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Abstract

Running characterisation can be highly valuable in predicting the onset of running-
related injuries, thereby enabling their mitigation or prevention, and in assessing
runner’s performances through the estimation of relevant spatio-temporal param-
eters, such as stride velocity and stride length. The existing literature presents
a variety of approaches for the out-of-lab estimation of running spatio-temporal
parameters utilising body-mounted magneto-inertial measuring units (MIMUs).
The most widely used approach for assessing stride velocity and length is based
on the double integration of feet accelerations between two consecutive ground
contacts of the same foot. Specifically, the following steps need to be implemented.
Firstly, foot orientation is estimated from the inertial data to remove the gravi-
tational contribution from foot accelerations. Secondly, the zero-velocity update
technique is implemented to detect the instants when the foot can be assumed
to be stationary during the stance phase. The final step involves the removal of
residual drift. As errors associated with each step propagate to the estimation of
the final quantities, it is essential to identify sub-optimal values for each method
composing the computational pipeline. However, this is not straightforward as
the values of the optimal parameters may vary according to the running speed
analysed. This thesis dealt with the identification, implementation, and fine-tuning
of state-of-the-art methods for the estimation of stride velocity and length under
different running speeds. For this purpose, two datasets were analysed. The first
dataset included shoe-mounted inertial data from 10 amateur runners running
at 14 km/h on a treadmill, and the stereophotogrammetric data considered as a
gold standard. For the second dataset 10 elite runners were enrolled to perform
50-m sprints at their maximal speed (19-29 km/h) and were instrumented with
shoe-mounted MIMUs. Pressure-sensitive insoles and video recordings were used
as portable gold standards. The results obtained from the MIMU-based pipeline
were compared with the references provided by the available gold standards. The
optimisation procedure enabled to considerably improve the results with respect to
a standard non-optimised pipeline: the mean absolute percentage error on running
stride velocity decreases from 19.7% to 10.4%, and from 22.7% to 14.3% for the
first and second dataset, respectively. For the stride length the mean absolute
percentage error on running stride length decreases from 34.8% to 14.4% for the
first dataset and from 34.9% to 16.2% for the second dataset. Thus, the proposed
optimised pipeline is a promise solution for in-field running characterisation at
different speeds.
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Chapter 1

Introduction

1.1 Background and Relevance

Running is a basic human movement that has fascinated researchers, athletes, and
fitness enthusiasts for ages. This lively activity, deeply rooted in our evolutionary
past, showcases human flexibility and survival skills. Nowadays, it represents one
of the most common and loved ways to stay active around the world. From the
past up to now, running has been a lasting interest, appreciated for its simplicity,
effectiveness, and significant positive effects on both body and mind [1]. Studying
running is valuable in preventing injuries and enhancing athletes’ performance [2].

This thesis centres on the study of running biomechanics, with a specific empha-
sis on estimating spatio-temporal parameters using signals obtained from wearable
magneto-inertial sensors. In terms of research, an accurate understanding of spatio-
temporal parameters is essential for coaches, clinicians, and researchers. In recent
years, several works have attempted to estimate spatio-temporal parameters using
body-mounted magneto-inertial measurement units (MIMUs) [3]. The existing
literature offers various methods for estimating spatio-temporal parameters using
body-mounted MIMUs. The most commonly employed approach involves inte-
grating acceleration data between two consecutive ground contacts of the same
foot. This method necessitates the combination of multiple algorithms within a
single analytical framework. Firstly, it estimates foot orientation from inertial
data to eliminate the effects of gravity on foot accelerations. Subsequently, it
employs the zero-velocity update (ZUPT) technique to identify moments when the
foot is stationary during the stance phase. This step is critical for enhancing the
accuracy of parameters related to stride, as it defines the boundaries of strides,
allowing for the integration of linear acceleration into velocity and, ultimately, foot
displacement. The final step in this framework addresses the removal of residual
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drift. However, a challenge with this approach lies in the fact that the results can
exhibit variations depending on the running speed.

In this thesis, each component of this analytical framework has been implemented,
drawing from existing literature and incorporating optimisations, with specific
innovations introduced in certain aspects. The aim is to create an optimal procedure
for estimating spatio-temporal parameters that can effectively adapt to different
running speeds.

In particular, the Project Outline is organised as follows:

Chapter 1 (current chapter) gives an introduction of the topic of the thesis and
explains the thesis rationale and general objectives. It provides a general overview
of the running gait cycle and a short summary of the instrumentation commonly
used in this field, with particular focus on the description of the general functioning
of inertial sensors.

Chapter 2 describes the current state of the art of the estimation of the spatial
parameters. Specifically, each step of the computation pipeline is thoroughly
examined, focusing on the main issues encountered.

Chapter 3 details the experimental protocols and methodologies employed in the
thesis. The implementation of each stage of the pipeline is described.

Chapter 4 describes the results obtained during the optimisation process.

Chapter 5 provides comments on the results and recommendations for the esti-
mation of spatio-temporal parameters of running with inertial sensors on the feet
at various speeds.

Chapter 6 summarises the thesis’ major accomplishments.

1.1.1 Running Cycle

First and foremost, it is essential to define the term ’running’ and explore how it
differs from the simple act of walking. To begin with, running involves higher speeds
compared to simple walking, consequently leading to amplified ground reaction
forces. Even though walking and running may seem similar at first impact, their
distinctive cycles show notable differences.

A complete gait cycle is defined by the presence of two successive phases, which
are as follows:
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• Stance Phase: The stance phase accounts for 60% of the stride and it begins
with the foot strike, called initial contact (IC) and it ends with the toe off,
terminal contact, called final contact (FC). It is the period that indicates the
duration of ground contact where it sustains all or part of the body weight.

• Swing Phase: The swing phase takes up the last percentage of the gait cycle
and relates to the period when the foot is not in touch with the ground but
rather in the air as the leg extends towards the next foot contact[4].

Figure 1.1: Visualisation of the running gait cycle, from [5].

Similar to walking, the running cycle can also be divided into different phases
(depicted in Figure 1.1):

• The Stance Phase (ground contact phase), in which the foot is in contact
with the ground. This phase is further divided into three stages:

– The initial contact. In general, when pace increases from running to
sprinting, the form of initial contact shifts from rearfoot contact to forefoot
contact. Competitive runners often strike the ground with just the forefoot,
never hitting the ground with the rearfoot, with the goal of covering
the greatest distance in the shortest period of time. When running at
slower speeds, the entire foot makes contact with the ground. Statistics
reveal that the majority of runners (80%) are rear-foot strikers, with
the remainder being mid-foot or fore-foot strikers [6]. During this phase,
the impact of the body on the ground is cushioned through knee flexion,
similar to the response to load phase in walking, but the flexion is more
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pronounced. Moreover, muscles store elastic energy to be used during the
propulsion phase.

Figure 1.2: Visualisation of rear-, mid- and forefoot strike types.

– The mid-stance or single support phase. During this phase, the knee is at
its maximum flexion, and the pelvis continues to move forward.

– The propulsion phase. In this phase, the joints extend and release the
elastic energy stored during the cushioning phase to propel the body
forward and upward. Proper cushioning is essential for propulsion because
the more elastic energy stored by the muscles, the less energy the muscles
need to generate during this phase [7].

• The Swing Phase, in which the foot is off the ground. The flight phase
begins at the moment of the final contact. Typically, the foot leaves the ground
before reaching 50% of the entire running cycle. In contrast to walking, where
support constitutes about 60% of the entire cycle and flight is about 40%,
these percentages are reversed in running. Additionally, these percentages
change with speed: the support phase is longer during slow running and
shorter during fast running. High-level sprinters may leave the ground as early
as 22% into the running cycle[7].

In other words, these two stages (stance and swing phases) can be observed in
both running and walking; however, the timing of these varies. During walking,
there is a phase of double support when transitioning from one foot to the other,
during which both lower limbs are in contact with the ground. A differentiation
between the running cycle and the gait cycle stems from the existence, in running,
of the double-suspension phase, which replaces the double-support phase. As run-
ners increase their speed, the duration of their stance periods becomes shorter.In
Figure 1.3 it is possible to confront gait and running cycles [8].
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Figure 1.3: Gait cycle with phases and individual components. (A) Walking. (B)
Running. From [8].

1.1.2 Running spatio-temporal parameters
While anatomical differences result in varying running styles among individuals,
certain fundamental parameters can be commonly observed across different run-
ning patterns. In fact, spatio-temporal parameters have demonstrated a robust
correlation with athletes’ performance, rendering them excellent indicators of an
individual’s activity. This, in turn, enables coaches and athletes to gain enhanced
insights into their movements.

Gait and running parameters can be divided into temporal and spatial parame-
ters.

The temporal parameters provide temporal references, these are the parameters
that have to do with time, such as timing and duration. They can be divided into:

• Cadence [ step
min ], the number of steps per unit of time
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• Stride duration [s], the duration of the stride

• Step duration [s], the duration of the step

• Stance phase duration [s], which starts with an IC and ends with an ipsilateral
FC.

• Swing phase duration [s], which starts with an FC and ends with an ipsilateral
IC.

• Speed [m
s ], which is the distance covered by the subject per unit time.

The spatial parameters can be described as:

• Stride length [m], which is the distance between two consecutive contacts
with the ground of the same foot. The stride length determines the local gait
direction of progression

• Step length [m], which is the distance between the contact of one foot to the
ground and the consecutive contact of the other foot.

• Stride width [m], which is the distance, computed perpendicularly to the
direction of the gait, between the contact of one foot to the ground and the
consecutive contact of the other foot.

1.1.3 Instrumentation for Running Analysis
For running analysis, several systems are employed. This section will present a
description of some of the technologies utilised in the literature, the following can
be listed:

• Optoelectronic systems

• Force platforms

• Instrumented mat or treadmill

• Photocell systems

• Magneto Inertial Measurement Units (MIMU)

• Pressure insoles
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Optoelectronic systems
An optoelectronic system for Motion Capture is a very accurate tool that is often
utilised as the gold standard in movement analysis. It consists of a set of video
cameras that record the scene where the subject is moving. The cameras are
typically calibrated and stationary. The subject’s movement is calculated by
processing the image data captured by the cameras. These systems can be divided
into three categories based on the methodology used for analysis: systems with
passive markers, systems with active markers, and markerless optical systems. This
analysis system is also referred to as Stereophotogrammetry (SP) [9].

Method with passive markers
Systems for marker-based Motion Capture are composed of several elements: a set of
at least two cameras equipped with flashes for scene illumination, a set of spherical
markers covered with reflective material attached to the subject (Figure 1.4), and
a computer that receives images from the cameras.

Figure 1.4: Passive Markers.

An algorithm extracts markers from images, reconstructing their three-dimensional
positions using flashes and reflective markers for high-contrast images. Reflective
markers, appearing brightly in captured images, interact with infrared light emitted
by camera diodes, which is then captured by the cameras. Each camera, described
by a simple mathematical model, generates a two-dimensional projection of a
three-dimensional scene. Triangulation enables the calculation of marker positions,
contingent on knowing the position and orientation of each camera. These pa-
rameters are determined during the system’s calibration phase, involving accurate
estimation of camera model parameters.

Calibration is carried out in two phases: in the first phase, a calibration object
consisting of three orthogonal axes with markers attached at known positions is
captured. This establishes the global reference system and obtains the positions and
orientations of the camera planes. In the second phase, a rigid bar with markers,
called the Active Wand, attached at known positions is moved along the three
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directions in space within the calibration volume to obtain the internal camera
parameters. This system reconstructs the three-dimensional position of the markers
at each moment in time. During the tracking phase, the points are grouped to
reconstruct the trajectories of each individual marker. Finally, to each trajectory, a
specific anatomical meaning is assigned through an appropriate model. The main
applications are in clinical and sports contexts. For a comprehensive gait analysis,
a SP system is necessary to obtain a view of the subject’s anatomical landmarks
and their trajectories during the analysis. In Figure 1.5 there is an example of an
Optoelectronic system.

Figure 1.5: Illustration of an Optoelectronic system.

Method with active markers
Systems using active markers are very similar to those using passive markers, but
the markers consist of coloured LEDs that emit their own light. Therefore, an
external illumination device is not necessary. Usually, the LEDs are activated
sequentially so that the system can automatically detect each marker based on
pulse synchronisation, thus facilitating the tracking phase. Nevertheless, these
systems have not achieved the same commercial success as passive marker systems
due to the presence of power and synchronisation cables for the markers, which
makes the setup cumbersome [9].

Markerless Method
Optical markerless systems consist of systems that autonomously recognise different
body segments in the acquired images and subsequently calculate their position
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and orientation in three-dimensional space. Other markerless optical systems can
recognize the entire subject’s silhouette captured by the cameras and calculate
the volume occupied by the subject in space at each moment in time. This
technology aims to minimise the intrusion on movements, however minimal, caused
by marker use. Moreover, it seeks to significantly reduce propagation times and,
more importantly, analysis errors associated with marker utilisation. As data
processing remains computationally intensive and accuracy is still limited, these
systems are still in the research phase. Nonetheless, these systems are considered
the future of Motion Capture systems [9].

Force platforms
Force platforms are a widely used instrument for movement analysis and are
mechanical sensing systems designed to measure the Ground Reaction Forces
(GRF). They can be either single-axial, which allows the measurement of only
one component of the ground reaction force, or multi-axial, which enables the
detection of all the components of said vector. Thanks to this system, it is possible
to estimate the Center of Pressure (COP), the Center of the Force (COF), the
moment around each axis, etc. [10].

Figure 1.6: Force platform.

Additional metrics can be estimated by knowing the frequency of the force data
obtained, such as:

• Speed and power

• Displacement

• Temporal variables

• Asymmetry of the left and right sides
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A force plate’s constituent technical parts could consist of piezoelectric sensors,
strain gauges, or beam load cells. These elements can change the force imposed on
voltage. In addition, force plates can be implanted in instrumented treadmills used
for in-lab gait analysis [11].

Instrumented mat or treadmill
In the field of gait and running analysis, instrumented mats and treadmills play a
crucial role.

These advanced tools offer researchers and clinicians a regulated, highly quanti-
fied setting for the thorough analysis of biomechanical dynamics during walking and
running. Instrumented mats, also known as instrumented walkways, are platforms
with several pressure sensors integrated. These mats enable the measurement of the
force spread across a certain region, or pressure, as opposed to the measurement of
the resulting forces.

Instrumented treadmills and mats allow the collection of comprehensive data on
people’s gait patterns, including crucial variables like step length, contact times,
and force distribution. This data enables a deeper investigation into how individuals
walk, ultimately leading to improvements in our knowledge of human locomotion,
injury prevention, and performance enhancement in various settings, from clinical
applications to sports science. However, it’s worth noting that both instrumented
mats and force platforms are relatively expensive, require a significant amount of
space, and are primarily used in laboratory settings.

Figure 1.7: Instrumented treadmill.
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In Figure 1.7 there is an example of instrumented treadmill.

Photocell systems

Photocell systems in track and field events are commonly linked to applications such
as photo-finish timing and distance measurements. However,these systems are a
valuable tool in gait and running analysis for researchers and professionals in sports
science, biomechanics, and physical therapy. These systems use photodetectors and
light sources to capture data about an individual’s movement and provide insights
into their gait and running mechanics.

Figure 1.8: Athlete utilising the Optojump Next[12].

