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Abstract 

This thesis delves into enhancing agility in battery cell manufacturing, a pivotal 
aspect of industries like electric vehicles and energy storage systems. It underscores 
the imperative of swift adaptation to shifting production requirements. 
The study explores key technologies including battery cell production, OPC UA 
communication, Siemens TIA Portal, and the application of ISA-88 standards. By 
integrating principles of change perception, responsiveness, and adaptability, it 
aligns production processes with the ever-changing market landscape. 
A significant focus is the development of Graphical User Interfaces. This interface 
provides users with a dynamic view of the production processes. Buttons associated 
with sub-processes change color to signify different operational states, aiding 
operators in monitoring and controlling the manufacturing operations. 
This thesis stresses the critical role of agility in modern manufacturing and offers a 
pathway for further refining the control system to cater to various subsystems. 
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1 Introduction 
1.1 Motivation 
The world of the electric mobility represents a dynamic market, vital for the decarbonization in road 
transport, one of the most important sectors regarding urban pollution and toxic emissions. The 
transport of goods and people accounts for about 20% of the total global primary energy 
consumed, around 23% of CO2 emissions and if other greenhouse gases (GHG) such as methane 
are taken into account, around 14% of the total global GHG emissions (Is It Really the End of 
Internal Combustion Engines and Petroleum in Transport?, 2023). There could be 6–15% 
improvements in internal combustion fuel efficiency in the coming decade, although filters to meet 
emission legislation reduce these gains. Using these engines as hybrids with electric motors 
produces a reduction in energy requirements in the order of 21–28%. (Science Review of Internal 
Combustion Engines, 2023).  
Electric mobility denotes, anyway, a key resource for energy transition as well as a steadily growing 
market which, in recent years, has also undergone a major improvement in efficiency. The utmost 
development has been seen in China, while, on the other hand, this technology finds complications 
to spread in some European countries and U.S. Increasing sales pushed the total number of 
electric cars on the world’s roads to 26 million, up 60% relative to 2021, with BEVs (Battery Electric 
Vehicle) accounting for over 70% of total annual growth, as in previous years. As a result, about 
70% of the global stock of electric cars in 2022 were BEVs. (IEA, 2023).  
In Figure 1 we can clearly see the growth in electric car sales in recent years. With orange color 
is represented car sales in China, with blue color Europe and then U.S with light green and other 
countries with the dark green. 

 
Figure 1 Electric car sales, 2016-2023 (IEA, 2023) 
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In the face of this increasing market demand the importance of improving efficiencies inside the 
production plan and becoming more competitive in terms of manufacturing is now clearer than 
ever. A countless variety of solutions to this problem have been introduced by the Fourth Industrial 
Revolution. In essence, several new innovations and new technologies have been introduced 
towards automation and data exchange in manufacturing technologies and processes which 
include cyber-physical systems (CPS), IoT, industrial internet of things, cloud computing, cognitive 
computing, and artificial intelligence (Fourth Industrial Revolution - Wikipedia, 2023). At present, 
world is experiencing the revolution created by the Internet and the way it can impact all the 
industries and common people. The wealth of information and ability to connect multiple things 
together changes the way industries operate and yield efficiencies. 
All these new features have been introduced over the years with the aim of helping to produce 
goods efficiently and productively across the value chain. Flexibility and data exchange are 
improved in order to obtain a new concept of manufacturing that can achieve information 
transparency and better decision. (What Is Industry 4.0 and How Does It Work? | IBM, 2023). In 
today’s fast-moving market a new factory idea was sought with a production method that could 
draw attention to a quick response in terms of flexibility. In this scenario the concept of Agile 
Manufacturing has taken hold which can acknowledge the realities of the modern marketplace and 
transforms them into a competitive advantage. 
 

1.2 Objective 
Agile control should emphasize three pivotal characteristics: change perception, responsiveness, 
and adaptability (Simon Gese, 2021). The initial crucial facet is change perception. Alterations in 
the production process primarily result from decisions made at the business level. Each production 
process entails a recipe comprising the sequence of operations and their associated parameters. 
Therefore, any change in production signifies a modification in the recipe. Crafting a recipe 
necessitates the consideration of technical execution possibilities, which should align with the 
system. An agile system must be proficient in executing various such recipes. To facilitate 
perception within the cell, a state system detailing process status will be devised as part of this 
work. 
The second essential requirement is responsiveness, signifying the swift implementation of new 
demands within a defined timeframe to maintain system stability. It is imperative that production 
segments integrate seamlessly into existing systems, with control systems for new sub-
components designed for effortless adaptability. 
The third key requirement is adaptability, encapsulating the need for a system to possess both 
flexibility and adaptability. This encompasses system expansion and product adaptation. Variables 
such as quantities and geometry requirements may fluctuate from one recipe to another. Given 
the current considerable effort required to transition a production line from one battery cell format, 
as in our case, to another (VDMA, 2023, p. 15), it aligns with sound business strategy to inherently 
incorporate agile concepts from the outset. 
The main purpose of the work was to develop and implement an application suitable for the control 
and monitoring of an agile manufacturing process designed to produce battery cell. It consists of 
four different automated microenvironments, one for each main step of a defined process chain. 
The goal and this Thesis’ intent are to create a system able not only to allow the user to start and 
stop the production plant, but also to decide to proceed with a process in particular rather than 
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another one. There’s the need to provide the operator with extreme freedom of choice and give 
him the ability to run only certain processes. 
Furthermore, it will also be possible to decide whether to start from the standard parameters stored 
in a Database or modify them in order to customize the production procedure and, with a specific 
setting, the user will also be able to enter data such as the URL of the Database HTTP Endpoint 
and the access to the four distinct Open Platform Communications (OPC) Endpoints 
corresponding to the four Programmable Logic Controllers (PLCs), each of them associated with 
a distinct working cell. 
 

1.3 Structure of the thesis 
In the following sections, this work provides an overview of the current state of research on the 
key technologies it encompasses. These technologies include battery cells, OPC UA, and the 
Siemens TIA Portal. Additionally, it introduces the ISA-88 standard and its most pertinent aspects. 
The context for this discussion is set within the AgiloBat project, which is briefly introduced. 
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2 State of the art and research 
2.1 Structure of Lithium-ion Batteries 
Batteries are utilized as chemical energy storage system and currently the most popular ones are 
lead-acid batteries components (Noack et al., 2015). This technology is known for its reliability and 
long-lasting attitude in contrast to other devices such as nickel–cadmium and nickel–metal hydride 
batteries which have higher energy densities and higher numbers of cycles, but also carry higher 
costs. Redox-flow batteries are appliances for the storage of electrochemical energy, in which the 
redox-active constituents are flowing media and the redox reactions take place in an energy 
converter similar to a fuel cell. To describe how a battery cell work we should start by listing the 
three main components (Noack et al., 2015, p. 9777): 

▪ Electrodes: they should possess a high electrochemical stability, high reaction kinetics of 
the redox couple and, at the same time, high electrical conductivity and mechanical stability 
at low cost. Pre-treatment on them can improve kinetics of reaction and their surface 
quality. The positive electrode is always referred to as the cathode and the negative one 
is referred to as the anode. 

▪ Separating membrane: responsible for dividing the cell into two halves, vital to prevent 
the mixing between the two electrolyte solutions which could cause an uncontrolled 
reaction. There are different types depending on the material from which they are made 
and their purpose 

▪ Electrolyte: a conductive substance that is located between the electrodes. It allows ions 
to flow between the electrodes. There are liquid and solid electrolytes. 

 
Figure 2: Redox-flow batteries with electrolytes as the media for energy storage. (Noack et al., 2015, 

p. 9779) 

 

2.1.1 Battery Chemistry  
The working principle of redox-flow batteries in the discharge mode can be generally represented 
as a chemical reaction of two redox couples that results from the combination of two corresponding 
half-reactions (Noack et al., 2015, p. 9782). While the battery is discharging and providing an 
electric current, the anode releases lithium ions to the cathode, producing a stream of electrons 
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from one side to the other. When plugging in the device, the reverse happens: Lithium ions are 
released by the cathode and received by the anode. (Energy.gov, 2023). This kind of batteries 
require nonaqueous electrolytes since lithium metal reacts spontaneously with water, due to its 
weak metallic bonding, favorable formation of Li+(aq), favorable bond formation in H2, and highly 
favorable formation of solvated OH−. The net reaction in the lithium ion battery is (Schmidt-Rohr, 
2018, p. 1807): 

𝐿𝑖𝐶6 + 𝐶𝑜𝑂2 → 𝐶6 + 𝐿𝑖𝐶𝑜𝑂2 
 

2.1.2 Manufacturing 
The manufacturing of battery cells is a highly intricate procedure composed of multiple sequential 
stages aimed at establishing the foundation for high-performance and safe batteries. The initial 
phase involves anode mixing, wherein anode materials are blended together. Subsequently, these 
anodes are applied to substrates and undergo a drying process to ensure a consistent anode 
coating. The coated anodes are then subjected to calendaring and singulation, followed by vacuum 
drying to eliminate moisture and enhance their quality. Concurrently, the cathode mixing process 
is executed, succeeded by cathode coating, drying, calendaring, and separation steps. Similar to 
anodes, cathodes also experience vacuum drying to enhance their quality. 
The actual battery cell is formed by either winding or stacking the anode and cathode electrodes. 
This cell is then enclosed within a casing, and electrical connections are established. Electrolyte 
is introduced into the cell to facilitate ionic conductivity. Throughout the manufacturing process, 
various other stages such as wetting, forming, degassing, maturation, and End-of-Line (EoL) 
testing are conducted to ensure both performance and safety. 
Moreover, separator films are manufactured to segregate the anode and cathode within the cell. 
Multiple cells are assembled into modules to attain the required voltage and capacity, and 
eventually, these modules are combined to create battery packs. 
Battery cell production mandates meticulous control, stringent quality assurance, and rigorous 
safety measures to yield batteries that align with the demands of applications like electric vehicles 
and energy storage systems. The optimization of this process is of paramount importance in the 
development of more potent and sustainable battery technologies, addressing the evolving 
requirements of the contemporary world. 
 

2.1.3 Battery types 

2.1.3.1 Lithium-Ion-Battery (LIB) 
Lithium-ion batteries (LIBs) stand as the prevailing choice in the commercial battery cell arena. By 
2022, the global LIB market was projected to reach a staggering 700 GWh or even higher (VDMA, 
p. 11). In the preceding year, 2021, the worldwide demand for LIB cells ranged between 460-500 
GWh. Electromobility accounted for over 350 GWh of this demand, while stationary applications 
contributed approximately 50 GWh (VDMA, p. 11). 
LIBs encompass a broad category of batteries, all united by the presence of lithium compounds 
within the cathode. These lithium compounds empower LIBs to achieve remarkable energy 
densities, earning them the moniker of high-energy batteries. A diverse array of electrolytes can 
be found within LIBs, including liquid and solid electrolytes, along with polymer electrolytes. Among 
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these, liquid electrolytes find the widest application. However, polymer electrolytes, often paired 
with lithium metal anodes, tend to exhibit lower conductivity. Solid electrolyte batteries, 
theoretically capable of delivering higher energy densities, face practical limitations due to 
interfacial resistance at normal temperatures, making their commercial utilization less common 
(Lydia Dorrmann et al., p. 4). Nevertheless, comprehensive battery research underscores that the 
potential of established large-format lithium-ion batteries is far from realization (VDMA, p. 9). 

2.1.3.2 Solid State Battery (SSB) 
Unlike conventional batteries, solid-state batteries (SSBs) operate without a liquid electrolyte; 
instead, they employ a solid electrolyte, promising significant enhancements in various critical 
performance parameters (Fraunhofer ISI, 2022, p. 13). There exist several types of solid 
electrolytes (SEs) applicable to SSBs, such as oxide RE, sulfide RE, and polymer RE. Each of 
these solid electrolyte types comes with distinct advantages and drawbacks, although a detailed 
exploration of these specifics is beyond the scope of this discussion. 
In general, SSBs are expected to exhibit long-term stability and service life comparable to, or 
slightly better than, their liquid electrolyte lithium-ion battery (LIB) counterparts. Currently, SSBs 
are predominantly in the research and development phase. However, polymer SSBs are already 
finding application in electric buses, which presently represent the largest market segment for 
SSBs (Frauenhofer ISI, 2022, p. 14). Potential future applications for SSBs include the automotive 
and heavy industries, along with sectors that require robust performance in demanding 
environments (Frauenhofer ISI, 2022, p. 14). Despite their promising attributes, the current market 
share of SSBs is relatively small, accounting for less than 0.5% of the market share, amounting to 
2 GWh. Projections by the Frauenhofer Institute ISI suggest that this proportion could potentially 
reach 1% by the year 2035 (Frauenhofer ISI, 2022, p. 14). 

2.1.4 Cell geometry 
Battery cells come in diverse shapes and sizes, and their designs are primarily driven by the need 
to efficiently fit within available installation space and meet the specific demands of various battery 
systems (VDMA, p. 34). Three common geometries have been established, each offering distinct 
attributes: 

▪ Pouch cells are characterized by a flexible pouch, typically constructed from a plastic-
aluminum composite film. Their lightweight and thin shell contribute to enhanced 
gravimetric energy density when compared to prismatic cells, which have a thicker shell. 
Pouch cells excel in heat dissipation, facilitated by current conductors and the cell's sides, 
giving them the best cooling performance among the three geometries (VDMA, p. 33). 

▪ Cylindrical cells, on the other hand, are typically created through winding processes and 
feature a sturdy, thick shell. These cells boast a hard shell, offering a high energy density 
and exceptional rigidity. However, their heat dissipation capabilities are comparatively less 
efficient. 

▪ Prismatic cells share the same hard shell attribute but have an intermediate gravimetric 
energy density. This is due to a substantial portion of their weight being attributed to the 
shell. Prismatic cells are known for their high rigidity and efficient temperature regulation, 
owing to their favorable surface-to-volume ratio. 

In essence, the various cell geometries are customized to meet specific requirements and 
applications, each offering a unique blend of advantages and disadvantages related to weight, 
rigidity, energy density, and heat dissipation. 
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2.2 Open Platform Communications (OPC) 
Industries and businesses rely on products from diverse sellers for automation. In earlier times, 
these vendors employed distinct communication methods, making challenges in communicating 
among control system components. As a result, data sharing became complicated, contributing to 
elevated expenses for users. 
In this environment, systems integration requires an enormous effort, especially for large-scale 
infrastructures. In general, these facilities are complex, vast networked systems that comprise a 
vast number of devices and applications with different communication protocols. Therefore, data 
acquisition, exchange, and processing are achieved in a distributed way between heterogeneous 
data sources and consumers. Cyber–physical systems and IoT are represented by platforms that 
are integrated through connectivity protocols that permit a wide sharing of information among 
different devices (González et al., 2019).  

