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Abstract 
 
Digital twin technology is rapidly evolving within the Industry 4.0 realm and is emerging as a 
powerful tool for companies to transform themselves and proceed towards digitalization of 
their operations. Often, digital twin technology embeds some artificial intelligent models, in 
the attempt of achieving a so-called ‘Intelligent Digital Twin’, with even more enhanced 
capabilities of data analysis, fault detection, decision-making support, prediction, and many 
more. 
In line with the advantages coming from the synergy between digital twin and advanced deep 
learning algorithms, a Convolutional Neural Network has been developed within this thesis 
work, thought as a component of a broader Digital Twin comprehensive framework for 
Resistance Spot Welding quality monitoring. Indeed, the purpose of the work performed is to 
give a contribution in trying to address the quality issues impacting Resistance Spot Welding 
process, which is often affected by some welding defects. Particularly, the focus is on a 
specific and quite common defect in RSW, i.e., expulsion: it consists in the ejection of molten 
metal out of the nugget area during the welding process and can strongly affect the quality 
of the welding in terms of joint strength and other structural issues. The proposed deep 
learning CNN algorithm has been designed for image classification and fed with post-
Resistance Spot Welding workpieces images: the network has the ability to classify the images 
on the basis of whether the welded piece in the picture shows an expulsion or not. Despite 
the acquired dataset is much smaller than the ones proposed by other literature applications, 
the developed algorithm is surprisingly performant by giving rise to high classification 
accuracy values. Such an algorithm could be a sub-model to be included within an overall 
digital twin framework, which might be adopted by companies for a more automated quality 
monitoring over the outcomes of a welding assembly: expulsion appearing on a welded piece, 
indeed, acts as a window into the welding process and is typically considered by 
manufacturers as an indicator for quality of the process. 
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Introduction 
 
In the Industry 4.0 era, the manufacturing landscape is undergoing a deep transformation 
driven by the fusion between physical systems and digital technologies. The technologies 
enhanced by this revolution give companies the opportunity to improve efficiency and quality 
of their internal processes. Among the leading enabling technologies of Industry 4.0 is Digital 
Twin that, especially when combined with advanced Machine Learning algorithms, can 
provide huge potential in various industries, enhancing the strong capabilities of both 
technologies. On the one hand, digital twin provides a virtual replica or model of a physical 
object, on the other hand, machine learning consists in the development of algorithms that 
can learn from data and make predictions or classifications on the basis of what they learnt. 
A machine learning-based digital twin is also defined as ‘Intelligent Digital Twin’, since it 
acquires additional capabilities through the adoption of such algorithms with respect to a 
plain digital twin, in terms of prediction, optimization, advanced detection, and many more. 
This thesis work embarks on a journey to explore the digital twin technology and its 
potentiality towards smart and efficient manufacturing processes, understanding how it 
allows for bridging and closing the gap between physical and digital worlds through real-time 
seamless data exchange between the two environments. A particular focus is given on 
applications within the welding processes field and on the strong potentiality of ‘Intelligent 
Digital Twins’. 
 
The present thesis work is structured into 6 chapters. 
The first chapter provides an overview of Industry 4.0, giving a description of its main enabling 
technologies and of the potential benefits that the adoption of such technologies might 
introduce within a company, as well as the obstacles which can negatively interfere with 
digitalization. In addition, the main concepts and criteria behind Industry 5.0 are given, for a 
better understanding of what the next steps will be in terms of digitalization. 
The second chapter deeply analyzes the concept of Digital Twin, describing its fundamental 
principles and trying to provide a general and clear definition of the technology derived from 
the reading of several paper works and articles. Indeed, disparate frameworks exist for digital 
twin and a uniform consensus about a unique definition is still missing. Then, a description of 
the typical main components of digital twin is given as well as an outline of the main purposes 
and uses for which digital twins can be adopted within an enterprise. The ISO framework 
proposed for digital twin is analyzed to have a better understanding of a digital twin’s 
components. Finally, the main sectors of application of the digital twin technology are 
identified, the main providers of platforms needed by companies to adopt the digital twin for 
their processes are listed, and some general and interesting trends regarding the digital twin 
evolution are provided. 
In the third chapter, machine learning and deep learning are described in detail, and a precise 
characterization of their structure and complex functioning is provided, with special focus 
dedicated on deep learning and Artificial Neural Networks, particularly, Convolutional Neural 
Networks. 
The fourth chapter gives an overview of the main welding processes which have been 
encountered when performing the literature review about digital twin applications on 
welding processes. This has been instrumental for a better understanding of the kinds of 
digital twin applications analyzed across the different welding processes. 
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The fifth chapter, indeed, provides a description of the research process performed to carry 
out a literature review over digital twin applications to welding processes, and a systematic 
classification of those articles and paper works that were considered to be inherent and 
interesting for the purpose of this thesis work. This has been done so to have an overview of 
the existing digital twin applications within the welding process realm and proceed with the 
actual development of a practical application. 
To this end, the sixth chapter proposes the development of a Convolutional Neural Network 
to address the problem of quality monitoring in welding processes. Such network could be 
adopted within a much larger digital twin framework to help with the identification of issues 
that might affect the overall final quality of the weld. The proposed CNN works for image 
classification in the context of resistance spot welding. Such CNN has been designed to 
analyze input images depicting assembled workpieces after the welding process has been 
performed, and its objective is to detect the presence or absence of expulsion defect during 
the welding process, which can strongly impact the quality of the assembly. To conclude, an 
analysis of the results obtained and a description of the possible future works, which might 
improve the present one, are provided. 
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1. Industry 4.0 overview 
 

1.1 Industrial revolutions, from 1.0 to 4.0 
 
From mechanization in the first industrial revolution; to assembly lines, mass production, and 
new power sources in the second industrial revolution; computers introduction and 
Programmable Logic Controllers in the third revolution; up to the fourth industrial revolution 
today, namely, Industry 4.0 (Figure 1.1). 
 

 
Figure 1.1 – The four industrial revolutions [1] 

 
In the first industrial revolution, occurred between the end of 18th and the beginning of 19th 
centuries, machines were introduced into factories through a process of mechanization of 
production, substituting the much slower and more inefficient hand production. The use of 
water and, particularly, steam power in industrial field was a huge change and accelerated 
manufacturing times by improving productivity: steam engines were used to produce energy 
on the one hand, and to move and transport goods much faster through steam-powered 
locomotives on the other. 
 
In the second industrial revolution, started at the end of the 19th century, new energy sources 
were introduced (oil, gas, and electric power) as well as huge technological advancements, 
improvements in communication technologies, assembly lines, and mass production so that 
production processes got much faster than before, and some level of automation was already 
introduced into factories. 
 
In the third industrial revolution, begun in the middle of the 20th century, computers and 
robots were introduced in production processes, so that a more advanced degree of 
automation was reached, also thanks to improvements in telecommunications and the birth 
of Programmable Logic Controllers (PLC) on machineries. PLCs are industrial computer control 
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systems and their use in production lines was crucial to allow for a step forward in industrial 
automation: they receive input data (either automatically collected through sensors or 
manually introduced by an operator), process such input data based on some pre-defined 
custom application and parameters, and generate outputs which allow the PLC itself to 
perform different actions like monitoring, carrying out performance analysis (e.g., on the 
basis of productivity or other machine parameters, like temperature, etc.), signaling failures 
or problems of machines, and so on [2] [3]. 
 
The current Industry 4.0 revolution is implying a crucial transformation on value chains and 
in production, thanks to the introduction of new intelligent technologies and the consequent 
digitalization of the manufacturing and distribution processes, which allow for higher 
efficiency and productivity, also thanks to the use of informed data. Starting from the 
disruptive introduction of automation and computers in the third revolution, Industry 4.0 is 
boosting it through the adoption of smart and autonomous systems (more intelligent and 
flexible [4]), improvements in data and connectivity, human-machine interaction, and 
integration between physical objects and information world [5]. 
One of the outcomes of the introduction of such new technologies is retrieved in the 
employment of the so called ‘Smart factories’ or ‘Cyber-physical production systems’, which 
are intelligent and connected systems integrating advanced sensors (IoT), big data 
transmission, data storage and processing, artificial intelligence-enabled learning, and other 
software to collect and analyze data faster and more precisely than human beings can do, so 
to allow for better decision-making process and management. Thanks to real-time collected 
data through the sensors, these factories allow for intercommunication between machines 
(networking), self-optimization of the processes, predictive maintenance to reduce downtime 
to the minimum by predicting failures, and real-time visibility over the manufacturing 
resources (for instance, through digital twin technology) [6] [7] [8] [9] [10] [11] [12] [13]. 
 
Today, the demand for high-quality manufactured products is higher and higher, and 
intelligent solutions and technologies are needed in order to meet such request [5]. 
Consequently, more and more countries are selecting Industry 4.0 as a strategic target to 
develop their industrial sector, since it is proving high potential and raising lots of 
expectations [14], so that the global manufacturing industry is overall projected towards 
digitalization, networking, and intelligence [15]. 
Indeed, as of the second half of 2021, over a trillion U.S. dollars has been globally invested in 
industrial digital transformation, taking into consideration 6 main sectors (Figure 1.2) [16]. 
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Figure 1.2 – Global investment in industrial digital transformation 2021 [16] 

 

1.2 Main technologies 
 
Recent technology advancements are allowing Industry 4.0 revolution to happen, enabling 
the digitalization of manufacturing processes and realizing the foundations needed to achieve 
smart manufacturing systems [17] [18]. 
 
The main Industry 4.0 enabling technologies are listed and described in the following. 
 

• Internet of Things (IoT). 
 
IoT, in broad terms, refers to physical objects being enclosed in a network, 
communicating, and exchanging data one with the other thanks to embedded sensors, 
software, and other technologies like cloud computing. 
Today, any common object can be connected via IoT and when applied to the 
industrial sector, this technology is referred to as Industrial Internet of Things (IIoT). 
Plants, equipment, and machines on the production line can be ‘smart’, meaning that 
they can be equipped with sensors that gather real-time information about their 
current status and allow them to interconnect and communicate one with the other. 
Overall, this allows for higher efficiency and smoother management of supply chains, 
other than easiness in designing products and monitoring production lines, through 
collection, analysis, and exchange of a large amount of operational data, which can be 
reported from one asset to another one, or to an operator [6] [19] [20] [21] [22]. 
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• Cloud computing. 
 

Cloud computing consists in the provision of different computing services and 
resources over the Internet, among which servers, software and applications, data 
storage, development, and networking tools. This technology provides powerful 
computing capability, so that sophisticated models can be built and operated with its 
adoption. Through cloud computing, it is possible to avoid the need for physical 
servers and data centers, by accessing cloud-based services simply having Internet 
access. 
In manufacturing, Industrial Cloud Computing provides IIoT the infrastructure needed 
to transfer and store data for software and applications, so that operators can use it 
to enhance operational productivity and assets management. A complete smart 
manufacturing system, indeed, requires connectivity between supply chain, 
production, and distribution, which is made possible thanks to cloud computing and 
IIoT [23] [24] [25] [26]. 

 
• Edge computing. 

 
Edge computing is a computing framework according to which data is stored and 
processed near the source (at the ‘edge’), that is, near the location in which data is 
produced (e.g., near IoT sensing devices). 
When applied in the industrial field, it allows organizations firstly to improve response 
times (latency) related to the time from when data is produced to the moment in 
which a response on such data is needed, and secondly, to save in terms of bandwidth 
available. For instance, it might be needed to have real-time response and action in 
case there is a safety or quality issue with a machine [27] [28]. 
 

• Cybersecurity. 
 
Cybersecurity is the practice of protecting internet-connected critical systems 
(hardware and software) and sensitive data from malicious digital attacks. 
As organizations develop connectivity and communication between equipment and 
plants, it is crucial to apply cybersecurity to the systems, which is more and more 
exposed to cyber-attack threats [29] [30]. 

 
• Blockchain. 

 
Blockchain technology is based on a secured database that is distributed and shared 
in a network of members. This technology allows for safe data sharing, thanks to a 
ledger in which all transactions are recorded and in which participants can access up-
to-date information. The blockchain network allows for valuable assets or information 
to be tracked as they move around the network. 
In the industrial realm, blockchain technology is a powerful tool which can be applied, 
for instance, over the lifecycle of the products and over the whole value chain, in order 
to improve transparency from raw material purchase to delivery of the final goods, by 
constantly monitoring the supply chain [31] [32] [33]. 
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• Advanced data analytics. 
 

Advanced data analytics provide autonomous or semi-autonomous methods for data 
analysis which allow to extract more valuable information from big data thanks to a 
variety of sophisticated techniques (statistics, data mining, machine learning, 
predictive models, etc.) able to identify useful patterns in the raw datasets.  
These advanced models are able to forecast future patterns, other than deriving a 
picture of the current status of the business and the market (as traditional data 
analysis models already did): by applying these innovative tools, businesses are able 
to gain more value from their data to have support in their decision-making processes, 
improve their understanding of the business and the market they operate into, and 
how they will most probably evolve in the future.  
In factories, for instance, advanced analytics tools allow to identify bottlenecks more 
easily and to early detect signs of failures before they burst, so to reduce downtimes 
[34] [35] [36] [37] [38]. 
 

• Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR). 
 
Virtual Reality allows an individual to enter an entirely computer-generated 3D virtual 
environment, offering an immersive visualization experience. The user interacts 
through their senses with the artificial surroundings, which are close to reality, and 
made possible by an immersive simulation. 
Augmented Reality integrates real world with computer-generated information and 
elements, so to enhance real world by providing an interacting experience to the user. 
While AR applies to a real-world setting, enhancing both the virtual and real worlds, 
VR, on the other hand, implies the user to be immersed into a fully virtual environment 
and as such, it enhances only the virtually simulated world. 
Today, some hybrid form of Mixed Reality (MR) exists, that combines both virtual and 
augmented reality making real and virtual environments indistinguishable. Indeed, 
MR allows to reach integration between real and virtual environments and can assist 
in optimizing decisions through real-time data collection and scene construction [15]. 
These technologies can be of help in manufacturing from different points of view: in 
the design phase they can help visualizing the future product behavior; in plant design 
it is possible to try and test different layouts via a simulated environment; a detailed 
visualization of manufacturing machines and lines is possible, to identify problems or 
improve productivity; operators can be safely trained without the need of risky 
physical training procedures; and many more [39] [40] [41] [42] [43] [44]. 
 

• Robotics and automation. 
 

Robotics is a branch of engineering and technology that involves ideation, design, 
construction, and use of machines (autonomous robots) whose role is to carry out 
physical actions usually performed by human beings. 
In line with this, automation is the introduction of technologies (software and 
machines) to perform activities so to reduce human intervention in processes to the 
minimum. 
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Robotics and automation intertwine in some circumstances, for instance in the case 
robots are used to perform some physical tasks on a manufacturing line: industrial 
automation and robotics, indeed, are defined as the replacement of manual human 
labor to improve quality, performance, and efficiency of the production line or plant 
[45] [46] [47] [48] [49]. 

 
• Additive manufacturing (e.g., 3D printing process). 

 
Additive manufacturing is a computer-controlled manufacturing process to build 
objects one layer at a time: 3D products are constructed by adding one layer of 
material upon the other, using CAD (Computer-Aided-Design) software and 3D object 
scanners. 
The first main benefit of additive manufacturing inclusion into manufacturing 
processes relates to a lower raw material wastage since, differently from traditional 
processes, it does not start from a ‘block’ of raw material and then refine it to get the 
outcome required, but starts from nothing and adds what is needed. In addition, it 
makes individual customization easier, allows for fast achievement of the first 
prototype and its production, and for integration of CAD software in the process [50] 
[51] [52] [53]. 

 
• Artificial Intelligence (AI) and Machine Learning (ML). 

 
Artificial Intelligence is a sub-field of computer science, in which smart machines are 
built to be able to solve problems and perform tasks that are usually carried out by 
human beings. This is possible because such machines replicate human intelligence 
processes by modeling and even improving them, so to provide automation of 
operations and business processes. 
Machine learning is a branch of AI, which focuses on algorithms that are able to learn 
from large amounts of data, in order to find patterns and features, and then classify 
objects in a given dataset or predict new data accordingly. 
Artificial Intelligence has many applications today (e.g., e-commerce, education, 
robotics, healthcare, etc.) and is gaining an important role in manufacturing: thanks 
to the huge amounts of data generated by the factory, AI software are able to identify 
trends that can be used to optimize plants (i) by making the production process more 
efficient and less energy-consuming, and (ii) by performing quality checks which allow 
to make any necessary adjustments to the machines. 
The application of machine learning in industrial processes, for instance, can allow for 
predictive maintenance based on algorithms, so to improve uptime and efficiency [54] 
[55] [56] [57]. 

 
• Digital twin. 

 
A digital twin is the virtual replica of a real object or system, and it mirrors the behavior 
of its physical counterpart. 
The virtual twin receives data in real time from the physical twin: by (i) integrating IoT 
sensors able to capture important parameters and information from the object under 
analysis, and (ii) applying machine learning algorithms, simulations, and advanced 
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analytics, the digital twin technology can enhance decision making and performance 
assessments. In addition, it can help operators in monitoring resources and addressing 
quality issues, by also providing prediction capabilities [58] [59]. 

 

1.3 Benefits of Industry 4.0 and digitalization 
 
Increasing automation, smart factories, and availability of informed data allow for higher 
efficiency and productivity across the whole value chain, and higher flexibility of 
manufacturers in meeting the demand (e.g., through mass customization) as well as increased 
profitability. 
 