The OptoJump Next (Microgate, Bolzano, Italy) is an example of an innovative
optical system for athlete performance’s analysis (Figure 1.8). It is composed of a
transmitting bar and a receiving bar. The LEDs positioned on the transmitting bar
communicate with those on the receiving bar. The system detects any interruptions
and calculates their duration. This enables the measurement of flight and contact
times during a series of jumps with very high precision. The dedicated software
allows for obtaining a range of athlete performance-related parameters, such as the
stride length, the exact and average velocity, or the stride angle. Optojump Next,
thanks to small, freely placeable cameras, also enables the recording of images from
the tests performed. However, the cost of the system is very high, and it is only
used by extremely high-level professional athletes [12].
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Magneto Inertial Measurement Units (MIMU)
The development of low-cost, miniaturised inertial sensors has opened up new
fields of application where traditionally the use of inertial sensors was either too
expensive or the sensors were too bulky. Two such areas of application are gait
analysis and pedestrian navigation, where the use of inertial sensors mounted on
the feet has demonstrated promising results in the last decades [13].

Wireless sensor-based systems incorporating MIMUs have evolved as an alter-
native to camera-based laboratory systems. These sensors, which usually consist
of tri-axial accelerometers, gyroscopes, and magnetometers, have the advantages
of being lightweight, portable, affordable, and miniaturised, allowing prolonged
outdoor examination. The alignment of the sensor with gravity (accelerometer),
the Earth’s magnetic field (magnetometer), and angular velocity (gyroscope) deter-
mines orientation estimates MIMUs. The quaternion format, which describes 3D
rotation in space, represents these estimates [14].

Besides their benefits, sensor-based systems have drawbacks that need to be
taken into account. A particular restriction is the presence of drift, which causes
errors and results in incorrect orientation predictions. MIMUs are also impacted
by ferromagnetic disturbances, which can lead to heading accuracy issues [14].
Different data correction algorithms can be used to reduce these errors. Moreover,
misalignment between anatomical and sensor-based body segment coordination
systems may result in inaccurate sensor-based spatio-temporal characteristics.
These two coordination systems can be calibrated to minimise errors like this and
increase precision. Wireless sensors have nevertheless been successfully used in
obtaining spatio-temporal parameters during gait and running analysis despite
these limitations [15]. Human movement has been increasingly monitored by using
wireless sensors, either to assess the performances of athletes or to prevent injuries
([16]-[17]).

For the evaluation of the running events, sensors have been placed on the foot,
the lumbar spine, and the tibia, as shown in Figure 1.9.

According to a thorough analysis conducted by Horsley et al. [20], the mathe-
matical technique used is more important than where the sensor is placed when
it comes to accurately detecting events. The ideal location would be in a hollow
made in the sole of the shoe, according to comparative research done by Zrenner et
al. [19] with a focus on the placing of the MIMU on the foot for the estimate of
running gait characteristics. A representation of the different positions investigated
is shown in Figure 1.10. Numerous studies in the literature utilise data from sensors
positioned in the area located above the shoelaces. This thesis will also utilise
signals from sensors placed in this manner.
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Figure 1.9: Example of the attachment of MIMUs on the different body location
[18].

Figure 1.10: Visualisation of different sensor positions on a running shoe [19].

In this section, a detailed explanation of the components of a MIMU is presented.

Accelerometer
Accelerometers measure the proper linear acceleration ap. The output of the
accelerometer depends on the way it is mounted and on the motion it is subjected
to. They can have one (uni-axial accelerometers) or two or three sensitive axis
(tri-axial accelerometers). The most popular accelerometers on the market are
uniaxial and triaxial. The proper linear acceleration ap can be computed as the
difference between the sensed acceleration as, that is, the rate of change of the
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velocity of the sensor, and the gravity acceleration g. Thus, if the object is in free
fall, the output of the measure will be 0 m/s2, while it will give |⃗g| = 9.81 m/s2

when it is stationary.

ap = as − g (1.1)

Figure 1.11: Accelerometer spring-mass-damper system[21].

An accelerometer can be modelled as a second-order spring-mass-damper system
(Figure 1.11). When an acceleration (a) is applied to proof mass (m) suspended by
springs with an elasticity constant (k) and a damping factor (b), then the force
(Fapplied) acting on the proof mass is given by:

Fapplied = m · aapplied (1.2)
The force exerted by damping and springing in the system can be defined as

follows:
Fdamping = bẋ (1.3)

Fspring = kx (1.4)
According to Newton’s second law, the algebraic sum of the forces must be equal

and opposite to the inertia of the body:

Fapplied + Fdamping + Fspring = mẍ (1.5)

mẍ + bẋ + kx = Fapplied = mẍg = ma (1.6)
Equation (1.6) is a non-homogeneous second-order differential equation. Its

solution can be easily determined in the Laplace domain. The transfer function
H(s) of the system is given by:

ms2x(s) + bsx(s) + kx(s) = Fapplied = ma (1.7)
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Where ω0 is the resonance frequency and Q is the quality factor:

ω0 =
ó

k

m
(1.10)

Q = mω0

b
(1.11)

Specifications
When choosing a device, certain specifications must be considered. Some of the
main specifications that characterise an are listed [22]:

• Sensitivity [mV
g ]: measures the minimum shift in the output corresponding

to a change in the mechanical input and mathematically corresponds to the
transfer function.

• Bandwidth [Hz ]: quantifies the accelerometer’s frequency range. Typically,
a bandwidth of 40-60 Hz is sufficient to analyse human movement.

• Zero-g voltage [V ]: specifies the expected voltage at 0 g.

• Voltage noise density [µ g
Hz ]: Voltage noise changes with the inverse square

root of the bandwidth: the faster the accelerometer provides readings, the
worse the accuracy. Noise has a higher influence on the performance of the
accelerometers when operating at lower g conditions with a smaller output
signal.

• Dynamic range [g]: represents the maximum dynamic acceleration that can
be measured accurately by the instrument.

Since accelerometers work in the low-frequency domain, a high resonance fre-
quency is necessary to achieve a higher detection bandwidth. This specification
can be obtained by reducing the size of the test mass and increasing the stiffness
of the springs. However, as these variations can compromise the sensitivity of the
device, a trade-off must be found.

Q = x

a

m

k
= 1

ω2
0

(1.12)
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Gyroscope
Gyroscopes measure the angular velocity of an object around its sensing axis. Gy-
roscopes can have one, two, or three detection axis. Angular velocity measurements
are generally expressed in degrees per second. In combination with accelerometers,
gyroscopes can be employed in several applications that need an integrated solu-
tion for inertial sensing and motion processing problems [23]. Depending on the
direction, there are three types of angular rate measurements:

• Yaw: horizontal rotation on a flat surface when seen the object from above.

• Pitch: vertical rotation of an object seen from the front.

• Roll: the horizontal rotation of an object seen from the front.

Figure 1.12: Representation of Yaw, Pitch and Roll. Adapted from [24].

There are different commercially available classes of gyroscopes, but the more
commonly used are mechanical and optical gyroscopes[25]. Due to the progress
made in MEMS technology, miniature gyroscopes can become common.

Operating Principle
Classical gyroscopes operate based on the principle of the law of conservation of
angular momentum, which states that the angular momentum of a system remains
constant unless an external force acts upon it. When such an external force is
applied, the object strives to maintain a fixed orientation with its axis pointing in
the direction of rotation.

In Figure 1.13, the green disc represents a body that can rotate around its own
axis, allowing for the application of a rotational force. Applying a force to the disc
generates a moment known as the moment of force (τ , also referred to as torque).
For instance, when the disc starts to rotate anticlockwise at a specific angular
velocity (represented as ω), it creates an angular momentum (often denoted as L),
which can be quantified using the following formula:
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Figure 1.13: Structure of a classic gyroscope. Adapted from [26].

L = Ixω (1.13)

Additionally, it is possible to express the torque (τ) acting on a system as the
rate of change of angular momentum (L) with respect to time (t). In mathematical
symbols, this relationship can be written as follows:

τ = dL

dt
(1.14)

When there is no force acting on the system, the torque (τ) will be equal to
zero, and as a result, the angular momentum (L) will remain constant.

In the presence of circular motion, the effect will be that the axis around which
the system rotates will always attempt to align with the direction of rotation.
Referring back to Figure 1.13, you can envision the moment of force pulling the
vector representing angular momentum towards itself, thus inducing the rotation
of the wheel.

The miniaturised gyroscopes, integrated into the MIMUs, depend on the Coriolis
force, an apparent force that comes into play when an object moves on a rotating
surface. From an external perspective, the object’s path appears linear, but from
a viewpoint tied to the rotating surface, which moves in tandem, the trajectory
appears curved, as though influenced by a certain force. This phenomenon is known
as the Coriolis force. The following equation defines mathematically the Coriolis
force:

FCoriolis = −2m(ωxv) (1.15)
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where m is the mass, ω the angular velocity of the object, and v the velocity of
the mass relative to the object’s motion. For example, consider a scenario where a
mass is undergoing vibrations along the x-direction with a linear velocity v, and
simultaneously, the gyroscope is undergoing rotation around the z-direction at an
angular rate ω. In accordance with the Coriolis effect, the mass is also subjected
to an apparent force that induces additional vibration in a direction perpendicular
to the previous two, specifically the y-direction. The drift rate stands out as the
most important parameter for gyroscopes, representing the occurrence where the
gyroscope provides a nonzero reading when the anticipated value should be zero.
Also, in the case of the gyroscopes, their output depends on the way they are
mounted and on the motion they are subjected to.

Magnetometer
A magnetometer is a device that measures the magnetic field, specifically its mag-
netic strength and direction. The compass is the most popular magnetometer,
which points in the direction of the Earth’s magnetic north. It is possible to classify
magnetometers into two categories: scalar magnetometers, which measure the
magnitude of the magnetic field, and vectorial magnetometers, which detect the
component along a certain axis and quantify the direction and strength of the
magnetic field.

The measurement of the magnetic field components along its three axes provides
for a univocal definition of the magnetic field vector at the measurement site.
To obtain the magnetic field vector, a voltage proportional to its strength must
be produced. It is based on the Lorentz force, which can be expressed with the
equation:

FL = q(vxB) (1.16)

where FL is the Lorentz force, q is a charge moving with a certain speed v on a
conductive surface with a constant magnetic field B is applied. The charge, driven
by this force, starts moving trasversally, causing the formation of an electric field
EHall on the conductive surface, which results in the generation of an electric force,
described in:

F = q(vxB) + qEHall (1.17)

In equilibrium conditions, it is possible to write the equation:

(vxB) = −EHall (1.18)
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Figure 1.14: Hall effect. Adapted from[27].

The Hall effect, Figure 1.14, is the generation of a voltage differential (the Hall
voltage VH) across an electrical conductor that is transverse to an electric current
in the conductor and perpendicular to an applied magnetic field. Magnetometers
are particularly sensitive to ferro-magnetic disturbances, making them suitable for
outdoor assessments but less for inside, where disturbances are more prevalent.
Because of its shortcomings, the magnetometer is frequently neglected in gait
analysis. In MIMUs, they are typically used in conjunction with gyroscopes and
accelerometers. Just like the accelerometers and the gyroscopes, the output of
the magnetometers depends on the position where they are mounted and on the
motion performed.

Pressure insoles
Pressure insoles (PI) are devices used to measure and analyse the distribution of
pressure on the feet during walking. They consist of thin, flexible sensor arrays
that are inserted into the shoes, between the foot and the sole, and connected to a
data acquisition system that records and analyses the pressure patterns [28]. Since
they are portable and inexpensive, in-shoe instrumented devices are growing in
popularity in the gait analysis field.

Capacitive, resistive, and piezoresistive sensors are some of the several types of
pressure insoles. Resistive sensors rely on changes in resistance to detect pressure,
whereas capacitive sensors assess changes in a thin film’s capacitance in reaction to
pressure. Piezoresistive materials, which are what are used in piezoresistive sensors,
vary their resistance in response to pressure [29].

Several studies have been done to assess the precision and dependability of
pressure insoles. According to research that examined various pressure insole types,
capacitive insoles offered the most precise and dependable measures of pressure
distribution while walking[29]. Further research [30] that utilised pressure insoles to
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evaluate how footwear affected pressure distribution while walking discovered that
soft-soled footwear reduced pressure under the forefoot and heel whereas hard-soled
footwear raised pressure under the forefoot and midfoot. Running is a much more
dynamic exercise than walking; thus, insoles experience higher pressure levels. This
results in a faster degradation compared to their use during simple walking[31].

Figure 1.15: Pressure Insoles from the INDIP system [32].

A novel form of pressure insole with only sixteen sensing components was
recently developed by Salis et al. [33]. These insoles have proven to be beneficial
for gait analysis, enabling accurate temporal parameter estimations. These sensing
components are built on force sensing resistors, which display resistance that is
inversely proportional to the applied force. Next, voltage is created from the
resistance. These PI have been validated for characterising gait by integrating them
with MIMUs as part of a multi-sensor wearable system [32]. In Figure 1.15 are
shown the pressure insoles from a multi-sensor system called the INertial module
with DIstance Sensors and Pressure insoles (INDIP).
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Chapter 2

State of the art for the
estimation of running
spatio-temporal parameters

2.1 Spatio-temporal parameters computation pipeline
Spatial parameters have been obtained using MIMUs via one of the following
approaches: biomechanical models, machine learning methods, or integration
methods.

• The biomechanical models are based on known models of human movement
analysis. These methods could achieve good accuracy for calibrated cases and
users. Therefore, they require distinct mathematical models from subject to
subject and as the movement speed varies. Moreover, a calibration stage is
needed for different subjects. They are useful for well-defined use cases: a
known user and specific kinds of motion [34].

• The machine learning methods have the fundamental weakness of exhibiting
considerable inter-subject variability, which implies that they need some degree
of individualization [35].

• The integration methods reckon on a double integration of the gravity-removed
acceleration. The first integration computed the velocity of the sensor over
time, followed by the second integration, which resulted in the position of the
sensor over time [35].

The third method is typically used to determine the displacement of the MIMU
in gait analysis.
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It can be stated that the computational pipeline for spatial parameter analysis
in gait analysis is well-established [36]. The procedure of integration is frequently
accompanied with drift, mostly caused by thermal-mechanical and electronic noise,
which leads to an inaccuracy in the displacement estimates. It is beneficial to
segment the signal such that it is not integrated throughout the entire length since
the drift gets worse over time. It is also preferred that the period of integration
time be shortened in order to take advantage of the cyclical nature of gait (or
running gait) and avoid the adverse consequences of drift. On the other hand, this
necessitates the detection of a known velocity moment in the cycle to be employed
as the starting condition in the acceleration integration.

There exist multiple techniques to address the various steps, and these will be
outlined in this section, describing both walking and running procedures. Deter-
mining spatial parameters from sensor signals during running can be considerably
more difficult than during walking. In running, participants and the sensors affixed
to them experience more pronounced movement, leading to significant accelerations
and rapid shifts in sensor orientation. Notably, the intense impacts when the feet
touch down during running can pose an additional hurdle for the double integration
processes of acceleration that are frequently employed [37]. The situation becomes
even more challenging when it comes to sprinting at higher speeds. The section
that follows is an outline of the spatial parameter’s computation pipeline utilising
the MIMU.

2.1.1 Orientation estimation and gravity removal

Orientation estimation
The orientation of an object can be described in various ways, such as Direction
Cosine Matrix (DCM), Euler angles, and Quaternions. DCM, which involves
nine parameters, can be challenging to implement. Euler angles can suffer from
gimbal lock issues, however, graphically, they are easy to interpret. Quaternions,
with fewer parameters, give an effective mathematical notation for representing
orientations and rotations of any objects for every dimensions. This stage involves
determining the orientation or attitude of the MIMU sensor with respect to the
Earth’s coordinate system. To estimate the sensor’s orientation in terms of pitch,
roll, and yaw angles, sensor fusion algorithms that employ accelerometer, gyroscope,
and magnetometer data can be used. In fact, individually, the MIMU’s sensors are
insufficient to deliver an accurate assessment in every scenario.

The accelerometer is unable to discern the difference between the acceleration
caused by gravity and the external acceleration of the body. As a result, the
accelerometer can only report sensor inclination information if gravity is the only
acceleration present, which occurs when the body is stationary or heading at a
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constant speed. Additionally, due to an accelerometer’s information depended on
the direction of gravity, it is unable to detect rotation around the vertical axis.

