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Abstract

Wearable technology and sensor fusion techniques have enabled the study of
mobility in real-life conditions, with a specific focus on Inertial Measurement
Units (IMUs) due to their portability and versatility. A popular and powerful
configuration proposed and validated in the literature [1] involves instrumenting
the pelvis and feet with IMUs. This setup allows the capture of spatio-temporal
parameters and center-of-mass movements but lacks information about joint angles.
Consequently, the description of lower limb movements remains incomplete. To
obtain a comprehensive understanding of joint angles and reconstruct lower limb
kinematics, attaching an IMU to each segment proximal and distal to the joint
of interest would be necessary. Joint angles are determined by assessing the
relative orientation between distal and proximal segments. However, this full
configuration increases experimental complexity, subject preparation times, and
costs, making it impractical for real-world scenarios. This thesis aimed to explore
the feasibility of obtaining an acceptable description of joint kinematics during
in-lab walking using this strategic three-IMU configuration, without escalating
experimental complexity. To reconstruct the kinematic chain, in addition to the
orientations obtained from the IMUs, we exploited the spatio-temporal parameters
to address missing information; however, both are affected by errors. For this
reason, an optimization framework had to be implemented to fit these quantities
to a biomechanical model of the lower limbs. The biomechanical model was based
on the Denavit-Hartenberg convention and incorporated three rotations for each
joint. These joints were defined according to the rotation sequences and axis
orientations recommended by the International Society of Biomechanics guidelines,
which is useful for standardizing results. To limit the errors affecting the IMU-based
position and orientation, two set of constraints including limits on joint angles
and gait-specific conditions were introducted. The initial set addressed permissible
ranges for hip, knee, and ankle angles during walking. The second set delineated
the characteristics of the analyzed gait, such as rectilinear motion, ensuring, for
instance, that the variation in joint positions was positive in the anteroposterior
direction. The Sequential Quadratic Programming algorithm was employed for
optimization, which minimizes an objective function that considers the differences
between the orientation and position quantities obtained from the model and
those obtained from the three IMUs. The experimental validation, conducted in a
controlled environment at this stage, compared the proposed IMU-based system
with a stereophotogrammetric system (SP), validating its accuracy and feasibility
in a straight-line walking condition at comfort speed. Root Mean Square Error
(RMSE) values, calculated by comparing joint angles from the proposed method



with those from the SP after mean value removal, were 4.3, 6.1, and 4.8 degrees
for hip, knee, and ankle joints, respectively. Generally, joint kinematics estimation
systems are deemed acceptable with RMSE errors below 5 degrees [2]. This study
highlighted the effectiveness of a minimal IMU configuration in capturing vital
kinematic data during walking, presenting solutions for wearable sensor network
challenges. Preliminary validation of the developed framework showed a significant
step in the incorporation of IMU technology for real-world human movement
analysis and its potential in providing more accessible and efficient clinical gait
assessments. With further comprehensive validation, including several pathological
cases and complex exercises in real-life scenarios, this technology could contribute
to improved diagnosis and monitoring of motor disorders.
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Chapter 1

Introduction

1.1 Clinical relevance and general introduction

In the realm of comprehending human movement, the exploration of quantifying the
kinematic intricacies of human gait in real-life scenarios holds immense significance.
Such an endeavor has the potential to usher in new perspectives and catalyze a
paradigm shift in the diagnostic processes of motor disorders, as well as the design
and evaluation of rehabilitation interventions. The ability to capture and analyze
the dynamic aspects of human gait in naturalistic settings is crucial for obtaining a
holistic understanding of an individual’s movement patterns. Notably, it has been
demonstrated that walking speed can be regarded as the sixth vital sign, following
traditional indicators such as body temperature, heart rate, respiratory rate, blood
pressure, and oxygen saturation [3].
Quantitative instrumented gait analysis stands out as a potent tool that can provide
clinicians with precise and reliable gait data, offering invaluable insights for both
diagnosis and ongoing monitoring of motor disorders. However, the widespread
integration of such advanced gait analysis methodologies into clinical practice faces
significant challenges primarily related to logistical constraints. The emergence
of wearable technology, multi-modal approaches, sensor fusion techniques, and
AI-driven computational platforms is rapidly gaining prominence within the realm
of gait assessment. These innovative solutions hold the promise of overcoming
existing impediments, presenting clinicians with viable alternatives that enable
more seamless and efficient gait monitoring in real-world conditions [4]. As we
continue to explore and integrate these technological advancements, the potential
for enhancing clinical decision-making and optimizing rehabilitation strategies
becomes increasingly tangible, marking a transformative era in the field of human
movement analysis.
The pursuit of this understanding has led researchers to explore various technological
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Introduction

avenues, among which the use of Inertial Measurement Units (IMUs) stands out
as a prominent solution. IMUs, capable of capturing essential kinematic data,
offer a direct window into the complexities of human motion. IMUs typically
comprises three tri-axial inertial sensors, an accelerometer and a gyroscope, capable
of tracking the sensor’s orientation within an internal framework. Consequently,
these devices, in addition to their compact size, affordability, and low power
consumption, can be effectively utilized as wearable devices in real-life situations
outside the confines of laboratory settings [5]. When analyzing human walking,
IMUs enable the measurement of both kinematic variables and spatio-temporal
parameters of gait, although their accuracy is generally lower than that of the
optical stereophotogrammetry (SP).
Utilizing signals from the accelerometer and the gyroscope, various digital mobility
outcomes can be derived. Specifically, joint angles can be calculated based on the
orientation of IMUs attached to the proximal and distal segments of the joint under
examination. However, the practical application of full-body sensor networks in
real-life scenarios (Figure 1.1.) has proven challenging, often hindered by their
bulkiness and inconvenience for individuals engaged in everyday activities [6].

Figure 1.1: Instrumented subject walking in the real world
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Introduction

1.2 Challenge and aim of the thesis
This thesis work was created to solve the problem of having a sensor placed on
each body segment to calculate joint angles for real world applications.
As the initial step involves validation, this thesis is primarily centered on the
validation process, focusing on the estimation of lower limb kinematics during
in-lab walking using a smaller number of IMUs. In fact, by reducing the number of
IMUs placed on the subject, a number of advantages are derived, including reduced
costs, improved wearability due to a simpler setup, and consequently reduced time
for subject pre-treatment. Such advantages become pivotal for extending the study
of kinematics outlined in this paper to real-world scenarios.
The choice of the number of sensors to actually use was made by considering a
sensor configuration already studied in the literature and accepted by the subjects
analysed, namely that consisting of three IMUs placed respectively two on the
feet and one on the pelvis [1]. This configuration makes it possible to obtain the
spatio-temporal parameters from the IMUs placed on the feet and to define the
movements of the centre of mass from the IMU placed on the pelvis. The reason
why this thesis is a challenge is that three IMUs alone are not sufficient to derive
complete kinematic equations because there is a lack of information. In addition,
the parameters estimated by these three IMUs (trajectories and orientations) are
affected by errors. Therefore, constraints must be introduced to try to solve this
lack of information.

1.3 Thesis outline
The thesis is structured as follows:

In Chapter 2, the current advancements in the field are explored, with a specific
focus on IMUs, orientation estimation techniques employing Sensor Fusion Algo-
rithms (SFAs), and the estimation of joint kinematics.

In Chapter 3, the methods employed in this study are elucidated. This sec-
tion delves into the interplay between the developed robotic model and the data
gathered from IMU sensors, emphasizing the integration of these components within
an optimization framework aimed at reconstructing the lower limb kinematics.

