this term is defined by us as a Gaussian trajectory from t = [0, T];

• q(xt−1) and q(xt) should be the distribution that models our data at time
step t. The problem is that it q(xt) which depends by construction on our x0
which is the initial data and we cannot have it at time-step=T .

We need a closed form of 3.11 equation to optimize and make the optimization
process available. Is indeed proved that if we condition the model directly on the
initial sample at time-step t = 0 (x0) we can obtain a close form for the reverse
diffusion Process. We can write the forward equation dependent from xt and from
x0:

q(xt|xt−1) = q(xt|xt−1, x0)

q(xt|xt−1, x0) = q(xt−1|xt, x0)q(xt|x0)
q(xt−1|x0)

And then, using the Bayes rule, extract the reverse posterior:

q(xt|xt−1, x0) = q(xt|xt−1)

q(xt−1|xt, x0) = q(xt|xt−1, x0)q(xt−1|x0)
q(xt|x0)

= q(xt|xt−1)
q(xt−1|x0)
q(xt|x0)

(3.12)

In this form, the 3.11 is now tractable since we know all the terms:

1. q(xt|xt−1) is the forward posteriors 3.8;

2. q(xt−1|x0) and q(xt|x0) as we have already defined them in 3.9.

It can also be seen as the forward posterior probability scaled by a factor q(xt−1|x0)
q(xt|x0) .

I recall some important equations:

1. N (x, µ, σ2) = 1
σ

√
2π

e− 1
2 (x−µ

σ
)

2. xt =
√

ᾱtx0 +
√

1 − ᾱt · ξ

25

Literature Background

3. q(xt|xt−1) = N (xt;
√

1 − βtxt−1, βtI) = 1√
2πβt

e
− 1

2

3
xt−

√
1−βtxt1√

βt

42

4. q(xt|x0) = N (xt;
√

ᾱtx0, (1 − ᾱt)I) = 1√
2π(¯1−αt)

e
− 1

2

1
xt−

√
ᾱtx0√

1−ᾱt

22

Substituting everything in 3.12 and simplifying we obtain:

β̃t = 1 − ᾱt−1

1 − ᾱt

· βt

µ̃t(xt, x0) =
√

αt(1 − ᾱt−1)
1 − ᾱt

xt +
√

ᾱt−1βt

1 − ᾱt

x0

q(xt−1|xt, x0) = N (xt−1; µ̃(xt, x0), β̃tI)
Unfortunately, one problem still remains: we lack access to x0 at any time-step

t (where x0 represents the data without being corrupted by any amount of noise).
To understand better why this is an issue, let’s consider this question from a

different perspective. Our intention is to generate a new data sample by starting
with pure Gaussian noise. However, from the formula, we see that this process
necessitates the availability of the data that we want to generate from time-step
t = T . Drawing an analogy to the task of image synthesis, we encounter the
paradoxical requirement of having the target image itself as a prerequisite for its
generation, which is simply not logical.

Nevertheless, it still makes sense. By employing this inverse trajectory in con-
junction with the target image, it becomes possible to faithfully reconstruct the
target from a state of pure Gaussian noise, provided that the process is conditioned
upon the target. Intuitively, this involves the selection of the optimal denoising
trajectory among countless possibilities, as we possess knowledge regarding the
precise extent and location for noise removal (i.e., where to proceed along the
trajectory) at each time step.

From here, the necessity to approximate the backward process with a new
distribution which in the literature is called p(x).

We define the approximated backward process using a Normal distribution as
done for the forward. The formulation for the reverse process as a function of p is:

p(xt−1|xt) = N (xt−1; µθ(xt, t), Σθ(xt, t))

Or in trajectory form:

pθ(x0:T) = p(xT)
TÙ

t=1
pθ(xt−1|xt)

26

Literature Background

3.5.4 Training Objective Function
Now we have the mathematical basis behind the forward and backward concept,
which leads to the making of the diffusion process. In the next step, we need to
formalize how we can obtain and optimize a loss function in order to fit a Neural
Network on our data. Then we will use the NN to the backward posterior and
generate new images starting from pure Gaussian noise.

We start with the two trajectories equation in mind. As in the VAE objective
derivation, we can minimize the KL divergence between our true distribution and
another distribution that tries to approximate it, particularly since we are dealing
with trajectories, the intractable backward trajectory, and our approximating
backward trajectory.

DKL(q(x1:T |x0)∥pθ(x1:T |x0)) =
Ú

log
A

q(x1:T |x0)
pθ(x1:T |x0)

B
q(x1:T |x0)dx1:T (3.13)

Derivation:

=
Ú

log
A

q(x1:T |x0)
pθ(x1:T |x0)

B
q(x1:T |x0) dx1:T

=
Ú

log
A

q(x1:T |x0)pθ(x0)
pθ(x1:T , x0)

B
q(x1:T |x0) dx1:T

=
Ú C

log
A

q(x1:T |x0)
pθ(x1:T , x0)

B
+ log pθ(x0)

D
q(x1:T |x0) dx1:T ; pθ(x1:T , x0) = pθ(x0:T)

= log pθ(x0) +
Ú

log
A

q(x1:T |x0)
pθ(x0:T)

B
q(x1:T |x0) dx1:T

= log pθ(x0) + Ex1:T ∼q(x1:T |x0)

5
log q(x1:T |x0)

pθ(x0:T)

6
; log pθ(x0) − ELBO

If we recall the variational Inference equation 2.20 we can use the same consid-
erations made previously together with the ELBO notion to derive the objective
function.
We know that the KL-Divergence must be ≥ 0 so we can finally write:

log pθ(x0) + Ex1:T ∼q(x1:T |x0)

5
log q(x1:T |x0)

pθ(x0:T)

6
≥ 0

log pθ(x0) ≥ −Ex1:T ∼q(x1:T |x0)

5
log q(x1:T |x0)

pθ(x0:T)

6 (3.14)

We have again found an optimizable objective using the negative log-likelihood
as a lower bound. Now we need an analytically computable form for the above
equations. I skip the passages and I’ll go straight to the point here:

27

Literature Background

log pθ(x0) ≥Eq[log pθ(x0|x1)ü ûú ý
L0

]

−Eq[DKL(q(xT |x0) ∥ pθ(xT))ü ûú ý
LT

]

−
TØ

t=2
Eq[DKL(q(xt−1|xt, x0) ∥ pθ(xt−1|xt))ü ûú ý

Lt−1

]

(3.15)

We want to have an analytical form for the term Lt. After replacing and
simplifying, we obtain:

Lt = Et∼[1,T],x0,ϵt

5
∥ϵt − ϵθ(xt, t)∥2

6
After all these steps, we are finally able to define this simple analytical equation

which is the L2 distance between the predicted noise and the true one. It is
differentiable so we can compute the gradient and optimize a Neural Network over
it. Neural networks are mathematical models very good at approximating complex
functions. We exploit their high approximation capabilities to fit the backward
trajectory through data.

