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Summary

This work of thesis originated within a start-up company, VIPER s.r.l., which
was established as a research project of the Polytechnic of Turin, which de-
veloped a semi-automatic software to delineate and trace the displacements
of the edges of the Inferior Vena Cava (IVC) not in a single direction, but in
both transverse and longitudinal sections in ultrasound videos, meaning in
a totally non-invasive way. This software allows the computation of different
measurements, such as diameters, areas, Caval Index (CI) and so on, based
on the assessment of the pulsatility of the IVC itself. These measurements
can lead to the evaluation of the volemic state of a patient and the pressure
present in the right atrium (Right Atrial Pressure, RAP), which are two dif-
ferent indicators that can be valuable in many fields of medicine, ranging from
internal medicine, in order to distinct between hypovolaemic and euvolemic
patients, to cardiology, for the evaluation and management of heart failure,
and many more. One limitation of this software is the impossibility of ob-
taining these measurements in real-time: in fact, at first the ultrasound video
is obtained and only in post-processing the video can be elaborated, and all
the measurements of interest therefore obtained. Furthermore, as previously
said, it is a semi-automatic software, meaning it needs the intervention of
an operator to start working. This thesis arose out of the need to make this
software work in real-time and to make it completely operator-independent.
To make it possible, it was studied a deep learning methodology that allows
the automatic detection of the IVC in real-time. In particular, it was chosen
to use a YOLOv8 model, which is the current state-of-the-art of the real-time
object detection models: the aim of this tool is to identify and classify Infe-
rior Vena Cava within ultrasound videos, both in transverse and longitudinal
sections with high accuracy. Furthermore, in order to improve the ability
of the object detection model to follow the IVC movements throughout the
ultrasound video, it was chosen to couple it with an object tracking model,
in particular it was opted for DeepSORT, a very popular object tracking
algorithm, also based on deep learning. Therefore, the discussion will begin
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with an initial descriptive part that will cover anatomy and physiology of
the IVC, ultrasounds basics, and an overview about object detection and
the most famous algorithms used nowadays. In the second part, they will be
discussed the methods that were used in this work of thesis, in particular the
ones concerning YOLOv8 and DeepSORT will be explored in detail. Finally,
they will be exposed the results achieved in this work of thesis.
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Chapter 1

Introduction

Inferior Vena Cava (IVC) is one of the main vases of human body and, thanks
to the evaluation of its pulsatility, it can be used to obtain information about
the patient’s volemic state (i.e. the volume of blood present in the circulatory
system) and the pressure present in the right atrium of the heart (Right Atrial
Pressure - RAP). The knowledge of these two pieces of information is crucial
in different areas of medicine, such as in internal medicine (for the distinc-
tion between hypovolaemic and euvolemic patients), general medicine (for
the correct management of dehydration in haemodialysis therapies), cardiol-
ogy (for the assessment and management of heart failure) or in pulmonology
(in patients with pulmonary hypertension) [1]. Currently, the volemic sta-
tus is assessed by: clinical assessment (unsatisfactory, especially in the case
of hypovolaemia), invasive methods (typical in intensive care), non-invasive
methods (which include ultrasound of the IVC, lung ultrasound, passive leg
raising and bioimpedance testing - but mainly for research purposes). With
regard to RAP, the golden standard is atrial catheterisation (a very inva-
sive methodology), but it can also be assessed by ultrasound scanning of the
IVC. The main parameter derived from ultrasound scanning of the IVC is
a pulsatility index, i.e. the Caval Index (CI), which depends on the maxi-
mum diameter and the minimum diameter that the IVC assumes during a
respiratory cycle: these are determined by the physician when observing the
ultrasound video. It is therefore clear that the technique has several prob-
lems: the vein moves with respect to the fixed radius that is identified; it
has a complicated geometry so that using only one radius can be limiting;
furthermore, the temporal dynamics of the vein is complicated and cannot
be described by a single measurement [1]. Finally, this methodology is highly
operator-dependent and gives inaccurate and unreliable results.
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This is the background for the start-up company called Vein Image Pro-
cessing for Edge Rendering (VIPER) s.r.l. [2], which has developed a semi-
automatic software to delineate and trace the displacements of the IVC edges,
not in a single direction, but in both transverse and longitudinal sections [3].
By identifying the edges of the vein, more accurate diameter measurements
can be obtained. Furthermore, working in two directions can make the diam-
eter estimate more stable and therefore more reliable. The semi-automatic
approach also makes it possible to decrease intra- and inter-operator de-
pendency. A limitation of this software is the impossibility of obtaining the
required measurements in real-time: in fact, at first the ultrasound video is
obtained and only in post-processing the video can be elaborated and all the
measurements of interest, such as diameters, areas, Caval Index and so on,
can be obtained.

The aim of this thesis is therefore to develop, following a study of the
state of the art of Object Detection methods, a Deep Learning model for
the automatic detection of the inferior vena cava in real-time. In this way,
the method will also be usable by less experienced operators; it will make
the estimation of the volemic state and RAP more reliable, as the method
could be standardised; and it will make it possible to reduce hospitalisation
times (in fact, following incorrect fluid therapy caused, for example, by a gross
assessment of the volemic state, a longer period of hospitalisation follows) [1].

To satisfy this goal, it was chosen to rely on the YOLO family, which
includes a series of models for object detection that in the recent years led
the state-of-the-art algorithms in this field. In particular, it was used the last
model, which is YOLOv8, released in 2023 and yet is the current best per-
former model in the object detection field, in terms of speed and accuracy.
The aim of this tool is to identify and classify Inferior Vena Cava within
ultrasound scans, both in transverse and longitudinal sections with high ac-
curacy. Furthermore, in order to improve the ability of the object detection
model to follow the IVC movements throughout the ultrasound video, it was
chosen to couple it with an object tracking model, in particular it was opted
for DeepSORT, a very popular object tracking algorithm, also based on deep
learning. The latter is characterized by a high level of tracking accuracy
and by the ability to handle challenging scenarios, like occlusions by other
anatomical structures, or suboptimal image quality that can characterize the
ultrasound videos, and so on. Furthermore, it is a very fast algorithm, such
that it can easily work in real-time, without affecting the speed of detection
of YOLOv8. Therefore, the discussion will begin with an initial descriptive
part that will cover anatomy and physiology of the IVC, ultrasounds basics,
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and an overview about object detection and the most famous algorithms
used nowadays. In the second part, they will be discussed the methods that
were used in this work of thesis, in particular the ones concerning YOLOv8
and DeepSORT will be explored in detail. Finally, they will be exposed the
results achieved in this work of thesis.

1.1 Anatomy and physiology of the IVC
The inferior vena cava is the largest venous trunk in the entire human body
and is responsible for transporting oxygen-poor blood from the lower part of
the body, i.e. from the lower limbs and all organs below the diaphragm, to the
heart. The inferior vena cava has an average length of 22 centimetres (18 of
which run in the abdomen) and a diameter of about 30 millimetres [4]. Like
arteries, veins have a certain pulsatility too, mainly due to the transmural
pressure Ptm, defined as the difference between the pressure inside and the
pressure outside the vessel:

Ptm = Pint − Pext (1.1)
As the transmural pressure changes, there are changes in vessel volume,

according to the non-linear trend shown in figure 1.1:

Figure 1.1: Representation of how the vessel volume changes with respect to the
transmural pression [5].

The reported trend suggests that the same change in transmural pressure
corresponds to different changes in volume, depending on the initial condition
at which the vessel is located: at low initial volumes (point A in figure 1.1),
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a large oscillation in volume - and thus in vessel size - is observed, while at
large vessel diameters (point B in figure 1.1), the oscillation visibly decreases.
This oscillation is the pulsatility of the vessel [5]. The variation in vessel size
is due not only to vessel compliance (i.e. the ability of the vessel to expand
as pressure changes), but also to the compliance of the tissues surrounding
it, since, as it expands, the vessel will occupy a space that normally belongs
to the other tissues and therefore depends on the compliance of these tissues.

The inferior vena cava also shows a certain pulsatility during a respira-
tory cycle and it also depends on the type of inspiration that is performed,
as is shown in figure 1.2. If inspiration is purely thoracic, the expansion of
the thorax lowers the internal pressure and blood is recalled to the thorax,
thus causing a decrease in pressure and volume in the IVC. If the inspiration
is diaphragmatic, nothing changes at the thoracic level, i.e. there is still a
lowering of internal pressure and blood recall. What does change is that the
lowering of the diaphragm increases abdominal pressure: there is an increase
in external pressure that further squeezes the vein, thus causing greater pul-
satility of the IVC compared to thoracic inspiration.

Figure 1.2: Variation of the Inferior Vena Cava based on different types of respiration.
In particular, a thoracic respiration causes a decrease in pressure and volume in the
IVC, while with a diaphragmatic respiration causes a higher pulsatility of the vein,
compared to the thoracic one [5].

As mentioned above, an index that allows the pulsatility of IVC to be
measured is the Caval Index, defined as follows:
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CI = Dmax − Dmin

Dmax
(1.2)

Where Dmax and Dmin are respectively the maximum and minimum di-
ameter of the vein during a breathing cycle. The CI can vary between 0 and
1, where CI=0 means that the maximum and minimum diameters coincide
and that therefore the IVC is completely rigid, while CI=1 means that the
minimum diameter is 0 and that therefore the vein is completely collapsed:
it is therefore understood that as the caval index varies, there is a conforma-
tional and dimensional variation of the vein, which can be associated with
its pulsatility.

If we study the dynamics of the vein over a period of time, we see slower
and faster oscillations: these are due to respiratory and cardiac stimulation
respectively (figure 1.3):

Figure 1.3: The dynamics of the IVC diameter shows both faster and slower os-
cillations: the former is due to cardiac stimulation, while the latter is due to the
respiratory one [1].

From each of the two signals, the respective Caval Indexes can be esti-
mated: i.e. the Respiratory Caval Index (RCI) and the Cardiac Caval In-
dex (CCI), which can be exploited, through the construction of artificial
intelligence-based models, to estimate the patient’s RAP and volemic status.

1.2 Ultrasounds
Since the scope of this work of thesis is to obtain an excellent object de-
tection model, capable of detecting the inferior vena cava within ultrasound
scans, it is fair to present an overview of how ultrasounds work, meaning its
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basic principles and how they are exploited to obtain meaningful images and
videos.