More in detail, with respect to the scenario before Industry 4.0, today many advantages are 
faced by those companies that believe in how the current revolution could positively impact 
their business and implement such new technologies in their processes. 
In the following, a description of some of the main benefits granted by the adoption of 
Industry 4.0 innovative technologies is presented [60] [61] [62] [63] [64] [65]: 
 

• Higher productivity and efficiency. Production line throughput is higher thanks to a 
more efficient and cost-effective resources allocation and to the reduction of machine 
downtime, due to better analysis and monitoring of the line data and parameters, and 
more advanced predictive maintenance procedures. 
 

• Supply chain optimization. According to the interconnectivity feature typical of 
Industry 4.0, the supply chain can be connected within a network: real-time data is 
available from the whole supply chain (information about manufacturing processes, 
suppliers, customers demand, inventory levels, production schedules, etc.) and this 
allows to optimize the satisfaction of customers’ orders by improving logistics, 
balancing demand and supply, and upgrade the manufacturing process accordingly. 
To do so, the manufacturing processes can be monitored in real-time so to identify 
malfunctions, issues, or bottlenecks as soon as possible and intervene to improve 
manufacturing efficiency. 
 

• Faster and easier product design. Thanks to technologies like digital twin and 
simulation software, it is possible to virtually design and test products before actually 
building their prototype and physically testing it. In this way, the time needed to 
develop a new product and start its production is much reduced, positively affecting 
the time-to-market. In addition, material waste is decreased, which could be 
substantial if many physical prototypes were to be developed and tested before 
reaching the best product shape. 
 

• Optimization of products and production lines. This is mainly possible thanks to digital 
twin technology (combined with all the Industry 4.0 technologies embedded in each 
specific application), through which a virtual version of a product or a production line 
can be created, so to test and enhance its performance and characteristics under 
different possible circumstances within the virtual world. 
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• Instant access to data, better information sharing, and increased collaboration. 
Thanks to the advanced telecommunication technologies, different departments and 
teams within a company can easily communicate one with the other, no matter their 
physical location. This communication process can occur ‘manually’ between 
operators or ‘automatically’ between machines. 

 
• Higher-value work. Thanks to automation, more repetitive tasks can be assigned to 

automated machines and autonomous robots so that human labor can focus on more 
value-adding jobs. Resources are overall better allocated and higher value is achieved. 

 
• Transparency and improved decision-making. Operators within the factory or 

company are able to access, exchange, and analyze high-quality data generated either 
by sensors or by advanced algorithms as an output. Consequently, based on this 
crucial information and insights about the production process status and thanks to the 
sharing and collaboration between different teams, they can make informed and data-
driven decisions. Such decisions can also be taken by intelligent machines themselves 
and be communicated to the operators. 
For instance, the healthiness parameters of a machine can be analyzed and showed 
to the operator, who can take decisions accordingly (e.g., arrange or review the 
predictive maintenance scheme). 

 
• Higher flexibility and customization. Market demand and customer expectations 

evolve rapidly and the possibility to collect and analyze big data allows to obtain useful 
insights on market trends, respond fast to any fluctuations in market demand, and 
customize production based on requirements. 

 
• Improved quality assurance and defect detection. Thanks to increased automation, 

real-time in-line quality inspection can be carried out by constantly monitoring and 
keeping track of the line parameters and status, so to identify any quality issue before 
actual failure takes place and improve the overall product quality. Also, human 
mistakes in quality inspection can be avoided through robotics and product 
compliance with quality standards can be overall improved. 
 

• Increased personnel safety. First, the much easier information sharing and 
communication between employees makes crucial information, like evacuation plans 
or on-site safety, readily available to everyone who might need them. In addition, it 
allows to have standardized safety plans even across large and dispersed companies. 
Secondly, employees and operators training can take place virtually, so to avoid any 
unfortunate accident. Finally, the advanced predictive models make it possible to 
predict the equipment faults and possibly prevent them from taking place and causing 
injuries. 
 

• Lower time-to-market. Companies adopting innovative technologies of the fourth 
industrial revolution have a competitive advantage due to the abovementioned 
benefits, since they are able to get to the market faster with their products or services. 
Their production activities are overall improved, cycle time is reduced while 
throughput is increased through better allocation of resources, and the time needed 
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for new product introduction (design, prototyping, and production) is much reduced. 
As long as the company keeps on investing in such innovations and improvements as 
they become available, then it is able to grow and keep such competitive advantage 
over time. 

 
• Lower costs. The introduction of Industry 4.0 technologies requires an investment and 

so, an upfront cost in order for the factory to reach the ‘Smart Factory’ status. Yet, the 
manufacturing costs in the longer-run will decrease as a consequence of the adoption 
of such technologies, because of the advantages listed above and what derives from 
them (e.g., less machine failures and lower downtime, lower maintenance costs, 
better resources allocation, and less quality problems).  

 
• Higher revenues and profitability. As a consequence of the highlighted advantages, 

the adoption of Industry 4.0 technologies leads to higher revenues for the company, 
and, consequently, to higher profitability thanks to the post-investment lower costs. 

 
• Sustainability and circular economy. Through Industry 4.0 technologies it is possible 

to reduce the negative impact of industries on the environment, by focusing on 
reduction of wastes and on recycling, other than on designing products in a way that 
they are more sustainable. In addition, through collection of real-time data it is 
possible to keep track of the generated emissions and energy consumption so to apply 
some improvement strategies where needed. 

 

1.4 Obstacles of Industry 4.0 and digitalization 
 
Despite all the benefits granted by Industry 4.0 and digital transformation, some 
disadvantages and obstacles in implementing its technologies need to be taken into account 
[1] [64] [66] [67]: 
 

• High upfront initial investment in capital expenditures. The introduction of new 
technologies is much expensive, but in case such a large investment can’t be afforded 
by the company at once, it is possible to start with a small investment in smart 
technologies so to scale it up step by step as it becomes possible. 
 

• Unclear transition process and cultural obtusity. Companies do not always recognize 
the utility or understand how to move towards a digitalized and automated 
production process. In addition to that, many companies’ management is deeply risk-
averse and not willing to welcome disruptive changes to their processes, and workers, 
as well, might not be ready for the innovation and refuse to adapt to it. Indeed, the 
introduction of these new digital technologies proves it necessary to draft new 
business models, abandoning the more traditional ones by reviewing strategies and 
operations. 

 
• Lack of necessary skills and need for trained personnel. On the other hand, some 

companies have difficulties in finding skilled staff or in training it to the use of new 
software and instruments, thus slowing down the adoption of the new technologies 
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in many industries. Indeed, the personnel needs to be trained and specialized to be 
able to interface with the new technologies and automated systems. 
As a consequence of this and of the previous point, a huge gap is emerging between 
those companies that manage to implement Industry 4.0 technologies and those 
which don’t. 

 
• Cyber-security and outage risks. Concurrently with the adoption of Industry 4.0 

technologies, proper security systems must be introduced since data exchange and 
storage expose the company to hacking and data leaks risks. In the same way, network 
maintenance processes are needed to prevent outages to take place by disrupting 
business operations and production processes. 

 
• Need for continuous update. Technology is progressing and evolving fast, and 

companies need to keep up by updating themselves so to remain competitive in their 
market. 

 
• Increase in unemployment. Unemployment will eventually increase due to 

automation of processes through machines and robots which perform tasks previously 
carried out by human operators. At the same time, though, new occupational profiles 
and positions are emerging for the exploitation and management of the new 
technologies. 

 

1.5 What’s next? Industry 5.0, a human-centric approach 
 
It seems like industrial revolutions are not yet come to an end. Automation and digitalization 
have been the focal points of Industry 4.0, but nowadays a new paradigm is emerging: the 
cruciality and centrality of human beings in the revolution, for a stronger cooperation 
between men and machines, a deeper focus on sustainability and society matters, better 
talent attraction, and general resilience. 
This is Industry 5.0, not an actual industrial revolution, but rather a human-centric 
development of the Fourth Industrial Revolution, whose focus was mainly on the introduction 
of smart technologies along supply chains and the consequent improvement in efficiency and 
productivity of the systems [68] [69] [70] [71] . 
According to the European Commission, the aim of this new transition is that of going beyond 
sole efficiency and productivity goals, towards the reinforcement of industry contribution to 
society, with Industry 5.0 paradigm being complementary to Industry 4.0 technologies: 
indeed, the wellbeing of the workers and society is central, and the general objective is to 
transit towards a ‘sustainable, human-centric and resilient European industry’ [68]. 
While machines and robots are characterized by efficiency, precision, and speed, they miss 
creativity, critical thought, and resilience which are typical of human beings, so that human-
machine cooperation might allow companies to give value added to their processes. 
By leveraging on Industry 4.0 technologies, it is possible to improve the interplay between 
humans and robots (e.g., AI and machine learning for more collaborative robots), and achieve 
a positive impact on society around 3 main pillars [69]: 
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• Sustainability goals can be reached through the (i) introduction of circular economy 
processes, (ii) use of renewable energy sources and recycling procedures, and (iii) 
reduction of energy consumption, CO2 emissions, and wastes. 

• A higher resilience and agility degree along supply chains is needed and this means 
being able to face any disruption which may occur, like wars or pandemics. Indeed, 
recent events, like COVID-19 pandemic and Russia-Ukraine war, enlightened some 
weaknesses in industries: higher resilience is crucial for industries to keep competitive 
on an international level. 

• The working environment gets more interesting with Industry 5.0, since it leverages 
on the creativity of operators, and this makes it easier for companies to attract and 
retain talented and skilled workers. 

 

2. Digital Twin (DT) 
 
In the context of Industry 4.0 and digital transformation, Digital twin is a promising technology 
which is becoming increasingly relevant and proving to be a crucial concept in digitalization, 
by providing an innovative strategy to integrate physical and digital worlds so to produce 
several benefits for the organizations which are implementing it in their processes. 
However, there is not yet a univocal and clear digital twin definition and framework, nor a 
consistent procedure to be followed, and consensus about the properties of a digital twin and 
its components is still missing. In this thesis work, a definition for digital twin is derived by 
merging information found on several articles and research papers centered around the 
digital twin implementation topic. In addition, a brief dissertation about the digital twin 
history and evolution is reported, since considered useful to identify and understand which 
the distinctive features characterizing this innovative technology are. Furthermore, the 
chapter includes a description of the main components that usually constitute a digital twin 
framework, an introduction to the ISO standard around digital twin adoption, and a 
classification of digital twins by type of application and sector. 
 

2.1 What is a Digital Twin? 
 
The Digital twin is one of the emerging technologies which are taking part in the Industry 4.0 
digitalization process of organizations, and when adopted by companies in combination with 
other digitalization technologies (e.g., IoT, ML, AR, etc.), it is able to provide real benefits to 
the processes, for instance, in terms of lower costs, higher efficiency, reduced time-to-
market, supported decision-making process, improved competitiveness, and better risk 
management [72]. 
A digital twin is a real-time virtual and computer-based replica of a physical entity (e.g., 
system, product, service, machine, equipment, manufacturing process, etc.) which enables 
sophisticated interaction between the physical object and the virtual counterpart [73]. It is a 
digital model that mirrors the existing physical object by collecting measurement data from 
the real environment: virtual models of the real objects are created, and the virtual twin is 
continuously updated through constant real-time data collection. Measurement data works 
as a sort of bridge covering the gap between physical and virtual domains and is extracted 
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through sensors appointed over the physical object, which are able to derive information 
about the real entity status and performance parameters. 
Then, such data is processed and based on this information, the digital twin is able to provide 
several services over the whole product lifecycle: 

• Constant mirroring of the real system (e.g., through 3D modeling) and visualization of 
its status parameters, allowing for real-time monitoring. 

• Analysis of the system’s parameters to produce significant insights. 
• Advanced simulations of the real object actions and behaviors based on real-time 

acquired data, or simulation of a to-be physical object (e.g., a product or a production 
line) to support the design and testing phases through virtual prototyping. 

• Predictions about how the real counterpart will behave, to possibly suggest optimizing 
improvements to be applied on the real entity, give suggestions for maintenance 
schemes (e.g., predictive maintenance), and grant overall support to the decision-
making process. 

With the abovementioned services, the digital twin is able to grant support during the whole 
lifecycle of the physical system, from its design to engineering, operation, and optimization 
stages, as long as the system keeps on being continuously updated to the real assets. One of 
the major advantages provided by the digital twin is the possibility to virtually carry out tests, 
optimizations, maintenance procedures, etc., without interrupting actual operations in the 
physical environment [74]. 
 
The name ‘twin’ derives from the ability of the digital replica to simulate not only the same 
elements as contained in the physical system, but also the same functioning dynamics so that 
it runs simultaneously with respect to the real counterpart like a twin [13]. 
The integration of IoT technology within the digital twin framework allows for easy extraction 
of real-time data and data communication, so that the digital twin can replicate what happens 
to the real entity and give real-time feedback to the users. Also, with the integration of cloud 
storage technology, large volume of data can be stored and be available to the digital twin [5] 
[75] [76] [77] [78] [79] [80] [81]. 
 
As said, digital twin is one of the key enabling technologies to achieve Industry 4.0 objectives 
and realize industrial intelligence and, as such, it is crucial to build intelligent and smart 
manufacturing processes and factories. Thanks to the variety of services it can provide, the 
digital twin has the capability to optimize the whole product lifecycle phases and intelligently 
support the decision-making process, to achieve data-driven optimization of the systems in a 
wide range of industrial applications. 
This is possible thanks to the symbiotic virtual-real interaction and the existence of a bilateral 
communication bridge and information mapping between the physical and the virtual 
systems: such connection allows to cover the gap between real and virtual domains and to 
perform real-time analysis of the physical system. 
Such real-time feature is what really is at the core of digital twin concept [14] [81] [82]. 
 

2.2 Digital Twin history 
 
Despite digital twin technology is gaining most of its relevance in recent years only, the 
concept is actually quite old, and it keeps on evolving over time giving rise to a large variety 
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of different, at times even inaccurate, definitions and unsuccessful applications of the 
technology in many industries [72].  
 
The ‘twin’ concept is around 50 years old, and it dates back to the creation of a mirroring 
replica of space vehicles implemented by NASA during the Apollo program in 1970s, which 
allowed to monitor the equipment conditions during the mission [83]. 
NASA had 15 high-fidelity spaceship simulators that were used by astronauts before departing 
for training purposes and were able to simulate several failure scenarios which might have 
occurred once the actual space vehicles were to travel in space. In Apollo 11 and Apollo 13 
missions, after the spaceships took off and were traveling in space, some severe issues arose 
and the simulators allowed the mission controllers to prevent the catastrophic scenarios to 
affect the missions, and to take astronauts back home safe and sound. 
Such mirroring was carried out through simulators, which by themselves cannot be 
considered as digital twins: what features made those simulators what today we might define 
as a primordial digital twin? 

• Rapid adaptation and modification of simulators settings so to reflect the real-time 
conditions of the spacecrafts. 

• Possibility to set the operating parameters of the real space vehicles, after having 
tested them under several possible operating scenarios.  

• Connection between the physical entity and the virtual replica through ‘real-time’ 
data exchange, achieved by NASA through the telecommunication systems available 
at the time, by which information was received from the crew on the space vehicle 
and used to change simulators’ settings for them to mirror the current conditions of 
the real vehicle. 

 
The concept of Digital twin was then conceptualized through the 'Mirror Space Model' by 
Professor Michael Grieves at the University of Michigan (beginning of 2000s) [75], who 
proposed a Product Lifecycle Management (PLM) system to virtually map a product 
throughout its whole lifecycle. The proposed 3-dimensional framework included all the main 
elements characterizing what today is called digital twin: (i) the real physical system in the 
real space, (ii) the digital entity in the virtual environment, and (iii) the connection channels 
for the real and virtual spaces to exchange information and be synchronized. Professor 
Grieves defined the digital twin as a “virtual digital representation equivalent to physical 
products” [78] and described the model he proposed by underlying its dynamic nature, since 
it was supposed to be changing and evolving over the lifecycle of the physical system, keeping 
the real-digital connection active for this whole timespan. Initially, the real system does not 
exist, and a 3D-modeled virtual prototype can be developed within the digital twin virtual 
space, avoiding the need to develop several expensive physical prototypes to find the right 
shape for the system. Thanks to simulations within the virtual environment, it is possible to 
test the system and understand its behavior under as many as possible circumstances by 
varying the simulation parameters: this allows to avoid the expensive (at times destructive) 
tests that need to be performed on the physical prototypes in absence of a virtual twin and 
to prevent a much larger number of unexpected issues which might arise in the following 
phases of the system’s lifecycle. As the final version of the object is virtually reached and 
validated through simulation, the 3D model is translated into its physical twin system. In the 
next phases, information flows over the linkage between physical and virtual systems in both 
ways: the virtual twin keeps on updating itself according to any change that occurs at the level 
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of the physical twin, and the information entering the virtual environment are used to make 
predictions about parameters related to the physical system future behavior.  
Figure 2.1 represents the actual slide that Professor Grieves used at the time to present his 
model: Mirror Space Model name derives exactly from this layout, where the virtual system 
‘mirrors’ or ‘twins’ the existing physical system by being its digital replica and allowing for 
support in design, testing, manufacturing, and monitoring phases [84]. 
 

 
Figure 2.1 -Slide by Professor Michael Grieves [84] 

 
In 2011, Professor Michael Grieves finally coined the system he previously proposed with the 
term ‘digital twin’. 
 