In Chapter 4, the experimental session is detailed, encompassing an analysis
of the experimental protocol and a comprehensive description of the data acquisi-
tions process.
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In Chapter 5, the results obtained with the implemented optimization framework
are displayed.

In Chapter 6, the results presented in Chapter 5 are critically discussed.

Chapter 7, summarises the main findings of the thesis and provides an out-
look for future research and perspectives.
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Chapter 2

State of the art

2.1 Inertial Measurement Units
The increasing adoption of IMUs in gait analysis arises from efforts to overcome
significant limitations inherent in optical tracking systems. These constraints
include the necessity for specialized laboratories with restricted evaluation spaces,
challenges related to marker placement, camera calibration complexities, and the
high cost of the required instrumentation [7]. The evolution of IMU sensors became
feasible due to advancements in microelectronics, enabling the integration of Micro
Electro Mechanical System (MEMS) accelerometers and gyroscopes into a single
compact package, as shown in Figure 2.1.

Figure 2.1: Inertial Measurement Unit (INDIP)

IMUs offer several advantages, being highly portable due to their lightweight and
compact size, self-powered with low energy consumption, and capable of wireless
transmission [8]. Particularly suited for human motion tracking, IMUs eliminate the
need for external sources like Infrared LEDs and external sensors such as cameras.
Consequently, motion can be recorded outside laboratory settings for extended
durations [9]. The fundamental principles underlying IMUs entail minimal intrinsic
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latency; any delays primarily stem from wireless data transmission, if applicable,
and subsequent processing [9]. This processing can be performed either by an
embedded microcontroller onboard or an external processor. Furthermore, IMU
sensors are readily available at a low cost, owing to their widespread integration into
smartphones and tablet computers, which continue to exhibit enhanced performance
[10].
Typically, IMU sensors incorporate orthogonally mounted tri-axis accelerometers
and gyroscopes. These sensors are utilized to capture the summation of linear
and gravitational accelerations and the angular rate within their Local Coordinate
System (LCS) [11]. Through the application of SFAs, a comprehensive estimation of
the LCS orientation relative to a Global Coordinate System (GCS) can be achieved
by judiciously combining the sensor outputs. As implied by their name, IMUs
operate on inertial sensing principles, relying on accelerometers and gyroscopes
to estimate attitude (though not heading) concerning the local direction of the
gravity vector [12].

2.1.1 Accelerometer
An accelerometer detects the “specific force” (a), which is the vector difference
between the body’s acceleration (abody) and the gravitational acceleration (g). All
quantities are resolved in the LCS of the sensor, and the output is expressed as:

a = (abody − g) (2.1)

Equation 2.1 indicates that when the device experiences no accelerations, the
contribution from abody is null, and the accelerometer functions as an inclinometer,
sensing only the gravitational acceleration. Conversely, during free-fall, the abody

term equals g, rendering the accelerometer output null. In essence, when the
IMU is in motion, the abody term combines with g, making accurate estimation
of accelerometer inclination impossible unless additional information sources are
utilized. The measured accelerometer output a is affected by errors, commonly
modeled as a matrix of scale factor error coefficients (Sa), a matrix of cross-coupling
error coefficients (Ma), a bias error vector (ba), and its fluctuations vector (δba),
in addition to white Gaussian noise, as stated in equation 2.2 [13, 14]:

a = (Sa Ma)(abody − g) + ba + δba + wa (2.2)

In detail, Sa is a diagonal 3x3 matrix of coefficients representing the deviation of
sensor sensitivity from the ideal state for each axis. Typically, this error contains
both fixed and temperature-induced variations [15]. Ma is a 3x3 matrix representing
non-orthogonality errors between the three accelerometer sensing axes, caused by
mechanical component mounting. Non-orthogonality results in undesired coupling
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of axis outputs following a trigonometric formula. The 3x1 vector ba represents
accelerometer bias, defined as the axis output in the absence of g. ba contains both
fixed and temperature-induced components. Calibration refinement algorithms
can compensate for Sa, Ma, and ba errors [16]. However, bias errors also involve
run-to-run variations, turn-on to turn-on variations, and gradual changes over
time. These components are represented by the 3x1 vector δba, posing a significant
challenge in displacement estimation since the accelerometer output is double
integrated after gravitational subtraction. Finally, wa is a 3x1 vector of white
Gaussian noise with a zero mean. Both δba and wa vectors fall under stochastic
error components and can only be statistically characterized.

2.1.2 Gyroscope

A gyroscope functions by detecting angular velocity along its axes. Various gyro-
scope output models have been proposed in the literature, differing mainly in the
complexity of the slow-varying bias model δbg [13, 17, 14, 18]. A general model is
presented as:

ω = (Sg Mg) ωbody + bg + δbg + wg (2.3)

It’s worth mentioning that other models [16, 13, 14, 18] consider an additional
term linking bias dependency on acceleration magnitude due to its effect on the
gyroscope MEMS structure. However, this sensitivity to acceleration, as noted by
[18], is negligible compared to other error contributions.
In equation 2.3, Sg and Mg represent the 3x3 scale factor and non-orthogonality
error matrices, respectively. The 3x1 vector bg contains the gyroscope bias, defined
as the axis output in the absence of rotation. Typically, bg is computed during
a static acquisition period of a few minutes and then subtracted from gyroscope
readings [19]. However, this solution, although simple, may not be entirely effective
in practice due to significant changes in the gyroscope bias modeled by δbg. The
origin of these fluctuations lies in both mechanical and electronic components,
such as changes in drive frequency and voltage generation flicker in digital-analog
converters, within a MEMS gyroscope [20, 21, 22]. δbg constitutes the most
influential source of errors in orientation estimation. Integrating angular velocity,
including a slow-varying bias, results in orientation drift that grows unbounded
over time. This orientation drift directly impacts displacement estimation, as
gravity, before subtraction from accelerometer output, must be expressed in the
sensor’s LCS using the computed orientation. Errors in gravity subtraction lead to
significant displacement drift after double integration [10]. Finally, the vector wg

models white Gaussian noise with a zero mean.
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2.2 Orientation estimation using a sensor fusion
approach

The integration of accelerometer and gyroscope measurements enables the estima-
tion of the three-dimensional orientation of an IMU and, more broadly, the rigid
body to which it is affixed. Determining the three-dimensional absolute orientation
of an IMU involves defining the rotation between its LCS and the GCS. This step
is pivotal for computing joint angles and eliminating the gravitational vector from
accelerometer signals, allowing the calculation of linear velocity and displacement.
Typically, orientation is estimated using a SFA, also known as a filter, which
leverages the strengths and weaknesses of individual sensors within an IMU, as
schematized in Figure 2.2.