Ultrasounds: physics and principles Ultrasounds are mechanichal waves,
meaning elastic waves of compression or rarefaction, which can be schema-
tised as a sinusoid and therefore characterized by a frequency. They are called
ultrasound because the frequency of these mechanical waves is much higher
than the human audible band which is approximately between 20 Hz and
20 kHz [8]. Ultrasounds used in medical fields are characterized by a much
higher frequency: generally the ultrasound band used in medicine is in a
range between 2 and 20 MHz. Since they are mechanical waves, they interact
with human tissues exchanging only mechanical energy, meaning they are not
ionizing radiations and therefore they can be used in such cases when other
imaging techniques (such as X rays, which are ionizing radiations) cannot be
used, for example during pregnancy [8].

The physical principle underlying ultrasonography is reflection. The latter
is regulated by the Snell law, which states the following: considering two
different and consequent mediums (characterized by two different optical
coefficients n1 and n2 respectively), which are crossed by a beam of light with
an angle of incidence equal to α, the latter will be partially reflected with the
same α angle and partially refracted with an angle depending on the ratio
between n1 and n2. The quantity of light which is in fact refracted depends
on the mediums properties, such as propagation speed. In the figure 1.4 is
reported a visually representation of the Snell law [8].

In ultrasonography, light is forced to cross through different mediums,
but unlike optical physics, in ultrasonography is considered an orthogonal
incidence (α = 0), meaning that the light always continues in the same
direction: when it finds a discontinuity, part of it is reflected (coming back
to the source of the light) and the rest is refracted in the same direction [8].

In order to understand how much light is reflected and how much is re-
fracted, we need to focus on the reflection coefficient, defined as follows [8]:

R =
3Z1 − Z2

Z1 + Z2

42
(1.3)

while the refraction coefficient is obviously defined as:

T = 1 − R (1.4)
In the equation 1.3, Z1 and Z2 are the acoustic impedances of the mediums

crossed by the incident light. Acoustic impedance of a medium is defined
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Figure 1.4: Representation of the Snell law.

as the product between its density and the propagation speed of the US
crossing the same medium (the latter is assume to be equal to 1540m/s) [8].
Actually, acoustic impedance depends not only on the density, but also on
the molecular structure of a tissue, in fact there are tissues with same density
but different acoustic impedance and tissues with different density and same
acoustic impedance. Generally, it has been seen that gases have a very low
acoustic impedance (in the order of 0,0004 ray), while soft tissues (like human
organs) have acoustic impedance pretty similar, ranging from 1,38-1,8 ray.
On the other hand, hard tissues, like bone tissue, have a very high acoustic
impedance (around 7.80 ray). This means that when US finds a discontinuity
between soft tissues gas or bone, the reflection is almost total, meaning that
the ray can no longer propagate through its path [8]. At this point is clear that
ultrasonographic image is obtained thanks to the amplitude of the reflection
echoes, coming back to the probe from the tissues crossed by the US [8].

Ultrasonographic probe In order to understand how the ultrasonographic
probe works, it is reasonable to start talking about how US are generated and
how they are received. US are generated exploiting the piezoelectric effect,
which is typical of materials (in particular crystals) with a specific molecu-
lar structure (such as sodium chloride or some ceramics like PZT, which is
actually used to fabricate ultrasonographic probes) [8]. Piezoelectric effect
is a bidirectional phenomenon, which means that there are a direct and an
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inverse piezoelectric effect: both of them are involved in ultrasonographic
probes. With reference to figure 1.5, let’s consider a cube of piezoelectric ma-
terial with a certain initial length L and characterized by two metallic faces
which present an electric potential V . Due to the direct piezoelectric effect,
when a ∆L variation is applied to the cube, may it a compression (blue ar-
rows) or a dilation (red arrows), a potential variation verifies between the two
metallic faces: an increase or a decrease respectively with a linear dependency
between length and potential. On the contrary, in the inverse piezoelectric
effect, when we apply a potential variation ∆V , for example a sine wave with
a certain frequency f0, it manifests as a length variation with the same sine
wave and the same frequency f0 [8].

Figure 1.5: Representation of the piezoelectric effect: a variation in the physical
dimension of the crystal corresponds to a linear variation of the potential that can
be read between the two faces of the crystal. While a potential input (for example
a sinusoidal potential) corresponds to a variation of the physical dimension (in the
case of the sine input, the output will be a sine as well).

As previously said, both of these effects are exploit in ultrasonography, in
fact the inverse one is used to generate ultrasound, by choosing the correct
frequency. On the contrary the direct effect is used to receive the reflection
echoes, in fact, since the ultrasound waves are mechanical wave, they stim-
ulate the piezoelectric material, causing a potential variation readable from
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the outside [8].
Now that it has been discussed how the image is obtained and how the

US probe works, it is useful to discuss about the display modes that an
US probe allows. There are three main modes: A-mode, B-mode and M-
mode [8]. A-mode (which stands for Amplitude mode) is the simplest mode,
but not very used today. It represents the echoes as spikes on a single axis,
where the height of the spike corresponds to the amplitude of the reflected
sound wave. B-mode (Brightness mode) is most used in diagnostic field. It
produces a two-dimensional gray-scale image where different shades of gray
represent different tissue densities: each pixel of the image has a brightness
proportional to the amplitude of the feedback echo. This mode is the one used
in this work of thesis. M-mode (Motion-mode) is used to monitoring moving
structures. In this case, the probe investigate a single scan line and represents
the movement of every interface line. This mode is usually combined with
the B-mode in order to have a better visualization of the scan line [8].
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(a) A-mode (b) B-mode

(c) M-mode

Figure 1.6: In this figure are represented the three display modes: in figure (a)
is reported an A-mode scan representing an ophthalmology exam. In figure (b) is
reported a typical B-mode scan, reporting a IVC in longitudinal section. This picture
is taken from the dataset used in this work. In figure (c) is reported an M-mode (lower
part) coupled with a B-mode (upper part) scan, representing the mitral valve.
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Chapter 2

Object Detection

Object detection is a computer vision technique that consists in locating
and classifying objects in an image or in a video and labelling them with
rectangular bounding boxes to show the confidences of existence.

For this reason, it finds various application in many fields of the real world,
such as autonomous vehicles, surveillance systems, robotics, medical imaging,
image classification, human behaviour analysis and so on, leading scientists
and engineers to show an increasing interest in improving this methodology,
in order to make it more and more efficient.

Object detection methods can be divided in two main branches: traditional
approaches and deep-learning based methods. The pipeline of traditional
object detection models can be mainly divided into three stages:

1. Informative region selection consists in scanning the whole image in
order to find all the possible locations of the object in it (computationally
expensive procedure). In particular, it mainly uses sliding-windows of
different sizes and ratios to slide on the image from left to right and
top to bottom by a certain step size. The image blocks cropped by the
sliding window are transformed to form an image with uniform size;

2. feature extraction consists in extracting visual features which can
provide a semantic and robust representation of the object;

3. classification consists in assigning a class to the object detected, using a
classifier at the end of the pipeline, such as a Supported Vector Machine
(SVM), and Adaboot [9].

However, traditional approaches had several flaws, for example the feature
extraction stage had to be handcrafted, which means an expert operator has
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Figure 2.1: Example of object detection applications to various fields, such as
medicine, surveillance and autonomous guide.

Figure 2.2: Basic architecture of a traditional model for object detection.

to “tell” the model which feature are important and which are not: this
make a certain model very specific for some objects and very useless for
some other. Another flaw of traditional models is the computational cost: as
said before, the method consisted in multiple stages and every of them was
computationally expensive, making real-time applications almost impossible.
For these reasons, traditional approaches have been far outdone by deep-
learning approaches, thanks to the advent of Convolutional Neural Networks
(CNNs). The windward of deep learning can be attributed to the following
factors:

• The emergence of large-scale annotated training data, such as ImageNet;
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• Great improvements in software and hardware, like the development of
high-performance parallel computing systems, such as GPU clusters;

• Significant advances in the design of network structures and training
strategies, such as unsupervised learning; the use of dropout and data
augmentation to solve the overfitting problem; batch normalization and
so on [9].

In this way, in a few years, we were able to reach extraordinary improve-
ments in object detection, overcoming all the limitations that characterized
traditional approaches, in fact deep learning methods guarantee higher ac-
curacy and faster performances (allowing real-time applications), moreover
they don’t need handcrafted feature extraction (which simplified a lot this
step, in fact the network itself is capable of extracting the information it
needs from the image), permitting a better adaptability to different data
(that promotes the applicability of object detection to different fields in a
simpler way). In the following, it will be exposed how a generical convolu-
tional neural network works and which are the most famous networks used
to perform object detection.

2.1 CNNs’ Architecture
Convolutional Neural Networks (CNNs) are the most representative networks
of deep learning and, as said before, the use of CNNs to perform object
detection drastically revolutionized this field.

Figure 2.3: General architecture of a CNN. It can be divided in two steps: feature
extraction, which is aimed to learn the most important features from the input
image, and classification, whose goal is to classify the input image, based on its
features.
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The general architecture of a CNN (showed in figure 2.3) can be divided
in two main phases: feature extraction and classification. The feature ex-
traction phase is composed by multiple layers: convolutional layers, ReLU
layers and Max Pooling layers. While the classification phase is responsible
for classifying the input image.

Convolutional layers This is the first step in the process of extracting
valuable features from an image. A convolution layer has several filters that
perform the convolution operation between the image – considered as a ma-
trix of pixel values – and a filter (also called kernel), composed by a squared
matrix, different for every convolutional layer. The filter has the characteris-
tic that it is smaller in space, meaning its width and height are smaller than
the image, but the depth of the filter must match the depth of the image,
i.e. if the image has three channels (RGB image), the filter must have three
channels as well [11].

During the forward pass, the kernel slides across the height and width
of the image-producing the image representation of that receptive region.
This produces a two-dimensional representation of the image, known as an
activation map that gives the response of the kernel at each spatial position
of the image. The sliding size of the kernel is called a stride.

Figure 2.4: Representation of how activation maps are obtained in the convolutional
layers of a CNN. An activation map is the result of a convolution between the input
image and a filter (also called kernel) [11].