Despite the first real definition of digital twin was given by Professor Grieves at the beginning 
of 2000s, at the time technologies were limited and digital twin had no practical applications. 
NASA introduced the digital twin concept in its technological roadmap in 2010, defining it as 
‘an integrated multi-physics, multi-scale, probabilistic simulation of a vehicle or system that 
uses the best available physical models, sensor updates, fleet history, etc., to mirror the life 
of its flying twin’ [85] [78] [86]. The actual development of the first digital twin model was 
carried out by NASA itself in 2012 when it adopted integrated digital twin models to mirror 
the life of the space vehicles. These models allowed for design, maintenance, and predictions 
for the aircrafts [87]. 
 
In 2014, Michael Grieves developed a new digital twin model, still made up of three 
components: physical entity, digital entity, and connection between them. In this model, the 
virtual replica contains both geometrical data about the real system and behavioral 
information about its reaction to external conditions [78]. 
 
Around 2015, the advent of IoT technologies enhanced the diffusion of digital twin in the 
industrial field, and companies like Siemens started developing DT platforms for real-time 
monitoring, inspection, and maintenance as additional services for their customers [78]. 
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In 2017, Tao and Zhang developed a five-dimensional digital twin model for the design of 
shop-floors composed of physical shop-floor, virtual shop-floor, shop-floor services, shop-
floor digital twin data, and connections [88]. This framework has been at the basis of many 
applications that were afterwards developed. 
 

 
Figure 2.2 - Main steps in Digital Twin history [78] 

 

2.3 Components of a Digital Twin 
 
Conceptually, a digital twin is composed of 3 parts: real object in the real world, virtual 
representation of that, and information linking real and digital worlds [80]. 
To understand the digital twin structure, functioning, and main components of a digital twin, 
it is useful to analyze the five-dimensional framework developed by Tao and Zhang in 2017 
[88], who proposed a model to reach interaction and convergence between physical and 
digital spaces of a shop floor. The five components of the described model are: 
 

• Physical shop floor. It includes all the physical entities like human operators, 
equipment, and material. 
 

• Virtual shop floor. It models the physical system from geometry, physics, behavior, 
and rule perspectives, and it synchronously evolves with the physical counterpart. Its 
duty is that of giving the physical system control orders, to align it with some 
predefined process characteristics. 

 
• Shop floor service system. It is an integrated service platform containing functions like 

algorithms, models, etc., and it provides them to physical and virtual systems in 
response to their requests, to support the physical shop floor management and 
control, and the virtual shop floor operations. It also provides data services: all data 
collected, firstly undergoes a data conversion process to be turned into a unified form, 
then through data cleaning any ‘dirty’ data is removed, and finally, data fusion is 
applied to derive consistent interpretations of the data. 
Services are provided on the basis of data collected, being it sensor data (e.g., 
equipment capacity), simulation data (e.g., equipment fault prediction), or additional 
data (e.g., market data, product lifecycle data, etc.). 
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Abstracting from the shop floor framework, the digital twin services layer refers to 
what the digital twin objective is in the specific application. For instance, the digital 
twin can allow for monitoring, perform diagnosis and predictions of specific 
parameters like health conditions and remaining useful life or fault predictions, and 
many more. Often, the same digital twin model can offer multiple services. 

 
• Shop floor digital twin data. It is a dataset containing data from (i) physical shop floor 

(generated by the physical entities, e.g., production data, environment data), (ii) 
virtual shop floor (e.g., model parameters and data from simulation, prediction, etc.), 
(iii) shop floor service system, and (iv) fused data from the three of them (which 
constitute more consistent and valuable data), other than (v) information about the 
methodologies embedded to carry out modeling, optimization, and predictions. 
 

• Connections between all components, which allows communication and interaction 
between them. 

 
Physical and virtual shop floors, and the shop floor service system keep in consistency one 
with the other and iteratively optimized. In particular, on the one hand the virtual shop floor 
is updated through real-time data about the current state, generated by the physical shop 
floor and collected through external sensing devices or sensors embedded within the 
equipment itself; on the other hand, the virtual shop floor gives back control orders to the 
physical space according to evaluation, simulation, prediction, and optimization models, for 
it to reach synchronism with the characteristics of a predefined process. Any lack of 
consistency between the real and virtual systems might be due to either issues in the physical 
entity (e.g., failure) or inaccuracies in the virtual model: in both cases, measures are to be 
taken to bring them back to synchronism. 
The digital twin not only works with real-time data, but also records historical data generated 
by the system past operation (always updated with new incoming real-time data) to derive 
new knowledge via data mining methodologies and to improve the models’ accuracy. 
 
According to the framework, a virtual model to be complete needs to contain geometrical, 
physical, behavioral, and rule information about the real object: 

• 3D geometric model, including information about the shape, size, position, etc. of the 
physical object. 
To visualize the geometrical information of the real entity, a CAD (computer-aided 
design) software can be adopted. 

• Physical model, including information about tolerances, material properties, etc. and 
physical phenomena like deformation, corrosion, etc. 
An advanced design CAD software can be employed together with a Finite Element 
Model (FEM). 

• Behavioral model, representing the way in which the digital model reacts to external 
inputs and stimuli, like variations in the surrounding environments and interaction 
with other entities. Among other solutions, FEM or neural networks can be used to 
represent this mapping between external inputs and behaviors. 

• Rule model, which gives knowledge to the previous models so that they are able to 
analyze, evaluate, predict, and optimize the performance of the real entity through 
algorithms like data mining or neural networks. 
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During the physical entity operations, these models run synchronously with it and both 
models and physical system are calibrated to reach higher-fidelity results. 
 
Starting from this five-dimensional digital twin model, it is possible to analyze the variety of 
enabling technology to be implemented in order to construct a high-fidelity digital twin model 
[78]. 
Firstly, the physical entity needs to be able to communicate data to the digital twin, since data 
is the media by which the digital twin can be able to understand, respond, and interact with 
the real world: then, sensing devices need to be adopted to acquire data and allow the virtual 
model to update itself and keep track of any changes taking place within the physical world. 
Secondly, a large amount of heterogeneous data is generated and some advanced 
technologies are needed to manage data collection, data transmission, data storage, and data 
processing. 
Clearly, for data collection, transmission, and storage the use of IoT sensing technologies, 
cloud computing, and communication protocols is needed. High-fidelity connection methods 
are needed for data transmission and to make real-time mapping possible, and such data 
exchange between physical and digital realms can take place through wire or wireless 
transmission. 
Data processing consists in the extraction of valuable and meaningful data from the large set 
of data available, since raw data by itself is useless if not cleaned, compressed, transformed, 
etc. 
Through big data analytics models, it is possible to (i) perform data visualization, to 
communicate and allow visualization of data via tables and graphical representations, to (ii) 
carry out data mining, through application of algorithms to find hidden information in large 
datasets, and to (iii) apply predictive analytics to derive real-time insights and make 
predictions about the future based on an analysis of historical data (statistical models, 
machine learning, etc.). 
 
In the digital twin framework provided by Tao and Zhang, the model is referred to a shopfloor, 
but to have a general understanding of the components of a digital twin, the same 5-
dimensional framework can be interpreted considering a different physical entity, which 
might be an individual machine, equipment, or manufacturing line within the whole shop 
floor. 
 
What is crucial, but often neglected, is the importance of considering within the digital model 
the effect of surrounding environmental factors on the physical entity, to ensure consistency 
between physical and virtual environments. To do so, beside the virtual model of the physical 
entity of interest, a virtual environment model needs to be deployed, containing geometry, 
physical, and behavioral information about the environment as well [78]. 
 

2.4 A possible classification for Digital Twin models 
 
According to a report [89] analyzing 100 existing digital twin projects, digital twin models and 
applications can be classified along 3 different dimensions: 
 

a. Lifecycle phase of the real entity (from design to disposal). 
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The digital twin, indeed, can be applied to different object lifecycle stages like design, 
manufacturing, distribution, operation, maintenance, and end-of-life (e.g., recycle, 
disposal, etc.) [82] [78]. 
 

b. Use/purpose of the specific application. 
 

c. Hierarchical levels. 
This classification dimension depends on what the digital twin replicates within its 
model, which can be a component or part, an asset, a system or unit, or a process: 

• The component or part digital twin, represents individual components of an 
entire system (e.g., motors, valves, etc.), which typically are the key ones 
directly affecting the overall performance and efficiency, so to keep track of 
their status, performance, and behavior, and improve them when needed. 

• Asset or product digital twins describe entire physical assets or products (e.g., 
buildings, machines, etc.) and how the single components within them work 
together. Basically, it is a set of individual component digital twins, which 
allows to have an overview over the whole entity status and performance, so 
to make improvements if needed. For instance, by applying predictive 
maintenance to reduce downtimes (mean time between failures and mean 
time to repair) and increase the asset’s efficiency. 

• System or unit digital twins are the digital replica of a set of individual assets 
or products working together as components of a larger system (e.g., a 
manufacturing line): they are a combination of individual asset or product 
digital twins, giving the possibility to improve the collaboration between them 
and optimize productivity and efficiency. 

• Finally, a process digital twin represents a collection of systems working 
together (e.g., an entire factory comprised of employees, production lines, and 
machines) and provides information about the interaction between all the 
individual units, so to make sure that each of them pursues its goal efficiently 
[90] [91]. 

 
In line with this tridimensional classification, the analyzed existing digital twin applications 
(100 works analyzed by the report [89]) can be clustered into 6 main identified groups: 
 

 
Figure 2.3 – Six main digital twin classes 
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1. Digital twin for system prediction. Predictive models are applied to predict the future 
behavior or state of an entire system or part of it (e.g., factory, building, city, etc.) 
during the operation and optimization phases of its lifecycle, based on current and 
historical data. The prediction of a theoretical future output makes it possible to 
improve the planning process, and with the comparison between the theoretical 
output derived by the model and the actual output which will arise, it is possible for 
the digital twin to signal the presence of any issues or anomalies in the system. 
 

2. Digital twin for system simulation. The system is simulated under many what-if 
scenarios, which help in the moment of building the system itself, or apporting major 
changes to it (during the design, operation, and optimization phases of its lifecycle). 
This a priori virtual testing of the entities and their parameters allows to reduce the 
costs of physical testing processes. 

 
3. Digital twin for asset interoperability. Interoperability can be defined as the capacity 

of two or more products or systems to communicate and understand one another’s 
data. In line with that, such a digital twin model streamlines and standardizes the input 
and output data related to the asset during its operate and optimize lifecycle phases 
(e.g., asset features, properties, parameters, measurement data, etc.). All streamlined 
data are available in the same digital twin model, making it easier and faster to make 
more data-driven decisions. 

 
4. Digital twin for maintenance. These models help operators in maintenance during 

scheduled downtime or repair by providing detailed information about the real entity. 
They might also provide predictive models to predict asset failures, remaining useful 
life and arrange for predictive maintenance, to reduce unexpected failures and 
downtime costs. 
 

5. Digital twin for system visualization. The system can be visualized during its operation 
lifecycle phase, usually through extraction of data from sensors, 3D visualization 
software (e.g., CAD) and, sometimes, even machine learning algorithms to monitor 
the real-time operating conditions and parameters of the physical system. 

 
6. Digital twin for product simulation. The model helps during the design and 

development phase of a new product or the improvement of an existing product, by 
simulating different possible designs before actually realizing them and their expected 
behavior under different scenarios (for instance, through CAD and/or CAE software 
and with models able to reproduce product behaviors, in terms of fluid dynamics, 
mechanics, electromagnetics, etc.). This allows to perform virtual tests of different 
design solutions and to avoid the time needed for traditional product development 
and testing, and the costs of constructing physical prototypes, other than improving 
the overall performance efficiency of the (to-be) product. 
 

So, not one single type of digital twin exists, but it strongly depends on the specific application 
and the goal to be reached through the implementation. Companies should be able to 
quantify the benefits the digital twin may bring them in the specific use case, making a 
comparison with the opportunity cost of not adopting the digital twin technology. Also, they 
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should assess whether they are actually ready to introduce such advanced technology like the 
digital twin into their organizations, in terms of internal know-how, and technological and 
economical readiness. 
 

2.5 ISO 23247 
 
ISO (the International Organization for Standardization) is a worldwide federation of national 
standards bodies (ISO member bodies) [92]. It is a non-governmental organization composed 
of standards bodies (i.e., national standards organizations), each representing one member 
country (more than 160 countries). Each member cooperates to develop and promote 
international standards for a large variety of fields like technology, scientific testing processes, 
security policies, working conditions, business continuity, societal issues, and more. For a 
company, to be ISO-certified means that the business assures a service, product, or system 
that meets the requirements of the particular ISO standard [93].  
 
As already mentioned, digital twin concept is evolving, and its interdisciplinary nature, 
combined with the existence of several different proposed application frameworks, makes it 
difficult for companies to understand how to introduce digital twin technology in their 
manufacturing processes. From this point of view, it seems that digital twin depends on the 
specific use case and can be defined as a fit-for-purpose approach to be adapted to the 
specific context of application: for instance, depending on the use case, the digital twin will 
have different functionalities (e.g., real-time monitoring, synchronized simulation, etc.), 
sensors will extract only needed data rather than all the data available from the real entity, 
and so on [17]. Yet, a general and adaptable application framework might be of help. 
 
To these ends, the ISO federation intervened by proposing a standardized definition and a 
general framework for the digital twin implementation (ISO 23247), so that each specific 
organization can adapt it to their own specific use case.  
The ISO 23247 series, issued in 2021, concerns a digital twin framework for manufacturing 
which supports the creation of a digital twin of several physical entities (called Observable 
Manufacturing Elements) like equipment, manufacturing processes, personnel, etc., and is 
structured into four parts: 

1. ISO 23247-1 
2. ISO 23247-2 
3. ISO 23247-3 
4. ISO 23247-4 

According to the standard [79], a digital twin monitors an Observable Manufacturing Element, 
that is a physical element with material existence (i.e., a physical entity), and constantly 
updates data, so to enhance manufacturing operation and business cooperation. It supports 
anomalies detection in manufacturing process through real-time control, predictive 
maintenance, machine learning, etc. 
 
The standard outlines 8 kinds of Observable Manufacturing Elements: 

a. Personnel. Employees engaged in the production process, either directly or indirectly. 
b. Equipment. Physical entity performing a task directly or indirectly related to the 

production process (e.g., robots, machines, etc.). 
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c. Material. Physical elements used in the manufacturing process of a product, either 
directly used as part of the production process or as a support material to the 
production. 

d. Process. Sequence of physical manufacturing operations (e.g., assembly process, 
maintenance process, etc.). 

e. Facility. Infrastructure related to the manufacturing process (e.g., production 
building). 

f. Environment. Boundary conditions to the manufacturing process (e.g., temperature, 
humidity level, etc.). 

g. Product. Output of the manufacturing process (either work in progress or final 
product). 

h. Supporting document. Any artifact taking part to the manufacturing process. 
 
In line with the standard, the digital twin of each Observable Manufacturing Element is 
characterized by 7 measurable and/or computable attributes: 
 

a. Identifier. A unique value identifying the Observable Manufacturing Element. 
b. Characteristic. Certain distinctive feature of an Observable Manufacturing Element 

(e.g., the type of equipment, the color of a product, etc.). 
c. Schedule. Some temporal information about the physical entity (e.g., working hours 

for the personnel, the utilization time of an equipment, etc.). 
d. Status. Condition of the physical object (e.g., in process, idle, etc.). 
e. Location. Geographical position of the entity. 
f. Report. Description of the tasks carried out by an Observable Manufacturing Element. 
g. Relationship. Description of how two or more Observable Manufacturing Elements are 

interconnected. This is a crucial information to be able to build a database on the basis 
of an entity-attribute relationship structure. 

Not necessarily the physical entities and the digital twin attributes defined by the standard 
are sufficient for all use cases: indeed, they are crucial and necessary in many use cases, yet 
in certain other use cases some of them might be superfluous or additional ones might need 
to be considered. 
 
2.5.1 The framework 
 
The framework outlined by the ISO 23247 [79] standard is structured into 4 layers of 
interconnected domains: 
 

1. Observable Manufacturing Domain, containing the physical observable manufacturing 
entities. 

2. Digital Twin Domain, containing the digital twins of the Observable Manufacturing 
Entities. It maintains information about the physical objects and their representation, 
and provides functionalities like simulation and analysis of data collected from the real 
site. 

3. Device Communication Domain, containing sensors and actuators/controllers 
allowing the interface between digital twin and observable manufacturing domains. It 
collects data from the real objects through sensors, pre-processes such data, and 
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actuates/controls the physical entities through specific software, based on a request 
by the user entity or the digital twin entity. 

4. User Domain, containing software applications that facilitate the users’ interaction 
with the digital twin model and the physical entities (e.g., Product Lifecycle 
Management, ERP, etc.). 

 

 
Figure 2.4 – ISO standard four layers of domains [79] 

 
These layers are not hierarchical. Indeed, according to the framework, the whole system can 
run in a fully-automatic mode or semi-automatic mode: in the first case, the digital twin itself 
sends a command to a physical entity through the device communication layer based on some 
data collected by the sensors; in the second case, the user sends a command to the physical 
object and the digital twin updates itself accordingly, receiving data from the device 
communication layer. 
 