 
Figure 3: OPC (OPC Blog, 2018) 

OPC serves as the universal standard for secure and dependable data exchange, not only within 
industrial automation but also across diverse industries. This platform-independent standard 
facilitates the seamless sharing of information among devices manufactured by different 
companies. The OPC Foundation is responsible for the development and upkeep of this standard. 
Initially introduced in 1996, its primary purpose was to abstract PLC-specific protocols (such as 
Modbus, Profibus, and others) into a standardized interface. This interface empowered 
HMI/SCADA systems to communicate with an intermediary component, which acted as a 
translator, converting generic OPC read/write requests into device-specific ones and vice versa. 
Consequently, this gave rise to an entire industry of products that allowed end-users to construct 
systems harnessing the best available products, all seamlessly interacting via OPC. (OPC 
Foundation, 2017). 
At present, the OPC standard encompasses ten distinct specifications under the stewardship of 
the OPC Foundation. These specifications are meticulously designed and maintained to serve 
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various essential functions. They include Data Access (DA), Historical Data Access (HDA), Alarms 
and Events (A&E), XML-Data Access (XML-DA), Data Exchange (DX), Complex Data (CD), 
Security, Batch, Express Interface (Xi), and Unified Architecture (UA). (González et al., 2019). 

 
Figure 4: Classic open platform communications (OPC)-based communication scheme in automation 

system (González et al., 2019). 

 

2.2.1 OPC UA 
OPC UA, is gaining ever-increasing attention. Developed as the successor to classic OPC, UA 
specification was released in 2006 and is an IEC international standard of the international 
electrotechnical commission (IEC), namely, IEC 62541. (González et al., 2019). The emergence 
of service-oriented architectures within manufacturing systems brought forth fresh complexities 
related to security and data structuring. In response to these demands, the OPC Foundation 
crafted the OPC UA specifications. This development not only catered to these requirements but 
also introduced an expansive technology framework with an open and adaptable architecture. 
Notably, it was designed to withstand the test of time, offering scalability and extensibility. (OPC 
Foundation, 2017). 
Four different application scenarios for OPC UA will be described (Schleipen et al., 2016, p. 316): 

▪ Quality defect tracking system 
▪ Visualization of process information (monitoring) 
▪ Management information board (monitoring and control) 
▪ Orchestration of cyber-physical production systems (production cells) (our specific case): 

This scenario demonstrates the ability of OPC UA to be used as generic interface for 
orchestration of components in a production cell. This can be used to achieve flexible 
software deployment in adaptive plants. 

In this thesis, the latter feature is of utmost significance. In fact, one of the primary objectives of 
this project was to develop the coordination across various levels of an agile production plant by 
utilizing the OPC UA communications standard. 
OPC UA is a vehicle for describing status and results of components and software modules and 
providing access to the services of the software modules and components. If the properties of one 
component fit to the need of another component, e.g. a camera for a robot, the component is able 
to connect to the other component and to execute the analyzed code during the production 
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process. The state of the methods and their accessibility depend on the status of the system. For 
example, the distribution method is only available if the analysis was successful. 
The orchestration OPC UA server was designed and developed to provide platform- and system-
independent information via OPC UA. It receives input from a user or system which includes the 
description of the whole production scene to orchestrate. 

 
Figure 5: Differences between OPC DA and OPC UA (Rinke, 2022). 

In recent years, OPC technology has been adopted by more and more users, in particular it’s used 
to collect several different process data connected to multi-remote OPC server to a specific client 
application and, with a read-write methodology, this leads to monitor and real-time acquisition of 
process parameters and other variables.  
The OPC standard plays a pivotal role in defining an interface between client applications 
responsible for data processing and the servers that establish connections with physical industrial 
devices like PLCs, sensors, and actuators for control. This standard additionally summaries 
various objects with their respective properties and methods, serving as a standardized means to 
access data from control devices. All OPC servers working on this model serve as data sources 
for clients, acquiring the data requested by client devices connected to the industrial process 
(Diaconescu & Spirleanu, 2012, p. 3). 
The image below provides a detailed depiction of how a client application communicates with a 
specific process. This process is directly linked to the distributed control system, which could be a 
PLC, SCADA system, or involve actuators and sensors. The communication interface is 
established through the OPC server, and ultimately connects with the appropriate client. 
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Figure 6: General structure of a control system using OPC server. (Diaconescu & Spirleanu, 2012, 

p. 3) 

Over the course of several decades, fieldbus technology has evolved to meet the demands of the 
automation environment. It prioritized attributes like user-friendliness for installation employees, 
resilience in challenging and dirty conditions, as well as cost-effectiveness with simplified wiring. 
In recent years, the Transmission Control Protocol (TCP) standard has gained increasing 
significance due to its ability to simplify network conversations, enabling applications to exchange 
data. TCP operates as a connection-oriented protocol, signifying that a connection is established 
and sustained until both ends of the communication have completed their message exchanges 
(Networking, 2023). 
Conversely, Ethernet and TCP/IP have gained wide acceptance within Information Technologies 
(IT), offering easy access and seamless integration with global internet networks and technology. 
In clean office environments, Ethernet and TCP/IP stand as the typical communication network, 
widely recognized and cost-effective, with a substantial pool of IT experts well-versed in their 
usage. However, to extend this technology for automation purposes, adjustments are needed to 
adapt to the rugged "field" environment. Transmitting real-time control information imposes precise 
requirements that necessitate tailored physical interfaces and installation technologies. These 
requirements are related to determinism, queues, consistence and cyclic control. (Felser, 2001, 
p. 501).  
 

2.3 Programmable Logic Controller (PLC) 
The National Electrical Manufacturers Association (NEMA) defines a Programmable Logic 
Controller as: “A digitally operating electronic apparatus which uses a programmable memory for 
the internal storage of instructions for implementing specific functions such as logic, sequencing, 
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timing, counting, and arithmetic to control, through digital or analog input/output modules, various 
types of machines or processes.” (Netto, 2013) 
A PLC is a computer-based device used to control and coordinate various industrial equipment. 
These are widely utilized in today's industry due to their exceptional efficiency in managing 
sequential control and process synchronization. Initially designed for digital signal-based switching 
operations, PLCs have evolved to handle analog signals, making them versatile for a wide range 
of control processes. Unlike traditional computers, PLCs do not have a monitor; instead, they often 
incorporate a Human Machine Interface (HMI) flat screen display to depict process or production 
machine statuses. (Alphonsus & Abdullah, 2016, p. 1187) 
In these devices we can clearly identify five different main blocks (Alphonsus & Abdullah, 2016, 
p. 1187): 

▪ Rack assembly: this component is responsible for housing Input/Output modules, 
processor modules, power supply, and the processor unit. It also simplifies electrical 
connections between these modules via a printed circuit board at the rear. 

▪ Power supply: it provides direct current power to the other modules connected to the rack. 
▪ Programming device: used to program the CPU. 
▪ Input/Output section: this is where all field devices connect and interface with the CPU. It 

can be a fixed setup, primarily for small and micro PLCs, or a modular configuration that 
employs a rack to accommodate varying numbers of I/O modules. Input interface modules 
obtain signals from machine or process devices, converting them into signals usable by the 
controller. On the other hand, output interface modules convert controller signals into 
external signals utilized for machine or process control. 

▪ Central Processing Unit (CPU): the CPU attends as the central coordinator and controller 
of the entire programmable controller system. Classically positioned at one side of the rack 
assembly, the processor module comprises integrated circuit chips housing one or more 
microprocessors, memory chips, and circuits that facilitate data storage and retrieval from 
memory. The CPU consists of two main components: the Arithmetic Control Unit (ALU) and 
memory. The ALU is responsible for implementing mathematical calculations and logic 
functions. On the other hand, the memory component of the processor stores the programs 
and vital data for the CPU to carry out different operations. 

 
Figure 7: Block diagram of a PLC (Netto) 
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Industries often have production tasks that involve high levels of repetition. Despite the repetitive 
and monotonous nature of these tasks, they request the operator's careful attention to ensure 
effective production. Whenever there's a need for sequential control and automation, PLCs are 
the best choice to carry out these tasks effectively (Netto). 
In recent years, PLCs have seen significant improvements, making them essential to many 
automation processes, offering users flexibility and efficiency. A common practice is to connect 
PLCs with other devices such as controllers to perform tasks like supervisory control, data 
collection, device and parameter monitoring, as well as program uploading and downloading. 
Modern PLCs are also capable of handling timer and counter functions, memory operations, and 
mathematical computations (Netto). 
 

2.4 Agile Manufacturing 
In recent decades, there has been a growing emphasis on flexible and agile manufacturing 
systems. The basis for this shift began in the 1980s, encouraged by challenges related to excess 
inventory, shortened lead times, and the pursuit of higher product quality and customer service. 
This led to the introduction of the term "Lean Production”. By the 1990s, efforts were made to 
formulate a new manufacturing paradigm, even though many firms were still grappling with the 
implementation of Lean Production. While these two concepts may appear similar, they have 
significant differences. Lean Manufacturing is primarily a response to struggle within constraints 
and emphases on operational techniques that optimize resource utilization. In contrast, Agile 
Manufacturing responds to the complexities arising from constant change and adopts a holistic 
strategy aimed at thriving in an unpredictable environment. In this post-mass-production era, the 
sharing of resources and technologies among firms becomes essential. An agile enterprise 
possesses the organizational flexibility to choose the most suitable managerial method for each 
project, thus achieving the greatest competitive advantage.(Sanchez & Nagi, 2001, p. 2) 
 

2.5 ISA 88 / DIN EN 61512 
The ISA-S88 is a standard from the International Society of Automation (ISA) for batch-oriented 
operation of a system. This standard was published a few years later as the DIN standard DIN EN 
61512. Like ISA-S88, DIN EN 61512 consists of four parts that are almost identical. The following 
work will refer to the German DIN standard. Below these four parts are listed: 

▪ Models and Terminologies (ISA-88.00.01 / DIN EN 61512-1) (2010) 
▪ Data Structures and Language Guide (ISA-88.00.02 / DIN EN 61512-2) (2001) 
▪ Models and representations of process and factory recipes (ISA-88.00.03 / DIN EN 61512-

3) (2003) 
▪ Batch production records (ISA-88.00.04 / DIN EN 61512-4) (2006) 

DIN EN 61512-1 divides into three different process types. Continuous processes, processes with 
piece production and batch processes. A batch process is therefore defined as follows: 
“A process that leads to the production of finite amounts of substances by subjecting quantities of 
input materials to an ordered sequence of processing activities using one or more facilities within 
a finite period of time.” (DIN EN 61512-1, p. 4) 
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2.5.1 Models for system description 
The standard provides various models to relate systems and the processes taking place therein. 
The standard shows a connection between the following models. “The models described in the 
standard are […] viewed as complete” (DIN EN 61512-1, p. 3). 

2.5.1.1 Process model 
The process model, as we see in Figure 8, breaks down the batch process into different sections, 
but remains in a more abstract description. The batch process is defined as above and describes 
the complete sequence of all process steps that are necessary to produce a batch of a product. 
The standard uses the example of the production of polyvinyl chloride to clearly describe the 
model. The batch process is therefore the production of polyvinyl chloride, the top level “process” 
in Figure 8. This batch process consists of an ordered number of process sections. The process 
sections can run serially, run in parallel or both at the same time. A process section usually runs 
independently of other process sections and usually causes a chemical or physical transformation 
of the processed substances. Using the example of polyvinyl chloride production, the following 
process stages would be present: polymerization, recovery and drying. Each process section in 
turn consists of process operations. Process operations are “major processing activities” such as 
“preparing the reactor,” “filling,” and “reacting.” The lowest level of the process model is formed by 
the process steps. They describe smaller processing steps. In polyvinyl chloride production, the 
processes would be “adding the catalyst to the reactor”, “adding the vinyl chloride monomers to 
the reactor”, “heating” and “maintaining temperature”. The process model hierarchizes processes 
and groups them into operations and sections. (DIN EN 61512-1, p. 7) 

 
Figure 8: Process model according to DIN EN 61512-1 

2.5.1.2 Physical model 
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In contrast to the process model, the physical model does not describe a process structure, but 
rather the structure of physical goods such as plants, systems, machines, actuators or control 
devices. Of the seven levels in Figure 9, the top three levels only play a role in a business function 
and are therefore not considered further. “The four lower levels of facilities (systems, sub-systems, 
technical equipment and individual control units) are defined by engineering activities” (DIN EN 
61512-1, p. 7). A facility is defined as a “logical grouping of facilities that contains the facilities 
required to produce one or more batches” (DIN EN 61512-1, p. 5). However, the delimitation of a 
system takes place according to organizational or business criteria. The system level can be 
divided into different sub-systems. A unit can carry out a variety of larger processing activities such 
as reactions, crystallization or solution production. It combines all the necessary technical and 
control components to carry out these activities as an independent unit. In physical terms, a 
technical device can consist of individual control units and subordinate technical devices. It can 
function either as part of a sub-system or as an independent group of facilities within a system, 
with the option of exclusive or parallel use. This technical facility is capable of carrying out a limited 
number of specific small-scale processing activities, such as dosing or weighing, and it integrates 
all the necessary procedural and control components to carry out this activity. (DIN EN 61512-1, 
p. 9) 
A single control unit usually represents an integration of measuring instruments, actuators, other 
individual control units and the associated processing device, which is operated as an independent 
unit from a control technology perspective. It can also be composed of other individual control 
units, such as an individual metering control unit, which could be combined from several automatic 
switching valve individual control units. (DIN EN 61512-1, p. 9) 

 
Figure 9: Physical model according to DIN EN 61512-1 
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2.5.2 Batch control concepts 

2.5.2.1 Basic automation 
Basic automation is a control concept that is used to maintain a specific operating state. This 
concept is used in the management of continuous processes, for example in the continuous 
production of synthetic fuels, in which reactions take place continuously. Since the focus of this 
work is not based on continuous but rather discrete processes, basic automation is not given any 
further attention here. 

2.5.2.2 Procedural control 
Procedure controls are often used in batch-oriented contexts to structure a facility-oriented action 
so that a process-oriented task is carried out. The spatial physical units/machines are combined 
with the process chain and united in the procedure control. A procedure is the highest level in the 
hierarchy and defines the strategy necessary to produce a batch. Example: “Produce PVC”. 