3.5.5 U-Net Architecture
It is essential to understand the math behind the Diffusion model, but learning
more about how to implement it is equally important. It is important to discuss
what kind of neural network we should use to predict the amount of noise to be
removed. The most used one is the U-Net model structure which showed his high
capability on image segmentation tasks as shown in the original paper of "U-Net:
Convolutional Networks for Biomedical Image Segmentation" by Olaf Ronneberger
et al.[12].

28

Literature Background

Figure 3.7: Vanilla U-Net architecture from the "U-Net: Convolutional Networks
for Biomedical Image Segmentation" [12] paper. Each downsample step doubles
the size of channels and halves the feature’s dimension.

Its structure is very similar to the VAE, i.e., that has a symmetrical structure
composed of a down-samples (encoder) and a up-samples (decoder) network having
at the bottom a bottleneck convolution. It is implemented with some addition,
such as the residual connection between down-sample and up-sample layers of the
same level to help the gradient flow during the backpropagation. This network
characteristic helps to avoid or mitigate the gradient vanishing problem. Briefly,
the vanishing gradient problem happens when the gradient of the loss collapses
and becomes closer to zero step by step, preventing the model from learning. In
the context of Diffusion Models, they are implemented with self-attention modules,
some layers which are useful for the network to give more importance to some
discriminating features.

As explained in the paper [13], improvement can also be made in the way we
decide to schedule the operation of adding noise to the network.

29

Literature Background

3.6 Latent Diffusion Models (LDM)
The major problem with DM is that they are very demanding to train due to their
linear pipe-lined structure over T time-steps. The sampling procedure from the
trained model takes a lot of time compared with the previous SOTA method, such
as GANs.

Let’s consider this term: to generate a new image, we need to go through T
denoising steps, which involve calling the forward function of our model T times.
Subsequently, we obtain an image with progressively reduced noise compared to
the previous iteration.

To generate our final, completely denoised image, we have to generate a total of
T intermediate images, which is very computationally expensive. Moreover, if we
also think that the computation required scale in a quadratic way to the resolution
of the generated image, we can easily understand how the problem scale out very
quickly, leaving us with few optimization options.

3.6.1 Combining Latent Representation with DDPM
The researcher’s idea was to take advantage of the excellent compression capability
of the Auto-Encoder to reduce the initial size of our data to a smaller and light
one and then apply the diffusion process to the reduced data.

As already seen in the previous section, when discussing VAE, we can encode
a data source in a low-dimensional version of itself in a way that preserves its
most important features. This gives us a representation that holds the very useful
characteristic of the original data leaving out all the high frequency and noisy
features, which are well-known to be hard to be appropriately modeled.

The LDM approach is indeed composed of two independently trained stages:

1. An Encoder-Decoder network which can be any VAE VQ-VAE, VQ-GAN,
KL-VAE, etc..: whose main purpose is to reduce the dimensionality of the
input;

2. The Diffusion process: which is implemented using a U-Net applied on the
low dimensional feature latent space produced by the Encoder.

Once the model is trained, we can exclude the encoder component. We initialize
the denoising U-net with low-dimensional pure Gaussian noise and iterate through
the denoising process T times. The output of the denoising U-net is then passed to
the Decoder Network, which aims to reconstruct the original-sized image.

Despite reducing the input size significantly, the diffusion operation remains
computationally and time-intensive. This challenge becomes particularly critical

30

Literature Background

during the evaluation phase. Evaluating a generative model requires a substantial
number of samples to accurately estimate the similarity between the generated and
real data distributions, and this process can be time-consuming.

31

Chapter 4

Materials and Methods

After the previous general treatment of the necessary concept, we start speaking
about the work that has been done to implement a first working prototype. Here I
present all the details of the used dataset together with the implementation behind
the different experiments that led to the development of the final model. The
Experiment section is indeed organized into two main parts where in the first, I
present the results of how I used a simple model to understand the functioning at
the core of DM, and then go on to explain the very final implementation and all
the resources problem we encountered to make it work.

4.1 Resources
Available Hardware

To conduct the experiments, I had access to two primary hardware resources. Firstly,
I utilized a Google Colab Pro account, which provided access to an NVIDIA
A100 GPU with 40GB of memory. This powerful resource allowed me to carry
out extensive computations.
Additionally, Links Foundation granted me access to a Cluster equipped with
NVIDIA 4 GTX 1080Ti GPUs, each with 12GB of memory. While primarily
used for preliminary testing, this resource was crucial in preparing for the final
training phase, which demanded more memory.

Used Software

The code was developed exclusively in PyTorch, serving as the core library for
the project. To ensure compatibility, I used PyTorch Lightning as a development
framework. This Machine Learning Tool offers a convenient wrapper for PyTorch,
simplifying the management of the model during the training and evaluation phases.

32

Materials and Methods

It also automatically implements and handles some useful multi-GPU strategies
making development much easier.
For dataset preprocessing, I leveraged Albumentations, a powerful library that
outperforms TorchVision in terms of speed.

4.2 Dataset
During the experimenting phase, I used two main datasets. During the initial
experiments I used the "Letters Font" dataset as it can give more distinguishable
results than an abstract image to then, in the second part, make use of my bench-
mark dataset which is a custom Wiki-Art.

4.2.1 Letters Font Dataset
With my initial simple model, I have used the "Letters font"1 dataset, which is
composed of 390k grey-scale images subdivided in 26 folders (A-Z) of rendered
grayscale alphabet characters using over 14900 fonts, each with a size of 32×32
pixels. The motivation behind this choice is that, at first, I want data to have two
main characteristics: data gas to be highly recognizable, and the resolution of the
input must be low in order to permit fast experimentation without worrying about
memory resources during this phase. Considering a grayscale dataset simplifies
all the training because an image can be represented with only one channel of
values in the range of [0, 255]. This can potentially significantly reduce memory
requirements and speed up the training. In opposition to that, I decided anyway
to treat the images as a 3-channel RGB grayscale value to observe how well the
model behaves in a dataset setting that overall is similar to the final one.

4.2.2 Wiki-Art Dataset
The second phase of the experiment is characterized by trying to scale out the
model with a complete, fully functional DM and training it on the benchmark
dataset to accomplish our final target of comparing our results with the StyleGAN
ones. This dataset is indeed the one on which we train the StyleGAN. The dataset
I have is a custom version of the Wiki-Art dataset. It is composed of 19k abstract
painting images with a resolution of 512x512 already cropped in the center to
maintain the spacial details coherent and not introduce distortions. Some images
were discarded because they may portray only one plain color (a completely Blue

1External Link to the Kaggle Dataset

33

https://www.kaggle.com/datasets/thomasqazwsxedc/alphabet-characters-fonts-dataset

Materials and Methods

Figure 4.1: Images of Letters font dataset

image, for example), and that kind of sample is not well representative of the
dataset with the risk of introducing instability in the training phase.

The images are subdivided into 8 different color categories as shown in Table
4.1.

Label Color N of samples Label Color N of samples
0 Orange 2586 4 Yellow 142
1 Green 2493 5 Red 647
2 Blue 388 6 Black 3531
3 Purple 4098 7 White 5889

Table 4.1: The table reports how many images are in each category together with
the corresponding discrete label.