2.6 A clarifying distinction - Digital twin vs simulation 
 
So far, digital twin might have appeared to be no different than the existing and widely used 
conventional computational models and offline simulations, like Finite Element Analysis or 
discrete event simulation. Yet, while they both replicate products and processes through 
computational digital models, the digital twin shows off a key distinctive feature: it is a virtual 
dynamic model of the real system, with real-time data interaction through a two-way 
communication for synchronization between the real and virtual entities. There is a 
continuous connection between the real and virtual worlds, and this is what differentiates a 
digital twin from traditional models. 
The digital twin, indeed, could embed simulation models, but carries them out based on 
synchronized real-time data collected by sensors from the physical objects, which makes it 
possible to perform better monitoring and analysis of the entities, as well as giving 
comprehensive and more accurate representation of the real system, and derive higher-
accuracy predictions. In addition, thanks to actuators or controllers, information flows in the 
opposite direction as well, with the digital twin giving commands to the physical twin to 
maintain the two-way synchronization. 
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Such synchronization can be event-based, in case the digital twin is updated following the 
occurrence of an event, or time-based, if the digital twin is updated through a continuous 
data stream [79] [82]. 
 

 
Figure 2.5 - Two-way communication for synchronization [79] 

 

2.7 Areas of application 
 
Digital twin technology is establishing itself in the industrial field and is revolutionizing 
processes along the whole value chain, creating a long-lasting competitive advantage for 
organizations which decide to implement it over their own products and processes. Indeed, 
many benefits derive from digital twin adoption, among which improvement in efficiency, 
minimization of the failure rates, and shorter product and manufacturing processes 
development time [94]. 
The technology, though, is not only spreading through the manufacturing sector, but also 
across other various industries, and some of the main digital twin end-user sectors are listed 
by relevance in the following [95] [96]: 

1. Manufacturing. As described in the previous sections, digital twin implementation 
brings many benefits in manufacturing, supporting product design and prototyping, 
product and process optimization, quality control, and so on. 

2. Aerospace & defense. 
Digital twins are used to represent and mimic functionalities of real systems like 
aircrafts, satellites, semiconductor subsystems, etc. This can be useful in design and 
R&D processes since new components can be simulated to see their performance 
under a set of many different scenarios; in testing, substituting physical prototyping; 
in performing demonstrations to customers or users; in predicting when maintenance 
and repairs will be needed; and many more. Overall, these services allow to improve 
the parts quality and even boost the lifespan of vehicles and other equipment [97].  

3. Automotive & transportation. 
Digital twins are used to create the virtual replica of cars or subparts of vehicles. 
Benefits arise in terms of higher R&D efficiency; improved process of vehicle 
performance innovation and possibility to streamline the otherwise very complex car 
design process; carry out virtual tests; address safety issues through predictive 
models; etc. There are advantages deriving from the application of digital twin to 
manage the fleet in the transportation field, since it could provide for routes 
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optimization, monitoring of vehicles health, logistics improvements for delivery and 
shipping companies, and so on. 

4. Healthcare and medicine. 
In medicine, the concept of personalized treatments is catching on, and digital twin is 
currently under study and development in the form of digital patient twin: a digital 
twin which collects in real-time current health information of the patient and is 
capable to predict future illnesses or monitor the patient during a treatment process, 
based on a biophysiological model, simulations, and large amounts of data (e.g., 
population studies, specifics about pathologies, etc.). Despite the technology already 
exists, several years are still needed for it to be introduced within real clinical 
applications. There is also the possibility to have support in the design of medical 
devices or to represent hospitals through digital twins, aiming at a better management 
of the facility operations (e.g., optimize patients inflow and outflow, resources 
allocation, structure layout, etc.) [98] [99].  

5. Retail. 
Retailers can adopt digital twin technology to improve the sales and in-store customer 
experience through models for real-time analysis of market data and supply chains; 
collection of data like customer purchase trends, interests, and usual routes towards 
the shop; and store layout optimization. In addition, digital twin can provide for 
inventory management with models optimizing inventory level and predicting 
customers demand, as well as security optimization, creation of customer avatars, and 
so on. 

6. Smart cities. Digital twin technology is crucial to develop smart cities, allowing to 
simulate plans in the urban planning and resource optimization realms, other than 
making it possible to even simulate the risks generated by natural disasters. In 
addition, by being constantly updated with the city data and status (also through IoT), 
it makes it possible to be always updated about the city performance and receive 
important insights deriving from advanced AI and analytical models. As a 
consequence, it might be possible to have a positive impact on the environment by 
having better city management, so to overall reduce carbon emissions and pollution 
[100]. 

 

 
Figure 2.6 - Main digital twin sectors [96] 
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2.8 Main Digital Twin providers 
 
Given the increasing popularity of digital twin technologies, many technology providers have 
started to sell digital twin solutions to other companies which desire a better control over 
their manufacturing system and potentially improve its performance. 
The digital twin offerings by 3 providers, which are considered to be among the most 
prominent ones, are described in the following: Siemens, Microsoft, and IBM. 
 
2.8.1 Siemens 
 
Siemens is a technology company which operates internationally in the fields of automation 
and digitalization. The company industrial business covers different segments, that are Digital 
Industries, smart infrastructure, smart mobility, medical technology, and digital healthcare 
services [101]. 
 
Siemens Digital Industries business unit is leader in industrial innovation, automation, and 
digitalization. It promotes digital transformation providing software and services to 
organizations for them to become Digital Enterprises and so, be more agile, flexible, and 
adaptable in developing their projects faster and more efficiently [102] [103]. 
 
The company argues that the complex challenges organizations face in their markets (e.g., 
more and more urgent need for sustainability) can be more easily and efficiently addressed 
by automating and digitalizing their processes, with a strong focus on the importance of 
efficiently using the generated data for optimized management of limited resources, and 
more informed and safe decision-making. This is exactly what a Digital Enterprise can do, by 
combining real and virtual worlds through collection and deep understanding of data. 
According to the company, a digital twin is ‘a virtual representation of a physical object and 
is one way to integrate real-world objects into the digital world’ [104], and allows to fully 
exploit the potential of data availability: it collects real-time data, understands the current 
state of the real object by analyzing such data, and simulates its future state, allowing for 
optimization and earlier detection of any potential problem, also through the help of machine 
learning algorithms. Industrial Internet of Things clearly plays a role in their proposed 
approach and allows to join different processes in a single constant data flow over the whole 
value chain. Other state-of-the-art technologies, like AI, edge computing, cloud computing, 
industrial 5G, blockchain, cybersecurity, and additive manufacturing are included within their 
technologies for a more intelligent data exploitation [102]. 
 
The company proposes a digital twin approach to cover the whole lifecycle of the real assets 
(i.e., design, production, operation, maintenance), which allows companies to (i) achieve 
better product designs and optimize production systems faster (before the need to invest in 
real physical prototypes), other than (ii) allowing to simulate the operation of real assets (e.g., 
machines or even entire factories), and (iii) help operators to virtually practice their tasks 
[105]. 
Accurate modeling of the product and production process lifecycle is obtained through 
sensors placed on the physical entities, enabling for real-time monitoring of their 
performance and current status. The digital twin constantly evolves and updates itself to keep 
track of any real changes over time, by reflecting the physical entity over its whole lifecycle. 
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The proposed digital twin is composed of data from the physical objects, but its core 
component is typically a simulation model that allows for the analysis of the physical twin 
behavior. An analysis of the ‘what if’ scenarios and the prediction of future performance 
under different conditions through the digital twin is carried out, and makes it possible to 
obtain real product and production process working exactly as they were designed [106]. Such 
simulation model might be combined with machine learning algorithms or virtual and 
augmented reality technologies for an even higher performance [107] [108]. 
 

 
Figure 2.7 - Digital twin by Siemens [109] 

 
According to Siemens, there exist 3 typologies of digital twins [94] [108]: 
 

1. Product digital twin, used to efficiently design new products by virtually simulating 
and validating their properties and performance, according to the specific product 
requirements. This connection between virtual and real product allows to test the 
product behavior under different conditions and scenario and change the virtual 
product features accordingly. 
The advantages from the use of a product digital twin lie in a much faster design 
and in a better quality of the final product, also avoiding the need for many 
physical prototypes for testing. 
 

2. Production digital twin, used to plan the production process by validating its 
efficacy and efficiency before actually starting production. By combining product 
and production digital twins, companies can make useful predictions about the 
future activity of the system, like predicting when preventive maintenance will be 
needed, being able to optimize production in advance. Potential errors and 
failures, indeed, can be predicted in advance and prevented before starting the 
actual operation process, so to save time and even allow for customized mass 
production, since production can be tested and predicted with derisory cost, 
effort, and time. 
 

3. Performance digital twin, used to collect, analyze, and exploit operational data. 
Such digital twin is constantly fed with operational data collected from products 
and manufacturing processes, and analyzes it to provide useful information. This 
digital twin allows for constant monitoring of the real object current status 
parameters and gives support for an informed decision-making aiming at process 
optimization. It is also possible to perform predictive maintenance so to prevent 
downtime and optimize energy consumption and resources efficiency. 
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To develop digital twins, companies need powerful software systems and Siemens proposes 
its Xcelerator platform, that is comprised of a marketplace to find ideas and products, a 
portfolio of hardware and software solutions (PLM, CAD, simulation, etc.), and the description 
of some use cases proving the real benefits brought by digitalization into production 
processes, in terms of improved performance and higher attention to sustainability. This 
system uses the most innovative solutions and technologies (e.g., AI, IoT, digital twin, and 
Metaverse) to allow for an increasingly strong integration between real and virtual worlds. Its 
purpose is to support organizations (industrial, infrastructure, and mobility sectors) in their 
digital transformation process and value creation, by making it faster and easier [110] [111]. 
 
2.8.2 IBM 
 
As one of the largest technology companies and strongest technological innovator in the 
world, IBM provides a digital twin solution with the IBM Maximo® Application suite. It is an 
integrated cloud-based platform providing a set of applications to carry out monitoring, 
management, and predictive maintenance operations, among many others more. The suite 
makes use of Artificial Intelligence, IoT, and advanced analytics to gain benefits like reduction 
of downtime and costs, and performance optimization [112]. 

 

 
Figure 2.8 - Snapshot of the IBM Maximo® Application Suite [112] 

 
2.8.3 Microsoft 
 
Microsoft Azure is a cloud computing platform by Microsoft, which offers access to cloud 
services and applications, among which Microsoft Azure Digital Twins. It is a platform which 
makes use of IoT special intelligence to create and manage digital models of real-world 
physical environments, and to analyze, control, automate, and simulate the behavior of 
connected devices and systems. By offering different APIs and quick pre-built templates and 
sample models, the platform gives a better understanding about the systems it represents 
and makes it possible to make more informed decisions through the digital twin models. The 
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platform is highly scalable, providing for the development of several digital twin models to be 
applied for large-scale IoT projects like smart cities or buildings [113] [114]. 
 

 
Figure 2.9 – 3D visualization of an environment digital twin [115] 

 

2.9 Recent and expected trends about Digital Twin 
 
Technology is advancing fast, and organizations are making great efforts to keep their 
competitive advantage by introducing digitalization into their manufacturing systems. 
Consequently, the demand by companies for the implementation of digital twin solutions is 
undergoing a recent increasingly strong acceleration. 
 
The substantial growth in the digital twin market is due to different drivers, mostly related to 
the evolutions concerning technologies used for the creation of a digital twin (i.e., IoT, AI, 
cloud, etc.) [116] [80]: 
 

• Increasing IoT adoption by companies. For the digital twin to mirror properties, 
behavior, and interactions of the corresponding physical entity, sensing devices are 
needed to collect and exchange real-time data from the real environment to be 
analyzed for monitoring and by prediction models. 

• Advancements in big data analytics, cloud, and artificial intelligence and machine 
learning technologies. These technologies, when implemented within the digital twin 
framework, make the digital representation more powerful and ‘intelligent’, meaning 
that, for instance, it will be able to make predictions about the future of the system 
under analysis. 

• Increasing adoption of 3D printing. This production process has issues in terms of the 
3D printable materials, which may undergo some distortions during the 3D printing 
process. This calls for the need to perform long and expensive trial and error sessions, 
having a negative impact on the cost of printing parts and on the time needed to print 
them. To this end, digital twin helps by performing 3D simulation of the printing 
production process and implementing models to predict what and when potential 
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distortions may arise, so to prevent them by adjusting and optimizing the 3D model of 
the process. 

• Increasing stress on the importance of cost reduction, optimization of scarce 
resources allocation, improvement of operational efficiency, and overall improvement 
of the supply chain management. The possibility to simulate several potential 
scenarios and make data-driven decisions, makes it possible for companies to 
optimize their processes, reduce risks, be more responsive and agile, and 
consequently reduce costs. 

• Growing emphasis on sustainability. Customers demand more and more for 
sustainable services and products, and digital twin technology is able to ensure 
alignment with sustainability matters through energy consumption monitoring and 
optimization, environmentally oriented decision-making process, analysis and 
forecasting of environmental impact of projects, etc. [117]. 

 
According to a Gartner survey (2019) [118], 75% of organizations worldwide implementing 
IoT in 2019, were already using digital twins in their manufacturing processes or were 
planning to within a year: more into the details, 13% of companies implementing IoT was 
already exploiting digital twins, while 62% were working to implement digital twin or planning 
to do so within a year. 
With respect to the past, digital twins are ‘entering mainstream use’, and this steep growth 
in adoption is due to the high business value that digital twins have been proving to bring. 
International experts [80] (from companies in different industries, universities, and research 
institutes) expect the global role of digital twin in 2030 to be a nearly omnipresent one, and 
almost all technical products will be delivered with embedded digital twins. Factories and 
machines will achieve much better performance in terms of cost efficiency, productivity, and 
sustainability, and digital twins will become commodities and standard solutions to perform 
test and validate functionality ahead of time to solve future problems. Product lifecycle 
Management (PLM) will be much easier, since digital twin will allow to transfer information 
from one lifecycle stage to the other (e.g., from the design phase to the production phase). 
Supply Chain Management (SCM) will be more efficient as well, allowing for a quicker reaction 
to any potential issue (e.g., supply bottlenecks or changes in demand). Also, experts predict 
strong development and increasing importance in digital twin solutions combining simulation 
and artificial intelligence technologies [105]. 
 
In terms of sectors in which digital twin is mainly implemented, automotive and 
transportations markets are expected to be the ones increasing digital twin adoption the most 
between 2023 and 2030: indeed, they are adopting 3D printing and 3D simulation more and 
more to design and produce vehicles, and as said above, this goes hand in hand with an 
increasing need for digital twin technology. 
Also, digital twin in the automotive industry allows vehicle designers to keep track of large 
datasets from the vehicle, so that future improvements and cost optimization is possible. 
In addition, future automobiles are going to be more and more connected and autonomous, 
making the adoption of digital technologies crucial to pursue such purpose [80]: digital twins 
of cars are under development, from their design phase up to the operation phase when the 
vehicle is delivered to the customer (e.g., Tesla [119]).   
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Following, aerospace and defense, retail, healthcare, energy and utilities, IT, and telecom, as 
well as other secondary industries, are expected to grow at strong rate due to the increasing 
automation level in such sectors [96]. 
 
The results of some 2023 surveys, revealed that 63% of manufacturing companies globally are 
currently developing a digital twin strategy or have already done so, while 29% have fully 
implemented the digital twin strategy on part of their operational resources or are in the 
process of doing so [89]. 
 
Digital twin requires for technologies like IoT sensors, big data, cloud, AI, and many others: 
the inclusion of devices like IoT sensors and instruments like cloud platforms, though, is 
currently raising some concerns about increased risk of security and data protection. Some 
hacker, indeed, might steal sensitive information about the company, placing the 
organization’s operations at risk [80]. To secure the digital twins, cybersecurity principles and 
best practices should be followed: a proper risk management strategy should be adopted, to 
identify the right assets to be protected, evaluate the impact of potential threats and apply 
mitigation actions; implementation of security controls over multiple layers, so that if a 
control fails, the threat won’t get past the other control layers; since digital twins are based 
on data exchange, network security (e.g., firewalls, unauthorized intrusion detection systems, 
encryption protocols, etc.) is crucial; regular security assessments are to be performed so to 
identify vulnerabilities, if any; and so on [120]. 
 

3. Machine Learning (ML) & Deep Learning 
 

3.1 What is machine learning? 
 
Machine learning is the practice of using algorithms that analyze data, learn from the data, 
and then make a classification or prediction about new data [121]. 
The ability of such algorithms to learn from data is what distinguishes ML algorithms from 
traditional algorithms, which directly instruct computers to perform some tasks by feeding 
them with an explicit and manually written set of instructions. 
In case of machine learning algorithms, the machine is trained through large amounts of data 
and by learning features from that dataset, it is able to perform some tasks without being told 
how to do them exactly. 
 
3.1.1 The machine learning process 

 
To adopt and implement a machine learning solution, a specific pipeline needs to be followed 
to go from the problem to the solution [122] [121]: 
 

1. Identify the (business) problem to be solved (e.g., arrange for predictive maintenance, 
perform energy efficiency optimization, cost-saving, quality monitoring and control, 
etc.). 
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2. Identify which type of data is relevant for the specific problem to be solved, and if no 
dataset is available yet, perform collection of the necessary data to carry out the 
model training process. 
It is important that the data is of quality to obtain a final good quality model, and that 
the dataset size is sufficiently large for the model to be well trained over the features 
of the input data. 
 
Any dataset used to train a ML model is composed of the same entities: 

• Features or independent variables: known variables which will be used to 
predict the dependent variable. 

• Dependent variable or target (also referred to as ‘label’ in case of a 
classification model), which the model will be able to predict. 

 
So, the dataset is composed of the matrix of features (x) and the dependent variable 
vector (y). 
For simplicity of explanation, for now the dataset can be considered as a table 
containing some independent variables (x) and a dependent variable (y), like in the 
example below, where ‘profit’ represents the dependent variable, and the other 
columns are the independent variables (i.e., the features). 