The gyroscope has significant biases that cause drift. In order to produce the
orientation variation with regard to the beginning instant, it gives a 3D angular
velocity with respect to the MIMU coordinate system that can be incorporated.
Considering this, an absolute orientation could not be obtained by the gyroscope.
Since the signals are impacted by biases and white noise, which cause a drift error
that grows larger over time, it is impractical to estimate the orientation only using
the gyroscope, especially if the utilised gyroscope is relatively cheap. Estimate
mistakes are a result of biases, and they increase linearly with time. The accuracy
of the gyroscope’s relative orientation calculation degrades with longer integration
times.

The magnetometer is heavily sensitive to ferromagnetic disturbances which
would lead to unpredictable information. These problems are addressed by sensor
fusion algorithms to estimate the orientation of the segment to which the inertial
sensor is mounted more precisely. The basic concept is to remove one’s weakness
using other’s strengths. A lot of sensor fusion algorithm have been developed over
the years to mitigate the errors that occur in the estimation of the orientation.
The sensor fusion algorithms frequently rely on mathematical techniques like
Complementary Filters (CFs) and Kalman Filters (KFs). The CFs employs a very
simple method that just needs less computing and is simple to implement. It is
preferred for embedded systems because of this capability. Part of these algorithms
have been developed directly for the human motion applications. The most popular
CF algorithm is the Madgwick’s one [38]. Iterative filters like the KF are effective
but have a high computational complexity. The minimal memory need of the KF
is a benefit. It works by correlating between current and predicted states[39].

Complementary Filters
Accelerometer, gyroscope, and magnetometer are incorporated in the MIMU. The
primary sensors are the gyroscope and the accelerometer, while the correction
sensor is the magnetometer. The accelerometer measures every force acting on
the item, and because even minor forces can cause measurement errors, long-term
measurements are accurate. Therefore, a low pass filter is required for correction
in an accelerometer. High pass filter is required for gyroscopic data rectification
because the integration process used in gyroscopic sensors takes place over time
and results in long-term value drift. The CF was used to obtain exact data since it
is simpler to build and comprises of both a low pass and a high pass filter [39].

There are different CFs algorithms that differs in how the information from
accelerometers and magnetometers is used to correct the orientation drift due
to angular rate integration. CFs demand minimal computational resources and
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Figure 2.1: Block Diagram of complementary filter, from [39].

are typically characterized by their relative simplicity due to the reduced num-
ber of configuration parameters. They can also be executed on microprocessors
integrated with MIMU [40]. However, since these methods rely on mathematical
approximations of real-world behaviour, they inherently contain some degree of
error.

Kalman Filters
Kalman filters (KFs) were proposed as an innovative stochastic approach of sensor
fusion applicable in many fields [41]. KFs employ a stochastic method to a
probabilistic determination of the outcome. This method attempts to get over the
limitations of determinism. Since mathematical models are never perfect but simply
approximations of reality, disturbances cannot be represented deterministically
since some parameters relate to a certain amount of uncertainty. The goal of this
technique is to replace the deterministic variables in the system with probability
distribution functions. The KF operates by repeatedly correlating the observed
and expected conditions. The system’s present state is utilized to predict its future
state. Since dynamic systems are always changing, KFs can be a good way to
predict the future state with some degree of accuracy. The initial first state must be
specified since the filter estimates future states based on the past ones[39]. KF uses
correlation between prediction and what actually happened to make the prediction
error. An advantage of KF is its memory is low, so it cannot save nothing but the
previous value.

Figure 2.2: Diagram of Kalman filter steps.

The procedure is divided into four steps, depicted in Figure 2.2. Firstly, the
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initial value is given, then the prediction step (a priori prediction), computing
gain of the filter and then estimation is done (a posteriori estimate). At last, it
calculates the error covariance[39].

There are different typologies of KFs, the main ones are the Linear KFs and
the Extended KFs (EKF).

The Linear KF is used to assess the state of a linear dynamic system in the
presence of noise. As new observations become available, it updates its estimates
sequentially since it acts in a recursive manner. The state estimate and the error
covariance matrix are the filter’s two primary components. Based on the dynamics
of the system, the filter predicts the subsequent state and combines these predictions
with actual measurements to enhance the state estimate. When dealing with linear
system dynamics and Gaussian noise, the KF is quite useful. In terms of the mean
squared error criteria, it offers the best approximation of the system state[42].

The EKFs is a KF extension that may be used with nonlinear dynamical systems.
Systems are frequently not strictly linear in real-world situations, and nonlinear
functions can better capture the dynamics. To make these nonlinear functions
suitable for the traditional KF architecture, the EKF linearises them using Taylor
series expansion. The EKF functions similarly to the Linear KF but updates the
state estimate and error covariance matrix using linearised dynamics. Despite
being often employed for nonlinear systems, the EKF has certain drawbacks, such
as the presumption that the system’s uncertainty can be precisely represented by a
Gaussian distribution even after nonlinear changes[42].

Comparison between Complementary Filters and Kalman
Filters

According to [43], the key benefits of CFs are their reduced computational cost and
the ability to fine-tune just one or a few parameters, whereas the strengths of KFs
relate to the algorithm’s flexibility, which gives more latitude in the development
of state and noise models. Furthermore, because they are recursive filters, KFs are
suitable for scenarios that call for estimates every time a new measurement becomes
available. Since the KF just saves the prior value, it has the benefit of requiring
relatively little memory and, in many situations, being more accurate than CFs
[39]. KFs, on the other hand, need extensive parameter tweaking, significant com-
putational expense, and complexity. The linear regression iterations, fundamental
to the Kalman process, demand sampling rates which can far exceed the subject
motion bandwidth[38]. Considering their advantages of simpler implementation
and lower computational costs, CFs appear to be a viable option and are thus
preferred in the context of embedded systems [39].
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Gravity removal
Since the accelerometer signals are referenced by the sensor’s coordinate system,
they must be represented in terms of the world coordinate frame in order to be
able to subtract the vector gravity from the signals. Thus, to transform the global
reference, the accelerometer data are rotated by quaternions. In a world coordinate
system, gravity is described as a vector with a z component of 9.81 m/s2. To isolate
the linear acceleration associated with motion, the gravity component must be
subtracted from the accelerometer results. This process allows dynamic acceleration
information to be extracted.

aG(t) = aW (t) −
è
0 0 9.81 m

s2

é
(2.1)

Where aG(t) is the gravity-free acceleration in the global frame and aW (t) is the
raw acceleration in the global frame.

2.1.2 Zero Velocity Update (ZUPT)
In gait analysis, the motion information acquired from MIMU mounted on the feet
is crucial for understanding individual gait cycles. However, this application faces
a common challenge related to inertial navigation: unbounded errors in position
and velocity due to sensor artefacts. Typically, low-cost inertial navigation systems
(INSs) exhibit a position error that increases proportionally to the cube of the
operation time. This means that, with the current performance of low-cost inertial
sensors, free inertial navigation is only feasible for short time intervals, usually on
the order of a few seconds.

To address this issue, constraints can be imposed on the navigation solution by
utilising information about the dynamics of the system. One common approach
is to take advantage of knowledge about the time intervals when the system is in
a stationary phase, maintaining a constant position and attitude. This strategy,
known as "zero-velocity updates" (ZUPT), is effective in limiting error growth, as
during ordinary gait, the foot periodically returns to a stationary state [44].

The implementation of ZUPT can vary depending on the specific application
but is generally classified as either "hard" or "soft" updates. In foot-mounted
inertial sensor-based pedestrian navigation systems, where the accumulated motion
of the foot over multiple steps is of interest, "soft" ZUPT are commonly used.
This approach combines information about when the system experiences zero
velocity with a model that predicts how position, velocity, and attitude errors
evolve over time. These estimates of accumulated errors are then used to correct
the navigation solution and calibrate the navigation algorithm[45]. Conversely,
in gait analysis, where the focus is on the motion of the foot during individual
gait cycles rather than the cumulative motion over multiple cycles, "hard" ZUPT
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are more typical. These updates are considered "hard" because they reset the po-
sition, velocity, yaw, roll, and pitch to zero when the system undergoes a ZUPT[46].

The estimation of spatial parameters frequently employs an inertial navigation
system (INS) that applies a ZUPT, and it makes use of the fact that the foot is
typically stationary during normal gait to limit the rise of the system’s position
inaccuracy. The determination of the time epochs during which the MIMU is
stationary (and therefore that the speed is close to zero) is necessary for the usage
of ZUPT[47]. The ZUPT is widely used in gait analysis.

There are contrasting viewpoints and it is frequently stated in articles that
studying for the ZUPT exam for the course requires in-depth research. For exam-
ple, Zrenner et al. [35] claims that the assumption of stationarity may not hold
during running at high speed. However, Ruiter et al. [37] affirms that even in
maximal sprinting there is a short time window in the early stance phase (during
amortisation) immediately following touch-down, where sensor velocity will be
(close to) zero and therefore stationarity can be assumed.

2.1.3 Double integration and Drift Removal
The gravity-free acceleration signal in world coordinates aG(t) needs to be integrated
twice with respect to time to estimate the foot’s displacement.

v(t) =
Ú t

0
aG(t)dt + v0 (2.2)

x(t) =
Ú t

0
v(t)dt + x0 (2.3)

However, these estimates are corrupted by a drift. To mitigate this, the acceler-
ation is not integrated throughout the entire recording period but only within a
restricted interval based on the integration points identified. The recognition of
the ZUPT intervals is essential for determining the integration points. Following a
review of the literature, three distinct methods for defining the integration moment
were identified. The first approach selects the integration points as the ZUPT
interval’s midpoints[48]. Rossanigo et al. identify the ZUPT interval’s end as the
chosen instants of integration[36]. Finally, the last method involves selecting the
minimum of the kinetic energy within the ZUPT interval [49]. Additionally, the
velocity is adjusted by enforcing it to be zero during each flat foot period interval.

Drift Removal
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The displacement estimations are inaccurate due to drift, which is mostly brought
on by thermal-mechanical and electrical noise. To overcome this problem, there is
a need to enhance the accuracy of double integration. Various solutions have been
adopted in the literature to mitigate this problem. Many authors employ the Linear
De-drifting approach. After the correction performed with ZUPT, there will still be
some drift between resets. Assuming a constant bias in each of the accelerometer
axes allows to define the velocity drift. At this point, it is possible to apply linear
de-drifting to the resultant velocity because constant bias in acceleration causes a
linearly rising inaccuracy in velocity after integration[50].

v(t) =
Ú t1

t0
(a(t)dt + v0) − dv(t) (2.4)

Where, dv(t) is the estimated drift. After that, position is determined by inte-
grating the de-drifted velocity signal.

Another drift removal technique is the subtraction of the mean of the acceler-
ation that theoretically lead to the same results as the Linear De-drifting approach.

Zok et al. [51] implemented a method that involves not only direct integration
but also a time-reversed integration (referred to as reverse integration). As a
result, this integration technique is called Direct and Reverse Integration (DRI).
The acceleration signals used in this process are both gravity-compensated and
mean-compensated. The DRI consists of three phases:

• Direct Integration: the signal is double integrated (d(t))

• Reverse Integration: the original signal is integrated inversely in time using
reverse double integration (r(t))

• Weighting: time-dependent weight function w(t) varying from 0 to 1 is used
to weight the sum of the two integrated curves.

The final integrated displacement is:

DRI(t) = r(t)w(t) + d(t)(1 − w(t)) (2.5)

where w is the weighting function which is forced to vary from 0 to 1 as follows:

w(t) = s(t) − s(tB)
s(tE) − s(tB) (2.6)

where s(t) is a function chosen in order that in the middle of the interval
(tE − tB), the weighting function is equal to 0.5 and is symmetric with respect to
the central point such as the weight is evenly distributed between d(t) and r(t).
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Since the inaccuracy introduced by the noise existing in the original signal into
the double integration increased with time, samples of the double integrated signal
that were closer to tB were more dependable than those closer to tE. The simplest
form of s(t) would be a linear function (s(t) = t) but an "s-shaped" function such
as the following perform better:

s(t) = tan( 1
β

2t − tE

2tE

) (2.7)

where the β factor controls the steepness of the "s-shaped" curve. The value β =
0.1 was suggested by the author as a satisfactory trade-off between a discontinuous
step function (when β tends to 0) and a quasi-linear function (when β is greater
than 1).

2.1.4 Estimation of Stride Velocity and Stride Length
The parameters of interest are defined stride by stride. In this study, these
parameters are defined in the x-y plane for each i-th stride.

The stride velocity (SV) is defined as the norm of the antero-posterior and
medio-lateral components of velocity (v) obtained from the integration of the
acceleration between two Mid-stance instants:

SVi =
Ø
ni

ñ
vx(n)2 + vy(n)2 (2.8)

The stride length (SL) is defined in the same manner as the SV, but it utilises
the displacement (d) obtained from the double integration of acceleration:

SLi =
ñ

endDisplacement2
xi

+ endDisplacement2
yi

(2.9)

where n is the sample number of the i-th stride.

2.2 Issues and Challenges
As was already established, the greater movement in motions makes everything
more difficult when it comes to running analysis. In this section, the main issues and
challenges to address in order to obtain a reliable estimation of spatial parameters
during running action will be summarised following the pipeline order described
above.

The primary obstacle is encountered in the estimation of orientation. If the
estimated orientation is not correct, it could be difficult to isolate the linear
acceleration associated with motion from the acceleration data. The gravity
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component must be subtracted from the accelerometer results in order to proceed
to the next step of the pipeline and perform the integration. If gravity cannot be
effectively removed, then it gets integrated, leading to incorrect values of velocity
and displacement. The sensor fusion algorithms used for orientation estimation
involve numerous parameters that need to be configured through experimentation.
These parameters have a significant impact on performance.

Moreover, there is a lack of clarity in the literature regarding the utilisation of
the various existing zero-velocity detectors in the analysis of running. In fact,
the performances of ZUPT detectors are often tested for specific running speeds,
and their generalisability for different running paces is overlooked. Regarding this
matter, for fixed-threshold methods, finding this threshold can be challenging due
to the variability present among running speeds. Also, the search for this threshold
incurs a high time cost.

Also, there is no uniformity in the literature regarding the choices of integration
instants for the double integration that has to be used.

The real integration mechanism of acceleration presents another challenge to be
faced. At this point, drifting brought on by thermal, mechanical, and electrical
noise is a serious problem. The ideal method needs to be discovered in order to
reduce drift’s impact on the estimation of the parameters of interest.
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Chapter 3

Materials and Methods

3.1 Experimental protocols

3.1.1 Amateurs protocol - 14 km/h
Ten male participants (all male, age: 32.3±9.9 years, height: 172.5±4.3 cm, weight:
69.4±4.9 kg, shoe size: from 38 to 42 (EU)) were enrolled. Every participant
was required to do different 90-second treadmill running trials at 14 km/h with 8
different shoe models. The subjects were required to meet the following criteria:

• between the ages of 18 and 50 years old;

• recreational rearfoot striker runners;

• familiar with the treadmill system;

• injury-free for at least three months preceding the acquisition;

• able to run effortlessly for 55 minutes.

Each subject wore a foot-mounted MUMU (mod: Opal v2, APDM, Portland,
USA. Technical specifications: 3D accelerometer range is up to ±16 g, 3D gyroscope
range is up to ± 2000◦/s, 3D magnetometer range is up to ±8 Gauss. [52]), sampling
at 200 Hz, attached to the feet’s arches above the shoes with a strap, as well as
retro-reflective markers from the stereophotogrammetric system, which was the
gold standard ([53] - [54]). In Figure 3.1, an example of equipment is shown.
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Figure 3.1: Subject wearing an inertial sensor on the instep of each shoe, below
the red tape, and retro-reflective markers.

