

Politecnico di Torino

Corso di Laurea Magistrale in Ingegneria Meccanica
A.a. 2022/2023

Sessione di Laurea Dicembre 2023

Development of a Concept for the App-
Based Control of a Production Plant in

Battery Cell Production

Relatori: Candidato:
Prof. Luigi Mazza
Prof. Dr.-Ing. Jürgen Fleischer (KIT)
Dott. Imanuel Heider (KIT)

Andrea Albertini s292805

Statement of Originality

I sincerely affirm to have composed this thesis work autonomously, to have indicated completely
and accurately all aids and sources used and to have marked anything taken from other works,
with or without changes. Furthermore, I affirm to have observed the constitution of the KIT for the
safeguarding of good scientific practice, as amended.

Karlsruhe, November 2nd 2023

Acknowledgement

I want to give a big shout-out to the wbk Department at the Karlsruhe Institute of Technology for
this amazing opportunity. I especially want to thank my supervisor, M.Sc. Imanuel Heider. He held
my hand through this whole journey and helped me grow, both personally and professionally.
Working with someone as smart and capable as Imanuel, as well as the other Process Engineers
at the Department, was essential for getting the job done. I couldn't have done it without their
support. A big thank also goes to Luca Matschinski, your help during this experience has been
unquestionably helpful for me to achieve this outcome. During my experience in Germany I’ve had
many problems also outside this project and you always managed to get me through them.
Outside the university environment, my first though goes to Leti. I perfectly know that I’m absolutely
not the easiest person to be around, mostly when things get stressful, but you always managed to
make everything seems lighter and calmer. Without you everything would have been a lot harder.
Without my parents, on the other hand, it wouldn’t have been possible for me to have this
experience abroad. They've been supporting me since day one. I know that probably it has been
harder for you than for me to live away from home for so long, but I also know that you are proud
of the man I have become and I am proud of the parents I have.
At last but not least, I’ve always been surrounded by many friends, both here and in Germany.
Cecco, Mattia, Umbe, Marco, Giulia, Enri, Lili and all the others - I can't mention everyone, but I
want you all to know how much I love you.
Thank you all.

Albert

Voglio ringraziare di cuore il Dipartimento wbk del Karlsruhe Institute of Technology per questa
straordinaria opportunità. Voglio ringraziare in particolare il mio relatore, il Dottor Imanuel Heider.
Mi ha tenuto per mano durante tutto questo percorso e mi ha aiutato a crescere, sia personalmente
che professionalmente. Lavorare con qualcuno intelligente e capace come Imanuel, così come
con gli altri ingegneri di processo del dipartimento, è stato essenziale per portare a termine il
lavoro. Non avrei potuto farcela senza il loro supporto. Un grande ringraziamento va anche a Luca
Matschinski, il vostro aiuto durante questa esperienza mi è stato indiscutibilmente utile per
raggiungere questo risultato. Durante la mia esperienza in Germania ho avuto molti problemi
anche al di fuori di questo progetto e tu mi sei sempre stato di fianco.
Fuori dall’ambiente universitario il mio primo pensiero va a Leti. So perfettamente di non essere
assolutamente la persona più facile da sopportare, soprattutto quando le cose si fanno stressanti,
ma tu sei sempre riuscita a far sembrare tutto più leggero e tranquillo. Senza di te tutto sarebbe
stato molto più difficile.
Senza i miei genitori, invece, non mi sarebbe stato possibile fare questa esperienza in Germania.
Mi sostengono dal primo giorno. So che probabilmente è stato più difficile per loro che per me non
avermi in casa per così tanto tempo, ma so anche che sono orgogliosi dell'uomo che sono
diventato e io sono orgoglioso dei genitori che ho.
Infine, ma non per importanza, sono sempre stato circondato da tanti amici, sia qui che in
Germania. Cecco, Mattia, Umbe, Marco, Giulia, Enri, Lili e tutti gli altri - non posso nominare tutti,
ma voglio che sappiate quanto vi voglio bene.
Grazie a tutti.

Albert

Abstract

This thesis delves into enhancing agility in battery cell manufacturing, a pivotal
aspect of industries like electric vehicles and energy storage systems. It underscores
the imperative of swift adaptation to shifting production requirements.
The study explores key technologies including battery cell production, OPC UA
communication, Siemens TIA Portal, and the application of ISA-88 standards. By
integrating principles of change perception, responsiveness, and adaptability, it
aligns production processes with the ever-changing market landscape.
A significant focus is the development of Graphical User Interfaces. This interface
provides users with a dynamic view of the production processes. Buttons associated
with sub-processes change color to signify different operational states, aiding
operators in monitoring and controlling the manufacturing operations.
This thesis stresses the critical role of agility in modern manufacturing and offers a
pathway for further refining the control system to cater to various subsystems.

wbk
Institute of Production Science

Table of Contents

Andrea Albertini Page I

Table of Contents

Table of Abbreviations III

1 Introduction 1

1.1 Motivation 1

1.2 Objective 2

1.3 Structure of the thesis 3

2 State of the art and research 4

2.1 Structure of Lithium-ion Batteries 4

2.1.1 Battery Chemistry 4

2.1.2 Manufacturing 5

2.1.3 Battery types 5

2.1.4 Cell geometry 6

2.2 Open Platform Communications (OPC) 7

2.2.1 OPC UA 8

2.3 Programmable Logic Controller (PLC) 10

2.4 Agile Manufacturing 12

2.5 ISA 88 / DIN EN 61512 12

2.5.1 Models for system description 13

2.5.2 Batch control concepts 15

2.5.3 Connection of the models with the procedure control 16

2.5.4 Operating modes and operating states 16

2.5.5 PackML Interface State Manager 18

2.6 Siemens Totally Integrated Automation Portal (TIA Portal) 19

2.6.1 Programming languages 20

2.6.2 Data Type 21

2.6.3 OPC Server 21

2.7 AgiloBat Project 22

2.7.1 Production 23

2.7.2 Follow-up Project 26

3 Graphical Interfaces and System Operations 27

3.1 Color-Coded System 29

3.2 Main Window 30

3.2.1 Integration of OPC UA Communication for Real-time Data Exchange 32

3.2.2 Starting and Executing 33

wbk
Institute of Production Science

Table of Contents

Andrea Albertini Page II

3.2.3 Real-time PLC State Monitoring and Button Color Updating 34

3.2.4 Initialization of Specific Process Interface 36

3.3 Kalandrierzelle 36

3.3.1 UID Management and Uniqueness Verification in Hierarchical Structures 38

3.3.2 Button Generation Function 38

3.3.3 Pause Switch 42

3.3.4 Process Simulation 43

3.4 Konfigurationsparameter (Configuration Parameter Window) 46

3.5 Prozessparameter (Process Parameter Window) 48

3.5.1 Dynamic Tree Node Creation 49

3.5.2 Interactive User Interface and Parameter Selection 52

3.5.3 Data Extraction and Value Retrieval Technique 53

3.5.4 Real-time Parameter Modification 55

4 Results 59

5 Assessment 60

6 Summary and Outlook 61

6.1 Summary 61

6.2 Outlook 61

List of Figures I

List of Tables III

References IV

Appendix VI

wbk
Institut für Produktionstechnik

Table of Abbreviations

Andrea Albertini Page III

Table of Abbreviations
Symbol Measurement

LIB Lithium-Ions-Battery

SSB Solid-State-Battery

OPC Open Platform Communications

OPC UA OPC Unified Architecture

AGV Automated Guided Vehicle

GUI Graphical User Interface

HMI Human Machine Interface

wbk
Institut für Produktionstechnik

Introduction

Andrea Albertini Page 1

1 Introduction
1.1 Motivation
The world of the electric mobility represents a dynamic market, vital for the decarbonization in road
transport, one of the most important sectors regarding urban pollution and toxic emissions. The
transport of goods and people accounts for about 20% of the total global primary energy
consumed, around 23% of CO2 emissions and if other greenhouse gases (GHG) such as methane
are taken into account, around 14% of the total global GHG emissions (Is It Really the End of
Internal Combustion Engines and Petroleum in Transport?, 2023). There could be 6–15%
improvements in internal combustion fuel efficiency in the coming decade, although filters to meet
emission legislation reduce these gains. Using these engines as hybrids with electric motors
produces a reduction in energy requirements in the order of 21–28%. (Science Review of Internal
Combustion Engines, 2023).
Electric mobility denotes, anyway, a key resource for energy transition as well as a steadily growing
market which, in recent years, has also undergone a major improvement in efficiency. The utmost
development has been seen in China, while, on the other hand, this technology finds complications
to spread in some European countries and U.S. Increasing sales pushed the total number of
electric cars on the world’s roads to 26 million, up 60% relative to 2021, with BEVs (Battery Electric
Vehicle) accounting for over 70% of total annual growth, as in previous years. As a result, about
70% of the global stock of electric cars in 2022 were BEVs. (IEA, 2023).
In Figure 1 we can clearly see the growth in electric car sales in recent years. With orange color
is represented car sales in China, with blue color Europe and then U.S with light green and other
countries with the dark green.

Figure 1 Electric car sales, 2016-2023 (IEA, 2023)

wbk
Institut für Produktionstechnik

Introduction

Andrea Albertini Page 2

In the face of this increasing market demand the importance of improving efficiencies inside the
production plan and becoming more competitive in terms of manufacturing is now clearer than
ever. A countless variety of solutions to this problem have been introduced by the Fourth Industrial
Revolution. In essence, several new innovations and new technologies have been introduced
towards automation and data exchange in manufacturing technologies and processes which
include cyber-physical systems (CPS), IoT, industrial internet of things, cloud computing, cognitive
computing, and artificial intelligence (Fourth Industrial Revolution - Wikipedia, 2023). At present,
world is experiencing the revolution created by the Internet and the way it can impact all the
industries and common people. The wealth of information and ability to connect multiple things
together changes the way industries operate and yield efficiencies.
All these new features have been introduced over the years with the aim of helping to produce
goods efficiently and productively across the value chain. Flexibility and data exchange are
improved in order to obtain a new concept of manufacturing that can achieve information
transparency and better decision. (What Is Industry 4.0 and How Does It Work? | IBM, 2023). In
today’s fast-moving market a new factory idea was sought with a production method that could
draw attention to a quick response in terms of flexibility. In this scenario the concept of Agile
Manufacturing has taken hold which can acknowledge the realities of the modern marketplace and
transforms them into a competitive advantage.

1.2 Objective
Agile control should emphasize three pivotal characteristics: change perception, responsiveness,
and adaptability (Simon Gese, 2021). The initial crucial facet is change perception. Alterations in
the production process primarily result from decisions made at the business level. Each production
process entails a recipe comprising the sequence of operations and their associated parameters.
Therefore, any change in production signifies a modification in the recipe. Crafting a recipe
necessitates the consideration of technical execution possibilities, which should align with the
system. An agile system must be proficient in executing various such recipes. To facilitate
perception within the cell, a state system detailing process status will be devised as part of this
work.
The second essential requirement is responsiveness, signifying the swift implementation of new
demands within a defined timeframe to maintain system stability. It is imperative that production
segments integrate seamlessly into existing systems, with control systems for new sub-
components designed for effortless adaptability.
The third key requirement is adaptability, encapsulating the need for a system to possess both
flexibility and adaptability. This encompasses system expansion and product adaptation. Variables
such as quantities and geometry requirements may fluctuate from one recipe to another. Given
the current considerable effort required to transition a production line from one battery cell format,
as in our case, to another (VDMA, 2023, p. 15), it aligns with sound business strategy to inherently
incorporate agile concepts from the outset.
The main purpose of the work was to develop and implement an application suitable for the control
and monitoring of an agile manufacturing process designed to produce battery cell. It consists of
four different automated microenvironments, one for each main step of a defined process chain.
The goal and this Thesis’ intent are to create a system able not only to allow the user to start and
stop the production plant, but also to decide to proceed with a process in particular rather than

wbk
Institut für Produktionstechnik

Introduction

Andrea Albertini Page 3

another one. There’s the need to provide the operator with extreme freedom of choice and give
him the ability to run only certain processes.
Furthermore, it will also be possible to decide whether to start from the standard parameters stored
in a Database or modify them in order to customize the production procedure and, with a specific
setting, the user will also be able to enter data such as the URL of the Database HTTP Endpoint
and the access to the four distinct Open Platform Communications (OPC) Endpoints
corresponding to the four Programmable Logic Controllers (PLCs), each of them associated with
a distinct working cell.

1.3 Structure of the thesis
In the following sections, this work provides an overview of the current state of research on the
key technologies it encompasses. These technologies include battery cells, OPC UA, and the
Siemens TIA Portal. Additionally, it introduces the ISA-88 standard and its most pertinent aspects.
The context for this discussion is set within the AgiloBat project, which is briefly introduced.

Introduction - Motivation
- Objective

State of the art and
research

- Structure of Lithium-
ion Batteries

- Open Platform
Communications
(OPC)

- Programmable Logic
Controller (PLC)

- Agile Manufacturing
- ISA 88 / DIN EN

61512
- AgiloBat Project

Graphical Interfaces
and System Operations

- Main Window
- Kalandrierzelle
- Konfigurationsparameter

(Configuration
Parameter Window)

- Prozessparameter
Process Parameter
(Process Parameter
Window)

Results

Assessment

Summary and Outlook - Summary
- Outlook

wbk
Institut für Produktionstechnik

State of the art and research

Andrea Albertini Page 4

2 State of the art and research
2.1 Structure of Lithium-ion Batteries
Batteries are utilized as chemical energy storage system and currently the most popular ones are
lead-acid batteries components (Noack et al., 2015). This technology is known for its reliability and
long-lasting attitude in contrast to other devices such as nickel–cadmium and nickel–metal hydride
batteries which have higher energy densities and higher numbers of cycles, but also carry higher
costs. Redox-flow batteries are appliances for the storage of electrochemical energy, in which the
redox-active constituents are flowing media and the redox reactions take place in an energy
converter similar to a fuel cell. To describe how a battery cell work we should start by listing the
three main components (Noack et al., 2015, p. 9777):

▪ Electrodes: they should possess a high electrochemical stability, high reaction kinetics of
the redox couple and, at the same time, high electrical conductivity and mechanical stability
at low cost. Pre-treatment on them can improve kinetics of reaction and their surface
quality. The positive electrode is always referred to as the cathode and the negative one
is referred to as the anode.

▪ Separating membrane: responsible for dividing the cell into two halves, vital to prevent
the mixing between the two electrolyte solutions which could cause an uncontrolled
reaction. There are different types depending on the material from which they are made
and their purpose

▪ Electrolyte: a conductive substance that is located between the electrodes. It allows ions
to flow between the electrodes. There are liquid and solid electrolytes.

Figure 2: Redox-flow batteries with electrolytes as the media for energy storage. (Noack et al., 2015,

p. 9779)

2.1.1 Battery Chemistry
The working principle of redox-flow batteries in the discharge mode can be generally represented
as a chemical reaction of two redox couples that results from the combination of two corresponding
half-reactions (Noack et al., 2015, p. 9782). While the battery is discharging and providing an
electric current, the anode releases lithium ions to the cathode, producing a stream of electrons

wbk
Institut für Produktionstechnik

State of the art and research

Andrea Albertini Page 5

from one side to the other. When plugging in the device, the reverse happens: Lithium ions are
released by the cathode and received by the anode. (Energy.gov, 2023). This kind of batteries
require nonaqueous electrolytes since lithium metal reacts spontaneously with water, due to its
weak metallic bonding, favorable formation of Li+(aq), favorable bond formation in H2, and highly
favorable formation of solvated OH−. The net reaction in the lithium ion battery is (Schmidt-Rohr,
2018, p. 1807):

𝐿𝑖𝐶6 + 𝐶𝑜𝑂2 → 𝐶6 + 𝐿𝑖𝐶𝑜𝑂2

2.1.2 Manufacturing
The manufacturing of battery cells is a highly intricate procedure composed of multiple sequential
stages aimed at establishing the foundation for high-performance and safe batteries. The initial
phase involves anode mixing, wherein anode materials are blended together. Subsequently, these
anodes are applied to substrates and undergo a drying process to ensure a consistent anode
coating. The coated anodes are then subjected to calendaring and singulation, followed by vacuum
drying to eliminate moisture and enhance their quality. Concurrently, the cathode mixing process
is executed, succeeded by cathode coating, drying, calendaring, and separation steps. Similar to
anodes, cathodes also experience vacuum drying to enhance their quality.
The actual battery cell is formed by either winding or stacking the anode and cathode electrodes.
This cell is then enclosed within a casing, and electrical connections are established. Electrolyte
is introduced into the cell to facilitate ionic conductivity. Throughout the manufacturing process,
various other stages such as wetting, forming, degassing, maturation, and End-of-Line (EoL)
testing are conducted to ensure both performance and safety.
Moreover, separator films are manufactured to segregate the anode and cathode within the cell.
Multiple cells are assembled into modules to attain the required voltage and capacity, and
eventually, these modules are combined to create battery packs.
Battery cell production mandates meticulous control, stringent quality assurance, and rigorous
safety measures to yield batteries that align with the demands of applications like electric vehicles
and energy storage systems. The optimization of this process is of paramount importance in the
development of more potent and sustainable battery technologies, addressing the evolving
requirements of the contemporary world.