Wiki-Art Dataset Issues

The dataset we use suffers from an un-balancing problem. Indeed the distribution
of the images inside the respective classes is, as shown by 4.3, not uniform. It is
important to highlight this issue because the way we organize data highly influences
the behavior and the performance of the model training. As shown by Figure
4.2, another important problem is that not all the images in the specific category
perfectly match the color they belong to. That leads to the generation phase to
obtain images based on a totally wrong color.

34

Materials and Methods

(a) It should be labeled as White
or Black

(b) It should be labeled as Green

Figure 4.2: Both images are labeled as Purple but clearly, they are wrongly
matched.

The subdivision in classes is made by taking an image, computing its average
color, and then taking the Euclidean distance of that value from all the color
categories in the RGB space. The class is assigned to take the color category with
the small distance value. In other words, we assign an image to its nearest color
category.

The problem with the RGB color space is that spatially near colors are often not
perceptually similar. It is true that the contrast between colors plays an important
role in the way we perceive them in an image. For example, darker colors are
accentuated by lighter colors and other factors.
I find a suitable solution to this problem by considering computing the color
category of an image using another color space which can also consider the way
humans perceive colors.
The CIE-LAB color space is perfect to solve this problem. It considers 3 different
parameters from the RGB: the perceptual lightness L, A, and B stand for the four
unique hues of human vision. (Unique hue is defined as a color that an observer
perceives as pure, without any admixture of the other colors).
A trivial attempt I made was to re-cluster the dataset using CIE-LAB color space.
I have applied the following algorithm:

1. Read the image RGB values and remap them to CIE-LAB color space;

2. Compute the mean on each color axis to obtain the average color of the image;

3. Compute the distance from the average color of the image and all the label
colors.

35

Materials and Methods

Figure 4.3: The chart shows how the images are subdivided in the corresponding
color category color by percentage. It is clear how highly unbalanced the dataset
is, where 30% of the images are under the white label, but only 1% of the images
are in the yellow one.

4. Take the Color labels that have the minimum distance from our average color.

After this re-clustering, I noticed how the re-distribution of images has deeply
changed but the number of samples in each category remains highly unbalanced.

4.2.3 Pre-Processing
All images from all datasets are pre-processed using the Albumentations Python
library. In the pre-processing pipeline, the images are first cropped and then resized
to match the base resolution of the experiment. The cropping step is performed
prior to resizing to ensure the preservation of the spatial distance of the details in
the images, avoiding any deformation. Introducing additional deformations during
the process could lead to the model learning from distorted images, which may

36

Materials and Methods

Figure 4.4: Images of Custom Wiki-Art Dataset. The figure shows four images
per color label. From left to right, top to bottom, we have Yellow, Orange, Black,
Red, White, Green, Blue, and Purple.

result in producing distorted outputs.
Secondly, I re-scale the range of values from RGB integer between [0, 255] to a

float range that goes [−1, 1], which is a more suitable range for the networks to
work with.

4.3 Experiments Decription

4.3.1 Conditioning the Network
From the start of this project, our goal has been to provide immediate answers to
two key aspects: how to condition the DM to a label and how to tailor its behavior
to align with our desired tasks.

Out in the wild, there are a lot of existing implementation of DM pre-trained
pipeline but everyone focus their attention on text-to-image or other similar text-
based tasks because, at the moment, the research convolves around this topic of
interest. To have an idea, a text embedding is a Numerical representation of the
variable length of some piece of information to make it computer readable. In the
case of text embeddings, the embedding captures the meaning of a word but also,
in the case of a sentence, encapsulates the meaning of a word with respect to the

37

Materials and Methods

other ones providing a good amount of context to the model, which will be guided
through them. Because of the Diffusion of text-to-image tasks, a very important
amount of the literature, examples, and pre-trained models are DM-guided using
the information provided by a text label.

Instead, very few explicit materials teach how to condition the diffusion model
on a simple discrete label properly.

In this work, I experimented with two principal methods to condition the U-net:

• Concatenating the label-embedding immediately after the positional encoding;

• Pass the label-embedding directly through the cross-attention mechanism

First, I present some initial experiments based on the concatenation method.
In the second phase of experiments, I then expose the advantages of using a
cross-attention mechanism.

4.3.2 Use positional Encoding for time conditioning the
network

Previously we explained how the DM is Time-dependent in the sense that at any
time T, I have to remove a certain amount of noise from the data. As a consequence,
the model needs some kind of mechanism capable of properly supplying the time
information. This will make the model aware of what the time is in order to
decide how much noise we have to subtract from the data. The way we insert
this information inside the model training is very clever and it was introduced
by the "Attention Is All You Need" [14] paper, previously used to encapsulate
the positional meaning for the transformer structure. This is needed because the
transformers architecture takes a bunch of embeddings altogether, which is where
they differ from the LSTM models.

The idea is to use the same approach used to encapsulate positional meaning
for the time dependency, which is, in a sense, a kind of positional information.
The procedure involves using sine and cosine functions of increasing frequency
so that, by sampling them at different positions, we can ensure near embeddings
maintain similar values, also for high frequency, and tend to differ when very far
apart.

PE(pos, 2i+1) = sin
3

pos

10000 2i
d

4
PE(pos, 2i) = cos

3
pos

10000 2i
d

4
The above formulas are used to compute positional embedding, where:

• pos is the position of the embeddings in the series;

38

Materials and Methods

Figure 4.5: Time dependency in positional embeddings. Temporally near embed-
dings will have similar values because spatially near sampling in the sine/cosine
function results in small changes in both low and high frequencies.

• i is the ith value of the single embedding, which also represents the frequency
of the sine function we are considering;

• d is the dimension of the embedding. Taking the transformer case as an exam-
ple, this dimension is taken as the same size as the single-word embeddings.
In fact, it is shown that it is enough to sum together the positional
embedding and the word embedding to condition the network prop-
erly. The values start to repeat when the sequence of embeddings length is
greater than 10001.

In the example presented in figure 4.5, we can see how two positional embed-
dings that lie spatially near samples the sinusoidal functions in points that are
similar to each other. The fact that we use the sine and cosine functions is because
they are periodic, limited in range, and the differences between adjacent values
in the positional embeddings follow a smooth pattern. In the case of sine/co-
sine positional embeddings, the values are symmetrically distributed around zero,
meaning that the positive and negative values alternate. This symmetry helps
capture the relative positions of tokens effectively. Also, the differences between
values decrease or diminish as the distance between the positions of the tokens
increases. This property is desirable because it allows the model to capture the
notion of sequential order and relative distances between tokens in a meaningful way.

However, other functions with similar properties can be used as substitutes.

39

Materials and Methods

1 UNET_CLASS(nn . Module) :
2

3 de f timestep_embedding (s e l f , time , dim) :
4 half_dim = dim // 2
5 embeddings = math . l og (10000) / (half_dim − 1)
6 embeddings = torch . exp (half_dim ∗ −embeddings)
7 embeddings = time [: , None] ∗ embeddings [None , :]
8 embeddings = torch . cat ((embeddings . s i n () , embeddings . cos

()))
9 re turn embeddings

10

11 de f __init__(s e l f , num_classes , t_emb_dim) :
12 . . .
13 s e l f . label_emb = nn . Embedding (num_classes , t_emb_dim)
14 s e l f . time_embed = timestep_embedding (t imes teps)
15 . . .
16

17 de f forward (x , t imesteps , l a b e l) :
18 t_emb = s e l f . time_embed (t imes teps)
19 # Embedding the time to the p o s i t i o n by adding
20 # togethe r t h e i r va lue s
21 emb = s e l f . label_emb (l a b e l) + t_emb
22 . . .
23

24

Figure 4.6: Pseudocode that shows how time embeddings are added together
with the label embedding.