3.1.2 Sprinters protocol - from 19 km/h to 29 km/h

Data collection for the sprinters occurred on an official outdoor running track. Seven
injury-free senior category track and field athletes, specialised in the discipline
of running and engaging in a minimum of three training sessions per week, were
recruited for the study (5 male and 2 female, age: 22.4 ± 2.1 years, height: 174.4
± 8.1 cm, weight: 65.9 ± 13.2 kg, shoe size from 38 to 45 (EU)). After a period
of warming up, each athlete was asked to perform fifteen 50-meter sprint trials
along the lane of an official track at their maximal speed. The averaged speeds over
the 50-m path ranged from 19 km/h to 29 km/h. All participants wore an INDIP
multisensory system [32] sampled at 200 Hz. The INDIP MUMU has the following
technical specifications: 3D accelerometer range is up to ±16 g, 3D gyroscope range
is up to ± 2000◦/s, 3D magnetometer range is up to ±50 Gauss. The MUMU was
attached to the shoelaces of each shoe, while the pressure-sensitive insoles (mod.
YETI, 22le Srl, Padua, Italy, eight pressure sensors; element area = 310 mm; force
threshold = 5 N) were inserted in the shoes.

The pressure insoles were considered the gold standard for temporal events
([33],[54],[55],[56]). In the setup, there was also a sensor attached to the lower limb,
which was not used in this study. In Figure 3.2, an example of wearable equipment
is shown.

For each trial, a video was recorded using a GoPro HERO10 (sampling frequency
equal to 240Hz), enabling a resolution of 2.7k (2704 by 1520 pixels) at a wide angle.

The athletes ran for 50 metres, but only the last 40 metres were captured by the
camera. The camera was positioned 20 metres from the finish line and displaced
transversally by 15 metres, as depicted in Figure 3.3. The timing was measured via
video and via a hand chronometer. The MUMUs system and the video recordings
were synchronised.

The video recording was used as a gold standard for spatial parameters.
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Figure 3.2: Subject wearing INDIP system including a MUMU and a pressure
insole per shoe.

Figure 3.3: Camera placement scheme.

3.2 Spatio-temporal parameter estimation with
a non-optimised pipeline

In this section, a schematic representation of the baseline pipeline for the estimation
of stride velocity and length is provided. The stages of the pipeline [36] applied to
the MIMU data are:

• Realignment of the z-axis along the gravity: to ensure independence from
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the subject’s positioning and the type of footwear, the z-axis of the MIMU
sensor is realigned along the gravity direction when the subject is in an initial
standing phase.

• Zero-velocity Updates (ZUPT). It is necessary to integrate acceleration
over a shorter interval compared to the total recording period. This is achieved
by identifying a range in which the foot’s velocity is presumed to be zero,
corresponding to when the foot is in contact with the ground. Within this
interval, specific instants for integration are selected. This technique is known
as Zero-Velocity Update (ZUPT), and its purpose is to correct any accumulated
errors over time. The zero-velocity detector captures the stationary state of
the MIMU if a specifically defined function T, based on angular rate and/or
accelerations, is less than the detection threshold γ (T < γ). In the baseline
pipeline, reported in orange in the dashed box in Figure 3.5, the ZUPT
intervals were investigated using the fixed threshold Angular Rate energy
Detector (ARE) implemented by Skog et al.([13],[32]) and the identification
of the integration instants for the double integration of the acceleration
was computed at the 50% of the ZUPT interval found using the ARE method
([48]).

• The estimation of the orientation was performed using the Madgwick’s
algorithm with the Valenti’s initialisation algebraic quaternion and relied on
the selection of an adequate β value, that for the baseline pipeline was of
0.0019 rad/s ([36],[38],[57]).

• Stride-by-stride double integration of the gravity-free acceleration
led to the estimation of the Spatio-parameters of interest:

v(t) =
Ú t

0
aG(t)dt + v0 (3.1)

x(t) =
Ú t

0
v(t)dt + x0 (3.2)

the residual drift removal is accomplished using the direct and reverse integra-
tion (DRI)([36],[51]).

• The estimation of stride velocity and stride length in this work was performed
referring to the local sensor frame at the first frame of the running trial (t0)
(Figure 3.4).
The stride velocity (SV) and the stride length (SL) were calculated on the the
horizontal x0-y0 plane for each i-th stride:
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Figure 3.4: Exemplary diagram highlighting the first frame of the running trial
(t0).

SVi =
Ø
ni

ñ
vx(n)2 + vy(n)2 (3.3)

SLi =
ñ

endDisplacement2
xi

+ endDisplacement2
yi

(3.4)

where n is the sample number of the i-th stride.

Figure 3.5: Block diagram summarising the stages of the pipeline, explicitly
showing, on the right, the algorithms employed in the baseline pipeline.

Figure 3.5 summarise the stages of the pipeline emphasising the algorithm
used in each phase in the baseline.
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3.3 Optimisation of the state-of-the-art methods
for the estimation of running stride velocity
and stride length

This section describes all the methods implemented and investigated in this thesis,
optimising each stage of the pipeline.

At each optimisation step, the other methods and associated parameters of the
pipeline remained constant, as in the baseline. However, the optimal options that
were found were applied to each subsequent decision.

The minimisation of errors in stride velocity and stride length was used as the
criterion for choosing the algorithm to optimise the pipeline.

3.3.1 Zero Velocity detectors
The initial investigation focused on determining the most suitable detector for
ZUPT for running analysis. There is a lack of clarity in the literature regarding
the utilisation of the various existing detectors in the running context. In fact,
the performances of ZUPT detectors are often tested for specific running speeds,
and method generalisability for different running paces is overlooked ([58], [54]).
Although there are several detectors used in gait analysis, not all of them are
employed in the analysis of running gait. In this study, each detector found in
the literature was implemented and compared, applying them to different types of
running [59]. In this section, there is a comprehensive list of the different types of
detectors that are used for the analysis of walking and/or running.

In general, the zero-velocity detector captures the stationary state of the MIMU
if a specifically defined function T is less than the detection threshold γ:

T < γ (3.5)

To determine whether the MIMU is stationary from the output of the accelerom-
eters or gyroscopes, a variety of detectors have been presented in the literature.
The goal of the zero-velocity detector is thus to identify, given the measurement
sequences, whether the MIMU is moving or stationary during a period consisting of
W ∈ N observations between the time instants n and n + W − 1. The equations of
the detectors present in the literature are listed, where ya

n ∈ R3 denote the measured
specific force vector and angular rate vector at time instant n ∈ N , respectively.

Below the formulas for the T functions of the various detectors are reported:

• Stance Hypothesis Optimal Detector (SHOE), that based on accelera-
tions and angular velocities:

36



Materials and Methods

T = 1
W

n+W −1Ø
k=n

1
σ2

a

∥ya
k − g

ya
n

∥ya
n∥

∥2 + 1
σ2

ω

∥yω
k ∥2 (3.6)

• Angular Rate Energy Detector (ARE), that considers only angular
velocities:

T = 1
W

n+W −1Ø
k=n

∥yω
k ∥2 (3.7)

• Acceleration Moving Variance Detector (MV), that relies only on
accelerations:

T = 1
W

n+W −1Ø
k=n

∥ya
k − ya

k∥2 (3.8)

• Acceleration Magnitude Detector (MAG), that considers only accelera-
tions:

T = 1
W

n+W −1Ø
k=n

(∥ya
k∥ − g)2 (3.9)

where σ2
a ∈ R1 and σ2

ω ∈ R1 denote the variance of the measurement noise of the
accelerometer and gyroscope, respectively. Moreover, ∥a∥2 = aT a and ya

n denotes
the sample mean, i.e.,

ya
n = 1

W

n+W −1Ø
k=n

ya
k (3.10)

The noise variances σa2 and σω2 were taken into account only for the SHOE
detector, which depends on both accelerations and angular rate. The ratio shows the
differences between the information from the gyroscopes and accelerometers when
there are disturbances. The above-mentioned detectors exploit the information of
inertial signals. However, it is possible to combine the information obtained from
the accelerometer and from the gyroscope with the output of a pressure insole,
as proposed in [60]. The T function in this case adds a parameter to the SHOE
detector, as is shown in the following equation:

T = 1
W

n+W −1Ø
k=n

1
σ2

a

∥ya
k − g

ya
n

∥ya
n∥

∥2 + 1
σ2

ω

∥yω
k ∥2 + 1

σ2
ρ

∥yρ
k − ρmax∥ (3.11)

where σ2
ρ ∈ R1 is the noise variances of the pressure sensor, yρ

k ∈ R3 is the
pressure at time k and ρmax represents the maximum value reached by the pressure
sensor.
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Table 3.1: Threshold values for the ZUPT detectors.

Detectors Units of measurement
for function T

Thresholds for
14 km/h

Thresholds for
19-29 km/h

SHOE (m/s2)2 + (deg/s)2 7 15
ARE (deg/s)2 0.3 ∗ 105 0.5 ∗ 105

MV (m/s2)2 0.002 0.004
MAG (m/s2)2 0.5 1

Each detector had a different threshold, as the function T that is calculated
considers different variables depending on the mathematical expression. These
thresholds are strongly influenced by running speed. The optimal threshold value
was determined through iterative trial-and-error approaches. The values found for
both datasets via iterative method are reported in the Table 3.1.

It should be noted that employing a fixed threshold for ZUPT detection might
carry the risk of either missing some support phases or incorrectly identifying
support phases when they are not present. Moreover, the threshold γ is determined
through numerous trials dependent on variables like speed, subject characteristics,
and specific situations. Threshold-based approaches can be sensitive to differences
in gait patterns, running surfaces, sensor placement and running speed.

Therefore, Rossanigo et al. [36] proposes a parametric method based on gy-
roscope energy to detect ZUPT events in gait analysis. This new method seeks
segments within the support phase with the lowest mean value of the T function
to define quasi-ZUPT intervals. Since the probability of the foot’s support phase
occurring is very low in the first or last 10% of the support phase, these segments
are discarded. Within the remaining part of each support phase, a moving average
of the T function is calculated, and a sliding window is used to find the interval
corresponding to the lowest mean value of the T function. This interval becomes
the quasi-ZUPT interval. The length of the sliding window is set to 30% of the
entire support phase[36]. In summary, this method offers better adaptability to
individual variations.

This parametric method developed for gait analysis was optimised for running
analysis. In running analysis, it is possible to adjust the length of the moving
window used to search for the minimum of the function T since the speed in running
is higher respect to walking. In fact, the length of the sliding window has been
reduced compared to the original method because a shorter ground contact phase
is expected. This optimisation is a crucial aspect of the algorithm, as running
dynamics differ from walking and require parameter adjustments for accurate
results.

Following a thorough review of the literature, it can be asserted that for running
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analysis, the most widely employed ZUPT detectors are the one based on angular
velocity, denoted as Angular Rate Energy detector (ARE), and the approach that
combines accelerometer and gyroscope information, referred to as Stance Hypothesis
Optimal Detector (SHOE). Furthermore, there is evidence of the utilisation of
the Acceleration Magnitude Detector (MAG) detector and the approach that
combines inertial signals with pressure signals. However, the Acceleration Moving
Variance Detector (MV) method and the parametric threshold-based approach
from Rossanigo et al. [36] have not been employed in running analysis.

Table 3.2: Overview of the literature on the use of the ZUPT detectors in running
analysis.

Detectors found in literature Use in running analysis

SHOE

Brahms et al.[3]
Wang et al.[61]
Bailey et al.[50]
Zrenner et al.[35].

ARE Li et al.[62]
Zhang et al.[63]

MV -
MAG Ren et al.[64]
Parametric method -

Checks on ZUPT Intervals

The ZUPT intervals found by threshold-based detectors were double-checked.
Indeed, various inspections were performed to refine the start and stop instants
for ZUPT intervals during running analysis to improve the reliability [32]. Firstly,
an inspection was performed to determine whether there was at least one ZUPT
interval between two consecutive swing phases. If not, a ZUPT interval was inserted
in the middle of the gap. The subsequent check performed involved evaluating
the temporal distance between successive start and stop instances of the same
ZUPT interval to avoid excessively brief durations. Moreover, ZUPT intervals
were synchronised with corresponding initial contact (IC) events. This alignment
ensures that ZUPT intervals match the runner’s gait cycle accurately. Overall,
these checks were performed to fine-tune the ZUPT intervals, ensuring that they
accurately captured the periods of zero velocity during running.
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Validation on ZUPT Intervals
To test the accuracy of the ZUPT detectors, the two type of available reference
instrumentations, SP and PI data, were employed to provide high-precision reference
data for comparison, being silver standard in this analysis. After a visual inspection,
the percentage of overlap (ZUPT overlap %) between the estimated MIMU-based
ZUPT intervals and the ones obtained with the silver standards was performed.
The ZUPT overlap % was estimated as the intersection between the ZUPT intervals
obtained with the silver standards and the MIMU-based ZUPT estimated with the
detectors.

Figure 3.6: Extraction of the ZUPT intervals from the SP.

Comparison with stereophotogrammetric system

For the validation of ZUPT intervals using data obtained from SP the velocity
norm of the markers attached to the foot-mounted MIMU was calculated. The goal
was to identify the instants of stationarity as the intervals in which the velocity
norm was below an arbitrary threshold. Brahms et al. defined the value of this
threshold at 0.2 m/s [3] (Figure 3.6).

Comparison with pressure insoles

For the validation of ZUPT intervals using data obtained from sensitive-pressure
insoles, a pressure-based detector was implemented following the one proposed by
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Figure 3.7: Extraction of the ZUPT intervals from the PIs.

Ma et al. [60]:

T = 1
σ2

ρ

∥yρ
k − ρmax∥ (3.12)

The reference ZUPT interval is defined where the elaborated pressure signals
that form the function T are less than the threshold γ (0.2 a.u.). During the zero
velocity intervals,∥yρ

k − ρmax∥ is nearly zero, while it assumes a substantial value
during motion intervals (Figure ??).

ZUPT instants

The majority of studies using foot-worn MIMUs to estimate stride velocity and/or
stride length reduce the integration interval to a single stride defined by two
consecutive ZUPT instants, hence minimising signal drift [37].

3.3.2 Selection of integration boundaries
The recognition of the ZUPT interval is essential for determining the integration
points. In this work four definitions of the ZUPT instants were implemented. The
first approach selects the integration points as the ZUPT interval’s midpoints [48].
In the second one, Rossanigo et al. identify the ZUPT interval’s end as the chosen
instant of integration [36]. Finally, the last method involves selecting the minimum
of the function T within the ZUPT interval [49]. Furthermore, a new proposed
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method involves selecting the integration instant corresponding to the minimum of
the moving average of the gyroscope norm within the ZUPT interval. This assumes
that if the angular rate norm is sufficiently low, then it is possible to assume the
foot stationarity. The selection of integration intervals is advantageous because it
serves the purpose of evaluating stride-by-stride parameters. These intervals are
crucial not only for resetting orientation but also as endpoints for integration, both
from acceleration to velocity and from velocity to displacement.

3.3.3 Orientation estimation and gravity removal
The quaternions have been selected as the preferred method of representing the ori-
entation since they need few parameters and are more effective in 3-D representation
of orientation.