2.1.3 Battery types

2.1.3.1 Lithium-Ion-Battery (LIB)
Lithium-ion batteries (LIBs) stand as the prevailing choice in the commercial battery cell arena. By
2022, the global LIB market was projected to reach a staggering 700 GWh or even higher (VDMA,
p. 11). In the preceding year, 2021, the worldwide demand for LIB cells ranged between 460-500
GWh. Electromobility accounted for over 350 GWh of this demand, while stationary applications
contributed approximately 50 GWh (VDMA, p. 11).
LIBs encompass a broad category of batteries, all united by the presence of lithium compounds
within the cathode. These lithium compounds empower LIBs to achieve remarkable energy
densities, earning them the moniker of high-energy batteries. A diverse array of electrolytes can
be found within LIBs, including liquid and solid electrolytes, along with polymer electrolytes. Among

wbk
Institut für Produktionstechnik

State of the art and research

Andrea Albertini Page 6

these, liquid electrolytes find the widest application. However, polymer electrolytes, often paired
with lithium metal anodes, tend to exhibit lower conductivity. Solid electrolyte batteries,
theoretically capable of delivering higher energy densities, face practical limitations due to
interfacial resistance at normal temperatures, making their commercial utilization less common
(Lydia Dorrmann et al., p. 4). Nevertheless, comprehensive battery research underscores that the
potential of established large-format lithium-ion batteries is far from realization (VDMA, p. 9).

2.1.3.2 Solid State Battery (SSB)
Unlike conventional batteries, solid-state batteries (SSBs) operate without a liquid electrolyte;
instead, they employ a solid electrolyte, promising significant enhancements in various critical
performance parameters (Fraunhofer ISI, 2022, p. 13). There exist several types of solid
electrolytes (SEs) applicable to SSBs, such as oxide RE, sulfide RE, and polymer RE. Each of
these solid electrolyte types comes with distinct advantages and drawbacks, although a detailed
exploration of these specifics is beyond the scope of this discussion.
In general, SSBs are expected to exhibit long-term stability and service life comparable to, or
slightly better than, their liquid electrolyte lithium-ion battery (LIB) counterparts. Currently, SSBs
are predominantly in the research and development phase. However, polymer SSBs are already
finding application in electric buses, which presently represent the largest market segment for
SSBs (Frauenhofer ISI, 2022, p. 14). Potential future applications for SSBs include the automotive
and heavy industries, along with sectors that require robust performance in demanding
environments (Frauenhofer ISI, 2022, p. 14). Despite their promising attributes, the current market
share of SSBs is relatively small, accounting for less than 0.5% of the market share, amounting to
2 GWh. Projections by the Frauenhofer Institute ISI suggest that this proportion could potentially
reach 1% by the year 2035 (Frauenhofer ISI, 2022, p. 14).

2.1.4 Cell geometry
Battery cells come in diverse shapes and sizes, and their designs are primarily driven by the need
to efficiently fit within available installation space and meet the specific demands of various battery
systems (VDMA, p. 34). Three common geometries have been established, each offering distinct
attributes:

▪ Pouch cells are characterized by a flexible pouch, typically constructed from a plastic-
aluminum composite film. Their lightweight and thin shell contribute to enhanced
gravimetric energy density when compared to prismatic cells, which have a thicker shell.
Pouch cells excel in heat dissipation, facilitated by current conductors and the cell's sides,
giving them the best cooling performance among the three geometries (VDMA, p. 33).

▪ Cylindrical cells, on the other hand, are typically created through winding processes and
feature a sturdy, thick shell. These cells boast a hard shell, offering a high energy density
and exceptional rigidity. However, their heat dissipation capabilities are comparatively less
efficient.

▪ Prismatic cells share the same hard shell attribute but have an intermediate gravimetric
energy density. This is due to a substantial portion of their weight being attributed to the
shell. Prismatic cells are known for their high rigidity and efficient temperature regulation,
owing to their favorable surface-to-volume ratio.

In essence, the various cell geometries are customized to meet specific requirements and
applications, each offering a unique blend of advantages and disadvantages related to weight,
rigidity, energy density, and heat dissipation.

wbk
Institut für Produktionstechnik

State of the art and research

Andrea Albertini Page 7

2.2 Open Platform Communications (OPC)
Industries and businesses rely on products from diverse sellers for automation. In earlier times,
these vendors employed distinct communication methods, making challenges in communicating
among control system components. As a result, data sharing became complicated, contributing to
elevated expenses for users.
In this environment, systems integration requires an enormous effort, especially for large-scale
infrastructures. In general, these facilities are complex, vast networked systems that comprise a
vast number of devices and applications with different communication protocols. Therefore, data
acquisition, exchange, and processing are achieved in a distributed way between heterogeneous
data sources and consumers. Cyber–physical systems and IoT are represented by platforms that
are integrated through connectivity protocols that permit a wide sharing of information among
different devices (González et al., 2019).

Figure 3: OPC (OPC Blog, 2018)

OPC serves as the universal standard for secure and dependable data exchange, not only within
industrial automation but also across diverse industries. This platform-independent standard
facilitates the seamless sharing of information among devices manufactured by different
companies. The OPC Foundation is responsible for the development and upkeep of this standard.
Initially introduced in 1996, its primary purpose was to abstract PLC-specific protocols (such as
Modbus, Profibus, and others) into a standardized interface. This interface empowered
HMI/SCADA systems to communicate with an intermediary component, which acted as a
translator, converting generic OPC read/write requests into device-specific ones and vice versa.
Consequently, this gave rise to an entire industry of products that allowed end-users to construct
systems harnessing the best available products, all seamlessly interacting via OPC. (OPC
Foundation, 2017).
At present, the OPC standard encompasses ten distinct specifications under the stewardship of
the OPC Foundation. These specifications are meticulously designed and maintained to serve

wbk
Institut für Produktionstechnik

State of the art and research

Andrea Albertini Page 8

various essential functions. They include Data Access (DA), Historical Data Access (HDA), Alarms
and Events (A&E), XML-Data Access (XML-DA), Data Exchange (DX), Complex Data (CD),
Security, Batch, Express Interface (Xi), and Unified Architecture (UA). (González et al., 2019).

Figure 4: Classic open platform communications (OPC)-based communication scheme in automation

system (González et al., 2019).

2.2.1 OPC UA
OPC UA, is gaining ever-increasing attention. Developed as the successor to classic OPC, UA
specification was released in 2006 and is an IEC international standard of the international
electrotechnical commission (IEC), namely, IEC 62541. (González et al., 2019). The emergence
of service-oriented architectures within manufacturing systems brought forth fresh complexities
related to security and data structuring. In response to these demands, the OPC Foundation
crafted the OPC UA specifications. This development not only catered to these requirements but
also introduced an expansive technology framework with an open and adaptable architecture.
Notably, it was designed to withstand the test of time, offering scalability and extensibility. (OPC
Foundation, 2017).
Four different application scenarios for OPC UA will be described (Schleipen et al., 2016, p. 316):

▪ Quality defect tracking system
▪ Visualization of process information (monitoring)
▪ Management information board (monitoring and control)
▪ Orchestration of cyber-physical production systems (production cells) (our specific case):

This scenario demonstrates the ability of OPC UA to be used as generic interface for
orchestration of components in a production cell. This can be used to achieve flexible
software deployment in adaptive plants.

In this thesis, the latter feature is of utmost significance. In fact, one of the primary objectives of
this project was to develop the coordination across various levels of an agile production plant by
utilizing the OPC UA communications standard.
OPC UA is a vehicle for describing status and results of components and software modules and
providing access to the services of the software modules and components. If the properties of one
component fit to the need of another component, e.g. a camera for a robot, the component is able
to connect to the other component and to execute the analyzed code during the production

wbk
Institut für Produktionstechnik

State of the art and research

Andrea Albertini Page 9

process. The state of the methods and their accessibility depend on the status of the system. For
example, the distribution method is only available if the analysis was successful.
The orchestration OPC UA server was designed and developed to provide platform- and system-
independent information via OPC UA. It receives input from a user or system which includes the
description of the whole production scene to orchestrate.

Figure 5: Differences between OPC DA and OPC UA (Rinke, 2022).

In recent years, OPC technology has been adopted by more and more users, in particular it’s used
to collect several different process data connected to multi-remote OPC server to a specific client
application and, with a read-write methodology, this leads to monitor and real-time acquisition of
process parameters and other variables.
The OPC standard plays a pivotal role in defining an interface between client applications
responsible for data processing and the servers that establish connections with physical industrial
devices like PLCs, sensors, and actuators for control. This standard additionally summaries
various objects with their respective properties and methods, serving as a standardized means to
access data from control devices. All OPC servers working on this model serve as data sources
for clients, acquiring the data requested by client devices connected to the industrial process
(Diaconescu & Spirleanu, 2012, p. 3).
The image below provides a detailed depiction of how a client application communicates with a
specific process. This process is directly linked to the distributed control system, which could be a
PLC, SCADA system, or involve actuators and sensors. The communication interface is
established through the OPC server, and ultimately connects with the appropriate client.

wbk
Institut für Produktionstechnik

State of the art and research

Andrea Albertini Page 10

Figure 6: General structure of a control system using OPC server. (Diaconescu & Spirleanu, 2012,

p. 3)

Over the course of several decades, fieldbus technology has evolved to meet the demands of the
automation environment. It prioritized attributes like user-friendliness for installation employees,
resilience in challenging and dirty conditions, as well as cost-effectiveness with simplified wiring.
In recent years, the Transmission Control Protocol (TCP) standard has gained increasing
significance due to its ability to simplify network conversations, enabling applications to exchange
data. TCP operates as a connection-oriented protocol, signifying that a connection is established
and sustained until both ends of the communication have completed their message exchanges
(Networking, 2023).
Conversely, Ethernet and TCP/IP have gained wide acceptance within Information Technologies
(IT), offering easy access and seamless integration with global internet networks and technology.
In clean office environments, Ethernet and TCP/IP stand as the typical communication network,
widely recognized and cost-effective, with a substantial pool of IT experts well-versed in their
usage. However, to extend this technology for automation purposes, adjustments are needed to
adapt to the rugged "field" environment. Transmitting real-time control information imposes precise
requirements that necessitate tailored physical interfaces and installation technologies. These
requirements are related to determinism, queues, consistence and cyclic control. (Felser, 2001,
p. 501).

2.3 Programmable Logic Controller (PLC)
The National Electrical Manufacturers Association (NEMA) defines a Programmable Logic
Controller as: “A digitally operating electronic apparatus which uses a programmable memory for
the internal storage of instructions for implementing specific functions such as logic, sequencing,

wbk
Institut für Produktionstechnik

State of the art and research

Andrea Albertini Page 11

timing, counting, and arithmetic to control, through digital or analog input/output modules, various
types of machines or processes.” (Netto, 2013)
A PLC is a computer-based device used to control and coordinate various industrial equipment.
These are widely utilized in today's industry due to their exceptional efficiency in managing
sequential control and process synchronization. Initially designed for digital signal-based switching
operations, PLCs have evolved to handle analog signals, making them versatile for a wide range
of control processes. Unlike traditional computers, PLCs do not have a monitor; instead, they often
incorporate a Human Machine Interface (HMI) flat screen display to depict process or production
machine statuses. (Alphonsus & Abdullah, 2016, p. 1187)
In these devices we can clearly identify five different main blocks (Alphonsus & Abdullah, 2016,
p. 1187):

▪ Rack assembly: this component is responsible for housing Input/Output modules,
processor modules, power supply, and the processor unit. It also simplifies electrical
connections between these modules via a printed circuit board at the rear.

▪ Power supply: it provides direct current power to the other modules connected to the rack.
▪ Programming device: used to program the CPU.
▪ Input/Output section: this is where all field devices connect and interface with the CPU. It

can be a fixed setup, primarily for small and micro PLCs, or a modular configuration that
employs a rack to accommodate varying numbers of I/O modules. Input interface modules
obtain signals from machine or process devices, converting them into signals usable by the
controller. On the other hand, output interface modules convert controller signals into
external signals utilized for machine or process control.

▪ Central Processing Unit (CPU): the CPU attends as the central coordinator and controller
of the entire programmable controller system. Classically positioned at one side of the rack
assembly, the processor module comprises integrated circuit chips housing one or more
microprocessors, memory chips, and circuits that facilitate data storage and retrieval from
memory. The CPU consists of two main components: the Arithmetic Control Unit (ALU) and
memory. The ALU is responsible for implementing mathematical calculations and logic
functions. On the other hand, the memory component of the processor stores the programs
and vital data for the CPU to carry out different operations.

Figure 7: Block diagram of a PLC (Netto)

wbk
Institut für Produktionstechnik

State of the art and research

Andrea Albertini Page 12

Industries often have production tasks that involve high levels of repetition. Despite the repetitive
and monotonous nature of these tasks, they request the operator's careful attention to ensure
effective production. Whenever there's a need for sequential control and automation, PLCs are
the best choice to carry out these tasks effectively (Netto).
In recent years, PLCs have seen significant improvements, making them essential to many
automation processes, offering users flexibility and efficiency. A common practice is to connect
PLCs with other devices such as controllers to perform tasks like supervisory control, data
collection, device and parameter monitoring, as well as program uploading and downloading.
Modern PLCs are also capable of handling timer and counter functions, memory operations, and
mathematical computations (Netto).

2.4 Agile Manufacturing
In recent decades, there has been a growing emphasis on flexible and agile manufacturing
systems. The basis for this shift began in the 1980s, encouraged by challenges related to excess
inventory, shortened lead times, and the pursuit of higher product quality and customer service.
This led to the introduction of the term "Lean Production”. By the 1990s, efforts were made to
formulate a new manufacturing paradigm, even though many firms were still grappling with the
implementation of Lean Production. While these two concepts may appear similar, they have
significant differences. Lean Manufacturing is primarily a response to struggle within constraints
and emphases on operational techniques that optimize resource utilization. In contrast, Agile
Manufacturing responds to the complexities arising from constant change and adopts a holistic
strategy aimed at thriving in an unpredictable environment. In this post-mass-production era, the
sharing of resources and technologies among firms becomes essential. An agile enterprise
possesses the organizational flexibility to choose the most suitable managerial method for each
project, thus achieving the greatest competitive advantage.(Sanchez & Nagi, 2001, p. 2)

2.5 ISA 88 / DIN EN 61512
The ISA-S88 is a standard from the International Society of Automation (ISA) for batch-oriented
operation of a system. This standard was published a few years later as the DIN standard DIN EN
61512. Like ISA-S88, DIN EN 61512 consists of four parts that are almost identical. The following
work will refer to the German DIN standard. Below these four parts are listed:

▪ Models and Terminologies (ISA-88.00.01 / DIN EN 61512-1) (2010)
▪ Data Structures and Language Guide (ISA-88.00.02 / DIN EN 61512-2) (2001)
▪ Models and representations of process and factory recipes (ISA-88.00.03 / DIN EN 61512-

3) (2003)
▪ Batch production records (ISA-88.00.04 / DIN EN 61512-4) (2006)

DIN EN 61512-1 divides into three different process types. Continuous processes, processes with
piece production and batch processes. A batch process is therefore defined as follows:
“A process that leads to the production of finite amounts of substances by subjecting quantities of
input materials to an ordered sequence of processing activities using one or more facilities within
a finite period of time.” (DIN EN 61512-1, p. 4)

wbk
Institut für Produktionstechnik

State of the art and research

Andrea Albertini Page 13

2.5.1 Models for system description
The standard provides various models to relate systems and the processes taking place therein.
The standard shows a connection between the following models. “The models described in the
standard are […] viewed as complete” (DIN EN 61512-1, p. 3).

