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Abstract 

The search for non-invasive and interactive therapeutic approaches has increased in the last 

decades, and Neurofeedback (NF) has been explored in the context of brain disorders or 

enhancement of cognitive performance, both in research and clinical settings. The NF 

technique aims to train self-regulation of brain activity in real-time (RT), and it is primarily 

utilized in research with functional magnetic resonance imaging (fMRI) or 

electroencephalography (EEG). The training undergone with NF is based on associative 

learning, which offers a non-pharmacological and non-invasive treatment. Different levels of 

reinforcement can be used in the approach, and even though the underlying NF mechanisms 

remain to be fully elucidated, studies have shown effectiveness in improving the relief of 

symptoms. Despite promising results, several limitations exist, including emotional and 

cognitive confounds, and the fact that about one-third of the population is not able to learn self-

regulation of brain activity. Furthermore, the indexes utilized for learning outcome are not fully 

defined nor standardized and focus on the amplitude of the brain activity of interest, in 

detriment of time-bound information. Least but not last, only recently have sham and control 

groups been included regularly in study protocols. 

This project aims at studying the efficacy of an EEG-based NF-training protocol that includes 

reward for both amplitude (continuous feedback) and duration (discrete feedback) of the brain 

activity of interest. The protocol is embedded in a game-based learning approach, and the NF 

training group is compared to a control-sham group, and simultaneously, attention, motivation, 

memory, and mood are assessed. The brain activity of interest was defined as the power of the 

upper alpha (UA) band, with the aim to increase its amplitude and reward when the goal is 

achieved for longer periods. This choice binds to the existing know-how at the laboratory where 

the project was developed. The final goal would be to have a protocol design with proven 

efficacy that could be adapted to clinical settings in migraine patients.  

Twenty-two female participants were enrolled in the study, meeting inclusion criteria of no 

known neurological disorders and no use of psychotropic medication, and were divided in two 

groups, the real NFT and the SHAM group. The protocol consisted in 4 training sessions to be 

performed in consecutive days at approximately the same time of the day. Each session lasted 

about 2 hours and comprehend questionnaires and cognitive tests, a pre-baseline recording for 

calibration, the real NF training, and the post-training baseline calculation.  
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Subsequently, the neurofeedback signal was calculated offline from channel Cz, with the EEG 

data pre-processed using Matlab toolbox EEGLAB, and then divided into 30 epochs. Time-

frequency (TF) decomposition was performed using wavelet transforms and timing 

information was tagged, to see when each participant achieved the goal of maintaining the NF 

signal above a predefined threshold. The information was subsequently analysed for the 

identification of training effects, both within and between sessions, for each of type of 

reinforcement feedback, and for each group.  

Finally, we aim at classifying between groups (NF and SHAM) and at identifying the features 

that better disentangle NF learners from non-learners. 
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1. INTRODUCTION 

1.1 Context 
Over the past few years, it has become increasingly important to seek non-invasive methods 

that can be used in clinical settings for future sickness treatment with the goal of minimising 

or getting rid of possible disease-related symptoms, since they are pain-free and have less side-

effects than invasive techniques and pharmacological treatments. Several studies have been 

conducted to investigate the biofeedback (BF) methods in different fields, such as treatments 

for psychiatric disorders (Schoenberg & David, 2014), rehabilitation (Giggins et al., 2013), and 

emotion regulation and cognitive enhancements (Lorenzetti et al., 2018; Loriette et al., 2021). 

Among others, the BF can be applied using electromyography (EMG), blood-volume pulse and 

peripheral skin temperature; other techniques have differentiated themselves by focusing on  

signals derived from brain activity, like electroencephalography (EEG) (Stokes & Lappin, 2010), 

electrocorticogram, magnetoencephalography (MEG) and functional magnetic resonance 

imaging (fMRI). These last techniques used to regulate brain activity are referred to as 

neurofeedback (NF). 

NF has gained popularity in clinical and academic settings for its ability to normalise or reverse 

abnormal brain activity patterns in a range of neurological and neuropsychiatric disorders 

(Pineda et al., 2012) and it works by training the brain to respond in a pre-defined manner 

(increase or decrease of activity) to specific stimuli and stressors (Lorenzetti et al., 2018). This 

technique is applied with real-time (RT) brain recordings, irrespective of brain imaging 

method, to extract features of interest (Kopel et al., 2017), which are used as associative 

feedback representation with different sensory modalities, such as visual, auditory, or tactile 

stimuli (Enriquez-Geppert et al., 2017), or using a game-based approach with screen-based 

display or virtual reality (VR) (Mohammadi et al., 2018; Rubio-Tamayo et al., 2017). 

Behavioural neuroscience posits that associative learning is at the base of self-regulation of 

brain activity in NF training (Angelakis et al., 2007). According to research, the feedback task 

could benefit from the addition of a game-based learning approach with different levels of 

reinforcement, both positive and negative (Klöbl et al., 2020; Reinschluessel & Mandryk, 2016). The 

most recent studies are focusing on the use of this approach, as the results from EEG-based 

training of healthy volunteers are promising. 
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1.2 Motivation 
Even though NF training (NFT) studies have produced encouraging results, there are still some 

limitations that should be taken into account. These include the lack of a control condition or 

control group in the majority of reported studies, the failure to consider attention and 

motivation as factors that affect learning capacity, as well as other psychological factors 

(Sitaram et al., 2016). Hence, ongoing efforts are made to improve the design of rewards and 

feedback given to the participant in order to improve the NFT outcome. In addition, it is still 

not standardized how to evaluate the learning, the best way to classify the subjects who are 

able to self-regulate and the predictors of this outcome. The latter is a big limitation, since it is 

proved that about one third of the population is not able to learn self-regulation (Sitaram et al., 

2016), so knowing in advance who will benefit from NFT would be very useful. 

The current thesis attempts to address these limitations by utilising a sham group (a sort of 

control group) (Ros et al., 2020) and by examining the impact of adding reinforcement levels 

on EEG-based NFT (Klöbl et al., 2020), which are aspects not enough researched. In this study, 

the game-based learning approach is used to increase the engagement in the training for the 

participants, and a new approach of evaluating the learning has been studied. In fact, up to now, 

most experiments have focused on the participant's ability to modulate his or her brain activity 

by increasing or decreasing the amplitude of the waves of the desired feature, without 

considering the time spent above a certain defined threshold for that same feature. Indeed, it 

has been thought that there may be people who, despite not being able to increase the relative 

amplitude of a certain brain wave very much, can learn to maintain this amplitude at a fairly 

high value (above threshold) for increasing times during NFT sessions (Dempster & Vernon, 

2009). Another innovation implemented in this study is the attempt to classify participants into 

learners or non-learners, considering both the standard and the new features, through the 

application of automatic classification techniques for EEG signals as reported in the literature. 

This research is part of a project whose ultimate goal is the optimisation and design of an 

efficient protocol for the treatment of migraine in adult women, which represents one of the 

most common and debilitating illnesses (Reddy et al., n.d.; Viana et al., 2020). The focus of 

the study are adult women since they are more likely than men to experience migraines of 

higher intensity and length, especially during menstruation, with menstrual migraine believed 

to be a prevalent subtype (Dib, 2008). Moreover, it is often recognised that women are more 

likely to get migraines throughout puberty and perimenopause, the latter of which is associated 

with the body's natural transition to menopause (between 25 and 55 years old) (Anne Sahithi 



- 3 - 
 

et al., 2020). Migraine is a neurological disorder that causes a very strong headache, and that 

can be categorized in two forms: without aura, the most common (about 80% of all cases); with 

aura, which is a condition caused by neural dysfunction (Zivoder et al., 2018). It should be 

noted that using VR goggles to improve NFT is not the first choice for migraine patients, as 

they frequently experience increased pain or discomfort when pressure is applied to the head 

for extended periods of time. It is important to find the optimal protocol for the treatment before 

applying it to the migraine patients in a clinical environment. 

For the presented reasons, the participants recruited for this thesis were only healthy women 

between the age of 18 and 35 years, the technique chosen was the EEG with the visual sensory 

modality for the NF without the use of VR goggles, but with a game-based approach to increase 

interest in the training. The presence of a control group, in this case Sham, has the advantage 

of offering a more rigorous comparison with the NFT group in order to evaluate behavioural 

changes and/or changes in the EEG activity data. 

1.3 Thesis Outline 
The thesis is divided into five chapters. This first chapter consists in a general background 

about EEG and NF, with a literature review and state-of-the-art about the techniques currently 

used in NFT. In the second chapter, the techniques used in the thesis are explained in full, 

including the description of the participants, the questionnaires submitted, the training protocol 

used and the methods to analyse the data. The chapter three illustrates the obtained results, 

which are discussed in chapter four, where a comparison with the literature is done. The final 

chapter five explains the principal conclusions, the limitations found in the research and the 

possible future development and application. 

1.4 Electroencephalography 
EEG is the physiological method of choice to record the electrical activity generated 

by the brain via electrodes placed on the scalp surface (Olejniczak, 2006). The first EEG 

recording on a human was made in 1924 by neuropsychiatrist Hans Berger at the University 

of Jena in Germany. Using the term "electroencephalogram," he employed EEG to 

graphically portray the electrical signals generated in a patient’s brain (Yasin et al., 2023). This 

technique records the brain’s electrical activity, measuring the voltage difference between the 

electrodes placed on the scalp and a reference electrode (Olejniczak, 2006). It has a good 

temporal resolution but, due to the volume conduction effect and the distance between the 

electrodes, it has a poor spatial resolution. EEG can also be used with other imaging techniques, 
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like fMRI and computed tomography (CT) to compensate for its inherent limitations 

(Niedermeyer, 2011). 

1.4.1 Neurophysiological Basis 
The EEG signal results from populations of cortical neurons’ synchronized synaptic activity; 

when postsynaptic neurons are stimulated a negative extracellular voltage is generated, creating 

a dipole. These neurons are primarily cortical pyramidal cells, which have their apical dendrites 

uniquely aligned parallel to one another and perpendicular to the cortical surface. These 

neurons generate both intra- and extracellular currents when they are stimulated. Local field 

potentials and local magnetic fields are produced simultaneously by magnetic field lines that 

are formed around the neuronal membrane, whose permeability can change in response to a 

stimulus (Lopes Da Silva, 2013). Consequently, the cell might encounter an influx of positively 

charged ions such as sodium (Na+), which would depolarize the membrane and cause an action 

potential. On the other hand, inhibitory mechanisms may lead to an increase in the membrane's 

permeability to ions that are negatively charged, such as potassium (K+) or chloride (Cl-), 

which causes the cell to become hyperpolarized and inhibits the generation of action potentials 

(Olejniczak, 2006). Ion channels facilitate the passage of these ions across the membrane, 

allowing certain ions to pass in the direction of their concentration gradient. K+ is more 

concentrated inside the cells, although Na+ and Cl-are more concentrated outside of them. In 

order to produce these electrical currents a neuronal activity is needed, which can be an action 

potential or a synaptic activity. Although action potentials have a considerable amplitude 

intracellularly, they have a much lesser amplitude outside of cells. The second type, the 

synaptic activity, enables chemical communication between neurons and their dendrites. 

Neurotransmitters released by pre-synaptic neurons interact with receptors on post-synaptic 

neurons to produce excitatory (EPSPs) or inhibitory (IPSPs) post-synaptic potentials that travel 

down the post-synaptic membrane. Synaptic currents lasts longer than those generated by 

action potentials and as a result, synaptic activity is the factor primarily responsible for the 

EEG signal’s contribution. The measured voltages are indicated in millivolts (mV) when 

measured at the surface of the brain (between 1 and 2 mV), or in microvolts (μV) when 

recorded in the scalp (near to 100 μV) (Malmivuo & Plonsey, 1995). The noise from the ground 

electrode can be eliminated by choosing a reference electrode from the recorded EEG channels 

to serve as the "baseline" for all other channels, which will substitute the ground electrode (Yao 

et al., 2005), the reference is explained in detail in section 1.4.4. 
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In conclusion, EEG is primarily caused by the spatiotemporal average of postsynaptic 

potentials that emerge in the cortical pyramidal cells (Figure 1.1). The spatial scales include 

single neurons(A), small networks of a few hundred neurons(B), and vast networks of millions 

of neurons in various brain regions(C). 

  

Figure 1-1 Electrophysiology of neural activity and EEG at different scales. (A) Microscopic scale. (B) 
Mesoscopic scale. (C) Macroscopic scale. (Glomb et al., 1234) 
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1.4.2 EEG signal propagation and measurements 
The EEG signal is transmitted throughout the brain through volume conduction. 

Considering the fundamentals of electrical charge: similar charges repel one another 

whereas opposing charges attract one another, when this process concerns a pool 

of ions, the phenomenon is called volume conduction and cause a charge "wave" to propagate 

through the extracellular area. Since the brain is not a homogeneous 

volume, the currents find some obstacles like the myelin-coated nerve tracts through 

which ions cannot flow or different densities of tissue that may impede the flow (Jackson & 

Bolger, 2014). The signal has to travel from the brain to the external electrode in order to be 

measured through four main layers: dura layers, skull layers, scalp and electrode gel. These 

forms a series of conductive volumes separated by insulating layers, they work as capacitors 

and the charge is conducted until it reaches the electrode. This process takes some time to settle, 

for this reason it’s necessary to wait a few minutes before beginning the recordings (Jackson & 

Bolger, 2014, p. 4). These conduction processes lead to a phenomenon called spatial smearing, 

which is a diffusion of the signal of the dipoles present in the brain, where the measured signal 

is the sum of several dipoles that are within a certain range (Yasin et al., 2023). EEG can 

measure both tangential and radial dipoles, since it can detect them when the source and the 

sink are not equally spaced from the electrode (Ahlfors et al., 2010). Beside limited spatial 

resolution, one of the principal limitations relates to the strength of the source needed for the 

signal to reach the electrode, since the produced electric field drops off quickly, and the noise 

corrupts the signal. For this reason, the electrode gel and an amplifier are necessary to face 

these limitations. The first one is highly conductive and is used to create a conductive channel 

from the scalp to the electrode. The noises that corrupt the signal can be caused by internal or 

external sources, the amplifier should be placed as close as possible to the electrode in order to 

have a high signal-to-noise ratio (SNR), which is the measure for the quality of the signal. The 

internal noise can be handled by controlling environmental factors and with post-processing 

methods (Jackson & Bolger, 2014). 

1.4.3 Brain Waves 
The amplitudes and frequencies of the electrical brain activity, or brain waves, can be used to 

identify the patterns of neuronal activity. The scalp EEG signal fluctuates primarily in the 

frequency range of up to 50 Hz, and the recorded EEG wave's features are greatly influenced 

by the person's mental state such as wakefulness, different sleep stages or mental disorders, 

and they are typically irregular and lack of a precise pattern. High levels of consciousness are 
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indicated by an increase in the EEG rhythm, whereas slow waves are indicative of lower levels 

of brain activity (Roohi-Azizi et al., 2017) 

Based on their frequency, brain waves can be divided into 4 major types (Figure 1.2) 

(Niedermeyer, 2010): 

• Delta waves (0.5-4 Hz): There are two cellular sources of delta activities, one in the 

thalamus and the other in the cortex. These slow oscillations are recorded during deep 

sleep or extremely low brain activity, like in anesthetized animals or humans (Amzica & 

Lopes Da Silva, 2010). 

• Theta waves (4-7 Hz): They are recorded during stages 2 and 3 of slow wave sleep, and 

they originate in the human hippocampus. These waves play a role in attention, 

sensorimotor integration, memory processes, and spatial navigation. A larger activity 

was recorded during rapid eye movement (REM) sleep (Amzica & Lopes Da Silva, 2010; 

Bódizs et al., 2001). 

Alpha waves (8-13 Hz): the occipital cortex produce the majority of the signal in these 

frequencies during consciousness, but it can be recorded also from the somatosensory cortex 

(mu rhythm) and the temporal cortex (tau rhythm). The wave rhythms generated by the 

occipital cortex are better identified during reduced visual attention and in a state of muscular 

relaxation (Amzica & Lopes Da Silva, 2010), occurring often during peaceful, relaxed wakefulness 

or a rested state and with a tendency to vanish during sleep (Iaizzo, 2020). Alpha amplitude 

can be diminished or inhibited by concentration and mental effort (Shaw, 1996), whereas lack 

of attention or closed eyes both raise it (Nunez et al., 2001), and its phase predicts cortical 

excitability and affects perception of visual inputs (Thut et al., 2012). Moreover, it is 

diminished in amplitude or entirely suppressed by eye opening, which is a phenomenon known 

as alpha desynchronization. Alpha band can be divided in two sub-bands, based on the 

cognitive process that generates them: Lower alpha (LA) band and Upper alpha (UA) band. 

LA is divided in two other sub-bands, lower-1 (LA1) and lower-2 (LA2), its width is about 3.5-

4 Hz and the desynchronization occurs in the range of 6-10 Hz, it is probably associated with 

attention (Klimesch, 1999). UA band is thought to be caused by memory processes and 

processing semantic information. Its width is smaller than LA band, in fact it comprises only 

1-1.5 Hz and in this case the desynchronization occurs around 10-12 Hz (Klimesch, 1999). 

Since there is a large variability in this band, due to different factors like age and brain volume, 

Klimesch proposed to use an Individual Alpha Band (IAB) instead of a well-defined band. This 
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is based on the definition of Individual Alpha Frequency (IAF), which is the frequency 

presenting maximum power. The IAB can be defined in different manners, but in this project, 

we will use the definition IAB = [IAF-2Hz, IAF+2Hz]. 

• Beta waves (14-30 Hz): beta rhythmic activity is associated to the motor cortex’s 

neurons generating commands. These waves are fast oscillations with a low amplitude, 

and they are recorded during alert wakefulness and motor activity. Beta I (14–20 Hz) 

and beta II (20–30 Hz) are the two subclasses that make up the beta band. The first 

appears concurrently with alpha waves and is similarly influenced by mental activity, 

while the second only appears during periods of great mental effort and tension.  

• Gamma (30–80 Hz) and High gamma (80–150 Hz): these high frequencies waves are 

rarely seen in scalp EEG, but they can be detected via intracranial recordings. They are 

associated with memory, attention, and problem-solving tasks. 

  

 

 

 

 

 

 

 

 

 

 

 

1.4.4 Electrode placement 
A set of electrodes must be positioned on the scalp in order to record EEG signals. There are 

various possible placements, but the standard ones are the most used because considering the 

same relative position enables repeatability through different studies (Jurcak et al., 2007).  The 

most common placement is the 10-20 International System, which considers the head size and 

Figure 1-2 Typical brain waves in different frequencies (Jasek et al., 2018) 
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shape by the identification of specific anatomical landmarks: nasion (Nz), placed on the nose 

bridge; inion (Iz), the prominence at the base of the occipital bone; and the left (LPA) and right 

preauricular points (RPA), an anterior root of the tragus's centre of peak region (Jurcak et al., 

2007). The next step is to position adjacent electrodes at conventional measurement distances 

of either 10% or 20% of the length of the lines connecting Nz, Iz, LPA and RPA, with a total 

of 21 electrodes (Figure 1.3).  To identify the position of a certain electrode, two coordinates 

are used: a letter, which refers to the anterior/posterior position on the head, and a number, 

which gives information about the media/lateral position (odd numbers = left hemisphere; even 

numbers = right hemisphere). The midline electrodes are identified by the letter "z," which 

stands for "zero," and the numbers rise as one moves away from the midline (Fisch, 2010). 

The letters correspond to frontal polar (Fp), frontal (F), central (C), parietal (P) and occipital 

(O) areas of the head, where the C location is placed over the central sulcus.  

Each electrode's signal is determined by the difference in electric potentials between that 

electrode's location and that of another electrode known as the reference, which includes 

electrodes like FCz, Oz, Cz, connected ears, and the nose. Post-acquisition re-referencing 

procedures use references such as the mean mastoids, the average, or the reference electrode 

standardization method (Lei & Liao, 2017), among others. Over the years, more extensive variants 

of this system were studied, like the 10/10 or 10/5 systems, which allow a higher density of 

electrodes and a better spatial resolution (Jurcak et al., 2007). The 10-10 system adds extra 

Figure 1-3 The international 10-20 system seen from (A) left and (B) above the head. A  = Ear lobe, C  = central, 
Pg = nasopharyngeal, P  = parietal, F  = frontal, Fp = frontal polar, O  = occipital (Malmivuo & Plonsey, 1995) 
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electrodes to have a more in-depth EEG and consists in about 70 channels, which fills in the 

gap of the 10-20 system. This system was then expanded by completing the spaces between 

the points to form the 10–5 system, where the points are separated by 5%, permitting the use 

of numerous electrodes, ranging from approximately 140 to over 300 electrode sites 

(Oostenveld & Praamstra, 2001).  