 
Figure 10: Model of a procedural control according to DIN EN 61512-1 

A subprocedure consists of various operations in a fixed order. It is important that it is assumed 
that only one operation is carried out in a subsystem. However, partial procedures can be executed 
in parallel. Examples of sub-procedures would be “Polymerize vinyl chloride monomers”, “Recover 
vinyl chloride residues” or “Dry PVC”. Operations, in turn, contain various functions that may carry 
out a chemical or physical transformation of a substance. Examples of an operation in PVC 
production would be preparing the reactor, filling the reactor or the reaction itself. A function, the 
lowest level, can in turn be composed of other functions. It forms “the smallest element of a 
procedure control that can carry out a process-oriented task. […] The goal of a function is to cause 
or define a process-oriented action, whereas the logic or sequence of steps that make up the 
function is facility-specific.” (DIN EN 61512-1, p. 12). 
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2.5.2.3 Coordination control 
Coordination control is at a level above procedural control. It “directs, triggers and/or changes the 
execution of procedure controls” (DIN EN 61512-1, p. 12). The availability of capacities, the 
availability of (partial) systems and the coordination of these fall within the scope of coordination 
control. Since this is implemented in a separate application, it is also not the focus of this work. 
(DIN EN 61512-1, p. 12) 
 

2.5.3 Connection of the models with the procedure control 
The relationships between the models are visualized again in Figure 11. The procedural control 
model uses the process model as a reference and draws on the physical entities and process 
variables to define the control logic and control operations. According to DIN EN 61512-1, the 
interaction between these models ensures efficient and consistent control of the process, including 
the control of physical components and process variables in accordance with the specified 
procedures and processes. 

 
Figure 11: Interrelationships model procedure control, physical model and process model according 

to DIN EN 61512-1 

 

2.5.4 Operating modes and operating states 
The operating modes and operating states of DIN EN 61512 are briefly presented below. Since 
the standard is from 1999 and no longer includes the most current ISA proposals, the outdated 
operating modes and operating states are only briefly presented. 
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2.5.4.1 Operating modes according to DIN EN 61512-1 
According to DIN EN 61512, every procedural element can have an operating mode. “An operating 
mode determines how facility objects and procedural elements react to commands and how they 
take effect.” The operating mode determines the manner in which transitions between the 
procedural elements take place. In automatic mode, there is no interruption between elements as 
long as the conditions are met. The control takes over the switching, so that no external operation 
is required. In the semi-automatic operating mode, manual switching through an external operation 
is necessary after the switching conditions have been met. However, the order remains 
unchanged. In contrast to the manual operating mode, the operator has to determine the order 
and the element to be carried out himself. “This standard does not exclude other operating modes 
and does not require the strict use of the operating modes mentioned here.” Relevant operating 
modes are summarized again in table below. (DIN EN 61512-1, pp. 29–30) 
 
Table 1: Operating modes 

Operating 
mode 

Behave Command 

AUTOMATIC Advances within a procedure are 
carried out without interruption if the 
associated conditions are met. 

Operators can stop the procedure, 
but cannot force it to advance. 

SEMI-
AUTOMATIC 

Advances within a procedure are 
triggered by manual commands when 
the associated conditions are met. 

Operators can stop execution or 
redirect execution to an appropriate 
location. Handovers cannot be 
forced. 

MANUAL The sequential functions within a 
procedure are executed according to 
an operator specification. 

Operators can stop or force 
advances. 

 

2.5.4.2 Condition model according to DIN EN 61512-1 
As with operating modes, each procedure element can also have one. DIN EN 61512-1 
differentiates in its state model between an operating state and commands. An operating state is 
defined as a “state of a facility object or a procedural element at a specific point in time” (DIN EN 
61512-1, p. 6). A command causes a transition from one state to the next state. The states for 
facility elements differ from the states of procedural elements. In the following we only consider 
states of procedure elements. Commands and procedural element states are described in a state 
model such as the DIN EN 61512-1 model in Figure 12. There are 3 different types of states: end, 
rest and transition states. They are shown graphically in Figure 12. An important aspect is that the 
change from one operating state to another operating state can cause changes in levels above or 
below. This aspect is important with regard to the hierarchy of procedural elements. (DIN EN 
61512-1, pp. 30–31) 
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Figure 12: Condition model according to DIN EN 61512-1 

2.5.5 PackML Interface State Manager 
PackML stands for Packaging Machine Language and is a standard for controlling and 
communicating packaging machines. It was developed by the Organization for Machine 
Automation and Control (OMAC) and is based on the ANSI/ISA TR88.00.02-2022 technical report. 
PackML extends the ISA-88 standard with specific functions and commands for packaging 
machines. One advantage of PackML is the standardized data model and the common 
understanding of the operating mode and operating status of a unit. This enables consistent 
interpretation and use of data. Terms, abbreviations and definitions are taken from ISA 88. (Ph.D. 
Carsten Nøkleby, p. 0) 

2.5.5.1 Physical model according to ISA 88.01 
DIN EN 61512 describes a physical model that PackML is based on. The PackML condition model 
should start at the sub-system level and provide a condition description at this level. An interface 
should be developed for each sub-system that communicates the required information to the 
system control. PackML does not provide any information about the design of the underlying levels 
of the physical model. (Ph.D. Carsten Nøkleby, p. 13) 

2.5.5.2 Operating modes according to ISA-TR88.00.02-2022 
PackML defines its own operating modes for a unit. In contrast to the original DIN EN 61512, in 
which each procedural element has an operating state and an operating mode, with PackML both 
are only defined at the unit level. PackML determines in which operating mode a state model is 
mandatory and in which it is not. The following main operating modes are defined: Production, 
Maintenance, and Manual. These correspond to the modes from DIN EN 61512 automatic, semi-
automatic and manual 
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2.5.5.3 Operating states according to ISA-TR88.00.02-2022 
Operating states define the state of a subsystem. PackML has expanded the ISA-88/DIN EN 
61512 state model by 5 states. The two main elements in PackML are states and commands, 
which trigger a transition from one state to another state. 

 
Figure 13: Syntax of the PackML state model 

States are divided into two categories: executing states (states in which the unit executes actions) 
and waiting states (stable states in which a command ensures that a transition to the next state 
occurs). The only exception that satisfies both is the Execute state. It is both waiting and executing. 
In Figure 14, Start is a command, Starting and Execute are each state. SC means “State 
Complete” and indicates that an execution has been completed. 

 
Figure 14: PackML state model DIN EN 61512-1 

 

2.6 Siemens Totally Integrated Automation Portal (TIA Portal) 
This project was developed using Siemens TIA Portal V18, a comprehensive software framework 
designed for programming Siemens hardware. The TIA Portal offers a wide range of 
functionalities, although not all of them are covered in this context. We focus on the specific 
functionalities essential for the concept presented here. During the development process, TIA V17 
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was initially used, and the project was subsequently migrated to the more recent TIA V18 version. 
The TIA Framework encompasses different software components: 

▪ Siemens SIMETIC STEP 7 enables the programming of a PLC with structuring of the 
program codes, creation of various variables and communication with the PLC 

▪ Siemens SIMETIC STEP 7 PLCSIM Advanced is a simulation software with which a PLC 
can be simulated to enable online monitoring via the TIA Portal. 

 

2.6.1 Programming languages 
In the functions (FC) and the function blocks (FB) it is possible to implement code using different 
programming languages. It is possible to use LAD, FBD, STL, SCL, GRAPH and CEM (see 
abbreviations) as programming languages. LAD, FBD and GRAPH are presented below because 
they are used in the context of this work. 

2.6.1.1 Ladder (LAD) 
Modeled after electrical circuits, the ladder diagram (LAD) is a graphical programming language 
that draws inspiration from circuit diagram schematics. It employs a visual design reminiscent of 
circuit diagrams, featuring a conductor rail on the left edge from which current paths extend. Binary 
signal queries, represented as contacts, are positioned along these current paths. The 
arrangement of elements on a current path dictates whether they are in series or in parallel. More 
intricate functions are expressed through encapsulated units. 
A LAD program comprises elements that can be positioned in rows or in parallel on the network's 
busbar. These elements frequently require variables. Programming commences at the left edge 
of the current path branching from the conductor rail. The line rail can be expanded by introducing 
additional current paths and branches (Siemens, 2021, p. 8179). 

2.6.1.2 Function Block Diagram (FBD) 
Function Block Diagram (FUP) is a graphical programming language characterized by a visual 
representation reminiscent of circuit systems. This visual representation closely resembles 
electronic circuit diagrams, complete with interconnecting paths for binary signals, denoted by 
boundary boxes. Programs are depicted within networks where elements are linked through binary 
signal flow, utilizing logical symbols from Boolean algebra. FBD programs are constructed with 
elements that necessitate variables, and, similar to LAD, programming unfolds within a left-to-right 
network structure (Siemens, 2021, p. 8241). 

2.6.1.3 GRAPH 
GRAPH, also known as S7-Graph, is a graphical programming language designed for creating 
sequence controls. It is based on the GRAFCET design language, documented in DIN EN 60848. 
This language enables the clear and efficient programming of sequential processes through the 
use of sequencers. The entire process is broken down into manageable steps, each having a 
defined set of functions and organized into sequences. Each step outlines the actions to be 
executed, while the transitions between steps serve as connectors. These transitions include 
conditions that dictate the circumstances for advancing to the next step, known as transition 
conditions. These conditions are Boolean expressions, which can evaluate to either True or False. 
A fundamental principle is that every transition must be followed by a step, and conversely, every 
step must be followed by a transition (Siemens, 2021, p. 8428). 
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2.6.2 Data Type 
The TIA Portal encompasses various data types, each defining the behavior, structure, and 
storage space for data. Within the user program, it's feasible to design custom data types that align 
with the programmer's specific needs. These data types are categorized in different ways, and in 
the context of this section, we'll provide a brief overview of the most pertinent categories in the 
following sections. 

2.6.2.1 Elementary Data Type 
The TIA Portal encompasses various data types, each defining the behavior, structure, and 
storage space for data. Within the user program, it's feasible to design custom data types that align 
with the programmer's specific needs. These data types are categorized in different ways, and in 
the context of this paper, we'll provide a brief overview of the most pertinent categories in the 
following sections. 

2.6.2.2 Composite Data Types 
Composite data types encompass data structures composed of various elementary data types. 
These can range from simple strings to arrays and even to an anonymous data structure known 
as STRUCT. 

▪ Array: An array is a data structure consisting of a fixed number of elements, all of the same 
data type. This characteristic distinguishes arrays from STRUCTs. 

▪ STRUCT: A STRUCT, on the other hand, is a data structure that integrates different data 
types, allowing for nested structures that users can modify as needed. However, they 
require adjustments if used multiple times and may not be compatible with PLC data types 
of similar structures. Additionally, they can exhibit poorer performance and increased 
memory demands." 

2.6.2.3 User-defined Data Types (PLC data type) 
A PLC data type is a user-defined data type that can incorporate various data types. It is possible 
to use all available data types, with a limited nesting depth of up to 8. PLC data types are 
particularly useful for generating data blocks, as they allow the creation of multiple variables of the 
same PLC data type. This facilitates making changes to all these variables simultaneously by 
modifying the original blueprint, as they all share the same definition. PLC data types are also well-
suited for organizing and storing data in accordance with process control requirements. When an 
element is replaced, the corresponding data block can be easily updated. 

2.6.3 OPC Server 
In the context of the TIA Portal, the CPU functions as an OPC-UA server. To enable this 
functionality, certain settings need to be configured. These settings include defining server 
addresses and port numbers, which serve as access points for OPC clients. Additionally, critical 
security-related configurations like authentication and user management are established in this 
setup. It's also essential to specify any purchased licenses. 
After the initial server setup, the next step involves enabling all the variables in the relevant data 
block for OPC UA access by setting them to 'enabled.' Once all the necessary settings are in place, 
the server is prepared for operation. Now, clients can access the various nodes on the server, 
provided they have the requisite permissions. 



wbk 
Institut für Produktionstechnik 

 
State of the art and research 

 

 
Andrea Albertini Page 22 

 

 

2.7 AgiloBat Project 
The impetus behind the imperative for an adaptable production system geared towards battery 
cell manufacturing stems from three key driving forces. These forces encompass an escalating 
demand for battery cells driven by the surge in electrification trends, the adoption of spatially 
efficient and product-specific cell formats, and heightening uncertainty concerning geopolitical 
factors (Karlsruher Institut fuer Technologie, 2023). 
The term agile comes from Latin term “agilis” and means “to drive, be in motion, do or perform”. 
Consequently, agile production systems should be able to react quickly to changing market 
requirements. This increases their own competitiveness and enables high profit margins, 
especially at the beginning of product life-cycles, due to high demand compared to supply (seller's 
market). (Fleischer et al., 2022, p. 1252). 

 
Figure 15: AgiloBat Logo (“Microsoft Word - Seminararbeit_SimonGese.Docx”) 

The methodology employed in this project stands in stark contrast to conventional approaches in 
battery production and design. The primary emphasis is on achieving a comprehensively optimized 
cell, considering factors such as resources, cost-effectiveness, and performance. The underlying 
concept revolves around the continuous fine-tuning of battery systems to align precisely with the 
unique specifications of each application and the available spatial constraints. For instance, the 
criteria for a battery destined for electric vehicles vastly differ from those of a power tool. In the 
forthcoming manufacturing process, these distinct requisites will be systematically translated into 
parameters for battery cells. The outcome will be a versatile array of cell shapes, specifically fine-
tuned to accommodate a diverse spectrum of requirements. (Karlsruher Institut fuer Technologie, 
2023). 
Another important aspect to highlight is the economic benefits that arising from this type of plant. 
As shown in Figure 16, we can clearly observe how the AgiloBat production is thriftily 
advantageous on the long term respectively to the hand cell production. 
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Figure 16: Comparison between a hand cell production and AgiloBat (luetgering) 

 

2.7.1 Production 
The agile production of battery cells occurs within compact local drying rooms. Consequently, the 
dew point temperature within these spaces can be tailored according to specific needs. These 
rooms, often referred to as microenvironments, are isolated from external surroundings and, 
housing internal machinery, serve as functional components in accordance with the established 
terminology. In Figure 17 we can observe functional units dedicated to crucial process stages. 
These stages include wet Coating and subsequent Electrode Drying, Calendering, Separation or 
Singulation, and Cell Assembly. 