The dimension of the resulting activation map is obtained from the fol-
lowing formula [11]:

Wout = W − F + 2P

S
+ 1 (2.1)
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In which: Wout is the width and height of the activation map; W is the
dimension of the original image; F is the spatial size of the filter; S is the
stride; and P is the amount of padding (if the coupling of the kernel size with
the stride is not compatible with the dimension of the image, a padding of
the image is needed, which means adding a cornice of pixel with value zero
to the image).

As said before, every convolution layer is characterized by a different ker-
nel, which means that for every different convolution layer it will give a
different activation map as output.

Thanks to the use of the convolutional operation, it is achieved a more
efficient system, since the convolution between a matrix (i.e. the image) and a
smaller filter permits the extraction of meaningful information by operating
much less calculation compared to the use of fully connected layer, that
instead would require lots of calculation – and so, a higher computational cost
– since images can have millions or thousands of pixels. Convolutional layers
permit to store fewer parameters, which means that not only the memory
requirement of the model is reduced but also the statistical efficiency of the
model is improved [11].

ReLU layers After the first convolutional layers, it is applied the ReLU
(Rectified Linear Unit) activation function to the activation maps outgoing
from the first layers, generating as output a rectified feature map. The ReLU
function is described by the following formula:

φ(z) = max(0, z) (2.2)

Which means that it compares the input z with 0: if z is greater than 0,
then it passes unaltered, conversely, if z is smaller than 0, then it is converted
to 0. This mechanism is shown in the graph in figure 2.5.

This operation introduces non-linearity to the network, which is crucial for
enabling the network to learn complex relationships and features in the data,
moreover, this mechanism alleviates the vanishing gradient problem that can
occur during training deep neural networks.

Pooling Layer After the ReLU layer, the activation maps need to be pro-
cessed by a pooling layer. The pooling layer replaces the output of the network
so far (i.e. the activation maps) at certain locations by deriving a summary
statistic of the nearby outputs. This helps in reducing the spatial size of
the representation, which decreases the required amount of computation and

24



Object Detection

Figure 2.5: The ReLU function makes sure to set to zero all the inputs lower than
zero, while it leaves unchanged all the input higher than zero.

weights. The pooling operation is processed on every slice of the representa-
tion individually [11]. An example of how pooling layers operate is reported
in figure 2.6.

There are several pooling functions such as the average of the rectangular
neighbourhood, L2 norm of the rectangular neighbourhood and a weighted
average based on the distance from the central pixel. However, the most
popular process is max pooling , which reports the maximum output from
the neighbourhood [11].

This operation helps the network identifying some specific parts of the
image, in addition reducing the size of the image, the computational time
reduces too. Just like in the convolutional layers, the pooling layer is charac-
terized by filters, that could come in different sizes, and that control the size
of the sub-squares. The size of the activation map, deriving from the pooling
layer, is dictated by the following formula [11]:

Wout = W − F

S
+ 1 (2.3)

In which W is the original size of the activation map; F is the size of the
filter of the pooling layer; S is the stride.

After the pooling layer, the new activation maps are flattened, it means
that they are transformed: from matrices they become column vectors. After
this passage, they are fed into a fully connected layer.
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Figure 2.6: Example showing how max pooling works. For every sub-square of di-
mensions 4x4, it is maintained only the highest number.

Fully connected layer This is the last step of the convolutional neural
network pipeline: it is the stage that performs the classification of the image
it was fed with. The fully connected layer contains neurons that connect to
the entire input volume, as in ordinary neural networks. The last layer of
neurons has as many neurons as many are the classes to be identified.

2.2 Networks for object detection
As mentioned above, the main networks used for performing object detection
are based on CNNs, since the traditional methods didn’t lead to satisfying
results and, in addition, they were characterized by several flaws that did
not allow an efficient functioning. For this reason, the current state of the art
of the neural networks used for object detection is composed completely by
networks based on convolutional neural networks. This kind of networks can
perform detection in multi-class datasets, in images with occlusions (mean-
ing the target is occluded by some other object, like clouds, shadows and so
on), where the background sequence is changing and in large datasets [10].
On the other hand, these networks have some drawbacks, among these we
have that they are computationally more expensive, compared to the tradi-
tional methods, they are prone to localization errors due to fast speed and
specialized systems based on GPUs are required to train and evaluate these
methods [10]. Some of these networks are: Region Proposal based Convolu-
tional Network (R-CNN) and the family around this such as Fast-RCNN,
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Faster-RCNN or Mask-RCNN; Single Shot Detector; Spatial Pooling Pyra-
mid Networks; and YOLO family. In this section, they will be exposed some
of the main networks previously mentioned, how they work, their strengths
and their weaknesses.

Region Proposal Convolutional Networks (RCNNs) This method
was proposed by Girshick et al. in 2014 [12]. Unlike the traditional methods,
that involved the analysis of every region of the image (resulting in a very
time-consuming operation), region proposals methods consist in looking for
selective regions in the image to locate the object. The pipeline the charac-
terizes these methods can be divided in two step: in a first step the selective
regions are found by a selective search method; the second step perform the
actual object detection, using a convolutional neural network that analyzes
every region proposed by the first step [10].

Figure 2.7: Overview of the RCNN system. (1) This system takes an input image,
(2) extracts around 2000 region proposals, (3) computes features for each proposal
using a large convolutional neural network (CNN), and then (4) classifies each region
using class-specific linear SVMs [12].

The pipeline of the RCNN can be summarized as follows [10]:

1. Selective search:

(a) Multiple regions are generated after applying a segmentation to the
input image, which can have an arbitrary size;

(b) To reduce the number of regions, several small regions are aggregated
basing on colour, texture, size similarity and shape compatibility;
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(c) Regions of interest are identified among the large regions obtained
in the previous step. In these regions of interest, object detection is
performed.

2. Object detection:

(a) A pre-trained convolutional neural network model is re-trained such
as the last layer has as many neurons as the number of classes that
are to be detected;

(b) For each image, regions of interest are collected and reshaped to fit
into the CNN model input;

(c) A Support Vector Machine (SVM) based classifier is trained to clas-
sify the image into object and background. A binary SVM is trained
for each class.

(d) In this step, tight bounding box is applied across the images. This is
performed by training a linear regression that classifies each category
of object in the image.

This method allows also the detection of the background objects in the
image, furthermore it is less prone to localization errors, thanks to the region
proposal method. However, it is characterized by several flaws, including the
fact that is computational very expensive, since for each image are extracted
2000 region proposal, resulting in Nx2000 features (where N is the total
number of images) to be calculated. Furthermore, it is a very slow model
that doesn’t allow real-time applications [10]. The latter is the main reason
why this model was excluded for the purpose of this work.

Mask RCNN This method, proposed by He et al. in 2017 [13], is an exten-
sion to Faster-RCNN and performs prediction for object mask, in particular,
it adds a branch in parallel with an existing bounding box recognition branch
for predicting an object mask [14].

Also in this case, the pipeline of the Mask RCNN is composed by two step:
the first step performs object detection, through Faster RCNN: in this step
classes and bounding boxes are obtained; the second step performs semantic
segmentation through a fully convolutional network: the latter is applied to
classes and bounding boxes outing from the first step, in order to obtain pixel
wise boundary of the object classes.

This method allows detection at pixel level boundary of object classes,
permitting more accurate bounding boxes. On the other hand, it is a slow
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Figure 2.8: Schematic pipeline of Mask RCNN functioning.

method, due to the use of two parallel methods, this makes it not suitable
for real-time applications.

Single Shot Detector Single shot detector was proposed by Liu et all. in
2016 [15]. This method discretizes the output space of bounding boxes into
a set of default boxes over different aspect ratios and scales per feature map
location. At prediction time, the network generates scores for the presence
of each object category in each default box and produces adjustments to the
box to better match the object shape. Additionally, the network combines
predictions from multiple feature maps with different resolutions to naturally
handle objects of various sizes [15].

Figure 2.9: General idea of the Single Shot Detector framework.
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For what concerns specifically the method used by Single Shot Detector
model, it can be divided into three steps: in the first place a convolutional
layer is used to predict object classes, by passing the input image from a fixed
sized set of bounding boxes and the object class presence in a bounding box
is measured using bounding box scores. In a second step, it is necessary to
filter the multiple bounding boxes around the same object: to do so, a non-
max suppression is applied. The latter makes sure to keep bounding boxes
with higher scores and to hide bounding boxes with lower scores. In the final
step, in order to compare predictions and ground truth IoU intersection is
applied, during the training time.

This method has several advantages and disadvantages [10]. The advan-
tages include the high speed and accurate detection and also the ability to
perform detection in multi-resolution images. On the other hand, among the
disadvantages we find the fact that the training time is very slow, because
this method is based on a VGG-16 network; in addition it confuses object
belonging to the same class and it has some difficulties in detecting small
objects.

YOLO The first YOLO model was proposed by Redmon et. all in 2016 [16]
and, throughout the years, several different YOLO models have been released,
such as YOLOv3, YOLOv4, YOLOv5, and so on, until the latest model,
which is YOLOv8, released in 2023. In this paragraph, the main character-
istics of the first YOLO model are described.

Differently from previous models, YOLO has the advantage of being a
single stage detector: meaning that while until now every model was charac-
terized by two stages performing object detection (for example RCNN fam-
ily), in this case a single neural network predicts bounding boxes and class
probabilities directly from full images in one evaluation. Since the whole de-
tection pipeline is a single network, it can be optimized end-to-end directly on
detection performance [16]. This innovation permitted to drastically reduce
training and evaluation time, allowing also real-time applications.

For what concerns the training pipeline and the how the model works, it
is briefly illustrated in figure 2.10 and explained right after.

The pipeline followed by the model is the following [10]:

1. The input image is divided into an SxS grid. Each grid is a cell respon-
sible to predict the object centred in that grid cell.
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Figure 2.10: Illustration of how the first YOLO model works [16].

2. Each grid predicts B bounding boxes and their confidence scores. Con-
fidence scores are defined as

Pr(Object) ∗ IOU truth pred (2.4)

Pr(Object) is the probability of finding the object in a certain grid, while
IOU truth pred stands for Intersection Over Union, where the intersection
and the union are between the ground truth and the prediction of the
model. It is clear that IOU is at its best when it is nearer to 1, since
intersection and union are similar, while if it diverges, it means that the
intersection is near to 0, meaning a bad prediction.