4.4 Control the Diffusion Process

4.4.1 Guide the Diffusion
The Diffusion can be guided, to some degree, using another piece of data, which
helps guide the final data generation. With the word "Guide," we mean that we
give the network additional direction information to steer the sampling trajectory
toward a distribution section where it is more probable to find more consistent
results with the provided label. In other terms, we can see this operation as
increasing the probability of sampling in a zone of the modeled distribution that
better represents our label.

This operation can be done mainly in two ways:

1. Guide the Diffusion during the generation phase using the gradient of an

40

Materials and Methods

additional pre-trained Classifier;

2. Guide the Diffusion, using the model itself during the sampling, training it
using an additional label that we will call "Zero-label.".

4.4.2 Classifier-Guided Diffusion
This method relies on another, separately trained classifier defined as f(y|x, t). This
classifier is a discriminative model which directly estimates the posterior probability
f(y|x). We can train it to predict a label given a noisy image, at time-step t, as
input. The guidance is performed by summing the gradient log posterior of the
classifier to the mean of the Gaussian in the backward process during the sampling
phase.

µ̃t(xt, x0) = µt(xt, x0) + s · ∇ log f(y|xt) (4.1)

Where s is a guidance scale and ∇ is the gradient of the classifier posterior.
This method has a drawback: we heavily rely on an external classifier, but by doing
it, we introduce a dependency of our DM on the classifier’s performance.

4.4.3 Classifier-Free Diffusion
This method was introduced and described in the [15, Classifier-Free Diffusion
Guidance]. We can guide the diffusion sampling using the model itself. In order to
obtain good results, the model must be properly trained.

The intuition is that we train at the same time a label-conditioned version of the
model and an un-conditioned one. This operation can be done using a "Zero-label"
and putting some of the train-batch labels to the "Zero-label" label with some
probability. The "Zero-label" can be chosen from any number but must exceed our
labels’ range. For example, given a batch size of ten data samples, each paired with
a discrete label in the range [0, 7], the discrete label can be "Zero-label"= 7 + 1 = 8,
or similarly, we can shift our range to the left by 1 position [1, 8] and choose
"Zero-label"= 0:

Labels =
è
4, 7, 2, 3, 0, 3, 5, 2, 2, 3

é
We set "Zero-label" = 8 and we change the labels with some probability p.÷÷ÿ p = 20%

Labels =
è
4, 8, 2, 8, 0, 3, 8, 2, 8, 3

é
In the paper [15], researchers show results on training fixing the diffusion model

architecture but changing the unconditional-training probabilities p = 0.1, 0.2, 0.5.
In paragraph 4.2, the authors explain that using p = 0.1 or p = 0.2 produce quite

41

Materials and Methods

the same results in terms of sampling generation quality. Using p = 0.5 is instead
shown to worsen the quality. This finding demonstrates that it is not necessary
to train a lot of the model around the unconditional label. To quote the paper[15]:

"..., we conclude that only a relatively small portion of the model
capacity of the diffusion model needs to be dedicated to the unconditional
generation task in order to produce classifier-free guided scores effective
for sample quality."

1 de f t ra in ing_step (s e l f , batch) :
2 # SET the 20% of the l a b e l to the uncond i t i ona l c l a s s us ing a

random s t r a t eg y
3 batch_size = batch [" c l a s s _ l a b e l "] . shape [0]
4 l a b e l = batch [" c l a s s _ l a b e l "]
5 # I s e t the p r o b a b i l i t y o f True boolean mask to 20%
6 uncond_boolean_mask = np . random . cho i c e ([False , True] , s i z e=

batch_size , p =[0 .8 , 0 . 2])
7 l a b e l [uncond_boolean_mask] = batch [" uncond i t i ona l_ labe l "] [0]
8

9

Figure 4.7: Snippet of code of "Zero Label" assignment.

4.4.4 Cross Attention Mechanism
The concept of the attention mechanism originates from the seminal paper "At-
tention Is All You Need" by Vaswani et al. [14], serving as the foundation for the
powerful Transformers architecture. This mechanism possesses a unique ability to
amplify the importance of regions that are most likely to contain valuable infor-
mation relevant to the task at hand. Consequently, the model dedicates greater
"attention" to these specific regions within the input data, leading to enhanced
performance.

The cross-attention mechanism further empowers the model to focus on particular
regions of the input based on an external embedding, which can represent various
forms of information [16].

The true strength of the cross-attention mechanism lies in its versatility, allowing
us to condition the network on any chosen piece of data. This could range from text
embeddings and semantic masks to future experiments involving sound embeddings
directly, expanding the horizons of potential conditioning for generation tasks.

42

Materials and Methods

To effectively condition a deep model, this approach yields superior results
compared to the previous method of concatenating the label embedding after
the input data. In the case of the Latent Diffusion Unet, the label is seamlessly
integrated into the deeper layers using this mechanism.

4.4.5 First experimental settings

In order to understand the model and its building blocks, in the initial phase, I
decided to use a simpler model composed of a shallow convolutional U-Net with
4 down and up-sampling layers. It also implements a linear attention ("Linear
Attention Mechanism: An Efficient Attention for Semantic Segmentation" [17])
module on each level right before the down-sampling and up-sampling block.

The goal of this phase was to understand if my acquired knowledge and under-
standing of the theory was correct at that point of the project.

This first iteration works at pixel level on the original input resolution of
the images without an encoding phase. The loss function used was a simple
reconstruction L2 loss The training was done using a batch size of 512 images. In
order to produce acceptable results in terms of training was

Figure 4.8: Generated Letters. Interestingly, the model is trained using a random
Flip transformation on the y-axis and some letters are, in fact, correctly mirrored.

43

Materials and Methods

4.4.6 Second experimental settings
In the second phase, the attention is focused on reaching the target goal of producing
512x512 resolution images conditioned to a discrete color label. The code is heavily
based on the official repository of Latent Diffusion by CompVis2 which is the official
implementation of the correspondent paper "High-Resolution Image Synthesis with
Latent Diffusion Models"[18].

4.4.7 Latent Diffusion
Latent diffusion is an idea that makes use of a pre-diffusion phase where the input
dimensionality is reduced by another network which usually is a VAE. This is
mainly done for two principal reasons. Reducing the dimensionality decreases the
overall size of the network and the computation needed to train the model. The
second motivation is that a compression phase summarizes the data to contain
only useful and discriminant information ignoring useless data and favoring more
concise and meaningful outputs.