 

Profit R&D Spend Admin Marketing City 

192,261.83 165,349.20 136,897.80 471,784.10 Rome 
191,792.06 162,597.70 151,377.59 443,898.53 Milan 
182,901.99 144,372.41 118,671.85 383,199.62 Turin 
166,187.94 142,107.34 91,391.77 366,168.42 Florence 
191,050.39 153,441.51 101,145.55 407,934.54 Naples 

 

Table 3.1 - Example of dataset with dependent variable and independent variables 

Dependent variable vector 
Matrix of features 
 

The dependent variable is the one to predict, while the independent variable(s) or 
predictors are given and known, and are used to derive the value of the dependent 
variable. 

 
3. Take care of missing data. 

 
The dataset might present some missing data which needs to be handled, since it 
could cause errors in the training process. In principle, imaging the dataset as a table, 
the observation with missing data might be ignored by simply deleting the 
corresponding row, but this can be done only in case of large datasets, for which the 
learning quality of the model won’t be affected. In all the other cases, the missing 
value is usually replaced with the average of all the values in its column. 
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4. Encode categorical data [123]. 
 
In the dataset there might be some literal labels (e.g., dependent variables taking 
values like yes/no, cat/dog, etc.) or categorical independent variables (e.g., cities, 
colors, etc.), which contain label values rather than numeric values: such strings need 
to be converted into numbers through an encoding procedure for the ML model to be 
able to derive correlations between the features and the dependent variable. Indeed, 
since ML models are usually not able to interpret label data and categorical variables 
as they are, all inputs and outputs need to be converted into numerical form, i.e., 
integer values or vectors of integers. 
There are 2 possible approaches to encode categorical data: 
• Integer encoding. Each categorical label or variable is converted into an integer 

value (e.g., ‘New York’ is 1, ‘Rome’ is 2, etc.). In some cases, this approach is 
enough, but it is a risky one since the ML model might interpret the existence of a 
numerical order between the categories, while there actually isn’t any sequential 
relationship between them, ending up with wrong resulting predictions and poor 
accuracy. 

• The typical approach to perform encoding is called One Hot Encoding, which 
converts the categorical labels and variables into vectors containing 0s and 1s and 
avoids the risk of the model misinterpreting ordinal correlations between the 
features or labels where no ordinal relationship exists. 
Each categorical variable or label is turned into a so-called one-hot encoded vector 
of binary variables (said dummy variables), of length equal to the number of 
existing categories: for instance, if the model is supposed to label the input data 
as ‘pizza’, ‘pasta’, or ‘meat’, each of these categories will be turned into vectors 
containing 3 integers like ‘pizza’ corresponding to [1,0,0], ‘pasta’ to [0,1,0] and 
‘meat’ to [0,0,1]. 
Within the one-hot encoded vector, each single index corresponds to one specific 
category, meaning that each element in the vector will correspond to a 0 value, 
except for the element in the index position corresponding to the specific 
category: in the example above, the first element in the vector corresponds to the 
‘pizza’ category and so it corresponds to a 1 value, while the other elements in the 
vector are equal to 0. 
 

5. Split the dataset into training, validation, and test sets. 
 

Typically, the observations in the original dataset (e.g., rows in the table) are split into 
3 subsets: training, validation, and test sets [124]. 
 
The training set is used to train the model over several iterations, in which it 
understands the features within the dataset and the correlations between the 
variables. The validation set, instead, is smaller than and separate from the training 
set and the model has no information about such dataset: it is used to validate the 
model by evaluating its performance on new observations during the training process, 
perform hyperparameters tuning accordingly, and identify overfitting if any. Indeed, 
after the model is built and trained over the training set, it is applied to perform 
predictions over the new observations contained in the validation dataset. Such 
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predicted values are then compared to the actual target corresponding to the 
validation data points, in order to evaluate the model functioning. 
The definition of a validation set allows to identify the best model configuration in 
terms of hyperparameters setting (as it will be clarified in the following sections) and 
to identify and avoid overfitting of the model to the training set, so that the model 
does not get used to perform predictions over the training set by being unable to do 
the same over a set of new observations, that were not used to train it. In case 
accuracy of the model on the training set is promising, while that on the validation set 
are worse, then the model is most probably overfitting. 
In addition to training and validation sets, an additional separate set can be defined 
(the test set), to test the ML model after the training and validation process is 
concluded by making it perform predictions over the outputs of the test set. Usually, 
differently from training and validation sets, the test set is fed to the model as 
unlabeled: in this case, indeed, the objective is to run the model as it will be run on 
real applications and so, by feeding it with unlabeled data and receiving the prediction 
about such labels as an output. This helps in getting an overall idea of the final 
performance of the model, after hyperparameters tuning is concluded and the model 
is trained, and in understanding how different kinds of machine-learning models 
perform when applied to the same problem, so to choose the best one. 

 

 
Figure 3.1 – Training, validation and test sets splitting [124] 

 
The typical proportion is 80-90% of initial data into training set, and the rest equally 
split between test and validation sets; still, this splitting proportion depends on the 
specific application and may differ from the usual one. 
What is important is that all 3 sets are representative of the population distribution, 
meaning that they need to contain various samples representing all the features in the 
population of the specific problem. 

 
6. Perform data augmentation. 

 
According to data augmentation, new data samples are created by transforming the 
existing observations in the training set. 
For example, if the dataset contained images, this operation would imply to create 
new augmented ones by applying geometrical transformations to the images in the 
training set like rotating, flipping, or cutting. This would improve the capability of the 
algorithm to identify the categories of objects in the images even if they are not always 
appearing in the same positions as in the original training set samples, but are, for 
instance, rotated or cropped. 
This is mainly done to prevent overfitting: data augmentation allows to increase the 
size of the training set, by creating more samples to train the model on and avoiding 
it to overlearn and be overtrained on the existing data samples. 
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Data augmentation is not applied on the validation and test datasets, which must 
remain intact (apart from feature scaling) because these samples need to be 
considered as new observations to understand how the model would perform when 
adopted in a real application with real data. 

 
7. Apply feature scaling. 

 
One last important step in data preprocessing is feature scaling. It consists in scaling 
all the features (variables), to make sure that they all take values within the same scale 
and so are comparable. Feature scaling can be performed through normalization 
(obtaining values within [0,1] interval) or standardization (obtaining values within [-
3,+3] range). It is not to be applied to dummy variables (but only to numerical values), 
since they are already included within the [0,1] range and feature scaling might cost 
losing the categorical interpretation of these variables. 

 
• Normalization:         𝑋! = "#"!"#

"$%&#"!"#
 

 
𝑋$%&: minimum value in the column 
𝑋'(": maximum value in the column 

 
• Standardization:      𝑋! = "#)

*
 

 
𝜇: mean value of the column 
𝜎: standard deviation of the column 

 
It is of greatest importance to apply feature scaling after splitting the dataset into 
training, validation, and test sets, and not before, in order to avoid any information 
leakage on the validation and test sets, whose observations needs to be unknown and 
new to the ML model as performance validation is carried out after training. Indeed, 
feature scaling gets max and min, or average and standard deviation of the features 
in the dataset in order to perform the scaling, and if this is done on the complete 
dataset before splitting, it would cause the ML model to get information about 
variables of the validation and test set which are not supposed to be known. The best 
practice is to derive min and max, or average and standard deviation from the training 
set alone, apply feature scaling to the training set, and then blindly apply it to 
validation and test sets as well, but using min and max, or mean and standard 
deviation information derived from the training set only.  
Standardization is the most recommended feature scaling approach, since it works in 
all cases, while normalization works in case the features follow a normal distribution. 

 
8. Modeling. 

 
At this point, the model needs to be built and trained, and the prediction to be made. 
A machine learning model is the computer program which is trained to recognize 
patterns and features within the dataset and be able to pursue a specific objective, 
which might be that of performing a classification or making a prediction.   
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Before starting the training process of the algorithm, the hyperparameters must be 
decided and set [125]: the value of these parameters controls the algorithm learning 
process and the final produced model, by affecting the parameters which the model 
by itself is going to learn during the training process. They are set and cannot be 
modified during the training process and are not part of the final resulting model, 
while the learnt parameters are. The goal is that of choosing the optimal 
hyperparameters configuration which allows the model to learn the optimal 
parameters, so to correctly map independent variables (i.e., features) to the 
dependent variable (i.e., label or target). 
Some examples might be the train-test sets split ratio, or the number of hidden layers, 
the gradient descent learning rate, the number of hidden neurons or the number of 
epochs in a neural network, etc. 
Parameters, instead, are internal components of the model since they are learnt by 
the algorithm during the training process, in which the program tries to find the 
mapping relationship between features and targets. They are usually initialized to 
some random values and updated through an optimization algorithm as the learning 
phase progresses. At the end of the process, they will characterize and be part of the 
machine learning model itself. 
Some examples might be the weights in regression models and weights in neural 
networks. 
So, it is clear how crucial the choice of hyperparameters is, since in the end it is going 
to affect the final parameters of the resulting model. Indeed, an important step in 
modeling is the hyperparameters tuning, which is the process of setting different 
hyperparameters configurations, and evaluating the consequent model performance 
over the validation set in terms of prediction or classification accuracy. There is not a 
rigid approach in determining the right hyperparameters values, rather a more trial-
and-error approach to optimize the model performance resulting from the validation 
set with different hyperparameters settings, until the best one is selected. 
 
There are different possible machine learning models, depending on the specific 
problem to be addressed. It is possible to use the test set so to compare the 
performance of different models and choose the most appropriate for the problem of 
interest, which might be ML regression, ML classification, or deep learning algorithms: 

 
a. Machine Learning Regression, that is a technique through which the algorithm is 

trained to understand and learn about the relationship between independent 
variables (features) and a dependent variable (outcome). A mapping function is 
estimated, and the model will then be used to predict continuous real (numerical) 
outcomes based on the input features [126] [127] [128] [129]. 
 
• Simple linear regression: estimation of the relationship between one single 

independent variable (𝑋+) and a dependent variable (𝑦) through a sloped 
straight line. 

 
𝑦& = 𝑏, + 𝑏+𝑋+ 
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Figure 3.2 – Simple linear regression equation [129] 

 
• Multiple linear regression: estimation of a linear relationship between two or 

more independent variables and a dependent variable. 
 

𝑦& = 𝑏, + 𝑏+𝑋+ + 𝑏-𝑋- +⋯+ 𝑏&𝑋& 
 

 
Figure 3.3 - Multiple linear regression equation [130] 

 
• Polynomial regression: estimation of a non-linear relationship between 

independent variables and dependent variable. 
 

𝑦& = 𝑏, + 𝑏+𝑋+ + 𝑏-𝑋+- +⋯+ 𝑏&𝑋+& 
 

 
Figure 3.4 - Polynomial regression equation [131] 

 
• Support vector for regression (SVR): estimation of a hyperplane that best fits 

the data points in a continuous multidimensional space, that is, a hyperplane 
which contains the maximum number of data points, with a threshold value 
for the maximum distance that can exist between the hyperplane and a data 
point not belonging to the plane. 
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Figure 3.5 - Support vector hyperplane [132] 

 
• Decision tree regression: the training dataset is split down into smaller subsets 

using a binary decision tree which is incrementally developed and contains 
decision nodes and leaf nodes. 
A decision node has two or more branches and splits the datapoints according 
to a condition over the datapoints features. After the decision tree is 
developed, a new data point will go through the decision tree, going to the 
branches of which its features satisfy the conditions, until a leaf node with the 
decision is reached. 
 

 
Figure 3.6 - Regression decision tree example [133] 

 
• Random forest regression: use of ensemble learning method, according to 

which the predictions from multiple machine learning algorithms are 
combined to get a more accurate resulting prediction than the one from a 
single model. In particular, several decision tree algorithms run in parallel 
during training process and use the average of their prediction to derive the 
output.  

 

 
Figure 3.7 - Random forest regression [134] 
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b. Machine Learning Classification, a technique through which the algorithm is 
trained to predict and identify the category (class label) to classify an input 
datapoint [135] [136] [137] [138] [139] [140]. 
 
• Logistic regression: special regression model in which the dependent variable 

to be predicted is categorical (e.g., YES/NO). The model uses a logistic function 
(for which only output values within [0,1] are possible) and predicts the 
probability of occurrence of one specific output category, which is indeed 
included within the [0,1] range. 
 

 
Figure 3.8 - Example of logistic regression function [121] 

 
Considering, for example, a simple case in which there is one single 
independent variable (𝑋+), a new observation to be classified is projected onto 
the logistic regression curve to obtain the probability for the dependent 
variable to belong to a specific class (e.g., YES). A probability can be fixed as 
threshold above which to consider a new observation as belonging to the YES 
category (usually 𝑝 ≥ 50%), so that probabilities can be turned into actual 
predictions (e.g., YES or NO). 

 
• K-nearest neighbors (K-NN): algorithm whose functioning is based on the 

assumption that similar datapoints are close to each other. To decide the class 
of a new datapoint, a sort of voting procedure takes place, where the K closest 
neighbor datapoints to the new one ‘vote’ by saying the class they belong to. 
The new datapoint will be assigned to the category voted by the majority of 
the K neighbors. 

 

 
Figure 3.9 - K-nearest neighbors scheme [141] 
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• Support Vector Machine (SVM): estimation of a line or hyperplane in a 
multidimensional space that distinctly separates the datapoints into different 
classes, that is, the plane with maximum distance (margin) from the closest 
training datapoints of both categories. Based on this distinction, the model 
will then classify a new data point depending on whether it lies on one side of 
the line/hyperplane or the other. 

 

 
Figure 3.10 - Support Vector Machine hyperplane [142] 

 
• Kernel SVM: Kernel functions can be applied to SVM algorithms to manipulate 

the data, particularly, to transform the training set in a way that an otherwise 
2-dimensional non-linear decision hyperplane is transformed to a linear plane 
in space with a higher number of dimensions. 

 
Figure 3.11 - Support Vector Machine with Kernel mechanism [143] 

 
• Naïve Bayes classifier: probabilistic machine learning model based on the 

Bayes statistical theorem. The datapoints are labeled within a certain class 
based on their features, by applying the Bayes formula. 

 

 
Figure 3.12 - Naïve Bayes functioning scheme [144] 
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For instance, considering some independent variables (e.g., ‘sunny’, ‘rainy’, 
etc.) and two possible labels (e.g., ‘YES go out’ or ‘NO go out’), then if the 
probability of ‘YES go out’ given ‘sunny’ event is higher than the probability 
of ‘NO go out’ given ‘sunny’ event, then the output classification for ‘sunny’ 
input value is ‘YES go out’ [144]. 
 
𝑃(𝑌𝐸𝑆	𝑔𝑜	𝑜𝑢𝑡	|	𝑆𝑢𝑛𝑛𝑦) > 𝑃(𝑁𝑂	𝑔𝑜	𝑜𝑢𝑡	|	𝑆𝑢𝑛𝑛𝑦) 

 
• Decision tree classification: it works in the same way as decision tree 

regression models, breaking down the datasets into subsets to derive the 
output class to assign to the input datapoint. 

 

 
Figure 3.13 - Decision tree classification example [145] 

 
• Random forest classification: again, it works as random forest regression 

models, but the final prediction is a class (label). 
 

 
Figure 3.14 - Random forest classification scheme [146] 

 
c. Deep learning: artificial neural networks 
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9. Model evaluation. 
 
Some performance metrics are calculated so to understand the goodness of the model 
and to make sure it actually serves the purpose it’s designed for. Evaluation is derived 
both with respect to the validation set (to carry out hyperparameters tuning) and to 
the test set (to derive the final optimized model’s performance over new unseen 
data). 
Here some of the typical performance metrics are listed: 
 
• R-squared and adjusted R-squared, to evaluate the goodness of fit of a regression 

model [147] . 
 

𝑅- = 1 −
𝑆𝑆./0
𝑆𝑆121

 

 
with: 
 
𝑆𝑆./0 =	∑ (𝑦% − 𝑦&%)-&

%_+  and 𝑆𝑆121 =	∑ (𝑦% − 𝑦(45)-&
%_+  

𝑦% = 𝑎𝑐𝑡𝑢𝑎𝑙	𝑣𝑎𝑙𝑢𝑒	𝑜𝑓	𝑎	𝑠𝑎𝑚𝑝𝑙𝑒 
𝑦&% = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑣𝑎𝑙𝑢𝑒	𝑜𝑓	𝑡ℎ𝑒	𝑠𝑎𝑚𝑝𝑙𝑒 

𝑦(45 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑜𝑓	𝑎𝑐𝑡𝑢𝑎𝑙	𝑦	𝑣𝑎𝑙𝑢𝑒𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑑𝑎𝑡𝑎𝑠𝑒𝑡 
 

𝑆𝑆./0 is the residual sum of squares and indicates the amount of error between 
the regression function and the actual datapoints: the smaller it is, the more the 
regression function is well-fit to the data [148]. 
𝑆𝑆121  is the dispersion of the observed samples around the dataset mean, it 
measures the total variability of a dataset. 
 
𝑅- is a statistical measure that indicates the proportion of variance in the 
dependent variable that can be explained by the independent variables, that is, it 
shows how good the regression model fits the data. Its value is included within 
the 0-1 range, since usually 𝑆𝑆./0 < 𝑆𝑆121  (i.e., the distance of datapoints from 
the regression curve is generally shorter than their distances from the average 
line): indeed, the regression curve is built so to minimize 𝑆𝑆./0. 