 
Figure 17: Functional principle of agile battery cell production based on microenvironments equipped 

with machine modules. The capacity utilization can be kept high despite different processing times 
thanks to redundant functional units (Fleischer et al., 2022, p. 1254) 

Each microenvironment contains a 6-axis industrial robot of type KUKA KR22 R1610-2 as handling 
module to automate the material flow. In combination with highly automated process modules, this 
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necessitates that no people are present in the microenvironments during production. This reduces 
employee exposure to hazardous substances and very dry air. There is no need for humans in the 
microenvironment, so less energy is needed to dehumidify the air. The material flow is realized 
automatically via material locks, whereby an infeed process takes approx. 2 minutes. (Fleischer et 
al., 2022, p. 1254). In Figure 18 we can observe a detailed overview of the AgiloBat plant concept 
with all its functions and processes that the material undergoes from start to finish.  
 

 
Figure 18: Overview AgiloBat plant concept (luetgering) 

2.7.1.1 Cell 1: Coating and Drying (Beschichtung) 
In this first production step the slurry is either continuously or intermittently coated on one or both 
sides. The next step of this phase is the drying process. Here the aluminium-copper sheet is fed 
directly into the dryer and if it was previously applied a simultaneous, double-sided coating, a 
flotation dryer must be used. The solvent is removed from the substrate by supplying heat and 
recovered or sent to thermal recycling. After passing through the dryer, the foils are cooled to room 
temperature. 

 
Figure19: Coating Cell (luetgering) 
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2.7.1.2 Cell 2: Calendering (Kalandrieren) 
In this phase, the copper or aluminum foil coated on both sides is compressed by one or more 
rotating rollers. The pair of rollers are designed to create a precisely defined pressure to be applied 
to the sheets. It’s vital to correctly set this value as well as cleaning the rollers in order not to 
damage the foils and the substrate material.  

 
Figure 20: Calendering machine (luetgering) 

2.7.1.3 Cell 3: Separating (Vereinzeln) 
Separation is necessary for manufacturing the pouch cell and refers to separating the anode, 
cathode, and separator sheets from the rolled goods. It can be performed with a shear cut (punch 
tool) or thermally (laser cut).  

 
Figure 21: Singulation (luetgering) 

2.7.1.4 Cell 4: Cell Assembly (Assemblieren) 
To produce a pouch cell, a stacking process is usually carried out, and a winding process is carried 
out for the round and prismatic cells. In the stacking process, the electrode sheets are stacked in 
a repeating cycle of anode, separator, cathode, separator, etc. The anode and cathode strips are 
cut to length directly from the daughter coils produced for the winding process. First, the conductor 
foils (anode-copper and cathode-aluminum) are contacted with the cell conductors (pouch cell) or 
with the contact terminals (round cell and prismatic cell) using an ultrasonic or laser welding 
process. When placed in the packaging, the electrode stack of the flat cell or the jelly roll of the 
round cell and prismatic cell are placed in the packaging material of the cell. The pouch cell is 
closed with an impulse or contact seal, while the round and prismatic cells are usually closed with 
a laser welding process. 
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Figure 22: Cell assembly (luetgering) 

 

2.7.2 Follow-up Project 
Future updates regarding the AgiloBat project concern about the following main areas: agile solid-
state battery production, agile sodium-ion battery production, cell compound production and agile 
disassembly of cell compounds (luetgering). In the following the developing topics for each area 
will be list: 

▪ Agile solid-state battery production: 
o Automated production for largescale cell tests instead of manual cell construction 

in glovebox 
o Microenvironments as a protective barrier against H2S 
o Scalable throughput to accelerate market entry of solid-state batteries 

 
▪ Agile sodium-ion battery production: 

o Conversion of LiB production to sodium battery (drop-in technology) 
o Transfer of LiB production know-how 
o Preparation of guidelines as a basis for future switch to sodium battery in 

gigafactories 
 

▪ Cell compound production 
o Agile cell compound assembly 
o BMS development 
o Thermal management 
o Cell compounds as structural elements as enablers for lightweight construction 

 
▪ Agile disassembly of cell compounds 

o Automated disassembly of individual cell clusters based on robot cells 
o Reuse of functional cells 
o Extension of AgiloBat with regard to circular economy 
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3 Graphical Interfaces and System Operations 
As previously mentioned, a Graphical User Interface (GUI) serves as the optimal means for 
facilitating user interaction and communication with a production system, encompassing its various 
components and parameters. The integration of a graphical interface empowers the operator to 
effortlessly initiate the overall process, focus on individual segments, or even modify specific 
operational data through designated interface elements. 
The app-based control system is implemented to oversee and manage an industrial process 
responsible for battery cell production across four autonomous microenvironments. This system 
employs OPC UA and HTTP protocols to establish communication with the PLCs, OPC UA 
Servers, and the database. All the PLCs are already programmed to receive and accept 
information from the GUI and to provide process states the app can easily read. 
Within each microenvironment, there exists a central PLC that communicates with its dedicated 
OPC UA Server. This OPC UA Server is responsible for data collection from the machinery within 
the respective microenvironment. The control application utilizes an OPC UA Client to 
communicate with the OPC UA Server on the PLC, retrieving essential information concerning the 
microenvironment. 
Furthermore, the control application employs an HTTP Client to facilitate data exchange with the 
database. The Database Infrastructure serves as a repository for critical data related to the 
industrial process, including target values for various parameters and real-time parameter values. 
The control application relies on this data to monitor the process and make necessary adjustments. 
In summary, the application-based control system establishes a centralized mechanism for 
monitoring and governing the industrial process in battery cell production. The system is 
characterized by its scalability and reliability, allowing for seamless adaptation to diverse industrial 
processes' requirements. Everything is shown in details in Figure 23. 
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Figure 23: OPC UA-Based Monitoring and Control System 

The developed GUI offers several essential capabilities to the operator, including the ability to input 
pertinent information such as: 

▪ The URL of the Database HTTP Endpoint 
▪ A Bearer Token, essential for establishing a secure connection with the database 
▪ Selection of the cell type 
▪ Access to the four distinct OPC Endpoints corresponding to the four Programmable Logic 

Controllers (PLCs), each associated with a distinct working cell 

Furthermore, the GUI permits navigation through the complete array of processes and sub-
processes within the production system. This empowers the operator to select specific parameters 
associated with a particular process, thereby retrieving its corresponding value from the database. 
If deemed necessary, the operator can also make localized changes to these values without 
impacting the corresponding data stored within the database. 
An additional pivotal feature of the application lies in its ability to visually present the ongoing states 
of various sub-processes. This visual representation offers clarity regarding the progression of the 
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overarching process and the current operation in execution. The application as a whole comprises 
seven distinct windows, enumerated below: 

▪ Main Window: This serves as the initial interface upon program initiation. Here, users can 
opt to access process parameters, configuration settings, or enter one of the different cell 
to visualize the processes. 

▪ Process Parameter Window: Within this interface, users can selectively target specific 
parameters associated with individual sub-processes, enabling parameter reading and 
potential value modification. 

▪ Configuration Parameter Window: In this window, users can input essential data pertaining 
to the HTTP Endpoint URL for database communication, as well as the four OPC Endpoints 
corresponding to the distinct PLCs. 

▪ Four distinct windows, each dedicated to a specific cell's sub-processes, along with the 
monitoring mode. 

Subsequent chapters of this document will expound upon the comprehensive functionalities 
encapsulated within each of these windows. 
 

3.1 Color-Coded System 
We have four distinct microenvironments, each of which is designated to handle specific 
responsibilities. These primary responsibilities within each microenvironment are referred to as 
"level 1 processes." For instance, let's examine the Kalandrierzelle cell as one of these 
microenvironments. This cell is primarily responsible for the calendaring task. Consequently, this 
calendaring task becomes one of the "level 1 processes" within the battery cell production system. 
To accomplish this task, a set of 3 essential main tasks is required: 

▪ Provide the transport box. 
▪ Perform calendaring of sheets. 
▪ Pick up the transport box. 

These main tasks, often referred to as "level 2 processes," represent the broader objectives that 
need to be accomplished within the Kalandrierzelle. To achieve each of these main tasks, a set of 
distinct actions must be executed. For example, for the first task, providing the transport box, the 
following sub-processes, referred to as "level 3 processes," are required: 

▪ Unload the Automated Guided Vehicle (AGV). 
▪ Perform the insertion action. 
▪ Open the transport box. 

The hierarchical structure extends further to encompass "level 4 processes”, which would be sub-
processes of level 3 processes. 
This hierarchical approach allows for a well-structured breakdown of tasks and actions, with each 
level representing a different layer of detail and specificity in the execution of the overall process. 
It ensures that every action is clearly defined and contributes to the successful completion of the 
broader tasks within the microenvironment, like the Kalandrierzelle. 
Regarding the Main Window and the Kalandrierzelle interface, they will be equipped with buttons, 
each corresponding to a specific sub-process, and their color will reflect the state of that particular 
sub-process. This section will introduce and explain the criteria for assigning colors to these 
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buttons. The objective is to furnish an intuitive and efficient interface for the users within the 
production plant. Below, the various colors and their respective meanings are presented: 

▪ Grey: "OFF" indicates that all the machines within the microenvironment or a specific sub-
process are currently switched off and await operator initiation by pressing the start button 
under it. 

▪ Yellow: "ACTIVATING" signifies that the machines are in the process of warming up for the 
selected task. 

▪ Green: "IDLE" indicates that all systems are activated and ready to commence the specific 
job. This state occurs when the start button is pressed or when a task has just concluded, 
and the machines are prepared for the next task. 

▪ Blue: "ONGOING" denotes that the process has initiated, and all machines are actively 
engaged in their tasks. This state occurs after pressing the execute button. 

▪ Dark green: This color indicates that the individual process has “CONCLUDED” and been 
successfully executed. Upon completion, the button reverts to the "IDLE" state, represented 
by green. 

This color-coded system simplifies the understanding of the processes and their states, 
streamlining operations within the production environment and it is immensely beneficial for the 
plant as it provides a clear and intuitive visual representation of the various processes and their 
states, taken right from the OPC UA Server on the four different PLCs. It enables plant operators 
and personnel to easily and rapidly assess the status of each sub-process at a glance. This instant 
visibility enhances operational efficiency and minimizes the chances of errors, as operators can 
quickly identify machines that need attention or processes that are ready to proceed. 
By employing such a user-friendly interface, the plant can optimize its production workflows, 
reduce downtime, and improve overall productivity. Operators can respond promptly to changes 
in the production process, ensuring that machines are utilized efficiently and effectively. In 
summary, this system not only streamlines operations but also contributes to a more agile and 
responsive production environment. 
 

3.2 Main Window 
The Main Window, as previously mentioned, serves to display the current status of each cell, 
making it evident which one is currently operational. From here, we can navigate to other windows 
and explore the sub-processes within each microenvironment: Beschichtung, Kalandrierung, 
Vereinzelung, and Assemblierung. For the purposes of this thesis, the focus has been primarily on 
developing the environment for the Kalandrierzelle. 
Figure 23 presents the layout of the initial window, which serves as a central control hub for the 
system. In the center of the window, four distinct buttons are prominently displayed, each 
meticulously associated with a specific cell. These buttons dynamically adapt their colors in real-
time, in a way that will be describer in Chapter 3.2.3, conveying valuable information about the 
status of the corresponding processes, with the aid of the Color-Coded system detailed earlier. 
Below this array of cell-specific buttons, you'll find two additional buttons, namely the "Start" and 
"Execute" buttons. 
The "Start" button plays a pivotal role in triggering the machinery warm-up process, a critical step 
in preparation for the actual execution of tasks. It sets the stage for all the machines, ensuring they 
are adequately prepared for their respective roles. On the other hand, the "Execute" button takes 
on the responsibility of commencing process execution once the warm-up is completed. 
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In the specific scenario showed below, we delve into the details of cell number 2. In the first figure, 
this particular cell is depicted in an "OFF" state, indicating that all the associated equipment 
remains dormant, awaiting a crucial initiation. 
In the subsequent figure, a notable transition occurs. The "Start" button has been pressed, setting 
into motion a sequence of events. As a result, all the equipment within the cell comes to life, 
marking a significant shift in status. The entire cell now resides in an "IDLE" mode. It stands 
prepared and fully activated, standing by for the forthcoming execution phase. 

 
Figure 24: Main Window, ‘off’ state 

 
Figure 25: Main Window, ‘idle’ state 
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On the right side of the window we have the setting (Einstellungen) and the production (Produktion) 
sections:  

▪ Setting: we can, in this panel, easily control the configuration parameters 
(Konfigurationsparameter), such as the OPC Endpoints of the cells and other data 
regarding the access to the database, as well as the process parameters 
(Prozessparameter). We’ll see everything explained better and in depth in the next 
chapters. 

▪ Production: in this other panel we have the possibility to activate the whole process, from 
Beschichtung, to Assemblierung, with a START, an EXECUTE and a STOP button. For the 
purposes of this thesis these functionalities have not been developed yet, because of the 
limited time available 

Eventually, at the right bottom we have the CLOSE button, with which the application is closed. 
 

3.2.1 Integration of OPC UA Communication for Real-time Data 
Exchange 

As an initial step, it is crucial to establish a connection with the OPC UA Server on the PLC by 
creating a client. This is because the Server accepts commands from the Graphical User Interface, 
and displays states the GUI can read. This is the reason of this connection: it is essential for 
working with real-time data from the ongoing process. This initialization is performed within the 
startup function of the Main Window and is replicated across all other cell interfaces, which will be 
discussed later. The code for this process remains consistent, is shown in the Appendix and 
functions as follows: 

▪ HTTP Communication Setup: 
• HTTP Endpoint and Authentication: The code begins by specifying the HTTP 

endpoint for the external web service (httpEndpoint) and the corresponding bearer 
token (bearerToken). This token is used for authentication and authorization 
purposes, ensuring secure access to the web service. 

• UA Specs Configuration: The OPC UA specifications are set up next. The 
uaEndpoint variable defines the OPC UA server's endpoint, which is essential for 
establishing communication with the local automation system. This part of the code 
prepares the connection to the OPC UA server. 

• HTTP Headers: HTTP headers, such as the bearer token and accepted media 
types, are configured. These headers ensure that the HTTP requests to the web 
service are properly formatted and include necessary authorization details. 