Two stage Model

Latent diffusion is structured into a two-phase model where, during the first
phase. To properly have an effective diffusion process, we need to have a fully
functional first stage. In the original paper[18], they make use of different first-stage
approaches considering KL-VAE, VQ-VAE, and VQ-GAN. I decided to use the
VQ-GAN because they were built with the purpose of solving some problems that
concern the vanilla VAE. There are two more parameters to take into consideration
when we spoke about VQ models and they concern the dimensionality of the used
code-book. The code-book dimension is a non-trivial hyper-parameter choice and,
if not properly chosen, can negatively impact both the performance of the final
generation capabilities and the computation required during the training. In this
case, we choose a code-book with a dimensionality of 16384x4 which can offer a
good amount of encoding possibilities while keeping small the dimension of each
code-entries.

Once chosen what model to use for the first stage, we have three options to
proceed with:

1. Train the VQ-GAN from scratch on our custom Wiki-Art Dataset;

2. Preform a fine-tuning of a pre-trained model on our Custom Dataset;

3. Use a pre-trained model;

2https://github.com/CompVis/latent-diffusion

44

Materials and Methods

Train the VQ-GAN from Scratch

This operation may offer the best performance, but reaching a good quality output
by training this model from scratch takes an unavailable amount of time and
computational resources. I have started training anyway from scratch only as a
proof of concept 4.9.

Figure 4.9: Qualitative results of VQ-GAN trained from scratch

Preform a fine-tuning of a pre-trained model on our Custom Dataset

A good compromise could be taking the model and fine-tuning it on our dataset.
This option combines the lack of time with the good performance that we can
potentially reach using fine-tuning. In reality, performing the fine-tuning starts
to degrade the reconstruction capabilities of the VQ-GAN model and for those
problems, I stick with using a pre-trained model, which is available from the
repository of "Taming Transformers" always by CompVis [8]. May a longer fine-
tuning can lead to better results, but I leave this task for future work.

Use a pre-trained model

I have adopted this solution because unify the quality of reconstruction to our lack
of time. From the reconstruction analysis performed on our custom dataset, the
pre-trained model reached very good results in terms of FID on our dataset, in
opposition to the previous results obtained with the fine-tuning. The other main

45

Materials and Methods

reason is that VQ-GAN tends to overfit if not properly trained or any an early stop
is applied. The Negative Log Likelihood (NLL) is a good indicator of overfitting.

In detail, the pre-trained model is trained on the OpenImages datasets and
has a reduction factor of 8. This means that, for example, if the input has a
resolution of 256x256, the Diffusion process will receive a 32x32 resolution latent
space (256

8 = 32). The choice of the reduction factor is made taking into account
the consideration made in the paper [8] where it is explained that the reduction
factor f = 8 is the best trade-off in terms of reconstruction precision and NLL. For
the VQ-GAN model details, please refers to the official GitHub Repository3. The
structure of the model is well explained in the official paper "Taming Transformer"
[8].

Figure 4.10: Structure of the used VQ-GAN [8].

As shown by the figure 4.10 this model implements an Encoder-Decoder structure
stacked up together as shown in figure 4.10. Moreover, to compute the perceptual
loss, utilize a perceptual network implemented using a pre-trained version of the
VGG16 model.

4.5 Denoising network
The Second stage of the LDM is composed of the U-Net, which performs the denois-
ing operations. The code for the U-net is taken from the official implementation of
OpenAI. The U-net class offers different settings, such as the possibility to choose
from a number of heads in the attention mechanism, the context dimensionality,
and the number of channels multiplier to create an arbitrarily deep U-net structure.

4.5.1 Model Structure
The model comprises a total of 400 million trainable parameters and 89 million
non-trainable parameters, with the VQ-GAN accounting for the latter. The U-Net

3https://github.com/CompVis/taming-transformers

46

Materials and Methods

architecture consists of 3 down-sample stages and 3 up-sample stages. It takes as
input a tensor of dimensionality BATCH − DIMx4x32x32, which is the resulting
latent space images extracted by the previous VQ-GAN stage. In each stage, the
channel size of the input doubles while the resolution halves. Additionally, two
residual connections are incorporated at each layer.

It is important to note that conditioning in this model is achieved through the
utilization of the Cross attention mechanism, which propagates the label embedding
across all stages of the U-Net. The label provided to the model is passed as a
512-dimensional embedding vector known as the context.

To enhance the model’s capabilities, an attention block is introduced after
each Residual Block, and this behavior can be customized. Furthermore, at each
downsample layer, the number of attention heads doubles, enabling the network to
extract meaningful information from lower-resolution inputs.

Figure 4.11: Simplified Structure of the used model

47

Materials and Methods

4.6 Speed up the sampling

4.6.1 DDIM and PLSM

Generating samples from a Denoising Model (DM) can be time-consuming due to
the iterative nature of the denoising process. Training the DM to remove noise
from an image using 1000 timesteps necessitates the same number of timesteps
to generate a new sample. Consequently, generating a new batch of images can
take several seconds. For instance, with our hardware configuration, generating 15
images with 1000 denoising timesteps typically requires around 4 minutes.

Fortunately, various methodologies have been devised to address this issue,
aiming to develop more efficient denoisers that effectively eliminate noise. The
paper "Denoising Diffusion Implicit Models" by Song et al. [19] presents a method
to reduce the number of denoising steps required during the generation process. By
utilizing the Denoising Implicit Model (DDIM) sampler, the number of denoising
steps can be decreased from 1000 to 200, significantly accelerating the generation
process.

Another denoiser, outlined in the paper "Pseudo Numerical Methods for Diffusion
Models on Manifolds" by Liu et al. [20] (PLMS), can reduce the number of samples
from 1000 to 50 while maintaining satisfactory result quality.

Due to resource and time limitations, I have chosen to employ the PLMS denoiser
during the generation phase to expedite the process. By utilizing PLMS as the
primary denoiser, I can generate a batch of 15 images in just 40 seconds on a 1080
Ti GPU.

4.7 Multi GPU computing

As previously said, the model was trained using Google Colab-Pro. It provides us
with a 40 GB Nvidia A100 which is enough to run the model with a good batch size.
The problem is with the time we can make the training run. Colab-Pro makes 500
Computational units available that, at maximum GPU load, are about 30 hours of
training. In this amount of time, I was able to train the model for 300 epochs with
a batch size of 64 latent images but it is clearly not enough.

To deal with this problem, a possible solution was to make the model train on
the other available hardware resources: the cluster.

Pytorch Lightning implements various strategies for multi-GPU training. For
my experiments, I choose two main strategies to try with. The first strategy is
called Distributed Data-Parallel (DDP), and the second one is called Fuly-Sharded-
Data-Parallel (FSDP).

48

Materials and Methods

DDP

Distributed Data-Parallel, as we can see from the image 4.12, sends a copy of the
model ‘P’ to all the available GPUs on the system.

(a) The model "P" is entirely copied in each
GPU

(b) The model "P" is spread through the
available GPUs

Figure 4.12: Images taken from video explanation by Lightning.ai. Link to video.

Each GPU is fed with a different batch of data, and the loss value is independently
computed by every GPU. As a result of this process, at the end of a single training
step, we will have different gradient values on each GPU.