3. Simultaneously to step 2, for each grid cell and regardless of the number
of boxes, Conditional Class probability C is also predicted as

Pr(Classi|Object) (2.5)

These probabilities are conditioned on the grid cell containing an object.

4. At test time, Conditional Class probabilities and the individual box con-
fidence predictions are multiplied:

Pr(Classi|Object) ∗ Pr(Object) ∗ IOU truth pred (2.6)
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which gives class-specific confidence scores for each box. These scores
encode both the probability of that class appearing in the box and how
well the predicted box fits the object.

The architecture of the first YOLO network is based on DarkNet model
and it is composed of 24 convolutional layers, followed by 2 fully connected
layers. The complete architecture is shown in fig 2.11.

Figure 2.11: Architecture of the first YOLO network [16].

This network has brought many advantages compared to two stages de-
tectors, used until then. Among these advantages we found it is very fast,
since it can reach detection at 45fps: this characteristic allows real-time ap-
plications. Moreover, the developing of smaller architecture, allowed faster
versions of YOLO that can perform detection up to 155fps. Another advan-
tage brought by the usage of YOLO is that it can generalize very well [10],
meaning that it is able to achieve good performance with a large variety of
data. On the other hand, it has some limitation too, for example it is prone
to localization errors, due to the fact that the loss function is designed to
treat errors in the same way in small bounding boxes and in large bounding
boxes. Moreover, this network struggles in detection of small objects, since
each grid cell only predict two boxes and can only have one class: this limits
the number of nearby objects that the model can predict [16]. However, de-
spite the limitations that YOLO has, the choice for this work of thesis fell on
this family of networks, thanks to its superior advantages compared to the
other networks analyzed. In particular, it has been chosen to use the latest
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network that was released, meaning the YOLOv8, releases, as said before, in
2023. In the next chapter it will be analyzed in detail its architecture and
the design choices that led this network to be the current state of the art in
the object detection field.
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YOLOv8

3.1 YOLOv8’s Architecture
As mentioned above, for this work of thesis YOLOv8 has been chosen to
perform object detection. In order to precisely understand how it performs
detections is useful to understand its architecture: in this chapter it will be
exposed YOLOv8 architecture.

Before starting it’s important noting that currently Ultralytics group has
not released an official paper of YOLOv8 yet, in which are described the
main feature of the model, its architecture and so on. This is due to the
fact that they are focused on improving the network in all its functionalities,
but the developer group has expressed their intentions in releasing an official
paper in the near future. As a result of the lacking official paper, YOLOv8
remains relatively uncharted territory within academic circles, with no offi-
cial publications or in-depth explanations of the model’s internal workings
available from Ultralytics, the creators of YOLOv8. Despite the absence of
an official publication, the model has garnered significant attention and in-
terest from the wider community. This has led to active engagement between
the community and the Ultralytics team, as they seek to gain a better un-
derstanding of YOLOv8, underscoring its potential usefulness. Given that, in
order to provide a comprehensive description of YOLOv8’s main features and
working, it has been conducted an in-depth study of the YOLOv8 model’s
repository [17]. In fig 3.1 the detailed architecture of YOLOv8 is shown. As
can be seen in the picture, the architecture can be divided into two parts:
the backbone and the head.

YOLOv8’s architecture is based on YOLOv5’s architecture, but the au-
thors have brought various changes in terms of model scaling and architecture
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tweaks.

Figure 3.1: YOLOv8 architecture [18].

Backbone In this case, the backbone used by YOLOv8 is the CSPDark-
Net53, which is a DarkNet53 network improved with an approach called CSP
(Cross Stage Partial Network). DarkNet53 was developed by Joseph Redmon,
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the creator of the first YOLO model and it was specifically designed to per-
form object detection.

Figure 3.2: Simplified architecture of DarkNET53.

Since it is used as a backbone, it acts as a feature extractor. DarkNet53
is basically a series of convolutional layers, in particular 53 layers, as the
name suggests, that have the goal of extracting relevant features from the
input image. Each convolutional layer is followed by a batch normalization
(BN) layer and a SiLU layer, as activation function. The Sigmoid Linear Unit
(SiLU) function has the following mathematical expression:

silu(x) = x ∗ σ(x) (3.1)

Where σ(x) is the logistic function. As can be seen in fig 3.3, this function
outputs only inputs that are greater than zero, and outputs them equal to
themselves.

As can be seen in fig 3.1 after each convolutional layer, the channel output
dimension is doubled, going from 64, then 128 and so on, until the last
convolutional layer of the backbone that is characterized by a channel output
dimension of 512: this is done in order to increase the complexity of feature
representations of YOLOv8 network: this allows the latter to detect more
complex features and, consequently, to generate more accurate detections.

The CSP modification was introduced in the YOLO family with YOLOv4
and it is represented in the C2f module (cross-stage partial bottleneck with 2
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Figure 3.3: SiLU activation function.

convolutions). It is based on the CSPNet strategy, which implies the splitting
(split block in the C2f module) in two parts of the feature maps of the
base layer and the subsequent merging of the same through the cross-stage
hierarchy: this strategy provides a reduction of calculation while keeping good
accuracy [19].

Another strategy used by YOLOv8 is the usage of Feature Pyramid Net-
works (FPN) [20], which is a specific architectural design pattern that can
be incorporated into the backbone of an object detection model to further
enhance its multi-scale feature extraction capabilities. In fact, fusing features
from different layers can improve their expressive ability.

Figure 3.4: Feature Pyramid Networks (FPN) structure [20]. It is composed by two
pathway: a bottom-up and a top-down one, moreover lateral connections make the
two pathway communicate.
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As can be seen in figure above, FPN composes of a bottom-up, a top-
down pathway and lateral connections. The bottom-up pathway is the normal
feed-forward computation of the backbone that perform feature extraction.
This pathway computes a feature hierarchy in which the feature maps are
progressively downsampled – with a scaling step of two, meaning that after
each convolutional layer the feature maps are half size of the previous map –
in order to obtain smaller feature maps but more significant. So we can state
that as we go up, the spatial resolution decreases, while with more high-level
structures detected, the semantic value for each layer increases.

The top-down pathway constructs higher resolution layers by upsampling
spatially coarser, but semantically stronger, feature maps from higher pyra-
mid levels. In addition, through the lateral connections, these features are
enhanced by taking into account the feature maps of the same spatial size
from the bottom-up pathway. This improvement allows a better understand-
ing of the locations, which can be difficult because of the downsampling and
upsampling processes [20]. In this way, the feature maps coming out of the
top-down pathway are semantically strong and more accurately localized,
thanks to the lateral connections. Looking at the architecture of YOLOv8,
the lateral connections are located between the C2f module and the concat
module belonging to the top-down pathway.

Figure 3.5: Building block a the top-down pathway [20].

In figure 3.5, it is represented the building block of the top-down. As we
can see, the entity of the upsampling operated each time is by a factor of
two. Then, the upsampled map is merged with the bottom-up feature maps,
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which is got through a 1x1 convolution.

Head The head is responsible for taking the feature maps generated by
the backbone and further processing them to produce the final output of
the model in the form of bounding boxes and object classes. The head of
YOLOv8 (and in general of the latest YOLO models) is designed as a Path
Aggregation Network (PAN). The general topology of the PAN is represented
in the figure below.

Figure 3.6: Path Aggregation Network (PAN) topology.

Despite the lateral connections provided by the FPN structure of the back-
bone, the deep features captured by the latter lack detailed information, and
simple upsampling operations cannot recover the details very well. For this
reason, in the head it was introduced the PAN topology: the latter makes
sure to provide a supplement of detailed information for these deep features
by propagating the response of shallow features coming from the top-down
pathway of the FPN. Practically, the feature maps are first downsampled
with a convolution with stride 2 (so that they will be dimensionally consis-
tent) and then combined with the feature maps coming from the top-down
pathway through an element-wise addition. In this way the final feature maps
are characterized by both detailed information and the semantic information
of the deep features, which can improve the positioning accuracy and classi-
fication accuracy [21].

Finally, as we can see in fig 2.11 the head of YOLOv8 is designed to be
decoupled, meaning that it processes objectness, classification, and regression
tasks independently. This design allows each branch to focus on its respective
task and improves the overall accuracy of the model. To process the feature
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maps, the head uses a series of convolutional layers, followed by a linear layer
to predict the bounding boxes and class probabilities.

Another strategy used by YOLOv8 and firstly introduced by YOLOv4
that aims to reduce the complexity of the network while maintaining high
the detection accuracy, is the anchor-free approach. The detection process
of the anchor-based models starts with a series of default bounding boxes
of different sizes and aspect ratios, from which an offset is calculated as a
candidate box; then a loss is computed based on the ground truth examples
and finally it is calculated a probability that a given offset box overlaps
with a real object: if that probability is greater than a certain threshold
the bounding box is considered valuable. Basically, an anchor-based model
relies on anchor boxes to guide them in predicting the location of objects
within an image. Conversely, anchor-free models like YOLOv8 don’t rely on
predefined boxes, but instead they directly predict bounding boxes and class
probabilities from the features extracted from the input image. Thanks to this
new approach, the network loses complexity and gains flexibility, allowing a
better detection of objects of different sizes and shapes, particularly thin or
small objects (which may not fit well the default anchor boxes). In addition,
the model is much simpler compared to the anchor-based models.

3.2 Training
Before going further into the description of the work performed, it is funda-
mental to expose how the dataset was obtained and what operations have
been performed in order to make it feasible for training the YOLOv8 model.

Dataset

The dataset was provided by Professor Mesin, and consists of ultrasound
scans obtained over several years, between 2017 and 2023. The ultrasound
videos are subdivided into videos representing the inferior vena cava both in
longitudinal and transverse views: these are the two classes with which the
YOLOv8 network was trained on.

In order to augment the variability of the dataset, the scans were taken
from different sources, in particular from different ultrasound machines, dif-
ferent operators and, of course, different subjects, so that to have different
conditions in terms of anatomical structures, image quality and so on. Fur-
thermore, among the different subjects, pathological ones were included too,
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Figure 3.7: Examples of IVC scans both in longitudinal (left picture) and transversal
(right picture) scans.

for example some of the pathologies that were present were: pulmonary inter-
stitial disease, idiopathic pulmonary fibrosis, lung cancer, chronic obstructive
failure, and so on. All of these are respiratory pathologies that can also affect
the inferior vena cava behaviour. In this way the algorithm will be robust in
a larger number of detectable cases.