2.5.1.1 Process model
The process model, as we see in Figure 8, breaks down the batch process into different sections,
but remains in a more abstract description. The batch process is defined as above and describes
the complete sequence of all process steps that are necessary to produce a batch of a product.
The standard uses the example of the production of polyvinyl chloride to clearly describe the
model. The batch process is therefore the production of polyvinyl chloride, the top level “process”
in Figure 8. This batch process consists of an ordered number of process sections. The process
sections can run serially, run in parallel or both at the same time. A process section usually runs
independently of other process sections and usually causes a chemical or physical transformation
of the processed substances. Using the example of polyvinyl chloride production, the following
process stages would be present: polymerization, recovery and drying. Each process section in
turn consists of process operations. Process operations are “major processing activities” such as
“preparing the reactor,” “filling,” and “reacting.” The lowest level of the process model is formed by
the process steps. They describe smaller processing steps. In polyvinyl chloride production, the
processes would be “adding the catalyst to the reactor”, “adding the vinyl chloride monomers to
the reactor”, “heating” and “maintaining temperature”. The process model hierarchizes processes
and groups them into operations and sections. (DIN EN 61512-1, p. 7)

Figure 8: Process model according to DIN EN 61512-1

2.5.1.2 Physical model

wbk
Institut für Produktionstechnik

State of the art and research

Andrea Albertini Page 14

In contrast to the process model, the physical model does not describe a process structure, but
rather the structure of physical goods such as plants, systems, machines, actuators or control
devices. Of the seven levels in Figure 9, the top three levels only play a role in a business function
and are therefore not considered further. “The four lower levels of facilities (systems, sub-systems,
technical equipment and individual control units) are defined by engineering activities” (DIN EN
61512-1, p. 7). A facility is defined as a “logical grouping of facilities that contains the facilities
required to produce one or more batches” (DIN EN 61512-1, p. 5). However, the delimitation of a
system takes place according to organizational or business criteria. The system level can be
divided into different sub-systems. A unit can carry out a variety of larger processing activities such
as reactions, crystallization or solution production. It combines all the necessary technical and
control components to carry out these activities as an independent unit. In physical terms, a
technical device can consist of individual control units and subordinate technical devices. It can
function either as part of a sub-system or as an independent group of facilities within a system,
with the option of exclusive or parallel use. This technical facility is capable of carrying out a limited
number of specific small-scale processing activities, such as dosing or weighing, and it integrates
all the necessary procedural and control components to carry out this activity. (DIN EN 61512-1,
p. 9)
A single control unit usually represents an integration of measuring instruments, actuators, other
individual control units and the associated processing device, which is operated as an independent
unit from a control technology perspective. It can also be composed of other individual control
units, such as an individual metering control unit, which could be combined from several automatic
switching valve individual control units. (DIN EN 61512-1, p. 9)

Figure 9: Physical model according to DIN EN 61512-1

wbk
Institut für Produktionstechnik

State of the art and research

Andrea Albertini Page 15

2.5.2 Batch control concepts

2.5.2.1 Basic automation
Basic automation is a control concept that is used to maintain a specific operating state. This
concept is used in the management of continuous processes, for example in the continuous
production of synthetic fuels, in which reactions take place continuously. Since the focus of this
work is not based on continuous but rather discrete processes, basic automation is not given any
further attention here.

2.5.2.2 Procedural control
Procedure controls are often used in batch-oriented contexts to structure a facility-oriented action
so that a process-oriented task is carried out. The spatial physical units/machines are combined
with the process chain and united in the procedure control. A procedure is the highest level in the
hierarchy and defines the strategy necessary to produce a batch. Example: “Produce PVC”.

Figure 10: Model of a procedural control according to DIN EN 61512-1

A subprocedure consists of various operations in a fixed order. It is important that it is assumed
that only one operation is carried out in a subsystem. However, partial procedures can be executed
in parallel. Examples of sub-procedures would be “Polymerize vinyl chloride monomers”, “Recover
vinyl chloride residues” or “Dry PVC”. Operations, in turn, contain various functions that may carry
out a chemical or physical transformation of a substance. Examples of an operation in PVC
production would be preparing the reactor, filling the reactor or the reaction itself. A function, the
lowest level, can in turn be composed of other functions. It forms “the smallest element of a
procedure control that can carry out a process-oriented task. […] The goal of a function is to cause
or define a process-oriented action, whereas the logic or sequence of steps that make up the
function is facility-specific.” (DIN EN 61512-1, p. 12).

wbk
Institut für Produktionstechnik

State of the art and research

Andrea Albertini Page 16

2.5.2.3 Coordination control
Coordination control is at a level above procedural control. It “directs, triggers and/or changes the
execution of procedure controls” (DIN EN 61512-1, p. 12). The availability of capacities, the
availability of (partial) systems and the coordination of these fall within the scope of coordination
control. Since this is implemented in a separate application, it is also not the focus of this work.
(DIN EN 61512-1, p. 12)

2.5.3 Connection of the models with the procedure control
The relationships between the models are visualized again in Figure 11. The procedural control
model uses the process model as a reference and draws on the physical entities and process
variables to define the control logic and control operations. According to DIN EN 61512-1, the
interaction between these models ensures efficient and consistent control of the process, including
the control of physical components and process variables in accordance with the specified
procedures and processes.

Figure 11: Interrelationships model procedure control, physical model and process model according

to DIN EN 61512-1

2.5.4 Operating modes and operating states
The operating modes and operating states of DIN EN 61512 are briefly presented below. Since
the standard is from 1999 and no longer includes the most current ISA proposals, the outdated
operating modes and operating states are only briefly presented.

wbk
Institut für Produktionstechnik

State of the art and research

Andrea Albertini Page 17

2.5.4.1 Operating modes according to DIN EN 61512-1
According to DIN EN 61512, every procedural element can have an operating mode. “An operating
mode determines how facility objects and procedural elements react to commands and how they
take effect.” The operating mode determines the manner in which transitions between the
procedural elements take place. In automatic mode, there is no interruption between elements as
long as the conditions are met. The control takes over the switching, so that no external operation
is required. In the semi-automatic operating mode, manual switching through an external operation
is necessary after the switching conditions have been met. However, the order remains
unchanged. In contrast to the manual operating mode, the operator has to determine the order
and the element to be carried out himself. “This standard does not exclude other operating modes
and does not require the strict use of the operating modes mentioned here.” Relevant operating
modes are summarized again in table below. (DIN EN 61512-1, pp. 29–30)

Table 1: Operating modes

Operating
mode

Behave Command

AUTOMATIC Advances within a procedure are
carried out without interruption if the
associated conditions are met.

Operators can stop the procedure,
but cannot force it to advance.

SEMI-
AUTOMATIC

Advances within a procedure are
triggered by manual commands when
the associated conditions are met.

Operators can stop execution or
redirect execution to an appropriate
location. Handovers cannot be
forced.

MANUAL The sequential functions within a
procedure are executed according to
an operator specification.

Operators can stop or force
advances.

2.5.4.2 Condition model according to DIN EN 61512-1
As with operating modes, each procedure element can also have one. DIN EN 61512-1
differentiates in its state model between an operating state and commands. An operating state is
defined as a “state of a facility object or a procedural element at a specific point in time” (DIN EN
61512-1, p. 6). A command causes a transition from one state to the next state. The states for
facility elements differ from the states of procedural elements. In the following we only consider
states of procedure elements. Commands and procedural element states are described in a state
model such as the DIN EN 61512-1 model in Figure 12. There are 3 different types of states: end,
rest and transition states. They are shown graphically in Figure 12. An important aspect is that the
change from one operating state to another operating state can cause changes in levels above or
below. This aspect is important with regard to the hierarchy of procedural elements. (DIN EN
61512-1, pp. 30–31)

wbk
Institut für Produktionstechnik

State of the art and research

Andrea Albertini Page 18

Figure 12: Condition model according to DIN EN 61512-1

2.5.5 PackML Interface State Manager
PackML stands for Packaging Machine Language and is a standard for controlling and
communicating packaging machines. It was developed by the Organization for Machine
Automation and Control (OMAC) and is based on the ANSI/ISA TR88.00.02-2022 technical report.
PackML extends the ISA-88 standard with specific functions and commands for packaging
machines. One advantage of PackML is the standardized data model and the common
understanding of the operating mode and operating status of a unit. This enables consistent
interpretation and use of data. Terms, abbreviations and definitions are taken from ISA 88. (Ph.D.
Carsten Nøkleby, p. 0)

2.5.5.1 Physical model according to ISA 88.01
DIN EN 61512 describes a physical model that PackML is based on. The PackML condition model
should start at the sub-system level and provide a condition description at this level. An interface
should be developed for each sub-system that communicates the required information to the
system control. PackML does not provide any information about the design of the underlying levels
of the physical model. (Ph.D. Carsten Nøkleby, p. 13)

2.5.5.2 Operating modes according to ISA-TR88.00.02-2022
PackML defines its own operating modes for a unit. In contrast to the original DIN EN 61512, in
which each procedural element has an operating state and an operating mode, with PackML both
are only defined at the unit level. PackML determines in which operating mode a state model is
mandatory and in which it is not. The following main operating modes are defined: Production,
Maintenance, and Manual. These correspond to the modes from DIN EN 61512 automatic, semi-
automatic and manual

wbk
Institut für Produktionstechnik

State of the art and research

Andrea Albertini Page 19

2.5.5.3 Operating states according to ISA-TR88.00.02-2022
Operating states define the state of a subsystem. PackML has expanded the ISA-88/DIN EN
61512 state model by 5 states. The two main elements in PackML are states and commands,
which trigger a transition from one state to another state.

Figure 13: Syntax of the PackML state model

States are divided into two categories: executing states (states in which the unit executes actions)
and waiting states (stable states in which a command ensures that a transition to the next state
occurs). The only exception that satisfies both is the Execute state. It is both waiting and executing.
In Figure 14, Start is a command, Starting and Execute are each state. SC means “State
Complete” and indicates that an execution has been completed.

Figure 14: PackML state model DIN EN 61512-1

2.6 Siemens Totally Integrated Automation Portal (TIA Portal)
This project was developed using Siemens TIA Portal V18, a comprehensive software framework
designed for programming Siemens hardware. The TIA Portal offers a wide range of
functionalities, although not all of them are covered in this context. We focus on the specific
functionalities essential for the concept presented here. During the development process, TIA V17

wbk
Institut für Produktionstechnik

State of the art and research

Andrea Albertini Page 20

was initially used, and the project was subsequently migrated to the more recent TIA V18 version.
The TIA Framework encompasses different software components:

▪ Siemens SIMETIC STEP 7 enables the programming of a PLC with structuring of the
program codes, creation of various variables and communication with the PLC

▪ Siemens SIMETIC STEP 7 PLCSIM Advanced is a simulation software with which a PLC
can be simulated to enable online monitoring via the TIA Portal.

2.6.1 Programming languages
In the functions (FC) and the function blocks (FB) it is possible to implement code using different
programming languages. It is possible to use LAD, FBD, STL, SCL, GRAPH and CEM (see
abbreviations) as programming languages. LAD, FBD and GRAPH are presented below because
they are used in the context of this work.

2.6.1.1 Ladder (LAD)
Modeled after electrical circuits, the ladder diagram (LAD) is a graphical programming language
that draws inspiration from circuit diagram schematics. It employs a visual design reminiscent of
circuit diagrams, featuring a conductor rail on the left edge from which current paths extend. Binary
signal queries, represented as contacts, are positioned along these current paths. The
arrangement of elements on a current path dictates whether they are in series or in parallel. More
intricate functions are expressed through encapsulated units.
A LAD program comprises elements that can be positioned in rows or in parallel on the network's
busbar. These elements frequently require variables. Programming commences at the left edge
of the current path branching from the conductor rail. The line rail can be expanded by introducing
additional current paths and branches (Siemens, 2021, p. 8179).

2.6.1.2 Function Block Diagram (FBD)
Function Block Diagram (FUP) is a graphical programming language characterized by a visual
representation reminiscent of circuit systems. This visual representation closely resembles
electronic circuit diagrams, complete with interconnecting paths for binary signals, denoted by
boundary boxes. Programs are depicted within networks where elements are linked through binary
signal flow, utilizing logical symbols from Boolean algebra. FBD programs are constructed with
elements that necessitate variables, and, similar to LAD, programming unfolds within a left-to-right
network structure (Siemens, 2021, p. 8241).

2.6.1.3 GRAPH
GRAPH, also known as S7-Graph, is a graphical programming language designed for creating
sequence controls. It is based on the GRAFCET design language, documented in DIN EN 60848.
This language enables the clear and efficient programming of sequential processes through the
use of sequencers. The entire process is broken down into manageable steps, each having a
defined set of functions and organized into sequences. Each step outlines the actions to be
executed, while the transitions between steps serve as connectors. These transitions include
conditions that dictate the circumstances for advancing to the next step, known as transition
conditions. These conditions are Boolean expressions, which can evaluate to either True or False.
A fundamental principle is that every transition must be followed by a step, and conversely, every
step must be followed by a transition (Siemens, 2021, p. 8428).

wbk
Institut für Produktionstechnik

State of the art and research

Andrea Albertini Page 21

2.6.2 Data Type
The TIA Portal encompasses various data types, each defining the behavior, structure, and
storage space for data. Within the user program, it's feasible to design custom data types that align
with the programmer's specific needs. These data types are categorized in different ways, and in
the context of this section, we'll provide a brief overview of the most pertinent categories in the
following sections.

2.6.2.1 Elementary Data Type
The TIA Portal encompasses various data types, each defining the behavior, structure, and
storage space for data. Within the user program, it's feasible to design custom data types that align
with the programmer's specific needs. These data types are categorized in different ways, and in
the context of this paper, we'll provide a brief overview of the most pertinent categories in the
following sections.

2.6.2.2 Composite Data Types
Composite data types encompass data structures composed of various elementary data types.
These can range from simple strings to arrays and even to an anonymous data structure known
as STRUCT.

▪ Array: An array is a data structure consisting of a fixed number of elements, all of the same
data type. This characteristic distinguishes arrays from STRUCTs.

▪ STRUCT: A STRUCT, on the other hand, is a data structure that integrates different data
types, allowing for nested structures that users can modify as needed. However, they
require adjustments if used multiple times and may not be compatible with PLC data types
of similar structures. Additionally, they can exhibit poorer performance and increased
memory demands."

2.6.2.3 User-defined Data Types (PLC data type)
A PLC data type is a user-defined data type that can incorporate various data types. It is possible
to use all available data types, with a limited nesting depth of up to 8. PLC data types are
particularly useful for generating data blocks, as they allow the creation of multiple variables of the
same PLC data type. This facilitates making changes to all these variables simultaneously by
modifying the original blueprint, as they all share the same definition. PLC data types are also well-
suited for organizing and storing data in accordance with process control requirements. When an
element is replaced, the corresponding data block can be easily updated.

2.6.3 OPC Server
In the context of the TIA Portal, the CPU functions as an OPC-UA server. To enable this
functionality, certain settings need to be configured. These settings include defining server
addresses and port numbers, which serve as access points for OPC clients. Additionally, critical
security-related configurations like authentication and user management are established in this
setup. It's also essential to specify any purchased licenses.
After the initial server setup, the next step involves enabling all the variables in the relevant data
block for OPC UA access by setting them to 'enabled.' Once all the necessary settings are in place,
the server is prepared for operation. Now, clients can access the various nodes on the server,
provided they have the requisite permissions.

wbk
Institut für Produktionstechnik

State of the art and research

Andrea Albertini Page 22

2.7 AgiloBat Project
The impetus behind the imperative for an adaptable production system geared towards battery
cell manufacturing stems from three key driving forces. These forces encompass an escalating
demand for battery cells driven by the surge in electrification trends, the adoption of spatially
efficient and product-specific cell formats, and heightening uncertainty concerning geopolitical
factors (Karlsruher Institut fuer Technologie, 2023).
The term agile comes from Latin term “agilis” and means “to drive, be in motion, do or perform”.
Consequently, agile production systems should be able to react quickly to changing market
requirements. This increases their own competitiveness and enables high profit margins,
especially at the beginning of product life-cycles, due to high demand compared to supply (seller's
market). (Fleischer et al., 2022, p. 1252).