To address this, a synchronization mechanism is employed prior to the back-
propagation step. This strategy ensures all GPUs possess identical gradients before
performing back-propagation, aiming to maintain uniformity across the model on
every GPU. However, a challenge arises in this implementation. Once loaded, our
model is too big to fit a single 12GB GPU and, since this strategy sends a copy of
the model to all GPUs, any of them can accommodate the complete model.

This strategy is not a suitable solution for our memory problems.

FSDP

The idea is we always give different batches to each GPU but we can also subdivide
the model itself.

For example, each GPU computes the gradient for the ‘P0’ on their relative loss
results. Then all the gradients are sent to GPU 0, which is in charge of managing
the ’P0’ part of the model. The other GPUs can immediately discard their ’P0’
gradient right after computing it because only GPU 0 needs to memorize it. In this
clever way, memory usage is reduced. In this way, we are able to train a relatively

49

https://youtu.be/w_CKzh5C1K4

Materials and Methods

big model on a modest resources machine, sacrificing on the batch size. We can also
use a sub-strategy called CPU-offloading which moves from the GPU memory to
the optimizer parameters, the gradients, and activation weight to the CPU memory
(RAM). When needed, it moves back on the GPU (VRAM). The downside of this
methodology is the GPU communication overhead.

50

Chapter 5

Results

5.1 Evaluation metrics

5.1.1 Fréchet Inception Distance (FID)

To evaluate the Model generation quality, we make use of the standard metric
Fréchet Inception Distance (FID), also used to assess the previous StyleGan im-
plementation. FID is a commonly used metric in the image generation field that
compares two sets of images. It measures the similarity between the real pictures
and the generated images, considering both the real dataset features distribution
and the visual appearance of the images. It uses an external pre-trained net-
work called Inception Network which is trained to extract features from images.
This network is used to extract features from both real and generated images.
Then statistics are computed, particularly the covariance matrix and mean of the
Gaussian distribution, which models the extracted features. The Fréchet Distance
is then applied to measure the dissimilarity between two multivariate Gaussian
distributions defined by the mean and covariance matrix.
A lower FID score indicates a closer similarity between the real and
generated images, implying better image generation quality.

When it comes to generating abstract images, the FID metric may not be the
most suitable choice since it fails to consider the essence of abstraction. If we aim
to create abstract content, relying on a metric that primarily evaluates similarity
to a dataset becomes irrelevant. FID is more applicable when assessing the quality
of specific objects like faces or well-defined subjects such as cars, where its ability
to compare against a dataset can be useful.

51

Results

FID Resources problems

To ensure optimal FID statistics, a minimum of 10,000 generated images compared
to 10,000 real samples is required. In state-of-the-art papers, typically, 50,000
samples are generated for each FID computation.

Given our hardware resources, generating 10,000 images for a single color
category using the fastest sampler (PLMS) on a single GPU takes approximately 7
hours. Consequently, it would take a total of 56 hours to generate 50,000 samples
for one label. Considering we have eight color classes and utilizing two GPUs, a
comprehensive analysis using 50,000 samples would require approximately 4.5 days.
However, it is unfeasible to freeze the training after a certain number of epochs
to compute the FID due to the significant increase in training time, which is not
accessible in our current hardware conditions.

As a solution, I conducted a partial analysis focusing on the FID with 10,000
samples from each color category only after completing the full training process.

Other Used Indicators

Since one of our goals was to generate images based on a color label, some results
will be evaluated basing the considerations exclusively on the coherence of the
produced color with the given color category. I provide some results considering
each image as a point in the three-dimensional space using both RGB and CIE-LAB
color space. The evaluation metric of the produced output will be the distance of
the image from its corresponding color label.

5.2 LDM Training Results
The presented LDM 4.5.1 was trained for a total of 34 hours with a batch size of
64 on an NVIDIA A100 occupying 32 out of 40GB on Colab-Pro. Due to time
limitations on GPU usage, the training was conducted in multiple attempts. The
objective of the training was to reach a minimum of 300 epochs, and we successfully
completed the training for the intended duration.

The weight update was done by computing the gradient of the L2 Loss between
the noise we add at a certain timestep T and the predicted one. The model was
also further trained using a copy of the weight to exploit the EMA update, which
has the purpose of reducing the weight variability throughout the training period.
The charts below show the trend of the training during the 300 epochs and I will
show the results at evaluation time together with the EMA weight. The gaps in
the charts are due to the different times the training was interrupted.

The behavior of the model during the is quite stable. During the first 10K steps,
the learning procedure proceeds very fast to then slows down for the remaining

52

Results

(a) LDM training Loss

(b) LDM validation Loss

time. Generally, the model continues to decrease its loss value, suggesting not to
have reached the final plateau of the learning curve. The interesting fact about the
loss is that even if the loss decrease by a relatively small amount, the produced
outputs continue to improve in quality and sharpness.

5.3 Generated Images
In this section, I present the LDM (Latent Diffusion Model) generated samples to
showcase its ability to produce images based on provided labels.

Figure 5.1 exhibits the generated images at a resolution of 256x256 pixels. The

53

Results

layout comprises nine rows, each representing a specific color label in the following
order: Orange, Green, Blue, Purple, Yellow, Red, Black, White, and "Zero-Label."
For more details about the "Zero-Label" and its assignment to the training samples,
please refer to Section 4.4.3.

The first image demonstrates how training without the classifier-free Diffusion
approach can capture the input color label. However, it occasionally falls short in
producing images with strong color bias. Additionally, the "Zero-Label" (last row)
generates images that lack meaning, uniformly colored with a dark blue hue.

In contrast, the model trained using the classifier-free guidance, with a scale
factor of one (indicating no application of the classifier-free technique), produces
similar results to the one without classifier-free guidance. However, in the "Zero-
Label" row, the images exhibit more variation in terms of subjects and colors. We
anticipate the "Zero-Label" row to generate images that could belong to any other
color category. This label is trained using images that are indiscriminately sourced
from all the other labels.

5.3.1 Increase the Scale Value
By increasing the scale value in the free guidance formula 4.1, the generation
process becomes more inclined towards the provided label, intensifying its influence.
This operation effectively reduces the variability of the generated outputs, resulting
in greater consistency with the label. This effect can be likened to truncating the
latent sampling in GANs generation.

As the scale factor increases, 5.3 we observe the emergence of vibrant colors,
indicative of the model’s comprehension of our conditioning. To explore the impact
of scale variation, I intentionally exceeded the recommended quantity and analyzed
its effect on generation. In Figure 5.4, it is evident that the dominant color prevails
while the image variance is minimized. The model behaves as anticipated.

Considering our objective to produce images with a significant dominant color
indicated by the label while maintaining a desirable level of variability, I opted
to adopt a scale factor of 2. This choice strikes a balance between the color hint
provided by the label and the desired variability in the generated images.

Qualitative Results of FSDP Training

As explained in the 4.7 I have modified the Official Latent diffusion to be able to
use the FSDP strategy. I have trained using the model on two out of four GPUs to
test if the code can run and produce meaningful outputs comparable with its twin
model on Colab-Pro.