According to Section 2.1.1, in the comparison of the complementary filters (CFs)
and the Kalman filters (KFs), CFs are preferred when an application calls for
simpler implementation, less expensive computing, and fewer parallel processing
steps. As previous states, the most used algorithm in human motion applications
is the Madgwick’s one. In fact, for this reason, this is the method employed
in this work to estimate orientation. This is a CF that employs a quaternion
representation of orientation. It can be used with IMUs as well as MIMUs, and it
gives the user the option of estimating orientation only using the accelerometer and
gyroscope or also adding the information from the magnetometer. Integrating the
angular rate and then correcting this value using readings from the accelerometer
(and magnetometer) constitutes the fundamental method for determining the
orientation from the MIMU data. To perform this, the direction of the gyroscope
measurement error is computed as a quaternion derivative using the accelerometer
and magnetometer data in an optimised gradient-descent algorithm[65]. The
greatest advantage of this filter is that include a single adjustable parameter β.
The key parameter (β) is associated with zero-mean gyroscope measurement errors.
It determines the weighting assigned to Earth’s vectors (gravity and magnetic field)
as a multiplicative factor of the gyroscope measurement error. Thus, a higher β
implies greater emphasis on accelerometer and magnetometer signals. To provide
specifics, the final estimate, which describes the orientation of Earth’s coordinate
system (ECS) relative to the MIMU coordinate system, coinciding with the local
coordinate system (LCS), combines two separately found quaternions. One is
obtained from the angular velocity provided by the gyroscope, and the other from
accelerometer and magnetometer signals. The algorithm can be summarized as
follows:

• Quaternion estimation from the integration of angular rate

E
L q̂ω,t = (E

L q̂est,t−1 + 1
2

E

L
q̂est,t−1 × ωL

t )∆t (3.13)
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where ωL
t is the angular measurement at time t, ∆t is the sampling period

and E
L q̂est,t−1 is the previous estimate of orientation.

• Optimal estimate of the Earth’s vector-based quaternion obtained aligning
the gravity and the magnetic field expressed in ECS with their observations
referred to LCS. This is accomplished by minimizing an objective function,
which is defined as the disparity between the components of Earth’s vector
in the LCS and the components rotated in the ECS. The objective function
itself is formed by combining two separate objective functions derived from
accelerometer and magnetometer signals

∇f = JT
g,b(E

L q̂est,t−1, b̂E)fg,b(E
L q̂est,t−1, âL, b̂E, m̂L) (3.14)

where f is the objective function, m̂L and âL stand for ŝL, while b̂E stands
for d̂E. Indeed, m̂L represents the normalized magnetometer measurement
expressed in the LCS, while âL represents the normalized accelerometer mea-
surement. Additionally, b̂E denotes the magnetic field in the ECS.

• Sensor fusion step in which the two previous estimates are merged in a weighted
average

E
L q̂est,t =E

L q̂est,t−1 + ∆t(E
L q̇ω,t − β

∇f

∥∇f∥
) (3.15)

This estimate is the final orientation estimate, β represent the factor related
to the divergence rate of the quaternion coming from the integration of the
angular rate.

• Compensation of magnetic distortion serves to minimise magnetic disturbances
that affect the heading component of the orientation. This compensation
helps maintain the accuracy of the heading information despite environmental
magnetic interference.

• Gyroscope bias drift compensation involves estimating and mitigating the
bias in the gyroscope measurements by applying a low-pass filtering method
to reduce errors in the rate of change of orientation over time. This helps
improve the overall precision and reliability of the orientation data obtained
from the gyroscope.

In figure 3.8 the block diagram representation of the complete orientation
estimation algorithm for Madgwick’s complete orientation filter including magnetic
distortion and gyroscope drift compensation is depicted.

Embracing this filter offers several advantages, including the requirement to
adjust just one parameter β, which is determined by gyroscope measurement errors,

43



Materials and Methods

Figure 3.8: Block diagram representation of the complete orientation estimation
algorithm for Madgwick’s complete orientation filter including magnetic distortion
and gyroscope drift compensation.

and a significant reduction in computational burden thanks to the utilisation of an
analytically derived Jacobian matrix for error calculation.

The determination of the optimal value for β is accomplished through fine-tuning.

Quaternion Initialisation influence

The Madgwick algorithm is based on a loop in which a new orientation is determined
from the one from the previous step for each time step. Therefore, it is crucial
to consider how to select the first initial quaternion q0, which enables the loop to
start. The initialisation influences the period of initial convergence of the filter.

In this thesis work, two initialisation methods proposed in the literature were
compared: Valenti et al. [57] and Suzuki et al. [66]. It is worth noting that Suzuki’s
method was specifically introduced in the context of running analysis.

Valenti et al. [57] proposed a sensor fusion algorithm that use the acceleration
and magnetic field data in combination. If magnetic disturbances are present, the
algorithm utilises acceleration information, while in case of absence of disturbances,
both information are used. At the core of Valenti’s algorithm, there is a fundamental
assumption that must be upheld. This assumption is that the body segment where
the MIMU is attached remains stationary before any motion begins. Based on
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this hypothesis, a method for initialising quaternions is required that does not
depend on gyroscope data. This is because, in a static condition, the gyroscope
cannot detect any changes in orientation through angular velocity. Nevertheless, in
static conditions, the accelerometer and magnetometer remain valuable sources of
information for estimating orientation by sensing Earth’s vectors.

This algorithm considers exclusively considers observations related to the Earth’s
magnetic field and operates by considering two distinct fields: gravity and the
magnetic field. It relies on determining the inverse rotation that allows the measured
quantities, specifically the accelerometer signal (aL) and the magnetometer signal
(mL), both expressed in the LCS, to be referenced to the ECS. In the ECS, the x-
axis aligns with magnetic north, while the z-axis aligns with gravity. The resolution
equations for this approach are as follows:

R(E
Lq)aL = gE (3.16)

R(E
Lq)mL = hE (3.17)

These two equations serve to mathematically represent the core concept of rotat-
ing the sensor vector readings into the Earth-Centered System (ECS). Nevertheless,
it is important to note that this system is overdetermined, which means it lacks a
unique solution. To address this, certain measures are taken to impose predefined
global components. So, it is possible to determine the rotation matrix responsible
for this transformation, and consequently, the quaternion as well. To reduce the
system’s degree of freedom, a constraint is introduced. This constraint requires that
the magnetic reading, denoted as hE must fall within the half-plane E r

zx +. This
half-plane comprises all the points in the x-z plane with non-negative x coordinates.

R(E
Lq)mL = hE ∈E

Ù
zx

+ (3.18)

E
Lq can be decomposed into two quaternions, qacc and qmag.
Observing the gravity and magnetic vectors in the two reference frames allows

the findings of the quaternions that perform the transformation between the two
representations, qacc and qmag respectively.

R(qacc)

0
0
1

 =

ax

ay

az

 (3.19)

qacc is found and a used to rotate the magnetometer signal mL.

RT (qacc)mL = hE (3.20)
In the scenario where hE exhibits non-zero components exclusively in the x and

z directions, the rotation resulting from this quaternion does not influence the
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pitch and roll components. Consequently, when magnetic disturbances are present,
their impact is confined to the heading direction, without introducing errors or
corruption in the roll and pitch components.

E
Lq = qacc × qmag (3.21)

Madgwick’s filter employs quaternions that represent the rotation from the LCS
to ECS. On the other hand, Valenti’s discussed algorithm deals with the inverse
quaternion, which represents the rotation from the ECS to the LCS. Consequently,
the quaternion we derived earlier must be conjugated (referred to as E

Lq∗ before it
is utilised in the initial iteration of Madgwick’s filter.

Suzuki et al. [66] proposed a method that first estimates the orientation of the
IMU and the trajectory of the foot. This estimate is then utilised to correct the
Euler angles, assuming that the runners are running straight on level ground in
one cycle, and that the mediolateral and vertical displacement of the foot at each
mid-stance should be zero. To transform the local data into ECS, the roll angle ϕ
and a temporary pitch angle θ of the IMU at the mid-stance instant (MSi) were
determined using the following procedure:

ϕMSi
= arctan( −ayñ

a2
x + a2

z

) (3.22)

θMSi
= arctan(ax

az

) (3.23)

where ax, ay and az are respectively the medio-lateral, antero-posterior and
vertical component of the measured acceleration at MSi.

However, since the yaw angle ϕ could not be accurately estimated from the
acceleration data, it was provisionally set to zero at this stage. After the MSi,
the orientation of the IMU was determined by integrating the measured angular
velocity until the occurrence of the next mid-stance moment (MSi+1). The measured
acceleration data was then transformed into the ECS using the calculated quaternion.
The foot trajectory was subsequently computed through the integration of the
acceleration, which had been corrected for gravitational effects, using the following
procedure:

v = v0 +
Ú

MSi
MSi+1ag dt (3.24)

p = p0 +
Ú

MSi
MSi+1v dt (3.25)

where ag represents the acceleration with the gravitational component removed,
v stands for the velocity, and p represents the position of the foot in the global
coordinate system. The initial values for velocity (v0) and position (p0) are both
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set to zero. Considering the assumption that runners move in a straight line on
level ground within one cycle, the lateral and vertical displacements of the foot at
MSi+1 should ideally be zero. Therefore, the yaw angle was determined based on
the foot’s position at MSi+1 using the following calculation:

ϕMSi
= arctan(py

px

) (3.26)

where py and px are the medio-lateral and antero-posterior positions of the foot
at MSi+1.

Likewise, the pitch angle was recalculated based on the foot’s position at MSi+1.
Due to the non-linearity in the relationship between the pitch angle and the vertical
position at MSi+1, a gradient descent method was employed to compute the pitch
angle that results in a zero vertical position at MSi+1. The initial pitch angle for
this calculation was defined as follows:

θ′
MSi

= arctan( pzñ
p2

x + p2
y

) + θMSi
(3.27)

The calculated Euler angles are subsequently converted into quaternions for use
in the Madgwick algorithm during initialisation.

Since Valenti’s initialisation method can either consider or not consider magne-
tometer information, while Suzuki’s method does not used it, the comparison was
conducted without utilising the magnetometer in both cases.

Optimisation of Madgwick parameter

As a multiplicative factor of the gyroscope measurement error, β really determines
how much weight to give to the information of the Earth’s vectors (gravity and
magnetic field). In the presence of magnetic disturbances, the recorded local
magnetic field is not accurately detected. Therefore, the higher β the higher the
weight given to accelerometer and inaccurate magnetometer signals. The optimal
β value is achieved through iterative trial and error approaches with and without
the use of the magnetometer data ([67],[68]). Initially, several values were explored
starting from the one used for gait analysis (i.e., 0.0019 rad/s). In a preliminary
investigation, 20 β values were explored with a wide range, ranging from 0.001
to 1 in increments of 0.05. Subsequently, 5 more values have been investigated,
ranging from 0.0001 to 0.001 in increments of 0.0002. Then, the vicinity of the β
value that yielded the minimum error in terms of stride velocity and stride length
was explored, ranging from 0.0065 to 0.01 in increments of 0.0005. Therefore, the
optimal value was obtained through error minimisation.
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Reliability check of integration instants

In this estimation pipeline, orientation is re-initialised at each integration instant
to reduce the drift in the orientation estimation. To use the algebraic initialisation
by Valenti et al. [57] the assumption of foot stationarity must hold valid. No
references were found in the literature regarding the reliability check of integration
instants. The norm of gyroscope and accelerometer data were moving averaged. To
determine the reliability, specific criteria must be imposed for these norms at each
integration instant. A technique that compares the norm values at the specified
integration instant with a threshold value (one each for acceleration and angular
velocity) was proposed.

To establish these thresholds, an overlap analysis was conducted across all trials
and subjects for the ZUPT intervals of both the gold standard and those derived
from the parametric detector. The mean and standard deviation of the norms of
the moving averages within the overlap interval were then calculated.

This process is carried out separately for the two datasets that are collected
at different speeds. Running speed affected the thresholds on the acceleration
and angular velocity. In addition, in sprinting, unlike treadmill running, the pace
varied.

Table 3.3: Experimentally determined threshold values for acceleration and angular
velocity based on stride duration intervals.

Stride Duration (s) Acceleration
threshold (m/s2)2

Angular velocity
threshold (deg/s)

>0.60 23 293
0.57 - 0.60 31 470
0.54 - 0.57 40 520
0.50 - 0.54 44 670
<0.54 46 690

For the dataset at 14 km/h it was possible to define unique values for these
two thresholds. By evaluating these parameters among subjects, it was possible
to extract the values of the thresholds (162 deg/s for the angular velocity and
9 m/s for the acceleration). For the dataset that ranges from 19 to 29 km/h, a
different approach was adopted. In this case, the duration of the preceding step was
evaluated to understand at what speed the runner was moving and to select the
most suitable threshold accordingly. This allowed for the assignment of a different
threshold, which depended on the individual’s duration during that stride. It is
important to emphasise that behind this process, experimental thresholds derived
from available data are used (Table 3.3).
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If the ZUPT instant was considered not reliable, the orientation was not re-
initialised at that point.

3.3.4 Methods for velocity drift removal
Displacement estimations are inaccurate due to residual drift. To overcome this
problem, various solutions have been adopted in the literature to enhance the
accuracy of double integration. Many authors employ these three different velocity
drift removal methods:

• Linear De-Drifting of the velocity [50]

• Subtraction of the mean of the acceleration before integrations[69]

• Direct and Reverse Integration (DRI) [51]

These methods have been implemented to verify their equivalence.

3.3.5 Validation procedures
Amateurs protocol – 14 km/h

By taking the derivative of the marker trajectories obtained through the SP, it
is possible to extract the velocity profile. Therefore, with access to foot marker
trajectories, a reference for velocity could be derived. The marker-derived velocities
were subjected to low-pass filtering using a fourth-order Butterworth filter with a
cutoff frequency of 10 Hz to enhance the quality of the signal, as reported in [66].
The reference stride velocity was calculated as the norm of the antero-posterior and
medio-lateral components of the marker-derived velocity. The reference stride length
was calculated as the norm of the antero-posterior and medio-lateral components
of the trajectory of markers positioned above the MIMU.

Sprinters protocol – from 19 km/h to 29 km/h

The GoPro HERO10 image is usually affected by barrel distortion, the typical look
of a wide-angle lens (Figure ??), and for this reason is not possible to implement a
simple pixel to meters proportion.

To overcome this issue, a lens correction was performed. In the setup, cones
were strategically placed in fixed positions to facilitate subsequent reference points.
The correction of distortions was carried out using a Python code that can be
found in the GitHub [70] This enabled the use of "undistorted" images aligned
along the horizon line to establish known references for measurements [71]. After
the lens correction a set number of pixels reflect the same real-world length, so it
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Figure 3.9: Typical look of a wide angle lens.

is possible to perform a simple pixel to distance proportion to calculate the stride
length. Given x as stride length in pixels, and y as stride length in meters:

y = x · 40m

3424px
(3.28)

where 3424 is the number of pixel equal to the image width, showing 40 meters.
At this point, an ad-hoc algorithm was implemented to perform a manual labelling
process to identify the foot position at three different instants:

• Initial Contact;

• Midstance Instant;

• Final Contact.

The SL was calculated as the distance between two midstance phases of the
same foot. The SV at this point was evaluated using the stride lengths derived
from the labelling and the interval of time between one midstance point (MSi+1)
and the precedent one (MSi):

SVi = SLi

MSi+1 − MSi

(3.29)
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3.3.6 Metrics for the pipeline assessment
At each step of the pipeline, multiple algorithms were compared, and the selection
of the optimal one was based on minimising errors of the estimated parameters
compared to the available references (SP for the dataset at 14 km/h and PIs and
video for the sprint dataset). The metrics evaluated at each step of the algorithm
are:

• Mean Error (ME), that represent the average signed difference between the
values of the estimated and the reference parameter of interest:

ME = 1
N

NØ
i=1

(yi − ŷi) (3.30)

Where yi and ŷi denote respectively the target and predicted values of the
parameter and N is the total number of the parameter’s values. %ME is
calculated as well:

ME = 1
N

NØ
i=1

(yi − ŷi

ŷi

) ∗ 100 (3.31)

• Mean Absolute Error (ME), that represent the average unsigned difference
between the values of the estimated and the reference parameter of interest:

MAE = 1
N

NØ
i=1

|yi − ŷi| (3.32)

The %MAE is also computed:

MAE = 1
N

NØ
i=1

|yi − ŷi

ŷi

| ∗ 100 (3.33)

• Root Mean Squared Error (RMSE), that measure the root mean square
difference between the N estimated values and the N corresponding reference
values:

RMSE = 1
N

NØ
i=1

ñ
(yi − ŷi)2 (3.34)

These metrics were computed for running stride velocity and stride length.
Afterward, the average of the metrics across subjects is computed.