 
▪ HTTP Request and Response: 

• HTTP Request: A POST request is created using MATLAB's HTTP toolbox. It 
includes the HTTP method, headers (with the bearer token), and the message body. 
The message body is constructed as a JSON object representing specific data 
needed for the web service interaction. 

• URI Configuration: The URI (Uniform Resource Identifier) is configured with the 
httpEndpoint, defining the target endpoint for the HTTP request. 
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• Sending the Request: The HTTP request is sent to the web service using the 
specified URI. This initiates communication with the external service, triggering the 
desired action. 

• HTTP Response Handling: The HTTP server's response, including its status code, 
is captured and processed. This status code indicates the success or failure of the 
HTTP request. 
 

▪ OPC UA Client Configuration: 
• OPC UA Client Setup: A global OPC UA client (uaClient) is established, connected 

to the OPC UA server specified by uaEndpoint. This client serves as the 
communication bridge between the user interface and the underlying automation 
system, enabling real-time data exchange via OPC UA protocols. 

 This section of the chapter lays the foundation for integrating web services into the automation 
environment, allowing for real-time data exchange between the local system and external services. 
The code presented here demonstrates the configuration of HTTP requests and the setup of an 
OPC UA client, pivotal components in achieving efficient data communication and automation 
control. It’s important also to point out that by declaring uaClient as a global variable, we ensure 
that we don't need to repeat the code every time we need to establish a connection with the OPC 
UA server: 

            global uaClient; 
            uaClient = opcua(uaEndpoint); 
            connect(uaClient); 

 

3.2.2 Starting and Executing 
In order to initiate and carry out the production process, it is necessary to implement a code 
segment capable of triggering the appropriate variable on the OPC UA server. As an illustrative 
case, we will delve into the functionalities of the start and execute buttons associated with the 
Kalandrierzelle, which represents the second phase of the process. It's worth noting that for all 
other analogous buttons encountered later in this thesis, the underlying code follows a similar 
structure, as demonstrated below: 

        % Button pushed function: STARTButton_3 
        function STARTButton_3Pushed(app, event) 
            global uaClient; 
            string = ['"Prozess_DB_ML".', '2_0_0_0', '."Start"']; 
            plcNode = opcuanode(3, string); 
            writeValue(uaClient, plcNode, 1); 
        end 
 
        % Button pushed function: EXECUTEButton_2 
        function EXECUTEButton_2Pushed(app, event) 
            global uaClient; 
            string = ['"Prozess_DB_ML".', '2_0_0_0', '."Execute"']; 
            plcNode = opcuanode(3, string); 
            writeValue(uaClient, plcNode, 1); 
        end 
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The global variable uaClient is declared as global in advance, which is essential because it 
establishes a connection with the OPC UA server, permitting the exchange of real-time data with 
the ongoing industrial process. This declaration ensures that we do not have to replicate the code 
for setting up the OPC UA client every time we need to establish a connection. This reusability 
simplifies the code structure, making it more efficient and easier to manage. Let's break down the 
functions' actions: 

▪ STARTButton_3Pushed: This function is associated with a button press event, which is 
typically used to initiate the start of a specific process. It constructs a string representing 
the path to the "Start" node within the OPC UA server, related to the process identified by 
the ID '2_0_0_0'. Subsequently, it uses the global uaClient to write a value of 1 to this node, 
effectively instructing the system to commence the process. 

▪ EXECUTEButton_2Pushed: Similar to the previous function, this one is linked to a button 
press event, but it is responsible for executing a specific action. It constructs a string 
specifying the path to the "Execute" node within the OPC UA server, related to the same 
process as in the previous function. When activated, it writes a value to this node, triggering 
the execution of the desired action within the process. 

The importance of these functions lies in their role as the user interface's interactive elements, 
allowing operators or users to actively control and interact with the industrial process. By writing 
values to specific nodes within the OPC UA server, these functions enable the application to send 
commands to the underlying automation system, thereby influencing the real-time operation of the 
process. 

3.2.3 Real-time PLC State Monitoring and Button Color Updating 
In this section, we delve into the development of a crucial feature within the Human-Machine 
Interface (HMI) for the industrial automation system. The presented code addresses the dynamic 
updating of button colors, representing different processes, based on the real-time state 
information obtained from Programmable Logic Controllers (PLCs). This capability provides 
operators and users with immediate visual feedback regarding the status of various processes, 
enhancing situational awareness and facilitating efficient process monitoring. 
 

             buttons = []; 
            tagArray = []; 

 

            buttons = [app.ID_2_0_0_0]; 

            tagArray = {'2_0_0_0'}; 

 

            % Create a timer object with fixed-rate execution and a period of 1 second. 

            timerObj = timer('ExecutionMode', 'fixedRate', 'Period', 1, 'TimerFcn', 

@updateButtonColor); 

 

            % Timer callback function to update button colors based on PLC states. 

            function updateButtonColor(~, ~) 

                % Iterate through the buttons and update their background colors. 

                for i = 1:length(buttons) 

                    % Construct the string to access the PLC node for the current button. 

                    string = strcat('"State_DB".', '"',tagArray(i),'"', '."State"'); 

                    disp(string) 

                    % Create an OPC UA node and read the state value. 

                    plcNode = opcuanode(3, string); 

                    state = readValue(uaClient, plcNode); 
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                    % Update the button background color based on the PLC state. 

                    if state == 0 

                        buttons(i).BackgroundColor = [0.63,0.63,0.63]; 

                    elseif state == 1 

                        buttons(i).BackgroundColor = [1.00,1.00,0.00]; 

                    elseif state == 2 

                        buttons(i).BackgroundColor = [0.66,1.00,0.66]; 

                    elseif state == 3 

                        buttons(i).BackgroundColor = [0.07,0.62,1.00]; 

                    elseif state == 4 

                        buttons(i).BackgroundColor = [0.19,0.59,0.04]; 

                    elseif state == 5 

                        buttons(i).BackgroundColor = [0.76,0.39,1.00]; 

                    elseif state == 6 

                        buttons(i).BackgroundColor = [0.95,0.33,0.33]; 

                    end 

                end 

            end 

 

            % Start the timer to periodically update button colors. 

            start(timerObj); 

 

 
Code Description: 

▪ Initialization: The code begins by initializing two arrays, buttons and tagArray, which will 
respectively store references to the relevant buttons and their associated PLC tags. 

▪ Button and Tag Configuration: In this section, we populate the buttons array with references 
to specific buttons representing processes within the interface. Additionally, we populate 
the tagArray with corresponding PLC tags. In the example provided, we are focusing on 
the second phase of the process, represented as '2_0_0_0,' but similar configurations can 
be made for the other buttons and tags. 

▪ Timer Creation: A timer object, timerObj, is created to facilitate periodic updates of button 
colors. This timer is configured to execute at a fixed rate, with a period of 1 second. The 
TimerFcn property is set to call the updateButtonColor function at each timer interval. 

▪ Button Color Updating: The core functionality is encapsulated within the updateButtonColor 
callback function. This function iterates through the buttons in the buttons array and 
dynamically updates their background colors based on the real-time state information 
retrieved from the OPC UA server. It constructs the appropriate string to access the PLC 
node for each button's state, retrieves the state value, and maps it to a corresponding 
background color as explained before. Different colors are assigned to different states, 
ensuring clarity and intuitiveness in the HMI. 

▪ Timer Activation: Finally, the timer is started, initiating the periodic update of button colors 
according to the state changes in the PLCs. This feature enhances the user's ability to 
monitor ongoing processes, detect issues, and take timely actions within the industrial 
automation environment. 

 
This functionality is pivotal in providing a user-friendly and informative interface, ultimately 
contributing to the efficiency and safety of industrial processes. It serves as a prime example of 
how real-time data integration and visualization can significantly improve the Human-Machine 
Interface in the context of industrial automation. 
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3.2.4 Initialization of Specific Process Interface 
In this unit, we explore a critical aspect of the Human-Machine Interface (HMI) within the industrial 
automation system. The presented code focuses on the initialization of a specific process interface 
represented by the button labeled ID_2_0_0_0. This button, when pushed, triggers the creation of 
an instance of the Kalandrierzelle_FINAL interface, which is dedicated to monitoring and 
controlling the detailed aspects of the Kalandrierzelle process, the second phase of the overall 
industrial process. 

% Button pushed function: ID_2_0_0_0 
        function ID_2_0_0_0Pushed(app, event) 
            app.Kalandrierzelle_FINAL=Kalandrierzelle_FINAL(app); 
        end 

 
Code Description: 

▪ Button Push Event: The code is associated with the button's push event, specifically 
ID_2_0_0_0Pushed. When the user interacts with this button by clicking it, an event is 
generated, and this function is called. 

▪ Initialization of Kalandrierzelle_FINAL: The primary action performed within this function is 
the creation of an instance of the Kalandrierzelle_FINAL class, referred to as 
app.Kalandrierzelle_FINAL. This instance represents a dedicated interface for monitoring 
and controlling the Kalandrierzelle process's various parameters and functions. 

▪ Interface Design and Functionality: The Kalandrierzelle_FINAL interface is designed to 
provide detailed insights and control over the specific process phase, enabling operators 
and users to interact with and supervise the Kalandrierzelle process effectively. It likely 
includes various buttons, displays, and controls tailored to the unique requirements of this 
phase. 

▪ Modular and Extensible Approach: This extract code showcases a modular and extensible 
approach to interface design. By creating dedicated interface classes for specific process 
phases, such as Kalandrierzelle_FINAL, the HMI can adapt to the complexity and specificity 
of each phase while maintaining a structured and organized design. 

▪ User Interaction: The initiation of the Kalandrierzelle_FINAL interface demonstrates the 
importance of user interaction within the HMI. It allows operators to delve into the intricacies 
of individual process phases, enabling them to make informed decisions and adjustments 
as needed. 

This code signifies the critical role of dedicated interfaces in industrial automation, where each 
phase of the process demands specialized attention and control. It serves as a testament to the 
versatility and adaptability of the HMI in accommodating the diverse needs of complex industrial 
processes. 

3.3 Kalandrierzelle 
Within each of the four microenvironments, there's a hierarchical breakdown of processes into 
three levels: Level 2 contains processes, under which are Level 3 processes, and finally Level 4 
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processes. In this window, there are as many panels as there are levels, each containing buttons 
for Level 2, Level 3, and Level 4 processes. 
At the top, you'll find the Level 2 buttons, which remain fixed and positioned uniformly. All other 
buttons are generated dynamically based on the list of processes stored in a JSON file. This 
dynamic generation allows for easy window editing by simply modifying this file. As mentioned 
earlier, all buttons representing processes and sub-processes are color-coded to reflect their 
respective statuses. 
The following image illustrates the Kalandrierzelle's window, where everything is in the "off" state, 
providing a visual reference for the initial status. 
 

 
Figure 26: Kalandrierzelle, off state 

As previously mentioned, at the top center of the window, you'll find the Level 2 processes. On the 
left-hand side, there's a panel where you can select the desired Level 2 process. Below this 
selection, the corresponding Level 3 buttons will be generated dynamically. Similarly, the large 
panel in the center functions in a similar manner. You select the desired Level 3 process, and 
beneath it, the Level 4 buttons associated with that process will appear dynamically. This 
hierarchical organization allows for a structured and intuitive interface to access different levels of 
processes and sub-processes within the system. 
The additional buttons in the figure serve various functions: 

▪ Konfigurationsparameter (Configuration Parameters): This button is used to access and 
configure the parameters related to the process setup. 

▪ Prozessparameter (Process Parameters): Clicking this button allows users to access and 
adjust parameters associated with the ongoing process. 
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▪ Rocker Switch (Pause/Go): This switch serves as a control for pausing and resuming the 
process. Initially set to "Go" when the window opens, it can be toggled to "Pause" mode to 
halt the current process, which can be continued later. 

▪ Return Button: Clicking this button closes the window and returns you to the Main Window. 
 

3.3.1 UID Management and Uniqueness Verification in Hierarchical 
Structures 

In this window we need to define a set of functions designed to manage and ensure the uniqueness 
of Unique Identifiers (UIDs) within a hierarchical structure. These UIDs serve as essential markers 
for distinct elements within the structure, facilitating their identification and reference. The functions 
perform the following key tasks: 

• updateUID Function: this function iterates through the structure and calls the createUID 
function when it encounters a field named "UID." It ensures that UIDs are generated or 
modified to adhere to a specific format, enhancing their utility as unique identifiers. The 
recursive nature of this function enables it to traverse nested structures within the hierarchy. 

• createUID Function: the createUID function is responsible for generating or adjusting UIDs 
to conform to a predefined format. It checks if the provided UID complies with the format, 
and if not, it generates a new UID that adheres to the specified structure. The format 
includes three random digits, followed by a lowercase alphabet character, another digit, 
and a second lowercase alphabet character. 

• checkUniqueUIDValues Function: this function verifies the uniqueness of UIDs within the 
entire structure. It maintains a list of encountered UIDs and checks each encountered UID 
for uniqueness. In the event of a duplicate UID, the function raises an error, ensuring that 
all UIDs remain distinct. 

These functions collectively contribute to the effective management and enforcement of unique 
identifiers, enhancing the structure's reliability and integrity. Additionally, they offer a valuable 
mechanism for ensuring the uniqueness of UIDs, crucial for precise element identification and 
referencing within complex hierarchical data structures. 
 

3.3.2 Button Generation Function 
An important aspect of this window's functionality is the automation of generating Level 3 and 
Level 4 buttons. This automation is achieved through two functions: "createButtonsLvl_3" for Level 
3 processes and "createButtonsLvl_4" for Level 4 processes. Below, you'll find the first of these 
two functions along with detailed comments that provide insights into each step of the process, 
making it easier to understand how the buttons are dynamically created for these levels. 
 

% This function creates level 3 buttons and associated functionality. 

        function [tag, buttonArray] = createButtonsLvl_3(app, position, myStruct, spacing, 

startY, buttonLength, buttonHeight) 

            % Get the field names of the input structure. 

            fields = fieldnames(myStruct); 

            % Initialize arrays to store button objects and their tags. 

            buttonArray = []; 

            tag = []; 
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            % Initialize the position index for level 3 buttons. 

            posLvl3 = 1; 

 

            % Iterate through the fields in the input structure. 

            for i = 1:numel(fields) 

                fieldName = fields{i}; 

                value = myStruct.(fieldName); 

 

                % Check if the value is a structure with a 'ButtonText' field. 

                if isstruct(value) && isfield(value, 'ButtonText') 

                    % Extract button text and PLC variable name. 

                    buttonText = value.ButtonText; 

                    ID = value.PlcVarName; 

 

                    % Calculate button position within the panel. 

                    panelWidth_Lvl3 = position.Position(3); 

                    positionX = (panelWidth_Lvl3 - buttonLength) / 2; 

                    positionY = startY - (buttonHeight + spacing) * (posLvl3 - 1); 

 

                    % Create the level 3 button. 

                    btns_lvl3 = uicontrol(position, 'Style', 'pushbutton', 'String', 

buttonText, ... 