Electrode caps are currently used in research settings because they are simpler to use and come 

with pre-marked holes for inserting each electrode in accordance with the intended system. In 

addition to having pre-positioned electrodes, these caps have the added benefit of being 

available in multiple sizes to suit individuals with varying head shapes, which makes it easier 

to install the electrodes correctly (Casson et al., 2018). 

Reference Electrode 

The reference electrode used to record the EEG is typically affixed to the mastoid (bones 

behind the ears), FCz or Cz electrodes, single or attached earlobes, or the tip of the nose; 

nonetheless, using a single channel as an in-line reference is advised. The reference channel is 

typically not displayed in the EEG data since recording it would entail recording variations of 

zero volts. Also, it is important to place the reference, while recording EEG data, far from the 

region of interest, otherwise the information about brain activity in that area might be lost 

during NFT, since the signal from the reference channel is subtracted from the other channels. 

There are different ways to re-reference the channels, for example the reference electrode could 

be an offline reference used after recording to recalculate the voltage of the channels. After 

that, the voltage at these channels indicates the difference to this new reference. This technique 

is useful when the data from the online reference channel contains important information, and 

recovery of the online reference channel is possible. 

Other possible techniques include: (i) the average of the mastoids electrodes (M1 and M2 / TP9 

and TP10), which is commonly employed when the target signal is situated in the middle or in 

the midline of the scalp; (ii) the average of all channels and subtracting that value from the 

value of each channel, so that each contributes equally to the new reference, to apply this 

method it is necessary to have electrodes equally spaced (about 64 channels) to avoid problems 

due to the different density of channels on the scalp; (iii) the reference electrode standardization 

technique (REST), which translate a reference point at infinity from a channel on the scalp or 

an average utilised as a reference (Yao et al., 2005). 
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1.4.5 Typical artifacts of EEG recordings 
The signal quality is degraded by the EEG recording environment and subject-related electrical 

activities, these interferences are known as artifacts. The frequency or time domain of the EEG 

can be contaminated by artifacts that come from the subject's own physiologic processes and 

movement as well as external sources including equipment, equipment noise, and the 

movement of electrodes and wires. External artifacts can be avoided with a proper insulation 

of the cables, whereas internal and physiological artifacts represent still a challenge for the 

researchers (Kaya, 2022; Tatum et al., 2011). The most common artifacts are (Dworetzky et 

al., 2011) described here and some examples are depicted in the Figure 1.4: 

• Eye movements: blinking or eye rolling may cause interference, due to the movement 

of the dipole that is formed between the cornea and the retinal surface, which is more 

negatively charged than the cornea, introducing slow waves and larger voltage 

potentials, especially in the frontal regions, although they may expand to the central 

and temporal regions as well. While lateral motions mostly influence the electrodes F7 

and F8, vertical movements are most noticeable in Fp1 and Fp2. The Eyes Closed (EC) 

condition also results in the appearance of these artifacts. 

• Electromyographic: they have higher frequencies, in general, then the signals generated 

in the brain and measurable on the scalp. They are mostly caused by the muscular 

activity of the head, face and neck and appear in frontal and temporal lobes, even if 

they can be observed also in other regions. 

• Glossokinetic: this term refers to the tongue movement. The tongue, similarly to the 

eyes, acts as a dipole and produces a potential between the frontal and occipital areas, 

although it isn’t as strong as the one brought on by eye movements. While speaking or 

eating, certain involuntary tongue motions can produce waves in the delta range with 

superimposed muscular artifacts, while horizontal tongue movements can induce 

unilateral artifacts in the EEG. 

• Electrocardiographic: this is the artifact caused by the cardiac activity, its presence 

depends on the montage and on the size of the patient. It is a periodic signal, and it has 

a sharp shape. The “cardiac-cerebral relationship” can be recognized and understood 

using the presence of this artifact. 

• Sweat: the noise introduced by the scalp perspiration is due to the formation of 

erroneous electrical connections between electrodes. It appears as undulating waves 

with low-amplitude and low-frequency (about 0.5 Hz) and this kind of artifact is seen 
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in more than one channel or over the entire head. By raising the low-frequency filter or 

keeping the scalp dry, it can be reduced. 

• Patient movement: it can cause the movement of the electrodes and introduce an artifact 

in the recordings, they can be characterized by different frequencies or amplitudes. 

They can be caused by the patient’s tremors or breathing, and they can be associated 

with simultaneous body movement to be easily recognized. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Non-physiologic artifacts have a wider range of characteristics, making it more difficult to 

identify them. Instances of such artifacts include (Dworetzky et al., 2011):  

• Electrode and lead: this artifact can be produced by inadequate electrode-scalp contact, 

which results in sudden positive discharges and frequently delayed, low-amplitude 

activity that is typically localized to a single electrode. These types of artifacts can be 

recognized by the unique form, positive charge, and apparent superimposition on 

Figure 1-4 Common EEG artifacts waveforms (Kareem Abdullah et al., 2014) 
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normal activity. High impedance electrodes can deceitfully cause low or high EEG 

amplitudes and loss of low-frequency components. 

• Instrumental: these artifacts are caused by issues with the EEG equipment. 

• Environmental: they are caused by electrical interference of the AC power supply; in 

Europe it is at 50 Hz. 

1.5 Neurofeedback 
Neurofeedback (NF) is a technique that involves giving people a feedback loop that mimics 

their own brain activity, in this way some people can learn to intentionally regulate it, 

increasing or reducing specific patterns, depending on the request (Biswas & Ray, 2017). 

Participants can assess their progress during the process and become conscious of the 

fluctuations in their brain activity in real-time (RT), allowing them to adjust and reach better 

performances (Marzbani et al., 2016).  

NF has a lot of potential in fields like rehabilitation and cognitive enhancement thanks to its 

non-invasive manner of reprogramming the brain's electrical neural circuits with little to no 

side-effects (Niv, 2013a; Ros et al., 2014). Moreover, since it doesn't require the addition of 

pharmaceutical substances, electromagnetic activity, or electrical stimulation, it can be done 

without requiring reliance on outside sources. 

The feedback can be provided to the subject in two main sensory modalities, visual or auditory. 

The first one is visible feedback on the screen, such as images, videos or games; the second 

modalities can be obtained with the use of music or sounds, these two modalities can be used 

separately or combined together (Enriquez-Geppert, Huster, Herrmann, et al., 2017). 

 

 

 

 

 

 

 

 

 

 

Figure 1-5 The five most crucial processing steps of a neurofeedback 
system included in the pipeline. (Enriquez-Geppert et al., 2019) 
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The five main steps of the NF pipeline are typically as follows: first, the EEG is acquired; 

second, the raw data are pre-processed online; third, the feedback feature (power frequency 

band or ratios for EEG) is chosen; fourth, this feature is converted into a stimulus (visual, 

auditory, mixed, etc.) for the study participant in RT; and, as a final step, the participant can 

learn how to regulate his own brain activity (Enriquez-Geppert et al., 2019). The main steps 

are presented in the Figure 1.5, and they are fully explained in section 1.4.3. 

1.5.1 Neurofeedback Mechanisms 
The brain mechanisms behind NF remain unclear to this day, and the research lacks consensus 

and a theoretical foundation for them. Through the past years, many studies focused on 

explaining the concepts of NF (Niv, 2013b) and the first important factor identified is the 

neuroplasticity, the brain’s ability to adapt to both internal and external stimuli. It is possible 

that neurofeedback is having an impact via strengthening synapses through repetitive firing, 

which may result in an increment of the signal transmission between two neurons when they 

are stimulated synchronously (Justyna Ksiazek-Winiarek et al., 2015), and affect brain 

rhythms. Since the neuroplasticity requires some time, the NF protocols consist usually in many 

sessions of training, as will be explained in detail later, and in the initial training phase, the 

feedback signal fluctuates unconditionally until a threshold (the reward threshold) is achieved, 

and the participant receives the feedback. As a result, the brain can learn how to create this 

kind of neuronal state and replicate the signal after a few sessions (Ros et al., 2014), so control-

theoretic closed-loop models could serve as the foundation for NF learning (Sitaram et al., 

2016). 

One of the most problematic things about neurofeedback is that the induction of brain processes 

targeted during neurofeedback training may not be the cause of the behavioural changes seen 

in traditional neurofeedback investigations, since many other factors can have an impact. Some 

of them were studied by Shibata et al. (2018), to assess in which case they could somehow 

explain the results of the NF training. These factors were for example the placebo effect, giving 

to the participant an explicit strategy (which led to no learning at all), physiological artifacts or 

the neuronal plasticity coming from a non-target area (Shibata et al., 2018). They found that 

the last one is very unlikely to influence the results, whereas the others may have an impact in 

the conventional protocols of NF. These are things to consider when designing a NF training. 

Notably, the targeted self-regulation with NF is linked to three core neurocognitive networks 

(Niv, 2013b; Sitaram et al., 2016): 
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• Default-mode network (DMN): a widely recognised neural structure that functions as 

an integrated system to regulate self-related cognitive activity. It is enhanced via 

consistent meditation practise and can effectively alleviate many symptoms; 

• Central Executive Network (CEN): in charge of executive and cognitive processes like 

organising, making decisions, and managing working memory and attention; 

• Salience Network (SN): a brain network that aids in the recognition and guidance of 

both internal and external stimuli. 

It should be noted that any change made to any one of these networks could disrupt the others, 

causing oscillations in frequencies at the target characteristics or frequency ranges of NF 

protocols, such as alpha and theta, thus training demonstrates a general improvement in 

symptoms and reinforces such characteristics (Menon, 2019; Niv, 2013b). 

In order to evaluate the data, direct research efforts, and create and/or enhance protocols, 

investigators in clinical and research settings should have a thorough understanding of the 

mechanisms underlying NF, which has not yet been fully achieved (Davelaar, n.d.). Also, it's 

still unknown how training may affect hormonal systems and, consequently, symptoms of 

specific diseases (e.g., migraine) (Razoki, 2018). 

1.5.2 Neurofeedback Types 
The NF can be produced with different approaches: neuroimaging recordings (e.g. functional 

NIRS, fMRI, PET), electrical recordings (e.g. EEG, electrocorticogram, local field potential, 

spikes), magnetic recordings (e.g. MEG), and brain stimulations, divided in repetitive 

transcranial magnetic stimulation, transcranial direct current stimulation and deep brain 

stimulation (Lee et al., 2023). In the present study, it was chosen to use the EEG, since it is the 

simpler to implement, it is a non-invasive technology, and the signals' frequency analysis 

allows for an efficient classification, which makes it possible to assess brain activity at different 

frequencies both when performing a task and when at rest. For all these presented reasons the 

EEG is also the most used NF type (Arpaia et al., 2020). 

The number of features linked to the self-regulation of brain activity varies throughout 

research, and in the present thesis the features of interest come from the information obtained 

with the electrodes. 

These three illustrated techniques all have advantages and disadvantages. The EEG and MEG 

have a higher temporal resolution than fMRI, reaching the order of milliseconds. This 

important characteristic makes possible to work with the NF signal in RT, which cannot be 
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done with the fMRI-NFT due to the hemodynamic response that delay the feedback. On the 

other hand, fMRI has the advantage of offering a high spatial resolution compared to the other 

two and allows monitoring of the entire brain (Emmert et al., 2017; Hirano & Tamura, 2021). 

As mentioned, the EEG-NFT is the most used NF technique and can be further classified into 

different types of NF. The most used of them is the frequency/power training in both practice 

and research, which consists in regulating specific brain waves’ frequencies (e.g., alpha 

rhythm) in targeted areas (e.g., temporal lobe) or modifying their amplitude (Lee et al., 2023). 

Some of the others NF types are: Low Energy NF System (LENS), which helps participants' 

brain waves to be regulated when they are relaxed and still with their eyes closed (EC), by 

applying a mild electromagnetic signal as a stimulus to the scalp (Ochs, 2013); Live Z-Score 

NF (LZT), which uses a continuous systematic database to compare brain electrical activity 

parameters and give the users continual feedback on their performance (Thatcher, 2013); Slow 

Cortical Potential (SCP), which has an effect on the slow cortical potential by improving their 

direction, positive or negative, to control specific event-related potentials (ERPs) and it may 

enhance SCP's ability to self-regulate cortical excitability (Strehl, 2009); NF that uses the 

electromagnetic stimulation to increase or inhibiting a certain brain activity, in an effort to 

return brain activity to normal, much like what happens during meditation sessions, an example 

is the study on a depression treatment using the ROSHI Neurodynamic Activator™Instruments 

(Pasadena, USA) by Hammond (2000). 

1.5.3 Optimal Protocols for Neurofeedback 
A fundamental step in a NF training is how to design the optimal protocol to reach the wanted 

goal, such as relaxation or focus, and to do that the correct frequency band to use should be 

determined (Israsena et al., 2021). The different bands are related to specific brain activities, 

when the feature of interest is the high-frequency components, the beta and gamma bands are 

the one studied; on the other hand, when low-frequency components are desired, the alpha and 

theta bands are investigated.  

As introduced at the beginning of the section 1.4, the design of an optimal protocol needs to 

comprehend five steps, the first one (Data acquisition) is linked to the section 1.4.2 where the 

different techniques to acquire data are presented.  
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Data Pre-Processing 

The pre-processing step is very important to be able to interpret and extract information from 

the EEG signals, since there are many artefacts that can quickly taint EEG data, as explained 

in section 1.3.5. These artefacts frequently result in waveforms that accurately replicate 

cerebral potentials and typically influence the entire EEG frequency spectrum, including the 

frequencies that are the subject of NF training (Tatum et al., 2011). Finding and eliminating 

these artefacts is crucial to prevent patients from erroneous modulation learning of their activity 

instead of the appropriate brain activity. This is especially true for patient populations with 

significant motor agitation or uncontrollably moving parts of their bodies(Chaumon et al., 

2015; Enriquez-Geppert, Huster, Herrmann, et al., 2017). There are different ways to reject 

artifacts, some of the most used techniques are (Dworetzky et al., 2011; Kim, 2018): a band 

pass filter to keep the wanted frequencies and remove the others (e.g., remove the power supply 

artifact at 50 Hz); manual rejection of part of signals clearly corrupted by external components; 

reject automatically values exceeding a set threshold; cleaning techniques able to recognize 

non-brain activity and remove it; automated methods of component decomposition to remove 

the unwanted artifact. The last one can be done with principal component analysis (PCA) or 

independent component analysis (ICA), among others. In the presented thesis the ICA 

technique was chosen. The ICA works by recognizing the independent components in an EEG 

signal, which can be broken down into separate, linear combinations of its original components. 

The identified components coming from artifacts can be subtracted from the original signal, 

however, this technique is difficult to use in RT because of its computational time, but it is very 

useful with the recorded signals.  In general, the artifact rejection is complex to perform online 

during the NF training, and to minimize their influence the subjects are asked to refrain from 

making sudden movements or blinking, and the EEG features selected are the ones less 

contaminated by artifacts. 

Feature Selection and Extraction 

In a NF experiment, the features chosen and retrieved from brain activity typically correspond 

to the oscillatory brain activity that is intended to be modulated, to evaluate the effectiveness 

of the protocol used and thus verify the achievement of the goal, such as the increasing of a 

specific band linked to a specific cognitive function (Enriquez-Geppert, Huster, Herrmann, et 

al., 2017; Marzbani et al., 2016). Each brain lobe is dedicated to a specific function, 

furthermore the same lobe in two different hemispheres may have very different functions; for 
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this reason, the feature of interest is usually extracted from one or more channels combined at 

the lobe under examination. This feature is used as feedback parameter, which is often the 

power during the training compared to the baseline power acquired before NF, and that can  

correspond, for example, to part of or the whole frequency band power or to ratios of power 

between different frequency bands (Huster et al., 2014). 

Feedback Generation 

The fourth step is the generation of a sensory stimulus from the selected feature. When 

designing the protocol of a NF training, the choice of the best feedback is critical, as it is the 

way the participant will be able to see the variations of the own brain activity and can therefore 

influence learning, which is the final goal of the protocol (Huster et al., 2014). Through the 

years, many studies have tried to find the best solution, first by comparing visible feedback 

with audible ones, which although less used remains interesting (Bucho at al., 2018), and then 

by testing different visual sensory modality, that remains the most common method. Usually, 

these studies include linear changes in the visual properties of objects displayed on a screen, 

for example in the studies by Bucho et al. (2018) and Nan et al., (2012) the size and colour of 

the object changed according to brain activity, the size represented the amplitude of a feature 

whereas the colour corresponded to a goal achievements; in the researches conducted by 

Escolano et al., (2011, 2013, 2014) and Zoefel et al., (2011) only colour was used and the 

saturation changed based on the average amplitude of the UA; other studies considered the 

speed of an object in movement (Israsena et al., 2021; Jirayucharoensak et al., 2019; 

Reinschluessel & Mandryk, 2016); or dimmering a picture to make it harder to watch (Pérez-

Elvira et al., 2021), among other things. Regarding studies with auditory feedback stimuli, an 

example is the study conducted by Stokes & Lappin (2010) where it was used as feedback a 

“beep” heard by the participant; in another research by Ghaziri et al., (2013), the sound was 

heard only when a defined threshold was reached and exceeded. Another possible auditory 

feedback could be to increase the volume of the sound or its frequency following the amplitude 

of the feature (Fernández et al., 2016; Lecomte & Juhel, 2011; Bucho et al., 2018). In the 

current literature, the results of the studies that used multimodal feedback were almost the same 

obtained with visual-only feedback, and there is only one study where better results were 

obtained with only auditory modality (Fernández et al., 2016). According to the authors, this 

result is related to operant conditioning's strong correlation among reinforcement and learning, 

which increases the efficacy of learning. They explained the results with the fact that, in the 

experiment, the auditory stimulus was simpler than the visual one, which was harder to process. 
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It should be noted that in this study the population was composed of children with learning 

disabilities, so this can be relevant for certain clinical populations but not in general. 

Learner 

The last step consists in recognizing if a participant can be considered a learner or a non-learner, 

which means to understand if it is able to self-regulate the brain activity with mental strategies 

(Enriquez-Geppert, Huster, Herrmann, et al., 2017). This is one of the biggest problems of NF 

training, since about one third of the population is not able to do it and there aren’t clear ways 

to identify them a priori, as well as there aren’t standard methods to define the learners. In the 

following section this topic is treated in detail. 

When designing a protocol for NFT, two things that need to be defined in detail are the duration 

and the frequency of the sessions, because learning is associated to mechanisms like the 

formation of long-term memory, so the time has an important role in it. It is recommended to 

have multiple training sessions with nights of rest in between in order to solidify the training 

memory because sleep plays a crucial role in the learning process (Gaume et al., 2016). In 

literature, experiments ranging from a single training session (Reinschluessel & Mandryk, 

2016) to more than 40 sessions (Ghaziri et al., 2013) can be found.  

Considering the cited studies that used visual sensory modality with different protocols of NFT, 

it can be deduced that it is more convenient to have more than one session to allow the 

participants to have time to learn the self-regulation of brain activity, and it’s better if the 

sessions are in the same week (Bussalb et al., 2019). Anyway, these factors should be adapted 

to each specific protocol, if the overtraining is reached or the participant is experiencing 

tiredness then the number of sessions should be reduced (Dekker et al., 2014; Matthews, 2008). 

1.5.4 Reward and Punishment system 
Reward and punishments are reinforcements techniques used in the NFT session to reinforce 

desired responses. The participant is awarded for any event or stimulus that follows a desired 

answer, and they are punished (e.g., red flag) if the required response was not received. The 

first is given to encourage that particular response to happen again under the same 

circumstances, while the punishment aims to prevent the occurrence of an undesirable reaction. 

The term reinforcement comprehends both of the event, positive or negative, after the response 

to the stimulus, either by making the response more or less likely to happen again, respectively 

(Sherlin et al., 2011; Strehl, 2014). 
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This system aims to increase the motivation of the participant to successfully complete the NFT 

session, based on the assumptions that the NFT can modulate the dopaminergic midbrain 

activity which is linked to the levels of motivation, as well as decision-making and 

reinforcement learning (Hellrung et al., 2022). An increasing amount of research has shown 

that using games to create more engaging learning strategies is possible and very effective too, 

people can therefore improve their motivation and, consequently, how they view the reward 

they receive (Gaume et al., 2016).  