Figure 2.2: Schematization of the operation of a sensor fusion algorithm

Various SFAs have been proposed in the literature, with the majority falling
under the complementary or Kalman filtering families. Differences among implemen-
tations lie in orientation parametrization (e.g., orientation matrices, quaternions,
Euler angles, etc.), diverse formulations of the Kalman filter (e.g., linear, extended,
unscented, direct, indirect, etc.), and distinct fusing strategies (optimization or
algebraic). A widely employed filter is the one proposed by Madgwick in [23],
known as a complementary orientation filter based on quaternions. Noteworthy
for its simplicity, this filter necessitates adjustment of only one parameter (β) and
imposes a low computational load. The fundamental methodology for determining
orientation from IMU data involves integrating angular velocity and subsequently
refining this value with accelerometer readings. To delve into specifics, the ac-
celerometer data are utilized in an optimized gradient-descent algorithm, computing
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the direction of the gyro measurement error as a derivative of a quaternion. The
primary parameter (β) is linked to the zero mean of gyroscope measurement errors,
with a higher β assigning more significance to the accelerometer signals.
Numerous studies have attempted to compare the performance of these SFAs over
the years, yet conflicting results have been reported, and definitive conclusions
regarding IMU orientation accuracy remain elusive [11, 24, 25, 26, 27, 28, 29, 30].
These discrepancies can be attributed to the necessity of appropriately setting the
parameters governing the sensor fusion process for each SFA to function effectively.
Intrinsic and extrinsic factors, including the magnitude of motion and sensor noise
intensity, affect parameter value choices [31]. However, selecting suitable values
is non-trivial, and a universally applicable procedure is lacking, rendering result
generalization challenging. One possible approach involves identifying optimal
values by minimizing the error between estimated and ground truth orientation for
specific recordings.
The research [32] validated the pivotal role of selecting suitable parameter values in
influencing orientation accuracy levels. It highlighted the need for tailored parame-
ter tuning based on specific experimental conditions [28, 33] to achieve optimal
performance. Furthermore, the study revealed that each SFA demonstrates peak
performance within a restricted range of parameter values. Changes in experimental
conditions may result in significant errors if parameters optimized for a different
scenario are used.

2.3 Joint kinematics estimation
The ability to estimate three-dimensional orientation using IMUs has facilitated
the tracking of human joint kinematics through wearable sensors [34, 35]. Accu-
rate knowledge of joint angles is crucial in various applications such as sports,
ergonomics, clinical evaluations, and telerehabilitation. Each human joint can be
viewed as the connection between two adjacent body segments, characterized by a
specific number of degrees of freedom (DoFs) based on the joint under analysis.
Computation of human joint kinematics necessitates knowledge of the orienta-
tion of the two IMUs affixed to the proximal and distal segments of the joint in
question. Typically, a IMU’s LCS is not aligned with the anatomical coordinate
system of the corresponding segments, as defined by the International Society of
Biomechanics (ISB) guidelines [36, 37]. After realignment, joint kinematics are
defined as distal-to-proximal relative orientation at each time step [38]. Joint angles
are obtained through Euler decomposition following the sequence recommended
by ISB. This approach is termed unconstrained, as it does not incorporate addi-
tional information to mitigate inaccurate orientation errors’ effects on joint angles.
However, unconstrained joint kinematics offers computational speed and accuracy
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advantages under specific experimental conditions such as short durations and
absence of vigorous movements.
Consider the general scenario depicted in Figure 2.3, where the anatomical axes
of proximal and distal segments are denoted by subscripts “Ap” and “Ad”, respec-
tively. Both Ap and Ad definitions adhere to ISB guidelines, relying on major
anatomical landmarks and underlying bone orientations [36, 37]. Typically, these
axes align along the longitudinal, medio-lateral, and antero-posterior directions.
The two segments are connected by a spherical joint allowing three DoFs. Joint
kinematics represent the relative orientation between Ad and Ap, expressed in the
Ap coordinate system as:

ApqAd
= q∗

Ap
⊗ qAd

(2.4)

Here, qAp
and qAd

denote the actual and unknown orientation of proximal and
distal anatomical coordinate systems, respectively, expressed in a common GCS.
The relative orientation ApqAd

is decomposed into corresponding Euler triplets
using ISB standards.

Figure 2.3: Proximal (“p”, in blue) and distal (“d”, in brown) segments connected
by a spherical joint

As shown in Figure 2.3, the primary limitation when estimating joint kinematics
with IMUs is the misalignment between each IMU’s LCS (technical axes) and the
relevant anatomical axes. IMUs are placed on the skin to minimize soft tissue
artifacts and avoid movement constraints. Consequently:

qAp
/= qLp

, qAd
/= qLd

(2.5)
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Here, qLp
and qLd

represent the orientation of proximal and distal IMUs, respec-
tively, as estimated by a SFA. To accurately estimate joint kinematics, understand-
ing the rigid, time-invariant relationship between anatomical and technical axes
for each segment is essential, commonly known as “sensor-to-segment alignment”.
Different methods have been proposed in the literature to address this challenging
problem. Among these, manual alignment strikes a balance between simplicity and
accuracy.
A second challenge arises when estimating joint kinematics without a magnetome-
ter, lack of information regarding the relative orientation between IMUs on the
horizontal plane. The absence of Earth’s magnetic field direction precludes the
definition of a unique horizontal axis direction in the GCS (designed with the
vertical axis aligned to the gravity vector and one horizontal axis aligned with
Earth’s magnetic field direction projected onto the horizontal plane). Consequently,
the SFA cannot estimate the orientation of two IMUs with respect to the same
GCS. However, when magnetometer data are omitted, aligning the GCS x-axis
with the IMU x-axis is possible. Properly worn IMUs provide a-priori knowledge of
the relative orientation between two GCSs in the “zero-joint configuration” when
the joint angle is null.

2.4 Proposed approach for joint kinematics esti-
mation

The computation of human joint kinematics, detailed in Section 2.3, necessitates
understanding the orientation of two IMUs affixed to the proximal and distal
segments of the specific joint. Consequently, to reconstruct lower limb kinematics,
which involves deriving angles at the hip, knee, and ankle, seven IMUs placed on
the pelvis, thighs, legs, and feet are typically used.
However, the objective of this study was to simplify this sensor setup by employing
only three IMUs situated on the pelvis and feet. This streamlined approach offers
numerous advantages, including cost-effectiveness, improved wearability due to a
simpler setup, and reduced preparation time for subjects. Although this sensor
configuration, previously explored in literature and accepted by analyzed subjects,
facilitates spatio-temporal parameter extraction and definition of center-of-mass
movements, it presents challenges in deriving comprehensive kinematic equations
due to data gaps.
To address this, we leveraged spatio-temporal parameters and IMU-derived orien-
tations, albeit affected by errors, to reconstruct the kinematic chain. Consequently,
an optimization framework had to be implemented to fit these quantities to a
biomechanical model of the lower limbs.
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Chapter 3

Methods

3.1 General description of the analyzed situation
Figure 3.1 illustrates a sagittal view that depicts the scenario under analysis.
Specifically, the estimation of lower limb kinematics involves deriving angles at
the hip, knee, and ankle joints, designated as φ1, φ4, and φ7, respectively. This
is accomplished by leveraging the position and orientation information of the feet
and pelvis, without possessing knee-specific information. The available data is
incorporated into an optimization framework, aiming to reconstruct lower limb
kinematics while adhering to established relationships among the three angles at
the hip, knee, and ankle, connected by segments of known length.
The discussion presented for the sagittal plane is further expanded to encompass
other planes, allowing the derivation of not only flexion-extension angles but also
adduction-abduction and intra-extra rotation angles.

3.2 Overview of the optimization framework
To reconstruct the kinematics of lower limbs during walking, an optimization frame-
work, illustrated in Figure 3.2, was employed to derive joint angles and positions.
This framework, implemented in MATLAB, comprises a central optimization block
that takes input from two sources: the lower limb model and data obtained from
IMUs. It then outputs joint angles and positions, allowing the reconstruction of
joint kinematics for each analyzed moment.

As mentioned in Chapter 1, compensating for the limited information from
IMUs necessitated the introduction of constraints. These constraints were applied
in the first of the aforementioned input blocks, specifically in relation to the lower
limb model. To provide a clearer understanding of these constraints, they can
be categorized into two types: constraints on joints, which pertain to functional
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Figure 3.1: Sagittal view of the diagram representing the situation under analysis
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Figure 3.2: Overview of the optimization framework

anatomy, and constraints specific to the analyzed experiment, such as gait patterns.
A more detailed explanation of these constraints is provided in Section 3.4.