                        'Position', [positionX, positionY, buttonLength, buttonHeight], ... 

                        'FontName', 'Arial', 'FontWeight', 'bold', 'FontAngle', 'italic', 

... 

                        'Callback', {@lvl3ButtonCallback, app, value}); 

 

                    % Add the button object to the buttonArray. 

                    buttonArray = [buttonArray, btns_lvl3]; 

                    % Add the tag (PLC variable name) to the tag array. 

                    tag{end+1} = ID; 

                     % Increment the position index for level 3 buttons. 

                    posLvl3 = posLvl3 + 1; 

 

                    % Calculate positions and create Start and Execute buttons. 

                    buttonLengthAUX = (buttonLength / 2) - 2; 

                    buttonHeightAUX = buttonHeight / 3; 

                    positionXAUX = positionX; 

                    positionYAUX = positionY - buttonHeight / 2 + 7; 

 

                    positionXStart = positionXAUX; 

                    positionXExecute = positionXAUX + buttonLengthAUX + 2; 

 

                    % Create the Start button with a callback. 

                    btnStart = uicontrol(position, 'Style', 'pushbutton', 'String', 

'START', ... 

                        'Position', [positionXAUX, positionYAUX, buttonLengthAUX, 

buttonHeightAUX], ... 

                        'FontName', 'Arial', 'FontWeight', 'bold', 'FontAngle', 'italic', 

... 

                        'Callback', {@startProcess, app, ID}); 

 

                    % Create the Execute button with a callback. 

                    btnExecute = uicontrol(position, 'Style', 'pushbutton', 'String', 

'EXECUTE', ... 

                        'Position', [positionXExecute, positionYAUX, buttonLengthAUX, 

buttonHeightAUX], ... 

                        'FontName', 'Arial', 'FontWeight', 'bold', 'FontAngle', 'italic', 

... 

                        'Callback', {@executeProcess, app, ID}); 

                end 

            end 

            % Nested function to handle the Start button callback. 
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            function startProcess(~, ~, app, ID) 

                    startFunction(app, ID); 

                end 

 

            % Nested function to perform the Start action. 

            function startFunction(app, ID) 

                % Construct the string to access the PLC node and write a value. 

                string = ['"Prozess_DB_ML".', '"',ID,'"', '."Start"']; 

 

                % Access the global UA client and create an OPC UA node. 

                global uaClient; 

                    plcNode = opcuanode(3, string); 

                    writeValue(uaClient, plcNode, 1); 

            end 

            % Nested function to handle the Execute button callback. 

            function executeProcess(~, ~, app, ID) 

                executeFunction(app, ID); 

            end 

 

            % Nested function to perform the Execute action. 

            function executeFunction(app, ID) 

                % Construct the string to access the PLC node and write a value. 

                string = ['"Prozess_DB_ML".', '"',ID,'"', '."Execute"']; 

 

                % Access the global UA client and create an OPC UA node. 

                global uaClient; 

                    plcNode = opcuanode(3, string); 

                    writeValue(uaClient, plcNode, 1); 

            end 

                      end 

 
The above code, operates as follows: 

▪ Input Parameters: The function takes several input parameters, including the application 
object (app), the position information, the data structure (myStruct, obtained by the JSON 
file) spacing parameters, and button dimensions. 

▪ Initialization: Arrays (buttonArray and tag) are initialized to store button objects and their 
associated tags. 

▪ Iterating Through Fields: The code iterates through the fields within the input structure 
myStruct. 

▪ Button Generation: For each field, the code checks if the value is a structure that contains 
a 'ButtonText' field. If so, it extracts the button text and the value PlcVarName, used to fill 
the tag array. 

▪ Button Position Calculation: It calculates the position of the button within the panel, 
considering factors like panel width and spacing. 

▪ Button Creation: Using the calculated position and other parameters, the function creates 
a Level 3 button (btns_lvl3) with specified attributes like text, position, font style, and 
callback functions. Here, btns_lvl3 represents the Level 3 button created in each iteration. 
By appending each newly created button to buttonArray, the vector effectively holds 
references to all the Level 3 buttons generated. Subsequent, ID represents the value used 
to create the PLC variable name. The code appends each ID to the tag vector, creating a 
correspondence between each button and its associated PLC variable. 

▪ Callback Functions: Callback functions are defined within the main function. These 
callbacks are associated with the Start and Execute buttons of the Level 3 process. When 
these buttons are clicked, they trigger the corresponding PLC actions. 
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▪ Nested Functions: Two nested functions, startFunction and executeFunction, handle the 
Start and Execute button actions, respectively. They construct strings to access PLC nodes 
and write values using the OPC UA client. 

These vectors, buttonArray and tag, are essential for tracking and managing the generated buttons 
and their respective PLC variable names, enabling efficient interaction with the PLC system based 
on user input 
In the case of generating Level 4 buttons, the process is analogous, although with a few notable 
distinctions: 

▪ Column-Based Layout: createButtonsLvl_4 incorporates a more complex layout strategy. 
It arranges buttons in columns with customizable spacing between columns 
(columnSpacing), allowing for better organization when a large number of buttons are 
involved. 

▪ Maximum Buttons per Column: createButtonsLvl_4 includes logic to handle situations 
where the number of buttons in a column exceeds a specified maximum 
(maxButtonsPerColumn). In such cases, it moves to the next column, enhancing the 
layout's flexibility. 

▪ Position Calculation: The X and Y positions of Level 4 buttons in createButtonsLvl_4 are 
calculated differently, taking into account the column-based layout and spacing between 
buttons. 

The function statement results as follows: 

function [tag, buttonArray] = createButtonsLvl_4(app, position, myStruct, spacing, startY, 
buttonLength, buttonHeight, maxButtonsPerColumn) 

 
Subsequently, in the startup function (startupFcn) of the Kalandrierzelle's window, we need to 
invoke the functions to generate all the buttons. This is accomplished as follows: 

            buttons = []; 
            tagArray = []; 
 
            [tag, 
btn]=createButtonsLvl_3(app,app.TransportkistebereitstellenTab,newStructData.x2_0_0_0_Kalandrieren.
x2_1_0_0_Transportkiste_bereitstellen,100,464,208,77); 
            for i = 1:numel(btn) 
                buttons = [buttons, btn(i)]; 
                tagArray = [tagArray, tag(i)]; 
            end 

 

[tag, 
btn]=createButtonsLvl_4(app,app.AGVentladenTab,newStructData.x2_0_0_0_Kalandrieren.x2_1_0_0_Transpo
rtkiste_bereitstellen.x2_1_1_0_AGV_entladen,60,494,190,40,5); 
            for i = 1:numel(btn) 
                buttons = [buttons, btn(i)]; 
                tagArray = [tagArray, tag(i)]; 
            end 
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The steps carried out by this code are as follows: 
▪ Initialization of Arrays: At the beginning of the code, two empty arrays are initialized: buttons 

and tagArray. These arrays will be used to store the created buttons and their 
corresponding tags. 

▪ Calling the createButtonsLvl_3 Function: A call to the createButtonsLvl_3 function is made 
with various arguments. This function creates buttons for the level 3 of the user interface 
and returns two outputs: an array of tags (tag) and an array of button objects (btn). 

▪ Iteration Through Buttons: A for loop is initiated to iterate through the button objects in the 
btn array returned by the createButtonsLvl_3 function. 

▪ Appending to Arrays: Within the loop, each button object is appended to the buttons array, 
and its corresponding tag is appended to the tagArray array. 

It's crucial to highlight that in the application the function responsible for generating level 3 buttons 
is invoked three times. This repetition is due to the existence of precisely three level 2 processes, 
under each of which we must create the subsequent levels of buttons. Correspondingly, a similar 
iterative process occurs for the subsequent level, level 4, as well. This approach ensures that the 
user interface dynamically adapts to the structure of the underlying processes, generating the 
required buttons for each level.  
After successfully initializing the interface, the arrays, namely 'buttons' and 'tagArray,' should be 
populated with references to the buttons and their corresponding tags, which directly align with the 
process IDs. These arrays will later play a pivotal role within the 'updateButtonColor' function, 
responsible for upgrading button color. This function is responsible for dynamically enhancing 
button colors to reflect specific process states. After the correct initialization of the application and 
the generation of the buttons, if the connection to the PLCs has been properly initialized, the 
process should initially be in ‘off’ state and the visualization of the window should appear as in 
Figure 25. 
 

3.3.3 Pause Switch 
As previously noted, positioned in the upper-right corner of the Kalandrierzelle's interface, there is 
a toggle switch designed to halt or resume the active process. The associated function, called 
'PauseSwitchValueChanged,' operates as follows: 

% Value changed function: PauseSwitch 
        function PauseSwitchValueChanged(app, event) 
            value = app.PauseSwitch.Value; 
 
            global uaClient; 
 
            if strcmp(value, 'Go') 
                string = ['"Prozess_DB_ML"','."Paused"']; 
                plcNode = opcuanode(3, string); 
                writeValue(uaClient, plcNode, 0); 
 
        elseif strcmp(value, 'Pause') 
                string = ['"Prozess_DB_ML"','."Paused"']; 
                plcNode = opcuanode(3, string); 
                writeValue(uaClient, plcNode, 1); 
            end 
        end 
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▪ Value Retrieval: The function first retrieves the current value of the 'PauseSwitch' control 
element. This value can be one of two states: 'Go' or 'Pause.'  

▪ Global OPC UA Client: The code interfaces with the global OPC UA Client declared in the 
startup function, which serves as the communication bridge between the user interface and 
the underlying automation system. 

▪ Resuming the Process ('Go' State): In the beginning, the OPC UA server features a variable 
named "Prozess_DB_ML.Paused," which is initially set to 0, representing the 'false' state, 
as it's a Boolean variable. This configuration allows the process to commence whenever 
an 'Execute' button is activated. From a technical standpoint, when we are in the 'Go' state, 
the function generates a string to access the 'Paused' node on the server and changes its 
value to 0. This action will effectively allow the process to continue once interrupted. 

▪ Pausing the Process ('Pause' State): Conversely, when the 'PauseSwitch' value is 'Pause,' 
the function again constructs the same string to access the 'Paused' node. However, this 
time, it writes a value of '1.' This action signals the system to pause the ongoing process. 

In essence, this code extract permits operators by providing a straightforward user interface 
component to control the pausing and resuming of processes within the automation system. This 
enhances the flexibility and real-time control capabilities of the production environment, 
contributing to efficient and responsive operations. 
 

3.3.4 Process Simulation 
To commence the process or simulate it with the assistance of PLCSIM Advance, the initial step 
involves pressing the start button to initiate the warming up of all the machinery within the 
designated process. When the start button associated with a level two process is pressed, it 
triggers the activation of all machinery, including level three and four apparatuses linked to the 
selected level two process. For instance, pressing the start button under "Sheets Kalandrieren" 
activates all the relevant machinery within "Module Vorbereiten" and "Module Nachbereiten," along 
with their corresponding level four processes. This action results in a transition of all associated 
buttons to the ‘ready’ (‘idle’) state, as illustrated in Figure 26 below.  
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Figure 27: Kalandirerzelle, 'ready' state 

Likewise, a similar process unfolds when you interact with buttons corresponding to levels three 
and four. For instance, when you press a button linked to a level three process, it not only initiates 
the machinery associated with that level but also activates all the relevant machinery within the 
corresponding level four processes. This cascade effect ensures that all relevant buttons turn 
green, indicating the activation status, just as demonstrated earlier. The process is similarly 
replicated when interacting with level four buttons, ensuring that the entire hierarchical structure 
of the manufacturing process is synchronized and properly initiated. 
After all the necessary components have been activated, the user can proceed with the execution 
of the manufacturing process itself. This action is initiated by pressing the execute button 
corresponding to one of the activated processes. When a specific execute button is pressed, it 
signifies the commencement of the selected process, including all components and processes at 
the lower hierarchical levels, mirroring the behavior observed when the start button is pressed. 
This synchronization ensures that the entire manufacturing process, along with its sub-processes, 
is set in motion seamlessly. 
In the two following figures, we can observe two distinct stages of the ongoing process. In both 
cases, the execution button beneath the 'Sheets Kalandrieren' process has been pressed. In the 
first figure, we witness an active level four process under the 'Vakuumnachtrocken' process, 
indicated by a blue color. In the second figure, a level four process under 'Module Nachbereiten' 
has recently concluded, and the subsequent process is about to commence. 
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Figure 28: Kalandrierzelle, 'ongoing' state 

 
Figure 29: Kalandrierzelle, 'ongoing' state 
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3.4 Konfigurationsparameter (Configuration Parameter 
Window) 

As previously discussed, users can conveniently access the configuration parameters window 
from both the Main Window and the Calendering interface. Here, they can navigate through various 
essential data points, including: 

▪ HTTP – Endpoint URL: This denotes the HTTP endpoint linked to the external web service, 
which in turn connects to the central database. 

▪ Bearer Token: This serves as a critical element for authentication and authorization, 
guaranteeing secure access to the web service. 

▪ Cell type: This relates to the specific battery cell under development, providing crucial 
information about the ongoing process. 

▪ Four distinct OPC Endpoints: There are four of these, with each one corresponding to a 
central PLC within its respective microenvironment.  