The figure shows the same model frozen on the 14th epoch. On the left, the
model was trained on Colab-Pro with a batch size (BS) of 64. On the right, the

54

Results

same model was trained on two GTX 1080-Ti with a BS of 6 for each GPU. This
means that the model at each training step receives a total BS of 12 (number of
GPUs * BS). We notice an interesting behavior. It seems that smaller batch sizes
and, consequently, more frequent optimizer updates make the training procedure
faster.

5.4 FID Results
The comparison with the StyleGAN should be done by directly comparing the
relative FIDs values. For the LDM, I have computed the different FID values for
our final output at a resolution of 256x256. For each color category, I generated at
least 10000 images using the PLMS sampler, ensuring the best generation speed
performances. Then I computed the FID against their relative training images in
the dataset. Due to the fact that the dataset is highly unbalanced, some color
labels, for example, with the yellow label, FID is computed with 10K generated
samples against 147 real Images.

5.4.1 Diffusion Model and StyleGAN Comparison
The StyleGAN was fine-tuned for 100 epochs with a batch size of 4 images,
enabling it to generate high-resolution images at 1024x1024 pixels. To ensure a
fair comparison with the LDM, I generated 10,000 images using StyleGAN v3 at
the same resolution (1024x1024) for each color category. These generated images
were then downsampled to our target resolution of 256x256 pixels. The FID for
StyleGAN was computed following the same methodology as described for the
LDM to permit a direct comparison between FID values.

We utilized FID values along with two additional results to compare the two
models.

In figure 5.5, I show the results in terms of FIDs values I obtained by computing
it in two ways.

1. All the generated images of a color category against all the dataset images of
that category only;

2. All the generated images of a specific color category against all the unified
dataset.

From the results, we can clearly see that StyleGAN outperforms our LDM by a
big margin. One of the reasons could be the lack of training time or also some errors
in the implementation. The fundamental thing to have in mind is the difficulty
of computing those values for only a partial analysis. In order to have complete

55

Results

results, we should compute the FID at training time with a good frequency and
maintain control over the training process and its trend of results.

To compute the shown values in figure 5.6, I calculate the distance between
each pixel in the image and its corresponding color category. This process was
performed for all pixels in the image, and the average color distance was calculated.
This computation was repeated for each image and then averaged across the entire
dataset to obtain a single value.

The results demonstrate that the differences between the LDM and StyleGAN
are comparable, and in some cases, the LDM yields superior results. Overall, we
can conclude that both models achieve a similar level of accuracy.
Lower distance results are obtained with the CIE-LAB color space, which also
considers the perceptual difference between colors.

Figure 5.7 presents results that exhibit similar behavior, even though computed
using a slightly different approach. In this case, the computation involves averaging
the colors of each image within a specific category and subsequently calculating
the distance from the true color label.

Structural complexity in generated images

Figure 5.8 provides a visual comparison between the Latent Diffusion Model (LDM)
and StyleGAN, highlighting the distinctive characteristics of each approach. The
LDM demonstrates its capability to generate well-structured images, showcasing the
potential benefits of longer training. However, it is evident from the coherence and
the number of details in some of the created images that StyleGAN currently excels
in producing high-quality results, surpassing the current LDM implementation.

56

Results

(a) Training without classifier-free method

(b) Training with classifier-free method

Figure 5.1: Each row corresponds to a single color category. From top to bottom,
we have: Orange, Green, Blue, Purple, Yellow, Red, Black, White, and "Zero-
Label".

57

Results

Figure 5.2: Generated images with scale factor s = 2

Figure 5.3: Generated images with scale factor s = 5

58

Results

Figure 5.4: Generated images with scale factor s = 15

59

Results

(a) Denoising procedure captured at epoch 14
on A100 on Colab -Pro

(b) Denoising procedure captured at epoch 14
on two 1080-ti on the local cluster

60

Results

Figure 5.5: FID values
61

Results

Figure 5.6: Average mean distance of colors in RGB and LAB color spaces.

Figure 5.7: Average colors distance in RGB and LAB color spaces.

62

Results

Figure 5.8: Top row LDM structured images. Bottom row StyleGAN generated
images.

63

Chapter 6

Conclusions

6.1 Conclusion

In conclusion, this master thesis project aimed to explore the potential of leveraging
Diffusion Models (DM) in comparison to the previously implemented StyleGAN
v3. The results revealed the high flexibility of DM in accommodating the provided
conditioning requirements. A customized prototype based on Latent Diffusion was
successfully developed and trained using the available Custom Wiki-Art Dataset,
enabling the color-conditioned generation of images at a resolution of 256x256
pixels.

The experiments showcased the model’s ability to accurately capture the given
color conditioning while also offering the option to fine-tune the degree of influence
exerted by the conditioning on the generated images. It is worth noting that, at the
present stage, the StyleGAN still exhibits better performance in terms of Fréchet
Inception Distance (FID) values. However, it is important to highlight that further
improvements in training time and resource allocation have the potential to impact
the performance of the Latent Diffusion Model positively.

The findings also indicate that a longer training duration can lead to enhance-
ments in terms of FID scores and the overall structure of the generated images.
This suggests that with additional training resources and time allocation, the
Latent Diffusion Model has the capacity to narrow the performance gap with the
StyleGAN and potentially match its performance in terms of FID values and image
quality.

Overall, this thesis project has demonstrated the potential of Diffusion Models
as a viable alternative to StyleGAN, showcasing their flexibility in accommodat-
ing conditioning requirements and paving the way for further exploration and
improvement in the field of generative image modeling.

64

Conclusions

6.2 Future Works
The limitations imposed by limited resources and time have significantly restricted
my ability to achieve optimal results.

One major drawback of our obtained results is the high FID value, which cor-
relates with the quality of structures within individual images, especially when
compared to the impressive capability of StyleGAN in generating intricate and com-
plex abstract structures. To address this, increasing the training time of our model
is likely to result in a substantial improvement in terms of FID and, consequently,
the production of better-structured abstract images. Another potential avenue for
improvement is to explore alternative metrics that are better suited for evaluating
the generation of abstract images, given the inherent challenges associated with
this task.

Another prominent issue arises from the highly unbalanced dataset. The inherent
imbalance introduces errors and disequilibrium during the image generation process.
A thorough analysis of the dataset’s properties may lead to alternative class
subdivisions, significantly enhancing the overall results.

Also, the dimensionality of the dataset plays a crucial role in determining the
quality of the generated results. A more diverse and expansive dataset provides
the model with a greater range of examples to learn from, thereby increasing the
variability of the final generated images.

Another aspect worthy of exploration pertains to the first stage of our model,
namely the VQ-GAN. Training a VQ model from scratch holds the potential for
achieving excellent results, given its specialization in feature extraction for our
specific dataset. Alternatively, employing smaller and more efficient models can
help reduce the system’s memory requirements.

Taking a different perspective and focusing on altering the overall structure,
we could consider eliminating the current first stage of the pipeline (Figure 1.1).
Instead, we could explore the integration of sound within the Diffusion Pipeline.
Inspired by LLM and BERT, an initial idea involves training a separate model
to generate sound embeddings, specifically music embeddings, that encapsulate
meaningful information about images. This can be accomplished by employing
a dataset that associates musical tracks with corresponding images, such as film
scenes accompanied by their background soundtracks or songs matched with their
corresponding CD cover images.