3.3 Lower limb model

3.3.1 The Denavit-Hartenberg convention
The initial input block for optimization involved the lower limb model, which was
structured as a chain following the Denavit-Hartenberg (DH) convention commonly
used in robotics [39]. A representation of this modeling based on the DH convention
is depicted in Figure 3.3.

In this convention, the pose matrix Ai−1
i , encompassing both orientation and

position, of the ith link in relation to the pose of the i − 1th link, is defined using
four parameters (ai, di, αi and θi). These parameters are defined as follows:

• ai distance between Oi and Oi′ ,

• di coordinate of Oi′ along zi−1,

• αi angle between axes zi−1 and zi about axis xi to be taken positive when
rotation is made counter-clockwise,

• θi angle between axes xi−1 and xi about axis zi−1 to be taken positive when
rotation is made counter-clockwise.
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Figure 3.3: Denavit-Hartenberg convention [39]

According to the DH convention, each joint is modeled with a single DoF whose
rotation is quantified with φ. If the ith joint is revolute, three of the four parameters
(ai, di and αi) are constant and depend only on the geometry of connection between
consecutive joints established by the ith link. Only the remaining variable θi is
variable over time.
The DH convention defines the transformation matrix of the ith link with respect
to i − 1th link, as follows:

Ai−1
i =


cos(θ) − sin(θ) cos(α) sin(θ) sin(α) a cos(θ)
sin(θ) cos(θ) cos(α) − cos(θ) sin(α) a sin(θ)

0 sin(α) cos(α) d
0 0 0 1

 (3.1)

3.3.2 The developed lower limb model
The DH convention has found widespread application in various studies within the
literature. For instance, in Panich’s research [40], the convention was employed to
model leg-exoskeleton, enabling the representation of three DoFs for each leg joint:
hip, knee, and ankle. Another notable application of the DH convention can be
seen in Chen’s study [41], where it was utilized for IMU-based lower limb motion
trajectory estimation. In this research, five IMU sensors positioned on the pelvis,
thighs, and legs were employed.
In this thesis work, the DH convention was adopted to model the human lower limbs
as a chain of rigid links, taking into account the anthropometric lengths of each
segment (lT HIGH , lSHANK , lT OE−ANKLE, lF OOT ). The model incorporated three
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revolute joints for the pelvis and nine revolute joints for each lower limb. These
joints were defined based on rotation sequences and axis orientations recommended
by the ISB guidelines [36]. The individual joints, including pelvis, hip, knee,
and ankle, were endowed with three DoFs each, encompassing flexion-extension,
adduction-abduction and intra-extra-rotation [42], as depicted in Figure 3.4. As
all joints in the model were revolute, the variable value θi was the only parameter
dependent on φi. The corresponding DH parameters were established as outlined
in Table 3.1 and in Table 3.2.

Link θi di ai αi

1 φ1+π/2 0 0 π/2
2 φ2+π/2 0 0 π/2
3 φ3+π/2 0 0 π/2

Table 3.1: Denavit-Hartenberg parameters for the pelvis

Link θi di ai αi

1 φ1+π/2 0 0 π/2
2 φ2+π/2 0 0 π/2
3 φ3+π/2 -lT HIGH 0 π/2
4 φ4+π/2 0 0 π/2
5 φ5+π/2 0 0 π/2
6 φ6+π/2 -lSHANK 0 π/2
7 φ7+π/2 0 0 π/2
8 φ8+π/2 0 0 π/2
9 φ9+π/2 -hF OOT lT OE−ANKLE 0
10 0 0 -lF OOT 0

Table 3.2: Denavit-Hartenberg parameters for lower limbs

The constructed model enabled the initiation of the analysis from specific angle
configurations for each joint. Utilizing direct kinematics, the model yielded essential
information, including the orientation and position of the pelvis, right foot, and
left foot. These parameters served as one of the two inputs for the optimization
process, as illustrated in Figure 3.6.
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Figure 3.4: Frontal and sagittal view of the human lower limbs model in agreement
with DH and with the ISB guidelines. The joints are numbered from 1 to 3 for the
pelvis and from 1 to 9 for each lower limb. Links represented with thin blue line
are characterized by a null length.
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3.4 Constraints
The previously outlined lower limb model facilitated the introduction of constraints
to compensate for the limited information gathered from the IMUs. As noted
earlier, these constraints can be categorized into two groups:

1. Constraints on joints: These constraints pertain to the functional anatomy
and were applied to the rotations of each joint. Specifically, the flexion-
extension angles of the joints in both lower limbs were restricted, as detailed in
Table 3.3, to prevent unrealistic rotations during walking [43]. Additionally, the
angles of adduction-abduction and intra-extra rotation were either constrained
to small values or completely blocked to ensure accuracy.

Angles (deg) Flexion Extension
Hip 50 -50

Knee 80 -2
Ankle 50 -10

Table 3.3: Limits imposed on the flexion-extension angles of the lower limb joints

2. Constraints specific to the analyzed experiment (gait): These con-
straints were designed to align with the particulars of the gait being studied
and were crucial in refining the model’s accuracy and relevance to real-world
walking scenarios. They can be summarised as follows (Figure 3.5):

(a) No “ghost foot”: feet are not allowed to overstep the ground while walking,
(b) At least one foot in contact with the ground: necessary condition to define

walking and distinguish it from running for example,
(c) Positive position variation in the anteroposterior direction: to prevent the

subject from walking backwards,
(d) Pelvis trajectory within feet in the anteroposterior direction: to avoid

forward or backward centre of mass imbalances.

3.5 IMU-based information
The second input block for optimization comprised data obtained from IMUs.
Following the setup outlined in [1], IMUs were strategically placed on the pelvis
and feet. These sensors provided the same parameters as those derived from the
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Figure 3.5: a) "No ghost foot"; d) Pelvis trajectory (in light blue) within feet in
the anteroposterior direction

Figure 3.6: Overview of the optimization framework with the quantities derived
from the lower limb model made explicit

previously discussed lower limb model, namely the orientation and position of the
pelvis, right foot, and left foot. The obtained parameters served as the second input
for the optimization process, as illustrated in Figure 3.7, and were instrumental in
refining the accuracy and reliability of the optimization framework.

3.5.1 Orientation estimation
The orientation of the pelvis and feet was determined using the method proposed
by Madgwick in [23]. The Madgwick filter is a complementary quaternion-based
orientation filter and it was selected for its simplicity, requiring the adjustment of
only one parameter (β) and exhibiting a low computational load. The fundamental
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Figure 3.7: Overview of the optimization framework with the quantities derived
from the IMUs made explicit

approach to determining orientation from IMU data involves integrating the angular
velocity and subsequently correcting this value with accelerometer readings. To be
more specific, accelerometer data are employed in an optimized gradient-descent
algorithm to compute the direction of the gyroscope measurement error as a
quaternion derivative. The primary parameter (β) is associated with the zero
mean of gyroscope measurement errors. Essentially, a higher β places greater
emphasis on the accelerometer signals. For this study, the chosen value for β
was established at 0.001. The algorithm discussed operates in a repetitive cycle
where, at each time step, a new orientation is computed based on the previous
step. Consequently, the selection of the initial quaternion is crucial for initiating
this cycle. A reasonable assumption is made that initially, the body segment to
which the IMU is attached is stationary before any motion occurs. This assumption
guides the choice of a quaternion initialization method that doesn’t necessitate
the consideration of gyroscope data, as explained in [44]. Orientation was derived
using both accelerometer and gyroscope data. To ensure accuracy, the offset from
the gyroscope data was reduced, and this offset was computed as the average of
angular velocity values recorded during static conditions, specifically, during the
warm-up phase of the sensors. In addition, orientation was recalculated at the
initiation of each stride cycle. Given the cyclic nature of walking, particularly
during the stance phases where the velocity of the foot nullifies, these instances
were opportunistically utilized for reinitialization. Figure 3.8 provides a schematic
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representation of the described concept.