The way this reinforcement is given depends on the protocol used. In the presented thesis a 

reward is given after a certain threshold for the feature of interest has been reached, whereas 

the punishment is given when falling below the threshold again. The choice of this value is 

very critical, since there is correlation between the optimal reward threshold and the 

effectiveness of the NFT: if the difficulty level is too high, participants may become frustrated; 

if the difficulty level is too low, they may lose interest in the work (Enriquez-Geppert, Huster, 

Herrmann, et al., 2017; Vernon et al., 2009). Even if most of the studies base the threshold 

value on the participant’s resting activity to have a tailored value, there are also some works 

where the threshold was a fixed value for all the subjects. A review of the different thresholds 

used in literature is presented. 

One example is the study conducted by Van Boxtel et al., (2012), they didn’t fix a specific 

threshold but gave continuous feedback, which consisted in participant’s favourite music, by 

decreasing the volume of the music if the alpha rhythm was low, and by making the music 

more pleasant when alpha values were high. Nan et al., (2012) proposed a study with an 

adaptive threshold that was updated after every session, depending on the performance. In case 

the preceding session's percentage of time spent above the threshold was greater than 60%, a 

certain amount was added to the threshold. On the other hand, it was lowered if it was less than 

40%. Diaz Hernandez et al. (2016) tried to use as individual threshold the percentage of time 

needed to produce microstate D, which was the feature considered, to receive feedback for at 

least 50% of the trial duration. Individual thresholds were established by Vernon et al., (2009) 

using the average amplitude measured at rest with the eyes open (EO) before each training 

session. 

In addition to the threshold, another important factor is defining which kind of reinforcement 

is the optimal one. Furthermore, the types of punishments could be implemented by eliminating 
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the desired attribute (such as an object in motion that stops). There are four different types of 

reinforcement found in literature: 

i) One-property, wherein a linear increase of a particular attribute is applied. This is used 

in many studies, like the ones conducted by Escolano et al., (2011, 2013, 2014) or the 

research by Fernández et al., (2016b), who used both auditory and visual feedback 

defined by the decrease in the Theta/Alpha ratio. Other examples of this type of 

reinforcement are the studies by Israsena et al., (2021) and Jirayucharoensak et al., 

(2019) who used visual feedback and a game-based approach. 

ii) Two-property, for situations where two characteristics are altered at the same time. This 

is the method used in the study by Ide-Walters & Thompson (2021), they used a bar to 

give feedback for alpha band features, which was meant to be enhanced, and another 

bar for the EMG activity, which had to stay low to reduce movement artifacts, the 

colours of the bars also changed from green to red in bad conditions. Another example 

is the experiment by Ghaziri et al. (2013) where an audiovisual feedback loop with two 

columns was used, one representing the EEG activity at channel F4 (visual feedback) 

and the other showing the EEG activity at channel P4 (audio feedback). 

iii) In series, used when two different forms of reinforcement are applied consecutively. 

Two studies with this method were found in literature, the one from Reinschluessel & 

Mandryk (2016) and the one from Nan et al. (2012), in which a sphere's colour changed 

when UA value exceeded the threshold, and more slices were added when the first goal 

was reached for more than two second consecutively. The second goal can be obtained 

only after reaching the first one. Another example is the study led by Dempster & 

Vernon (2009), in this work the information about alpha activity were given with a 

moving bar, and the information about the time spent above threshold was given by 

changing the colour of that bar.  

iv) Discrete, in which, based on the participant's performance, more specific feedback is 

given during or at the conclusion of the trials. In the study by Klöbl et al. (2020) this 

technique is applied, and the additional intermittent feedback consisted in a yellow 

smile as positive reward or a grey smiley as punishment for bad performances. 

1.5.5 Neurofeedback learning evaluation 
According to the underlying principles of reinforcement learning and operant conditioning 

(Sitaram et al., 2016,Domjan, 2004), it is hypothesized that participants can exert control over 
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their brain activity when they are provided feedback or contingent rewards that elicit the 

desired brain responses during the study.  

As already mentioned, standard metrics to evaluate the learning are not consensual and 

standardized across the scientific and clinical field. Yet, several options exist, among them two 

major frameworks (Dempster & Vernon, 2009): 

• intra-session, which can be derived from the average results of the assessments 

conducted at the beginning and conclusion of each training session, or from the 

comparison of variations within each session to a baseline measurement. 

• inter-session, that evaluates the learning over time, considering the variation through 

all the sessions (e.g., slope of the regression line) or also comparing the first and the 

last session. This is thought to be the best one to define the ability of a person to learn 

with the NFT. 

Combining the two methods may also lead to a better comprehension of how effective learning 

processes are (Zuberer et al., 2015). 

Learning curves can be utilised to examine these learning metrics and visualise the process by 

which each participant learns to control their own neural activity based on the chosen feature 

(Cowley et al., 2016; Enriquez-Geppert, Huster, Herrmann, et al., 2017). There are other 

techniques to evaluate the learning, such as counting how many times the participant has 

reached a certain goal. The chosen method depends on the focus of the study. In the context of 

this thesis the variations over time are important, so the first kind of evaluation is used. 

The efficacy of the NFT is also seen in the long period, it was effective if the changes are 

maintained over time, for weeks or even months, which is referred to as transfer learning of 

NFT (Sitaram et al., 2016).  

Learning curve 

The learning curve represents graphically the variations of the feature of interest to analyse it. 

It displays the learning process on the Y-axis and the evolution of the feature's control over 

each session and in relation to all sessions on the X-axis (Ribeiro Ribas et al., 2016). This can 

be done for each participant individually or as a group analysis involving all participants. The 

learning curves have a stagnation point, where the rate of learning decreases or stops, and they 

tend to a plateau value, which can be explained by the intrinsic aspects of the NFT, such as the 

number and the length of the sessions, and by the possible feelings of fatigue or loss of 
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motivation experienced by the participant (Wang et al., 2022). Nonetheless, certain studies 

showed that individuals usually regain their ability to learn after the period of stagnation, a 

phenomenon referred to as the relearning effect (Fielenbach et al., 2019; Wang et al., 2022). 

Through the years, learning metrics have been employed in several studies to gauge the success 

of the research, both between and within sessions. For example, to confirm that lowering the 

theta/beta ratio will speed up processing, Keune et al., (2019) accessed that ratio. It was not 

successful learning over the course of the two-week training period, however there was a brief 

drop-in theta activity that was noted within sessions.  

Other examples, include the study by Dessy et al., (2020), who used both learning metrics and 

found an increment in the UA amplitude comparing the last and the first session, and the study 

by Chen & Lin (2020) that also have investigated both metrics, finding a variation between the 

pre- and the post-training conditions. Least but not last, the study conducted by Wang et al., 

(2022), which aimed to downregulate the alpha band, evaluated the immediate impact of the 

NFT in raising working memory and attention levels using the intra-session metric and the 

long-term effect with the inter-session metrics. Also, another study found significant results 

only with the intra-session metrics, which is the one conducted by Nawaz et al., (2022). 

1.5.6 Factors Affecting Learning Ability 
As pointed out by Wan et al. (2014), recognising the elements that influence learning capacity 

is just as crucial as establishing the pertinent methods/indices to assess learning ability.  

The participant's success may be influenced by their mood or other psychological traits. It has 

been suggested that a variety of factors, such as motivation, commitment, perceived difficulty 

of the training, and the variety of tactics used, are related to training outcomes (Huster et al., 

2014; Kleih & Kubler, 2013).  

One of the factors that can affect the learning outcomes is the Reinforcement, which was 

explained in detail in section 1.5.4. In this section two other factors are detailed, the mental 

strategies and the Intrinsic characteristics. 

Mental Strategies 

Although it was suggested that mental strategies can affect the learning, there are few studies 

that tried to assess the hypothesis that using these strategies or providing them beforehand to 

the participants can influence the results (Enriquez-Geppert, Huster, & Herrmann, 2017; Huster 

et al., 2014). Further consideration should be given to how individuals can effectively learn to 
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take control of their own brain activity, given the relatively high percentage of non-learners 

(Kober et al., 2015). Two ways were tried out, some researchers gave suggestions about the 

strategy to begin with, others merely give participants general instructions to try whatever helps 

them to self-regulate their brain activity. In the study by Chikhi et al. (2023), they compared 

two groups of people, the first group was given a list of strategies to try during the NFT, the 

second received no instruction on how to modulate the brain activity, but they were asked to 

report the strategy used at the end of the training. They found out that giving the list of mental 

strategies didn’t help the participants to increase the UA activity, however it was revealed that 

cognitive effort and recalling memories were useful strategies in the learners. Nan et al. in 2012 

conducted a study where they assessed that participants able to reach the NFT goal had specific 

mental strategies, such as positive thought (e.g., thinking about family), whereas participants 

who used neutral strategies had limited success. It is interesting to note that those who used as 

strategy negative thoughts had the opposite effect, with worse performance. Another example 

is the research led by Zoefel et al. (2011), in which it was found that the majority of subjects 

actually used mental strategies, in particular thinking and evoking their emotions. 

Intrinsic characteristics 

It should be kept in mind that learning-related elements are frequently unconnected to 

psychological causes or aspects of the training design, sometimes the intrinsic factors of the 

individual can have a big impact on the learning ability. Alkoby et al., in 2018, conducted a 

study on the predictors for a successful learning, which are found to be correlated with the 

inter-individual differences. Enriquez-Geppert, Huster, & Herrmann, (2017) discovered, for 

instance, that learning ability was also predicted by the volume and concentration of specific 

neuroanatomical regions rather than by motivation or commitment. Another possible factor is 

the intelligence of the person, since participants with higher intelligence are reported to having 

better performances, this is probably caused by a good understanding of the task provided and 

the best ways to enhance the feature of interest (Jausovec, 2011; Keizer et al., 2010). According 

to Nawaz et al. (2023), the working memory is another intrinsic characteristic that influence 

the learning, in fact the subjects with higher memory tend to reach better results with NFT. 

Another aspect that was taken into consideration was the participant's self-confidence in his 

ability to achieve the goal, where high values are associated with more engagement in the 

training, and so, better performances (Schönenberg et al., 2021). 
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1.5.7 Identification of Non-Learners 
As discussed previously, no clear criteria have been established to identify a learner (able to 

self-regulate) from a non-learner (not able to self-regulate) (Wan et al., 2014). This section will 

provide an explanation of the non-learner identification criteria used in various NF research 

studies and according to different training aspects. These metrics, used to establish a metric of 

learning outcome, are divided into the classical measures, which are focused on the features 

regarding the amplitude, and the newest, and less studied, features regarding the modulation 

over time. Since terminology used in literature can change, in this section, "learner," 

"responder," and "performer" are interchangeable. 

Standard learning metrics 

The standard learning metrics have so far focused on the use of features regarding the increment 

or decrement of, mostly, frequency band power ratio on one or more channels. Most of the 

protocols found in literature studied alpha, theta and beta frequency bands or a combination of 

them (Hammond, 2007; Marzbani et al., 2016).  

There are in the literature several studies that used Beta protocols, which is intended to enhance 

thalamic inhibitory function, such as the one conducted by Razoki, in 2018. Other studies 

focused on the sub-band of beta from 13 to 15 Hz, known as sensorymotor rhythm (SMR) for 

protocols related to anxiety (Nan et al., 2019) or the one from Weber et al. (2011) in which the 

performers were identified as the participants whose mean percentage of EEG amplitude 

increased during the training, when compared to the baseline, and tends to increase across the 

sessions. Other research used the Beta/Theta power ratio, considering again only the amplitude 

in this frequency band, which is the commonly used protocol for ADHD conditions (Janssen 

et al., 2020; Lee et al., 2022).   

Nevertheless, many studies were conducted using Alpha protocols in order to reduce pain or 

stress (Lee et al., 2022; Marzbani et al., 2016) or to enhance cognitive performances, especially 

when they focused on UA frequency (Escolano et al., 2014; Zoefel et al., 2011). In a study led 

by Escolano et al. in 2011, non-responders were defined as those whose average UA power in 

the final trial of the previous session did not differ statistically from UA in the "pre-active 

assessment block" of the first session, leading to the elimination of three out of nine 

participants. Dekker et al. in 2014 determined that alpha band responders were those people 

for whom the alpha power showed a positive difference between training sessions 1 and 15 

(the last session), which were 13 out of 18 participants (about 72%). Another example of 
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identification consists in calculating the total alpha durations of the three sessions at the 

beginning of the experiment and then defining responders the participants with the total alpha 

duration of the twelfth and last session higher than that value (with a 95% confidence interval) 

(Hsueh et al., 2016).  

There are also studies about the Theta/Alpha power ratio, they had different goals like enhance 

the Theta and inhibit Alpha, to increase creativity, or reduce this ratio to improve the learning 

(Fernández et al., 2016; Gruzelier, 2009).  

In the present thesis the UA band is the choice for the feedback generation, but also the total 

Alpha and Theta band are considered in the analysis. 

Time percentage 

Very few studies have been conducted about the relevance of the time spent above the 

threshold, after it was reached, as a potential metric to help identify learners and non-learners. 

Despite this gap in the literature, it was suggested that this could be an important aspect to 

consider in order to evaluate the ability of a participant to learn the self-regulation, since they 

could obtain good results in amplitude and percentage of time, or only in one of them 

(Enriquez-Geppert, Huster, Herrmann, et al., 2017).  

Some years ago, Hardt & Kamiya, in 1976, published a study about the percent time index and 

they opened a debate on its usefulness as an evaluation index. They noted that most of the 

effective research on alpha neurofeedback made use of the feedback signal's continuous 

characteristics. According to them, this wouldn’t be an efficient way to assess the learning, 

since this is a binary metric (above threshold/below threshold) and it isn’t sensitive to the small 

variations of brain activity, this could lead to a discourage for the learners when the changes 

are brief. This study was then discussed by Lansky et al. (1979), who suggested that the 

percent-time measures enable more accurate and natural alpha spindle recognition, which is a 

unique characteristic of the alpha rhythm, even though they are unable to record minute 

variations in the feedback signal. Additionally, they asserted that threshold-based methods 

provide more accurate spindle frequency tracking. One of the most important and recent study 

about this topic was conducted by Dempster & Vernon in 2009, they proposed three metrics to 

evaluate the EEG activity after NFT, the standard (values of amplitude/power), the percent of 

time above the threshold, and a third measure intended to combine the other two, the integrated 

alpha. These metrics have been calculated with four methods: within session, across the 

sessions, within session compared to a resting baseline and across sessions compared to a 
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resting baseline. The researchers assessed that the percent time can provide useful information, 

for instance a participant may have learned to maintain alpha activity consistently above a pre-

set threshold for the majority of the training session to enhance alpha amplitude in the desired 

direction, rather than to the short but high fluctuations that would be detected by measuring 

changes in amplitude. In fact, this index would bear greater significance than the other one in 

the event of a marginal increase just above the threshold (0.1μV), provided that such elevation 

remains constant over progressively extended periods (Dempster & Vernon, 2009). It can thus 

be concluded that both metrics are important and should be kept separate, as they encapsulate 

distinct yet complementary information regarding variations in brain activity and learning with 

NFT. Nevertheless, it remains important to conduct further studies on the use of time as an 

index, as currently, no studies validate its consistency. In this thesis, this aspect has been taken 

into consideration, utilizing the percent time as an index to explore whether this factor indeed 

holds significance in the identification of learners. This index is of further relevance 

considering that the NFT protocol applied in this thesis rewards positively for the time spent 

above a pre-defined threshold. 

1.5.8 Classifiers for EEG in Neurofeedback 
Over the years, numerous studies have aimed to discover the optimal approach for classifying 

EEG signals using machine learning. The investigated methods can be categorized into two 

main groups: supervised and unsupervised classifiers. The former necessitate a labelled 

training set to learn during the training process how to appropriately interpret features and 

allocate data to the correct class. The latter, on the other hand, are utilized when data assigned 

to a specific class are absent, autonomously determining how to distinguish features and thus, 

into which and how many classes to divide the data (Hosseini et al., 2020). In this study, a 

labelled training set is not available, leading to the choice of unsupervised learning. 

Consequently, this section provides a general overview solely focusing on this type of methods. 

Unsupervised classification 

The unsupervised learning algorithms infer result patterns without reference by using only 

input datasets; this eliminates the requirement for outside supervision and allows the machine 

to learn from the data on its own. This technique includes the clustering algorithms, like k-

means, hierarchical clustering, and self-organizing map (SOM), which are used to compare the 

input data, find the ones that have similarities and categorize them in relation to the presence 

or absence of those similarities (Luján et al., 2021). 
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The k-mean method (Figure 1.6 – A) separates information into k distinct groups that do not 

overlap, where items are grouped into these clusters based on their proximity to the centre of 

each cluster, and by employing these K clusters, K-means aims to reduce the total sum of 

squared distances/errors (Sinaga & Yang, 2020). One of the advantages of K-means is its 

straightforward implementation and high computational speed, especially when K is relatively 

small. However, K-means has several disadvantages, including its sensitivity to initial 

conditions impacting final outputs, susceptibility to scaling differences, a correlation between 

the order of data and the resulting outputs, and the choice of the number of clusters must be 

done a priori (Hosseini et al., 2020). In a very recent study by Eroğlu et al. (2023), the authors 

applied the k-Means clustering to the calculated Z-scores derived from QEEG data obtained 

from children with dyslexia, identifying three different clusters, before and after a 

neurofeedback training protocol, the Auto Train Brain, to assess the efficacy of this treatment. 

Hierarchical clustering is a method used in data analysis to organize similar data points into 

nested groups or clusters. It builds a hierarchical structure where each data point starts in its 

cluster and as the algorithm progresses, it combines clusters based on their similarity until all 

points are in a single cluster or in separate clusters. This process forms a tree-like structure 

(dendrogram) illustrating the relationships between the data points(Murtagh & Contreras, 

2011). This technique was used by Liu et al. in 2020, in this study an average-linkage 

hierarchical clustering method was utilized to group the fMRI data collected during the training 

sessions, creating complete brain networks, including the lower alpha network to which the 

lower alpha band is affiliated. At the group level, the clustering analysis revealed that the 

feedback training didn't impact the quantity of networks across the entire brain. However, it 

did modify the arrangement and functional connections within the lower alpha network.  

The self-organizing map (SOM, Figure 1.6 - B) is a type of artificial neural network used for 

clustering and visualization of high-dimensional data in lower dimensions, typically in a 2D or 

3D map. It involves a competitive learning process where neurons or nodes in the map self-

organize to represent different features or patterns present in the input data. SOMs arrange 

similar input data points closer to each other on the map, preserving the topological properties 

of the data while reducing dimensionality (Vesanto & Alhoniemi, 2000). An example of this 

technique applied is the study by Chenane et al. (2019) to categorize five distinct brain activities 

observed across ten subjects' recordings for BCI applications. 
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1.6 Neurofeedback applications 
Through the years, NF efficacy has been tested and developed for many purposes, and its 

application can be divided into three main fields. The first is the clinical context due to its 

potential in reducing or removing symptoms of different diseases; the second is the cognitive 

performance enhancement, in both healthy and diseased subjects; the third possible application 

is as a tool to investigate the connections between fluctuations in behaviour and cognition 

(Enriquez-Geppert, Huster, & Herrmann, 2017; Huster et al., 2014; Parsons & Faubert, 2021).  

Many studies have been conducted in both fields, for example the studies from Israsena et al. 

(2021) and Lecomte & Juhel (2011) tried to enhance the cognitive functions in healthy 

participants with a game-based NFT. In other studies, aimed at enhancing the cognitive 

performances, the participants were all young adults (Escolano et al., 2011; Bucho et al., 2018; 

Zoefel et al., 2011). For example, in the study by Zoefel et al. (2011), the group of participants 

included two groups of subjects, the real NF and the control group; the cognitive performance 

was assessed with the mental rotation test and UA increment was significant in the real NFT 

group. This was done also in patients with different cognitive disfunctions, like the study by 

Jirayucharoensak et al. (2019) where researchers applied the NFT technique to amnestic mild 

cognitive impairment patients. The most investigated cognitive function is memory, which was 

proven to have a positive relationship with alpha frequency (higher alpha, better memory) 

(Klimesch et al., 1993). After that, it was shown that theta and alpha had opposite and distinct 

response, UA band is connected to long-term information (semantic memory), while theta 

synchronization is linked to performance of episodic memory (Klimesch et al., 1994). For 

instance, the recent study led by Hsueh et al. (2016) focused on the effect on working and 

episodic memory when alpha band is trained; the evaluation was done with two tasks: 

Figure 1-6 On the left, general K-means classification (A) (Hosseini et al., 2020). On the right, a general SOM 
net architecture (B). (Chenane et al., 2019) 
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backward digit span; operation span. The training group showed progressive changes in mean 

relative amplitude (RA) and total alpha duration over the course of sessions, indicating that the 

alpha rhythm was successfully trained. 