In the graph 3.8 it is shown the number of scans that were processed to
obtain the effective dataset to train YOLOv8 on. In particular these 127
videos were characterized by various differences, in terms of number of frame
rate (which can vary from 15FPS to 50FPS) and in terms of duration of
videos, ranging from a few seconds to 15-20 seconds. Keeping in mind these
information, it was obtained a dataset composed of 38559 frames. Being this
number more than sufficient to train the network and being the close frames
very similar, it was chosen not to use them all, but to select, in the scans with
the biggest number of frames (which also showed the highest frame rate), 1
frame over 5, so that to reduce overfitting and augment the variability of the
dataset: in this way it was obtained a final dataset of 15960 frames.

For what concerns the dimensions of the scans, they are shown in the
graph 3.9.

As can be seen in the graph, three were the predominant dimensions that
characterized the dataset used: 1068x800, 1200x932 and 1172x608. Due to
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Figure 3.8: Number of IVC scans processed.

Figure 3.9: Histogram showing the different dimensions characterizing the dataset.

the fact that YOLOv8 is currently only trainable with images characterized
by an aspect ratio of 1, i.e. with square images, whereas the available dataset
was characterized by frames with an aspect ratio greater than 1, it had to
be pre-processed. Therefore, in order to obtain square images, it was chosen
to use the dimension of 800x800, mainly due to the fact that the training of
a YOLO model - including YOLOv8 - requires images with a size that must
be a multiple of 32, because the architecture divides the input image into
a grid structure, and the size of the grid cells impacts the accuracy of the
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detections. With this purpose, it was decided not to perform a simple frame
resize, as it would not have been possible to maintain the original aspect ratio,
inevitably leading to a distortion of the image. The images with dimension
1068x800 were treated differently from the other two categories: in fact, in
this case a simple center crop of the image was performed in order to have
frames of size 800x800, which obviously contained the useful information of
the ultrasonographic video. While for the other two categories, it was chosen
to operate a resize that transforms the biggest dimension into 800 and the
other one is modified as consequence, in a way that did not change the
original aspect ratio. To compensate the rectangular derived image, it was
carried out a letterboxing of the latter, so that to add black bands (which
don’t bring any meaningful information) to the top and the bottom of the
image: in this way square images were obtained.

In order to train a generic object detection model, it is necessary to provide
the training, validation and test sets images with the corresponding bounding
boxes, which indicate, through a rectangular box, where on the image the ob-
ject to be detected is located. The available dataset was not a labelled dataset,
so it was necessary to provide a reference bounding box for each frame. This
was done using an open-access online software, namely CVAT [28]. What
makes CVAT [28] a suitable tool for the annotation task is its interpolation
capability, allowing it to automatically compute linear changes in the size
and position of bounding boxes between consecutive frames. This feature fa-
cilitates and accelerates the annotation process, by removing the necessity
of manually adjusting bounding boxes for each frame. At the end of this
process, an example of the obtained images is shown in figure 3.10.

The annotation coming out from the software CVAT must be in the YOLO
format, so that the YOLOv8 network can process the images in the correct
way. The YOLO format is described as follows:

<class> <x center> <y center> <width> <height>

in which the class is the class of the object inside the bounding box and the
other parameters are the coordinates of the bounding box. The latter must
be normalized with respect to the dimension of the image, meaning that the
values must range from 0 to 1. For each frame is generated an annotation of
this kind, in which, in general, each line refers to a single object (in the case
of this thesis, each ground truth annotation has one single line, because each
frame has one single IVC).

For what concerns the subdivision in training, test and validation sets, it
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Figure 3.10: Examples of labeled frames from the dataset. In particular the images
on the left show bounding boxes for transversal IVC, while images on the right show
bounding boxes for longitudinal IVC.

was decided to use the 70% of the total disposable images for the training
set, 20% for the validation set and the remaining 10% for the test set. In
this way the training set was composed of 11.151 images, the validation set
has 3.186 images, while the test set 1.593 images. It’s worth noting that in
the dataset were also present frames in which the inferior vena cava was
not visible. In particular there were 276 background images in the training
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set and 67 in the validation set. It was decided to kept those frames in the
dataset: this choice was made out of the fact that in this way YOLOv8 learns
not only to recognize the IVC, but also to understand where there is no IVC
to detect. The presence of the background class is very important for the
model training: it helps to improve the overall performance.

Training

After exposing how the dataset was obtained and elaborated, it is the
moment to discuss about the training carried forward in this thesis. First
of all, it is worth saying that the training and the inference phases were
operated using Google Colaboratory (Colab in short) Pro, which is a cloud-
based service developed by Google that provides users with a collaborative
platform for coding and data analysis. In particular, it was used the Google
Colab Pro plan, because it supplies more rapid GPUs and bigger RAM,
compared to the basic plan. In the table below are reported the technical
details of the hardware used.

Table 3.1: In this table is reported the hardware used for the training and the
inference of the models.

GPU RAM
Training A100 40GB
Inference T4 16GB

Before continuing, a premise is in order. The Ultralytics group have made
of YOLOv8 a very easily scalable model, in fact they have made use of scaling
factors for the number of layers (depth) and the number of filters (width)
of the network: in this way, five different models have been made available,
which are called nano, small, medium, large and extra large. As the names
suggest, the nano model is the smallest in terms of both depth and width
and this makes of it the fastest model but the less accurate. On the contrary,
the extra large one is the biggest model and, for this reason, is the slowest
but the most accurate model. Given this variety of models, thus of choice,
one can use the model the best suits their dataset and their purposes. In the
case of this work of thesis, what is most important is that the model can
work in real-time, so it was decided to prefer speed over accuracy and, for
this reason and for the purposes of this work, the nano model was chosen.
In table 3.2, it is reported a summary of the combination of the parameters
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that distinguish the different models and, in green, is highlighted the chosen
model.

Table 3.2: Different available models for YOLOv8. In green is reported the chosen
model.

model d (depth multiple) w (width multiple)
n 0.33 0.25
s 0.33 0.50
m 0.67 0.75
l 1.00 1.00
x 1.00 1.25

In order to obtain the best performances possible from the training, a fine-
tuning of the hyperparameter has been done, meaning different attempts have
been carried on, trying different combination of the values of the hyperparam-
eters. At the end, the hyperparameters that showed the best performances
with this dataset are shown in table 3.3.

Table 3.3: Hyperparameters chosen for the training of the YOLOv8 network.

Hyperparameter Value Purpose
epochs 70 Number of epochs to train for.
imgsz 800 Size of input images.
batch 64 Number of images per batch.
lr0 0.001667 Initial learning rate.
lrf 0.001 Final learning rate (lr0 ∗ lrf).

warmup_epochs 3 Number of epochs in which the learning rate in-
crease, before starting decreasing.

optimizer AdamW Kind of optimizer to use during training.

cos_lr True Whether to use a cosine schedule for the learning
rate during train.

close_mosaic 20 Number of final epochs, for which to disable mosaic
augmentation.

In particular, for what concerns the number of epochs, it has been chosen
to use 70 epochs, in fact, when choosing a higher number of epochs, for
example 100, the network showed overfitting, meaning that it performed
very well on the known data of the training set, but it was not able to
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generalize anymore: its performances went down in cases of unknown data.
The warmup_epochs parameter refers to the number of epochs during which
the learning rate increases until the value set as hyperparameter is reached.
This technique is useful for the stability of the model in the first stages
of the training. As optimizer, it has been chosen the AdamW, which is a
variant of the Adam optimizer. In particular, it has been included the weight
decay directly into the Adam optimizer. Weight decay is a regularization
term that penalizes large weights during training to prevent overfitting. For
what concerns cos_lr, it is the schedule of the learning rate during train.
In particular, when it is set to "False", the schedule involves the learning
rate decreasing linearly with the epochs, while when it is set to "True", it
decreases with a cosine trend. The particular trend followed by the training
in this work is the shown in the figure below.

Figure 3.11: The learning rate schedule chosen for this work is in a cosine design.
The increase in the first 3 epochs is caused by the warmup phase, which increase
the stability of the model in the early stages.

Finally, the close_mosaic parameter refers to the number of final epochs,
for which to disable mosaic augmentation. The latter is a technique that in-
volves creating new training samples by combining four different images into
a single mosaic image and then it is used as an input for model training.
This technique helps improving the model’s ability to generalize, thus helps
to reduce the overfitting, especially when working with limited training data.
For what regards the loss function used by YOLOv8 is the Binary Cross En-
tropy (BCE) loss, which measures the difference between predicted binary
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outcomes and actual binary labels. It quantifies the dissimilarity between
probability distributions, aiding model training by penalizing inaccurate pre-
dictions. Now it is possible to show how the training went.

Figure 3.12: In this figure are shown the training graphs concerning the unchanged
architecture of YOLOv8. They report the training and validation losses and the
metrics trend over the 70 epochs.

In the previous graph, it is possible to note three different kinds of loss.
In particular, there are a "box loss", a "cls loss" and a "dfl loss". The former
refers to the loss calculated over the bounding boxes, the second kind is
the classification loss, while the latter refers to distribution focal loss, which
takes care of the imbalanced classes and aims at making sure that the model
correctly detects the rare objects of these classes. The meaning of the metrics
shown in the other four graphs are discussed in section 5.1.

As we can see in figure 3.12, both the training and the validation losses
(in all the three categories of loss) decrease throughout the training, meaning
that the network is learning deeply the features of the input data. Moreover,
it can be noted the absence of overfitting, which shows when, after a certain
epoch, the validation loss starts to increase instead of constantly decreasing:
this means that the network is still able to generalize well on new data.
For what concerns the metrics, it can be noted that, over the course of the
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training, they increase, denoting an improvement in the network’s ability to
detect. In chapter 5, will be exposed the results achieved by this network on
the test set, meaning on completely new data.