3.5.2 Estimation of spatio-temporal gait parameters
The position of the feet was calculated using the spatial parameter estimation
method detailed in [45]. The algorithm, which outlines the estimation of stride
length (SL), comprises the following sequential steps [46, 47, 48]:

1. Identification of gait events: Initial and final ground contacts are estimated
using methods proposed by Salarian et al. [49] and Trojaniello et al. [50],
adapted for foot positioning.

2. Identification of integration intervals: SL estimation relies on double integra-
tion over time of acceleration components, and integration drift is mitigated
by assuming zero-velocity at each integrating instant [51]. The beginning
and end of the stride cycle are pinpointed during mid-stance in the flat-foot
phase. A zero-velocity update (ZUPT) detector, employing the gyroscope
signal, determines the flat-foot phase [47]. The detector assesses the stationary
or moving state of the IMU by comparing a function of angular velocity with
a threshold th. The zero-velocity hypothesis holds if the function is lower than
th: q

j ∥ωj∥2

N
≤ th (3.2)

where ∥ωj∥ is the norm of angular velocity at the j-th instant, N is the window
size, and th is the threshold value. The ZUPT threshold th is set equal to
0.27.

3. Orientation estimation and gravity subtraction: To subtract gravity from raw
accelerations, 3D foot orientation is required. A complementary filter, based
on the sensor fusion algorithm proposed by Madgwick [23], is employed for
this purpose. This filter enables the tuning of a single parameter (β), set equal
to 0.001. Additionally, to eliminate gravity residuals, the mean acceleration is
subtracted, given that when a body initiates and concludes its motion, the
average acceleration must be zero.

4. Re-orientation along the direction of progression: Since SL is defined as
anteroposterior displacement during a gait cycle, the coordinate system at
each stride is rotated from the sensor system to the anatomical (anteroposterior-
mediolateral-vertical) system. The angle maximizing the mean anteroposterior
linear velocity for each stride is chosen to identify the direction of progression,
and the filtered acceleration is projected onto it [48].
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5. Direct and reverse integration: Once stride direction and the integration
interval are determined, a double integration of gravity-free linear accelerations
is performed. To reduce integration drift due to noise and residual gravity, the
velocity is estimated using the direct and reverse integration method (DRI)
[48]. The DRI involves weighting direct and reverse integrations over time
with respect to a sigmoid-shaped weighting function w(t), normalized between
0 and 1, where L is the length of the integration interval, and γ establishes
the curve steepness.

w(t) = arctan
A

2t − L

2γL

B
(3.3)

6. Displacement estimation: SL is obtained by integrating velocity between two
consecutive mid-stance instants.

However, for the current phase of the study, the foot position derived from the
SP was employed. Furthermore, the position of the pelvis was also determined
using the SP.

Figure 3.8: Velocity of the center of the foot during gait phases [52]
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3.6 Definition of the objective function for opti-
mization

3.6.1 The Sequential Quadratic Programming algorythm
The two aforementioned inputs were incorporated into the optimization process,
which is elaborated upon in this section.
The applied optimization technique is based on the Sequential Quadratic Program-
ming (SQP) algorythm, an iterative method designed for constrained nonlinear
optimization. SQP can be regarded as a quasi-Newton method and is particularly
suitable for mathematical problems characterized by twice continuously differ-
entiable objective functions and constraints. SQP methods work by solving a
series of optimization subproblems, each of which optimizes a quadratic model
of the objective function while linearizing the constraints. The formulation of a
quadratic programming (QP) subproblem is based on a quadratic approximation
of the Lagrangian function, and its solution is used to form a new iteration, as
summarized in Figure 3.9. Consider a nonlinear programming problem of the form:

minx f(x)
subject to h(x) ≥ 0, g(x) = 0

The Lagrangian for this problem is:

L(x, λ, σ) = f(x) − λh(x) − σg(x) (3.4)

where λ and σ are Lagrange multipliers. To find the solution ∇L(x, λ, σ) = 0, the
SQP algorithm defines an appropriate search direction dk at an iterate (xk, λk, σk),
as a solution of the QP subproblem. In cases without constraints, the method
simplifies to Newton’s method, aiming to locate a point where the objective gradient
becomes zero [53].

The implementation of SQP consists of the following steps [54]:

1. Updating the Hessian matrix

2. Quadratic programming solution

3. Initialization

4. Line search and merit function

Hence, the SQP algorithm necessitates initial conditions and an objective function
for minimization.
The SQP algorithm shares similarities with the active-set algorithm, with notable
distinctions including:
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Figure 3.9: General scheme illustrating the basic SQP algorithm [53]. The therms
f(x), h(x), and g(x) are each potentially non linear; x is potentially a vector of
many variables for the optimization, in which case h(x) and g(x) are systems. ∇2

xx

denotes the Hessian matrix.

• Strict feasibility with respect to bounds: The SQP algorithm ensures that each
iterative step remains within the bounds-constrained region. Additionally,
finite difference steps adhere to these bounds, allowing steps to precisely align
with a boundary. This strict feasibility proves advantageous when dealing with
undefined or complex objective functions or nonlinear constraint functions
outside the bounds-constrained region.

• Robustness to non-double results: Throughout its iterations, the SQP al-
gorithm can encounter failed steps, indicated by an objective function or
nonlinear constraint function returning Inf, NaN, or a complex value. In such
instances, the algorithm attempts a smaller step.

24



Methods

• Refactored linear algebra routines: The SQP algorithm employs a distinct set of
linear algebra routines to solve the quadratic programming subproblem. These
routines excel in both memory usage and speed compared to the active-set
routines.

• Reformulated feasibility routines: The SQP algorithm introduces two novel
approaches to addressing the subproblem when constraints are unsatisfied:

– The SQP algorithm combines the objective and constraint functions into
a merit function, seeking to minimize it under relaxed constraints. While
this modified problem may yield a feasible solution, it increases the
variable count compared to the original problem, potentially slowing the
subproblem solution. These routines draw inspiration from the works
[55, 56]. The SQP algorithm adjusts the penalty parameter for the merit
function based on the recommendation in [57].

– In cases where nonlinear constraints are not met, and an attempted step
exacerbates the constraint violation, the SQP algorithm endeavors to
achieve feasibility using a second-order approximation to the constraints.
While this technique may lead to a feasible solution, it can prolong
the solution process by necessitating additional evaluations of nonlinear
constraint functions.

3.6.2 The objective function
The objective function comprises six terms, outlined in Figure 3.10. To elaborate,
the orientation terms were computed by multiplying the model rotation matrix
with the transpose of the measured rotation matrix, and the result was converted
to Euler angles. Conversely, the position terms were determined as the difference
between the model’s position and the measured position.

Figure 3.10: Objective function for the Sequential Quadratic Programming
algorythm

The summarized optimization process is illustrated in Figure 3.11. Upon
completion of the optimization, the output included the angles and positions of the
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analyzed joints. This outcome enabled the reconstruction of lower limb kinematics
during the studied gait.