A wide range of clinical objectives have been achieved through the use of NFT research, 

including, for example, enhancing the cognitive function of individuals suffering from type 3 

traumatic brain injury and offering an alternative to traditional rehabilitation through the use 

of an NF protocol in conjunction with VR, in the recent study conducted by Arroyo-Ferrer et 

al. (2021). Clinical trials for major depressive illness and even stroke survivors have been 

pursued in a similar manner (Escolano et al., 2013; Kober et al., 2015). Some applications 

sought to improve the behaviour of children diagnosed with autism spectrum disorders (Pineda 

et al., 2008), reduce impulsivity in substance abusers to increase programme retention (Scott 

et al., 2005), and control pain experienced by patients with chronic spinal cord injury, where 

NFT was done using brain computer interface (BCI) (Al-Taleb et al., 2019). It is noted that one 

of the main clinical applications of NFT is the treatment of patients suffering from ADHD, like 

the study by Deiber et al. (2021), in which the NF was applied to metrics based on event related 

potentials (ERPs, a brain response generated by an event), which are known to be correlated 

with attention and inhibitory processes in ADHD patients. The results showed an improvement 

on the continuous performance task, and they are promising for treating patients suffering from 

this disease. Other studies obtained similar promising results, such as the one from Cabaleiro 

et al., (2021) and Subandriyo et al. (2021).  

The third application is represented primarily by the NF used with BCI, that connect brain and 

computers in an open-loop application where the feature extracted from brain activity are 

recognized by a computer and translated into commands; it is a very important application to 

enhance the quality of life of disabled people (Enriquez-Geppert, Huster, & Herrmann, 2017; 

Ros et al., 2014). 

1.6.1 Neurofeedback for Migraine 
A very interesting clinical application of NFT is its used for a treatment of migraine patients. 

In the book published in 2007, Evans reported a previous study by Anderson (1989) in which 

they used a protocol of 30-minute audiovisual training sessions to reduce the duration of 

migraines from a pre-treatment of approximately six hours to a post-treatment of about 35 

minutes, with 49 of the 50 migraine headaches having their severity reduced and 36 having 

them stopped. The brain activity was modulated through light and sound pulses at specific 
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frequencies, this environment sometimes helps the NF process. Participants showed a 

preference for alpha frequency and bright lights (Evans, 2007). 

Another more recent study involved 37 patients suffering from migraine with 1 to 20 episodes 

per month, it combined three different types of BF: EEG, passive infrared 

hemoencephalography and themal (Stokes & Lappin, 2010). When compared to thermal-only 

therapies, the patients' migraine frequency decreased significantly, and the effects were longer 

lasting than with the typical medication. The NFT sessions were 30 and each consisted of 30 

minutes training, participants were instructed to watch a video game and received as auditory 

reward a “beep” every time they achieved the goal (increase the band between 8-18 Hz and 

reducing the rest). The study's results show that 26 out of 37 patients experienced at least a 

50% decrease in headache frequency, which remained stable for an average of 14.5 months 

after the medications were discontinued, and that the patients were able to learn to control their 

susceptibility to migraine episodes (Stokes & Lappin, 2010). 

In 2011 another study was proposed by Jonathan Walker, he examined the effectiveness of 

NFT in lowering the frequency of migraine attacks in 71 patients with recurrent migraines. The 

NFT consisted in 24 sessions lasting 30 minutes each using QEEG procedure, and 46 patients 

participated, whereas the others remained with medication only. The reward was given in 

association to an increment of 10 Hz rhythm or a decrement of activity in the frequencies from 

21 Hz to 30 Hz. The NFT was very effective, in fact in more than 50% of subjects the migraine 

episodes were eliminated, and in 40% of patients they were reduced in frequency of more than 

50% (Walker, 2011). 

More recently, research led by Martic-Biocina et al. (2017) reported positive results from 

combining BF treatments with the aim of reducing migraine symptoms. A migraine sufferer 

aged 25 years was assessed and chosen to get 25 treatments of combination BF, and the 

protocols were determined individually. In addition to a reduction in migraine pain, this study 

demonstrated a steady decrease in the frequency of migraine occurrences (Martic-Biocina et 

al., 2017). 

1.7 Objectives 
The aim of this thesis is to investigate the impact of incorporating a new form of reinforcement, 

in addition to the standard amplitude-based reinforcement in the NFT protocol targeting the 

UA frequency band power (Zoefel et al., 2011) in healthy subjects. Participants receive rewards 

each time they stay above the threshold for a specific duration of time, aiming to provide insight 
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into the duration they maintain a high value. The selected participants were healthy adult 

women without known diseases, since it’s important to assess the efficacy of this reinforcement 

before applying it to clinical patients, specifically to migraine patients who represent the final 

target of the project. 

These participants were divided in two groups, the real NFT and the control group, or sham 

condition, where the feedback presented was obtained from other participants’ sessions and it 

didn’t have any correlation with the real brain activity of the sham subject. This was done to 

investigate the possible effect of placebo condition and assess the real efficacy of NFT. 

The motivation, the stress, and the anxiety levels, among others, were characteristics evaluated 

before performing the task, as well as two cognitive tests to see their attention and their working 

memory. 

Another objective was to discover an optimal pre-processing pipeline enabling the utilization 

of the entire acquired signals, eliminating the necessity to exclude data segments affected by 

noise or artifacts. 

The method used for NFT included visual feedback with positive reward when the power of 

the selected frequency band was above the threshold and a positive punishment when it fell 

below it, in addition to it a new level of reinforcement about time was added, as already 

mentioned. The features of interest for the analysis were the relative amplitude of UA (RAUA), 

considering its power, and the percentage of time spent above the threshold, they were both 

evaluated within sessions and across sessions. It was our intention to experiment the latter as 

an index to identify the learners and the non-learners, combined with the classical learning 

metrics, which is the slope of the RAUA. 

The last objective of the study was to start to investigate on a way to automatically classify the 

participants in the two groups by using a machine learning algorithm, this is an intriguing field, 

albeit one that requires further studies and research. 
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2. METHODOLOGY 

The characteristics of the experiment will be described in detail in this chapter, starting with a 

description of the participants involved and their mental state evaluations, moving to the 

description of the setup and the protocol followed in the study. Then it will be described how 

the data have been processed, a discussion of the training evaluation metrics, and finally the 

statistical analysis used to determine the significance of the findings. 

2.1 Participants 
The recruitment was focused on a female population between 18 and 35 years old, fifteen girls 

with age between 22 and 34 years old participated to the study voluntarily and unpaid. They 

were randomly assigned to the real NFT or to the Sham group, used as control group. In 

addition to that, the data acquired previously by Ana Rita Santos Lopes in her thesis (Rita et 

al., 2023) were used, eight female participants aged between 22 and 29 years old divided 

equally in the two group. The complete dataset consists in twenty-two subjects since one 

participant only completed three sessions out of four and was excluded from the results. 

Prior to the study's start, a document of informed consent was given to each participant, with 

the detailed explanation of the goal of the project and the protocol followed as well as the 

possible side effects and the exclusion criteria. These criteria included age (underage and 

adults over 35 years old were excluded), serious medical conditions such as neurological, 

psychiatric disorders, heart disease, abnormal cortical activity detected by EEG, significant 

skull/brain damage and consumption of prescribed psychoactive drugs that could 

significantly alter brain function and state of consciousness. After reading the terms of the 

training they would participate in, each subject voluntarily agreed to participate and signed 

the informed consent form, knowing that the information would be published anonymously. 

The study was approved by the Ethics Committee of CHULN (North Lisbon University 

Hospital Center) and CAML (Lisbon Academic Medical Center) in July of 2022.  

Before beginning the study’s preparation, the participants completed a questionnaire, including 

question about demographic information (Table 1), asking about their (1) age, (2) gender, (3) 

dominant hand and (4) level of education. Between the two groups, the age was not 

significantly different (Mann-Whitney U test: p = 0.456). Another optional section of the 

questionnaire asked questions about the menstrual cycle for future analysis since the long-term 

objective of the research is to find a NF treatment for females migraineurs. 
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Participants were also subjected to four further questionnaires concerning mental health, the 

Current Motivation, the HADS, the STAI Y-1 and STAI Y-2, to evaluate the motivation, the 

state of depression and anxiety of each participant that could influence the results of the 

experiment. They were also asked to take two cognitive tests to assess working memory with 

the Digit Span, and the ability to keep a high concentration level with the CPT-X. These 

questionnaires and tests will all be described in detail later. 

Table 1 – Demographic distribution of two groups 

Group Sham NFT 

Age (years; mean ± SD) 24.41 ± 2.27 25.48 ± 3.94 

Gender (F/M) 11/0 11/0 

Dominant hand (R/L) 10/1 10/1 

Level of Education 9 Degree 

2 Master’s Degree 

7 Degree 

3 Master’s degree 

1 Secondary education 

 

At the end of each session of the experiment, one last questionnaire was submitted to evaluate 

the learning motivation, performance, and positive affect, this is the Flow Experience 

Measurement which was originally called “Flow Kurz Skala” (Vollmeyer & Rheinberg, 2006). 

This survey evaluates six variables, including the balance between challenge and skill of the 

participant, combining of awareness and action, unambiguous feedback, focusing on the 

current task, change over time, and fluency of action (Vollmeyer & Rheinberg, 2006). FKS is 

divided into ten questions for flow and three for worry, the participant has to answer about how 

they felt during the experiment in a scale from 1 (not at all) to 7 (very much). The score is 

calculated separately for flow and worry by summing the items in the two groups (Elbe et al., 

2010). 

2.2 Mental Health Evaluation 
In the following chapter the questionnaires used to assess the mental state of the participants 

will be described, as excessively high values of anxiety or depression would have led to 

exclusion from the study. 

2.2.1 HADS 
The Hospital Anxiety and Depression Scale is a questionnaire developed to find out the level 

of anxiety and depression by asking a total of fourteen questions divided equally between the 
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two pathologies, each answer has a point that goes from 0 (lowest level) to 3 (highest level) 

(Zigmond & Snaith, 1983). The scores are calculated separately by summing the score of each 

question and are presented in the Table 2. 

Table 2 – HADS scores 

SCORE GRAVITY 
0-7 Non-cases 

8-10 Mild 

11-14 

15-21 

Moderate 

Severe 

 

This questionnaire was submitted one time before the beginning of the first session to exclude 

from the rest of the experiment those whose levels are considered abnormally high, which 

means a score above 15 in one of the two pathologies. The participants are asked to respond to 

these questions while considering how they have been feeling during the week. 

2.2.2 STAI Y-1 & STAI Y-2 
The State Trait Anxiety Inventory are two self-assessments questionnaires divided into two 

forms, the STAI Y-1 is used to assess the state of anxiety of the subject in that specific day, 

while STAI Y-2 evaluates the trait type of anxiety over time. Both consists in 20 statements 

regarding feelings about tension, nervousness, worry and apprehension, the patient can indicate 

on a four-point rating scale the frequency of the symptoms in the trait Y-2 and the level of 

agreement in the state Y-1, where 1 is the lowest level and 4 is the highest, the total score goes 

from 20 to 80. 

The participants are asked to fill the state questionnaire at the beginning of each session of the 

experiment to see how it influence the results and the trait one only during the first session to 

assess the mental state of the subject (Spielberger et al., 1971). 

2.2.3 Current Motivation 
The last questionnaire that the participants were asked to fill is the Questionnaire for Current 

Motivation (Vollmeyer & Rheinberg, 2006) for all sessions, immediately following the 

researcher's description of the task and soon before it began. By evaluating four distinct 

factors—interest, challenge, anxiety, and the likelihood of success—over the course of several 

sessions, QCM is used to analyse the participants' motivation between learning about the task 

to be completed and the precise start of the training by indicating the level of agreement to 
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some statements. It is known that these factors can change over time and a high motivation and 

challenge combined with a low degree of anxiety and thoughts of failure lead to positive results 

during the experience. 

2.3 Cognitive Tests 
Performance tests that measured working memory (Forward and Backward Digit Span) 

(Woods et al., 2011) and attention (Continuous Performance Task: CPT-X) as well as vigilance 

and the capacity to maintain attention for an extended period were also given to participants 

before the study began (beginning of the first session) and at the conclusion of the last session. 

The Presentation-Neurobehavioral Systems software (Neurobehavioral Systems, Inc.) was 

used to administer the questions. 

2.3.1 Digit Span 
The Digit Span test is used to assess the memory of the participant by presenting sets of 

numbers of increasing size that the subject has to memorise and rewrite. It is divided into two 

parts, the first part is forward, so the order in which the numbers must be written down is the 

same with which they are presented. In the second part the order is inverted, so the numbers 

must be written down backward (Woods et al., 2011). Additionally, it is important to note that 

the forward digit span is intended to measure verbal working memory and attention, whereas 

the reverse span evaluates cognitive control and executive function. 

2.3.2 CPT-X 
In the Continuous Performance Task X, participants see a list of letters and click on each one 

using the mouse, except for the target letter X, for which they should take no action. A total of 

500 milliseconds of the test are divided into two blocks, each of which contains 50 trials. In 

one block, the target letter ("X") appears 20% of the time, whereas in the other block (CPT-X), 

it does so 80% of the time (Conners, 1992). 

2.4 Experimental Setup & Signal Acquisition 
The software used to perform the experiment were the OpenViBE 3.3.0 software (OpenViBE 

| Software for BCI and Real Time Neurosciences; Renard et al., 2010) and Unity® 2020.3.18f1 

software platform (Unity | Engine Para 3D, 2D, VR and AR) to acquire and process the EEG 

in real-time for the generation of the NF signal. Unity is a platform fully integrated for the 

development of games and it can be connected to OpenViBE which is used to collect brain 

activity using electrodes. 
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The data were acquired in The Evolutionary Systems and Biomedical Engineering Lab's 

(LaSEEB) NeuroLab, a research facility of the Institute for Systems and Robotics (ISR) at 

Instituto Superior Técnico (IST) in Lisbon. 

The condition of the room was under control and kept always the same for all sessions, only 

half of the lights were on, and the windows were covered, the door was shut the entire time to 

minimize the noise from outside. The participants were told to remain as still and silent as 

possible during the training in order to reduce the number of artefacts, they were sitting on a 

comfortable chair in front of a computer monitor with the game running while wearing 

headphones, the only sounds they heard during the training were the "beeps" at the start and 

conclusion of trials and pauses. The researcher sat next to the participant without interfering, it 

was there to provide technical support and make sure the experiment went smoothly. 

The data were collected using a 32-channel electrode cap and the LiveAmp EEG amplifier 

(LiveAmp Series | Brain Products GmbH > Solutions) at a sampling frequency of 500 Hz with 

the international 10-20 system (Fp1, Fz, F3, F7, FT9, FC5, FC1, C3, T7, FCz, CP5, CP1, Pz, 

P3, P7, O1, Oz, O2, P4, P8, TP10, CP6, CP2, Cz, C4, T8, FT10, FC6, FC2, F4, F8 and Fp2) 

(Figure 2.1), this active electrodes are integrated with a built-in pre-amplifiers and coloured 

indicators that change colour according to the impedance value: red indicates an impedance of 

more than 500 kΩ, green indicates a good value under 15 Ω, the orange is in between. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-1 Channel locations representation from EEGLAB 
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The ground electrode was put on the forehead as usual, whereas the reference electrode was 

positioned on the left mastoid, specifically on the TP9 channel to avoid the removal of useful 

signal in the alpha band. In order to lower scalp impedance below 10 kΩ, a conductive paste 

(SuperVisc, EasyCap, Germany) was placed through the electrode aperture using a blunt needle 

after the skin had been cleaned locally by wiping the electrode sites with a cotton swab dipped 

in alcohol. 

2.5 Protocol Design 
The enhancement of the relative amplitude of the UA (RAUA) value for the electrode situated 

at Cz was the feature of the NFT protocol selected for this study. It has been extensively 

researched how to use the RAUA feature to do certain exercises that are meant to improve the 

regulation of mental and cognitive skills, such working memory. In addition, both a reward and 

a penalty are utilised when the feature time exceeds the threshold. Thus, the amplitude of the 

RAUA and the period while that amplitude is above a predetermined threshold are the two 

parameters that are examined in the current study. 

For this investigation, we employed a protocol with experience timings designed in the 

dissertation by Teresa Bucho (2018) and afterwards by Ana Rita Santos Lopez (Rita et al., 

2023) in order to provide a method of further comparison, with the difference of the group 

compared. As she investigated the differences between the auditory or visual modality of the 

feedback protocol, in this study the two groups were the real NFT, where the participants 

received their NF in real-time, and the Sham or Control group, in which they saw another 

participant's gaming session and received no feedback regarding their own brain activity, 

without being aware of it. 

The pre-baseline phase of the NFT technique lasts for four minutes and is used for calibration. 

During this time, the participant was told to remain calm and quiet. The IAF and the UA band, 

which were taken from this calibration phase, were applied to all four NFT sessions. The NFT 

period was then split into 5 sets of 3 blocks, each block consisting of two one-minute trials. A 

minimum of 37 minutes were allotted for training, with breaks of 15 seconds set up between 

blocks and 10 seconds between trials. A post-baseline period that mirrored the pre-baseline 

period was recorded at the conclusion. The complete training programme included four NF 

sessions, which were scheduled to take place over the course of four days and at similar times 

from the pre-baseline to the post-baseline. The complete protocol followed is showed in the 

Figure 2.2. 
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2.5.1 Calibration 

After the questionnaires and the tests, the participants were positioned in front of a screen to 

begin the NF session. The impedance of the electrodes was corrected to reach values below 10 

kOhm. The calibration phase consisted of a four-minute presentation of a black image with a 

white cross in the middle (Figure 2.3-B), during which the participant had to alternate between 

eyes closed (EC) and eyes open (EO) for one minute, with the transition between these periods 

being indicated by a "beep". The EEG data was captured in both the .ov and .gdf file formats 

(Figure 2.3-A). 

As proven in literature (Klimesch, 1999), alpha frequency varies greatly between individuals, 

for this reason it is necessary to adapt the frequency limitations of theta and alpha bands for 

Figure 2-2 NFT session's temporal description. The pause was 10 s long in between trials, 15 s long in between 

blocks and at least 15 s long in between sets. EO = Eyes Open; EC = Eyes Closed. 

Figure 2-3 (A) Scheme of the calibration phase on OpenViBE and (B) image presented to the participant during 
this phase. 
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each participant. It is suggested to use as reference point the IAF to measure the IAB to define 

these limits. 

The measurement consisted in the estimation of the power spectral density (PSD) using the 

Welch method (Welch, 1967), which was executed through a built-in Matlab (R2016b, 

MathWorks) function, the PSD of the EO and EC conditions are presented overlaid in the 

Figure 2.4. The fast Fourier transform (FFT) is calculated for each of the overlapping windows 

that the signal is divided into using this method. Next, by averaging the FFT of these windows, 

the PSD estimate is calculated. It is necessary to provide the number of discrete Fourier 

transform (DFT) points (N), which influences the spectrum's frequency resolution and was 

chosen equal to the size of the window, as well as the window's length (5 seconds) and overlap 

percentage (10%), which affect the spectrum's smoothness and noisiness. The Savitzky-Golay 

filter was used on the spectra to remove oscillations. The IAF is defined as the peak frequency 

of the EC spectra and the lower and upper bounds of the IAB were established by the lower 

transition frequency (LTF) and higher transition frequency (HTF), respectively obtained 

following the study by Kober et al. (2015), in which LTF=IAF-2Hz and HTF=IAF+2Hz. The 

frequency range between IAF and HTF is then identified as the UA band. Each participant's 

IAB was measured using the Pre-Baseline signal (Figure 2.4), and the same measurement was 

repeated after the NF-training in case we want to check variations on IAB later. The baseline 

values for the NF were estimated in the first session and remains the same, while in the 

following sessions the individual's performance was taken into account to modify only the 

game's threshold value (detailed in section 2.5.3). 