3.3 Custom
Included among the purposes of this thesis was that the object detection
algorithm that would work with the software developed by VIPER [2] had
to be fast enough to work in real-time applications. The network chosen,
YOLOv8, is, as previously said, the current state of the art of the object
detection models, both for accuracy and speed, meaning it is one of the
fastest network currently available. Despite this, in order to further improve
its performances in terms of speed, it was decided to modify the original
architecture of YOLOv8, so that to make it lighter. In this way the infer-
ence time should reduce. As said before, the Ultralytics group - developer
of YOLOv8 - have made sure that the architecture is easily scalable, thus
making changes to the architecture is quite easy. Therefore, starting from
the predefined factors shown in table 3.2, different attempts were made in
modifying them, such as modifying just one of them per time, modifying
them both together, and obviously different values have been tried. At the
end, the most satisfactory combination between the depth and the width of
the network, based on a compromise between performances (which obviously
decreased, having the network fewer parameters) and speed (prioritized in
this choice) is the following:

depth = 0.01 and width = 0.01

which led to a reduction in the network parameters, going from about 3
million parameters to 158 thousand and a number of layers that went from
225 to 211, as we can see in table 3.4.

Table 3.4: Comparison between YOLOv8 and YOLOv8 modified architectures.

Standard Modified
Depth 0.33 0.01
Width 0.25 0.01

Parameters 3011238 158670
Layers 225 211
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For what concerns the dataset used with the modified architecture, it was
decided to use the exact same dataset that was employed with the original
architecture, so that a comparison could be made.

At this point of the discussion, the training hyperparameters that were
fitted for this new architecture can be shown. They are summarized in ta-
ble 3.5.

Table 3.5: Hyperparameters chosen for the training of the modified YOLOv8 net-
work.

Hyperparameter Value Purpose
epochs 100 Number of epochs to train for.
imgsz 800 Size of input images.
batch 64 Number of images per batch.
lr0 0.001667 Initial learning rate.
lrf 0.001 Final learning rate (lr0 ∗ lrf).

warmup_epochs 3 Number of epochs in which the learning rate in-
crease, before starting decreasing.

optimizer AdamW Kind of optimizer to use during training.

cos_lr True Whether to use a cosine schedule for the learning
rate during train.

close_mosaic 100 Number of final epochs, for which to disable mosaic
augmentation.

In this case, the training was carried on for 100 epochs, since the network
was still able to generalize, showing no signs of overfitting. The other param-
eters that maximized the performance of the modified architecture were the
same as the unchanged architecture and so they were kept the same.

Now it is possible to show how the training went, in figure 3.13.
As previously said, the network doesn’t show any sign of overfitting during

the training phase, since the validation losses decrease over the 100 epochs.
For what concerns the metrics, they increase but slowly when compared to the
unchanged architecture, this is due to the fact that the modified architecture
is much smaller than the other one and so it takes more time to learn the
same features. As for the unchanged architecture, in chapter 5 will be exposed
the results achieved on the test set.

50



YOLOv8

Figure 3.13: In this figure are shown the training graphs concerning the modified
architecture of YOLOv8. They report the training and validation losses and the
metrics trend over the 100 epochs.
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Chapter 4

DeepSORT

4.1 Object Tracking: an overview
Object tracking is a computer vision technique that is usually coupled with
object detection algorithms, with the goal of augmenting their capabilities:
while object detection focuses on identifying and localizing objects within
images or video frames, object tracking extends this functionality by assign-
ing unique IDs to the detected objects and following them across multiple
frames, allowing the monitoring and analysis of object movements. It is clear
that the main purpose of object tracking is to maintain a continuous associ-
ation between detected objects in consecutive frames, in such a way that it
can handle hard situations like occlusions, scale variations, object deforma-
tion and changes in appearance due to different lighting conditions, in which
object detection could suffer.

As said before, object tracking is very useful when the object finds itself in
situations where it can be difficult to detect, for this reason object tracking
finds many applications in fields such as autonomous vehicles, surveillance,
robotics and augmented reality. There are two main types of object track-
ing: single-object tracking and multi-object tracking. The first one focuses
on detect just one object throughout the sequence of frames, resulting in a
very fast method. Some examples of single-object tracking algorithms are
CSRT and KCF, which are traditional computer vision based; or SiamRPN
and GOTURN, which instead are deep learning based. Multi-object track-
ing methods can detect more than one object simultaneously in the same
video-frame and belonging to different classes: this method is more accu-
rate compared to single object tracker. Some examples of this method are
DeepSORT, JDE and CenterTrack.
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Figure 4.1: Object tracking assigning unique IDs to different objects detected.

Figure 4.2: Examples of how object tracking algorithm should deal with challenging
situations, like occlusions, deformations, illumination changing, noise corruption,
out-of-plane rotation, motion blurring [22].

In figure 4.3 it is represented a general flow of how an object tracking
algorithm works during the inference process.

First, an input video file or a real-time feed from a camera is fed into an
object detection algorithm: the latter will perform detections on the input,
based on what it learnt during the training phase. The object detection algo-
rithm will output a series of bounding boxes around the objects it detected
and classified in each frame. In the last step, the bounding boxes outing from
the object detection model are fed into the object tracking algorithm, which

53



DeepSORT

Figure 4.3: Flowchart of the object tracking coupled with object detection.

will keep track of the detected object through consecutive frames.
Despite the need to track one single object, which is Inferior Vena Cava,

in this work of thesis it has been chosen to use DeepSORT as object tracking
algorithm, for a series of reasons strictly bonded to the intrinsic nature of
ultrasound videos, for example the latter can be characterized by suboptimal
image quality or the IVC may be partially occluded by other anatomical
structures throughout the video or it can change in scale as the ultrasound
probe moves, so having a tracking algorithm that offers a high level of tracking
accuracy and the ability to handle challenging scenarios is crucial in this
context, and DeepSORT represents the state-of-the-art of the object tracking
algorithms. Furthermore, it is a very fast algorithm, such that can work
fine in real-time applications: the latter is a fundamental characteristic to
search for in detection and tracking algorithms because they have to work in
real-time with the software developed by VIPER s.r.l. [2] in order to obtain
measurements like diameters, areas, caval indexes and so on.

4.2 Architecture
DeepSORT (deep Simple Online and Realtime Tracking) [23] is one of the
most popular object tracking algorithms used nowadays. It was introduced
by Wojke et all. in 2017 and it is an extension to SORT (Simple Online and
Realtime Tracking) [24], which is a simple framework, based on the Kalman
filter that performs object tracking, using traditional methods. The main
limitation of SORT is the ease with which identity switches occur. So, in order
to solve this issue, DeepSORT integrates an appearance descriptor, allowing
it to track objects for longer periods of occlusions, reducing in this way
identity switches [23], hence making tracking more efficient. Furthermore,
DeepSORT is deep learning based, which means that it is an algorithm that
can be trained offline, during which it learns a deep association metric.

Before discussing in detail how DeepSORT operates, it is necessary to
firstly introduce its main features, which are Kalman filter, the Hungarian
algorithm and the appearance descriptor.
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Kalman filter The Kalman filter is an algorithm that tracks the position
and motion of an object in subsequent frames, basing its prediction on the
object’s position and motion in previous frames. Basically, it combines the
information from past frames and uses them to estimate the position and
motion of the object in the current frame. To do so, it is used an eight
dimensional vector that describes the state space of a detected object and
it is defined as (u, v, γ, h, ẋ, ẏ, γ̇, ḣ) where (u, v) are the bounding box center
coordinates; γ is the aspect ratio, h is the height and (ẋ, ẏ, γ̇, ḣ) are the
respective velocities in image coordinates [23]: in this way the positional
coordinates, meaning the bounding box describing the object, are used to
predict position and velocities to predict motion in the next frame.

Hungarian algorithm Now that we have the prediction of the Kalman
filter, it is necessary to assign the prediction to newly arrived measurements:
to do this, Hungarian algorithm is used. In particular, it is necessary to
integrate motion and appearance information. For what concerns the motion
information, it is used the Mahalanobis distance between the Kalman state
and the new detections in the current frame:

d
(1)
(i,j) = (dj − yi)T S−1

i (dj − yi) (4.1)

Where (yi, Si) refers to the i-th track of the Kalman state, while dj refers
to the new detected object. The Mahalanobis distance takes state estimation
uncertainty into account by measuring how many standard deviations the
detection is away from the mean track location [23].

To take into account the appearance information, it is used a second met-
ric that uses the appearance descriptor. This second metric measures the
smallest cosine distance between the i − th track and j − th detection in
appearance space:

d
(2)
(i,j) = min{1 − rT

j r
(i)
k |r(i)

k ∈ Ri} (4.2)

where rj is the appearance descriptor and Rk = {r
(i)
k }Lk

k=1 is a gallery of
the last Lk = 100 associated appearance descriptors for each track k. The
appearance descriptors are obtained through a pre-trained CNN, which will
be described in the next paragraph.

In conclusion, the two described metrics cooperates to solve the assignment
problem: the Mahalanobis distance is valuable for estimating potential object
positions based on motion, making it well-suited for short-term predictions.
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In contrast, the cosine distance focuses on appearance information, which is
particularly valuable in case of the need to recover identities after extended
occlusions, when motion is less reliable. At the end, the two metrics are
combined through a weighted sum.

In the following flowchart is shortly summarized how an object detection
algorithm (in this case YOLOv8) and DeepSORT cooperate to perform object
tracking.

Figure 4.4: Flowchart of how YOLOv8 and DeepSORT work together.

4.3 Training
As for the YOLOv8 network, also for DeepSORT, before entering in the
details of what training strategies have been adopted in this work of thesis,
it will be discussed the way in which the dataset has been obtained.

Dataset

In order to train DeepSORT, it cannot be used the same dataset used to
train YOLOv8, because, as the latter needed the data in a specified format,
also DeepSORT needs its data in a specified format. In particular, DeepSORT
doesn’t need labels in text files, but it needs cropped images in which is
contained only the object to detect, may it be full or just parts of it. Keeping
this in mind, it has been decided not to start from scratch for generating
a proper dataset for DeepSORT, but to start from the labeled YOLOv8
dataset. In particular, it has been written a Python code that, starting from
the full image, crops the latter in correspondence of the bounding box, so that
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to obtain an image with the specific size of 64x128 required by DeepSORT
and in which the object to be detected is present for sure. An example of the
obtained images is reported in the following figure:

Figure 4.5: Examples showing samples from the DeepSORT dataset. In particular
on the top line are shown examples of the longitudinal IVC, while on the bottom
line are reported examples of transversal IVC. In both cases the dimension must be
64x128.

For what concerns the knowledge of the classes of the different images, the
latter have to be stored in different folders, named as the class you want to
detect. In the next paragraph, it will be discussed the training of DeepSORT.