Figure 3.11: Overview of the optimization framework with the optimization
process made explicit

3.7 Joint angles and positions
The optimization framework outlined in Section 3.6 was applied to three spe-
cific segments of the captured gait data, each corresponding to a single stride.
Through this process, the framework generated joint angles and positions crucial
for reconstructing the lower limb kinematics. These angles were instrumental in
reconstructing the lower limb kinematics. The obtained results were compared with
those acquired from the SP to assess the accuracy of the estimation. To facilitate
a quantitative comparison between the outcomes derived from the IMUs and those
acquired from the SP, Root Mean Square Error (RMSE) values were computed,
indicating the differences between the results obtained through the two methods,
after removing their mean values. The RMSE calculation formula employed is as
follows:

RMSE = RMS(αSP − mean(αSP ) − (αIMU − mean(αIMU)) (3.5)

The terms αSP and αIMU represent the time-series data of angles obtained from the
SP and IMU systems, respectively. Removal of the mean value was necessary due
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to differing definitions of the anatomical reference system between the two systems,
as detailed in [58]. This discrepancy resulted in an offset shift between αSP and
αIMU , rendering direct comparison between them meaningless for the purpose of
analysis.
Furthermore, Range of Movement (ROM) values were computed for both the angles
derived from the IMUs and the SP. Differences between the measurements obtained
from the two methods were also taken into account.
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Experimental session

4.1 Experimental setup
In this study, experiments were conducted in the PolitoBIOMed Lab, a facility
equipped with specialized instrumentation for movement analysis tests, as shown
in Figure 4.1.
Two primary systems were employed:

• SP system as the reference, consisting of:

– 12 Vicon infrared cameras were used to reduce artefacts caused by natural
light, ensuring accurate tracking,

– 3 RGB cameras recorded video footage of the experiments,
– An active wand aided in system calibration, featuring known geometric

marker configurations, represented in Figure 4.2,
– 26 passive markers, coated with retroreflective material, were placed on

the subjects according to the Vicon’s reference guide [59], as shown in
Figure 4.3 and in Figure 4.4,

– A force plate system (Advanced Mechanical Technology, Inc Watertown,
USA) facilitated synchronization between the two systems, depicted in
Figure 4.2,

– Nexus software (v. 2.12) was utilized for extracting files containing joint
angles and forces.

• IMU-based system: seven IMUs were attached to bands on specific body
segments (feet, shanks, thighs, and pelvis) for motion tracking.
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Figure 4.1: PolitoBIOMed Lab

Figure 4.2: The force plate system and the active wand
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Figure 4.3: Front view of marker placement on the subject [59]

Figure 4.4: Rear view of marker placement on the subject [59]

4.1.1 The INDIP system
The INDIP system (INertial module with DIstance sensors and Pressure insoles)
was developed by the University of Sassari with the primary objective of establishing
a real-world gold standard for gait analysis [60]. It was strategically incorporated
into the European project Mobilise-d, which focuses on generating digital mobility
outcomes to monitor the daily gait of individuals with diverse mobility issues,
ultimately aiming to enhance personalized care.
The system configuration employed in this project integrates three IMUs affixed to
both feet and the lower back, operating at a sampling frequency of 100 Hz.
Each IMU within the system encompasses:

• A 3D accelerometer with a selectable full-scale range of up to ±16 g, output
data rate ranging from 1.6 to 6664 Hz, and low zero-g offset (±40 mg) [61].

• A 3D gyroscope with a selectable full-scale range of up to ±2000 °/s, output
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data rate ranging from 1.6 to 6664 Hz, and low zero-rate offset (±1 °/s) [61].

These IMUs are integrated into a printed circuit board, connecting the sensors to
transmission modules, the battery, and electronic circuitry for front-ending and
data storage. The circuit board is encased in a 3D-printed plastic housing for
protection [62].

Two distinct choices for attaching the INDIP units to the subject are available,
as shown in Figure 4.5:

• Clips: exclusive for securing to the feet

• Velcro straps: suitable for attachment to the head, hands, lower back, ankles,
and feet

Figure 4.5: Clips and velcro straps for securing the INDIP units

4.1.2 The synchronization process
The synchronization process involves aligning data from different devices with
distinct time vectors. Initially, all data are imported, each associated with its
unique time vector corresponding to the respective device.
The first synchronization step focuses on aligning the INDIP. Each INDIP dataset
is individually interpolated by mapping its original time vector onto the time vector
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of an additional INDIP Trigger unit used as a reference. While all INDIP share
the same time vector due to their initialization from the same laptop, the starting
signals processed via Bluetooth for each INDIP result in varying sample counts for
the same trials. To address this, one of the INDIP is chosen as a reference, with the
additional INDIP Trigger being the preferred choice due to its synchronization with
the SP system. Consequently, the signals from each INDIP are mapped onto the
time vector provided by the additional INDIP Trigger, ensuring an equal number
of samples for all INDIP.
In the second synchronization step, SP data are aligned with INDIP data by
interpolating the optical time vector onto that of the additional INDIP Trigger.
This phase is schematized in Figure 4.6. As previously mentioned, both the SP and
INDIP Trigger systems start simultaneously through a trigger signal sent via cable.
Finally, in the third step, all data are resampled at a constant frequency of 100
Hz. The data from the additional INDIP Trigger are no longer required in the
subsequent analysis.

Figure 4.6: Connection between INDIP and Vicon

4.1.3 The calibration process
The sensors embedded in each IMU come pre-calibrated by the integrated circuit
manufacturer. However, the initial calibration provided may not be universally
suitable for all applications, and its efficacy can diminish over time with usage.
Consequently, it is prudent to conduct a thorough examination and, if necessary,
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fine-tune the calibration of each sensor to enhance measurement accuracy.
Potential calibration parameters include:

• Scale factor (S): These coefficients, which are temperature-dependent, act
multiplicatively and are positioned along the diagonal.

• Bias (b): Temperature-dependent biases.

• Cross-axis sensitivity (C): Represented as a matrix, it indicates that perturbing
one axis may yield readings on the other two.

• Sensor misalignment (M): Indicates that the three axes may not be perfectly
orthogonal, resulting in non-zero acceleration projections on the axes.

• Case-sensor misalignments (optional): Given that the circuit board is housed
within a case, uncertainties arise regarding whether the planes identified by
the sensors align precisely with those of the case.

Therefore, the complete calibration model for a generic 3D accelerometer is as
follows:

acal = MCS(T )[auncal − b(T )] (4.1)

where

• acal is the calibrated acceleration,

• auncal represents the uncalibrated acceleration,

• S denotes the scale factor matrix,

• b is the bias,

• C represents the cross sensitivity matrix,

• M denoted the misalignment matrix.

The calibration model outlined is applicable to both the accelerometer and the
gyroscope. Specifically, we adopt the calibration methodology proposed by Stancin
and Tomazic [63].

Accelerometer calibration

For the accelerometer, the dedicated model is expressed as follows:

a = Cs(as − a0) (4.2)

where
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• a represents the vector of measurements post calibration refinement,

• as is the vector of measurements as initially recorded by the accelerometer,

• a0 signifies the vector of offsets,

• Cs denotes the matrix of scaling coefficients, amalgamating the impact of
matrices M, C and S.

Note that, for simplicity, the influence of temperature is not considered.
The primary objective of calibration is to estimate Cs and a0. We define six distinct
acquisitions organized into two sets of triplets, as illustrated in Figure 4.7. In the
first triplet, g is aligned with one of the three axes, while in the second triplet, g is
oriented in the opposite direction to one of the three axes.

Figure 4.7: Six measurements divided into two triplets with the sensor at rest on
a horizontal surface in six different orientations

The acquired measurements will be utilized to estimate Cs and a0 through the
equations proposed by Stancin and Tomazic [63].