 

 

 

 

 

 

 

 

 

 
Figure 2-4 EEG spectrum of participant NFT1, session 2 for LTF, IAF 
and HTF. UA is obtained by the interval between IAF and HTF. 
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2.5.2 Feedback Parameter 
The feedback parameter for the NFT group was the RAUA which comprehends the frequency 

between IAF and HTF, as explained before. The relationship between the analysed EEG 

measurement and a predetermined threshold value determines the thesis's objective. Every time 

the RAUA is higher than the cutoff, the goal is deemed accomplished because improving the 

UA band is the primary objective. 

As shown in Equation 1, the relative amplitude (RA) is calculated by dividing the intended 

frequency band to analyse by the total range of EEG amplitude (4 Hz to 30 Hz). 

𝑅𝐴 =  
𝐵𝑎𝑛𝑑 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒

𝐹𝑢𝑙𝑙𝑏𝑎𝑛𝑑 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒
      Equation 1 

This will be done for each band of interest by replacing the numerator with the desired 

frequencies, in Equation 2 is represented the RAUA, where the Δf represents the resolution of 

the frequency and X(k) is the amplitude spectrum at frequency k. 

The individuals in the Sham group did not get information from their own brain activity, instead 

they received as feedback a signal from a member in the training group.            

𝑅𝐴𝑈𝐴 =  

∑ 𝑋(𝑘)

𝐻𝑇𝐹
∆𝑓

𝑘=
𝐼𝐴𝐹
∆𝑓

𝐻𝑇𝐹−𝐼𝐴𝐹

∑ 𝑋(𝑘)

30
∆𝑓

𝑘=
4

∆𝑓

30−4

     Equation 2 

2.5.3 Online Processing & Feature Extraction 
Data feature calculation is a crucial step in the capture of the EEG signal that helps determine 

the RAUA's degree of self-regulation and the complete pipeline for the online processing 

followed is presented in the Figure 2.5, on the left the processing of the signal and the phase 

after the RAUA is obtained, on the right the generation of the stimuli and the markers.  

The signal recorded at Cz was epoched using a two-second data window that moved every 125 

milliseconds (“Time based epoching” block) and then the FFT (“Spectral Analysis” block) was 

used to determine the spectrum amplitude for each incoming window. A spectral analysis is 

performed over the entire window, from which the bins corresponding to the UA frequency 

band and a band between 4 Hz and 30 Hz were selected, to minimise the effect of eye-related 
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artefacts. These bins were both found in the “Frequency Band Selector” boxes and averaged 

across all contained frequencies (“Spectrum Average” block).  

The “Epoch average” block represents a moving average used to smooth out excessive signal 

fluctuations by calculating the mean of the last ten collected epochs and the so processed 

signals are then used for the calculation of the RAUA at location Cz (“Simple DSP” block). 

Once the feature of interest is obtained, the value must be sent through the Lab Streaming Layer 

(“LSL Export” block) system to the Unity software platform, where the game was 

implemented. This value is updated every 125 milliseconds and the visual feedback showed to 

the user is based on it. 

Beyond the feedback parameter, the LSL system also allows the streaming of stimuli and 

markers, which were used to establish the trial and interval times, generated with the “Lua 

Stimulator” block on OpenViBE that interprets a written manual in the programming language 

LUA. 

 

Figure 2-5 OpenViBE schematic pipeline for online processing and RAUA estimation and LSL system 
to forward the data to Unity platform (on the left). OpenViBE schematic for the “Timeline Gerator” for 

the stimuli and the markers (on the right). 
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2.5.4 Reward Threshold 
Determining the values for which a reward is given is crucial, in this case the RAUA, this will 

presumably change throughout the NF sessions. To define the threshold, the maximum and the 

minimum are determined during session one, by using the EO and EC pre-baseline recording. 

By importing the .ov file created during the calibration period and solely using the data from 

channel 24, which corresponds to Cz, these values were acquired using OpenViBE. The 

calculated RAUA during the calibration phase was saved on a file .csv, this was then opened 

on MATLAB to obtain the percentiles, the minimum, and the maximum of the EO condition. 

The percentiles saved goes from the 40th to the 90th with steps of 5, whereas the minimum 

corresponds to the 1st percentile and the maximum to the 99th percentile + 20% of the EO 

periods, to keep the maximum zoom from being saturated. In fact these two values are used to 

fix the zoom in the game, the first is the totally blurred image and the second the maximum 

zoom in. The defined threshold value, the maximum and the minimum are set in the game in 

Unity through the menu display before the beginning of the sessions (Figure 2.6). 

    

 

 

 

 

 

 

 

 

 

 

The 60th percentile of the RAUA just calculated was the threshold set in the first session; 

however, in subsequent sessions, the threshold had to be modified based on the participant's 

performance in the preceding session. This is adjusted accordingly to the percentage of time 

spent above it, if during the session it exceeded the 60% of total time, considering only the time 

during the trials, in the following session the threshold is increased of five percentiles. 

Conversely, if the participant's percentage of time above the established threshold fell below 

40%, the new threshold is reduced by five percentiles; in case the percentage of time is between 

Figure 2-6 Menu presented on Unity before starting the NF training to define min, max and 
current threshold to use (“Set Values” botton). 
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40% and 60%, the threshold value stayed the same from the previous session. The percentage 

of time is calculated through the software Excel with the file saved in .csv format. 

2.5.5 Feedback Display 
As already mentioned, the visual feedback depends on the RAUA and the minimum and 

maximum values, and when the scenario was designed, it was important to remember that the 

objective was to assess the duration and amplitude above the predetermined threshold. 

Two different scenarios were created and used alternately during the sessions to prevent the 

participant from becoming bored and instead feel more engaged to the game, since the kind of 

scenario is something to assess whether it could have an impact on the game's focus and, 

consequently, success. One of the two consisted in an image of a tropical environment (Figure 

2.7) with vivid colours with images of birds appearing, whereas the other scenario was one 

with more soft colours, a picture of a diver underwater with images of fishes appearing (Figure 

2.8). They were alternately shown as first scenario to the participants to have a more 

statistically independent result, so if the first one was the diver, in the next session the 

participant used the tropical, and so on. The scenario was chosen in the menu (Figure 2.6) 

through the buttons “Start NF diver” or “Start NF tropical”, anyway it is important to remember 

that the game's objectives remain the same in both, which is to evaluate the amplitude and the 

time over the threshold.  

The amplitude is the feature that defines the degree of blurring and zooming of the image. If 

the RAUA value received from OpenViBE is between the minimum and half of the threshold, 

the image is shown as completely blurred, as the RAUA exceeds that value the dimmer is only 

partial and the image gets clearer. Once the threshold is reached the image is completely visible 

and the zoom starts accordingly to the amplitude, as it gets higher the zoom increases until the 

defined maximum value of RAUA is reached, which corresponds to the maximum possible 

zoom. These two effects correspond to a continuous type of reinforcement. 

The time is evaluated once the threshold is reached, giving feedback to the participant by 

visually presenting objects on the screen every 2.5 seconds spent above the threshold. All of 

the acquired items disappeared, and a dimmer returned to the visual feedback (positive 

punishment) when the RAUA dropped back below the threshold, and it starts again when the 

threshold is reached again. This reinforcement is of a discrete type. 
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It’s important to keep in mind that the positive rewards are different for amplitude and time, 

the first is provided by removing the blurring and zooming in closer, the second correspond to 

the appearance of a fish or an exotic animal, like parrots or monkeys. In addition, this study 

included penalties that occurred when the RAUA fell below the threshold, which included the 

loss of both rewards—the zoom and the game objects—as well as the appearance of blur. 

 

Figure 2-8 Visual feedback when playing the diver scenario. (Upper left) Completely blurred image when the 
RAUA is lower than half of the threshold. (Upper right) Displayed when the RAUA is between half of the 
threshold and the set threshold. (Bottom left) Image shown after remaining above the threshold for 2.5 seconds. 
(Bottom right) Maximum zoom reachable at the maximum amplitude. 

Figure 2-7 Visual feedback when playing the tropical forest scenario. (Upper left) Completely blurred image 
when the RAUA is lower than half of the threshold. (Upper right) Displayed when the RAUA is between half of 
the threshold and the set threshold. (Bottom left) Image shown after remaining above the threshold for 2.5 seconds. 
(Bottom right) Maximum zoom reachable at the maximum amplitude. 
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2.6 Data Analysis 
The technique of analysing the EEG data offline is described in depth in this section. The built-

in functions of MATLAB (R2022b and R2023a, MathWorks) and its toolbox EEGLAB 

2022/2023 were utilised to outline the preprocessing, processing, and feature estimates. 

 

2.6.1 Pre-processing 

As already mentioned before, to be able to study the EEG signal it is mandatory to pre-process 

the raw data since it may contain artifacts coming from the subject itself, like muscle activity, 

eye movements or breathing, but also from the electronic system, caused by the power supply, 

or the electrodes, for example their impedance or the placement. This step is necessary to 

minimize the noise caused by these artifacts, since it cannot be removed completely, to read 

the signal properly and be able to evaluate the brain activity of interest, without the interference 

of other signals. 

Many pre-processing techniques can be used to remove these unwanted artefacts from the EEG 

data; in the current thesis, the strategies employed are the following. 

First, the signal was filtered with: 

• A high-pass filter with a cutoff frequency of 1 Hz, this is useful to remove the DC 

component of any voltage or the low frequency artifacts like the one induced by 

breathing; 

• A low-pass filter with a cutoff frequency of 40 Hz, to block the higher frequencies 

noises like the one induced by the power line. 

These filters were used with a Hamming window type. 

The next step was to identify and remove the bad channels manually, checking through the 

EEGLAB display the PSD and removing the channels that behaved very differently from the 

others. In addition, an automatic check on the channels was also made using two functions 

built-in EEGLAB, clean_flatlines(), which removed the channels with too many zero values 

consecutively, and clean_channels(), this is an automatic artefact rejection which controls that 

there are no channels in the data that record nothing but noise for long stretches of time. 
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At this point, the independent component analysis (ICA) was performed to remove the artefacts 

coming from muscle movements, eye blinks or heartbeat, that were recognized with a 

confidence of 85% or more, which was the used threshold for rejection (Figure 2.9). 

 

After removing all the bad channels and artefact components, the signal was cleaned with an 

additional function, the clean_asr() with a deviation cutoff of 10, since the default value was 

too aggressive, and the risk was to remove too much cerebral signal. This is an EEGLAB 

function useful to reduce the noise which still corrupts the data. 

The removed channels were then interpolated by using a spherical interpolation and the channel 

TP9 was retrieved to be used as reference, at this point the total number of channels were 33. 

Subsequently the re-referencing was performed using the average value of all channels with 

the TP9, this step is important to avoid the bias deriving from having the reference on one side 

of the head. 

Figure 2-9 Example of ICA with the rejection of the unwanted components recognized with a confidence of 
85% or more. The ones labelled in red are the rejected components recognized as eye blinking. 
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The last part was dividing the pre-processed data in epochs, each one lasted 60 seconds and the 

intervals were not considered, so the total number is 30. They were organized into five sets of 

six epochs each for further analysis. 

2.6.2 Processing 
As additional control, all the sessions underwent visual inspection, since the session 3 from 

subject 21 (SHAM10) had technical issues, this will not be considered for the following part. 

Also, in session 3 of SHAM5 the last 7 epochs had recording problems, but most of the data 

are present so it was used with a specific control on it. 

Before performing the time-frequency (TF) decomposition, it was necessary to define the 

number of time points to use (set at 120, equally distant) and the number of frequencies to 

consider in the whole band, from 4 to 30 Hz (set at 150, equally distant). Then the TF was 

performed using the wavelet transforms method with the function from EEGLAB 

pop_newtimef() for each channel, which saves the time points, the frequencies and the TF data, 

and allow the representation of the event-related spectral perturbation (ERSP) (Figure 2.10). 

It was chosen to use the wavelet in order to maintain the information about the time, instead of 

the previously used pwelch function which consider only the frequency domain. The power 

was then obtained taking the absolute value of the square of the TF values just calculated and 

then normalized with the total average power, considering each channel in the 4 Hz to 30 Hz, 

to visualize its behaviour in the whole band of frequencies considered and through all the 

epochs. 

Figure 2-10 ERSP plot obtained from the function pop_newtimef() which represents how much a 
signal's power at various frequencies changes in proportion to a particular time point. The frequencies 
are between 4 and 30 Hz, the time is one epoch long (60 seconds) and the values are in a logarithmic 
scale. This representation is from NFT7, session 1. 
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After considering each epoch, the data were divided in five sets of six epochs, and the relative 

amplitude of each one of the four bands of frequencies was calculated, by doing the ratio 

between the average power in the considered band and the mean of the power in the full band, 

and then performing the moving average, which reduces the effect of outlier values. At this 

point, what is significant for this study was the channel Cz, which was used to calculate the 

average value of each set in all the frequencies and to do the plot of the trend through the 

session. 

Subsequently, the NFT and the SHAM participants’ values were divided, and the mean with 

the standard deviation value per set were calculated and plotted for both groups. 

2.6.3 Standard Training Effect Measures 
As done in the previous studies by Lopes et al., (2023) and Bucho, (2018), at first standard 

learning metrics were used to present an in-depth analysis of the training parameter, RAUA, 

inside a single session or between different sessions. The indexes considered were three intra-

sessions: 

• IntraA1, which calculate the average of the first set for each session (i) and the mean 

difference between the means of each set (j), and then averaging throughout sessions 

(Equation 3). 

                                     𝐼𝑛𝑡𝑟𝑎𝐴1 =  
∑ ∑ (𝑠𝑒𝑡𝑗̅̅ ̅̅ ̅̅ − 𝑠𝑒𝑡1̅̅ ̅̅ ̅̅ )

𝑖
𝑛𝑠𝑒𝑡
𝑗=2

𝑛𝑠𝑒𝑠𝑠
𝑖=1

𝑛𝑠𝑒𝑠𝑠∗(𝑛𝑠𝑒𝑡−1)
                               Equation 3 

• IntraA2 to consider the variations in the feedback parameter within sessions, the 

difference between the first and last sets' means of each session and the first set's mean 

is calculated and then these differences are then averaged across sessions (Equation 4). 

                                     𝐼𝑛𝑡𝑟𝑎𝐴2 =  
∑ (

𝑠𝑒𝑡5̅̅ ̅̅ ̅̅ ̅− 𝑠𝑒𝑡1̅̅ ̅̅ ̅̅ ̅

𝑠𝑒𝑡1̅̅ ̅̅ ̅̅ ̅ )
𝑖

𝑛𝑠𝑒𝑠𝑠
𝑖=1

𝑛𝑠𝑒𝑠𝑠
                                     Equation 4 

• IntraS, which correspond to the linear regression's slope (mi) that matches the learning 

parameter's evolution along the means of each session's five sets (Equation 5). 

                                           𝐼𝑛𝑡𝑟𝑎𝑆 =  
∑ 𝑚𝑖

𝑛𝑠𝑒𝑠𝑠
𝑖=1

𝑛𝑠𝑒𝑠𝑠
                                                     Equation 5 

The standard path to define if a participant was a learner or not, was to consider as the most 

important index the IntraS. This was used by defining as non-learners those who had negative 

values (downward slope) in two or more sessions or those with negative values for the average 

of the slopes of all sessions. These measures were used to compare the outcomes of the NFT 

group with the sham group, as well as to assess how effective the NFT was. 
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Identification of Non-Learners 

As already discussed in section 1.5.7, there are no precise standards to identify if a subject is 

able to learn self-regulation. The problem of finding the best way to evaluate the NF learning 

was studied by Dempster & Vernon (2009), they concluded that using the intra-session features 

is more significant than considering the inter-session trend. The initial choice of using the 

IntraS was made following these conclusions, whereas in this study, a different way of 

proceeding was tried out, explained in detail in the following section. 

2.6.4 Training Effect Time Measure 
The usage of percent time as an evaluation metric was introduced in section 1.5.7. In this study, 

it was chosen to consider this index combined with the standard one to identify the learners. 

The percentage of time has been calculated for each session, considering the specific threshold, 

which varies across the sessions. Two different methods were used: 

i) Percent time for each epoch, this technique required to calculate how much time the 

participant spent above the set threshold each minute (epoch) of the training. This 

approach was considered to obtain an overview of the intra-session trend of the feature 

to be able to note if there was a significant increment from the beginning to the end of 

the NFT; 

ii) Percent time for each session, this method considered the time spent above the threshold 

during the whole session, taking into account only the training (no pause). This 

approach was used to see how the participant performed across the sessions, indeed, if 

the subject is able to learn this value should increase from the first to the last session.  

The RAUA values compared to the threshold are those obtained online, ensuring that the time 

considered is indeed what the participant received as feedback. Following the procedures 

outlined in the online processing section, the data underwent analysis using 2-second windows 

every 125 milliseconds. Consequently, each epoch contained approximately 480 aggregated 

values, representing the mean value over the 2-second interval. The values obtained were 30x4 

for the first approach (one per epoch, each session) and 4 with the second method (one per 

session). These were graphically depicted using a MATLAB plot, and the slope of their 

progression was calculated, both within each session and across multiple sessions.  

A positive slope of the line in both scenarios suggests that the subject was able to modulate 

their brain activity correctly. Therefore, they could potentially be considered a learner in this 
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context, whereas a negative slope suggested the opposite effect and may identify a non-learner. 

However, other factors need to be considered when evaluating this parameter, such as potential 

participant fatigue towards the end of the experiment or varying motivation levels on different 

days due to external factors (e.g., tiredness, stress or anxiety). Additionally, another factor to 

consider is that the utilized online RAUA is processed approximately to reduce computational 

costs and minimize feedback delay, consequently, its values might differ from those derived 

offline after a thorough signal pre-processing to ensure cleanliness. 

The hypothesis suggested was that there could be a participant able to self-regulate only one of 

the two features (amplitude/time), if that happens it is equally important to be able to recognize 

it as a learner. For this reason, the metrics were combined, considering features such as the 

slope of RAUA, the slope of time per session, the slope of time between sessions, and the total 

time spent above the threshold in each session; a learner was identified when at least two out 

of the first three features showed positive values. 

2.6.5 Statistical Tests 
Statistical analyses were conducted on the acquired data to verify if there were any statistically 

significant differences between pre- and post-training conditions and between the two 

considered groups, in order to have a mathematical description of these data, which is more 

specific than a qualitative description. The statistical tests were conducted using JASP 

software (Version 0.18.1) [Computer software]. Specifically, between the groups, the non-

parametric Mann-Whitney U test was performed for two independent groups, and this was 

conducted for the HADS and STAI Y-2 (trait) questionnaires. The Mann-Whitney test is the 

non-parametric version of the Student’s t-test for independent samples (Whitley & Ball, 2002). 

Regarding the cognitive tests, the effect of NFT was evaluated by comparing pre- and post-

training conditions using the non-parametric Wilcoxon signed-rank test, it was conducted for 

the two groups separately (within group). This test is the non-parametric version of the 

Student’s t-test for paired samples, where the nulla hypothesis is that there is no difference 

between samples (Corder & Foreman, 2011). Additionally, the Friedman test was used to have 

a statistical description of the development of RAUA and percent time above the threshold 

across the session within groups, considering only the identified learners participants. Non-

parametric tests were chosen due to the non-normal distribution of the data, given the limited 

subject database available. 
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2.6.6 Classification with Machine Learning 
Classification using unsupervised machine learning techniques is still relatively new in the 

domain of EEG-applied NF, nevertheless, it holds significant potential, particularly 

considering that the optimal features for identifying learners have not yet been clearly defined. 

Consequently, arbitrarily assigning subjects to a class is challenging, making it difficult to 

establish comprehensive training sets. Furthermore, due to the time requiring nature of NFT, 

there are very few studies with a sufficiently large dataset to efficiently train the algorithm.  

In this study, this approach was investigated, and to address the limited dataset issue, each 

session was individually considered, resulting in 87 input data sets; the real NFT group were 

then individually examined, comprising a total of 44 sessions. Two of the most studied methods 

were tested: K-means and self-organizing map (SOM). 

In both techniques different groups of features were tried out, the choice was made to consider 

the two slopes within the session of RAUA and percent time. In addition to that, it was added 

the slope of the percent time across the sessions, which was the same in all four sessions, and 

the total time percentage of each specific session. It was then obtained two matrices: all subjects 

(87x4) and NFT group (44x4). The second was the one used to train the network, since the 

effect on the control group is not clearly understood. 