Training

The training of DeepSORT has been done using the same hardware used
with the training of YOLOv8, which is summarized in table 3.1. Regarding
the final dataset used, it was composed of a total of 8891 images for the
training set and 8803 images for the test set.

While, for what concerns the hyperparameters set for the training, also in
this case it has been done a finetuning work to discover the best combination
of hyperparameter that guarantee the best performances possible and, at
the end, it has been chosen to use the default combination, because, as said
before, it has shown to bring the best performances. The combination chosen
is then reported in the table below. At his point of the discussion, it is possible
to show how the training of DeepSORT went: it is shown in figure 4.6.
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Table 4.1: Hyperparameters chosen for the DeepSORT training.

Hyperparameter Value Purpose
epochs 50 Number of epochs to train for.
lr 0.1 Starting learning rate.
optimizer SGD Optimizer used: Stochastic Gradient Descent.

max_dist 0.2 Maximum Mahalanobis distance for associating de-
tections to existing tracks.

min_confidence 0.3 Minimum confidence score required for a detection
to be considered valid.

NMS_max_overlap 0.5 Maximum allowed overlap between bounding boxes
during Non-Maximum-Suppression.

max_iou_distance 0.7
Maximum intersection-over-union (IoU) distance
between two bounding boxes for them to be con-
sidered as the same object.

max_age 70 Maximum age of a track (in frames) before it is
considered for deletion.

n_init 3 This is the number of consecutive detections that
are required to establish a new track.

nn_budget 100 Maximum number of candidates that are considered
when associating a detection with an existing track.

Figure 4.6: Training and test losses reported during the DeepSORT training.
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As we can see in the diagram, both the training and test losses decrease
during the training phase, as we expect, suggesting an ever-improving net-
work. Moreover we can see that the two trends showed a plateau, meaning
that the network has learnt all it could learn from the data. The performances
of this network coupled with the two YOLOv8 architectures are shown in the
chapter 5.
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Results

After exposing the methods used in this work of thesis, in terms of choice
of the networks and training strategies applied, in this last chapter they will
exposed the results that were achieved. However, before showing that, it will
be exposed a brief overview of the metrics used to evaluate the performances
of the trained networks. In particular, they will be discussed both the object
detection and the object tracking metrics so that we can distinguish between
the performance of the two YOLOv8 architectures and the complete algo-
rithm with DeepSORT separately.

5.1 Metrics
5.1.1 Object detection metrics
Mean Average Precision (mAP) is a widely used metric for evaluating the
robustness of object detection algorithms. It calculates the Average Precision
(AP) for all-classes in a multi-class problem. AP is defined as follows:

AP =
nØ

k=1
P (k)∆r(k) (5.1)

In the equation 5.1, P (k) is the Precision in the data point k, while ∆r(k)
is the Recall in the same point. It is therefore understood that to fully un-
derstand mAP, it is necessary to understand what Precision and Recall are.
They are defined as follows:

Precision = TP

TP + FP
(5.2)
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Recall = TP

TP + FN
(5.3)

In the previous equations 5.2 and 5.3, TP are True Positive, FP are
False Positive and FN are False Negative. These last terms are defined in
the classification field and are better explained through a confusion matrix:

Figure 5.1: Representation of a general confusion matrix: on the diagonal are re-
ported the correct outcomes of the network, while in the other spots are reported
the mistakes.

Therefore, considering a classification task, True Positives (TP ) and True
Negatives (TN) are the samples that were correctly classified, as we can see
in green in the diagonal in figure 5.1, while False Negatives (FN) are the
samples classified as negative, but that were actually positive; on the other
hand, False Positives (FP ) are the samples classified as positive, but that
were actually negative. Keeping in mind this distinction and looking at the
expression of Precision and Recall, we can state that Precision is defined as
the ratio between those correctly classified as positive (TP ) and the totality
of those classified as positive and so it answers the question: "How many
of those classified as positive were really positive?". Whereas, Recall is de-
fined as the ratio between those correctly classified as positive (TP ) and the
totality of authentic positives, and so it answers the question: "How many
objects were correctly classified as positive?". However, unlike the classifica-
tion task, in which an item is undoubtedly classified as positive or negative,
in the detection task, the distinction between positive and negative is not
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so clear-cut. To determine whether an object is correctly detected or not, a
threshold needs to be set. This threshold is defined by the Intersection over
Union metric. The Intersection over Union (IOU) is a widely used metric for
evaluating the overlap between two bounding boxes: the predicted bound-
ing box and the ground truth. A visual representation of IOU is shown in
figure 5.2.

Figure 5.2: Visual representation of IoU metrics.

As we can see in figure 5.2, by evaluating the ratio between the intersection
and the union between the predicted bounding box and the ground truth,
IOU is a measure of the accuracy of the prediction: the closer it is to 1 more
accurate the model - and its prediction - is. It means that choosing a higher
IOU as threshold will lead to a stricter distinction, while a lower IOU means
a milder distinction between correct and incorrect detections. In this thesis,
to evaluate performances, it has been chosen an IOU of 0.5.

For the evaluation of YOLOv8 performances, it has been used a particular
kind of mAP, which is mAP50-95. The latter measures the mAP of examples
across a range of IOU thresholds, ranging from 0.5 to 0.95. In this way, a
more comprehensive evaluation of performances is provided, since it considers
different levels of overlap between the two bounding boxes.

62



Results

5.1.2 Object tracking metrics
The metrics used to evaluate object tracking algorithm’s performances are
supplied by MOTmetrics library [25]. The latter provides a wide range of met-
rics and, for the purpose of this thesis, it was decided to use the following
metrics: Multi-Object Tracking Accuracy (MOTA), Multi-Object Tracking
Precision (MOTP), Identification F1-score (IDF1). Before starting the de-
tailed description of the metrics, it is worth noting that the MOTmetrics
library uses a slight different version of IOU:

IOU = 1 − Intersection

Union
(5.4)

This expression has the reverse meaning of the previously described: an
IOU equal to 0 means perfect overlap, while an IOU close to 1 means poor
overlap.

MOTA Multiple-Object Tracking Accuracy (MOTA) is perhaps the most
widely used metric to evaluate a tracker’s performance and it is defined as
follows:

MOTA = 1 −
q

t(FNt + FPt + IDSWt)q
t GTt

(5.5)

where t is the frame index, FN are the false negative predictions, FP
are the false positive ones, IDSW are the identity switches and GT is the
number of ground truth objects [26]. MOTA can range from −∞ to 1: MOTA
values near to one means high accuracy. It is worth noting that the MOTA
metric could be also negative, in cases where the number of errors made by
the tracker exceeds the number of the ground truth in the scene [26]. This
metric is particularly powerful due to the fact that it takes into account not
one, but three sources of errors (FN , FP , IDSW ), however it is not enough
to fully comprehend the algorithm’s performances: for this reason it is often
coupled with other metrics, such as MOTP.

MOTP Multi-Object Tracking Precision (MOTP) is a metric the evaluate
the goodness of localization precision and it is defined as follows:

MOTP =
q

t,i dt,iq
t ct

(5.6)
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where ct denotes the number of matches in frame t and dt,i is the bounding
box overlap of target i with its assigned ground truth object [26]. Basically
it measures the average distance between the predicted and ground truth
bounding boxes. MOTP ranges from 0 to 1 and, differently from the MOTA
metric, a good MOTP shows values near to 0.

IDF1 The previously described metrics focus on a detection aspect of the
tracking, evaluating the tracking accuracy and the localization precision. Be-
yond this aspect, it is also important to evaluate the identification capability
of the algorithm. To do so, MOTmetrics library [25] supplies a series of differ-
ent metrics. The one used in this thesis is the Identification F1-score (IDF1),
which measures the tracker’s ability to maintain correct target identities over
time. IDF1 score is described by the following expression:

IDF1 = 2IDTP

2IDTP + IDFP + IDFN
(5.7)

in which IDTP (Identity True Positive) corresponds to the longest asso-
ciated trajectory matching to a ground truth trajectory, while every other
trajectory matching the same ground truth trajectory is targeted as IDFP
(Identity False Positive); IDFN (Identity False Negative) are all the ground
truth trajectories that remain unmatched [27].

The IDF1 metric combines identity-based precision (IDP) and identity-
based recall (IDR): these metrics have the same meaning of the ones de-
scribed in section 5.1, but applied to the identities. Their expression are
newly reported as follows:

IDP = IDTP

IDTP + IDFP
(5.8)

IDR = IDTP

IDTP + IDFN
(5.9)

5.2 Testing
In this section, they will be exposed the results achieved in this work of
thesis, through a testing of the networks trained, both the YOLOv8 models,
the one with the original architecture (which we will refer to as original) and
the one with modified architecture (which we will refer to as modified) and
the DeepSORT. In the following it will be made a distinction between the
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performances of the object detection models and the object tracking model
coupled with the two different YOLOv8 models. Finally it will be tested
the possibility to integrate the algorithms with the software developed by
VIPER [2].

Object Detection Performance

For what regards the performances of the detection models, they are ex-
posed in table 5.1, in which are compared the mAP50-95, whose meaning
is discussed in the previous section, of the two architectures considered. In
order to have a clearer vision of the performance, in the table are reported
the performances on the two different classes (IVC long and IVC trasv, which
refer to longitudinal IVC and transversal IVC respectively) and the overall
metrics.

Table 5.1: Object detection performances of both the original YOLOv8 model and
the modified one.

mAP50-95 (%)
Original Modified

IVC long 91.6 77.2
IVC trasv 84.8 69.8

Overall 88.2 73.5

As we expected the original YOLOv8 model showed better performances
compared to the modified one, in fact, while the former reaches 88.2% of
overall mAP, the modified one only reaches 73.5%. This is mainly due the
fact the modified architecture is significantly smaller than the original one.
However, for this same reason the modified architecture showed an inference
time which is, as we expected, lower than that showed by the original one,
as we can see in the following table:

Table 5.2: Mean inference time of the two architectures considered.

Original Modified
Inference time 12.1ms 10.4ms

In the following, will be showed some examples of detections performed
by the original YOLOv8 and the modified YOLOv8, in order to make not
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only a quantitative analysis but also a qualitative analysis of the abilities of
the two networks.