Figure 15: AgiloBat Logo (“Microsoft Word - Seminararbeit_SimonGese.Docx”)

The methodology employed in this project stands in stark contrast to conventional approaches in
battery production and design. The primary emphasis is on achieving a comprehensively optimized
cell, considering factors such as resources, cost-effectiveness, and performance. The underlying
concept revolves around the continuous fine-tuning of battery systems to align precisely with the
unique specifications of each application and the available spatial constraints. For instance, the
criteria for a battery destined for electric vehicles vastly differ from those of a power tool. In the
forthcoming manufacturing process, these distinct requisites will be systematically translated into
parameters for battery cells. The outcome will be a versatile array of cell shapes, specifically fine-
tuned to accommodate a diverse spectrum of requirements. (Karlsruher Institut fuer Technologie,
2023).
Another important aspect to highlight is the economic benefits that arising from this type of plant.
As shown in Figure 16, we can clearly observe how the AgiloBat production is thriftily
advantageous on the long term respectively to the hand cell production.

wbk
Institut für Produktionstechnik

State of the art and research

Andrea Albertini Page 23

Figure 16: Comparison between a hand cell production and AgiloBat (luetgering)

2.7.1 Production
The agile production of battery cells occurs within compact local drying rooms. Consequently, the
dew point temperature within these spaces can be tailored according to specific needs. These
rooms, often referred to as microenvironments, are isolated from external surroundings and,
housing internal machinery, serve as functional components in accordance with the established
terminology. In Figure 17 we can observe functional units dedicated to crucial process stages.
These stages include wet Coating and subsequent Electrode Drying, Calendering, Separation or
Singulation, and Cell Assembly.

Figure 17: Functional principle of agile battery cell production based on microenvironments equipped

with machine modules. The capacity utilization can be kept high despite different processing times
thanks to redundant functional units (Fleischer et al., 2022, p. 1254)

Each microenvironment contains a 6-axis industrial robot of type KUKA KR22 R1610-2 as handling
module to automate the material flow. In combination with highly automated process modules, this

wbk
Institut für Produktionstechnik

State of the art and research

Andrea Albertini Page 24

necessitates that no people are present in the microenvironments during production. This reduces
employee exposure to hazardous substances and very dry air. There is no need for humans in the
microenvironment, so less energy is needed to dehumidify the air. The material flow is realized
automatically via material locks, whereby an infeed process takes approx. 2 minutes. (Fleischer et
al., 2022, p. 1254). In Figure 18 we can observe a detailed overview of the AgiloBat plant concept
with all its functions and processes that the material undergoes from start to finish.

Figure 18: Overview AgiloBat plant concept (luetgering)

2.7.1.1 Cell 1: Coating and Drying (Beschichtung)
In this first production step the slurry is either continuously or intermittently coated on one or both
sides. The next step of this phase is the drying process. Here the aluminium-copper sheet is fed
directly into the dryer and if it was previously applied a simultaneous, double-sided coating, a
flotation dryer must be used. The solvent is removed from the substrate by supplying heat and
recovered or sent to thermal recycling. After passing through the dryer, the foils are cooled to room
temperature.

Figure19: Coating Cell (luetgering)

wbk
Institut für Produktionstechnik

State of the art and research

Andrea Albertini Page 25

2.7.1.2 Cell 2: Calendering (Kalandrieren)
In this phase, the copper or aluminum foil coated on both sides is compressed by one or more
rotating rollers. The pair of rollers are designed to create a precisely defined pressure to be applied
to the sheets. It’s vital to correctly set this value as well as cleaning the rollers in order not to
damage the foils and the substrate material.

Figure 20: Calendering machine (luetgering)

2.7.1.3 Cell 3: Separating (Vereinzeln)
Separation is necessary for manufacturing the pouch cell and refers to separating the anode,
cathode, and separator sheets from the rolled goods. It can be performed with a shear cut (punch
tool) or thermally (laser cut).

Figure 21: Singulation (luetgering)

2.7.1.4 Cell 4: Cell Assembly (Assemblieren)
To produce a pouch cell, a stacking process is usually carried out, and a winding process is carried
out for the round and prismatic cells. In the stacking process, the electrode sheets are stacked in
a repeating cycle of anode, separator, cathode, separator, etc. The anode and cathode strips are
cut to length directly from the daughter coils produced for the winding process. First, the conductor
foils (anode-copper and cathode-aluminum) are contacted with the cell conductors (pouch cell) or
with the contact terminals (round cell and prismatic cell) using an ultrasonic or laser welding
process. When placed in the packaging, the electrode stack of the flat cell or the jelly roll of the
round cell and prismatic cell are placed in the packaging material of the cell. The pouch cell is
closed with an impulse or contact seal, while the round and prismatic cells are usually closed with
a laser welding process.

wbk
Institut für Produktionstechnik

State of the art and research

Andrea Albertini Page 26

Figure 22: Cell assembly (luetgering)

2.7.2 Follow-up Project
Future updates regarding the AgiloBat project concern about the following main areas: agile solid-
state battery production, agile sodium-ion battery production, cell compound production and agile
disassembly of cell compounds (luetgering). In the following the developing topics for each area
will be list:

▪ Agile solid-state battery production:
o Automated production for largescale cell tests instead of manual cell construction

in glovebox
o Microenvironments as a protective barrier against H2S
o Scalable throughput to accelerate market entry of solid-state batteries

▪ Agile sodium-ion battery production:

o Conversion of LiB production to sodium battery (drop-in technology)
o Transfer of LiB production know-how
o Preparation of guidelines as a basis for future switch to sodium battery in

gigafactories

▪ Cell compound production
o Agile cell compound assembly
o BMS development
o Thermal management
o Cell compounds as structural elements as enablers for lightweight construction

▪ Agile disassembly of cell compounds

o Automated disassembly of individual cell clusters based on robot cells
o Reuse of functional cells
o Extension of AgiloBat with regard to circular economy

wbk
Institut für Produktionstechnik

Graphical Interfaces and System Operations

Andrea Albertini Page 27

3 Graphical Interfaces and System Operations
As previously mentioned, a Graphical User Interface (GUI) serves as the optimal means for
facilitating user interaction and communication with a production system, encompassing its various
components and parameters. The integration of a graphical interface empowers the operator to
effortlessly initiate the overall process, focus on individual segments, or even modify specific
operational data through designated interface elements.
The app-based control system is implemented to oversee and manage an industrial process
responsible for battery cell production across four autonomous microenvironments. This system
employs OPC UA and HTTP protocols to establish communication with the PLCs, OPC UA
Servers, and the database. All the PLCs are already programmed to receive and accept
information from the GUI and to provide process states the app can easily read.
Within each microenvironment, there exists a central PLC that communicates with its dedicated
OPC UA Server. This OPC UA Server is responsible for data collection from the machinery within
the respective microenvironment. The control application utilizes an OPC UA Client to
communicate with the OPC UA Server on the PLC, retrieving essential information concerning the
microenvironment.
Furthermore, the control application employs an HTTP Client to facilitate data exchange with the
database. The Database Infrastructure serves as a repository for critical data related to the
industrial process, including target values for various parameters and real-time parameter values.
The control application relies on this data to monitor the process and make necessary adjustments.
In summary, the application-based control system establishes a centralized mechanism for
monitoring and governing the industrial process in battery cell production. The system is
characterized by its scalability and reliability, allowing for seamless adaptation to diverse industrial
processes' requirements. Everything is shown in details in Figure 23.

wbk
Institut für Produktionstechnik

Graphical Interfaces and System Operations

Andrea Albertini Page 28

Figure 23: OPC UA-Based Monitoring and Control System

The developed GUI offers several essential capabilities to the operator, including the ability to input
pertinent information such as:

▪ The URL of the Database HTTP Endpoint
▪ A Bearer Token, essential for establishing a secure connection with the database
▪ Selection of the cell type
▪ Access to the four distinct OPC Endpoints corresponding to the four Programmable Logic

Controllers (PLCs), each associated with a distinct working cell

Furthermore, the GUI permits navigation through the complete array of processes and sub-
processes within the production system. This empowers the operator to select specific parameters
associated with a particular process, thereby retrieving its corresponding value from the database.
If deemed necessary, the operator can also make localized changes to these values without
impacting the corresponding data stored within the database.
An additional pivotal feature of the application lies in its ability to visually present the ongoing states
of various sub-processes. This visual representation offers clarity regarding the progression of the

wbk
Institut für Produktionstechnik

Graphical Interfaces and System Operations

Andrea Albertini Page 29

overarching process and the current operation in execution. The application as a whole comprises
seven distinct windows, enumerated below:

▪ Main Window: This serves as the initial interface upon program initiation. Here, users can
opt to access process parameters, configuration settings, or enter one of the different cell
to visualize the processes.

▪ Process Parameter Window: Within this interface, users can selectively target specific
parameters associated with individual sub-processes, enabling parameter reading and
potential value modification.

▪ Configuration Parameter Window: In this window, users can input essential data pertaining
to the HTTP Endpoint URL for database communication, as well as the four OPC Endpoints
corresponding to the distinct PLCs.

▪ Four distinct windows, each dedicated to a specific cell's sub-processes, along with the
monitoring mode.

Subsequent chapters of this document will expound upon the comprehensive functionalities
encapsulated within each of these windows.

3.1 Color-Coded System
We have four distinct microenvironments, each of which is designated to handle specific
responsibilities. These primary responsibilities within each microenvironment are referred to as
"level 1 processes." For instance, let's examine the Kalandrierzelle cell as one of these
microenvironments. This cell is primarily responsible for the calendaring task. Consequently, this
calendaring task becomes one of the "level 1 processes" within the battery cell production system.
To accomplish this task, a set of 3 essential main tasks is required:

▪ Provide the transport box.
▪ Perform calendaring of sheets.
▪ Pick up the transport box.

These main tasks, often referred to as "level 2 processes," represent the broader objectives that
need to be accomplished within the Kalandrierzelle. To achieve each of these main tasks, a set of
distinct actions must be executed. For example, for the first task, providing the transport box, the
following sub-processes, referred to as "level 3 processes," are required:

▪ Unload the Automated Guided Vehicle (AGV).
▪ Perform the insertion action.
▪ Open the transport box.

The hierarchical structure extends further to encompass "level 4 processes”, which would be sub-
processes of level 3 processes.
This hierarchical approach allows for a well-structured breakdown of tasks and actions, with each
level representing a different layer of detail and specificity in the execution of the overall process.
It ensures that every action is clearly defined and contributes to the successful completion of the
broader tasks within the microenvironment, like the Kalandrierzelle.
Regarding the Main Window and the Kalandrierzelle interface, they will be equipped with buttons,
each corresponding to a specific sub-process, and their color will reflect the state of that particular
sub-process. This section will introduce and explain the criteria for assigning colors to these

wbk
Institut für Produktionstechnik

Graphical Interfaces and System Operations

Andrea Albertini Page 30

buttons. The objective is to furnish an intuitive and efficient interface for the users within the
production plant. Below, the various colors and their respective meanings are presented:

▪ Grey: "OFF" indicates that all the machines within the microenvironment or a specific sub-
process are currently switched off and await operator initiation by pressing the start button
under it.

▪ Yellow: "ACTIVATING" signifies that the machines are in the process of warming up for the
selected task.

▪ Green: "IDLE" indicates that all systems are activated and ready to commence the specific
job. This state occurs when the start button is pressed or when a task has just concluded,
and the machines are prepared for the next task.

▪ Blue: "ONGOING" denotes that the process has initiated, and all machines are actively
engaged in their tasks. This state occurs after pressing the execute button.

▪ Dark green: This color indicates that the individual process has “CONCLUDED” and been
successfully executed. Upon completion, the button reverts to the "IDLE" state, represented
by green.

This color-coded system simplifies the understanding of the processes and their states,
streamlining operations within the production environment and it is immensely beneficial for the
plant as it provides a clear and intuitive visual representation of the various processes and their
states, taken right from the OPC UA Server on the four different PLCs. It enables plant operators
and personnel to easily and rapidly assess the status of each sub-process at a glance. This instant
visibility enhances operational efficiency and minimizes the chances of errors, as operators can
quickly identify machines that need attention or processes that are ready to proceed.
By employing such a user-friendly interface, the plant can optimize its production workflows,
reduce downtime, and improve overall productivity. Operators can respond promptly to changes
in the production process, ensuring that machines are utilized efficiently and effectively. In
summary, this system not only streamlines operations but also contributes to a more agile and
responsive production environment.

3.2 Main Window
The Main Window, as previously mentioned, serves to display the current status of each cell,
making it evident which one is currently operational. From here, we can navigate to other windows
and explore the sub-processes within each microenvironment: Beschichtung, Kalandrierung,
Vereinzelung, and Assemblierung. For the purposes of this thesis, the focus has been primarily on
developing the environment for the Kalandrierzelle.
Figure 23 presents the layout of the initial window, which serves as a central control hub for the
system. In the center of the window, four distinct buttons are prominently displayed, each
meticulously associated with a specific cell. These buttons dynamically adapt their colors in real-
time, in a way that will be describer in Chapter 3.2.3, conveying valuable information about the
status of the corresponding processes, with the aid of the Color-Coded system detailed earlier.
Below this array of cell-specific buttons, you'll find two additional buttons, namely the "Start" and
"Execute" buttons.
The "Start" button plays a pivotal role in triggering the machinery warm-up process, a critical step
in preparation for the actual execution of tasks. It sets the stage for all the machines, ensuring they
are adequately prepared for their respective roles. On the other hand, the "Execute" button takes
on the responsibility of commencing process execution once the warm-up is completed.

wbk
Institut für Produktionstechnik

Graphical Interfaces and System Operations

Andrea Albertini Page 31

In the specific scenario showed below, we delve into the details of cell number 2. In the first figure,
this particular cell is depicted in an "OFF" state, indicating that all the associated equipment
remains dormant, awaiting a crucial initiation.
In the subsequent figure, a notable transition occurs. The "Start" button has been pressed, setting
into motion a sequence of events. As a result, all the equipment within the cell comes to life,
marking a significant shift in status. The entire cell now resides in an "IDLE" mode. It stands
prepared and fully activated, standing by for the forthcoming execution phase.

Figure 24: Main Window, ‘off’ state

Figure 25: Main Window, ‘idle’ state

wbk
Institut für Produktionstechnik

Graphical Interfaces and System Operations

Andrea Albertini Page 32

On the right side of the window we have the setting (Einstellungen) and the production (Produktion)
sections:

▪ Setting: we can, in this panel, easily control the configuration parameters
(Konfigurationsparameter), such as the OPC Endpoints of the cells and other data
regarding the access to the database, as well as the process parameters
(Prozessparameter). We’ll see everything explained better and in depth in the next
chapters.

▪ Production: in this other panel we have the possibility to activate the whole process, from
Beschichtung, to Assemblierung, with a START, an EXECUTE and a STOP button. For the
purposes of this thesis these functionalities have not been developed yet, because of the
limited time available

Eventually, at the right bottom we have the CLOSE button, with which the application is closed.

3.2.1 Integration of OPC UA Communication for Real-time Data
Exchange

As an initial step, it is crucial to establish a connection with the OPC UA Server on the PLC by
creating a client. This is because the Server accepts commands from the Graphical User Interface,
and displays states the GUI can read. This is the reason of this connection: it is essential for
working with real-time data from the ongoing process. This initialization is performed within the
startup function of the Main Window and is replicated across all other cell interfaces, which will be
discussed later. The code for this process remains consistent, is shown in the Appendix and
functions as follows:

▪ HTTP Communication Setup:
• HTTP Endpoint and Authentication: The code begins by specifying the HTTP

endpoint for the external web service (httpEndpoint) and the corresponding bearer
token (bearerToken). This token is used for authentication and authorization
purposes, ensuring secure access to the web service.

• UA Specs Configuration: The OPC UA specifications are set up next. The
uaEndpoint variable defines the OPC UA server's endpoint, which is essential for
establishing communication with the local automation system. This part of the code
prepares the connection to the OPC UA server.

• HTTP Headers: HTTP headers, such as the bearer token and accepted media
types, are configured. These headers ensure that the HTTP requests to the web
service are properly formatted and include necessary authorization details.