In this section we focus on the initialization of these critical configuration parameters and user 
interface (UI) elements within the application. These parameters play a pivotal role in defining the 
application's behavior and functionality, while the UI elements enable users to interact with and 
configure the application. Let's investigate into how this code accomplishes these tasks: 

function startupFcn(app, Main_Window_finalVersion, Kalandrierzelle_FINAL) 
            % Get the directory path of the current script. 
            appDirectory = fileparts(mfilename('fullpath')); 
 
            % Get the parent directory of the current script. 
            parentDirectory = fileparts(appDirectory); 
 
            % Construct the full file path for the JSON configuration file. 
            filePath = fullfile(parentDirectory, 'configuration files', 
'CellWizard_config_params.json'); 
 
            % Read the contents of the JSON file into a string. 
            fileContent = fileread(filePath); 
 
            % Decode the JSON content into a MATLAB structure. 
            jsonData = jsondecode(fileContent); 
 
            % Populate app EditFields with data from the JSON structure. 
            app.EditField.Value = jsonData.Database_Config_Parameters.HTTP_Endpoint_URL; 
            app.EditField_2.Value = jsonData.Database_Config_Parameters.Bearer_Token; 
            app.EditField_5.Value = jsonData.PLC_Parameters.Endpoint_URLs.Beschichtung; 
            app.EditField_6.Value = jsonData.PLC_Parameters.Endpoint_URLs.Kalandrierung; 
            app.EditField_3.Value = jsonData.PLC_Parameters.Endpoint_URLs.Vereinzelung; 
            app.EditField_4.Value = jsonData.PLC_Parameters.Endpoint_URLs.Assemblierung; 
 
            % Iterate through the Cell_Type_IDs in the JSON data and add them to a uitree. 
            for i = 1:numel(jsonData.Database_Config_Parameters.Cell_Type_IDs) 
                uitreenode(app.ZelltypIDNode, 'Text', 
char(jsonData.Database_Config_Parameters.Cell_Type_IDs(i))); 
            end 
        end 
 
% Button pushed function: RETURNButton 
function RETURNButtonPushed(app, event) 
    delete(app); 
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end 

 
Code Description: 
This code serves as the foundation for setting up essential aspects of the application: 

▪ File Path Retrieval: It begins by determining the directory paths of the current script and its 
parent directory. These paths are essential for locating a JSON configuration file within the 
application's file structure. 

▪ JSON Configuration Parsing: The code proceeds to read the contents of the designated 
JSON configuration file and parses them into a structured MATLAB format using the 
jsondecode function. This parsed data encapsulates critical parameters, including HTTP 
endpoint URLs, bearer tokens, and PLC (Programmable Logic Controller) endpoint URLs, 
associated with different microenvironments. 

▪ UI Element Population: With the configuration data now accessible, the code dynamically 
populates various UI elements, particularly EditField components, with the pertinent values 
retrieved from the parsed JSON dataset. These EditField elements offer a clear view of the 
configuration parameters and allow users to make adjustments as needed. 

▪ Cell Type Selection: The code also enables users to select specific battery cell types 
through the uitree UI component named ZelltypIDNode. This functionality is invaluable as 
it empowers users to tailor the application's operation to suit the characteristics of different 
battery cell types. 

▪ User-Friendly Return Button: Lastly, the code defines the behavior of the 'RETURNButton.' 
When users engage with this button, it initiates the graceful closure of the application, 
facilitating a smooth exit. 

In essence, this code plays a pivotal role in establishing the groundwork for the application's 
configuration and interaction, guaranteeing that it starts with the correct settings and provides a 
user-friendly interface for users to configure and operate the application effectively. 
The very first of this code segment is essentially telling MATLAB to execute the "startupFcn" 
function and pass it three arguments: the application object ("app") and references to two other 
components or windows within the application ("Main_Window_finalVersion" and 
"Kalandrierzelle_FINAL"). The following figure shows the layout of this window. 
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Figure 30: Konfigurationsparameter window 

 

3.5 Prozessparameter (Process Parameter Window) 
Through this window, users gain easy access to an interface for visualizing and modifying the 
parameters governing the entire process. This functionality plays a pivotal role in granting 
operators the freedom and autonomy to tailor the process according to their specific requirements. 
The interface is divided into two halves: on the left-hand side, there's a drop-down menu for 
selecting the desired cell. Upon selection, a cascading menu appears, enabling users to choose 
the specific process whose parameters they wish to inspect. 
Once a process is chosen, the right side of the interface activates, revealing a panel containing 
various fields displaying essential information such as the process name, target values, and other 
crucial variables, like Upper and Lower Limit, for instance, which are also important information to 
display, as they help the user to ensure that the values they enter are within the acceptable range. 
This window is depicted in Figure 30 below. 
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Figure 31: Prozessparameter Window, initial view 

 

3.5.1 Dynamic Tree Node Creation 
To establish the dynamic tree node menu, the implementation of a crucial function becomes 
necessary. This function's role is to extract information from a predefined data structure that 
contains details about parameters and their associations with specific processes. Hence, the 
createTreeNode function has been utilized for this purpose: 

function createTreeNodes(app, parentNode, name, parameters) 

        % Function to create tree nodes based on specific criteria 

 

        % Create a child node under the parentNode with the text corresponding to the name 

        childTree = uitreenode(parentNode, 'Text', name); 

 

        % Check if the parameters are a cell or a struct 

        if iscell(parameters) 

            for k = 1:numel(parameters) 

                if isstruct(parameters{k}) 

                    % Create a child node with the text corresponding to the parameter name 

                    uitreenode(childTree, 'Text', parameters{k}.name); 

                end 

            end 

        elseif isstruct(parameters) 

            % Create a child node with the text corresponding to the parameter name 

            uitreenode(childTree, 'Text', parameters.name); 

        end 

end 

 

The purpose of this function is to dynamically populate a tree-like structure with nodes based on 
specific criteria. Let's break down the code's functionality in detail: 
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Function Parameters: 
▪ app: This parameter represents the GUI object where the tree nodes will be created. 
▪ parentNode: It denotes the parent node under which child nodes will be added. 
▪ name: This parameter is a string representing the text label for the newly created child 

node. 
▪ parameters: It is the criteria or data based on which child nodes will be generated. It can 

be either a cell array or a struct. 
Creating Child Nodes: 

▪ The function starts by creating a child node (‘childTree’) under the specified ‘parentNode’. 
The text label for this child node is set to the value of the ‘name’ parameter. 

Checking Data Type: 
▪ The code then checks the data type of the ‘parameters’ variable to determine how to 

proceed with creating child nodes. 
▪ If ‘parameters’ is a cell array, the code enters a loop to process each element of the array. 
▪ Within the loop, it checks if the single element is a struct. 

• If it's a struct, a child node is created under ‘childTree’ with the text label 
corresponding to the ‘name’ field within that struct. 

▪ If ‘parameters’ is a struct (not within a cell array), the code directly creates a child node 
under ‘childTree’ using the text label specified by the ‘name’ field within that struct. 

Within the domain of graphical user interface (GUI) development, the createTreeNodes function 
assumes a pivotal role in dynamically constructing the interface's tree structure. This function is 
invoked as part of this window’s startup function, which springs into action during the interface's 
initialization phase. When the GUI is launched, the createTreeNodes function is summoned to 
orchestrate the creation and population of tree nodes within the interface. These tree nodes hold 
significant importance as they serve as the backbone for organizing and presenting crucial 
information to users. They facilitate seamless navigation and enable users to tailor various 
parameters and processes to their specific needs. 
In the startup function, similar to the setup observed in both the Kalandrierzelle's interface and the 
Main Window, we must ensure the proper integration of OPC UA communication. This involves 
establishing an OPC UA client, which connects to the specified OPC UA server, a concept 
thoroughly clarified in Chapter 3.2.1. The only divergence lies in the fact that, at this moment, the 
data structure obtained from the database assumes the role of a global variable. Below, we present 
the code extract from the startup function, showcasing the invocation of the createTreeNodes 
function: 

for i = 1:numel(response.processChainB) 

                name = response.processChainB(i).name; 

                parameters = response.processChainB(i).parameters; 

 

                if name(1) == '1' 

                    createTreeNodes(app, app.Cell1Node, name, parameters); 

                elseif name(1) == '2' 

                    createTreeNodes(app, app.Cell2Node, name, parameters); 

                elseif name(1) == '3' 

                    createTreeNodes(app, app.Cell3Node, name, parameters); 
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                elseif name(1) == '4' 

                    createTreeNodes(app, app.Cell4Node, name, parameters); 

                end 

end 

 
The code iterates through the elements in ‘response.processChainB’, the data structure containing 
information about different processes and parameters, obtained by the database. For each 
element in this array, it extracts the ‘name’ (process name) and ‘parameters’ variable associated 
with the process. 
Subsequently, based on the extracted process ‘name’, the code categorizes processes into 
different groups. It creates dynamic tree nodes within the interface, organizing processes by 
category. For instance, processes with names starting with '1' are associated with ‘app.Cell1Node’, 
'2' with ‘app.Cell2Node’, and so on, which are the four main nodes, one for each microenvironment. 
The ‘createTreeNodes’ function is called to populate the relevant tree nodes with the process 
information. 
In summary, this code segment, in collaboration with the ‘createTreeNodes’ function gets data, 
processes it, and dynamically populates tree nodes within the interface based on the received 
data. This dynamic organization of processes enhances user interaction and customization within 
the application. 
After the window has been properly initialized, the phase of generating dynamic tree nodes should 
be completed, granting the user the freedom to navigate through all the processes along with their 
associated parameters. The view should be as in the figure below: 

 
Figure 32: Prozessparameter, initialized view 
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3.5.2 Interactive User Interface and Parameter Selection 
In this section it will be describe what happens when the operator select the desired process whose 
value he wants to investigate. For the purpose, a function called TreeSelectionChanged has been 
implemented as shown below: 

% Selection changed function: Tree 
        function TreeSelectionChanged(app, event) 
            % Enable form only when a Process with parameters is selected 
            % Cell array containing name fo the cells 
            Cell = {'Cell 1','Cell 2','Cell 3','Cell 4'}; 
 
            % Declaration of the struct "response" as a global variable 
            global response; 
 
            % Initialize a cell array 'process' with empty cells based on 
            % the number of elements in the struct 'response.processChainB' 
            process = cell(1, numel(response.processChainB)); 
 
            % Loop through each element in 'response.processChainB' 
            for i = 1:numel(response.processChainB) 
                % List of processes, in this case level 3 
                process{i} = response.processChainB(i).name; 
            end 
 
            % Check if the selected node's text is not found in 'process' and 'Cell' 
            if isempty(find(strcmp(app.Tree.SelectedNodes.Text, process), 1)) && 
isempty(find(strcmp(app.Tree.SelectedNodes.Text, Cell), 1)) 
                % Enable the app form 
                enableForm(app); 
 
                % Set the value of 'NameEditField' to the selected node's text 
                app.NameEditField.Value = char(extractText(app, app.Tree.SelectedNodes.Text)); 
 
                % Set the value of 'TargetValueEditField' using the 'findValues' function 
                app.TargetValueEditField.Value = findValues(app, response.processChainB, 
app.Tree.SelectedNodes.Text, 'targetValue'); 
            end 
        end 

 
Code description: 

▪ Form Activation Condition: When a user interacts with the tree component in the MATLAB 
app, the code is triggered as a result of a change in the selection. Its primary purpose is to 
determine whether the application form should be enabled based on the user's selection. 

▪ Cell Array Initialization: A cell array named ‘Cell’ is defined. This array contains the names 
of different cells, namely 'Cell 1', 'Cell 2', 'Cell 3', and 'Cell 4'. These are the names of the 
four main parent node on the Tree Node Menu. 

▪ Global Variable: The code declares the global variable named ‘response’. This variable 
holds important data and has already been declared as a global variable in the startup 
function, as previously explained. 

▪ Initializing a Cell Array: A cell array named ‘process’ is initialized. The size of this array is 
determined by the number of elements in ‘response.processChainB’. This because it's 
meant to store data related to processes. 
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▪ Loop through Process Data: The code iterates through each element in the 
‘response.processChainB’. For each element, the code extracts the name of a process 
(indicated by ‘name’) and stores it in the ‘process’ cell array. This indicates that process will 
contain the names of level 3 processes. 

▪ Selection Check: The code checks whether the text of the selected node (within the tree 
component) is not found in either the ‘process’ cell array or the predefined ‘Cell’ array. In 
other words, it's ensuring that the selected node represents a process with parameters, not 
one of the predefined cell names. 

▪ Form Activation: If the selected node represents a process with parameters, the application 
form is enabled using the ‘enableForm’ function. 

▪ Field Value Assignment: The values of two specific fields in the app, namely 
‘NameEditField’ and ‘TargetValueEditField’, are set based on the selected node. The 
‘NameEditField’ is set to the name of the selected node, and the ‘TargetValueEditField’ is 
populated with data retrieved from the ‘response.processChainB’ based on the selected 
node's text. 

In summary, this code dynamically enables or disables the application form and updates certain 
fields within the app based on the user's selection of a node in the tree structure. It ensures that 
the user can interact with the form only when a process with parameters is selected. 
 

3.5.3 Data Extraction and Value Retrieval Technique 
The contents of ‘NameEditField’ and ‘TargetValueEditField’, discussed above, are populated using 
two dedicated functions: ‘extractText’ and ‘findValues’. While the latter function is currently 
employed solely for the Target Value, it's designed for potential application to other types of values 
within the data structure in the future. Here's an overview of how these two functions operate: 

▪ ‘extractText’: 

• Pattern Definition: It starts by defining a regular expression pattern. In this case, the 
pattern is set to '\d+_\d+_\d+_\d+_(\D+)'. This pattern looks for sequences of digits 
separated by underscores, followed by a sequence of non-digits (indicated by \D+). 
The parentheses (\D+) are used to capture the non-digit sequence. This functionality 
has been implemented to provide the interface a more readable aspect since in the 
data structure the names of the parameter were written using underscores. 

• Matching: The ‘regexp’ function is then used to search for matches of the pattern 
within the input string. The 'tokens' option indicates that we want to extract the 
captured portions of the text, and 'once' specifies that only the first match should be 
considered. 

• Check for Matches: The code checks if any matches were found. If matches exist, 
it proceeds with further processing. If no matches are found, the string will be left 
empty. 

• Extraction and Formatting: If there is a match, it extracts the captured text. This text 
may contain underscores, so it uses ‘strrep’ to replace underscores with spaces to 
make the text more readable. 
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In summary, the ‘extractText’ function searches for a specific pattern in the input string and extracts 
a portion of text that matches this pattern. It then formats the extracted text for readability by 
replacing underscores with spaces. 

▪ ‘findValues’: 

• Initialization: It initializes the ‘outputValue’ variable as an empty array. 

• Iteration: The function iterates through the elements inside the data structure. For 
each element, it checks if the parameters field is either a cell or a struct. This is done 
to handle different possible structures within the parameters. 

• Nested Iteration: If the parameters is a cell, it further iterates through its elements. 
For each element (referred to as param), it checks if it's a struct and if the name field 
of the struct matches the inputName provided as an argument. 

• Field Check: If the name of the selected node on the Tree Menu matches and the 
target field desired, Target Value in this case, is present within the structure, it 
retrieves the value of the field. The value is assumed to be a string, so it's converted 
to a numeric value using str2num. 