In figure 5.3, it is reported a comparison of detections performed by the two
architectures: in the left column are reported the detections operated by the
original architecture, while on the right there are the detections performed
by the modified one. Obviously, in order to make a meaningful comparison,
the same image has been used for the two architectures. As can be noted,
the original architecture performs a much better detection compared to the
modified one, as the table 5.1 suggests. The original one shows, for every
image, a confidence score higher than 80% (sometimes reaches even 90%),
while the modified one shows different kinds of errors: ranging from not
identifying the IVC at all, to find two of them in the same frame. Nonetheless,
it can also perform good detections, even with a lower confidence score, like
suggests the third image.
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Figure 5.3: Examples of detections performed on several images by the two archi-
tectures: in the left column are reported the detections operated by the original
architecture, while on the right there are the detection performed by the modified
one. In addition, it is reported also the confidence score of the detections.
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Object Tracking Performance

In this section, are reported the object tracking performances, meaning
the performances reached by the two architectures when coupled with an
object tracking algorithm, which is, in this case, DeepSORT. The achieved
results were calculated on a set of videos, which the two networks have never
seen. The results are reported in tables 5.3 and 5.4.

Table 5.3: Object tracking performances of the original YOLOv8 model.

False
positives

Precision (%) Recall (%) MOTA (%) MOTP (%) IDP (%) IDR (%) IDF1 (%)

IVC long 27 89.8 81.0 72.6 24.5 87.3 79.7 82.6
IVC trasv 10 93.3 75.1 71.3 19.8 92.1 74.2 80.4

Overall 20 91.2 78.5 72.0 22.6 89.3 77.4 81.7

Table 5.4: Object tracking performances of the modified YOLOv8 model.

False
positives

Precision (%) Recall (%) MOTA (%) MOTP (%) IDP (%) IDR (%) IDF1 (%)

IVC long 122 76.3 76.2 50.5 29.0 63.5 63.4 63.4
IVC trasv 116 65.7 56.6 24.5 20.1 55.5 46.8 50.4

Overall 119 71.9 68.0 39.7 25.3 60.1 56.5 58.0

As we can see in the tables, the original architecture of YOLOv8 has
reached higher performances in the tracking case too. Moreover, as we can
see from the first metric reported, the original architecture presents a much
lower number of false positives compared to the modified architecture. False
positives are defined when the network finds an object where it is no object
to detect, for example in figure 5.3, in the last image, the modified network
finds two IVCs, when there is obviously just one. This makes the original
architecture more reliable: it presents also a much higher MOTA and a higher
MOTP (which, as described in the previous section, the lower it is the better
is the precision), even if, in this case, the difference is not so evident, since
the original one has a 22,6%, while the modified one shows 25,3%.

For what regards the IDF-1 metric, the difference between the two network
is very high, in fact if the modified network shows a 58%, the original one
exceeds 81%: this means that the latter has a better ability to maintain
correct target identities over time.
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Coupling with VIPER software

In order to verify that the trained networks can work properly with the
software developed by VIPER, it has been decide to add another metric for
evaluating the performances. It has been decided to assess the percentage of
frames in which the center of the bounding box coming from the algorithm,
falls into the segmentation performed by the VIPER software.

In the following table, are reported the results.

Table 5.5: Performance to evaluate the possibility of coupling the proposed algorithm
with the VIPER software.

Original (%) Modified (%)
IVC long 76.77 55.03
IVC trasv 98.88 79.61

Overall 87.82 67.32

The previous table suggests excellent possibilities of coupling the proposed
algorithm with the software developed by VIPER, especially in the case of
the original architecture, which has shown very high performances (almost
approaching the 90% on the overall case) in both the two classes implied
in this work. The performances characterizing the IVC long class are lower
than the IVC trasv class, because the segmentation operated by the VIPER
software doesn’t involve the integrity of the IVC but just a section of it,
impling that in certain frames the center of the bounding box may slide out
of the segmentation, but always remaining inside the inferior vena cava, as
is shown in the second image of figure 5.4.

In the following figure, are shown some examples of the coupling of the
two algorithms with the VIPER software, in particular, it is reported the
segmentation - in red - and the center of the bounding box - in yellow -, to
verify that it falls indeed inside the segmentation.
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Figure 5.4: Examples of the comparison between the outcome of the detection al-
gorithms and the segmentation by the software developed by VIPER. In the left
column are reported the frames relative to the original architecture, while on the
right column the ones relative to the modified architecture. In red is reported the
segmentation, while in yellow is reported the center of the bounding box.
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5.3 Eigen-CAM
After exposing the achieved results in this work of thesis, it is interesting
to look at the predictions under another aspect: what brought the object
detection network to individuate the objects in the image. To do so, ex-
plainability methods can be employed. The latter, in fact, report, through a
color map, what pixels in particular were responsible for the prediction made,
giving us a very intuitive way to better understand how a deep learning al-
gorithm works. There are different techniques that have the same purpose
and they all are based on the concept of Class Activation Map (CAM) -
firstly introduced in 2015 [29] - which is a method specifically designed for
convolutional neural networks. This method computes the class activation
map, based on three processes: removal of the fully connected layers at the
end of the CNN; replacement of the MaxPooling layer by a global average
pooling layer; computation of the weighted average of features extracted by
the feature extraction network [30]. Examples of newer techniques based on
CAM are Grad-CAM, Grad-CAM++, CNN-fixations and Eigen-CAM. In
particular, in this work of thesis it was employed the latter.

Eigen-CAM is a method introduced in 2020 [30] and it eliminates the need
to modify CNN architecture or to backpropagate some computations. In fact,
it assumes that all relevant spatial features in the input image learned over
the hierarchy of the CNN model will be preserved during the optimization
process, and non-relevant features will be regularized or smoothed out [30].
How the Eigen-CAM is obtained is shown in the following. Let’s consider an
image I with dimensions i, j and the combined weight matrix WL=n of the
first k layers of size (m, n), then [30]:

OL=k = W T
L=nI (5.10)

is the class activated output, obtained by projecting I onto the last con-
volutional layer L = k. Now OL=k can be factorized using singular value
decomposition, in order to obtain its principal components:

OL=k = UΣV T (5.11)

where U in an MxM orthogonal matrix and its columns are the left sin-
gular vectors, Σ is an MxN diagonal matrix, in whose diagonal there are sin-
gular values, while V is an NxN orthogonal matrix with left singular vectors
on its columns. Thereby, the class activation map, meaning the Eigen-CAM
is given by the projection of OL=k on the first eigenvector [30]:
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LEigen−CAM = OL=kV1 (5.12)

In figures 5.5 and 5.6 it is shown an example of Eigen-CAM applied to this
thesis. In particular it is represented an inferior vena cava both in longitudinal
(figure 5.5) and transversal (figure 5.6) section: on the left of both pictures is
reported the original image, while on the right side is present the elaborated
images, in which are present both the prediction of the network (bounding
boxes denominated respectively IVC long and IVC trasv), and the Eigen-
CAM map. As previously anticipated, the latter is represented through a
color map, that employs a color scale, ranging from blue to red, in which blue
means "low value" and red "high value". In particular, in the case of object
detection, the blue zones indicate pixels that have contributed little in the
prediction, whilst red zones indicate pixels that have deeply contributed in
the prediction.

Let’s consider the top images of figures 5.5 and 5.6, which means the ones
relative to the original architecture. It can be noted that the red zones falls
pretty well inside the IVC, meaning that the network is able to individuate
and classify correctly the inferior vena cava, both in longitudinal and in
transversal section, relying only the IVC features and not, for example, on
its surroundings. If now, we compare these predictions with the ones outing
from the modified architecture, it can be noted that they are not so sharp
as the ones made by the original architecture, in fact the network relies, not
only on the IVC (in particular the network highlights the edges of the IVC
on both cases), but also on its surroundings: it is evident in the case of the
longitudinal IVC.

In conclusion, it can be said that the study of the Eigen-CAM applied on
the two networks of this thesis suggests that the original architecture supply
a more reliable prediction than the one supplied by the modified network.
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(a) Original architecture

(b) Modified architecture

Figure 5.5: Example of the Eigen-CAM applied to one image representing the lon-
gitudinal IVC. In the top image is reported the Eigen-CAM relating to original
architecture, while in the bottom image is reported the Eigen-CAM relating to the
modified architecture.
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(a) Original architecture

(b) Modified architecture

Figure 5.6: Example of the Eigen-CAM applied to one image representing the
transversal IVC. In the top image is reported the Eigen-CAM relating to origi-
nal architecture, while in the bottom image is reported the Eigen-CAM relating to
the modified architecture.
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Chapter 6

Conclusions

In this work of thesis, it has been discussed the proposal of an algorithm to be
coupled with the software developed by a start-up, VIPER s.r.l, that can al-
low it to work in real-time and will make the software operator-independent.
The aforementioned software is in fact capable of performing segmentation
of the inferior vena cava (IVC), with the goal of obtaining some important
indexes (such as Caval Index, diameters, areas, and so on), useful for the
assessment of the volemic state and the Right Atrial Pressure (RAP) of
a patient, information that have implications in various fields of medicine.
However, the software was still operator-dependent and so, with this work of
thesis, it has been proposed an object detection algorithm to make it fully
operator-independent and that can work in real-time. To achieve this goal it
has been proposed the current state of the art model for object detection,
which is YOLOv8, and, in order to further improve its capacity, it has been
coupled with an object tracking algortithm, in particular it has been chosen
DeepSORT. Furthermore, to improve the speed of detection of the network,
it has been proposed a modified version of the YOLOv8 architecture, so that
to make it lighter. The results achieved in this work suggest that the algo-
rithm with the original YOLOv8 has better overall performances both in the
case of object detection and object tracking, reaching a mAP of 88,2% in
detection ability, a tracking accuracy of 72% and an IDF1-score of 81,7%,
against 73,5%, 39,7% and 58% respectively, shown by the modified architec-
ture. However, the latter showed an inference time shorter of 2ms compared
to the original architecture. Moreover, the original architecture has shown a
better coupling with the aforementioned software developed by VIPER, in
fact the center of the bounding box falls into the segmentation the 87,8% of

75



Conclusions

the frames, against the 67,3% shown by the modified architecture. In con-
clusion, it can be said that the algorithm with the original architecture of
YOLOv8 would represent a better choice to couple with the VIPER software,
because the reduction of the inference time of the modified architecture does
not worth the lowering of the performances reported.
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