▪ HTTP Request and Response:

• HTTP Request: A POST request is created using MATLAB's HTTP toolbox. It
includes the HTTP method, headers (with the bearer token), and the message body.
The message body is constructed as a JSON object representing specific data
needed for the web service interaction.

• URI Configuration: The URI (Uniform Resource Identifier) is configured with the
httpEndpoint, defining the target endpoint for the HTTP request.

wbk
Institut für Produktionstechnik

Graphical Interfaces and System Operations

Andrea Albertini Page 33

• Sending the Request: The HTTP request is sent to the web service using the
specified URI. This initiates communication with the external service, triggering the
desired action.

• HTTP Response Handling: The HTTP server's response, including its status code,
is captured and processed. This status code indicates the success or failure of the
HTTP request.

▪ OPC UA Client Configuration:
• OPC UA Client Setup: A global OPC UA client (uaClient) is established, connected

to the OPC UA server specified by uaEndpoint. This client serves as the
communication bridge between the user interface and the underlying automation
system, enabling real-time data exchange via OPC UA protocols.

 This section of the chapter lays the foundation for integrating web services into the automation
environment, allowing for real-time data exchange between the local system and external services.
The code presented here demonstrates the configuration of HTTP requests and the setup of an
OPC UA client, pivotal components in achieving efficient data communication and automation
control. It’s important also to point out that by declaring uaClient as a global variable, we ensure
that we don't need to repeat the code every time we need to establish a connection with the OPC
UA server:

 global uaClient;
 uaClient = opcua(uaEndpoint);
 connect(uaClient);

3.2.2 Starting and Executing
In order to initiate and carry out the production process, it is necessary to implement a code
segment capable of triggering the appropriate variable on the OPC UA server. As an illustrative
case, we will delve into the functionalities of the start and execute buttons associated with the
Kalandrierzelle, which represents the second phase of the process. It's worth noting that for all
other analogous buttons encountered later in this thesis, the underlying code follows a similar
structure, as demonstrated below:

 % Button pushed function: STARTButton_3
 function STARTButton_3Pushed(app, event)
 global uaClient;
 string = ['"Prozess_DB_ML".', '2_0_0_0', '."Start"'];
 plcNode = opcuanode(3, string);
 writeValue(uaClient, plcNode, 1);
 end

 % Button pushed function: EXECUTEButton_2
 function EXECUTEButton_2Pushed(app, event)
 global uaClient;
 string = ['"Prozess_DB_ML".', '2_0_0_0', '."Execute"'];
 plcNode = opcuanode(3, string);
 writeValue(uaClient, plcNode, 1);
 end

wbk
Institut für Produktionstechnik

Graphical Interfaces and System Operations

Andrea Albertini Page 34

The global variable uaClient is declared as global in advance, which is essential because it
establishes a connection with the OPC UA server, permitting the exchange of real-time data with
the ongoing industrial process. This declaration ensures that we do not have to replicate the code
for setting up the OPC UA client every time we need to establish a connection. This reusability
simplifies the code structure, making it more efficient and easier to manage. Let's break down the
functions' actions:

▪ STARTButton_3Pushed: This function is associated with a button press event, which is
typically used to initiate the start of a specific process. It constructs a string representing
the path to the "Start" node within the OPC UA server, related to the process identified by
the ID '2_0_0_0'. Subsequently, it uses the global uaClient to write a value of 1 to this node,
effectively instructing the system to commence the process.

▪ EXECUTEButton_2Pushed: Similar to the previous function, this one is linked to a button
press event, but it is responsible for executing a specific action. It constructs a string
specifying the path to the "Execute" node within the OPC UA server, related to the same
process as in the previous function. When activated, it writes a value to this node, triggering
the execution of the desired action within the process.

The importance of these functions lies in their role as the user interface's interactive elements,
allowing operators or users to actively control and interact with the industrial process. By writing
values to specific nodes within the OPC UA server, these functions enable the application to send
commands to the underlying automation system, thereby influencing the real-time operation of the
process.

3.2.3 Real-time PLC State Monitoring and Button Color Updating
In this section, we delve into the development of a crucial feature within the Human-Machine
Interface (HMI) for the industrial automation system. The presented code addresses the dynamic
updating of button colors, representing different processes, based on the real-time state
information obtained from Programmable Logic Controllers (PLCs). This capability provides
operators and users with immediate visual feedback regarding the status of various processes,
enhancing situational awareness and facilitating efficient process monitoring.

 buttons = [];
 tagArray = [];

 buttons = [app.ID_2_0_0_0];

 tagArray = {'2_0_0_0'};

 % Create a timer object with fixed-rate execution and a period of 1 second.

 timerObj = timer('ExecutionMode', 'fixedRate', 'Period', 1, 'TimerFcn',

@updateButtonColor);

 % Timer callback function to update button colors based on PLC states.

 function updateButtonColor(~, ~)

 % Iterate through the buttons and update their background colors.

 for i = 1:length(buttons)

 % Construct the string to access the PLC node for the current button.

 string = strcat('"State_DB".', '"',tagArray(i),'"', '."State"');

 disp(string)

 % Create an OPC UA node and read the state value.

 plcNode = opcuanode(3, string);

 state = readValue(uaClient, plcNode);

wbk
Institut für Produktionstechnik

Graphical Interfaces and System Operations

Andrea Albertini Page 35

 % Update the button background color based on the PLC state.

 if state == 0

 buttons(i).BackgroundColor = [0.63,0.63,0.63];

 elseif state == 1

 buttons(i).BackgroundColor = [1.00,1.00,0.00];

 elseif state == 2

 buttons(i).BackgroundColor = [0.66,1.00,0.66];

 elseif state == 3

 buttons(i).BackgroundColor = [0.07,0.62,1.00];

 elseif state == 4

 buttons(i).BackgroundColor = [0.19,0.59,0.04];

 elseif state == 5

 buttons(i).BackgroundColor = [0.76,0.39,1.00];

 elseif state == 6

 buttons(i).BackgroundColor = [0.95,0.33,0.33];

 end

 end

 end

 % Start the timer to periodically update button colors.

 start(timerObj);

Code Description:

▪ Initialization: The code begins by initializing two arrays, buttons and tagArray, which will
respectively store references to the relevant buttons and their associated PLC tags.

▪ Button and Tag Configuration: In this section, we populate the buttons array with references
to specific buttons representing processes within the interface. Additionally, we populate
the tagArray with corresponding PLC tags. In the example provided, we are focusing on
the second phase of the process, represented as '2_0_0_0,' but similar configurations can
be made for the other buttons and tags.

▪ Timer Creation: A timer object, timerObj, is created to facilitate periodic updates of button
colors. This timer is configured to execute at a fixed rate, with a period of 1 second. The
TimerFcn property is set to call the updateButtonColor function at each timer interval.

▪ Button Color Updating: The core functionality is encapsulated within the updateButtonColor
callback function. This function iterates through the buttons in the buttons array and
dynamically updates their background colors based on the real-time state information
retrieved from the OPC UA server. It constructs the appropriate string to access the PLC
node for each button's state, retrieves the state value, and maps it to a corresponding
background color as explained before. Different colors are assigned to different states,
ensuring clarity and intuitiveness in the HMI.

▪ Timer Activation: Finally, the timer is started, initiating the periodic update of button colors
according to the state changes in the PLCs. This feature enhances the user's ability to
monitor ongoing processes, detect issues, and take timely actions within the industrial
automation environment.

This functionality is pivotal in providing a user-friendly and informative interface, ultimately
contributing to the efficiency and safety of industrial processes. It serves as a prime example of
how real-time data integration and visualization can significantly improve the Human-Machine
Interface in the context of industrial automation.

wbk
Institut für Produktionstechnik

Graphical Interfaces and System Operations

Andrea Albertini Page 36

3.2.4 Initialization of Specific Process Interface
In this unit, we explore a critical aspect of the Human-Machine Interface (HMI) within the industrial
automation system. The presented code focuses on the initialization of a specific process interface
represented by the button labeled ID_2_0_0_0. This button, when pushed, triggers the creation of
an instance of the Kalandrierzelle_FINAL interface, which is dedicated to monitoring and
controlling the detailed aspects of the Kalandrierzelle process, the second phase of the overall
industrial process.

% Button pushed function: ID_2_0_0_0
 function ID_2_0_0_0Pushed(app, event)
 app.Kalandrierzelle_FINAL=Kalandrierzelle_FINAL(app);
 end

Code Description:

▪ Button Push Event: The code is associated with the button's push event, specifically
ID_2_0_0_0Pushed. When the user interacts with this button by clicking it, an event is
generated, and this function is called.

▪ Initialization of Kalandrierzelle_FINAL: The primary action performed within this function is
the creation of an instance of the Kalandrierzelle_FINAL class, referred to as
app.Kalandrierzelle_FINAL. This instance represents a dedicated interface for monitoring
and controlling the Kalandrierzelle process's various parameters and functions.

▪ Interface Design and Functionality: The Kalandrierzelle_FINAL interface is designed to
provide detailed insights and control over the specific process phase, enabling operators
and users to interact with and supervise the Kalandrierzelle process effectively. It likely
includes various buttons, displays, and controls tailored to the unique requirements of this
phase.

▪ Modular and Extensible Approach: This extract code showcases a modular and extensible
approach to interface design. By creating dedicated interface classes for specific process
phases, such as Kalandrierzelle_FINAL, the HMI can adapt to the complexity and specificity
of each phase while maintaining a structured and organized design.

▪ User Interaction: The initiation of the Kalandrierzelle_FINAL interface demonstrates the
importance of user interaction within the HMI. It allows operators to delve into the intricacies
of individual process phases, enabling them to make informed decisions and adjustments
as needed.

This code signifies the critical role of dedicated interfaces in industrial automation, where each
phase of the process demands specialized attention and control. It serves as a testament to the
versatility and adaptability of the HMI in accommodating the diverse needs of complex industrial
processes.

3.3 Kalandrierzelle
Within each of the four microenvironments, there's a hierarchical breakdown of processes into
three levels: Level 2 contains processes, under which are Level 3 processes, and finally Level 4

wbk
Institut für Produktionstechnik

Graphical Interfaces and System Operations

Andrea Albertini Page 37

processes. In this window, there are as many panels as there are levels, each containing buttons
for Level 2, Level 3, and Level 4 processes.
At the top, you'll find the Level 2 buttons, which remain fixed and positioned uniformly. All other
buttons are generated dynamically based on the list of processes stored in a JSON file. This
dynamic generation allows for easy window editing by simply modifying this file. As mentioned
earlier, all buttons representing processes and sub-processes are color-coded to reflect their
respective statuses.
The following image illustrates the Kalandrierzelle's window, where everything is in the "off" state,
providing a visual reference for the initial status.

Figure 26: Kalandrierzelle, off state

As previously mentioned, at the top center of the window, you'll find the Level 2 processes. On the
left-hand side, there's a panel where you can select the desired Level 2 process. Below this
selection, the corresponding Level 3 buttons will be generated dynamically. Similarly, the large
panel in the center functions in a similar manner. You select the desired Level 3 process, and
beneath it, the Level 4 buttons associated with that process will appear dynamically. This
hierarchical organization allows for a structured and intuitive interface to access different levels of
processes and sub-processes within the system.
The additional buttons in the figure serve various functions:

▪ Konfigurationsparameter (Configuration Parameters): This button is used to access and
configure the parameters related to the process setup.

▪ Prozessparameter (Process Parameters): Clicking this button allows users to access and
adjust parameters associated with the ongoing process.

wbk
Institut für Produktionstechnik

Graphical Interfaces and System Operations

Andrea Albertini Page 38

▪ Rocker Switch (Pause/Go): This switch serves as a control for pausing and resuming the
process. Initially set to "Go" when the window opens, it can be toggled to "Pause" mode to
halt the current process, which can be continued later.

▪ Return Button: Clicking this button closes the window and returns you to the Main Window.

3.3.1 UID Management and Uniqueness Verification in Hierarchical
Structures

In this window we need to define a set of functions designed to manage and ensure the uniqueness
of Unique Identifiers (UIDs) within a hierarchical structure. These UIDs serve as essential markers
for distinct elements within the structure, facilitating their identification and reference. The functions
perform the following key tasks:

• updateUID Function: this function iterates through the structure and calls the createUID
function when it encounters a field named "UID." It ensures that UIDs are generated or
modified to adhere to a specific format, enhancing their utility as unique identifiers. The
recursive nature of this function enables it to traverse nested structures within the hierarchy.

• createUID Function: the createUID function is responsible for generating or adjusting UIDs
to conform to a predefined format. It checks if the provided UID complies with the format,
and if not, it generates a new UID that adheres to the specified structure. The format
includes three random digits, followed by a lowercase alphabet character, another digit,
and a second lowercase alphabet character.

• checkUniqueUIDValues Function: this function verifies the uniqueness of UIDs within the
entire structure. It maintains a list of encountered UIDs and checks each encountered UID
for uniqueness. In the event of a duplicate UID, the function raises an error, ensuring that
all UIDs remain distinct.

These functions collectively contribute to the effective management and enforcement of unique
identifiers, enhancing the structure's reliability and integrity. Additionally, they offer a valuable
mechanism for ensuring the uniqueness of UIDs, crucial for precise element identification and
referencing within complex hierarchical data structures.

3.3.2 Button Generation Function
An important aspect of this window's functionality is the automation of generating Level 3 and
Level 4 buttons. This automation is achieved through two functions: "createButtonsLvl_3" for Level
3 processes and "createButtonsLvl_4" for Level 4 processes. Below, you'll find the first of these
two functions along with detailed comments that provide insights into each step of the process,
making it easier to understand how the buttons are dynamically created for these levels.

% This function creates level 3 buttons and associated functionality.

 function [tag, buttonArray] = createButtonsLvl_3(app, position, myStruct, spacing,

startY, buttonLength, buttonHeight)

 % Get the field names of the input structure.

 fields = fieldnames(myStruct);

 % Initialize arrays to store button objects and their tags.

 buttonArray = [];

 tag = [];

wbk
Institut für Produktionstechnik

Graphical Interfaces and System Operations

Andrea Albertini Page 39

 % Initialize the position index for level 3 buttons.

 posLvl3 = 1;

 % Iterate through the fields in the input structure.

 for i = 1:numel(fields)

 fieldName = fields{i};

 value = myStruct.(fieldName);

 % Check if the value is a structure with a 'ButtonText' field.

 if isstruct(value) && isfield(value, 'ButtonText')

 % Extract button text and PLC variable name.

 buttonText = value.ButtonText;

 ID = value.PlcVarName;

 % Calculate button position within the panel.

 panelWidth_Lvl3 = position.Position(3);

 positionX = (panelWidth_Lvl3 - buttonLength) / 2;

 positionY = startY - (buttonHeight + spacing) * (posLvl3 - 1);

 % Create the level 3 button.

 btns_lvl3 = uicontrol(position, 'Style', 'pushbutton', 'String',

buttonText, ...

 'Position', [positionX, positionY, buttonLength, buttonHeight], ...

 'FontName', 'Arial', 'FontWeight', 'bold', 'FontAngle', 'italic',

...

 'Callback', {@lvl3ButtonCallback, app, value});

 % Add the button object to the buttonArray.

 buttonArray = [buttonArray, btns_lvl3];

 % Add the tag (PLC variable name) to the tag array.

 tag{end+1} = ID;

 % Increment the position index for level 3 buttons.

 posLvl3 = posLvl3 + 1;

 % Calculate positions and create Start and Execute buttons.

 buttonLengthAUX = (buttonLength / 2) - 2;

 buttonHeightAUX = buttonHeight / 3;

 positionXAUX = positionX;

 positionYAUX = positionY - buttonHeight / 2 + 7;

 positionXStart = positionXAUX;

 positionXExecute = positionXAUX + buttonLengthAUX + 2;

 % Create the Start button with a callback.

 btnStart = uicontrol(position, 'Style', 'pushbutton', 'String',

'START', ...

 'Position', [positionXAUX, positionYAUX, buttonLengthAUX,

buttonHeightAUX], ...

 'FontName', 'Arial', 'FontWeight', 'bold', 'FontAngle', 'italic',

...

 'Callback', {@startProcess, app, ID});

 % Create the Execute button with a callback.

 btnExecute = uicontrol(position, 'Style', 'pushbutton', 'String',

'EXECUTE', ...

 'Position', [positionXExecute, positionYAUX, buttonLengthAUX,

buttonHeightAUX], ...