51



Chapter 4

Results

Errors in the evaluation of stride length and stride velocity were obtained through
the differences between the inertial-based estimates and the reference parameters
provided by the gold standards (i.e., the SP or video recordings from the GoPro
camera). In this section the ME, MAE and RMSE in the estimation of SV and
SL are reported for each dataset (i.e., both at 14 km/h and during sprinting). For
both datasets, the overall averaged values have been evaluated. Furthermore, since
the speed was not fixed in sprinting, of the mean velocity (MV) was analysed in
this dataset. Results obtained for each metric are expressed in terms of mean ±
standard deviation. In all the following tables values between brackets denote the
percentage errors.

4.1 Spatio-temporal parameter estimation with
the baseline pipeline

The starting point of this work was the baseline pipeline for the estimation of
the stride length, optimised for walking applications [36]. The main steps and
associated parameters of the baseline pipeline were:

1. reorientation of the vertical sensor axis with the gravity during standing;

2. ARE ZUPT detector [13];

3. definition of the integration instants at the 50% of each ZUPT interval [36];

4. orientation estimation through Madgwick’s filter using β=0.0019 rad/s [38];

5. orientation initialisation using the algebraic quaternion [57]

6. double integration of the accelerations through DRI [51].
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Dataset at 14 km/h

Figure 4.1: Comparison between SV and SL derived from the SP and those
obtained from the MIMU with the baseline pipeline.

In Figure 4.1, there is a comparison between the averaged reference SL and SV
values given by SP and the averaged values obtained from the MIMU sensor data
using the basic pipeline for the data at 14 km/h. In this case the threshold utilised
for the ARE detectors was 0.3 · 105deg/s, that was obtained through investigations.

Table 4.1: Summary of the results obtained with the non-optimised pipeline for
the dataset at 14 km/h.

Stride Velocity Errors Stride Length Errors
ME

(km/h)
MAE
(km/h)

RMSE
(km/h)

ME
(m)

MAE
(m)

RMSE
(m)

Baseline
Pipeline

-2.78 ± 0.68
(-19.69%±5.14%)

2.78 ± 0.68
(19.69%±5.14%) 2.78 ± 0.68 -0.92 ± 0.04

(-34.87%±2.02%)
0.92 ± 0.04

(34.87%±2.02%) 0.92 ± 0.04

The SV errors between the reference and the estimated are computed in Table 4.1
using the baseline pipeline, the RMSE error was 2.75 km/h for SV and 92 cm for
SL and the MAE% was about 19% for the SV and about 35% for the SL.

In Figure 4.2 there is a representation of the displacement estimated with the
baseline pipeline. The black curve represents the displacement in the horizontal
plane, while the blue one is the vertical component.
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Figure 4.2: Displacement estimated with the baseline pipeline, where the black
curve represents the displacement in the horizontal plane x-y and the blue curve
represents the vertical component. The dashed green line represents the averaged
reference value provided by the SP.

Dataset at 19-29 km/h

In this dataset, the velocity is not constant but varied between 19 km/h and
29 km/h. Therefore, the MV over the trial is evaluated and compared with the
reference. This reference speed was calculated straightforwardly as the distance
covered (50 meters) divided by the time recorded with the stopwatch.

In the bar chart in Figure 4.3 it is possible to compare the results. The threshold
employed for this dataset for the detection of the ZUPT intervals with the ARE
method was 0.5 ∗ 105deg/s, obtained through trials and errors process.

Secondly, a comparison between SV and SL parameters derived from the Go-
Pro recordings and those obtained from the MIMU with the baseline pipeline
(Figure 4.4).

Table 4.2 shows the results obtained in terms of SV and SL computed for sprint
velocities.
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Figure 4.3: Comparison between the MV obtained from the reference and from
the MIMU with the baseline pipeline, among the 7 subjects, for the dataset at 19-29
km/h.

Figure 4.4: Comparison between SV and SL derived from the GoPro and those
obtained from the MIMU with the baseline pipeline, among 7 subjects, for the dataset
at 19-29 km/h.
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Table 4.2: Summary of the results obtained with the non-optimised pipeline for
the dataset at 19-29 km/h.

Stride Velocity Errors Stride Length Errors
ME

(km/h)
MAE
(km/h)

RMSE
(km/h)

ME
(m)

MAE
(m)

RMSE
(m)

Baseline
Pipeline

-7.38 ± 2.06
(-22.31%±4.27%)

7.38 ± 2.06
(-22.31%±4.27%) 7.38 ± 2.06 -1.27 ± 0.35

(-31.12%±7.33%)
1.27 ± 0.35

(-31.12%±7.33%) 1.27 ± 0.35

Figure 4.5: Displacement estimated with the baseline pipeline, where the black
curve represents the displacement in the plane x-y and the blue curve represents the
vertical component. The dashed line represents the reference value provided by the
GoPRO.

4.2 Optimisation of the state-of-the-art methods
for the estimation of running speed and stride
length

In this section, the results at each optimisation step of the pipeline are presented.
Results for both datasets are presented step by step.

56



Results

4.2.1 Zero Velocity detectors
In the first optimisation step, a comparison is conducted among ZUPT detectors
to understand the impact of this choice on the estimation of the parameters
of interest. Comparative graphs are provided, illustrating the estimated ZUPT
intervals obtained from the different detectors in relation to the reference Gold
Standard. For the same signal, the estimated ZUPT intervals are plotted alongside
their corresponding T values. These graphs serve for visual comparisons.

Dataset at 14 km/h
For the constant speed dataset at 14 km/h, the graphical results obtained from
different ZUPT detectors are reported (from Figure 4.6 to Figure 4.10). The ZUPT
detectors employed in the comparison are from Skog et al. [13] (Angular Rate
Energy Detector (ARE), Stance Hypothesis Optimal Detector (SHOE), Acceleration
Moving Variance Detector (MV), Acceleration Magnitude Detector (MAG)) and
from Rossanigo et al.[36] (the parametric detector).

Figure 4.6: SHOE ZUPT intervals vs SP ZUPT intervals.

The visual inspection allowed for the exclusion of some of the detectors analysed
(i.e., MAG and MV). Hence, it was decided to proceed with the comparison using
the remaining detectors. In the Table 4.3, the results of the assessment of the
overlap between estimated ZUPT intervals and intervals found using SP is reported.
A ZUPT overlap was defined as the percentage of samples of a found ZUPT interval,
obtained from MIMU data, that were included also in the corresponding reference
ZUPT interval.
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Figure 4.7: ARE ZUPT intervals vs SP ZUPT intervals.

Figure 4.8: MV ZUPT intervals vs SP ZUPT intervals.

The percentage of overlap between the estimated ZUPT interval and the reference
is above 95.5% for all three detectors selected.

The bar charts in Figure 4.11 display the average values of SV and SL across
all subjects, comparing the reference values with those obtained using the pipeline
with the variation of the employed ZUPT detector.

In Table 4.4, the values of the calculated metrics for each of the selected ZUPT
detectors are reported.

Thanks to the graph in Figure 4.12 of displacements in the horizontal plane
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Figure 4.9: MAG ZUPT intervals vs SP ZUPT intervals.

Figure 4.10: MAG ZUPT intervals vs SP ZUPT intervals.

calculated using different ZUPT detectors, it can be observed how the choice of
the detector influences the estimation. The result of using the detector present
in the baseline pipeline (ARE) is shown in blue, while the red and violet curves
represent the trend of displacement in the x-y plane using the SHOE and parametric
detectors, respectively.
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Table 4.3: Results of the percentage overlap between estimated ZUPT intervals
and those obtained from the SP.

Detectors Overlap %
Skog et al. 2010 (SHOE) 96.3 % ± 3.1%
Skog et al. 2010 (ARE) 95.5% ± 2.6%
Rossanigo et al. 2021 95.4% ± 3.4 %

Figure 4.11: Comparison between SV and SL derived from the SP and those
obtained from the MIMU utilising different ZUPT detectors.

Dataset at 19-27 km/h
Similarly, for the sprinting dataset, graphs comparing ZUPT intervals obtained
with different detectors and against the gold standard of pressure-sensitive insoles
are presented (Figure 4.13-4.18). For this dataset, where pressure sensors data are
available, the result of the detector proposed by Ma et al. [60] is also reported.

The visual inspection allowed for the exclusion of some of the detectors analysed
also for this dataset (i.e. MV and MAG). In addition, it was decided to retain
detectors that rely solely on information from the inertial sensors. In the table below,
the results of the assessment of the overlap between estimated ZUPT intervals and
intervals found using pressure data from the insoles is reported.

The bar charts (Figure 4.19) illustrate the SV and SL across subjects. These
charts compare the reference values with those derived from the pipeline using
different ZUPT detectors. The thresholds employed for the ARE and SHOE
detectors are 0.5 · 105deg/s and 15 respectively.
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Table 4.4: Results regarding the SV and SL at the ZUPT detector optimisation
phase of the algorithm for the dataset at 14 km/h.

Stride Velocity Errors Stride Length Errors

Detectors ME
(km/h)

MAE
(km/h)

RMSE
(km/h)

ME
(m)

MAE
(m)

RMSE
(m)

Skog et al.
2010 (SHOE)

-2.38 ± 0.61
(-17.07%±4.62%)

2.38 ± 0.61
(17.07%±4.62%) 2.38 ± 0.61 -0.89 ± 0.05

(-32.80%±2.07%)
0.89 ± 0.05

(32.80%±2.07%) 0.89 ± 0.05

Skog et al.
2010 (ARE)

-2.78 ± 0.68
(-19.69%±5.14%)

2.78 ± 0.68
(19.69%±5.14%) 2.78 ± 0.68 -0.92 ± 0.04

(-34.87%±2.02%)
0.92 ± 0.04

(34.87%±2.02%) 0.92 ± 0.04

Rossanigo
et al. 2021

-1.94 ± 0.58
(-13.89%±4.13%)

1.94 ± 0.58
(13.89%±4.13%) 1.94 ± 0.58 -0.48 ± 0.12

(-17.85%±4.74%)
0.48 ± 0.12

(17.85%±4.74%) 0.48 ± 0.12

Figure 4.12: Comparison between displacement estimated with different ZUPT
detectors. The dashed line represents the reference value provided by the SP.

In Table 4.6, the comparison between metrics for the sprint running dataset is
reported.

In Figura 4.20, there is a comparison between the displacements calculated with
various detectors.

4.2.2 Selection of integration boundaries of the integration
interval

Once the choice of the ZUPT interval detector type was made, the evaluation
of the choice of integration instant for both datasets was performed. The tested
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Figure 4.13: SHOE ZUPT intervals vs Pressure Insoles ZUPT intervals.

Figure 4.14: ARE ZUPT intervals vs Pressure Insoles ZUPT intervals.

definitions of the integration instants were:

• the 50% of the ZUPT interval [48],

• the end of the ZUPT interval [36],

• the minimum of the angular energy within the ZUPT interval [49],
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Figure 4.15: MV ZUPT intervals vs Pressure Insoles ZUPT intervals.

Figure 4.16: MAG ZUPT intervals vs Pressure Insoles ZUPT intervals. In the
second interval. It is noticeable how the MAG detector fails to detect the zero-
velocity update (ZUPT) interval.

• the minimum of the moving averaged angular rate norm within the ZUPT
interval.
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Figure 4.17: Ma et al. 2018 ZUPT intervals vs Pressure Insoles ZUPT intervals.

Figure 4.18: Parametric ZUPT intervals vs Pressure Insoles ZUPT intervals

Dataset at 14 km/h

The bar charts in Figure 4.12 illustrates the average values of SV and SL across
all subjects, comparing the reference values with those obtained using the pipeline
while varying the employed definition of integration boundaries for the integration.

For the four definitions of integration instants, the numerical values of the
calculated metrics are presented in Table 4.7.
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Table 4.5: Overlap% between estimated ZUPT intervals and the reference

Detectors Overlap %
Skog et al. 2010 (SHOE) 95.7 % ± 3.5%
Skog et al. 2010 (ARE) 97.2% ± 1.0%
Rossanigo et al. 2021 95.5% ± 2.0%

Figure 4.19: Comparison between SV and SL derived from the GoPro and those
obtained from the MIMU utilising different ZUPT detectors.

Dataset at 19-29 km/h
Also for this dataset, a comparison between the definitions of the integration
instants for both SV and SL is shown in Figure 4.3. In Table 4.8, the results in
terms of ME, MAE, and RMSE for SV and SL are reported as a function of the
definition of the integration instant.

4.2.3 Orientation estimation
In this section, the results of the optimisation processes for the orientation estimation
step of the pipeline are presented.

Quaternion Initialisation influence

To calculate the stride-by-stride orientation, the orientation was re-initialised at
each integration instant. In this section, the results of the comparison between two
initialisation methods, Valenti et al.[57], used in the baseline pipeline, and Suzuki
et al. [66], are presented for both datasets.
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Table 4.6: Results regarding the SV and SL at the ZUPT detector optimisation
phase of the algorithm for the dataset at 19-29 km/h.

Stride Velocity Errors Stride Length Errors

Detectors ME
(km/h)

MAE
(km/h)

RMSE
(km/h)

ME
(m)

MAE
(m)

RMSE
(m)

Skog et al.
2010 (SHOE)

-6.50 ± 2.21
(-22.90%±5.38%)

6.50 ± 2.21
(22.90%±5.38%) 6.50 ± 2.21 -0.93 ± 0.25

(-21.76%±4.10%)
0.93 ± 0.25

(21.76%±4.10%) 0.93 ± 0.25

Skog et al.
2010 (ARE)

-7.38 ± 2.06
(-22.31%±4.27%)

7.38 ± 2.06
(-22.31%±4.27%) 7.38 ± 2.06 -1.27 ± 0.35

(-31.12%±7.33%)
1.27 ± 0.35

(-31.12%±7.33%) 1.27 ± 0.35

Rossanigo
et al. 2021

-4.55 ± 1.49
(-16.70%±4.34%)

4.55 ± 1.49
(16.70%±4.34%) 4.55 ± 1.49 -0.64 ± 0.16

(-16.10%±3.56%)
0.64 ± 0.16

(16.10%±3.56%) 0.64 ± 0.16

Figure 4.20: Comparison between displacement estimated with different ZUPT
detectors. The dashed line represents the averaged reference value provided by the
GoPro.

Dataset at 14 km/h

In Figure 4.24, there is a graphic representation of the quaternions obtained with
the Valenti et al.[57] method and the Suzuki et al.[66] one.

In the bar diagrams below, it is possible to confront the stride-by-stride parame-
ters derived from the gold standards and those extracted from the pipeline that
uses the MIMU signals with different initialisations.

A numerical comparison is presented in Table 4.9 showing an RMSE value of
1.77 km/h for SV with Valenti’s method and a value of 2.83 km/h with the Suzuki
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Figure 4.21: Comparison between the SV and SL derived from the SP and those
obtained from the MIMU utilising different definitions of integration instant for the
integration intervals.

one. In the case of SL, the RMSE is almost 40 cm for Valenti, while it is 64 cm for
Suzuki.

In Figure 4.26, where the curves of the displacement calculated with the two
initialisation methods are shown, it is noted that the red curve representing the
displacement with Suzuki et al. [66] initialisation is lower than that obtained with
Valenti et al.[57].
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Table 4.7: Results regarding the SV and SL with the four definitions of integration
instants, for the dataset at 14 km/h.