In the K-means approach, it was defined the number of cluster equal to two, and the algorithm 

was performed with all the different combinations of features. The number of clusters must be 

chosen a priori in this technique, in this context it was defined as two because the classes to 

identify were learner or non-learner. 

Regarding the SOM network, various training iterations were tested, from 500 to 5000 and they 

were eventually settled at 1000 iterations due to the limited dataset to prevent overfitting. 

Different topologies and number of neurons were also explored, since the number of neurons 

corresponds to the number of clusters created by the algorithm, at first only 2 neurons were 

used to obtain a binary classification. Anyway, with this approach the algorithm wasn’t 

optimized ultimately finding the best configuration with an equal number of neurons per row 

and column. Some examples are depicted in the Figure 2.11. 

The best topology resulted the 2x2 neurons (Figure 2.11, left), the results are reported only for 

the network obtained with this topology.  
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Figure 2-11 Different SOM topologies. On the left configuration with 2x2 neurons; in the middle configuration 
with 3x3 neurons; on the right configuration with 4x4 neurons. 
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3. RESULTS 
The next chapter showcases the outcome derived from participants’ responses to 

questionnaires, cognitive tests, and EEG data analysis conducted within each group. 

    3.1 Self-assessment Questionnaires 
In this section, the results from the questionnaires of self-assessment are presented. 

    3.1.1 HADS 
Based on the analysis of the questionnaire findings, it appears that participants from both 

groups exhibit higher levels of anxiety compared to depression, as it can be seen in the boxplots 

depicted in the Figure 3.1. Only five out of twenty-two individuals reported anxiety values 

within the normal range (below or equal to 8), while other five subjects presented borderline 

values (between 8 and 10). All the remaining participants showed abnormal anxiety levels 

(above 10). The results indicate that most of the participants exhibited values within the range 

considered typical for depression symptoms (scoring below 8), there were only two subjects 

with higher values, one in the NFT group (equal to 11) and one in the SHAM group (equal to 

8)  (Bjelland et al., 2002). All the scores are reported in detail in Annex A, there is no significant 

statistical difference between the values of the two groups (Mann-Whitney U test: Anxiety p = 

0.409; Depression p = 0.408). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1 Scores of HADS questionnaire from all subjects (0=normal value; 21=abnormal 
value) 
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    3.1.2 STAI Y-1 & STAI Y-2 
As explained before, the STAI questionnaires are divided in two, the Y-2 (trait) and the Y-1 

(state). The first was filled once in the first session, while the latter was presented to participants 

every session. The results are reported in the Figure 3.2 

 

A descriptive statistical analysis was performed for both questionnaires and each session (Y-

1). When analysing the data from the first session it can be noticed that in Y-2 (trait) the 

minimum values reported are 26 for NFT group and 28 for SHAM group, the maximum values 

are 71 for NFT group and 64 for SHAM group, the median values are 43 for NFT group and 

49 for SHAM group; in Y-1, considering both groups, the maximum value is 67 and the 

minimum is 26, the median values are 34 (SHAM) and 35 (NFT). In the other sessions the 

results are: i) session 2, maximum 66, minimum 22, median values 39 (NFT) and 35 (SHAM); 

ii) session 3, maximum 64, minimum 20, median values 39 (NFT) and 32 (SHAM); iii) session 

4, maximum 73 (outlier), minimum 20, median values 36 (NFT) and 34 (SHAM). The Mann-

Whitney U test was conducted between groups for the STAI Y-2 (trait), however no significant 

difference was found (p = 0.576). Based on this data, a noticeable decrease in anxiety levels is 

evident throughout the session according to the state questionnaires. The detailed values for 

each participant can be found in Annex B. 

    3.2 Current Motivation 
Since one primary focus of this thesis was to explore the initial motivation levels of each 

participant at the task's outset to observe subsequent alterations in learning outcomes, a 

questionnaire assessing current motivation was employed, evaluating four distinct factors: 

Figure 3-2 Distribution of scores of STAI Y-2 questionnaire (trait) from the first session, on the right, and STAI 
Y-1 questionnaire (state) from each session, on the left, presented with boxplots with the median line, divided in 
the two groups. The scores range from 20 (normal) to 80 (abnormal) (Spielberger et al., 1971) 
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anxiety, challenge, interest, and the likelihood of success. Notably, the probabilities of success 

and failure were categorized separately for a more detailed analysis. The original questionnaire 

excluded the probability of failure while decreasing the emphasis on the probability of success 

(Vollmeyer & Rheinberg, 2006).  

In the Figures 3.3 and 3.4 are presented the scores obtained through the four sessions and the 

median values of each factor to see if the motivation increased or not for both NFT and SHAM 

groups, respectively. 

 

 

As it can be seen in Figure 3.3 in the NFT group the factors with higher values are interest and 

challenge, anxiety levels show a tendency to decrease from the first to the last session, while 

other factors tend to be stable or exhibit a slight increase. It is also clear that participant NFT6 

shows a very low level of interest and challenge combined with a decreasing probability of 

success, which may lead to a non-learner due to the little motivation. On the other hand, the 

subject NFT11 shows a low level of probability of success with an high value of probability of 

failure, but she has also high level of interest. 

Figure 3-3 NFT Group QCM Scores: Individual presentation of the five factors across sessions for 
each participant, along with an overview of median values for each factor. 
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In the Figure 3.4 that represent the SHAM group’s results, it can be noted that in this group 

there is not a general decrease in anxiety factor, which is in overall lower than in the NFT 

group, and the probability of failure has a slight increment, but also in the SHAM group the 

higher values are challenge and interest. The probability of failure values fluctuates 

considerably across the sessions, possibly indicating stress due to difficulty in understanding 

the workings of NF. This pattern is similarly reflected in the declining values of the probability 

of success. The high levels of interest and challenge are promising since one of the goals of 

this protocol was to design an engaging and motivating environment, irrespective of the group 

assignment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    3.3 Mental State 
To investigate potential correlations between sensations and a participant's training capacity, 

each participant completed a questionnaire assessing their mental state. They were asked to 

Figure 3-4 SHAM Group QCM Scores: Individual presentation of the five factors across 
sessions for each participant, along with an overview of median values for each factor. 
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rate their feelings after each session on four distinct factors: sleepiness level, motivation level, 

concentration level, and stress level. 

The Figure 3.5 presents the median scores of each factor for the two groups (NFT on the left, 

SHAM on the right). It can be noticed that the values of concentration and stress are stable, the 

sleepiness is higher in SHAM group then NFT group, probably due to the incapacity to control 

the feedback, but the level of motivation remains the same. In the NFT group the sleepiness 

decreases and the motivation increases, which is encouraging. 

 

    3.4 FKS 
An overall of the results obtained from FKS questionnaire are reported in Figure 3.6 in which 

the median values for both flow and worry are shown, comparing the values of the NFT and 

SHAM groups.  These findings indicate a higher overall flow level in the SHAM group 

compared to the NFT group, while conversely, the worry level is higher in the NFT group than 

in the SHAM group. Moreover, within the NFT group, the worry level diminishes across the 

sessions. Additionally, there is a slight increase in the flow level observed in both groups. 

 

Figure 3-5 Median scores of the four factors evaluated at the end of each session, on the left NFT group, on the 
right SHAM group. 

Figure 3-6 Overall of FKS questionnaire, the median values are presented comparing the two groups. On the left, 
Flow, on the right, Worry. 
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    3.5 Attention & Memory 
The results obtained from the self-evaluation of memory done by each participant at the 

beginning of the experiment are presented in Figure 3.7 for both NFT group (left) and SHAM 

group (right). The results show that only one participant in the NFT group (NFT4) has rated 

their memory with the highest value (7), which means that they considered to have a perfect 

memory. One participant in the SHAM group (SHAM2) reported a very low level of memory 

(2), indicating major memory problems. In general, most of the participants rated their memory 

with a middle score (5). 

 

    3.6 Cognitive Tests 
This section examines the outcomes of the working-memory tests conducted at the 

commencement of the initial session (PRE) and at the conclusion of the final session (POST). 

   3.6.1 Digit Span 
The scores obtained from both the Digit Span-Forward and the Digit Span-Backward, before 

the first session and after the last one, are graphically represented in the Figure 3.7. The 

Forward condition in the NFT group showed an increment in most of the participants. In the 

same group, two participants (NFT7; NFT10) had the same values (PRE and POST) and only 

the subject NFT4 showed a lower score at end of the training. It can be interesting to notice 

that in the SHAM group, in the Forward condition, only six participants obtained higher scores, 

whereas four of them have worsened performances, only one was stable (SHAM5). On the 

other hand, in the Backward condition both groups had similar results, with six participants 

who increased their scores, two subjects obtained the same score and three of them worsened 

it. The pre- and post-training condition were compared with a Wilcoxon signed-rank test with 

Figure 3-7 Memory scores assigned by each participant before the first session, ranging from 1 (indicating 
significant memory issues) to 7 (indicating no memory problems). 
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the alternative hypothesis that measure 1 (pre-) is less than measure 2 (post-) and a significant 

difference was found in the Forward condition in NFT group (p = 0.009), the same pattern is 

not present in the SHAM group (p = 0.117). This was not found in the Backward condition 

(NFT: p = 0.315; SHAM: p = 0.236). 

 

 

    3.6.2 CPT-X 
This study incorporated continuous cognitive tests to evaluate the participants' attention 

performance. In the following Figure 3.10 and Figure 3.11 are presented the scores of the CPT-

X test regarding Accuracy, which represent how many times the participant took the target/non-

target correctly, and Reaction time, which is the time interval to click on the mouse. Figure 

3.10 shows NFT group’s results, it can be noticed that in the target six participants obtained a 

better accuracy in the POST condition, three subjects had the same score and only two 

Figure 3-8 Scores of Digit Span-Forward (left) and Digit Span-Backward (right) of the NFT group comparing the 
first try before the first session (PRE) and the second try at the end of the last session. 

Figure 3-9 Scores of Digit Span-Forward (left) and Digit Span-Backward (right) of the SHAM group comparing 
the first try before the first session (PRE) and the second try at the end of the last session. 
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worsened it. In the non-target condition, nine participants out of eleven had the same or better 

score equal to 1 (perfect accuracy) in the final test, two of them had lower scores. 

 

 

Figure 3-10 Scores of Accuracies and Reaction time for CPT-X test in the NFT group. Target condition in the left 
and non-target condition on the right. 

 

Figure 3-11 Scores of Accuracies and Reaction time for CPT-X test in the SHAM group. Target condition in the 
left and non-target condition on the right. 
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Regarding the reaction time, it is increased in the second test in six participants for the target 

and in five subjects for the non-target.  

 Figure 3.11 shows the scores of the SHAM group, in which most of the participants had the 

same or better accuracy in both target and non-target, only two of them had lower scores. The 

reaction time increased in nine subjects in target condition, and it increased in six participants 

in non-target condition. To have a statistical description of these data, the Wilcoxon signed-

rank test was conducted comparing the pre- and post-training condition within group, a 

significant difference was found in the Target Accuracy when it was used as alternative 

hypothesis that measure 1 (pre-) is less than measure 2 (post-), with p values equal to p = 0.046 

for the NFT group, and p = 0.063 for the SHAM group; no statistical significant difference was 

found for the reaction time. 

    3.7 Individual Alpha Frequency 
In this section the distribution across participants of LTF, IAF and HTF obtained during the 

EO-EC baseline recording are reported in Figure 3.12. The lowest recorded IAF belongs to the 

participant NFT9 and is equal to 7.99 Hz, and the highest is from the subject NFT8, which is 

equal to 11.79 Hz. 

The big differences across these values make it clear how much it is important to have a tailored 

interval of frequencies. All the detailed values are reported in the Annex C. 

  

    3.8 Training Effect on Target Location 
The learning impact on self-regulation of brain activity was evaluated, specifically focusing on 

RAUA at electrode site Cz (channel 24), by examining changes in levels both intra- and inter-

Figure 3-12 Distribution of Individual alpha frequency (LTF-IAF-HTF) in both NFT group (left) and SHAM 
group (right) obtained pre-session one (EO-EC baseline). 
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sessions. Additionally, we analysed other frequency bands like theta, LA, and IAB to gauge 

the training's comprehensive influence on brain activity. 

    3.8.1 Training Effect on RAUA Band 
In Figure 3.13 and Figure 3.14 are reported the averaged values with the standard deviation of 

the RAUA across the session for both groups NFT and SHAM, respectively. 

Observing the trends in the two figures, it's evident that the NFT group displays more 

variability in RAUA compared to the SHAM group, where values remain relatively stable 

across sessions and sets. This suggests that the group receiving actual NF training experienced 

a significant effect among participants, an effect not present in the other group. All the values 

of minimum, maximum and threshold per session for each participant are presented in Annex 

D. 

The Table 3 and Table 4 showcases all slope values of the development of RAUA through the 

sets in each session for each participant, categorized by the two groups respectively, aiming to 

highlight individuals who obtained a negative value (decreased RAUA) in more than two 

sessions. These subjects are possible non-learners, and this information will be combined with 

percent time results. 

 

  

 

Figure 3-13 Averaged values with the standard deviation across the five sets and four sessions for the NFT group. 
Green line indicates the start of the session and the red line the end of that session. 
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Table 3 - IntraS values of each participant of NFT group across the sessions. The subjects with negative values 
in more than two sessions are highlighted to show a possible non-learner to verify. 

NFT ID\IntraS Sess 1 Sess 2 Sess 3 Sess 4 

NFT2 0.0059 0.0028 0.003 0.0017 

NFT3 0.0073 0.0051 0.0035 -2.635e-04 

NFT4 -0.0034 0.0011 -0.0022 -0.0012 

NFT5 -0.0027 0.0014 0.0055 -2.012e-04 

NFT6 0.0021 -0.0096 8.326e-04 -7.841e-04 

NFT7 0.0080 0.0060 0.0025 1.692e-04 

NFT8 0.0043 0.0020 9.410e-04 0.0046 

NFT9 0.0016 9.487e-04 2.626e-04 -0.001 

NFT10 0.0041 0.0062 0.0028 0.009 

NFT11 -0.0012 -0.0023 -3.447e-04 0.0023 

NFT12 -6.072e-04 -0.0089 -0.0137 -0.0032 

 

Three participants in the NFT groups showed three or four negative values of slope across the 

session, they were not able to modulate the amplitude with the training (NFT4, NFT11 and 

NFT12). Anyway, also NFT6 has two negative slopes and a third which is very low, which 

could indicate another possible non-learner. NFT5 and NFT9 also had low slope values and 

Figure 3-14 Averaged values with the standard deviation across the five sets and four sessions for the SHAM 
group. Green line indicates the start of the session and the red line the end of that session. 
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they may identify as non-learners depending on other features. A Friedman test was conducted 

across the session for the learners in the NFT group, the result is statistically significant with a 

p-value equal to 0.025. 

Table 4 - IntraS values of each participant of SHAM group across the sessions. The subjects with negative values 
in more than two sessions are highlighted to show a possible non-learner to verify. 

SHAM ID\IntraS Ses 1 Ses 2 Ses 3 Ses 4 

SHAM1 6.445e-04 -0.0022 6.0908e-04 -1.209e-04 

SHAM2 5.569e-04 2.8106e-04 -9.117e-04 6.766e-04 

SHAM3 -0.0019 4.452e-04 0.0022 0.0015 

SHAM4 0.0131 0.0063 0.0019 0.0016 

SHAM5 0.0015 -9.684e-04 -0.0077 -7.351e-04 

SHAM6 0.0024 0.0077 0.0035 0.0019 

SHAM7 0.0013 0.0012 0.0060 0.0030 

SHAM8 -3.222e-04 0.0016 6.189e-04 0.0026 

SHAM9 4.516e-04 7.648e-04 0.0120 2.025e-04 

SHAM10 0.0039 0.0055 - -0.0018 

SHAM11 0.0072 -4.132e-04 0.0076 0.0015 

 

In Figure 3.15, RAUA development of each participant is shown. 

Figure 3-15 Development of RA of UA frequency across the sets in all sessions. The NFT group are presented 
on the top, the SHAM group is at the bottom, each participant is shown in a different colour. 
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In the SHAM group one participant had three negative values (SHAM5), identified as a 

possible non-learner, and another one has exhibited two negative slope values and two values 

proximate to zero, leading to their identification as a potential non-learner (SHAM1). Also, 

SHAM2 had all slopes around zero, it cannot be identified as a learner or not with this feature 

alone. Participant SHAM10 who had technical problems with the recording of the third session 

is considered a possible learner since two values are positive and the recorded values for session 

three showed an increasing trend. 

In Table 5 and Table 6, the results of the two other learning metrics for both NFT group and 

SHAM group, respectively, and all sessions are summarized. For the NFT group the same 

participants already identified with IntraS are highlighted, but it can be noticed that there are 

other subjects with two out of four negative values in at least one metric. 

 

Table 5 – Results of Intra A1 (left) and Intra A2 (right) for the NFT group. Participants with more than two 
negative values across the sessions are highlighted. 

IntraA1 Ses 1 Ses 2 Ses 3 Ses 4 Intra A2 Ses 1 Ses 2 Ses 3 Ses 4 

NFT2 0.0536 0.0530 0.0211 0.0285  0.1599 0.078 0.0735 0.0527 

NFT3 0.0823 0.0398 0.0677 0.0092  0.4188 0.2395 0.1524 -0.0031 

NFT4 -0.1077 0.0072 -0.0385 -0.0193  -0.1866 0.0512 -0.1166 -0.0767 

NFT5 -0.0319 -0.0228 0.0579 0.0019  -0.0742 0.0128 0.1753 -0.0336 

NFT6 -0.0676 -0.1159 0.0474 0.1139  0.0407 -0.2026 0.028 0.10 

NFT7 0.1125 0.0549 0.0289 0.0455  0.1968 0.0938 0.0589 -0.0111 

NFT8 0.0501 0.0155 0.0528 0.055  0.2818 0.1608 0.0566 0.2756 

NFT9 0.0445 0.0137 0.0027 0.0045  0.1028 0.0342 0.0066 -0.0266 

NFT10 0.0519 0.1379 0.1777 0.1888  0.1412 0.3923 0.1818 0.2911 

NFT11 -0.0248 -0.0142 -0.0152 0.0015  -0.0771 -0.1034 -0.0296 0.037 

NFT12 0.133 -0.0773 -0.0857 -0.0661  0.1703 -0.2926 -0.3437 -0.1144 

 

In the SHAM group, it is identified the subject SHAM2, which was not clear in IntraS index 

and is highlighted, additionally the two participants already identified are highlighted. 
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Table 6 - Results of Intra A1 (left) and Intra A2 (right) for the SHAM group. Participants with more than two 
negative values across the sessions are highlighted. 

IntraA1 Ses 1 Ses 2 Ses 3 Ses 4 Intra A2 Ses 1 Ses 2 Ses 3 Ses 4 

SHAM1 0.0512 -0.0027 -0.0208 0.0015  0.0715 -0.0721 0.0138 9.42e-04 

SHAM2 -0.0219 -0.0253 -0.0029 0.0233  -0.0265 -0.0035 -0.0246 0.0348 

SHAM3 -0.0325 3.07e-04 0.0112 -0.0017  -0.04 0.0296 0.0936 0.0392 

SHAM4 0.1107 0.1193 0.0329 0.051  0.9894 0.3455 0.1249 0.1451 

SHAM5 0.0315 -0.0137 -0.0438 7.3e-04  0.0992 -0.0314 -0.3335 -0.0063 

SHAM6 0.0415 0.0956 0.0557 0.0338  0.0642 0.1661 0.1142 0.0556 

SHAM7 -5.8e-04 0.0092 0.048 0.0336  0.0287 0.0319 0.2053 0.1018 

SHAM8 0.0039 0.0109 0.0168 0.0276  -0.0396 0.0483 0.0416 0.1167 

SHAM9 0.0128 0.0025 0.1071 -0.0131  0.0242 0.0155 0.3436 -0.0307 

SHAM10 0.0701 0.0629 - 0.035  0.219 0.2759 - -0.0481 

SHAM11 0.0801 0.0147 0.0522 0.0227  0.2584 -0.002 0.2524 0.0229 

 

    3.8.2 Training Effect on Other Frequency Bands 
As it has been previously mentioned, given the specificity of training in neurofeedback 

targeting a particular frequency band, it was also important to determine whether additional 

frequency bands were influenced by the neurofeedback training. This section presents the data 

regarding the Relative Amplitude (RA) of other frequency bands. 