65

Bibliography

[1] Matthew N. Bernstein. The evidence lower bound (ELBO). 2020. url: https:
//mbernste.github.io/posts/elbo/ (visited on 05/25/2020) (cit. on p. 9).

[2] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. 2022.
arXiv: 1312.6114 [stat.ML] (cit. on p. 13).

[3] Danijar Hafner. Building Variational Auto-Encoders in TensorFlow. Blog
post. 2018. url: https://danijar.com/building-variational-auto-
encoders-in-tensorflow/ (cit. on p. 13).

[4] James Lucas, George Tucker, Roger Grosse, and Mohammad Norouzi. Under-
standing Posterior Collapse in Generative Latent Variable Models. 2019. url:
https://openreview.net/forum?id=r1xaVLUYuE (cit. on p. 13).

[5] Yixin Wang, David M. Blei, and John P. Cunningham. Posterior Collapse
and Latent Variable Non-identifiability. 2023. arXiv: 2301.00537 [stat.ML]
(cit. on p. 13).

[6] Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural Discrete
Representation Learning. 2018. arXiv: 1711.00937 [cs.LG] (cit. on pp. 16,
17, 19).

[7] Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating Diverse
High-Fidelity Images with VQ-VAE-2. 2019. arXiv: 1906.00446 [cs.LG]
(cit. on p. 16).

[8] Patrick Esser, Robin Rombach, and Björn Ommer. Taming Transformers for
High-Resolution Image Synthesis. 2021. arXiv: 2012.09841 [cs.CV] (cit. on
pp. 19, 22, 45, 46).

[9] Angus Turner. Diffusion Models as a kind of VAE. 2021. url: https://
angusturner.github.io/generative_models/2021/06/29/diffusion-
probabilistic-models-I.html (visited on 06/19/2021) (cit. on p. 22).

[10] Nikolas Adaloglouon Sergios Karagiannakos. How diffusion models work: the
math from scratch. 2022. url: https://theaisummer.com/diffusion-
models / #classifier - free - guidance (visited on 09/29/2022) (cit. on
p. 22).

66

https://mbernste.github.io/posts/elbo/
https://mbernste.github.io/posts/elbo/
https://arxiv.org/abs/1312.6114
https://danijar.com/building-variational-auto-encoders-in-tensorflow/
https://danijar.com/building-variational-auto-encoders-in-tensorflow/
https://openreview.net/forum?id=r1xaVLUYuE
https://arxiv.org/abs/2301.00537
https://arxiv.org/abs/1711.00937
https://arxiv.org/abs/1906.00446
https://arxiv.org/abs/2012.09841
https://angusturner.github.io/generative_models/2021/06/29/diffusion-probabilistic-models-I.html
https://angusturner.github.io/generative_models/2021/06/29/diffusion-probabilistic-models-I.html
https://angusturner.github.io/generative_models/2021/06/29/diffusion-probabilistic-models-I.html
https://theaisummer.com/diffusion-models/#classifier-free-guidance
https://theaisummer.com/diffusion-models/#classifier-free-guidance

BIBLIOGRAPHY

[11] Kashif Rasul Niels Rogge. The Annotated Diffusion Model. 2022. url: https:
//huggingface.co/blog/annotated-diffusion (visited on 09/07/2022)
(cit. on p. 22).

[12] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional
Networks for Biomedical Image Segmentation. 2015. arXiv: 1505 . 04597
[cs.CV] (cit. on pp. 28, 29).

[13] Alex Nichol and Prafulla Dhariwal. Improved Denoising Diffusion Probabilistic
Models. 2021. arXiv: 2102.09672 [cs.LG] (cit. on p. 29).

[14] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You
Need. 2017. arXiv: 1706.03762 [cs.CL] (cit. on pp. 38, 42).

[15] Jonathan Ho and Tim Salimans. Classifier-Free Diffusion Guidance. 2022.
arXiv: 2207.12598 [cs.LG] (cit. on pp. 41, 42).

[16] Hezheng Lin, Xing Cheng, Xiangyu Wu, Fan Yang, Dong Shen, Zhongyuan
Wang, Qing Song, and Wei Yuan. CAT: Cross Attention in Vision Transformer.
2021. arXiv: 2106.05786 [cs.CV] (cit. on p. 42).

[17] Rui Li, Jianlin Su, Chenxi Duan, and Shunyi Zheng. Linear Attention Mech-
anism: An Efficient Attention for Semantic Segmentation. 2020. arXiv: 2007.
14902 [cs.CV] (cit. on p. 43).

[18] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and
Björn Ommer. High-Resolution Image Synthesis with Latent Diffusion Models.
2021. arXiv: 2112.10752 [cs.CV] (cit. on p. 44).

[19] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising Diffusion Implicit
Models. 2022. arXiv: 2010.02502 [cs.LG] (cit. on p. 48).

[20] Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo Numerical Methods
for Diffusion Models on Manifolds. 2022. arXiv: 2202.09778 [cs.CV] (cit. on
p. 48).

67

https://huggingface.co/blog/annotated-diffusion
https://huggingface.co/blog/annotated-diffusion
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/2102.09672
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2207.12598
https://arxiv.org/abs/2106.05786
https://arxiv.org/abs/2007.14902
https://arxiv.org/abs/2007.14902
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2010.02502
https://arxiv.org/abs/2202.09778

	List of Figures
	Introduction
	The Era of Generative Model
	Context and Structure of proposed Work

	Mathematical Foundations
	Bayes Rule
	Expected Value
	Kullback-Leibler Divergence
	Derivation

	Variational Inference and Evidence Lower Bound (ELBO)
	Variational Inference
	ELBO or Variational Lower Bound Derivation

	Literature Background
	Auto-encoder (AE)
	Variational Auto-encoder (VAE)
	VAE general Architecture
	Perceptual Loss

	Generative Adversarial Networks (GAN)
	GANs Instability Problems

	Vector Quantized VAE (VQ-VAE): modeling a discrete latent space
	VQ-GAN

	Denoising Diffusion Probabilistic Models (DDPM)
	Forward Process
	Reparametrization Trick in Diffusion Models
	Backward Process
	Training Objective Function
	U-Net Architecture

	Latent Diffusion Models (LDM)
	Combining Latent Representation with DDPM

	Materials and Methods
	Resources
	Dataset
	Letters Font Dataset
	Wiki-Art Dataset
	Pre-Processing

	Experiments Decription
	Conditioning the Network
	Use positional Encoding for time conditioning the network

	Control the Diffusion Process
	Guide the Diffusion
	Classifier-Guided Diffusion
	Classifier-Free Diffusion
	Cross Attention Mechanism
	First experimental settings
	Second experimental settings
	Latent Diffusion

	Denoising network
	Model Structure

	Speed up the sampling
	DDIM and PLSM

	Multi GPU computing

	Results
	Evaluation metrics
	Fréchet Inception Distance (FID)

	LDM Training Results
	Generated Images
	Increase the Scale Value

	FID Results
	Diffusion Model and StyleGAN Comparison

	Conclusions
	Conclusion
	Future Works

	Bibliography