 'FontName', 'Arial', 'FontWeight', 'bold', 'FontAngle', 'italic',

...

 'Callback', {@executeProcess, app, ID});

 end

 end

 % Nested function to handle the Start button callback.

wbk
Institut für Produktionstechnik

Graphical Interfaces and System Operations

Andrea Albertini Page 40

 function startProcess(~, ~, app, ID)

 startFunction(app, ID);

 end

 % Nested function to perform the Start action.

 function startFunction(app, ID)

 % Construct the string to access the PLC node and write a value.

 string = ['"Prozess_DB_ML".', '"',ID,'"', '."Start"'];

 % Access the global UA client and create an OPC UA node.

 global uaClient;

 plcNode = opcuanode(3, string);

 writeValue(uaClient, plcNode, 1);

 end

 % Nested function to handle the Execute button callback.

 function executeProcess(~, ~, app, ID)

 executeFunction(app, ID);

 end

 % Nested function to perform the Execute action.

 function executeFunction(app, ID)

 % Construct the string to access the PLC node and write a value.

 string = ['"Prozess_DB_ML".', '"',ID,'"', '."Execute"'];

 % Access the global UA client and create an OPC UA node.

 global uaClient;

 plcNode = opcuanode(3, string);

 writeValue(uaClient, plcNode, 1);

 end

 end

The above code, operates as follows:

▪ Input Parameters: The function takes several input parameters, including the application
object (app), the position information, the data structure (myStruct, obtained by the JSON
file) spacing parameters, and button dimensions.

▪ Initialization: Arrays (buttonArray and tag) are initialized to store button objects and their
associated tags.

▪ Iterating Through Fields: The code iterates through the fields within the input structure
myStruct.

▪ Button Generation: For each field, the code checks if the value is a structure that contains
a 'ButtonText' field. If so, it extracts the button text and the value PlcVarName, used to fill
the tag array.

▪ Button Position Calculation: It calculates the position of the button within the panel,
considering factors like panel width and spacing.

▪ Button Creation: Using the calculated position and other parameters, the function creates
a Level 3 button (btns_lvl3) with specified attributes like text, position, font style, and
callback functions. Here, btns_lvl3 represents the Level 3 button created in each iteration.
By appending each newly created button to buttonArray, the vector effectively holds
references to all the Level 3 buttons generated. Subsequent, ID represents the value used
to create the PLC variable name. The code appends each ID to the tag vector, creating a
correspondence between each button and its associated PLC variable.

▪ Callback Functions: Callback functions are defined within the main function. These
callbacks are associated with the Start and Execute buttons of the Level 3 process. When
these buttons are clicked, they trigger the corresponding PLC actions.

wbk
Institut für Produktionstechnik

Graphical Interfaces and System Operations

Andrea Albertini Page 41

▪ Nested Functions: Two nested functions, startFunction and executeFunction, handle the
Start and Execute button actions, respectively. They construct strings to access PLC nodes
and write values using the OPC UA client.

These vectors, buttonArray and tag, are essential for tracking and managing the generated buttons
and their respective PLC variable names, enabling efficient interaction with the PLC system based
on user input
In the case of generating Level 4 buttons, the process is analogous, although with a few notable
distinctions:

▪ Column-Based Layout: createButtonsLvl_4 incorporates a more complex layout strategy.
It arranges buttons in columns with customizable spacing between columns
(columnSpacing), allowing for better organization when a large number of buttons are
involved.

▪ Maximum Buttons per Column: createButtonsLvl_4 includes logic to handle situations
where the number of buttons in a column exceeds a specified maximum
(maxButtonsPerColumn). In such cases, it moves to the next column, enhancing the
layout's flexibility.

▪ Position Calculation: The X and Y positions of Level 4 buttons in createButtonsLvl_4 are
calculated differently, taking into account the column-based layout and spacing between
buttons.

The function statement results as follows:

function [tag, buttonArray] = createButtonsLvl_4(app, position, myStruct, spacing, startY,
buttonLength, buttonHeight, maxButtonsPerColumn)

Subsequently, in the startup function (startupFcn) of the Kalandrierzelle's window, we need to
invoke the functions to generate all the buttons. This is accomplished as follows:

 buttons = [];
 tagArray = [];

 [tag,
btn]=createButtonsLvl_3(app,app.TransportkistebereitstellenTab,newStructData.x2_0_0_0_Kalandrieren.
x2_1_0_0_Transportkiste_bereitstellen,100,464,208,77);
 for i = 1:numel(btn)
 buttons = [buttons, btn(i)];
 tagArray = [tagArray, tag(i)];
 end

[tag,
btn]=createButtonsLvl_4(app,app.AGVentladenTab,newStructData.x2_0_0_0_Kalandrieren.x2_1_0_0_Transpo
rtkiste_bereitstellen.x2_1_1_0_AGV_entladen,60,494,190,40,5);
 for i = 1:numel(btn)
 buttons = [buttons, btn(i)];
 tagArray = [tagArray, tag(i)];
 end

wbk
Institut für Produktionstechnik

Graphical Interfaces and System Operations

Andrea Albertini Page 42

The steps carried out by this code are as follows:
▪ Initialization of Arrays: At the beginning of the code, two empty arrays are initialized: buttons

and tagArray. These arrays will be used to store the created buttons and their
corresponding tags.

▪ Calling the createButtonsLvl_3 Function: A call to the createButtonsLvl_3 function is made
with various arguments. This function creates buttons for the level 3 of the user interface
and returns two outputs: an array of tags (tag) and an array of button objects (btn).

▪ Iteration Through Buttons: A for loop is initiated to iterate through the button objects in the
btn array returned by the createButtonsLvl_3 function.

▪ Appending to Arrays: Within the loop, each button object is appended to the buttons array,
and its corresponding tag is appended to the tagArray array.

It's crucial to highlight that in the application the function responsible for generating level 3 buttons
is invoked three times. This repetition is due to the existence of precisely three level 2 processes,
under each of which we must create the subsequent levels of buttons. Correspondingly, a similar
iterative process occurs for the subsequent level, level 4, as well. This approach ensures that the
user interface dynamically adapts to the structure of the underlying processes, generating the
required buttons for each level.
After successfully initializing the interface, the arrays, namely 'buttons' and 'tagArray,' should be
populated with references to the buttons and their corresponding tags, which directly align with the
process IDs. These arrays will later play a pivotal role within the 'updateButtonColor' function,
responsible for upgrading button color. This function is responsible for dynamically enhancing
button colors to reflect specific process states. After the correct initialization of the application and
the generation of the buttons, if the connection to the PLCs has been properly initialized, the
process should initially be in ‘off’ state and the visualization of the window should appear as in
Figure 25.

3.3.3 Pause Switch
As previously noted, positioned in the upper-right corner of the Kalandrierzelle's interface, there is
a toggle switch designed to halt or resume the active process. The associated function, called
'PauseSwitchValueChanged,' operates as follows:

% Value changed function: PauseSwitch
 function PauseSwitchValueChanged(app, event)
 value = app.PauseSwitch.Value;

 global uaClient;

 if strcmp(value, 'Go')
 string = ['"Prozess_DB_ML"','."Paused"'];
 plcNode = opcuanode(3, string);
 writeValue(uaClient, plcNode, 0);

 elseif strcmp(value, 'Pause')
 string = ['"Prozess_DB_ML"','."Paused"'];
 plcNode = opcuanode(3, string);
 writeValue(uaClient, plcNode, 1);
 end
 end

wbk
Institut für Produktionstechnik

Graphical Interfaces and System Operations

Andrea Albertini Page 43

▪ Value Retrieval: The function first retrieves the current value of the 'PauseSwitch' control
element. This value can be one of two states: 'Go' or 'Pause.'

▪ Global OPC UA Client: The code interfaces with the global OPC UA Client declared in the
startup function, which serves as the communication bridge between the user interface and
the underlying automation system.

▪ Resuming the Process ('Go' State): In the beginning, the OPC UA server features a variable
named "Prozess_DB_ML.Paused," which is initially set to 0, representing the 'false' state,
as it's a Boolean variable. This configuration allows the process to commence whenever
an 'Execute' button is activated. From a technical standpoint, when we are in the 'Go' state,
the function generates a string to access the 'Paused' node on the server and changes its
value to 0. This action will effectively allow the process to continue once interrupted.

▪ Pausing the Process ('Pause' State): Conversely, when the 'PauseSwitch' value is 'Pause,'
the function again constructs the same string to access the 'Paused' node. However, this
time, it writes a value of '1.' This action signals the system to pause the ongoing process.

In essence, this code extract permits operators by providing a straightforward user interface
component to control the pausing and resuming of processes within the automation system. This
enhances the flexibility and real-time control capabilities of the production environment,
contributing to efficient and responsive operations.

3.3.4 Process Simulation
To commence the process or simulate it with the assistance of PLCSIM Advance, the initial step
involves pressing the start button to initiate the warming up of all the machinery within the
designated process. When the start button associated with a level two process is pressed, it
triggers the activation of all machinery, including level three and four apparatuses linked to the
selected level two process. For instance, pressing the start button under "Sheets Kalandrieren"
activates all the relevant machinery within "Module Vorbereiten" and "Module Nachbereiten," along
with their corresponding level four processes. This action results in a transition of all associated
buttons to the ‘ready’ (‘idle’) state, as illustrated in Figure 26 below.

wbk
Institut für Produktionstechnik

Graphical Interfaces and System Operations

Andrea Albertini Page 44

Figure 27: Kalandirerzelle, 'ready' state

Likewise, a similar process unfolds when you interact with buttons corresponding to levels three
and four. For instance, when you press a button linked to a level three process, it not only initiates
the machinery associated with that level but also activates all the relevant machinery within the
corresponding level four processes. This cascade effect ensures that all relevant buttons turn
green, indicating the activation status, just as demonstrated earlier. The process is similarly
replicated when interacting with level four buttons, ensuring that the entire hierarchical structure
of the manufacturing process is synchronized and properly initiated.
After all the necessary components have been activated, the user can proceed with the execution
of the manufacturing process itself. This action is initiated by pressing the execute button
corresponding to one of the activated processes. When a specific execute button is pressed, it
signifies the commencement of the selected process, including all components and processes at
the lower hierarchical levels, mirroring the behavior observed when the start button is pressed.
This synchronization ensures that the entire manufacturing process, along with its sub-processes,
is set in motion seamlessly.
In the two following figures, we can observe two distinct stages of the ongoing process. In both
cases, the execution button beneath the 'Sheets Kalandrieren' process has been pressed. In the
first figure, we witness an active level four process under the 'Vakuumnachtrocken' process,
indicated by a blue color. In the second figure, a level four process under 'Module Nachbereiten'
has recently concluded, and the subsequent process is about to commence.

wbk
Institut für Produktionstechnik

Graphical Interfaces and System Operations

Andrea Albertini Page 45

Figure 28: Kalandrierzelle, 'ongoing' state

Figure 29: Kalandrierzelle, 'ongoing' state

wbk
Institut für Produktionstechnik

Graphical Interfaces and System Operations

Andrea Albertini Page 46

3.4 Konfigurationsparameter (Configuration Parameter
Window)

As previously discussed, users can conveniently access the configuration parameters window
from both the Main Window and the Calendering interface. Here, they can navigate through various
essential data points, including:

▪ HTTP – Endpoint URL: This denotes the HTTP endpoint linked to the external web service,
which in turn connects to the central database.

▪ Bearer Token: This serves as a critical element for authentication and authorization,
guaranteeing secure access to the web service.

▪ Cell type: This relates to the specific battery cell under development, providing crucial
information about the ongoing process.

▪ Four distinct OPC Endpoints: There are four of these, with each one corresponding to a
central PLC within its respective microenvironment.

In this section we focus on the initialization of these critical configuration parameters and user
interface (UI) elements within the application. These parameters play a pivotal role in defining the
application's behavior and functionality, while the UI elements enable users to interact with and
configure the application. Let's investigate into how this code accomplishes these tasks:

function startupFcn(app, Main_Window_finalVersion, Kalandrierzelle_FINAL)
 % Get the directory path of the current script.
 appDirectory = fileparts(mfilename('fullpath'));

 % Get the parent directory of the current script.
 parentDirectory = fileparts(appDirectory);

 % Construct the full file path for the JSON configuration file.
 filePath = fullfile(parentDirectory, 'configuration files',
'CellWizard_config_params.json');

 % Read the contents of the JSON file into a string.
 fileContent = fileread(filePath);

 % Decode the JSON content into a MATLAB structure.
 jsonData = jsondecode(fileContent);

 % Populate app EditFields with data from the JSON structure.
 app.EditField.Value = jsonData.Database_Config_Parameters.HTTP_Endpoint_URL;
 app.EditField_2.Value = jsonData.Database_Config_Parameters.Bearer_Token;
 app.EditField_5.Value = jsonData.PLC_Parameters.Endpoint_URLs.Beschichtung;
 app.EditField_6.Value = jsonData.PLC_Parameters.Endpoint_URLs.Kalandrierung;
 app.EditField_3.Value = jsonData.PLC_Parameters.Endpoint_URLs.Vereinzelung;
 app.EditField_4.Value = jsonData.PLC_Parameters.Endpoint_URLs.Assemblierung;

 % Iterate through the Cell_Type_IDs in the JSON data and add them to a uitree.
 for i = 1:numel(jsonData.Database_Config_Parameters.Cell_Type_IDs)
 uitreenode(app.ZelltypIDNode, 'Text',
char(jsonData.Database_Config_Parameters.Cell_Type_IDs(i)));
 end
 end

% Button pushed function: RETURNButton
function RETURNButtonPushed(app, event)
 delete(app);

wbk
Institut für Produktionstechnik

Graphical Interfaces and System Operations

Andrea Albertini Page 47

end

Code Description:
This code serves as the foundation for setting up essential aspects of the application:

▪ File Path Retrieval: It begins by determining the directory paths of the current script and its
parent directory. These paths are essential for locating a JSON configuration file within the
application's file structure.

▪ JSON Configuration Parsing: The code proceeds to read the contents of the designated
JSON configuration file and parses them into a structured MATLAB format using the
jsondecode function. This parsed data encapsulates critical parameters, including HTTP
endpoint URLs, bearer tokens, and PLC (Programmable Logic Controller) endpoint URLs,
associated with different microenvironments.

▪ UI Element Population: With the configuration data now accessible, the code dynamically
populates various UI elements, particularly EditField components, with the pertinent values
retrieved from the parsed JSON dataset. These EditField elements offer a clear view of the
configuration parameters and allow users to make adjustments as needed.

▪ Cell Type Selection: The code also enables users to select specific battery cell types
through the uitree UI component named ZelltypIDNode. This functionality is invaluable as
it empowers users to tailor the application's operation to suit the characteristics of different
battery cell types.

▪ User-Friendly Return Button: Lastly, the code defines the behavior of the 'RETURNButton.'
When users engage with this button, it initiates the graceful closure of the application,
facilitating a smooth exit.