In Figure 3.16 are presented the development of relative amplitude (RA) of theta frequency 

over the electrode Cz across the sets and in each session for all the participants (NFT above, 

SHAM below). Regarding the NFT group, there is an increment in the values from the first to 

the last session in particular in subjects NFT4 and NFT11, who were identified as non-learners 

for the RAUA. The behaviour regarding the LA and IAB are showed in Figure 3.17 and Figure 

3.18 (NFT above, SHAM below), all the participants’ values across the sets and in all the 

sessions are represented, respectively. 

The evolution of LA resembles that of IAB, which is also similar to the trend of RAUA, 

whereas the outcomes observed in the theta band portrayed an almost opposite trend, where 

increased RAUA values corresponded to decreased RA Theta values. 

The analysis excluded beta values due to the presence of persistent physiological artifacts 

(muscle activity) that remained unresolved despite attempts at denoising through Independent 

Component Analysis (ICA). 
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Figure 3-16 Development of RA of theta frequency across the sets in all sessions. The NFT group are presented 
on the top, the SHAM group is at the bottom, each participant is shown in a different colour. 

Figure 3-17 Development of RA LA frequency across the sets in all sessions. The NFT group are presented on 
the top, the SHAM group is at the bottom, each participant is shown in a different colour. 
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    3.9 Time Rewards Effect 
In order to assess the effectiveness of adding a reward every 2.5 seconds on the modulation of 

time above the threshold, the development of this feature has been evaluated. This has been 

performed in two conditions, within session and across sessions, to establish if participants had 

a positive effect on the self-regulation during the training or from the first to the last session. 

    3.9.1 Percent Time Variation Intra-session 
In this section, the trend of time above the threshold is graphically presented for each 

participant across the epochs, in Figure 3.19 the NFT group is shown and in Figure 3.20 the 

SHAM group is represented. The relative slope from each session is also reported in the Table 

7 (NFT) and Table 8 (SHAM). Looking at NFT results, it is seen that the same subjects 

identified as non-learners with RAUA are not able to self-regulate the time above the threshold, 

this suggests that they can be considered non-learners. One more subject is found with more 

than two negative slopes, the NFT9, which had low values of slopes for RAUA, so it could be 

part of the non-learners. All the detailed values per session of each participant are reported in 

Annex D. A Friedman test was conducted for the learners of NFT group to study the 

development across sessions, the obtained value was p = 0.067. 

 

 

 

Figure 3-18 Development of RA IAB frequency across the sets in all sessions. The NFT group are presented on 
the top, the SHAM group is at the bottom, each participant is shown in a different colour. 
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Table 7 – Slopes of the trend of percent time through the epochs in each session of the NFT group. The participants 
with more than two negative values are highlighted as possible non-learners. 

Slope intra 

session 

Ses 1 Ses 2 Ses 3 Ses 4  Ses 1 Ses 2 Ses 3 Ses 4 

NFT2 0.5874 0.3261 0.1233 0.0081 NFT8 0.7022 1.1002 0.5130 0.5194 

NFT3 0.3031 0.1689 -0.2283 -0.525 NFT9 -0.0861 0.3466 -0.5577 -0.0699 

NFT4 -0.3464 -0.1228 -0.1933 0.4044 NFT10 0.6103 0.0454 0.535 1.1076 

NFT5 -0.2706 0.3755 1.728 -0.178 NFT11 -0.5332 -0.0471 -0.1594 -0.8288 

NFT6 0.5293 -0.0255 0.5987 -0.194 NFT12 0.1621 -0.597 -0.7642 -0.3947 

NFT7 0.8215 0.8567 0.9914 0.6813      

Figure 3-19 Development of time above the threshold through the 30 epochs in the 4 session of each NFT 
participant. 
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Table 8 - Slopes of the trend of percent time through the epochs in each session of the SHAM group. The 
participants with more than two negative values are highlighted as possible non-learners. 

Slope intra 

session 

Ses 1 Ses 2 Ses 3 Ses 4  Ses 1 Ses 2 Ses 3 Ses 4 

SHAM1 0.737 -0.0735 0.0528 0.2367 SHAM7 0.0080 0.0518 0.8397 -0.1289 

SHAM2 -0.1029 0.220 0.0885 0.1159 SHAM8 0.0303 0.140 -0.0891 0.3444 

SHAM3 -0.3959 0.2048 0.7082 0.3511 SHAM9 0.6914 -0.0808 0.7431 0.4419 

SHAM4 0.9962 -0.0712 -0.3418 -0.3370 SHAM10 -0.0816 0.9758 - -0.5136 

SHAM5 0.3112 -0.0933 0.178 -0.256 SHAM11 0.5308 0.3698 0.8211 0.2577 

SHAM6 0.3965 1.0107 0.3495 0.2399      

Figure 3-20 Development of time above the threshold through the 30 epochs in the 4 sessions of each SHAM 
participant. 
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Regarding the SHAM group, it is present just one participant (SHAM4) who had negative 

slopes in three sessions and one (SHAM10) who had two out of three negative slopes, while 

none of the already identified non-learner subjects are recognized. Since this pattern is present 

in the SHAM group, this could be explained by the non-correlation of the variations with the 

training. 

    3.9.2 Percent Time Variation Inter-session 
In this section the development of percent time above the threshold across the session is 

represented in Figure 3.21 and Figure 3.22 for SHAM and NFT groups, respectively. The 

variations of threshold across the session are indicated by a circle, it is green if the threshold 

was diminished from the previous session, and red if it was increased. The slopes of each 

participant are also presented in Table 9. The slopes values reported in the Table 9 don’t show 

any correlations with the other features already seen, just one participant (SHAM1) 

corresponds to the identification as non-learner. 

 

 

 

 

 

Figure 3-21 Trend of percent time above the threshold across the sessions for each participant in NFT group. Red 
circle = threshold increased from previous session; Green circle = threshold decreased from previous session. 
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Table 9 - Slopes of the trend of percent time through the sessions in both groups. The participants with more than 
two negative values are highlighted. 

NFT ID Slope NFT ID Slope SHAM ID Slope SHAM ID Slope 

NFT2 17.7313 NFT8 -2.5251 SHAM1 -4.3964 SHAM7 7.8483 

NFT3 8.1947 NFT9 -1.1914 SHAM2 3.0696 SHAM8 4.8247 

NFT4 4.7903 NFT10 10.673 SHAM3 3.4601 SHAM9 9.2672 

NFT5 -2.1167 NFT11 2.6344 SHAM4 7.2164 SHAM10 -11.4703 

NFT6 -0.7652 NFT12 3.680 SHAM5 -0.7787 SHAM11 1.025 

NFT7 -4.2348   SHAM6 7.9699   

 

    3.10 Training Effect on Spectral Topography 
In this section the variations in the spectral topography throughout the NFT are presented for 

the averaged RA of all the considered bands. Figure 3.23 shows the topographic maps through 

the five sets of session one for each frequency band, the values were averaged across the NFT 

group participants. The same representation is done for the SHAM group in Figure 3.24. 

 

 

Figure 3-22 Trend of percent time above the threshold across the sessions for each participant in NFT group. Red 
circle = threshold increased from previous session; Green circle = threshold decreased from previous session. 
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The results showed an increase through the sets when analysing the RA for LA, UA and IAB 

frequency bands, the increment is concentrated near the Cz electrode location and there is a 

slight increase also in the frontal area. On the contrary, the RA of theta frequency band shows 

a decrease in the frontal area from the first to the last session, this decrement is significant in 

NFT group, while it is less present in the SHAM group, probably due to a lower effect of the 

placebo training. In the Figure 3.25 and Figure 3.26 are represented the spectral topographies 

of the averaged RA of all the examined frequencies of the learners from NFT and SHAM group, 

respectively, of the pre- and post-condition.  

Pre-training indicates the mean of the first two sets of session one, while post-training is the 

mean of the last two sets of session 4. The subjects considered as non-learners were excluded 

from the values averaged for these spectral topographies. In the NFT group: NFT4, NFT9, 

NFT11, NFT12. In the SHAM group: SHAM1, SHAM5. 

Figure 3-23 Topographical distribution of the averaged RA for all the frequency bands analysed along each 
of the five sets in the first session for NFT group. 
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In these two figures (3.25 and 3.26) the same scales are used to make the comparison simpler. 

In the NFT group it can be seen a significant increase of RA in UA, LA and IAB frequency 

bands, at the same time there is a decrease (inhibition) of the RA in theta frequency band in the 

frontal area. In the SHAM group the increment of RA in UA, LA and IAB frequency bands is 

lower and more dispersed throughout the brain than in the other group, although the effect of 

training can be seen from the first to the last session near the Cz electrode location, additionally 

it should be kept in mind that the values were already lower in the first session for these 

subjects. The inhibition of theta frequency band is present in the SHAM group, too. 

 

 

 

 

Figure 3-24 Topographical distribution of the averaged RA for all the frequency bands analysed along 
each of the five sets in the first session for SHAM group. 
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    3.11 Classification into Learning Groups with Machine Learning 
In this section, the results of the classification tests using the two machine learning techniques 

employed (K-means and SOM) are presented (classes and clusters). Both methods have been 

Figure 3-25 Topographical distribution of the averaged RA of each frequency band across learners from NFT group 
in the pre-training and post-training conditions (PRE=mean of two first sets of session 1; POST=mean of two last 
sets of session 4). 

Figure 3-26 Topographical distribution of the averaged RA of each frequency band across learners from SHAM 
group in the pre-training and post-training conditions (PRE=mean of two first sets of session 1; POST=mean of 
two last sets of session 4). 
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tried with three combinations of features: i) RAUA IntraS, percent time slope within session; 

ii) RAUA IntraS, percent time slope within session, percent time slope across session; iii) 

RAUA IntraS, percent time slope within session, percent time slope across session, percent 

time above threshold in each session. Since it was not clear the effect of the training in the 

SHAM group, for this part only NFT group was considered. 

     3.11.1 K-means Classifier 
The number of cluster was set at 2 (learner/non-learner), and it was applied considering each 

session individually. The second and third combination of features (ii; iii) led to bad 

classification, so those results will not be reported. In Table 10 the classes regarding the 

combination of the first two features with NFT group’s session are reported, cluster 1 

corresponds to non-learner, cluster 2 identify a learner. If a subject is classified in more than 

two sessions as class 1, it is considered a non-learner.   

Table 10 - Classification obtained with K-means method considering the sessions from NFT group and 2 clusters. 

NFT ID\classes Ses 1 Ses 2 Ses 3 Ses 4 Classification 

NFT2 2 2 1 1 Learner 

NFT3 2 1 1 1 Non-learner 

NFT4 1 1 1 2 Non-learner 

NFT5 1 2 2 1 Learner 

NFT6 2 1 2 1 Learner 

NFT7 2 2 2 2 Learner 

NFT8 2 2 2 2 Learner 

NFT9 1 2 1 1 Non-learner 

NFT10 2 1 2 2 Learner 

NFT11 1 1 1 1 Non-learner 

NFT12 1 1 1 1 Non-learner 

 

This technique recognized five non-learners, four of them are the same identified with the 
classic method. 

 

     3.11.2 Self-organizing map Classifier 
When analysing the results obtained with the SOM method, it was noticed that also in this case 

the second and third combination of features led to misclassification, with cluster that had no 

correlation with the results already obtained. The slope of percent time across the session was 

removed, as well as the total percent time in each session, leaving only the first combination 

of features (i). Figure 3.27 shows the clusters obtained (A), the SOM hits (B), which are the 

number of victories obtained by each neuron, and the SOM neighbour weight distances (C). 
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The classes obtained with this technique are reported for each session in Table 11, the clusters 

1 and 2 are identified as the non-learners and the clusters 3 and 4 are the class of learners. If a 

subject is assigned in more than two sessions to the cluster 1 or 2, it is classified as non-learner. 

 

Table 11 - Classification obtained with SOM method considering the sessions from NFT group and 2x2 topology. 

NFT ID\classes Ses 1 Ses 2 Ses 3 Ses 4 Classification 

NFT2 4 4 1 1 Learner 

NFT3 4 1 1 2 Non-learner 

NFT4 2 1 1 4 Non-learner 

NFT5 1 4 3 1 Learner 

NFT6 4 1 4 1 Learner 

NFT7 3 3 3 4 Learner 

NFT8 4 3 4 4 Learner 

NFT9 1 4 2 1 Non-learner 

NFT10 4 1 4 3 Learner 

NFT11 2 1 1 2 Non-learner 

NFT12 1 2 2 2 Non-learner 

 

The classification obtained results the same obtained with K-means method, both techniques 

recognize as non-learner NFT3, in addition to the already identified NFT4, NFT9, NFT10 and 

NFT11. 

 

 

 

Figure 3-27 SOM network obtained with 2x2 topology and two features. (A) on the left, the clusters obtained, 
assigned to 2 classes: 1-2=non-learner; 3-4=learner. (B) in the middle, SOM hits which represent the number of 
victories for each neuron. (C) on the right, SOM neighbour weight distances: darker colours mean greater distance, 
lighter colours indicate smaller distances. 
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    4. DISCUSSION 
This chapter explores six specific topics for comprehensive discussion. Initially, a critical 

review of the outcomes of the QCM and FKS questionnaires is performed, which hold 

significance in evaluating participant motivation and engagement before and during each 

session. Subsequently, the cognitive test results are examined in relation to existing literature. 

Following this, the chapter presents insights into the IAF and the impact of training on RAUA 

at the Cz target location. Next, the effect of time-based reward is examined, investigating the 

fluctuation in the percentage of time spent above the threshold. The application of sham 

feedback alongside visual feedback in NFT is then analysed, drawing insights from existing 

literature. The last topic is relative to the classification with machine learning problem, in the 

current thesis this method was tested for further investigations, however, due to the limited 

dataset size, it wasn't employed for the final classification. 

    4.1 Current Motivation 
It is known from the study by Vollmeyer & Rheinberg (2006) that the motivation at the 

beginning of the task can influence the results of the performance, since more motivation 

encourages the participants to do better. This work is aimed to understand if this protocol can 

increase the motivation and, consequently, boosted engagement, an asset at optimizing 

outcome performance in learners who would otherwise act as non-learners. 

Among the four motivational factors considered, Kleih et al. (2010) demonstrated that interest 

and the likelihood of success are higher in new participants, as seen in this case. Moreover, 

when interest and challenge are higher, motivation tends to be greater. In another study, Nijboer 

et al. (2010) found a difference in anxiety levels between the control and NFT groups, noting 

lower anxiety levels among NFT participants post-exercise compared to the control group. 

However, contrary to this finding, the present study observed a decrease in anxiety levels 

among nearly all NFT participants, but their anxiety levels didn't significantly differ from those 

in the SHAM group. Interestingly, the anxiety level was generally lower in our SHAM group, 

even if drawn from random sampling of the population. 

The challenge and interest levels were the highest scoring properties in both groups, in 

particular in the NFT group the interest decreased until the third session and then increased in 

the last one, whereas the challenge was stable and had a slight decrease in the last session. On 

the other hand, the interest in the SHAM group had an opposite behaviour, it increased upon 

the third session and decreased in the fourth session. The highest variation is seen in NFT6, 
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SHAM5, SHAM6 (decrease), and NFT9, SHAM10 (increase). Regarding the likelihood of fail 

and success, as expected, when the first increased the second decreased, this is the case of 

NFT11 and SHAM5, both identified as non-learners. 

In the present study it wasn’t find a diminishing number of non-learners caused by the 

motivation, but it was noted a correlation between the feelings experienced by the participants 

and the outcomes of the training, for example in NFT6 the decreasing interest led to worse 

results in both RAUA and time above the threshold, even if it is still considered a learner. 

    4.2 FKS Questionnaire 
The aim of this questionnaire is to monitor the development of flow and worry across the 

session in the two groups, since the capacity to experience flow during an activity is considered 

an internal motivator that influences the engagement in a task. 

Looking at the results obtained, it can be noted that in the NFT group the level of flow is smaller 

than the one in control group, the opposite happened for the level of worry. Despite these 

general considerations, it is interesting how the worry level decrease across the sessions in NFT 

group, which may indicate an increased confidence in performing the task among the 

participants, whereas in the SHAM group worry decreased in the third session but showed 

again an increment in the last session. On the other hand, the level of flow increased in SHAM 

group, while it shows a peak in the third session and a decrease in the fourth one in the NFT 

group. This behaviour could be caused by an under or over challenging in the participants, as 

explained in a study by Reinhardt et al. (2015); in this case, considering the participants at the 

end of the experiment, this could be due to over challenging or boredom during the training.  

In the study conducted by Vollmeyer & Rheinberg, in 2006, they explained that the level of 

motivation reported in the QCM questionnaire (interest and challenge) influence the results of 

flow perceived at the end of the session, subsequently impacting the final learning outcome. 

As participants consistently experienced high levels of flow throughout the study, they felt like 

having gained substantial learning from the training, and they are more confident. This 

confidence is not always related to the real results, as it can be seen, for instance, in NFT4 and 

NFT9, both identified as non-learners but with increasing motivation, increasing flow levels 

across the sessions and, consequently, increasing motivation in their performances, even if it 

was ineffective. 
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    4.3 Cognitive Tests 
The two cognitive tests, Digit Span and CPT-X, submitted to all subjects at the beginning of 

the first session and at the end of the last one were used to evaluate their short-term memory 

capacities and sustained attention skills, respectively. 

Indeed, as proven in a study by Nan et al. (2012), an increase in RAUA may be related to an 

improvement in memory skills, reflected in a better score in Digit Span test. Looking at these 

scores in the NFT group, in forward condition most of the participants experienced an 

improvement, while two obtained the same score (NFT7 and NFT9) and only one had worse 

performance, which is the NFT4, identified as a non-learner. Despite these promising results, 

in the backward conditions the outcome is different, NFT4 increased the score, whereas NFT3, 

NFT8 and NFT9 lowered it, although the first two are considered learners. This might be due 

to the more challenging condition or to the tiredness caused by the length of session or, for 

those who did the training in the afternoon, their work during the day. In the control group, the 

pattern is not significant, since half of the participants increased the score and the other half 

decreased it, in both conditions, which can be explained by the non-correlation of the training 

and the effect obtained. 

Regarding the CPT-X, four factors were considered to evaluate the performance of participants: 

the accuracy, which means how many times they answered correctly, and the reaction time, 

which indicates how long it took to answer, for both target (X) and non-target letters (Sherwood 

et al., 2019). Indeed, they had to click on the mouse every time a non-target letter appeared on 

the screen and the expected outcomes after the training were a better accuracy combined with 

a reduced reaction time, according to the study led by Sherwood et al. in 2019. In the current 

study, the first was assessed in both groups, as most participants managed to increase accuracy. 

Conversely, the reaction time showed the opposite effect, exhibiting a general increase, perhaps 

due to the desire to avoid mistakes, leading them to slow down their responses. 

    4.4 Individual Alpha Frequency 
It has been proved in the past that a customized training protocol raises the trainability level, 

in this case a personalized training is obtained by evaluating for each participant an individual 

alpha band (IAB), following the methodology by Escolano et al., (2013) and Kober et al. 

(2015). The peak in this band was identified as the individual alpha frequency (IAF) used to 

obtain the UA value (IAF+2Hz). There are some studies where the IAB was evaluated in two 

conditions, pre-training baseline and post-training baseline, to see if the NFT had some effect 
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over these values (Kober et al., 2015; Miguel & Bucho, 2018). However, in the presented work 

the post-training baseline was recorder for future purposes, but it wasn’t considered. 

The values of IAF found here range from 8 Hz to 11.8 Hz, they are near the standard value of 
10 Hz. 

    4.5 Training Effect on RAUA Band 
To assess the effectiveness of the training, among the three intra-session metrics evaluated, 

IntraS was used to identify non-learners when it displayed a negative value in at least three 

sessions. However, this classification wasn't conclusive and was supplemented by considering 

the slope of the percent time above the threshold, which will be discussed later. From this first 

feature, five participants were identified as possible non-learners: NFT4, NFT11, NFT12, 

SHAM1 and SHAM5. 

Choosing to utilize intra-session metrics instead of inter-session ones is based on past studies 

indicating a more pronounced effect during training, particularly when the number of sessions 

is small, as in this case (Hanslmayr et al., 2005; Bucho et al., 2018).  