 

 
Figure 3.15 - Regression line vs predicted and actual values [121] 
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Figure 3.16 - Average line vs predicted and actual values [121] 

  
The better the model fits the data, the smaller 𝑆𝑆./0 and, consequently, the 
greater 𝑅-: 

 

𝑹𝟐 Goodness of fit (rule of thumb) 
1 Perfect fit (𝑆𝑆./0 = 0) 

≈	0,9 Very good model 
< 0,7 Not great model 
<	0,4 Very bad model 

0 The model does not make sense for 
this data 

Table 3.2 - Goodness of fit based on R2 value 

 
R-squared, though, suffers from a major flaw [149]: no matter the number of 
independent variables which are added to the regression model, its value will 
never decrease. This might cause the addition of an indefinite number of variables 
which increase R-squared while adding no actual value to the regression model 
(i.e., might be variables which have nothing to do with the specific problem). 
As a consequence, Adjusted R-squared metric is typically used rather than R-
squared, since it is better able to accurately view the correlation between one 
variable and another: 

𝐴𝑑𝑗	𝑅- = 1 − (1 − 𝑅-) ×
𝑛 − 1

𝑛 − 𝑘 − 1 

 
where 𝑘 is the number of independent variables in the model and 𝑛 is the sample 
size. With this new formula, when a new independent variable is added, 𝑘 
increases so that 𝐴𝑑𝑗	𝑅- decreases: it is like penalizing the addition of variables 
so that it is worth adding an extra variable only in case 𝑅- increases enough to 
compensate for the introduced penalty. 

 
• Accuracy: ratio of number of correct predictions over the total number of input 

data samples predicted. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 	
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑟𝑟𝑒𝑐𝑡	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠	𝑚𝑎𝑑𝑒 
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• Confusion matrix: it shows the number of correct predictions and the number of 
incorrect predictions. 

 
Figure 3.17 - 2x2 confusion matrix [150] 

 
For simplicity, the confusion matrix shown as an example is related to a binary 
classification problem, where two possible classes can be assigned to the 
observations. 
TP = true positives. Correct predictions of observations belonging to class 1 (i.e., 
observations actually belonging to class 1 were correctly predicted as belonging 
to 1). 
FP = false positives. Incorrect predictions of observations belonging to class 0 (i.e., 
observations actually belonging to class 0 were incorrectly predicted as belonging 
to 1). This is also defined as type-1 error, according to which the model predicted 
an effect that in reality is not there. 
FN = false negatives. Incorrect predictions of observations belonging to class 1 
(i.e., observations actually belonging to class 1 were incorrectly predicted as 
belonging to class 0). This is also defined as type-2 error, according to which the 
model predicted no effect while it was actually there. 
TN = true negatives. Correct predictions of observations belonging to class 0 (i.e., 
observations actually belonging to class 0 were correctly predicted as belonging 
to class 0). 
 
From this, an accuracy rate and error rate can be defined as follows: 

 

𝐴𝑅 = 	
𝐶𝑜𝑟𝑟𝑒𝑐𝑡	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
𝑇𝑜𝑡𝑎𝑙	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 =

𝑇𝑁 + 𝑇𝑃
𝑇𝑂𝑇𝐴𝐿  

 

𝐸𝑅 =
𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
𝑇𝑜𝑡𝑎𝑙	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 =

𝐹𝑃 + 𝐹𝑁
𝑇𝑂𝑇𝐴𝐿  

 
10. Model deployment and monitoring. 

 
Once the model is ready, it can be finally introduced for real applications, for instance 
in production processes. At this stage, it is important to monitor the model 
performance as it is employed so that, if needed, it can be retrained and updated 
accordingly, re-evaluated, and deployed again. 
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Figure 3.18 - Model deployment loop [122] 

 
3.1.2 Overfitting issue 
 
Overfitting occurs when the ML model becomes high performing in making predictions on the 
training set, but not so successful when it comes to the validation set, which contains data 
that were not used to train the model itself. 
It is possible to understand whether a model is overfitting the training dataset by comparing 
the accuracy of predictions on the training set and the validation set: in case the latter’s metric 
is much worse than the former’s one (i.e., the model is much better fitting to the training set 
than to the validation set), then the ML model is most probably overfitting. 
In addition, a model that is overfitting is not good at making predictions on the test set either, 
with respect to how good it is in making predictions on the training set, and this is another 
wake-up call for identifying the overfitting issue. 
 
The reason why overfitting occurs, is that the model has learnt too well the features of the 
data included within the training set, but it is not able to generalize what it learnt so that it is 
not able to work on datasets which are different from the training set (e.g., validation and 
test sets) [122] [151] [152]. 
 
To try to overcome the overfitting issue, some measure can be taken [153]: 
 

a. When possible, train the model on a large training set. 
Having more data available, the model will be able to learn more information from the 
training set. Also, a higher diversity of features is included in a larger training set, so 
that the model becomes more capable of recognizing features and making predictions 
on datasets it was not trained on. Indeed, when the training dataset is too small, it 
does not contain enough data samples to learn about all the possible kinds of input 
data values. 

 
b. Introduce hold-out, by splitting the whole dataset available into training, validation, 

and test sets, so that not all the data available is used for training. This will make the 
model perform well on the validation and test set as well, other than on the training 
set, having good generalization capabilities since validation and test sets contain new 
observations that the model has never seen and didn’t use for the training. 
The typical split is 80% for training and 20% for validation and testing. 
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c. Apply data augmentation, which consists in generating new augmented data by 
creating modified copies of the starting training set data, so to artificially increase the 
amount of data to train the model on in case no additional data samples are otherwise 
available. 
 

d. Decrease the model complexity by changing some parameters (e.g., removing layers 
or decreasing the number of neurons in the layers of a neural network) in a way that 
the model is more capable to generalize what it learnt to new input data. An over-
complex model might more likely overfit, since the model will start learning about the 
noise within the training data, and the right complexity balance should be found 
between underfitting and overfitting risks. 

 
e. Apply dropout [154]. Dropout is applied to neural networks and randomly sets a 

fraction of neurons to a zero value at each training step, so that a portion of the nodes 
does not take part to that step of the training process. Some nodes, then, are ignored 
by the network and won’t take part in the prediction process on the training. In this 
way, learning interdependency among neurons is reduced and adaptation of the 
model to the training dataset can be avoided so that the network gets better able to 
generalize over new datasets. Neurons are dropped out only during the training 
process, while are activated back as predictions are made over the validation and test 
sets. 

 

 
Figure 3.19 - Drop-out method [155] 

 
f. Early stopping. It is possible to plot a graph representing the loss of the model over 

the validation set and see that after a certain number of training iterations (i.e., 
epochs), this loss starts increasing rather than decreasing. At this point, the training 
can be early stopped, and the current model saved. 
 

 
Figure 3.20 - Validation loss curve [156] 
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g. Apply K-fold cross-validation method. By firstly setting apart the test set, the 
remaining dataset can be split into K groups (folds). The training process is structured 
into iterations: at each iteration, one of the groups acts as the validation set, while all 
the others together as the training set. This process repeats itself until each group has 
been used once as validation set. Differently from simple hold-out methodology, this 
is computationally more expensive, but allows all the data available (apart from the 
test set) to be used for training and once for validating. 
Thanks to cross-validation, it is possible to select the final model configuration: 
hyperparameters in the network can be tuned by using datapoints in the original 
training set (by extracting a different validation set at each iteration), so to keep the 
test set as truly unseen from the model [157]. 
Such method allows to address the overfitting issue, since it makes it possible to assess 
the model’s performance over different subsets of data and so, to obtain a more 
realistic evaluation of the model’s ability to generalize to new datasets. Indeed, with 
simple hold-out, much depends on the kind of datapoints included within the single 
validation set that is selected for the evaluation: if this is particularly ‘difficult’ to 
classify or predict, the model might achieve bad validation accuracy; however, in such 
case it would not be due to overfitting to the training set, but simply to the difficulty 
of the specifically selected validation set. 

 

 
Figure 3.21 - K-fold cross-validation scheme [158] 

 
3.1.3 Underfitting issue 
 
Underfitting occurs when the ML model is not capable of making predictions on the training 
set it was trained on and, consequently, on new datasets (e.g., validation and test sets) that 
it has never observed. The model is not complex enough to be capable of accurately capturing 
and determining a meaningful relationship and mapping between input and output values 
(i.e., features and target variables).  
When the model is underfitting, the accuracy metrics resulting from the training data are 
unsatisfactory, as well as from the validation and testing sets due to high error rates on all 
the datasets [159] [121]. 
 
Some actions can be taken to face the underfitting issue: 
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a. If possible, increase the number of features included within the training set so that 
the model can learn additional information from the dataset and be able to make 
better predictions on the training set, by improving its accuracy. 

b. Increase the model complexity by changing some parameters (e.g., adding layers or 
increasing the number of neurons in the layers of a neural network). Indeed, if the 
model were to be too simple and the dataset too complex, then it might be that the 
ML model is not sophisticated enough to perform predictions on such dataset. 
 

c. Increase the training time, making it possible for the model to learn more features 
from the training dataset and be able to reach higher accuracies on validation and test 
sets as well. 

 
d. Reduce dropout percentage. Since dropout is applied only during the training process 

on the training set and not when the model is making predictions on the validation 
set, if the accuracy of predictions on the validation set is higher than the one on the 
training set, it would seem reasonable to reduce the percentage of nodes to dropout. 

 
So, while an overfit model gives accurate results for the training set but not for the validation 
and test sets, underfit models give inaccurate results for all datasets (i.e., training, validation, 
and test sets). The right balance must be achieved to obtain a well-fit model. 
 

 
Figure 3.22 - Underfit, well-fit, and overfit models accuracies over the training set compared [160] 

 

3.2 What is deep learning? 
 
Deep learning is a branch of machine learning which uses particular algorithms, called 
Artificial Neural Networks (ANN), whose functioning is inspired by the structure of the neural 
networks in human brains. 
Indeed, the purpose of deep learning is trying to mimic how the human brain behaves through 
multi-layers neural networks, in a process of learning and acquiring skills from a large amount 
of data, and then applying such skills to perform some actions like recognition and 
classification of elements within the dataset. 
In particular, Artificial Neural Networks (ANN) are used for regression and classification 
models, and Convolutional Neural Networks (CNN) to carry out computer vision, with the 
overall objective of making predictions with high accuracy. 
 
The learning process will be either supervised or unsupervised: the learning process is 
supervised if the model learns from an already labeled dataset, while unsupervised learning 
occurs if the model is fed with unlabeled data. A more detailed distinction between the two 
learning approaches will be given in the following paragraphs. 
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Deep learning is boosting automation by providing technologies able to perform tasks without 
the need for human intervention, so that operations get completed faster [121]. 
 
3.2.1 A useful distinction: artificial intelligence vs machine learning vs deep learning vs neural 

networks 
 
Before getting into the details of artificial and convolutional neural networks, it is important 
to clear out and define the boundaries between artificial intelligence, machine learning, deep 
learning, and neural networks, which are often confused and named interchangeably [161] 
[162] [163]. 
 

 
Figure 3.23 - AI vs ML vs deep learning [162] 

 
Artificial intelligence (AI) is related to intelligence which belongs to a computer program 
running on a machine, and not to the human brain. A machine is considered to be artificially 
intelligent if it has the capability to reproduce human intelligence, by perceiving its 
environment and acting in it accordingly so to achieve a specific objective in problem-solving 
and learning procedures. Through artificial intelligence, machines are able to make 
predictions and to execute tasks and decision-making processes that are usually performed 
by humans, by even optimizing their execution and completion. 
 
Machine learning is a subset of AI, and deep learning is in turn a subset of both AI and machine 
learning. They both implement AI through learning algorithms. 
 
Machine learning uses algorithms to analyze data and learn from it: based on what the 
algorithm has learnt from the dataset, it will be able to infer something about new data or to 
derive new data (e.g., classify data or make predictions), and help in making informed 
decisions which minimize usual decisional mistakes. 
What differentiates a machine learning algorithm with respect to a traditional one, is that 
they learn how to carry out tasks directly from data through a training process while in the 
latter case, code is developed containing a set of explicit instructions for the machine to 
execute it. 
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Deep learning, as said, is a subfield of machine learning which works through multi-layer 
algorithms, that is, artificial neural networks, which are able to learn and make intelligent 
decisions autonomously. 
Indeed, plain machine learning algorithms still need human intervention to identify patterns, 
learn and perform actions, receive feedback on their correct and incorrect classifications or 
predictions and optimize the accuracy of their results. On the other hand, deep learning 
algorithms are able to autonomously understand, through the neural network, whether their 
own classification or prediction is more or less accurate. 
Their functioning, indeed, is modeled on how human intelligence works and allows to reduce 
manual human intervention as much as possible. As a consequence, these systems are also 
able to work on unstructured data: this means that not necessarily training data into the 
network need to be previously categorized and labeled according to some distinctive features 
(i.e., supervised learning), since the system itself is able to automate the feature extraction 
procedure, by understanding the distinctive characteristics of the data and classifying it into 
different categories without the need for manually defined labels (i.e., unsupervised 
learning). 
However, to be able to perform these tasks and obtain accurate and reliable results, a deep 
learning algorithm, working according to an unsupervised approach, needs a much larger 
input dataset than a general supervised machine learning algorithm, which can instead 
receive less data points while counting on an explicitly given data structure. 
 
Finally, the main technical difference between simple neural networks and deep learning 
algorithms is in the ‘depth’ of node layers: to be considered as a deep learning algorithm, a 
neural network needs to have more than one hidden layer. 
 

 
Figure 3.24 - Example of deep artificial neural network [161] 
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3.2.2 Supervised vs unsupervised learning 
 
As anticipated, there are two different approaches in machine learning: the learning process 
of an algorithm can be supervised or unsupervised [122] [165]. 
 

 
Figure 3.25 - Supervised and unsupervised machine learning [166] 

 
In case of supervised learning, the model is trained on a previously labeled training data and 
validated on a labeled validation set, so to help and ‘supervise’ the prediction or classification 
process. The model, indeed, is fed with pairs containing the data sample and the 
corresponding label defining its output value: (sample, label). In this way, the model is able 
to learn from the labeled training dataset how to perform a mapping from inputs to outputs 
(from data sample, to output label), thanks to the labels it is provided with. 
Supervised learning can take place into two methodologies depending on the problem to be 
solved [164]: 
 

• Regression models (linear or non-linear) are used to predict continuous numerical 
variables, by understanding the relationship between one dependent variable and one 
or more independent variables given as datapoints. Regression algorithms can be used 
to perform tasks like predictive analytics (e.g., estimate life expectancy, market 
forecasting, weather forecasting, etc.) [167]. 

• Classification models are used to predict a category: based on a training procedure, 
the algorithm is able to identify the category of new observations (e.g., image 
recognition) by predicting a categorical dependent variable (e.g., yes/no in case of a 
binary outcome) based on a certain number of independent variables. Classification 
algorithms can be used for tasks like image classification. 

 

 
Figure 3.26 - Classification vs regression models [164] 
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The algorithm receives a training dataset as input and learns how to make predictions or 
classify new observations through an iterative procedure, adjusting itself until the right 
outcome is reached. 
 
In case of unsupervised learning the provided dataset is unlabeled and unstructured, meaning 
that the algorithm simply receives unlabeled pieces of data (samples) with no corresponding 
labels and with no explicit instructions about what to do with the data. Then, the algorithm 
autonomously analyzes and clusters the data in a self-learning procedure, being able to 
identify hidden patterns, features, and structures in the dataset and map inputs into specific 
outputs, without the need for any human intervention.  
Consequently, accuracy metrics cannot be used to evaluate an unsupervised learning model. 
The main areas in which unsupervised learning technique is applied are listed in the following 
[164]: 

a. Clustering algorithms. 
The model learns the structure of the data even if it is not given any label, finds hidden 
patterns based on similarities or differences, and clusters the data samples into sub-
groups creating clusters of data items. Data objects showing most similarities are 
grouped within the same cluster, while objects lacking that commonality are 
categorized within another group. 

b. Association algorithms. 
The model finds the relationship of one data item to another one, based on the 
probability of co-occurrence of different items into a collection (i.e., it determines 
what set of data items occur together in the dataset). These dependency mappings 
can be used to perform marketing tasks related, for instance, to customer habits and 
behavior analysis. 

c. Dimensionality reduction (autoencoders algorithms). 
An autoencoder is an artificial neural network which learns how to compress and 
encode data and to reconstruct it back from the reduced and encoded version: it takes 
in an input dataset and as an output it reconstructs that input with a representation 
that is as close as possible to the original one. For the model to have high accuracy, 
indeed, the reconstruction of the initial input (i.e., the output), needs to be as similar 
as possible to the initial data sample itself. An autoencoder, then, reduces the size of 
a dataset, learning how to identify and ignore the noise included within the dataset 
itself. 
One possible application of autoencoders is the denoising process applied on images: 
the algorithm is able to extract the meaningful features from highly-noised images and 
reconstruct them excluding the noise elements [168]. 

 
In some applications, a semi-supervised learning approach can be used, as a middle way 
between supervised and unsupervised learning techniques. Indeed, in this case the training 
dataset is composed of both labeled and unlabeled data samples. 
Within the semi-supervised learning realm, pseudo-labeling technique is typically 
implemented. Supposing to have a dataset containing a portion of labeled samples, and 
another subgroup of unlabeled data: according to pseudo-labeling, the labeled portion of the 
dataset is firstly used as training dataset to train the model according to a plain supervised 
learning approach; after this first training process, the model is used to make predictions 
about labels of the unlabeled portion of the dataset and these predictions are used to 
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‘pseudo’-label the unlabeled data samples; after that, the model is re-trained on the whole 
dataset containing both the labeled and pseudo-labeled datapoints. Thanks to this technique 
it is possible to train the model on a much larger dataset to get higher accuracy and to avoid 
the expensive and time-consuming process of manually labeling the entire dataset. 
 