In essence, this code plays a pivotal role in establishing the groundwork for the application's
configuration and interaction, guaranteeing that it starts with the correct settings and provides a
user-friendly interface for users to configure and operate the application effectively.
The very first of this code segment is essentially telling MATLAB to execute the "startupFcn"
function and pass it three arguments: the application object ("app") and references to two other
components or windows within the application ("Main_Window_finalVersion" and
"Kalandrierzelle_FINAL"). The following figure shows the layout of this window.

wbk
Institut für Produktionstechnik

Graphical Interfaces and System Operations

Andrea Albertini Page 48

Figure 30: Konfigurationsparameter window

3.5 Prozessparameter (Process Parameter Window)
Through this window, users gain easy access to an interface for visualizing and modifying the
parameters governing the entire process. This functionality plays a pivotal role in granting
operators the freedom and autonomy to tailor the process according to their specific requirements.
The interface is divided into two halves: on the left-hand side, there's a drop-down menu for
selecting the desired cell. Upon selection, a cascading menu appears, enabling users to choose
the specific process whose parameters they wish to inspect.
Once a process is chosen, the right side of the interface activates, revealing a panel containing
various fields displaying essential information such as the process name, target values, and other
crucial variables, like Upper and Lower Limit, for instance, which are also important information to
display, as they help the user to ensure that the values they enter are within the acceptable range.
This window is depicted in Figure 30 below.

wbk
Institut für Produktionstechnik

Graphical Interfaces and System Operations

Andrea Albertini Page 49

Figure 31: Prozessparameter Window, initial view

3.5.1 Dynamic Tree Node Creation
To establish the dynamic tree node menu, the implementation of a crucial function becomes
necessary. This function's role is to extract information from a predefined data structure that
contains details about parameters and their associations with specific processes. Hence, the
createTreeNode function has been utilized for this purpose:

function createTreeNodes(app, parentNode, name, parameters)

 % Function to create tree nodes based on specific criteria

 % Create a child node under the parentNode with the text corresponding to the name

 childTree = uitreenode(parentNode, 'Text', name);

 % Check if the parameters are a cell or a struct

 if iscell(parameters)

 for k = 1:numel(parameters)

 if isstruct(parameters{k})

 % Create a child node with the text corresponding to the parameter name

 uitreenode(childTree, 'Text', parameters{k}.name);

 end

 end

 elseif isstruct(parameters)

 % Create a child node with the text corresponding to the parameter name

 uitreenode(childTree, 'Text', parameters.name);

 end

end

The purpose of this function is to dynamically populate a tree-like structure with nodes based on
specific criteria. Let's break down the code's functionality in detail:

wbk
Institut für Produktionstechnik

Graphical Interfaces and System Operations

Andrea Albertini Page 50

Function Parameters:
▪ app: This parameter represents the GUI object where the tree nodes will be created.
▪ parentNode: It denotes the parent node under which child nodes will be added.
▪ name: This parameter is a string representing the text label for the newly created child

node.
▪ parameters: It is the criteria or data based on which child nodes will be generated. It can

be either a cell array or a struct.
Creating Child Nodes:

▪ The function starts by creating a child node (‘childTree’) under the specified ‘parentNode’.
The text label for this child node is set to the value of the ‘name’ parameter.

Checking Data Type:
▪ The code then checks the data type of the ‘parameters’ variable to determine how to

proceed with creating child nodes.
▪ If ‘parameters’ is a cell array, the code enters a loop to process each element of the array.
▪ Within the loop, it checks if the single element is a struct.

• If it's a struct, a child node is created under ‘childTree’ with the text label
corresponding to the ‘name’ field within that struct.

▪ If ‘parameters’ is a struct (not within a cell array), the code directly creates a child node
under ‘childTree’ using the text label specified by the ‘name’ field within that struct.

Within the domain of graphical user interface (GUI) development, the createTreeNodes function
assumes a pivotal role in dynamically constructing the interface's tree structure. This function is
invoked as part of this window’s startup function, which springs into action during the interface's
initialization phase. When the GUI is launched, the createTreeNodes function is summoned to
orchestrate the creation and population of tree nodes within the interface. These tree nodes hold
significant importance as they serve as the backbone for organizing and presenting crucial
information to users. They facilitate seamless navigation and enable users to tailor various
parameters and processes to their specific needs.
In the startup function, similar to the setup observed in both the Kalandrierzelle's interface and the
Main Window, we must ensure the proper integration of OPC UA communication. This involves
establishing an OPC UA client, which connects to the specified OPC UA server, a concept
thoroughly clarified in Chapter 3.2.1. The only divergence lies in the fact that, at this moment, the
data structure obtained from the database assumes the role of a global variable. Below, we present
the code extract from the startup function, showcasing the invocation of the createTreeNodes
function:

for i = 1:numel(response.processChainB)

 name = response.processChainB(i).name;

 parameters = response.processChainB(i).parameters;

 if name(1) == '1'

 createTreeNodes(app, app.Cell1Node, name, parameters);

 elseif name(1) == '2'

 createTreeNodes(app, app.Cell2Node, name, parameters);

 elseif name(1) == '3'

 createTreeNodes(app, app.Cell3Node, name, parameters);

wbk
Institut für Produktionstechnik

Graphical Interfaces and System Operations

Andrea Albertini Page 51

 elseif name(1) == '4'

 createTreeNodes(app, app.Cell4Node, name, parameters);

 end

end

The code iterates through the elements in ‘response.processChainB’, the data structure containing
information about different processes and parameters, obtained by the database. For each
element in this array, it extracts the ‘name’ (process name) and ‘parameters’ variable associated
with the process.
Subsequently, based on the extracted process ‘name’, the code categorizes processes into
different groups. It creates dynamic tree nodes within the interface, organizing processes by
category. For instance, processes with names starting with '1' are associated with ‘app.Cell1Node’,
'2' with ‘app.Cell2Node’, and so on, which are the four main nodes, one for each microenvironment.
The ‘createTreeNodes’ function is called to populate the relevant tree nodes with the process
information.
In summary, this code segment, in collaboration with the ‘createTreeNodes’ function gets data,
processes it, and dynamically populates tree nodes within the interface based on the received
data. This dynamic organization of processes enhances user interaction and customization within
the application.
After the window has been properly initialized, the phase of generating dynamic tree nodes should
be completed, granting the user the freedom to navigate through all the processes along with their
associated parameters. The view should be as in the figure below:

Figure 32: Prozessparameter, initialized view

wbk
Institut für Produktionstechnik

Graphical Interfaces and System Operations

Andrea Albertini Page 52

3.5.2 Interactive User Interface and Parameter Selection
In this section it will be describe what happens when the operator select the desired process whose
value he wants to investigate. For the purpose, a function called TreeSelectionChanged has been
implemented as shown below:

% Selection changed function: Tree
 function TreeSelectionChanged(app, event)
 % Enable form only when a Process with parameters is selected
 % Cell array containing name fo the cells
 Cell = {'Cell 1','Cell 2','Cell 3','Cell 4'};

 % Declaration of the struct "response" as a global variable
 global response;

 % Initialize a cell array 'process' with empty cells based on
 % the number of elements in the struct 'response.processChainB'
 process = cell(1, numel(response.processChainB));

 % Loop through each element in 'response.processChainB'
 for i = 1:numel(response.processChainB)
 % List of processes, in this case level 3
 process{i} = response.processChainB(i).name;
 end

 % Check if the selected node's text is not found in 'process' and 'Cell'
 if isempty(find(strcmp(app.Tree.SelectedNodes.Text, process), 1)) &&
isempty(find(strcmp(app.Tree.SelectedNodes.Text, Cell), 1))
 % Enable the app form
 enableForm(app);

 % Set the value of 'NameEditField' to the selected node's text
 app.NameEditField.Value = char(extractText(app, app.Tree.SelectedNodes.Text));

 % Set the value of 'TargetValueEditField' using the 'findValues' function
 app.TargetValueEditField.Value = findValues(app, response.processChainB,
app.Tree.SelectedNodes.Text, 'targetValue');
 end
 end

Code description:

▪ Form Activation Condition: When a user interacts with the tree component in the MATLAB
app, the code is triggered as a result of a change in the selection. Its primary purpose is to
determine whether the application form should be enabled based on the user's selection.

▪ Cell Array Initialization: A cell array named ‘Cell’ is defined. This array contains the names
of different cells, namely 'Cell 1', 'Cell 2', 'Cell 3', and 'Cell 4'. These are the names of the
four main parent node on the Tree Node Menu.

▪ Global Variable: The code declares the global variable named ‘response’. This variable
holds important data and has already been declared as a global variable in the startup
function, as previously explained.

▪ Initializing a Cell Array: A cell array named ‘process’ is initialized. The size of this array is
determined by the number of elements in ‘response.processChainB’. This because it's
meant to store data related to processes.

wbk
Institut für Produktionstechnik

Graphical Interfaces and System Operations

Andrea Albertini Page 53

▪ Loop through Process Data: The code iterates through each element in the
‘response.processChainB’. For each element, the code extracts the name of a process
(indicated by ‘name’) and stores it in the ‘process’ cell array. This indicates that process will
contain the names of level 3 processes.

▪ Selection Check: The code checks whether the text of the selected node (within the tree
component) is not found in either the ‘process’ cell array or the predefined ‘Cell’ array. In
other words, it's ensuring that the selected node represents a process with parameters, not
one of the predefined cell names.

▪ Form Activation: If the selected node represents a process with parameters, the application
form is enabled using the ‘enableForm’ function.

▪ Field Value Assignment: The values of two specific fields in the app, namely
‘NameEditField’ and ‘TargetValueEditField’, are set based on the selected node. The
‘NameEditField’ is set to the name of the selected node, and the ‘TargetValueEditField’ is
populated with data retrieved from the ‘response.processChainB’ based on the selected
node's text.

In summary, this code dynamically enables or disables the application form and updates certain
fields within the app based on the user's selection of a node in the tree structure. It ensures that
the user can interact with the form only when a process with parameters is selected.

3.5.3 Data Extraction and Value Retrieval Technique
The contents of ‘NameEditField’ and ‘TargetValueEditField’, discussed above, are populated using
two dedicated functions: ‘extractText’ and ‘findValues’. While the latter function is currently
employed solely for the Target Value, it's designed for potential application to other types of values
within the data structure in the future. Here's an overview of how these two functions operate:

▪ ‘extractText’:

• Pattern Definition: It starts by defining a regular expression pattern. In this case, the
pattern is set to '\d+_\d+_\d+_\d+_(\D+)'. This pattern looks for sequences of digits
separated by underscores, followed by a sequence of non-digits (indicated by \D+).
The parentheses (\D+) are used to capture the non-digit sequence. This functionality
has been implemented to provide the interface a more readable aspect since in the
data structure the names of the parameter were written using underscores.

• Matching: The ‘regexp’ function is then used to search for matches of the pattern
within the input string. The 'tokens' option indicates that we want to extract the
captured portions of the text, and 'once' specifies that only the first match should be
considered.

• Check for Matches: The code checks if any matches were found. If matches exist,
it proceeds with further processing. If no matches are found, the string will be left
empty.

• Extraction and Formatting: If there is a match, it extracts the captured text. This text
may contain underscores, so it uses ‘strrep’ to replace underscores with spaces to
make the text more readable.

wbk
Institut für Produktionstechnik

Graphical Interfaces and System Operations

Andrea Albertini Page 54

In summary, the ‘extractText’ function searches for a specific pattern in the input string and extracts
a portion of text that matches this pattern. It then formats the extracted text for readability by
replacing underscores with spaces.

▪ ‘findValues’:

• Initialization: It initializes the ‘outputValue’ variable as an empty array.

• Iteration: The function iterates through the elements inside the data structure. For
each element, it checks if the parameters field is either a cell or a struct. This is done
to handle different possible structures within the parameters.

• Nested Iteration: If the parameters is a cell, it further iterates through its elements.
For each element (referred to as param), it checks if it's a struct and if the name field
of the struct matches the inputName provided as an argument.

• Field Check: If the name of the selected node on the Tree Menu matches and the
target field desired, Target Value in this case, is present within the structure, it
retrieves the value of the field. The value is assumed to be a string, so it's converted
to a numeric value using str2num.

• Break Loop: If the desired value is found, the loop is broken early to improve
efficiency since there's no need to continue searching.

• Final Result: After the loop, the edit field will either contain the desired value if it was
found, or it will remain empty if no match was found in the data structure.

The ‘findValues’ function allows you to search and extract values from the complex nested
structure by specifying the parameter name and the target field to retrieve. It handles different data
structures within the parameters field, such as cells and structs, to find and return the requested
value.
After the user has chosen the desired parameter on the interface, and the ‘TreeSelectionChanged’
function has been successfully executed, the interface will resemble the layout depicted in Figure
32.

wbk
Institut für Produktionstechnik

Graphical Interfaces and System Operations

Andrea Albertini Page 55

Figure 33: Prozessparameter, parameter selection

3.5.4 Real-time Parameter Modification
At this juncture, the user possesses the ability to modify the 'Target Value' for the selected
parameter by directly inputting an alternative value into the designated edit field. This feature
facilitates adjustments to the final outcome of the ongoing process, ensuring it aligns with customer
requirements and development an agile production method. Once the new value has been entered
into the respective field, upon pressing the 'Save' button located at the bottom left, an alert
message will be triggered, as illustrated in Figure 33. This alert serves as a confirmation step,
inquiring if the proposed value for the corresponding parameter is accurate. If confirmed, the newly
input value is updated within a fresh version of the data structure, and the interface promptly
displays the revised value within the edit field. This responsive and user-centric approach
empowers the operator with real-time control over key process parameters.

wbk
Institut für Produktionstechnik

Graphical Interfaces and System Operations

Andrea Albertini Page 56

Figure 34: Prozessparameter, Alert Message

Figure 35: Prozessparameter, updated parameter

In Figure 34, the modified value is displayed within the designated edit field.
As previously mentioned, it's essential to make updates to the data structure without affecting the
primary database. To address this requirement, a dedicated piece of code has been developed.
This code possesses the capability to modify the structure solely within the interface's workspace

wbk
Institut für Produktionstechnik

Graphical Interfaces and System Operations

Andrea Albertini Page 57

and provides the user with the ability to view its contents whenever they request information about
a specific altered parameter. This function has been aptly named "updateParameters."

In its core functionality, the "updateParameters" function empowers users to make precise
adjustments to particular parameters within the 'response' data structure. It proficiently crosses the
data structure, effectively locates the pertinent parameter, and proceeds to adjust its 'targetValue'
with the freshly provided value as an input to the function.
This function exhibits a high degree of adaptability, accommodating parameters organized as
either cell arrays or structs within the data structure. It plays a pivotal role in enabling users to tailor
and fine-tune the parameters governing various aspects of the ongoing processes directly within
the interface.
Now, let's delve deeper into the intricacies of how this function operates.

 % Define a function to update parameters in a data structure

 % based on input name and target field

 function updateParameters(app, inputName, targetField, value)

 % Declaration of the struct "response" as global variable

 global response;

 % Iterate through the elements of 'response.processChainB'

 for i = 1:numel(response.processChainB)

 % Extract the 'parameters' field for the current element

 parameters = response.processChainB(i).parameters;

 % Check if the 'parameters' field is a cell or a struct

 if iscell(parameters)

 % If it's a cell, iterate through its elements

 for j = 1:numel(parameters)

 param = parameters{j};

 % Check if the parameter is a struct and its 'name' matches

'inputName'

 if isstruct(param) && strcmp(param.name, inputName)

 % Check if the specified 'targetField' exists in the structure

 if isfield(param, targetField)

 % Update the 'targetValue' field with the new 'value'

 param.targetValue = num2str(value);

 % Update the 'parameters' cell with the modified parameter

 response.processChainB(i).parameters{j} = param;

 % Exit the loop since we've found and updated the parameter

 break;

 end

 end

 end

 elseif isstruct(parameters)

 % If it's a struct, directly check the parameter's 'name'

 param = parameters;

 % Check if the parameter's 'name' matches 'inputName'

 if strcmp(param.name, inputName)

 % Check if the specified 'targetField' exists in the structure

 if isfield(param, targetField)

 % Update the 'targetValue' field with the new 'value'

 param.targetValue = num2str(value);

 % Update the 'parameters' struct with the modified parameter

 response.processChainB(i).parameters = param;

 % Exit the loop since we've found and updated the parameter

 break;

 end

wbk
Institut für Produktionstechnik

Graphical Interfaces and System Operations

Andrea Albertini Page 58

 end

 end

 end

 end

▪ It begins by calling the global variable ‘response’. This variable represents the data

structure that contains information about parameters and processes.
▪ The function then iterates through the elements of ‘response.processChainB’ appears to

be a field within the response structure that holds an array of elements. Each element
represents a process.

▪ Within the loop, it extracts the 'parameters' field for the current element. The 'parameters'
field contains information about the parameters associated with the process.

▪ It checks if the 'parameters' field is a cell or a struct. This suggests that parameters can be
organized in different ways: either as a cell array or a struct, depending on the process.

▪ If 'parameters' is a cell, it further iterates through its elements, which represent individual
parameters. For each parameter, it checks if the parameter is a struct and if its 'name'
matches the 'inputName' provided as a parameter to the function; this variable represents
name of the parameter designated.

▪ If it finds a matching parameter, it checks if the specified 'targetField' exists within the
parameter's structure.

▪ If 'targetField' exists, the function updates the 'targetValue' field of the parameter with the
new 'value'. The 'targetValue' is modified with the new value as a string representation.

▪ The updated parameter is then placed back into the 'parameters' cell in its original position,
effectively updating the parameter within the data structure.

▪ The loop exits since the parameter has been found and updated.
▪ If 'parameters' is a struct, the function directly checks the parameter's 'name' and follows

the same procedure as described above, with the modification taking place in the
'parameters' struct.