After determining Cs and a0, these parameters are applied to the accelerometer
measurements to align them more closely with the ideality condition. The ideality
condition is achieved when an accelerometer, placed on a horizontal surface, records
the gravity vector along the vertical axis and registers null measurements along the
other two horizontal axes. This condition implies that the accelerometer’s reference
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system is perfectly orthogonal, with an axis coincident with the vertical.
The application of Cs transforms the signals from the pre-calibration accelerometer
reference system to the post-calibration accelerometer reference system.
The effect of a0 is to subtract an offset value from the measurements, adjusting the
modulus of the post-calibration measurements to approach the ideality condition,
where the modulus equals the gravity vector.

Gyroscope calibration

In a similar way, we formulate a calibration model for the gyroscope as follows:

ω = Cs(ωs − ω0) (4.3)

where:

• ω represents the vector of measurements post refinement of the calibration,

• ωs represents the vector of measurements as read by the gyroscope,

• ω0 represents the vector of accelerometer offsets,

• Cs represents the matrix of scaling coefficients, which consolidates the effects
of the M, C and S matrices.

The influence of temperature is disregarded for simplicity. The calibration’s
objective is to estimate Cs and ω0.

Through the four acquisitions shown in Figure 4.8, including:

• A static acquisition,

• A rotation around x,

• A rotation around y,

• A rotation around z,

calibration refinement is to be executed. The gyroscope is situated on a turntable
whose axis of rotation aligns with one of the gyroscope’s axes, as depicted in
Figure 4.9.

For each dynamic acquisition, a known number of complete rotations is performed
in a time T. Then, the average ideal velocity of each axis is defined as follows:

ωi = φi

T
, φi = 360◦ ∗ Nrotations (4.4)

After determining Cs and ω0, they are applied to the gyroscope measurements
to obtain measurements closer to the ideality condition. The same considerations
made for the accelerometer case are applicable in this context.
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Figure 4.8: Measurements for gyroscope calibration

Figure 4.9: Turntable on which the gyroscope is placed during dynamic acquisi-
tions

4.2 Experimental protocol

A validation protocol was followed, involving sensor warm-up to mitigate tempera-
ture effects [19], gyroscope bias computation, and marker preparation.
The SP system underwent masking, full calibration, and setting of the laboratory
reference system before subject preparation.
The subject was prepared with both optoelectronic markers and IMUs for the walk-
ing exercises, as illustrated in Figure 4.10. Static acquisitions allowed for manual
labeling of markers, ensuring accurate association with camera-detected points.
Post-processing steps involved Nexus software, including gap filling for marker
occlusion, dynamic pipeline execution, and ASCII export for data extraction.
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The study involved a healthy 22-year-old male subject, and various exercises were
performed to analyze straight walking under different conditions:

• Walking at different speeds:

– Comfortable speed
– High speed
– Low speed

• Half-step walking:

– Right half-step
– Left half-step

• Toe-walking

• Walking with different step lengths:

– Short step length
– Long step length

These exercises were meticulously captured and analyzed using the combined
SP and IMU systems, as follows:

1. 10 minutes of warm-up of IMUs,

2. Preliminary acquisition in static condition of one minute of the IMUs to
estimate the bias of the gyroscope,

3. Start acquisition with IMU software,

4. Start recording with Nexus,

5. Performance of the first exercise,

6. Stop recording with Vicon,

7. Stop IMUs’ acquisition,

8. Repeat the steps 3-7 until reaching at least 3 trials,

9. Repeat the steps 3-8 for each exercise.
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Figure 4.10: Subject’s setup with markers and IMUs

For this thesis work, only the “straight walk at comfortable speed” trial was
used for the reconstruction of lower limb kinematics.

After completing the acquisition procedure, the data from the INDIP system
underwent processing to generate reference outputs. The standardization process
resulted in the creation of the Matlab structure “data.mat”, encompassing the data
acquired by each sensor and adhering to the Mobilise-d project’s standards [64].
Specifically:

• The “data.mat” structure contains a field named “TimeMeasure1”, which, in
turn, comprises multiple fields representing various trials. For each trial, data
from different sensors are stored separately, as schematized in Figure 4.11.

• The standardized data adopted the following units of measurement:

– Accelerations: g
– Angular velocities: °/s
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• Furthermore, data acquired by each triaxial sensor adhered to the convention:

– The first column represents the anteroposterior component,
– The second column represents the vertical component,
– The third column represents the mediolateral component.

Figure 4.11: Example of how the structure “data.mat” is nested
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Results

Figure 5.1 displays the resulting joint angles for the first cycle, showcasing the
flexion-extension angles of the hip, knee, and ankle for each lower limb. Notably,
the continuous blue line represents the trends derived from the IMUs, while the
dashed red line illustrates the trends from the SP.
These angles play a pivotal role in reconstructing the lower limb kinematics,
demonstrated across successive frames in Figure 5.2. In this visualization, the right
limb is depicted in blue, while the left limb is depicted in red.

To establish a quantitative comparison between the outcomes derived from
the IMUs and those acquired from the SP, RMSE values were computed and are
presented in Table 5.1, for each of the three cycles. Additionally, ROM values were
calculated for both the angles obtained from the IMUs and those from the SP,
along with the differences observed between the two methods. These values are
compiled in Table 5.2, for each of the three cycles. For both the RMSE and ROM
calculations, the values for the right and left limbs were averaged.

RMSE (deg) Cycle 1 Cycle 2 Cycle 3
Hip 4.3 3.8 3.8

Knee 6.1 5.3 5.8
Ankle 4.8 4.3 4.2

Table 5.1: RMSE values of the difference between joint angles from the proposed
method and from the SP after mean value removal, for each of the three cycles
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Figure 5.1: Left and right limb angles for hip, knee and ankle from IMUs (in
blue) and SP (in red), for the first cycle

41



Results

Figure 5.2: Frame sequence of the reconstruction of lower limb kinematics, for
the first cycle
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Cycle 1
ROM (deg) IMU-based SP-based |IMU-SP|

Hip 43.9 42.9 1.0
Knee 63.2 58.5 4.7
Ankle 33.7 24.1 9.6

Cycle 2
ROM (deg) IMU-based SP-based |IMU-SP|

Hip 39.1 42.2 3.1
Knee 55.3 57.5 2.2
Ankle 31.2 24.4 6.8

Cycle 3
ROM (deg) IMU-based SP-based |IMU-SP|

Hip 41.2 43.3 2.1
Knee 57.0 59.4 2.4
Ankle 32.9 23.9 9.0

Table 5.2: ROM values for hip, knee and ankle from IMUs, SP and the difference
between the two methods, for each of the three cycles
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Chapter 6

Discussion

6.1 Results on the estimation of joint kinematics

The primary objective of this study was to assess joint kinematics utilizing a
simplified setup comprising only three IMUs strategically placed on the feet and
pelvis. Specifically, the study aimed to derive angles at the hip, knee, and ankle
joints during a selected walking segment. Therefore, three walking segments, each
corresponding to a stride, were selected to have three cycles on which to evaluate
the results. The selection of walking cycles for analysis was made at random, driven
by the observed repeatability of results across different walking cycles. However, a
specific criterion was applied to ensure consistency; cycles with initial conditions
corresponding to instances of the standing phase, derived from spatial parameters,
were considered. This selection was made irrespective of whether these instances
pertained to the left or right foot.
A 22-year-old healthy male participant walked in the laboratory along a straight
path at a comfortable speed, equipped with the specified three IMUs and markers
for the SP system. The data collected from the IMUs were integrated into the op-
timization framework alongside model-derived data to reconstruct joint kinematics.
Subsequently, this reconstruction was compared with the joint kinematics obtained
from the SP system.
As depicted in Figure 5.1, the flexion-extension angles at the hip, knee, and ankle
joints, derived from the optimization framework, were juxtaposed with those ob-
tained from the SP. The trends exhibited demonstrated the framework’s capability
to reconstruct joint motion, albeit with noticeable errors. Utilizing these angles,
the kinematics of the lower limbs was reconstructed, visualized through a sequence
of frames in Figure 5.2, capturing various moments of the gait during the analyzed
stride. Similar results were obtained for the other two cycles.
For a quantitative comparison between the trends obtained through optimization