In general, supervised learning algorithms are more accurate than unsupervised ones, but 
they require higher degree of human intervention in structuring the data inputs. Still, also 
unsupervised learning models need for a slight human intervention for validation, just to be 
sure that the model works properly. 
 
Here, a simple example is reported to understand the difference between supervised and 
unsupervised learning. Supposing to have a set of images containing pictures of 2 categories 
(A and B) and to feed the model with such dataset. In case the model was supervised, each 
image would have been previously labeled as A or B, and the model will be trained to learn 
about the differences between the images belonging to the two different categories. In case 
the model was unsupervised, images would not be manually labeled, and the algorithm would 
autonomously learn the features from images and classify them into A and B categories 
according to their differences. 
 

3.3 Artificial Neural Networks (ANN) 
 
Artificial Neural Networks are a subfield of machine learning and are the models used in deep 
learning: they are learning algorithms that receive some data as input and processes those 
data inputs over a series of neural layers, so to deliver an output. 
The architecture of an ANN is inspired by and tries to emulate a biological brain neural 
network, and indeed, the basic building block of an ANN is the ‘neuron’: the functioning of 
human brain neurons is replicated in the network, where a set of different processing units 
(called ‘artificial neurons’, simply ‘neurons’, or ‘nodes’) are interconnected through weighted 
links and organized into layers. These neurons interact one with the other by exchanging 
signals over the links connecting them (synapses) and process such signals, with the objective 
of deriving a final output in the last layer of nodes. 
Thanks to this structure, the ANN receives input data and is able to map it into some pre-
defined output values through the data processing task carried out by each node: indeed, the 
single node generally receives data as input from the previous layer via the weighted links, 
performs some operations on the data, and sends such processed output as input to the next 
layer through the weighted connections. 
 

 
Figure 3.27 - Scheme of a neuron [121] 
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3.3.1 Structure 
 
As said, neurons are organized into layers and each layer performs some specific processing 
operations and transformations on the input data it receives. The basic structure of ANN is 
composed of 3 kinds of neurons layers: input layer, hidden layer(s), and output layer. 
After the input data is given to the initial layer (input layer), the signal is transmitted and 
processed through the network’s internal layer(s) (hidden layer(s)), until it reaches the final 
layer (output layer), as explained in detail in the following: 
 
 

 
Figure 3.28 - Example of a simple ANN with 1 hidden layer [169] 

 
1. Input layer. 

First layer of the network: a set of neurons which receives the input data, that are the 
known values (independent variables) injected into the model under construction, 
from which the network will predict some output value. At this stage, no calculations 
are performed yet. 
The number of neurons in the input layer corresponds to the number of features (i.e., 
independent variables for the specific problem) related to a single observation in the 
input dataset fed to the network. 
 

2. Hidden layer(s). 
Layer(s) included between input and output layers: all computations on the input 
features are performed at this level, and the result is then passed on to the output 
layer. 
In deep learning algorithms, there are multiple hidden layers of neurons, which build 
upon the previous layer and optimize the prediction or classification, reaching higher 
accuracy of the result with respect to single layer-networks. 
So, the neural network is considered ‘deep’ in case there is more than one hidden 
layer, hence the name ‘deep’ learning. 
The number of hidden layers and nodes in each hidden layer can be arbitrarily chosen, 
based on prior experience with well-performing networks applied to similar datasets 
and operations, or by setting these values in a trial-and-error approach till the best 
performing solution is found (in terms of higher model accuracy). This trial-and-error 
approach is part of the hyperparameters tuning phase of the model construction, in 
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which the number of hidden layers and hidden neurons represent, indeed, two of the 
hyperparameters of the network to be set. 
 

3. Output layer. 
Last layer of the network, which conveys the information learnt by the network in the 
hidden layer(s). The output values are related to the prediction or classification on the 
input data and can be continuous, binary, or categorical variables. 
In case the network is used to perform a non-binary classification, the output layer 
contains as many neurons as the number of possible classification labels, that is, one 
for each possible class that the non-binary dependent variable can assume. In case of 
binary dependent variable, instead, one output neuron is enough, since it can assume 
one value or the other depending on the predicted class for that input. 

 
So, when data enters the network as input, this input will undergo processing by each single 
node within the network: as input data is passed to a layer, the nodes in that layer process 
such data and then pass the obtained output to the following layer as input. 
 
The operation taking place within a specific node depends on the kind of layer it belongs to. 
 

 
Figure 3.29 - Example of deep ANN with 3 hidden layers [170] 

 
Nodes are connected through weighted links (synapses) and the signal about data processed 
by nodes in a certain layer is transferred to nodes in the next layer through these connections, 
until the output layer is reached. The weight on the link connecting two nodes can be seen as 
the strength and importance of such connection. 
As the data moves from the input layer to the first hidden layer, or from a hidden layer to 
another one, all values entering a neuron in the next layer are added up into a weighted sum 
of the input values, where weights are the synapses’ weights. Then, a transformation function 
assigned to the specific neuron or to the whole layer (called activation function) is applied to 
the weighted sum and the result of this transformation is passed on to the next neuron. 



 57 

This procedure is repeated throughout the whole network many times, depending on the 
network dimension (number of neurons, layers, and synapses), until the final output layer is 
reached. 
 
Besides the distinction between input, hidden, and output layers, there are different 
typologies of layers which can be outlined, depending on their characteristics and on the kind 
of transformation they apply on the inputs. In the following, 3 examples are reported [171] 
[172]: 
 

a. Dense layer or fully connected layer. Each node belonging to such layer is connected 
to every neuron in the previous layer and every neuron in the next layer, meaning that 
each neuron in the layer receives, as inputs, the outputs from each of the neurons in 
the preceding layer, and sends its own output as input to each of the neurons in the 
following layer. If the network is composed of fully connected layers only is called fully 
connected network. 
Typically, hidden layers in an ANN are fully connected. 

b. Convolutional layer. It is the main element composing a Convolutional Neural 
Network, which processes datasets of images. It contains a number of filters to be 
applied on images during the convolution operation. 

c. Pooling layer. It performs the Pooling operation typical of a Convolutional Neural 
Network. 

 
3.3.2 ANN deployment steps: training, validation, and testing 
 
For the ANN to be deployed, 3 main steps need to be followed. They are listed in the following 
and described in the next paragraphs: 

1. Training process to iteratively optimize the predictions by converging towards the 
optimal weights on the synapses linking the neurons. 

2. Validation and hyperparameters tuning, for choosing the best model configuration. 
3. Testing over new, unseen, and unlabeled data to finally evaluate the performance of 

the algorithm to real applications. 
 
Synapses (links between neurons) are assigned weights, that are at the basis of the ANN 
learning process, which consists in solving an optimization problem related to the 
optimization of the weights on the network’s connections. The model, indeed, learns the 
optimal values to assign to the weights based on how changes in their values affect the error 
in the model predictions. 
This occurs by passing the training dataset to the network several times iteratively, so that it 
can learn from it, and the main training steps are listed in the following: 
 

1. The synapses weights are randomly initialized to values close to zero (but not zero). 
Eventually, some weights on synapses can be assigned a zero value, in case the value 
entering as input in a node, coming from a previous unit, is not relevant for the specific 
prediction. 
 

2. The input layers are fed with the features (one per input node) of one single 
observation in the training dataset (e.g., one single image or one single row in a table). 
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3. Forward-propagation process. 
Input values entering one node (in the first hidden layer) are added up into a weighted 
sum (where weights are those of the synapses entering the node) and this partial 
result is called pre-activation output of the node. 
 

𝑃𝑟𝑒 − 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛	𝑜𝑢𝑡𝑝𝑢𝑡 = 	[𝑤%𝑥%

$

%7+

 

𝑚: number of synapses entering the node 
𝑥%: an input value entering the node 
𝑤%: the weight on the link through which 𝑥%  is entering the node 
 

 
Figure 3.30 - Computation of the pre-activation output by a hidden neuron [121] 

 
This weighted sum is processed by the node by applying the so-called activation 
function which gives a value corresponding to the final activation output of the node. 
 

𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛	𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓 ^[𝑤%𝑥%

$

%7+

_ 

 

 
Figure 3.31 - Application of the activation function by a hidden neuron [121] 

 
Based on this final result, the neuron understands whether the current signal is worth 
being passed on to the next neuron or not for the specific input received. In other 
words, the activation output defines whether the neuron itself is to be activated and 
the output sent to the next neurons down the line, or not activated and no data passed 
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along (activation output = 0). Indeed, not all nodes are important to identify the 
prediction of a specific input observation. 
This process takes place within all hidden neurons. 
 
So, the information is entered into the input layer and then it is propagated forward 
through the network until the output layer is reached and the prediction output is 
generated for the given input. Output layers, as well, apply their own application 
function to the input they receive and, since each output neuron corresponds to a 
specific class that the dependent variable can assume, the output node with the 
highest activation value is the one giving the class to which the input is predicted to 
belong. 
 

4. The predicted results (i.e., what the input is predicted to be) are compared with the 
‘ground truth’, that is, the actual target values of the dependent variable (i.e., what 
the input class actually is) found in the labeled dataset, and the generated error is 
computed through a cost (or loss) function, which indicates the error in the prediction 
and, as such, how well the model performs predictions on the training data. The goal 
of the ANN training phase is that of minimizing the value of this loss function as much 
as possible so that the value of predicted variables is as close as possible to the actual 
values. 

 

 
Figure 3.32 - Comparison with the 'ground truth' and computation of the cost function [173] 

 
5. Backward-propagation process. 

The error information is backpropagated through the network, so that the network 
can be optimized by adjusting the weights in a way to minimize the cost function. 
Weights are adjusted based on advanced optimization algorithms, among which the 
most widely used are the stochastic gradient descent method (SDG) or the batched 
gradient descent method (BDG). 
For a specific individual data sample, by looking at the resulting output values from 
the output nodes, the objective of SDG and backward propagation is that of increasing 
the activated output value generated by the correct output node (to which class the 
specific input data actually corresponds to) and decrease that generated by all the 
other output nodes, so to overall decrease the loss function. Intuitively, this can be 
obtained by going backward through the network layers, since the output of each 
layer in the network depends on the weights and output values of the previous layers: 
the output values, indeed, result from weighted sums computed in the previous layers 
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of neurons, and in order to indirectly modify the output nodes values in the desired 
direction, the weights on synapses should be updated (influencing all following layers 
till the output one). 
The final result consists in obtaining the optimal values for these weights which most 
accurately map the inputs to the correct output prediction or class. 
 

 
Figure 3.33 - Back-propagation and SGD [174] 

 
6. So far, only one datapoint (or observation) has been passed to the network as an 

input. Now, all the steps are repeated, and weights are iteratively updated, passing to 
the network all the other observations in the dataset. 
An epoch is defined as one single passage of the whole training set through the ANN, 
and typically, the model is trained through multiple epochs for the neural network to 
keep on adjusting itself and allow for the accuracy of predictions to improve over the 
epochs. 
Weights can be updated after the passage of each single observation through the 
network, or after the passage of the whole training set (i.e., an epoch), depending on 
the method used (stochastic gradient descent or batched gradient descent 
respectively). 
In this way the cost function is minimized: weights are optimized as the model keeps 
on learning from the data, and iteration by iteration the model gets more accurate. 

 
ACTIVATION FUNCTION 
 
The activation function of a neuron plays a crucial role in the forward propagation process, 
that is the one of defining the output of the neuron to be passed over to the next node, based 
on the input received. The weighted sum of each input into the neuron (defined as pre-
activation output of the neuron) is passed to an activation function, which applies a non-linear 
transformation to the data and the resulting activated output will be passed as input to the 
next layer. 
In other words, the activation function allows to establish whether a neuron’s output is 
relevant for the network to perform the specific prediction or not and so, whether the node 
itself should be activated or not (in the same way as specific groups of biological neurons are 
activated following a certain stimulus). If this is the case, the node is ignited, and the activation 
function defines the output of that node starting from the set of input values (outputs of the 
previous layer). For example, if the input sample is an ‘apple’, only some nodes will be ignited 
in the network, that are those nodes needed for identifying the input as an ’apple’; the same 
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in the case the input is an ‘orange’: only some nodes will be activated to predict that the 
corresponding output is ‘orange’. 
 
There exist different typologies of activation functions, and here the 5 mainly used ones are 
described: 
 

1. Threshold (or binary step) function. 
The output can be 1 or 0, and so the neuron is activated or not based on a threshold 
value for the input fed to the activation function (i.e., the pre-activated output of the 
node). If the input value is higher than the threshold level, the neuron is activated and 
the output of the function is passed on to the neuron(s) in the following layer, 
otherwise the neuron is disabled (the output is not transmitted to the next layer, i.e., 
the output is equal to zero). 
 

𝑓(𝑥) = `0			𝑓𝑜𝑟	𝑥 < 0
1			𝑓𝑜𝑟	𝑥 ≥ 0 

 

 
Figure 3.34 - Threshold activation function [175] 

 
2. Sigmoid (or logistic) function. 

 
The input values are transformed into output values included within the 0-1 range. 
Such function corresponds to an s-shaped curve, asymptotically approaching 0 the 
lower the input value, and 1 the larger the input value. So, the more negative the pre-
activation value, the more the sigmoid function will transform it into a number close 
to zero (lower limit); while the more positive the input value, the more the sigmoid 
function will transform it into a number close to one (upper limit). 
 
The closer to 1 the output value is, the more the specific node is activated, while the 
closer to 0 the output value is, the less the specific node is activated: so, some neurons 
are more or less ‘fired’ than others. 
 
Sigmoid activation function provides the probability of activation for the considered 
neuron. In the classification models realm, this means that it can provide the 
probability of an input data to belong to one class or to another. For this reason, this 
activation function is typically used in the output layer for binary classification, and it 
returns the predicted probability of the variable to belong to one of the two classes, 
that is, the probability of the single output neuron to be activated or not. 
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𝑓(𝑥) =
1

1 + 𝑒#8 

 
Figure 3.35 - Sigmoid activation function [175] 

 
3. Hyperbolic tangent (tanh) function. 

 
Similar to the sigmoid activation function, but in this case output values can be below 
zero as well, ranging from -1 to 1. 

 

𝑓(𝑥) =
(𝑒8 − 𝑒#8)
(𝑒8 + 𝑒#8) 

 

 
Figure 3.36 - Hyperbolic tangent activation function [175] 

 
4. SoftMax (or Normalized exponential) function. 

 
This function is a generalization of the sigmoid function and is mainly used in the 
output layer of the network in multi-class classification problems, since it returns the 
probability of the data sample to belong to each possible category 𝑖. 

 

𝑓%(𝑥) =
𝑒8"

∑ 𝑒8'9
:7+

	𝑓𝑜𝑟	𝑖 = 1… .𝐾 

 

 
Figure 3.37 - Softmax activation function [176] 
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Sigmoid function is preferred to Softmax function in case of binary classification 
problems where the output layer is composed of one individual neuron. Indeed, both 
functions take as input the raw results by the neural network (logits) and give it a 
practical probability meaning by normalizing them (i.e., by mapping them into the 
probability of that datapoint to belong to a certain class). However, Sigmoid outputs 
a single probability of the data sample to belong to Class A (so to implicitly derive the 
complementary probability to belong to Class B); while SoftMax receives as inputs a 
vector containing the raw results by the network and outputs a vector containing the 
probabilities of the data sample to belong to each possible class. It basically normalizes 
the otherwise raw outputs by the network into a probability distribution, in a way that 
they all are positive, lower than 1, and sum up to 1 (so to be interpreted as 
probabilities of belonging to the different classes) [176] [177]. 
 

5. Rectifier function or ReLu (rectified linear units) function 
 
It is the most popularly used activation function in deep learning algorithms. 
This function transforms the input to the maximum value between zero and the input 
value itself: so, it maps any negative or zero input value into a zero output, while any 
positive input value will be mapped to the value itself. 
The more positive the input value, and so the output value, the more the specific 
neuron is activated. 

 
𝑓(𝑥) = max	(0, 𝑥) 

 

 
Figure 3.38 - Rectifier activation function [175] 

 
Typically, in an artificial neural network the ReLu activation function is used on the hidden 
layers’ nodes, while the sigmoid or SoftMax activation functions are applied on signals 
incoming to the output layer neurons in order to be able to predict a probability as final 
output of the network. 
 
What is crucial is for the activation function to be non-linear. Indeed, a composition of linear 
functions is linear itself: since the pre-activation output of a node is obtained through a 
weighted sum, that is a linear transformation of the data, if also the activation functions were 
to be linear then the overall transformation on the input data would be linear. In such case, 
the mapping learned by the network from input to output would be linear as well, even if the 
network was very deep (i.e., composed of a large number of hidden layers). However, 
networks are usually needed to learn complex non-linear functions and perform non-linear 
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mappings, that is, to model a target variable which varies non-linearly with its independent 
variables, and this is made possible by the use of non-linear activation functions. 
 