This function is called every time the user press the “OK” button on the Alert Message discussed
above.
Conversely, when the operator opts to press the "Cancel" button upon detecting an incorrect value,
the system refrains from inserting the parameter, thereby preventing the invocation of the “update
Parameters” function. Consequently, the data structure remains unaltered, ensuring data integrity
and operational consistency. In such cases, the system's responsiveness to erroneous inputs
safeguards against unintended modifications, reinforcing the robustness and reliability of the
control system.

wbk
Institut für Produktionstechnik

Results

Andrea Albertini Page 59

4 Results
The implemented user interface encompasses two primary components: the "Kalandrierzelle"
interface and the Main Window. Each interface provides unique functionalities for monitoring and
controlling manufacturing processes.
Kalandrierzelle Interface:

▪ The Kalandrierzelle interface is the centerpiece of our project, designed to empower users
with real-time process monitoring and parameter customization.

▪ The "updateButtonColor" function has been successfully integrated into this interface. It
dynamically updates button colors, providing users with a clear visual representation of the
ongoing processes. This is a fundamental feature for process monitoring.

Main Window:
▪ The Main Window acts as the primary control center, providing access to various

parameters and configuration settings.
Other two window have been developed and successfully implemented in the application. These
two functionalities concern the parameter customization and the configuration parameter in a
robust and efficient way.
Konfigurationsparameter (Configuration Parameter Window):

▪ In which the "updateParameters" function further enhances the flexibility of our system by
allowing users to modify specific parameters directly. This feature was tested extensively
during user evaluations.

Prozessparameter (Process Parameter Window):
▪ Through the "createTreeNodes" function, this interface presents a dynamic tree structure

to navigate through the processes and their associated parameters, offering a user-friendly
approach to customization.

The results of our tests were positive and revealed the following key findings:
▪ User-Friendly Interface: key aspect of our application, with intuitive controls for process

monitoring and parameter customization.
▪ Clear Process Visualization: especially important the "updateButtonColor" function, as it

offered a quick and efficient way to assess the progress of manufacturing processes.
▪ Parameter Customization: The "updateParameters" function was deemed highly beneficial,

allowing users to adapt parameters in real-time, thereby enhancing process agility.
While the overall results were positive, we encountered several challenges during the development
process. These challenges primarily revolved around the integration of the OPC UA
Communication for Real-time data exchange and providing the users a visual interface for the
process monitoring.

wbk
Institut für Produktionstechnik

Assessment

Andrea Albertini Page 60

5 Assessment
Our project's primary objective was to design and implement a dynamic interface for monitoring
and controlling processes within a manufacturing environment. In this regard, we can confidently
conclude that our goals have been met. The "Kalandrierzelle" and Main Window interfaces provide
users with a real-time visualization of the manufacturing processes, enhancing their understanding
and control. In addition an interface to provide easy and rapid modification of process parameter
has been developed and implemented for the AgiloBat project.
From a technical standpoint, the implemented interface has demonstrated robustness and
reliability. The "updateButtonColor" function effectively updates the button colors, providing a clear
visual indication of the progress of each process. The flexibility to handle parameters organized
as cell arrays or structs adds a layer of adaptability to our system. We met different technical
challenges during the development, such as interfacing with external databases and maintaining
real-time communication with PLCs. However, through careful design and effective coding, these
challenges were successfully overcome.
Our project holds significant importance in the field of process automation. By providing an
adaptable and flexible interface, it contributes to improving the efficiency and agility of production
plants. In particular, the "Kalandrierzelle" interface's role in parameter customization has the
potential to transform how manufacturing processes are customized and adjusted to meet specific
production requirements.

wbk
Institut für Produktionstechnik

Summary and Outlook

Andrea Albertini Page 61

6 Summary and Outlook
6.1 Summary
In the course of this thesis, we embarked on a journey to develop a sophisticated Graphical User
Interface that empowers users to seamlessly customize and control critical process parameters
within an industrial context. The central focus of our exploration revolved around the
Kalandrierzelle (more specifically, on the hardware available during the writing of this thesis), an
integral component of our manufacturing process, and the Main Window that served as the
gateway to our GUI. Below, we summarize our key findings
The inception of our journey involved establishing secure connections with the OPC UA server,
paving the way for real-time data access. We harnessed the potential of the ‘uaClient’ variable as
a global entity, ensuring a one-time establishment of this connection, thereby eliminating the need
for repetitive setup.
Our initial challenge revolved around enhancing the user's comprehension of the ongoing process
by providing a clear indication of the specific phase within the process. To address this challenge
effectively, we conceived and successfully incorporated the 'updateButtonColor' function into the
application. This function adeptly manages the dynamic color changes of process-named buttons,
as delineated in Chapter 3.2.3.

Subsequently, our focus shifted towards augmenting the agility of our production plant by enabling
the modification of process parameters. To this end, we meticulously designed an intuitive
interface, empowering users to navigate through diverse values and make necessary adjustments.

Moreover, in recognition of the importance of verifying configuration parameters for the distinct
cells, we introduced a dedicated window. This interface accommodates essential data, including
the Database HTTP Endpoint URL, the imperative Bearer Token for secure database connectivity,
the specific cell type, and access to four unique OPC Endpoints, each associated with an individual
Programmable Logic Controller (PLC) corresponding to a specific working cell.

The Kalandrierzelle interface took center stage as we concentrated on facilitating parameter
customization. This specialized interface incorporates buttons pertinent to process parameters,
with the 'updateButtonColor' function thoughtfully integrated. Notably, the same set of buttons for
both process and configuration parameters was thoughtfully integrated into both the
Kalandrierzelle's interface and the Main Window.

6.2 Outlook
As we contemplate the future development of our GUI, specific areas of focus emerge, particularly
in the context of the Kalandrierzelle and the Main Window. These crucial components serve as the
digital nerve centers of our agile manufacturing system. Here, we envision a profound
transformation with the integration of advanced control algorithms, which will not only enhance
operational efficiency but also drive a holistic approach to manufacturing.
The integration of advanced control algorithms within the Kalandrierzelle interface opens a
gateway to a new era of optimized and automated control. This technological advancement
promises to uphold our commitment to ensuring consistent high-quality production. Through the

wbk
Institut für Produktionstechnik

Summary and Outlook

Andrea Albertini Page 62

intelligent utilization of these algorithms, the manufacturing process can seamlessly adapt to
evolving needs, fostering a higher level of agility and flexibility. This adaptability ensures that we
remain responsive to dynamic customer requests, thus strengthening our position in a competitive
market.

wbk
Institut für Produktionstechnik

List of Figures

Andrea Albertini Seite I

List of Figures
Figure 1 : Electric car sales, 2016-2023 1

Figure 2 : Redox-flow batteries with electrolytes as the media for energy storage 4

Figure 3 : OPC 7

Figure 4 : Classic open platform communications (OPC)-based communication scheme in
automation system 8

Figure 5 : Differences between OPC DA and OPC UA 9

Figure 6 : General structure of a control system using OPC server 10

Figure 7 : Block diagram of a PLC 11

Figure 8 : Process model according to DIN EN 61512-1 13

Figure 9 : Physical model according to DIN EN 61512-1 14

Figure 10 : Model of a procedural control 15

Figure 11 : Interrelationships model procedure control, physical model and process model
according to DIN EN 61512-1 16

Figure 12 : Condition model according to DIN EN 61512-1 18

Figure 13 : Syntax of the PackML state model 19

Figure 14 : PackML state model 19
Figure 15 : AgiloBat Logo 22
Figure 16 : Comparison between a hand cell production and AgiloBat 23

Figure 17 : Functional principle of agile battery cell production based on microenvironments
equipped with machine modules. The capacity utilization can be kept high despite different
processing times thanks to redundant functional units 23

Figure 18 : Overview AgiloBat plant concept 24

Figure 19 : Coating Cell 24

Figure 20 : Calendering machine 25

Figure 21 : Singulation 25

Figure 22 : Cell assembly 26

Figure 23 : OPC UA-Based Monitoring and Control System 28
Figure 24 : Main Window, ‘off’ state 31
Figure 25 : Main Window, ‘idle’ state 31

Figure 26 : Kalandrierzelle, off state 37

Figure 27 : Kalandirerzelle, 'ready' state 44
Figure 28 : Kalandrierzelle, 'ongoing' state 45

Figure 29 : Kalandrierzelle, 'ongoing' state 45

Figure 30 : Konfigurationsparameter window 48

wbk
Institut für Produktionstechnik

List of Figures

Andrea Albertini Seite II

Figure 31 : Prozessparameter Window, initial view 49

Figure 32 : Prozessparameter, initialized view 51

Figure 33 : Prozessparameter, parameter selection 55

Figure 34 : Prozessparameter, Alert Message 56

Figure 35 : Prozessparameter, updated parameter 56

wbk
Institut für Produktionstechnik

List of Tables

Andrea Albertini Seite III

List of Tables
Table 3.1: Operating modes 17

wbk
Institut für Produktionstechnik

References

Andrea Albertini Seite IV

References
Alphonsus, E. R., & Abdullah, M. O. (2016). A review on the applications of programmable logic

controllers (PLCs). Renewable and Sustainable Energy Reviews, 60, 1185–1205.
https://doi.org/10.1016/j.rser.2016.01.025

Degele, N. (2007). Neue Kompetenzen Im Internet Kommunikation Abwehren, Information
Vermeiden. In Die Google-Gesellschaft (pp. 61–74). transcript Verlag.
https://doi.org/10.14361/9783839407806-007

Diaconescu, E., & Spirleanu, C. (2012). Communication solution for industrial control
applications with multi-agents using OPC servers. In 2012 International Conference on
Applied and Theoretical Electricity (ICATE) (pp. 1–6). IEEE.
https://doi.org/10.1109/ICATE.2012.6403431

Energy.gov. (2023, September 4). How Lithium-ion Batteries Work.
https://www.energy.gov/energysaver/articles/how-lithium-ion-batteries-work

Felser, M. (2001). Ethernet TCP/IP in automation: a short introduction to real-time requirements.
In ETFA 2001. 8th International Conference on Emerging Technologies and Factory
Automation. Proceedings (Cat. No.01TH8597) (pp. 501–504). IEEE.
https://doi.org/10.1109/ETFA.2001.997724

Fleischer, J., Fraider, F., Kößler, F., Mayer, D., & Wirth, F. (2022). Agile Production Systems for
Electric Mobility. Procedia CIRP, 107, 1251–1256.
https://doi.org/10.1016/j.procir.2022.05.140

Fourth Industrial Revolution - Wikipedia. (2023, August 1).
https://en.wikipedia.org/wiki/Fourth_Industrial_Revolution.

Frauenhofer ISI. (April 2022). Solid-State Battery Roadmap 2035+.
González, I., Calderón, A. J., Figueiredo, J., & Sousa, J. M. C. (2019). A Literature Survey on

Open Platform Communications (OPC) Applied to Advanced Industrial Environments.
Electronics, 8(5), 510. https://doi.org/10.3390/electronics8050510

IEA. (2023, August 31). Trends in electric light-duty vehicles – Global EV Outlook 2023 –
Analysis - IEA. https://www.iea.org/reports/global-ev-outlook-2023/trends-in-electric-light-
duty-vehicles

Is it really the end of internal combustion engines and petroleum in transport? (2023, August 2).
Karlsruher Institut fuer Technologie. (2023, August 27). KIT - KIT - Media - Press Releases -

Archive Press Releases - AgiloBat: Flexible Production of Battery Cells.
https://www.kit.edu/kit/pi_2020_012_agilobat-batteriezellen-flexibel-produzieren.php

Lydia Dorrmann, Dr. Kerstin Sann-Ferro, Patrick Heininger & Dr. Jochen Mähliß. Kompendium:
Li-Ionen-Batterien: Grundlagen, Merkmale, Gesetze und Normen.

luetgering, a. 20170601_Agenda Simulationsworkshop.
Microsoft Word - Seminararbeit_SimonGese.docx.
Mustermann, M. (2020). Toller Titel. Karlsruhe.
Netto, R., (2013), Programmable Logic Controllers.
Networking. (2023, September 14). What is Transmission Control Protocol (TCP)? Definition

from SearchNetworking. https://www.techtarget.com/searchnetworking/definition/TCP
Noack, J., Roznyatovskaya, N., Herr, T., & Fischer, P. (2015). The Chemistry of Redox-Flow

Batteries. Angewandte Chemie (International Ed. In English), 54(34), 9776–9809.
https://doi.org/10.1002/anie.201410823

OPC Blog. (2018). What is OPC? Learn about the most used technology in automation.
https://integrationobjects.com/blog/what-is-opc-most-used-technology-automation-world/

OPC Foundation. (2017, June 15). What is OPC? - OPC Foundation.
https://opcfoundation.org/about/what-is-opc/

wbk
Institut für Produktionstechnik

References

Andrea Albertini Seite V

Rinke, A. (2022). What is OPC UA? A practical introduction. https://www.opc-router.com/what-is-
opc-ua/

Sanchez, L. M., & Nagi, R. (2001). A review of agile manufacturing systems. International
Journal of Production Research, 39(16), 3561–3600.
https://doi.org/10.1080/00207540110068790

Schleipen, M., Gilani, S.‑S., Bischoff, T., & Pfrommer, J. (2016). OPC UA & Industrie 4.0 -
Enabling Technology with High Diversity and Variability. Procedia CIRP, 57, 315–320.
https://doi.org/10.1016/j.procir.2016.11.055

Schmidt-Rohr, K. (2018). How Batteries Store and Release Energy: Explaining Basic
Electrochemistry. Journal of Chemical Education, 95(10), 1801–1810.
https://doi.org/10.1021/acs.jchemed.8b00479

Science review of internal combustion engines. (2023, August 2).
Siemens. (05/2021). STEP 7 und WinCC Engineering V17: Systemhandbuch.
Simon Gese. Agile Produktionssysteme – Grundlagen, Konzeption und Diskussion, 2021.
VDMA. Batterieproduktion Roadmap 2023.
What is Industry 4.0 and how does it work? | IBM. (2023, August 3).

https://www.ibm.com/topics/industry-4-0

wbk
Institut für Produktionstechnik

Appendix

Andrea Albertini Seite VI

Appendix
In this appendix, we include a sample section of code used to perform an HTTP request and
process the response data, code segment used in the Main Window and in the “Kalandrierzelle”
interface. This code was employed as a part of the data retrieval process for our research project.
It demonstrates how we interacted with a remote server and obtained data that is integral to our
study. While the specific details and variables in the code may vary, this example offers insight
into the approach we adopted for accessing external data sources.

 % Code that executes after component creation

 function startupFcn(app, Main_Window_finalVersion, Kalandrierzelle_FINAL)

 import matlab.net.*

 import matlab.net.http.*

 httpEndpoint = 'https://mindxserver.ict.fraunhofer.de/api/graphLookup';

 bearerToken =

'eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhcGkiOnRydWUsInVzZXJJZCI6IjYyZmIyZTM4ZmQ4ODI4NDY2N

mVhYjA0ZiIsIm9yZ2FuaXphdGlvbiI6ImljdEV4dCIsImlhdCI6MTY2MDYyODUzNiwiZXhwIjoxNzIzNzQzNzM2fQ.o

QahcHqievqV4OHIU3SWiRRkvl0_dOt_-XLlmzCP-P8';

 % UA specs

 uaEndpoint = 'opc.tcp://192.168.0.1:4840';

 f1 = matlab.net.http.HeaderField('Authorization', "Bearer " + bearerToken);

 type1 = matlab.net.http.MediaType('text/*');

 type2 = matlab.net.http.MediaType('text/plain','q','.5');

 acceptField = matlab.net.http.field.AcceptField([type1 type2]);

 f2 = matlab.net.http.HeaderField('acceptField', acceptField);

 header = [f1 f2];

 msgBody = '{"isKIT": "64a567770678361c6b52e8d9"}'; % new

 msgBody = jsondecode(msgBody);

 msgBody = matlab.net.http.MessageBody(msgBody);

 body = msgBody;

 method = matlab.net.http.RequestMethod.POST;

 request = matlab.net.http.RequestMessage(method, header, body); % create a

request message

 uri = URI(httpEndpoint);

 resp = send(request, uri);

 status = resp.StatusCode;

 disp("HTTP Server Status Code: " + status);

 response = resp.Body.Data;

The code is explained in details in Chapter 3.2.1.