• Break Loop: If the desired value is found, the loop is broken early to improve 
efficiency since there's no need to continue searching. 

• Final Result: After the loop, the edit field will either contain the desired value if it was 
found, or it will remain empty if no match was found in the data structure. 

The ‘findValues’ function allows you to search and extract values from the complex nested 
structure by specifying the parameter name and the target field to retrieve. It handles different data 
structures within the parameters field, such as cells and structs, to find and return the requested 
value. 
After the user has chosen the desired parameter on the interface, and the ‘TreeSelectionChanged’ 
function has been successfully executed, the interface will resemble the layout depicted in Figure 
32. 
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Figure 33: Prozessparameter, parameter selection 

3.5.4 Real-time Parameter Modification 
At this juncture, the user possesses the ability to modify the 'Target Value' for the selected 
parameter by directly inputting an alternative value into the designated edit field. This feature 
facilitates adjustments to the final outcome of the ongoing process, ensuring it aligns with customer 
requirements and development an agile production method. Once the new value has been entered 
into the respective field, upon pressing the 'Save' button located at the bottom left, an alert 
message will be triggered, as illustrated in Figure 33. This alert serves as a confirmation step, 
inquiring if the proposed value for the corresponding parameter is accurate. If confirmed, the newly 
input value is updated within a fresh version of the data structure, and the interface promptly 
displays the revised value within the edit field. This responsive and user-centric approach 
empowers the operator with real-time control over key process parameters. 
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Figure 34: Prozessparameter, Alert Message 

 
Figure 35: Prozessparameter, updated parameter 

In Figure 34, the modified value is displayed within the designated edit field. 
As previously mentioned, it's essential to make updates to the data structure without affecting the 
primary database. To address this requirement, a dedicated piece of code has been developed. 
This code possesses the capability to modify the structure solely within the interface's workspace 
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and provides the user with the ability to view its contents whenever they request information about 
a specific altered parameter. This function has been aptly named "updateParameters." 
 
In its core functionality, the "updateParameters" function empowers users to make precise 
adjustments to particular parameters within the 'response' data structure. It proficiently crosses the 
data structure, effectively locates the pertinent parameter, and proceeds to adjust its 'targetValue' 
with the freshly provided value as an input to the function. 
This function exhibits a high degree of adaptability, accommodating parameters organized as 
either cell arrays or structs within the data structure. It plays a pivotal role in enabling users to tailor 
and fine-tune the parameters governing various aspects of the ongoing processes directly within 
the interface. 
Now, let's delve deeper into the intricacies of how this function operates. 

        % Define a function to update parameters in a data structure 

        % based on input name and target field 

        function updateParameters(app, inputName, targetField, value) 

            % Declaration of the struct "response" as global variable 

            global response; 

            % Iterate through the elements of 'response.processChainB' 

            for i = 1:numel(response.processChainB) 

                % Extract the 'parameters' field for the current element 

                parameters = response.processChainB(i).parameters; 

 

                % Check if the 'parameters' field is a cell or a struct 

                if iscell(parameters) 

                    % If it's a cell, iterate through its elements 

                    for j = 1:numel(parameters) 

                        param = parameters{j}; 

 

                        % Check if the parameter is a struct and its 'name' matches 

'inputName' 

                        if isstruct(param) && strcmp(param.name, inputName) 

                            % Check if the specified 'targetField' exists in the structure 

                            if isfield(param, targetField) 

                                % Update the 'targetValue' field with the new 'value' 

                                param.targetValue = num2str(value); 

                                % Update the 'parameters' cell with the modified parameter 

                                response.processChainB(i).parameters{j} = param; 

                                % Exit the loop since we've found and updated the parameter 

                                break; 

                            end 

                        end 

                    end 

                elseif isstruct(parameters) 

                    % If it's a struct, directly check the parameter's 'name' 

                    param = parameters; 

 

                    % Check if the parameter's 'name' matches 'inputName' 

                    if strcmp(param.name, inputName) 

                        % Check if the specified 'targetField' exists in the structure 

                        if isfield(param, targetField) 

                            % Update the 'targetValue' field with the new 'value' 

                            param.targetValue = num2str(value); 

                            % Update the 'parameters' struct with the modified parameter 

                            response.processChainB(i).parameters = param; 

                            % Exit the loop since we've found and updated the parameter 

                            break; 

                        end 



wbk 
Institut für Produktionstechnik 

 
Graphical Interfaces and System Operations 

 

 
Andrea Albertini Page 58 

 

                    end 

                end 

            end 

        end 

 
▪ It begins by calling the global variable ‘response’. This variable represents the data 

structure that contains information about parameters and processes. 
▪ The function then iterates through the elements of ‘response.processChainB’ appears to 

be a field within the response structure that holds an array of elements. Each element 
represents a process. 

▪ Within the loop, it extracts the 'parameters' field for the current element. The 'parameters' 
field contains information about the parameters associated with the process. 

▪ It checks if the 'parameters' field is a cell or a struct. This suggests that parameters can be 
organized in different ways: either as a cell array or a struct, depending on the process. 

▪ If 'parameters' is a cell, it further iterates through its elements, which represent individual 
parameters. For each parameter, it checks if the parameter is a struct and if its 'name' 
matches the 'inputName' provided as a parameter to the function; this variable represents 
name of the parameter designated. 

▪ If it finds a matching parameter, it checks if the specified 'targetField' exists within the 
parameter's structure. 

▪ If 'targetField' exists, the function updates the 'targetValue' field of the parameter with the 
new 'value'. The 'targetValue' is modified with the new value as a string representation. 

▪ The updated parameter is then placed back into the 'parameters' cell in its original position, 
effectively updating the parameter within the data structure. 

▪ The loop exits since the parameter has been found and updated. 
▪ If 'parameters' is a struct, the function directly checks the parameter's 'name' and follows 

the same procedure as described above, with the modification taking place in the 
'parameters' struct. 

This function is called every time the user press the “OK” button on the Alert Message discussed 
above.  
Conversely, when the operator opts to press the "Cancel" button upon detecting an incorrect value, 
the system refrains from inserting the parameter, thereby preventing the invocation of the “update 
Parameters” function. Consequently, the data structure remains unaltered, ensuring data integrity 
and operational consistency. In such cases, the system's responsiveness to erroneous inputs 
safeguards against unintended modifications, reinforcing the robustness and reliability of the 
control system. 
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4 Results 
The implemented user interface encompasses two primary components: the "Kalandrierzelle" 
interface and the Main Window. Each interface provides unique functionalities for monitoring and 
controlling manufacturing processes. 
Kalandrierzelle Interface: 

▪ The Kalandrierzelle interface is the centerpiece of our project, designed to empower users 
with real-time process monitoring and parameter customization. 

▪ The "updateButtonColor" function has been successfully integrated into this interface. It 
dynamically updates button colors, providing users with a clear visual representation of the 
ongoing processes. This is a fundamental feature for process monitoring. 

Main Window: 
▪ The Main Window acts as the primary control center, providing access to various 

parameters and configuration settings. 
Other two window have been developed and successfully implemented in the application. These 
two functionalities concern the parameter customization and the configuration parameter in a 
robust and efficient way. 
Konfigurationsparameter (Configuration Parameter Window): 

▪ In which the "updateParameters" function further enhances the flexibility of our system by 
allowing users to modify specific parameters directly. This feature was tested extensively 
during user evaluations. 

Prozessparameter (Process Parameter Window): 
▪ Through the "createTreeNodes" function, this interface presents a dynamic tree structure 

to navigate through the processes and their associated parameters, offering a user-friendly 
approach to customization. 

The results of our tests were positive and revealed the following key findings: 
▪ User-Friendly Interface: key aspect of our application, with intuitive controls for process 

monitoring and parameter customization. 
▪ Clear Process Visualization: especially important the "updateButtonColor" function, as it 

offered a quick and efficient way to assess the progress of manufacturing processes. 
▪ Parameter Customization: The "updateParameters" function was deemed highly beneficial, 

allowing users to adapt parameters in real-time, thereby enhancing process agility. 
While the overall results were positive, we encountered several challenges during the development 
process. These challenges primarily revolved around the integration of the OPC UA 
Communication for Real-time data exchange and providing the users a visual interface for the 
process monitoring. 
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5 Assessment 
Our project's primary objective was to design and implement a dynamic interface for monitoring 
and controlling processes within a manufacturing environment. In this regard, we can confidently 
conclude that our goals have been met. The "Kalandrierzelle" and Main Window interfaces provide 
users with a real-time visualization of the manufacturing processes, enhancing their understanding 
and control. In addition an interface to provide easy and rapid modification of process parameter 
has been developed and implemented for the AgiloBat project. 
From a technical standpoint, the implemented interface has demonstrated robustness and 
reliability. The "updateButtonColor" function effectively updates the button colors, providing a clear 
visual indication of the progress of each process. The flexibility to handle parameters organized 
as cell arrays or structs adds a layer of adaptability to our system. We met different technical 
challenges during the development, such as interfacing with external databases and maintaining 
real-time communication with PLCs. However, through careful design and effective coding, these 
challenges were successfully overcome. 
Our project holds significant importance in the field of process automation. By providing an 
adaptable and flexible interface, it contributes to improving the efficiency and agility of production 
plants. In particular, the "Kalandrierzelle" interface's role in parameter customization has the 
potential to transform how manufacturing processes are customized and adjusted to meet specific 
production requirements. 
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6 Summary and Outlook 
6.1 Summary 
In the course of this thesis, we embarked on a journey to develop a sophisticated Graphical User 
Interface that empowers users to seamlessly customize and control critical process parameters 
within an industrial context. The central focus of our exploration revolved around the 
Kalandrierzelle (more specifically, on the hardware available during the writing of this thesis), an 
integral component of our manufacturing process, and the Main Window that served as the 
gateway to our GUI. Below, we summarize our key findings 
The inception of our journey involved establishing secure connections with the OPC UA server, 
paving the way for real-time data access. We harnessed the potential of the ‘uaClient’ variable as 
a global entity, ensuring a one-time establishment of this connection, thereby eliminating the need 
for repetitive setup. 
Our initial challenge revolved around enhancing the user's comprehension of the ongoing process 
by providing a clear indication of the specific phase within the process. To address this challenge 
effectively, we conceived and successfully incorporated the 'updateButtonColor' function into the 
application. This function adeptly manages the dynamic color changes of process-named buttons, 
as delineated in Chapter 3.2.3. 

Subsequently, our focus shifted towards augmenting the agility of our production plant by enabling 
the modification of process parameters. To this end, we meticulously designed an intuitive 
interface, empowering users to navigate through diverse values and make necessary adjustments. 

Moreover, in recognition of the importance of verifying configuration parameters for the distinct 
cells, we introduced a dedicated window. This interface accommodates essential data, including 
the Database HTTP Endpoint URL, the imperative Bearer Token for secure database connectivity, 
the specific cell type, and access to four unique OPC Endpoints, each associated with an individual 
Programmable Logic Controller (PLC) corresponding to a specific working cell. 

The Kalandrierzelle interface took center stage as we concentrated on facilitating parameter 
customization. This specialized interface incorporates buttons pertinent to process parameters, 
with the 'updateButtonColor' function thoughtfully integrated. Notably, the same set of buttons for 
both process and configuration parameters was thoughtfully integrated into both the 
Kalandrierzelle's interface and the Main Window. 

 

6.2 Outlook 
As we contemplate the future development of our GUI, specific areas of focus emerge, particularly 
in the context of the Kalandrierzelle and the Main Window. These crucial components serve as the 
digital nerve centers of our agile manufacturing system. Here, we envision a profound 
transformation with the integration of advanced control algorithms, which will not only enhance 
operational efficiency but also drive a holistic approach to manufacturing. 
The integration of advanced control algorithms within the Kalandrierzelle interface opens a 
gateway to a new era of optimized and automated control. This technological advancement 
promises to uphold our commitment to ensuring consistent high-quality production. Through the 
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intelligent utilization of these algorithms, the manufacturing process can seamlessly adapt to 
evolving needs, fostering a higher level of agility and flexibility. This adaptability ensures that we 
remain responsive to dynamic customer requests, thus strengthening our position in a competitive 
market. 
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Appendix 
In this appendix, we include a sample section of code used to perform an HTTP request and 
process the response data, code segment used in the Main Window and in the “Kalandrierzelle” 
interface. This code was employed as a part of the data retrieval process for our research project. 
It demonstrates how we interacted with a remote server and obtained data that is integral to our 
study. While the specific details and variables in the code may vary, this example offers insight 
into the approach we adopted for accessing external data sources. 
 

        % Code that executes after component creation 

        function startupFcn(app, Main_Window_finalVersion, Kalandrierzelle_FINAL) 

            import matlab.net.* 

            import matlab.net.http.* 

            httpEndpoint = 'https://mindxserver.ict.fraunhofer.de/api/graphLookup'; 

            bearerToken = 

'eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhcGkiOnRydWUsInVzZXJJZCI6IjYyZmIyZTM4ZmQ4ODI4NDY2N

mVhYjA0ZiIsIm9yZ2FuaXphdGlvbiI6ImljdEV4dCIsImlhdCI6MTY2MDYyODUzNiwiZXhwIjoxNzIzNzQzNzM2fQ.o

QahcHqievqV4OHIU3SWiRRkvl0_dOt_-XLlmzCP-P8'; 

            % UA specs 

            uaEndpoint = 'opc.tcp://192.168.0.1:4840'; 

            f1 = matlab.net.http.HeaderField('Authorization', "Bearer " + bearerToken); 

            type1 = matlab.net.http.MediaType('text/*'); 

            type2 = matlab.net.http.MediaType('text/plain','q','.5'); 

            acceptField = matlab.net.http.field.AcceptField([type1 type2]); 

            f2 = matlab.net.http.HeaderField('acceptField', acceptField); 

            header = [f1 f2]; 

            msgBody = '{"isKIT": "64a567770678361c6b52e8d9"}'; % new 

            msgBody = jsondecode(msgBody); 

            msgBody = matlab.net.http.MessageBody(msgBody); 

            body = msgBody; 

            method = matlab.net.http.RequestMethod.POST; 

            request = matlab.net.http.RequestMessage(method, header, body); % create a 

request message 

            uri = URI(httpEndpoint); 

            resp = send(request, uri); 

            status = resp.StatusCode; 

            disp("HTTP Server Status Code: " + status); 

 

            response = resp.Body.Data; 

 
The code is explained in details in Chapter 3.2.1. 