From the results showed in Figure 3.15 it is seen an increasing value of RAUA across the 

sessions for the learners in NFT group, although there is a slight decrease at the end of each 

session and it is clearly seen in the average value reported in Figure 3.13, maybe caused by 

tiredness or fatigue after the whole training, this is more significant in the last session. The 

control group had less variations of RAUA across the sessions, as it is seen in Figure 3.14, 

although the expectations were that this groups wouldn’t have been able to learn the self-

regulation, most of the SHAM participants was classified as a learner and only SHAM1 and 

SHAM5 was non-learners. It is possible that for this group different learning metrics should 

have been considered, since the effect of the training didn’t have the wanted results in the 

cognitive tests and the outcomes may not be related to NFT. 

This feature will be combined with the features about time in following sections to obtain the 

final identification of non-learners as those who was recognized as non-learners in at least two 

features, always keeping in mind also the third one. 
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    4.6 Training Effect on Other Frequency Bands 
The training effect when trying to increase or decrease the RAUA band can influence the 

frequency band close to that, which may be modulated unintentionally by the participant, as 

was proved in previous studies (Esteves et al., 2021; Hanslmayr et al., 2005; Nan et al., 2012).  

Analysing the results of the trend of these frequencies in this study, they showed two different 

behaviours. The RA theta tended to decrease concurrently with the increase in RAUA, which 

is the expected outcome considering studies conducted in the past, like those from Esteves et 

al. (2021) and Bucho et al. (2018). On the other hand, the LA and IAB bands exhibited a 

similar pattern to that of RAUA, mirroring its trend: as RAUA increased, the values of these 

other bands also showed higher values.  

Over the years, studies have also been conducted where modulation was achieved only in the 

RAUA without impacting other bands, such as the one by Zoefel et al. (2011). A final 

consensus remains to be achieved. 

    4.7 Time Rewards Effect 
The obtained results regarding the percent time above the threshold are discussed in the next 

two sections, discussing separately the modulation within session and across sessions. 

    4.7.1 Percent Time Intra-session 
Unlike the approach used for RAUA, for the time above threshold, the decision was made to 

use individual epochs rather than the five sets, this was done to offer a more detailed insight 

into its development during a training session. Then the same feature is studied, 

corresponding to the slope of the line approximating this trend, the same approach was used 

and the participants with more than two negative slope values were identified as non-learners. 

The expected outcome is that the so-called learners from RAUA analysis should also have an 

increasing time above the threshold, the results obtained in the NFT group align with this 

hypothesis, as the three previously identified subjects (NFT4, NFT11 and NFT12) also 

exhibit three or more negative values in this feature. One additional subject has been 

recognized, NFT9, and upon rechecking their RAUA values, it's apparent that although the 

slope is positive, the values are very small. This indicates that rather than increasing, the 

values remained stable, and it could be considered a non-learner, this classification will be 

confirmed when checking the percent time inter-session. On the contrary, in the SHAM group 

it wasn’t present the same pattern, indeed only two subject was identified as non-learner with 
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this method, SHAM4 and SHAM10, and they don’t correspond to those recognized with 

RAUA, 

However, it can be noticed that the values obtained in the control group are generally lower 

than the ones in the real NFT group, except for some exceptions. It is possible that the slight 

positive slopes are due to participants in this group not being able to understand how to control 

the feedback and becoming distracted from the task, relaxing, and closing their eyes, which 

leads to a natural increase in alpha waves. 

     4.7.2 Percent Time Inter-session 
To analyse this feature, it's important to note that the thresholds used in different sessions 

vary based on the subject's performance in the previous session. It begins at the 60th percentile 

threshold and increases by 5 when the percentage of time exceeded 60% or decreases by 5 

when it was below 40%. In Figure 3.21 and Figure 3.22 these variations were indicated with 

a green circle when the threshold was decreased and a red circle when it was increased, 

compared to the previous session. This calculation choice was made to represent the feedback 

displayed to the NFT group, and accordingly, the same approach was followed for the SHAM 

group. In these two figures it is clearly seen that the NFT group managed to increase the 

threshold more, indeed four participants had an increment, whereas in the SHAM group only 

one participant was able to do it (SHAM8) and seven of them needed easier tasks. 

Keeping that in mind, it is not surprising that there are a higher number of negative slope 

values in the NFT group than in the control one, each case of negative slope should be 

analysed separately. For example, NFT5 and NFT7 have negative slope values, but they have 

also one and two increment in the threshold, respectively, and since they were not identified 

as non-learners for the previous features, they are considered learners. NFT6 and NFT8 also 

have negative slopes and no variation in the threshold, despite this they were not classified as 

non-learners because their behaviour was positive in the other features. Regarding the NFT9 

instead, it's observed that it has a negative slope despite the decrease in threshold. Given its 

minimal increases in RAUA and being flagged as a potential non-learner based on the intra-

session percentage of time, this subject is ultimately classified as non-learner. Looking at the 

control group, two subjects were highlighted, SHAM1 and SHAM5, both already identified 

with the RAUA. The first hadn’t change the threshold across the session, while the latter had 

a lower threshold in the third and fourth sessions, and still, they had negative slope values, 

combining these results with the first feature, they both are classified as non-learners. It can 
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be argued that the calculation should have been made considering always the same threshold, 

although in this way the information relative to the perception of the participants would have 

been lost.  

Another important factor that should be considered is that this kind of training shows long-

term effects after a great number of sessions, and four days might not be enough to see a 

significant difference from the first to the last session. 

    4.8 Classification with Machine Learning 
The use of unsupervised machine learning methods in this study was a trial for future 

investigations. Due to the limited dataset of subjects, using each individual as input for the 

classifier was impractical and wouldn't have yielded consistent results. Hence, the decision was 

made to employ each session as a separate input to train the networks with a larger volume of 

data, which led to an inherent challenge in choosing suitable features. While considering the 

variation in the percentage of time across sessions and the total percentage of time above 

threshold in each session, the classification resulted in random outcomes where the machine 

couldn't accurately interpret the data. Several combinations of features were tested, and the 

findings showed that the best classification with the limited amount of data is achieved using 

only the first two features. The third feature would be interesting to consider in cases where 

each subject is an input, incorporating the data from each session., 

The K-means and the SOM network were the chosen machine learning techniques, in the first 

the binary classification was defined a priori by choosing the number of cluster equal to 2,  

in the second approach, as using only two neurons to achieve binary classification is not 

recommended, a 2x2 topology was utilized, resulting in the division into 4 clusters that can be 

grouped into two main ones. The association between the class and the definitions 'learner' or 

'non-learner' was done manually by analysing which subjects belonged to the two obtained 

classes. The same criterion already used was applied, if more than two sessions belonged to the 

non-learner class, the subject was assigned to that category. 

The results are encouraging since both methods identified as non-learners the same subjects, 

they are the same four already found with the standard approach (NFT4, NFT9, NFT11 and 

NFT12) and in addition to them, also the NFT3. Its values were checked again, and this 

participant had decreasing slope values across sessions for both RAUA and time above the 

threshold, in particular this last feature had negative values in the third and fourth sessions 

which indicate that it isn’t really learning the self-regulation. The machine was able to 
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recognize this pattern better than a human eye and associate this behaviour to the non-learner 

class in three sessions out of four. 

These classifiers still have some limits, in literature there are few studies with large enough 

database to train consistently a network, in addition to that, the learning metrics to use are not 

standardized yet, which means that there are few cases of labelled training set to be used with 

a supervised machine learning technique. 

    4.9 Comparison between Visual Feedback and SHAM 
All the participants were aware from the beginning of the existence of the control group, even 

if none of them knew its real belonging, they might remain uncertain about their ability to 

influence the game since determining if they are effectively modulating brain activity is 

challenging. It was proven in a study by Sorger et al. (2019) that in continuous real-time NF 

the individuals belonging to the control group are more likely to understand it than when using 

feedback delayed or intermittent, which may lead to lose interest in the game or a feeling of 

frustration or demotivation, for this reason it is important to use a method that the participant 

cannot understand on its own. In this case, it was done by showing them a real and reliable 

feedback, recorded during another subject’s session, so that they were not actually able to 

control the game but continued to make an effort to do it, which could explain their capacity in 

learning the self-regulation. Although another possible explanation is that not finding the right 

strategy may have led them to be more composed, which would increase the amplitude of 

RAUA unintentionally. 

There are other possible approaches to use the Sham group, for example they could receive the 

NF targeting other frequency bands or brain locations, as well as be provided with different 

scenarios. It would be also possible to give them mental strategies to use during the training, 

to see if with them they would learn to self-regulate and enhance their activity, even without 

the visual feedback. 
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    5. CONCLUSION 
This thesis introduced and executed an NFT protocol to assess the impact of incorporating 

reinforcement levels in two distinct groups: the NFT group and the SHAM group. All 

participants were healthy individuals who had no prior experience with NFT sessions. The 

study centred on evaluating the effectiveness regarding both the amplitude of UA and the time 

spent above the threshold. The EEG signal was acquired and pre-processed using the 

OpenViBE programme, and the feedback parameter was sent to Unity, where it was displayed 

and given to the participant. 

The participant's performance in accordance with the UA's relative amplitude controlled the 

game's two scenarios, which were a tropical forest and a diving deep in the ocean. Three values 

were set: a threshold, a minimum, and a maximum. A dimmer was used if the participant's 

value fell between the minimum and threshold values; otherwise, the scene would zoom in or 

out without the use of a dimmer, based on the amplitude of the RAUA with higher amplitude 

corresponding to more zoom. The second level of reinforcement regarding the time above the 

threshold consisted in giving rewards (animals appearing on the screen) every 2.5 seconds 

spent above the threshold, so that the participant was conscious of its performance. The SHAM 

group participants were shown feedback relative to another participant’s recording in another 

session, so they didn’t have any real feedback about their brain activity. 

The results showed that the NFT group had individuals who were able to modulate and increase 

the RAUA in the electrode Cz and the time above the threshold, whereas a similar but blunted 

pattern could be observed in the SHAM group, even though real self-regulation or brain activity 

did not occur. The study sought to explore further the criteria used for classifying participants 

into learners and non-learners, namely using: (i) the slope of RAUA within session (across 

sets); (ii) the slope of percent time within session (across epochs); (iii) the slope of percent time 

across session. It was also verified that this training had a similar impact on the nearby 

frequency bands, the LA and the IAB, whereas it had an opposite effect in the theta bands, 

since an increase in RAUA led to a decrease in the relative amplitude of theta band. In addition, 

topographic maps were able to demonstrate the effects, which were observed in different brain 

regions. The effect of the training was assessed through the cognitive tests and the expected 

outcomes were achieved in the NFT group, with an increased performance in working memory. 

Finally, the extracted features were used to test the possibility to automatically identify learners 

using two machine learning techniques: K-means and SOM. These methods identified the same 
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participants as non-learners; however, the dataset is too small to obtain consistent results with 

these techniques. These should be regarded as an innovative proof of concept, whilst further 

studies and investigations will need to be conducted on larger datasets.  

This project holds numerous potential future developments, for instance, having a larger dataset 

would be intriguing for generalizing information. There's the possibility of computing time 

above the threshold differently, employing a consistent threshold across all sessions to observe 

trends. Additionally, further exploration into the field of classification using machine learning 

and potentially delving into deep learning methods could be beneficial. 
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ATTACHMENTS 

Annex A – HADS 
Table 12 - HADS questionnaire values for each participant obtained in the first session. 

 HADS Anxiety HADS Depression 

NFT2 14 2 

NFT3 17 7 

NFT4 3 3 

NFT5 8 0 

NFT6 6 6 

NFT7 9 1 

NFT8 5 6 

NFT9 18 2 

NFT10 15 11 

NFT11 9 0 

NFT12 4 4 

SHAM1 10 4 

SHAM2 12 6 

SHAM3 10 7 

SHAM4 11 3 

SHAM5 11 5 

SHAM6 12 7 

SHAM7 11 3 

SHAM8 12 1 

SHAM9 6 3 

SHAM10 11 8 

SHAM11 12 2 

 

 

Independent Samples T-Test between groups 
 W  p 

HADS A   47.500    0.409  

HADS D   47.500    0.408  

Note.  Mann-Whitney U test. 
 

 

 

 



- 15 - 
 

Annex B – STAI Questionnaires 
Table 13 - STAI questionnaires values for each participant, STAI Y-2 (trait) from the first session, STAI Y-1 
(state) one value per session. 

 Y-2 Y-1 ses 1 Y-1 ses 2 Y-1 ses 3 Y-1 ses 4 

NFT2 50 34 30 28 30 

NFT3 71 65 42 45 41 

NFT4 26 31 22 20 20 

NFT5 46 32 35 43 35 

NFT6 43 40 42 39 40 

NFT7 41 35 43 38 37 

NFT8 37 41 38 40 36 

NFT9 62 67 66 64 73 

NFT10 51 59 41 46 39 

NFT11 38 35 24 21 21 

NFT12 35 33 32 33 36 

SHAM1 38 48 36 31 33 

SHAM2 55 26 25 27 23 

SHAM3 50 31 38 32 30 

SHAM4 41 32 25 21 26 

SHAM5 64 53 47 51 43 

SHAM6 28 34 36 39 49 

SHAM7 56 30 32 32 31 

SHAM8 49 39 35 31 36 

SHAM9 41 31 35 34 34 

SHAM10 46 39 34 38 36 

SHAM11 49 59 35 37 41 

 

 

Independent Samples T-Test STAI Y-2 

 W  p 

STAI Y-2  51.500    0.576  
 

Note.  Mann-Whitney U test. 
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Annex C – Individual Alpha Band 
Table 14 - Values acquired during the first session's calibration phase include the Individual Alpha Frequency 
(IAF), the Lower Transition Frequency (LTF, IAF minus 2 Hz), the High Transition Frequency (HTF, IAF plus 
2 Hz), and the Upper Alpha (UA) frequency band, representing the interval between IAF and HTF. 

 LTF IAF HTF UA 

NFT2 8.1959 10.1959 12.1959 [10.1959: 12.1959] 

NFT3 9.3954 11.3954 13.3954 [11.3954: 13.3954] 

NFT4 6.7965 8.7965 10.7965 [8.7965: 10.7965] 

NFT5 8.1959 10.1959 12.1959 [10.1959: 12.1959] 

NFT6 6.3966 8.3966 10.3966 [8.3966: 10.3966] 

NFT7 6.9964 8.9964 10.9964 [8.9964: 10.9964] 

NFT8 9.7953 11.7953 13.7953 [11.7953: 13.7953] 

NFT9 5.9968 7.9968 9.9968 [7.9968: 9.9968] 

NFT10 7.7961 9.7961 11.7961 [9.7961: 11.7961] 

NFT11 6.5966 8.5966 10.5966 [8.5966: 10.5966] 

NFT12 8.3958 10.3958 12.3958 [10.3958: 12.3958] 

SHAM1 9.7953 11.7953 13.7953 [11.7953: 13.7953] 

SHAM2 8.1959 10.1959 12.1959 [10.1959: 12.1959] 

SHAM3 7.996 9.996 11.996 [9.996: 11.996] 

SHAM4 8.7957 10.7957 12.7957 [10.7957: 12.7957] 

SHAM5 8.1959 10.1959 12.1959 [10.1959: 12.1959] 

SHAM6 8.3958 10.3958 12.3958 [10.3958: 12.3958] 

SHAM7 9.5954 11.5954 13.5954 [11.5954: 13.5954] 

SHAM8 6.7965 8.7965 10.7965 [8.7965: 10.7965] 

SHAM9 6.9964 8.9964 10.9964 [8.9964: 10.9964] 

SHAM10 7.1963 9.1963 11.1963 [9.1963: 11.1963] 

SHAM11 8.1959 10.1959 12.1959 [10.1959: 12.1959] 
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Annex D – Reward Threshold 
Table 15 - Values of RAUA minimum, maximum and threshold per session for each participant in the NFT group. 
In the last column is presented the value of percent time spent above threshold per session. 

Participant Session Min Threshold Max Percent time 

NFT2 

1 

0.8604 

1.5935 

2.8712 

20% 

2 1.5435 51.17% 

3 1.5435 66.83% 

4 1.5935 73.89% 

NFT3 

1 

0.7182 

1.4932 

2.4599 

19.03% 

2 1.4346 40% 

3 1.4346 40% 

4 1.4346 47% 

NFT4 

1 

0.5995 

1.0023 

1.7159 

42.31% 

2 1.0023 41.51% 

3 1.0023 51.73% 

4 1.0023 54.87% 

NFT5 

1 

0.7467 

1.5073 

3.0107 

51.13% 

2 1.5073 39.37% 

3 1.4424 61.25% 

4 1.5073 36.78% 

NFT6 

1 

0.8321 

1.5673 

3.2446 

50.82% 

2 1.5673 60% 

3 1.5673 55.43% 

4 1.5673 50.06% 

NFT7 

1 

0.9133 

1.8451 

3.8917 

67.61% 

2 1.9025 63.47% 

3 1.9716 54.2% 

4 1.9025 56.59% 

NFT8 

1 

0.6216 

1.1562 

2.1112 

52.92% 

2 1.1562 49.89% 

3 1.1562 49.76% 

4 1.1562 44.55% 

NFT9 

1 

0.4705 

1.321 

2.522 

39.09% 

2 1.2642 51.01% 

3 1.2642 53.47% 

4 1.2642 33.29% 

NFT10 

1 

0.8841 

1.5198 

2.8492 

27.82% 

2 1.4821 40.93% 

3 1.4821 48.75% 

4 1.4821 60.8% 

NFT11 

1 

0.5431 

1.1023 

2.1165 

38.21% 

2 1.0788 47.43% 

3 1.0788 48.49% 

4 1.0788 46.64% 

NFT12 

1 

0.6002 

1.024 

1.7982 

58.97% 

2 1.024 50.74% 

3 1.024 70.84% 

4 1.0566 64.54% 
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Friedman Test on IntraS from NFT group’s learners 

Factor Chi-Squared df p Kendall's W 

RM Factor 1  16.000  7  0.025  0.571  
 
 

 

 

 

 

  

Friedman Test on slope of percent time from NFT group’s learners 

Factor Chi-Squared df p Kendall's W 

RM Factor 1  11.786  6  0.067  0.491  
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Table 16 - Values of RAUA minimum, maximum and threshold per session for each participant in the SHAM 
group. In the last column is presented the value of percent time spent above threshold per session. 

Participant Session Min Threshold Max Percent time 

SHAM1 

1 

0.8334 

1.2215 

2.6701 

50.33% 

2 1.2215 41.95% 

3 1.2215 45.87% 

4 1.2215 34.36% 

SHAM2 

1 

1.0436 

1.9179 

3.5611 

14.64% 

2 1.8656 25.22% 

3 1.8225 18.96% 

4 1.7702 26.95% 

SHAM3 

1 

0.6355 

1.1861 

2.3293 

40.68% 

2 1.1861 45.7% 

3 1.1861 50.31% 

4 1.1861 50.7% 

SHAM4 

1 

0.581 

1.0545 

2.161 

26.22% 

2 1.0257 54.58% 

3 1.0257 56.71% 

4 1.0257 49.45% 

SHAM5 

1 

0.7241 

1.1067 

2.0099 

40% 

2 1.1067 32.4% 

3 1.0863 49.99% 

4 1.0863 31.5% 

SHAM6 

1 

0.9704 

1.7394 

3.4647 

36.33% 

2 1.6875 39.2% 

3 1.6457 42.77% 

4 1.6457 61.7% 

SHAM7 

1 

0.7569 

1.4603 

2.5417 

19.35% 

2 1.3929 47.73% 

3 1.3929 35.23% 

4 1.3447 49.68% 

SHAM8 

1 

0.5883 

1.0089 

1.8788 

41.71% 

2 1.0089 58% 

3 1.0089 67.98% 

4 1.0403 54.46% 

SHAM9 

1 

0.9905 

1.7922 

3.3419 

20.28% 

2 1.7348 53.02% 

3 1.7348 53.02% 

4 1.7348 51.17% 

SHAM10 

1 

0.6108 

1.0839 

1.9385 

41.12% 

2 1.0839 48.82% 

3 1.0839 - 

4 1.0839 57.47% 

SHAM11 

1 

0.7089 

1.4556 

2.6901 

52.76% 

2 1.4556 39.13% 

3 1.4082 42.76% 

4 1.4082 54.96% 

 

 