Stride Velocity Errors Stride Length Errors
Definition of
Integration

Instants

ME
(km/h)

MAE
(km/h)

RMSE
(km/h)

ME
(m)

MAE
(m)

RMSE
(m)

50% of ZUPT
interval

-1.94 ± 0.58
(-13.89%±4.13%)

1.94 ± 0.58
(13.89%±4.13%) 1.94 ± 0.58 -0.48 ± 0.12

(-17.85%±4.74%)
0.48 ± 0.12

(17.85%±4.74%) 0.48 ± 0.12

End of ZUPT
interval

-2.75 ± 0.57
(-19.77%±4.10%)

2.75 ± 0.57
(19.77%±4.10%) 2.75 ± 0.57 -0.65 ± 0.12

(-24.26%±4.89%)
0.65 ± 0.12

(24.26%±4.89%) 0.65 ± 0.12

Min of
kinetic energy

-2.07 ± 0.65
(-14.82%±4.65%)

2.07 ± 0.65
(14.82%±4.65%) 2.07 ± 0.65 -0.51 ± 0.13

(-19.01%±5.11%)
0.51 ± 0.13

(19.01%±5.11%) 0.51 ± 0.13

Min of angular
rate norm

-1.45 ± 0.45
(-10.40%±3.20%)

1.45 ± 0.45
(10.40%±3.20%) 1.45 ± 0.45 -0.39 ± 0.09

(-14.48%±3.41%)
0.39 ± 0.09

(14.48%±3.41%) 0.39 ± 0.09

Table 4.8: Results regarding the SV and SL with the four definitions of integration
instants, for the dataset at 19-29 km/h.

Stride Velocity Errors Stride Length Errors
Definition of
Integration

Instants

ME
(km/h)

MAE
(km/h)

RMSE
(km/h)

ME
(m)

MAE
(m)

RMSE
(m)

50% of ZUPT
interval

-4.55 ± 1.49
(-16.70%±4.34%)

4.55 ± 1.49
(16.70%±4.34%) 4.55 ± 1.49 -0.64 ± 0.16

(-16.10%±3.56%)
0.64 ± 0.16

(16.10%±3.56%) 0.64 ± 0.16

End of ZUPT
interval

-4.88 ± 1.55
(-16.97%±5.18%)

4.88 ± 1.55
(16.97%±5.18%) 4.88 ± 1.55 -0.71 ± 0.13

(-17.91%±3.32%)
0.71 ± 0.13

(17.91%±3.32%) 0.71 ± 0.13

Min of
kinetic energy

-4.46 ± 1.49
(-15.82%±4.69%)

4.46 ± 1.49
(15.82%±4.69%) 4.46 ± 1.49 -0.68 ± 0.13

(-17.40%±3.20%)
0.68 ± 0.13

(17.40%±3.20%) 0.68 ± 0.13

Min of angular
rate norm

-3.9 ± 1.37
(-14.33%±4.16%)

3.9 ± 1.37
(14.33%±4.16%) 3.9 ± 1.37 -0.58 ± 0.15

(-14.93%±3.69%)
0.58 ± 0.15

(14.93%±3.69%) 0.58 ± 0.15

Dataset at 19-29 km/h

The bar diagrams in Figura 4.28 summarises the comparison between the two
initialisation methods among the subject for the dataset at 19-29 km/h.

The trend of the bar diagram is confirmed in Table 4.10, where the errors are
reported.

Optimisation of Madgwick parameter β

In this section, the results in terms of RMSE corresponding to the investigated β
values in terms of SV and SL, are reported. Several β values were tested during the
study, but for the sake of brevity, the results of a subset of eight values varying from
0.00009 rad/s to 1 rad/s are reported to highlight the influence of this parameter.
Regarding the use of the magnetometer, it was decided not to consider it to avoid
the influence of disturbances observed during an initial data exploration.
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Figure 4.22: Comparison between the SV and SL derived from the GoPro and
those obtained from the MIMU utilising different definitions of integration instant
for the integration intervals.

Dataset at 14 km/h

The influence of Madgwick’s β on SV and SL for the dataset at 14 km/h are reported
focusing on the interval of interest, as reported in Figure 4.29 and Figure 4.30 .
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Figure 4.23: Comparison between the displacement estimated with different
definitions of integration instants. The dashed line represents the reference value
provided by the GoPro (dataset at 19-29 km/h). T function is based on the angular
velocity.

Table 4.9: Results regarding the SV and SL with the different methods of initiali-
sation of the quaternion, for the dataset at 14 km/h.

Stride Velocity Errors Stride Length Errors
ME

(km/h)
MAE
(km/h)

RMSE
(km/h)

ME
(m)

MAE
(m)

RMSE
(m)

Valenti -1.45 ± 0.45
(-10.40%±3.20%)

1.45 ± 0.45
(10.40%±3.20%) 1.45 ± 0.45 -0.39 ± 0.09

(-14.48%±3.41%)
0.39 ± 0.09

(14.48%±3.41%) 0.39 ± 0.09

Suzuki -2.64 ± 0.99
(-18.94%±3.20%)

2.64 ± 0.99
(18.94%±3.20%) 2.64 ± 0.99 -0.64 ± 0.21

(-23.40%±7.59%)
0.64 ± 0.21

(23.40%±7.59%) 0.64 ± 0.21

Dataset at 19-29 km/h

The influence of Madgwick’s β on SV and SL for the dataset of sprinting run
are reported focusing on the interval of interest is reported in Figure 4.31 and
Figure 4.32.

Reliability check of integration instants
In this section, the results obtained for both datasets are presented, including the
addition of a reliability check for the integration instants.
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Figure 4.24: Quaternions with different initialisation methods. q0 is the scalar
number.

Figure 4.25: Comparison between SV and SL derived from the SP and those
obtained with different quaternion initialisation methods.

Dataset at 14 km/h

In FigureFigure 4.33 the results of the reliability check of the integration instants
in terms of SV and SV are reported.
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Figure 4.26: Comparison between displacements evaluated with different quater-
nion initialisations methods, at 14 km/h.

Figure 4.27: Results regarding the SV and SL with the different methods of
initialisation of the quaternion, for the dataset at 19-29 km/h.

Dataset at 19-29 km/h
Performing this check resulted in significantly worse outcomes, leading to a deterio-
ration of 31.4%.
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Table 4.10: Results regarding the SV and SL with the different methods of
initialisation of the quaternion, for the dataset at 19-29 km/h.

Stride Velocity Errors Stride Length Errors
ME

(km/h)
MAE
(km/h)

RMSE
(km/h)

ME
(m)

MAE
(m)

RMSE
(m)

Valenti -3.9 ± 1.37
(-14.33%±4.16%)

3.9 ± 1.37
(14.33%±4.16%) 3.9 ± 1.37 -0.58 ± 0.15

(-14.93%±3.69%)
0.58 ± 0.15

(14.93%±3.69%) 0.58 ± 0.15

Suzuki -5.34 ± 1.58
(-19.71%±1.58%)

5.34 ± 1.58
(19.71%±1.58%) 5.34 ± 1.58 -1.13 ± 0.27

(-29.51%±8.79%)
1.13 ± 0.27

(29.51%±8.79%) 1.13 ± 0.27

Figure 4.28: Comparison between displacements evaluated with different quater-
nion initialisations methods, at 19-29 km/h.

4.2.4 Methods for velocity drift removal

At the final stage of the pipeline optimisation process, once the previous choices
have been made to improve the algorithm, a comparison is made between velocity
de-drifting techniques:

• Direct and Reverse Integration (DRI)[51];

• Linear De-Drifting of the velocity[50];

• Subtraction of the mean of the acceleration before integrations [69].
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Figure 4.29: Influence of the β value on the RMSE error on SV, at 14km/h. In
orange, the RMSE value is presented with the beta of the baseline pipeline, while in
purple, the value minimising the RMSE error is shown. In yellow, the trade-off
value between the two datasets is reported to achieve a unique value.

Dataset at 14 km/h

In Figure 4.34 the comparison between the three de-drifting techniques is reported
in the bar graph.

In Table 4.11, there are the numerical values of the metrics estimated.

Table 4.11: Results regarding the SV and SL with the different de-drifting methods,
for the dataset at 14 km/h.

Stride Velocity Errors Stride Length Errors
ME

(km/h)
MAE
(km/h)

RMSE
(km/h)

ME
(m)

MAE
(m)

RMSE
(m)

DRI -1.45 ± 0.45
(-10.40%±3.20%)

1.45 ± 0.45
(10.40%±3.20%) 1.45 ± 0.45 -0.39 ± 0.09

(-14.48%±3.41%)
0.39 ± 0.09

(14.48%±3.41%) 0.39 ± 0.09

Linear
De-Drifting

-1.45 ± 0.44
(-10.40%±3.20%)

1.45 ± 0.44
(10.40%±3.20%) 1.45 ± 0.44 -0.39 ± 0.09

(-14.48%±3.41%)
0.39 ± 0.09

(14.48%±3.41%) 0.39 ± 0.09

Removal of
mean acc.

-4.55 ± 1.49
(-16.70%±4.34%)

4.55 ± 1.49
(16.70%±4.34%) 4.55 ± 1.49 -0.64 ± 0.16

(-16.10%±3.56%)
0.64 ± 0.16

(16.10%±3.56%) 0.64 ± 0.16
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Figure 4.30: Influence of the β value on the RMSE error on SL, at 14km/h. In
orange, the RMSE value is presented with the beta of the baseline pipeline, while in
purple, the value minimising the RMSE error is shown. In yellow, the trade-off
value between the two datasets is reported to achieve a unique value.

The graph in Figure 4.35 confirms the equivalence of the de-drifting methods.

Dataset at 19-29 km/h

In Figure 4.36 the comparison between the three de-drifting techniques is reported
in the bar graph.

The numerical results of the metrics are reported in Table 4.12.

In Figure 4.37 the comparison between different methods of de-drifting is
reported.
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Figure 4.31: Influence of the β value on the RMSE error on SV, at 19-29 km/h.
In orange, the RMSE value is presented with the beta of the baseline pipeline, while
in purple, the value minimising the RMSE error is shown. In yellow, the trade-off
value between the two datasets is reported to achieve a unique value.

Table 4.12: Results regarding the SV and SL with the different de-drifting methods,
for the dataset at 19-29 km/h.

Stride Velocity Errors Stride Length Errors
ME

(km/h)
MAE
(km/h)

RMSE
(km/h)

ME
(m)

MAE
(m)

RMSE
(m)

DRI -3.9 ± 1.37
(-14.33%±4.16%)

3.9 ± 1.37
(14.33%±4.16%) 3.9 ± 1.37 -0.58 ± 0.15

(-14.93%±3.69%)
0.58 ± 0.15

(14.93%±3.69%) 0.58 ± 0.15

Linear
De-Drifting

-3.9 ± 1.37
(-14.33%±4.16%)

3.9 ± 1.37
(14.33%±4.16%) 3.9 ± 1.37 -0.58 ± 0.15

(-14.93%±3.69%)
0.58 ± 0.15

(14.93%±3.69%) 0.58 ± 0.15

Removal of
mean acc.

-3.9 ± 1.37
(-14.33%±4.16%)

3.9 ± 1.37
(14.33%±4.16%) 3.9 ± 1.37 -0.58 ± 0.15

(-14.93%±3.69%)
0.58 ± 0.15

(14.93%±3.69%) 0.58 ± 0.15
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Figure 4.32: Influence of the β value on the RMSE error on SL, at 19-29km/h.
In orange, the RMSE value is presented with the beta of the baseline pipeline, while
in purple, the value minimising the RMSE error is shown. In yellow, the trade-off
value between the two datasets is reported to achieve a unique value.

4.2.5 Comparison between the original pipeline and the
optimised algorithm

Dataset at 14 km/h
To provide an overview of the difference between the results obtained with the
baseline pipeline and the optimised one, the following charts are presented in
Figure 4.38.

In the Table 4.13 it is possible to compare the metrics obtained at the beginning
with those at the endpoint of the optimisation process of the pipeline presented in
this study. With the baseline pipeline, there was an RMSE error of 2.75 km/h for
SV, which decreased to 1.57 km/h with the optimised pipeline, while it went from
92 cm to 39 cm for SL from the baseline pipeline to the optimised one.

In Figure 4.39, the difference between the initial algorithm and the optimised
one is notable.

At the end of the optimisation process of the spatio-temporal parameter estima-
tion pipeline, Bland-Altman plots were used to assess the trend of errors among
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Figure 4.33: Comparison between the SV and SL derived from the SP and those
obtained with and without the reliability check of the integration instants, for the
dataset at 14km/h.

Figure 4.34: Comparison between SV and SL derived from the SP and those
obtained with different de-drifting methods.

subjects.
In Figure 4.40, the comparison between the SV of all subjects in the dataset is

presented, comparing SP with the use of the baseline pipeline.
In Figura 4.41, the comparison between the SV of all subjects in the dataset is

presented, comparing SP with the use of the optimised pipeline.
Also for the SL, the Bland-Altman plot to assess the agreement between the
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Figure 4.35: Comparison between displacements estimated with different de-
drifting methods, for the dataset at 14km/h.

Figure 4.36: Comparison between SV and SL derived from the GoPro and those
obtained with different de-drifting methods.

baseline pipeline and optimised one was depicted in Figure 4.42 and Figure 4.43 .
At this stage, it is possible also to evaluate the impact on the total trajectory in
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Figure 4.37: Comparison between displacements estimated with different de-
drifting methods, for the dataset at 19-29 km/h.

Figure 4.38: Comparison between SV and SL derived from the SP, with the
baseline and the optimised pipeline, for the dataset at 14 km/h.

the horizontal plane, as shown in figure 4.44.

80



Results

Table 4.13: Results regarding the SV and SL with the different de-drifting methods,
for the dataset at 14 km/h.

Stride Velocity Errors Stride Length Errors
ME

(km/h)
MAE
(km/h)

RMSE
(km/h)

ME
(m)

MAE
(m)

RMSE
(m)

Baseline
Pipeline

-2.78 ± 0.68
(-19.69%±5.14%)

2.78 ± 0.68
(19.69%±5.14%) 2.78 ± 0.68 -0.92 ± 0.04

(-34.87%±2.02%)
0.92 ± 0.04

(34.87%±2.02%) 0.92 ± 0.04

Optimised
Pipeline

-1.45 ± 0.45
(-10.40%±3.20%)

1.45 ± 0.45
(10.40%±3.20%) 1.45 ± 0.45 -0.39 ± 0.09

(-14.48%±3.41%)
0.39 ± 0.09

(14.48%±3.41%) 0.39 ± 0.09

Figure 4.39: Comparison between the displacements at the initial stage of the
optimisation process (in red) and those at the end (in blue).

Dataset at 19-29 km/h
At the end of the optimisation process, the MV over the trial is evaluated and
compared with the MV found with the baseline pipeline and with the reference. In
the bar chart in Figura 4.45 it is possible to compare the results.

Also, for the stride-by-stride calculated parameters, there is an overview of the
change between the basic and optimised pipeline in Figure 4.46.

In Table 4.14 the numerical comparison in terms of ME, MAE and RMSE of
the baseline and optimised pipeline is reported for this dataset. With the baseline
pipeline, there was an RMSE error of 7.26 km/h for SV, which decreased to 3.97
km/h with the optimised pipeline, while it went from 1.27m to 0.58m for SL from
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Figure 4.40: Bland Altman plot of all subjects in the dataset comparing SV from
the SP and with the use of the baseline pipeline.

Figure 4.41: Bland Altman plot of all subjects in the dataset comparing SV from
SP and with the use of the optimised pipeline.

the baseline pipeline to the optimised one.
In Figure 4.47 it is possible to compare the displacement in the x-y plane
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Figure 4.42: Bland Altman plot of SL of all subjects in the dataset comparing SP
and the results of the baseline pipeline (dataset 14km/h).