44



Discussion

and those obtained through SP, aiming to quantify the errors incurred, the decision
was made to calculate the errors between the two methodologies in terms of RMSE
for each joint, averaged between the right and left limbs. The selection of the
RMSE metric is grounded in its ability to accentuate differences between the two
methods by eliminating their mean values. This approach effectively mitigates any
inherent offsets arising from the distinct definitions of anatomical reference systems
in the two methods, enabling a more meaningful and accurate comparison [58].
The obtained results, summarized in Table 5.1, were then assessed according to
the criteria established in McGinley’s study [2], indicating that a joint kinematics
estimation system is deemed acceptable with RMSE values of less than 5 degrees.
Consequently, the errors for the hip and ankle fall within the acceptable range for
each of the three cycles, while the error at the knee, recorded at 6.1, 5.3 and 5.8
degrees, respectively, exceeds the acceptable threshold. This can be rationalized by
the absence of sensors on the thigh and leg, making it inherently challenging to
derive accurate angles at the knee.
Beyond the RMSE assessment, the ROM values were computed for each joint,
averaging between the left and right limbs. The computation of the ROM served as
a basis for comparing the range of values obtained between the two methods. This
analysis is valuable for potential adjustments to the constraints placed on joint
angles, aiming to enhance the outcomes derived from the optimization framework.
The calculations were performed for both the optimization and SP cases, along with
a comparison of the two methods, as presented in Table 5.2. Notably, the analysis
reveals, for each of the three cycles, the most significant deviations occurring at the
ankle, with a recorded value of 9.6, 6.8 and 9.0 degrees, respectively. This could be
attributed to the fact that the ankle angles exhibits peaks that deviate from SP
patterns, particularly saturating during foot extension, as depicted in Figure 5.1.
In contrast, the deviations for the hip and knee are comparatively smaller.
In computing RMSE and ROM, a decision was made to average the values obtained
for the right and left limbs. This choice was motivated by the fact that, depending
on the segment of the path used for reconstructing lower limb kinematics, the
optimization’s initial conditions vary. Consequently, the framework may encounter
more challenges for either limb based on its initial position.
It is crucial to highlight that the lower limb kinematics within the implemented
framework adheres to the ISB standards. More precisely, the biomechanical model
constructed enables the correlation of body segment orientations with the general-
ized coordinates of the multi-segmental chain, maintaining compliance with ISB
guidelines.
The ultimate aspiration involves employing this promising sensor configuration
in conjunction with the developed model to reconstruct lower limb kinematics in
real-world scenarios, encompassing various types of gait and accommodating differ-
ent subject conditions. In fact, the implemented framework offers the concurrent
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integration of constraints, encompassing both joint motion limitations and specific
attributes characterizing the analyzed experiment. Consequently, this capability
enables the examination of various walking scenarios. By preemptively identifying
the type of exercise under consideration, the framework allows for the introduction
and subsequent modification of pertinent constraints. This dynamic adjustment
process aims to enhance the precision of results derived from the optimization
framework.
As previously emphasized in the Section 3.5, the position of the pelvis and feet
obtained from the SP instead of the IMUs was utilized at this stage of the study,
representing a crucial aspect for future development. Implementing this step is
essential for assessing the variability of errors in the reconstruction of joint kine-
matics. It is noteworthy to emphasize that positions derived from IMUs inherently
harbor errors, especially in the case of foot positions obtained from disparate and
independent systems. The extent of mismatch between these distinct systems di-
rectly correlates with the magnitude of errors manifested in position measurements.
This recognition underscores the necessity of leveraging SP-derived data at this
stage of the work in refining the accuracy of joint kinematics reconstruction.
Moreover, when considering foot positions obtained from the IMUs, the accurate
identification of standing phase instants becomes crucial. Incorrect identification
of these instants can propagate errors, since they play a key role in assuming
zero mean value of acceleration, which is removed after subtraction of gravity, in
establishing initial conditions for integration, and in assuming zero velocity, which
is critical for reinitiating orientation. In the latter case, if the assumption is not
met, accelerometer measurements encompass not only gravity but also a component
associated with the actual acceleration of the body.
Another influential factor contributing to errors is the accuracy of anthropometric
lengths input into the model. Incorrect anthropometric lengths introduce a discrep-
ancy in position measurements, as these lengths delineate a spectrum of possible
positions used within the optimization process.

6.2 Future Developments
Concerning the pelvis position, a prospective advancement involves substituting
values obtained from the SP with those derived from IMUs. This could be achieved
by modeling the pelvis trajectory during the analyzed step cycle using an inverse
pendulum, as detailed in [65]. The referenced paper leverages the bipodal support
and balance phases of gait. In the balance phase, the foot emulates an inverted
pendulum, where the ankle joint serves as the support, and the tibia acts as the
pendulum, coordinating movement with the knee joint. Throughout the walking
cycle, the contact area of the foot sole with the ground can be regarded as the
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joint of the reverse pendulum, while the pelvic region represents the free end of the
pendulum, illustrated in Figure 6.1.

Figure 6.1: Model of the walking cycle with the inverted pendulum [65]

Subsequently, efforts can be directed towards refining the framework to minimize
the errors further. Nevertheless, the current work established the feasibility of the
initial objective, providing a foundation for future advancements.
As a concluding note, it is noteworthy to mention that the present optimization
framework requires 0.38 seconds for a single iteration. Therefore, as another avenue
for future development, efforts can be directed towards reducing this computational
time. Such optimization would be particularly beneficial for constructing real-time
applications of the framework.
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Chapter 7

Conclusions

In the field of human movement analysis, the precise quantification of kinematic
intricacies during real-life gait assumes paramount importance. This pursuit has
the potential to significantly influence diagnostic methodologies for motor disorders
and inform the design and evaluation of rehabilitation interventions. The dynamic
aspects of human gait, particularly walking speed, have attained recognition as a
vital sign alongside traditional indicators. Despite the precision offered by quan-
titative instrumented gait analysis, its widespread clinical integration encounters
substantial logistical challenges. The emergent technologies of wearables and sen-
sor fusion techniques present promising alternatives, offering viable solutions for
efficient gait monitoring in naturalistic environments.
This thesis addressed the impracticality of full-body sensor networks in real-world
scenarios by proposing a minimal configuration comprising three strategically IMUs
on the feet and pelvis. The objective was to estimate lower limb kinematics by
leveraging spatio-temporal parameters and IMU-derived orientations, notwithstand-
ing inherent errors associated with such measurements.
The study employed an optimization framework based on the DH convention, intro-
ducing constraints to mitigate information gaps and errors. Through experimental
validation comparing results with a SP system, RMSE values were derived. While
errors for hip and ankle joints fell within acceptable thresholds (less than 5 degrees),
those for the knee joint exceeded the established criterion.
The proposed framework adheres to ISB standards, facilitating its potential appli-
cation in real-world scenarios and suggesting avenues for further refinement. Future
endeavors include the enhancement of foot and pelvis position measurements and
optimization of computational efficiency. Despite existing limitations, this work
established the viability of the proposed IMU-based system, laying the groundwork
for advancing clinical gait analysis methodologies.
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