Figure 4.43: Bland Altman plot of SL of all subjects in the dataset comparing SP
and the results of the optimised pipeline (dataset 14km/h).

estimated with the baseline pipeline and the optimised one.
The Bland-Altman plots are presented also for this dataset in terms of SV and
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Figure 4.44: Comparison between the trajectories at the initial stage of the
optimisation process (in red) and those at the end (in blu), for the dataset at 14
km/h.

Figure 4.45: Comparison between MV, with the baseline and the optimised pipeline.

SL to evaluate the improvement between the baseline and optimised pipeline, across
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Figure 4.46: Comparison between SV and SL derived from the GoPro, with the
baseline and the optimised pipeline.

Table 4.14: . Results regarding the SV and SL with the baseline and the optimised
pipeline, for the dataset at 19-29 km/h.

Stride Velocity Errors Stride Length Errors
ME

(km/h)
MAE
(km/h)

RMSE
(km/h)

ME
(m)

MAE
(m)

RMSE
(m)

Baseline
Pipeline

-7.38 ± 2.06
(-22.31%±4.27%)

7.38 ± 2.06
(-22.31%±4.27%) 7.38 ± 2.06 -1.27 ± 0.35

(-31.12%±7.33%)
1.27 ± 0.35

(-31.12%±7.33%) 1.27 ± 0.35

Optimised
Pipeline

-3.9 ± 1.37
(-14.33%±4.16%)

3.9 ± 1.37
(14.33%±4.16%) 3.9 ± 1.37 -0.58 ± 0.15

(-14.93%±3.69%)
0.58 ± 0.15

(14.93%±3.69%) 0.58 ± 0.15

the 7 subject analysed (from Figure 4.48 to 4.51).
In general, in Figure 4.52 it is possible to compare the trajectory obtained with

the baseline pipeline (in red) and the pipeline optimised in this work. The reference
trajectory is the 50 meters that the runners covered in the trials.

4.3 Statistical Analysis
The t-test, a common statistical method, is typically utilised to examine whether
there is a significant difference between two separate groups, particularly when
the sample size is too small for more precise statistical analyses [72]. The t-test
has been performed by taking into consideration the RMSE errors in terms of SV
and SL obtained via the baseline pipeline and optimised pipeline over the two
different speeds analysed. It relies on the hypothesis that the distributions of
the data on which it is used is normal. The normality of data distribution was
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Figure 4.47: Comparison between the displacements at the initial stage of the
optimisation process (in red) and those at the end (in green).

Figure 4.48: Bland Altman plot of SV of 7 subjects in the dataset comparing
GoPro and the results of the baseline pipeline (dataset 19-29 km/h).
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Figure 4.49: Bland Altman plot of SV of 7 subjects in the dataset comparing
GoPro and the results of the optimised pipeline (dataset 19-29 km/h).

Figure 4.50: Bland Altman plot of SL of 7 subjects in the dataset comparing
GoPro and the results of the baseline pipeline (dataset 19-29 km/h).
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Figure 4.51: Bland Altman plot of SL of 7 subjects in the dataset comparing
GoPro and the results of the optimised pipeline (dataset 19-29 km/h).

Figure 4.52: Comparison between the trajectories at the initial stage of the
optimisation process (in red) and those at the end (in green), for the sprinting
dataset.
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investigated through Shapiro-Wilk test. As a result, the populations exhibited a
normal distribution (p<0.05), thus the t-test was suitable for the analysis. The
aim for this test was to highlight whether the baseline and optimised pipeline
returned statistically different results in terms of performance, which lead to the
formulations of the two hypotheses to test:

• H0 : null hypothesis, the methods are not different, x1 − x1 = 0

• H1 : alternative hypothesis, the methods retain a statistical difference, x1−x1 /=
0

With xbeing the grand means for the parameters of each population and 0
being the expected value for the null hypothesis, x0. Then the test statistic can be
computed:

Teststatistic = (x1 − x1) − x0ò
s2

1
n1

+ s2
2

n2

(4.1)

The symbol s represents the overall standard deviation of the entire population,
and n denotes its size. The resulting value needs to be compared to a p-value,
which signifies the probability of the test result being accurate. For each chosen
p-value, a corresponding confidence interval is established. The frequently employed
p-value is 0.05, aligning with a 95% confidence interval. Speaking of the results,
that are shown in Table 4.16, it can be noted that the value of the p-value is for
both parameters lower than the chosen p-value (0.05) for all the speeds, leading
to the conclusion that the null hypothesis can be rejected for all the parameters
considered, thus a statistical difference between the two methods was detected.

Table 4.15: Statistical test results over the two dataset on SV and SL for evaluating
the statistical differences between baseline and optimised pipeline.

SV RMSE (km/h) SL RMSE (m)
Baseline Optimised p-value Baseline Optimised p-value

14 km/h 2.75 1.58 <0.01* 0.92 0.39 <0.01*

19-29 km/h 8.08 4.05 <0.01* 1.44 0.64 <0.01*

*significant difference (p<0.05).
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In addition, a t-test was conducted to assess whether the variation in speed
influenced the results obtained in terms of RMSE error for SV and SL using the
pipeline. For both parameters, a p-value lower than 0.05 was found, indicating that
the speed has an impact on the outcome obtained with the optimised pipeline.

Table 4.16: Statistical test results over the two dataset on SV and SL, for
evaluating the statistical difference between the two dataset with the same optimised
pipeline.

SV (km/h) SL (m)
14 km/h 19-29 km/h p-value 14 km/h 19-29 km/h p-value

RMSE 1.58 4.05 0.003* 0.39 0.64 0.014*

*significant difference (p<0.05).
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Chapter 5

Discussion

In this study, an optimisation procedure for the estimation of SV and SL during
running from wearable MIMUs was proposed [36]. In the literature different
approaches for the estimation of those parameters have been proposed. However,
the state-of-the-art methods have been largely tested on walking [[36], [33], [73] or
specific running speed. In this work, each step of the most used pipeline for the
estimation of SV and SL with inertial data was analysed with the aim to minimise
the errors on the foot displacement and velocity at different running speeds (from
14 to 29 km/h). To quantify the improvement, the results using the baseline and
the optimised pipeline were compared.

5.1 Performance of the baseline pipeline
First, the performance of the baseline pipeline for the estimation of the spatio-
temporal parameters were assessed. Looking at the bar charts related to the SV
and SL (Figura 4.1, Figura 4.4), it is evident that the baseline pipeline optimised
for walking analysis [36] was not suitable for running as it heavily underestimated
the parameters. Furthermore, the MV in sprinting estimated with the baseline
pipeline is highly underestimated compared to the reference. At 14 km/h, as it
can be seen in Table 4.1, SV shows RMSE errors of 2.75 km/h against an average
reference speed of 14 km/h, with a MAE% of almost 20%. Regarding SL, errors are
just below one meter, with an RMSE of 92 cm (and a MAE% ~35%), based on an
average reference length of 2.7 m. For sprinting, there is an average underestimation
of almost 7 km/h in the mean SV against a reference of the nominal SV provided
by using the stopwatch, which is 24.3 km/h, obtaining a mean SV of 18.7km/h.
Concerning stride-by-stride calculated errors, errors on SV estimation exceeded
7 km/h (with a MAE% of 21%), and SL was underestimated by 1.43 meters,
against an average reference value of 4.05 m, with a MAE% exceeding 35% (Table
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4.2). From the graph in Figure 4.2, the displacement evaluated at 14 km/h in the
horizontal plane was underestimated, while the vertical displacement is heavily
overestimated. In Figure 4.5, for the sprint running (19-29 km/h), this issue was
amplified.

5.2 Performance of the optimised pipeline
5.2.1 Zero Velocity Detectors
In the literature, there is no ample agreement about the use of ZUPT in running
([35],[37]). For this reason, multiple methods have been implemented to detect
intervals where foot can be assumed to be stationarity. Therefore, the detectors
most used in the literature were implemented, and the ZUPT intervals detected
were compared with those obtained using the available references. Observing and
the overlaps of the ZUPT intervals of the different implemented detectors and
the reference ZUPT intervals, it was evident that the ARE [13] (i.e., the ZUPT
detector used in the baseline pipeline), SHOE [13], and parametric detectors were
comparable to the reference ([36]), while MV and MAG detectors over-estimated
non-feasible ZUPT intervals using a fixed threshold ([13]). For this reason, the
MV, MAG detectors [13] and the detector by Ma et al. [60] have been excluded
from further analysis, their use is not recommended for running applications. For
SHOE, ARE, and the parametric detectors, the overlap of the estimated ZUPT
intervals with the reference ones was higher equal or higher than 95.5% (Table 4.3
and Table 4.5). ARE and SHOE depend on fixed thresholds detectors, and multiple
attempts were conducted to determine sub-optimal thresholds for different speeds.
The detector that minimised the errors on SV and SL was the parametric one. At
14 km/h, the MAE% error in SV decreased from 19% with the baseline pipeline to
14% (RMSE from 2.8 km/h to 2.1 km/h), while the SL error decreased from 35%
to 18% (from 92 cm to 48 cm) (Table 4). In sprinting, the SV error decreased from
21% to 13% (from 7.3 km/h to 4.3 km/h), and the SL error decreased from 35% to
18% (from 1.43 m to 0.73 m) (Table 4.6). Furthermore, the parametric detector
avoided the need for fine-tuning a fixed speed-dependant threshold, thus being a
more robust solution across different speeds.

5.2.2 Selection of integration boundaries of the integration
interval

Within ZUPT intervals, boundary conditions are selected for the double integration
of the acceleration data. In the baseline pipeline, the integration instants were
taken at 50% of the ZUPT interval [48], resulting in averaged underestimation
of SV and SL equal to 13.9% and 17.8%, respectively for the dataset at 14km/h.
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In the sprinter dataset, the errors were 14.1% and 17.8% for SV and SL. The
attempts to define the integration instants at the end of the ZUPT interval [36] or
at least kinetic energy [49] for both datasets did not improve the performances. The
choice that minimised the SV and SL errors was the definition of the integration
instants at the minimum of the norm of the moving averaged angular velocity
within a ZUPT interval. With this novel definition of the integration boundaries
the errors on SV and SL decreased by 3.5% and 3.2% reaching 1.76 km/h and 0.39
m, respectively.

5.2.3 Orientation estimation and gravity removal
The orientation estimation is for a key-point in assessing spatio-temporal parameters
using MIMU. In this work, Madgwick filter was chosen for orientation estimation[11],
since it enabled the tuning a single parameter. The results of the comparison
between the quaternion initialisation method proposed by Valenti et al. [57] and
the one proposed by Suzuki et al. [66], confirmed that the use of the algebraic
quaternion by Valenti was advantageous, as in the baseline pipeline. Indeed, the
use of Suzuki’s method degraded the performance both in terms of SV and SL
estimation. The use of the magnetometer slightly decreased the performance in
indoor trials, thus it was not involved in the orientation estimation. A fine-tuning
of Madgwick’s β parameter for both analysed running speeds was performed. The
baseline β value was 0.0019 rad/s, which was the optimal value for walking analysis
[36] β values minimised the RMSEs on SV and SL were selected as the optimal
values. At 14 km/h, the best β was 0.008 rad/s, while for the sprint running
dataset, the optimal β was 0.01 rad/. To define a unique β that could be adopted
in the entire tested speed range (14-29 km/h), a compromise β of 0.0085 rad/s was
selected.

At this stage of the optimisation process, a method to assess the reliability of
the foot stationary at the integration instants was implemented. The basic idea
was to deem a stationary instant unreliable if the corresponding acceleration and
angular rate values exceeded an empirical threshold depending on speed, thus the
orientation re-initialisation did not take place. The use of these reliability checks
did not yield a considerable improvement in results Therefore, this step required
further investigation.

5.2.4 Results of the comparison of the methods for velocity
drift removal

This analysis was conducted to confirm the equivalence among various techniques
for de-drifting velocity. Indeed, no differences are observed in the results obtained
with DRI[51], linear de-drifting[50], and removal of the mean acceleration value[69],
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as it can be seen in Figure 4.34. It can be stated that the use of these techniques
is equivalent at any running speed.

5.2.5 Final comparison between the baseline pipeline and
the optimised pipeline

The overall optimised pipeline for calculating SV and SL enabled an improvement
in the SV and SL estimation of 16.4%-22.2% and 29.6%-28.9% respectively.

Figure 5.1: Block diagram summarising the stages of the pipeline, explicitly
showing, on the right, the algorithms employed in the baseline and optimised
pipeline.

Table 14 provides the results of the metrics estimated at 14 km/h, showing a
reduction in RMSE error for SV from 2.75 km/h to 1.75 km/h and for SL from 92
cm to 39 cm. In sprinting, Table 15 shows a decrease in RMSE error from 7.26
km/h to 3.67 km/h for SV and from 1.43 m to 0.65 m for SL. For both datasets,
the graphic representation of the displacement in the horizontal plane estimated
with the baseline and optimised pipeline are reported in Figura 4.39 and Figura
4.46, with the respective averaged reference value from the Gold Standards utilised.
In both datasets, it is noticeable that the horizontal displacement is closer to the
reference when using the optimised pipeline. The Bland-Altman plots for SV and
SL at the beginning and end of the optimisation revealed a significant reduction
in the underestimation of both SV and SL within the whole running speed range
(14-29 km/h) (p < 0.05).
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The most influent step of the pipeline was the ZUPT detector, whose only
optimisation led to an improvement of 11.8% for SV and 24.1% for SL at 14km/h,
while an improvement of 13.5% for SV and 28.4% SL during sprinting. However,
the errors obtained with the optimised pipeline were still high (equal to about
10.4%-14.3% on SV and 14.4%-16.2% on SL due to an orientation estimation that
is still not optimal, that decreased the accuracy of gravity compensation leading to
an underestimation of the displacement on the horizontal plane.

Thus, to attempt to address the issue, as future developments, some methods are
suggested for investigation. The introduction of specialised reliability checks on the
integration instants of integration for orientation estimations to improve accuracy.
The implementation of Kalman filters (KFs) estimating foot orientation, velocity
and displacement for a more comprehensive analysis. Developing methods to
address the underestimation of horizontal velocity and displacement by leveraging
the overestimation in the vertical dimension, considering the assumption of level
running surfaces. Exploring the potential benefits of increasing the sampling
frequency, particularly in sprinting evaluations.
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Conclusions

This study focused on the improvement of a state-of-the-art pipeline for foot
displacement estimation optimising each step to minimise errors on SV and SL
during running at different speeds (14-29 km/h). The study highlighted the
importance of the optimisation procedure to target MIMU-based methods for the
estimation of spatio-temporal parameters to a wide range of running speeds. The
overall improvement was equal to 16.4% for SV and 29.6% for SL at 14 km/h,
while 13.8% for SV and 30.4% for SL during sprinting. The suggested parametric
ZUPT detector defined the ZUPT intervals on the moving average of the angular
rate. Increasing the running speed, the initialisation of orientation became more
critical. Therefore, it is recommended to calculate the algebraic quaternion at each
minimum of the moving-averaged angular rate norm within the ZUPT interval,
as the vertical axis is better aligned with gravity. In the orientation estimation
process, Madgwick’s β parameter demonstrated varying optimal values across
different speeds. A suggested compromise value is 0.0085 rad/s. Even if the overall
errors on SV and SL were significantly influenced by speed and still considerably
high (10.3%- 14.3% and 14.4%- 14.8%), the proposed optimised pipeline represents
a remarkable starting point for the analysis of spatio-temporal parameters during
running at different speeds using foot-mounted magneto-inertial sensors. However,
the orientation estimation is still not optimal, thus decreasing the accuracy of
gravity compensation and leading to an underestimation of the displacement on the
horizontal plane. Future work should focus on the improvement of the orientation
estimation, assuming that the running is usually level ground.
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