STOCHASTIC GRADIENT DESCENT (SDG) METHOD AND BACKPROPAGATION 
 
In order to find the optimal weights for the synapses, the neural network follows an 
optimization algorithm: the batched gradient descent (BGD) method or the stochastic 
gradient descent (SGD) method [121] [178] [179]. The overall aim is that of finding the model 
parameters (weights) corresponding to the best fit between predicted and actual output 
values. In other words, the objective is to minimize the cost (or loss) function computed at 
the end of the forward propagation process, by iteratively updating the synapses weights 
within the network in its training process, so to make the model as accurate as possible. The 
cost or loss function is defined as the error between the prediction carried out by the network 
on the training dataset and the ground truth about that prediction (i.e., the actual value), and 
it can be minimized by changing the model weights. This function can assume different forms: 
for instance, SSR or MSE (i.e., sum of squared residuals or mean squared error) can be used 
in case of a regression model, cross-entropy loss function can be used for a classification 
problem where output variables are binary, and so on. 
 
The value of the loss function is calculated after each epoch or after each single observation 
in the training set passed through the network, depending on whether the method applied is 
batched gradient descent method (BGD) or the stochastic gradient descent method (SDG) 
respectively. In the first method, the whole training dataset is passed to the network at once, 
and the error made by the network in predicting each datapoint in the training set is summed 
up so that the model is updated through this overall result only after an epoch is concluded 
(all training samples have been predicted). It is efficient in terms of computation but shows 
long processing time and is usually applied just in case the cost function is convex, since 
otherwise it might end up finding a local minimum rather than the global one. 
While the second method takes a single data sample, feeds it into the network, computes the 
cost function and updates the weights accordingly: it can be generally applied to all kinds of 
cost functions and makes it much more likely to find the global minimum. For this reason, it 
was chosen for the case study presented in the final chapter of this thesis work. 
There is also a middle-ground method called mini-batch gradient descent method: a batch 
containing a certain number of training samples (lower than the whole dataset and called 
mini-batch) is used to compute the cost function and update the weights at each iteration. 
 
Focusing on SDG [180], after the cost function 𝐶 is calculated, the method implies the 
computation of the gradient of the loss function (i.e., vector containing the partial derivatives 
of the function) with respect to each single weight that has been assigned to the network 
links, going backward through the network layers with the backward propagation approach.  
 

𝒘 = (𝑤+, 𝑤-, … , 𝑤&) 
 

∇𝐶 = (𝜕𝐶 𝜕𝑤+, 𝜕𝐶 𝜕𝑤-,⁄ … , 𝜕𝐶 𝜕𝑤&⁄⁄ ) 
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The meaning of this gradient is to see how much the loss function changes when one single 
weight in the network changes, i.e., how much the loss function is affected by the change in 
a specific weight. 
 
Starting from a vector of arbitrarily chosen weights 𝒘, the objective is to update it so to move 
iteratively towards the direction of fastest decrease of the cost function, that is the direction 
of the negative gradient −∇𝐶 (i.e., what is the weights update that would cause the largest 
decrease in the cost function?). 
To do so, the individual weights are updated by subtracting, from the previously assigned 
values, the value of such gradients multiplied by the learning rate, that is a very small number 
(usually included within the [0.0001-0.01] range). The learning rate determines how large the 
update is and so, how big the iteration step is. 
 

𝒘 → 𝒘− (∇𝐶 × 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑟𝑎𝑡𝑒) 
 
So, weights are updated in a way that the cost function is reduced in the most efficient way 
possible: indeed, each weight is updated based on which portion of the error it is responsible 
for (i.e., taking the gradient). A certain weight is updated by a specific quantity, relatively to 
the other weights, that is higher or lower based on the magnitude of the effect that such 
update will have on the loss reduction. 
 

 
Figure 3.39 - Gradient Descent method [181] 

 
The same training dataset is iteratively passed to the neural network through several epochs, 
so that the model can be trained, learn, and update the cost function, as well as the weights 
on the links, over several iteration, so that they incrementally reach their optimal loss-
minimizing values. 
 
The convergence of weights to their optimal values and loss function to its minimum occurs 
over several steps, whose size is dependent on the set learning rate: the learning rate defines 
by how much the weights are updated at each iteration, and it is a hyperparameter which 
needs to be tested in order to be tuned and find its best value. The higher the set learning 
rate, the higher the amount subtracted to the old weights and so, the higher the risk to 
overshoot the minimum of the cost function, while the lower the learning rate, the more the 
steps in the search process for the cost function minimum and the lower the chance to miss 
it. However, in this second case, convergence might be too slow and never reached within 
the training over the fixed number of epochs. 
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To have a clearer understanding of the whole training process steps, a general flow chart 
(Figure 3.40) is represented and then further decomposed into a specific flow chart for the 
forward and backward propagation processes (Figure 3.41). 
 

 
Figure 3.40 – ANN training process (with SDG) flow chart 
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Figure 3.41 - Forward and backward process broken down, flow-chart 

 
VALIDATION AND HYPERPARAMETERS TUNING 
 
The most suitable model configuration needs to be chosen, in terms of model’s prediction 
accuracy. The performance of a specific model configuration used for the training process can 
be evaluated by making the model run predictions over the validation set. As mentioned in 
other portions of this document, hyperparameters tuning allows to actually ‘tune’ the values 
assigned to the hyperparameters of the network, by running several times the training 
process with different model settings and see the performance of such configuration by 
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making the model compute predictions over the validation set. On the basis of the validation 
accuracy obtained by different model configurations, the most appropriate one is selected. 
Validation can be performed by simple ‘hold-out’ methodology (i.e., by simply selecting a 
subset of the initial training set to play as validation set) or through more sophisticated 
methodologies, like K-fold cross-validation, which will be detailed in the practical application 
developed within this thesis work. 
The tuning task can be performed by manually attempting different model configurations, 
training the model for each of them, and calculate the model accuracy over the validation set 
for each single attempt; or automatically, thanks to specific methods included within some 
libraries which perform different model configuration attempts by iteratively changing the 
values assigned to hyperparameters. 
 
TESTING 
 
When the best model configuration is finally obtained through hyperparameters tuning, then, 
the model is ready to be deployed in real-life cases. To have a final verification of its accuracy, 
it is possible to make the network perform predictions over the test set, which is unlabeled 
and, as such, simulates a real case scenario, in which the network will be fed with real 
unlabeled input data, of which the classification or prediction is needed to solve the specific 
problem of interest.  
 

3.4 Convolutional Neural Networks (CNN) 
 
3.4.1 Computer vision 
 
Computer vision [182] [122] [121] is a subfield of artificial intelligence which refers to the 
ability of machines to understand, analyze, and process visual data (e.g., images and videos) 
more efficiently than human beings can do. Through computer vision, machines gain the 
ability to see and observe visual data, being capable of collecting meaningful information from 
it. This is possible thanks to large amounts of data and the use of deep learning algorithms 
and neural networks (in particular, Convolutional Neural Networks). 
 
Computer vision can perform many different tasks, and below the 4 most diffused today are 
listed: 
 

a. Image recognition or classification. The network receives images as input and is able 
to classify the images into pre-defined categories. 

b. Object detection. The network can identify pre-determined elements within the 
images. 

c. Image segmentation. The network can partition images into pre-defined segments. 
d. Image generation. The network generates images based on some pre-defined 

categories. 
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3.4.2 What is a Convolutional Neural Network? 
 
A Convolutional Neural Network [122] [183] is a specific typology of Artificial Neural Network 
mostly used to perform images analysis and classification and carry out other computer vision 
tasks. In the same way as the human brain processes visual information by looking for visual 
features, a CNN is able to identify patterns and to process visual features, so to be able to 
categorize images much faster than with the traditional manual and time-consuming feature 
extraction methods. 
What characterizes the CNN with respect to a regular ANN are the convolutional layers, which 
receive image inputs, transform them through the so-called convolution operation, and pass 
them onto the next layers till reaching the output layer, in which the image class label is 
derived. The convolution operation maps a given input into an output and is what allows the 
CNN to detect patterns in images through a selected number of filters for each convolutional 
layer. 
For instance, a pattern to be detected could be edges in the image and so, the specific filter 
would be called edge detector; or circle detectors, corners detectors, etc. The deeper the 
convolutional layers, the more sophisticated elements and objects they are able to detect. 
 
A Convolutional Neural Network works through 4 major steps: 
 

1. Convolution. 
 
As anticipated, this operation takes place within the convolutional hidden layers 
through the help of a certain number of filters, also called feature detectors or kernels, 
which are able to detect patterns in the input images. 
Keeping in mind that the input image is saved by the machine as a matrix containing 
data related to individual pixels, the filter is a 𝑛 × 𝑛 matrix (whose size can be chosen) 
that is applied on the input image and covers step-by-step (the step size is called 
‘stride’, and it is measured in pixels) all portions of such image, moving over it until it 
covered it entirely. 
More analytically, the filter covers the first 𝑛 × 𝑛 pixels portion of the image and an 
element-by-element product is computed between the filter matrix and the 𝑛 × 𝑛 
matrix reporting the pixel related to that covered portion. Then, the filter slides over 
each 𝑛 × 𝑛 set of pixels in the image (this sliding process is called ‘convolving’) moving 
by the set stride: the result of each matrix product is stored in a new matrix called 
feature map (or convolved map or activation map). 
 

 
Figure 3.42 - Simple example of convolution operation (I = input image, K = 3x3 kernel) [184] 
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In the figures below, some convolution steps are displayed as an example. A 3 × 3 
left-edge filter is applied and the stride is fixed to 1: on the left it is possible to see the 
original image and the filter sliding over portions of it, while on the right the feature 
map resulting from the matrix products. 
 

 
Figure 3.43 - First convolution step [185] 

 
Figure 3.44 - Second convolution step [185] 
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Figure 3.45 - Fourteenth convolution step [185] 

 
Figure 3.46 - Final feature map [185] 

 
So, as soon as all blocks of pixels are convolved by the filter, the result is this new 
matrix representing the input image, which is of smaller size than the initial image, 
since the application of the feature detector causes some information loss. The 
purpose of the feature detector, indeed, is to detect certain features on the image and 
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generate a feature map that summarizes the presence of the detected features: the 
filter is characterized by a specific pattern, and the highest numbers appearing in the 
feature map corresponds to portions of the image in which the specific filter pattern 
was most highly matched up by the input image. This convolution process, indeed, 
extracts and preserves specific features from the image, by getting rid of what is not 
necessary for the analysis. 
Supposing the image size to be given by 𝑓 × 𝑓 pixels, and the filter size to be 𝑛 × 𝑛, 
then the size of the resulting feature map will be given by: 
 

𝑓𝑖𝑙𝑡𝑒𝑟	𝑚𝑎𝑝	𝑠𝑖𝑧𝑒 = 	 (𝑓 − 𝑛 + 1) × (𝑓 − 𝑛 + 1) 
 
Yet, if the image goes through many convolutional layers and gets convolved by a 
certain number of filters, the output image keeps on getting smaller and smaller and 
such information loss can be dangerous, causing the images to become meaningless 
by losing valuable data. 
To face this issue, Zero Padding technique [186] allows to preserve the original input 
size even if convolution operation is performed. The technique implies the addition of 
zero-valued pixels frame around the input image edges: it is said that the input images 
is ‘padded’ with a border of pixels with value equal to zero. 
 

 
Figure 3.47 - Zero padding method [187] 

 
Depending on the size of the specific input image and filter, it might be necessary to 
add more than one zero-pixel border around the image in order to be able to maintain 
the initial input image size. 
 
It is the network itself during its training process which decides what features are 
important to be extracted, and then looks for these patterns through the application 
of different filters (one per feature), obtaining different feature maps on the image, 
one per specific feature. The number of desired filters per convolutional layer has to 
be specified (since it is a hyperparameter), fixing in this way the number of resulting 
feature maps generated per convolution layer. 
Each feature map containing the result of the convolutions on the input image is the 
output of the specific convolutional hidden layer and will be passed as input to the 
next layer: in the following convolutional hidden layers, if any, this input matrix will 
undergo the same filtering process. 
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After each single convolution layer, a ReLu activation function is applied to add non-
linearity to the CNN, in line with the fact that images are highly non-linear (i.e., 
containing varied pixel values): the transition between adjacent pixels in an image is 
non-linear, since each of them is characterized by different elements, colors, borders, 
etc. 
A convolutional layer by itself would be linear (as well as a fully connected layer is) 
since its output is simply an image with a filter passed over it (i.e., a linear operation), 
and with the application of the ReLu function is possible to apply non-linearity to the 
feature maps: the operation is applied to each pixel of the feature maps and it replaces 
the negative pixels values with a zero value, so to ‘eliminate’ negative values by setting 
them to zero while isolating the important features. 

 
2. Max pooling. 

 
Max pooling operation takes place after each individual convolutional layer and is a 
transformation applied on the feature maps. A 𝑛 × 𝑛 filter is chosen and placed on 
the first 𝑛 × 𝑛 region of the feature map, which can be seen as a pool of 𝑛 × 𝑛 
numbers. The maximum value included within this 𝑛 × 𝑛 box is recorded and the filter 
slides over the rest of the convolution output according to a selected stride (i.e., sliding 
step in pixels units), repeating the same process. All the maximum values extracted 
from each pool are recorded into the so-called pooled feature map, that is a new 
representation of the image and the output of the max pooling operation. 
 

 
Figure 3.48 – From feature map to Pooled feature map (3x3 filter, stride = 2) [188] 

 
Max pooling operation is beneficial from different perspectives: 
a. Through max pooling the highest numbers are selected and since the higher 

valued pixels on the feature map are the ones in which the closest similarity to a 
feature was found by convolution, the features of interest are preserved going 
forward to the pooled feature map. This is exactly the network purpose: trying to 
extract some specific features from images (e.g., curves, edges, etc.) and being 
able to detect them even if distorted (e.g., rotated). 

b. It reduces the dimensionality of the image by reducing the number of pixels with 
respect to the output of the previous convolutional layer. Consequently, the 
complexity reduces: indeed, the number of parameters in the CNN is lower as well 
as the computational load, by keeping only valuable information. 

c. As a consequence of previous point, reducing the number of parameters allows 
higher overfitting prevention, since the ‘noise’ (not relevant information) is set 
aside. 
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There are different types of pooling, like min pooling, sum pooling, average or mean 
pooling, etc., but max pooling is the most used in practice. 
 

3. Flattening. 
 
Having the pooling layer with many pooled feature maps, the next step consists in 
flattening all these maps into one single column sequentially. 

 
Figure 3.49 - Flattening operation [189] 

The reason is that this vertical feature vector is the format that will be required in the 
following step as input to feed an ANN for further processing steps over the features. 
 

 
Figure 3.50 - Feeding the ANN input layers with the flattened features [189] 

 
4. Full connection. 

 
Finally, a whole ANN is added to the layers built so far (convolutional, pooling, 
flattening) with its input layer (fed with the outputs obtained from the flattening 
procedure), fully connected hidden layer(s), and output layer (one per image 
classification category). 
Indeed, besides image processing through convolution, pooling, and flattening, the 
network undergoes the same training process as a classical ANN. Supposing an image 
classification problem (like the one in the case study presented in the last chapter), a 
prediction about the image class is made and an error is calculated through a cross-
entropy function, describing how good the network is performing. In the attempt of 
minimizing the loss function, the error is backpropagated through the network and 
weights are adjusted to optimize the performance. In case of a CNN, though, also 
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feature detectors are adjusted: indeed, bad performance could also be due to 
searching for the wrong features.  
Over the training iterations, the output neurons (1 or more, depending on the number 
of existing image classes) understand which weights to assign to all the synapses 
connected to them in a backward propagation fashion, so that they learn which of the 
previous fully connected layer neurons convey important information for the specific 
image category they are assigned to predict. Each neuron in the previous layer is 
associated to a set of features, and it is up to the output layer to decide whether the 
signal emitted from a previous neuron, and so its associated features, is related to the 
image class it is looking for. 
The network predicts probabilities of the image to belong to each category, and its 
first choice is the class corresponding to the output neuron yielding the highest 
predicted probability. 
 

4. The welding process 
 
Welding is a manufacturing process which consists in joining two or more components into 
larger assemblies by fusing them together through heat, pressure, or both, generating a 
strong and permanent bond once the materials cool down. The procedure is usually 
performed on metals and thermoplastics [190] [191] [192]. 
Various types of welding processes can be distinguished, on the basis of the process technical 
features and areas of employment. Throughout this thesis work, the welding processes 
among the most diffused ones are going to be mentioned, but to make the following chapters 
more readable, they are first described in this section. 
 

4.1 Resistance Spot Welding (RSW) 
 
Resistance spot welding process [193] [194] [195] is a fusion welding process that is used to 
join two or more metal sheets (usually thin) by overlapping them and producing a spot weld 
in that overlapped surface, through the application of pressure and heat to the weld area by 
2 electrodes. 
Pressure is applied between the two electrodes and the components to be welded (to contain 
the workpieces), a large electrical current is conveyed from the electrodes to the piece, and 
the resistance heat that is generated (due to the electrical current combined with pressure) 
melts the sheets forming a molten nugget and consequently the weld spot [81]. This area that 
is generated in the point in which the two metal sheets are joined is called weld nugget. 
 

 
Figure 4.1 - Example of nugget 
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The procedure works based on Joule’s law of heating, according to which heat is generated 
proportionally to the square of welding current: 
 

𝑄 = 𝐼-𝑅𝑡 
 
𝑄 = amount of heat generated during the welding process 
𝐼 = welding current applied 
𝑅 = electrical resistance setup at interface of metal sheets 
𝑡 = time for which current is applied 
 
Electrodes are generally cone-shaped, so to concentrate the current into a small portion of 
the workpiece and here, where the temperature is the highest, the fusion takes place (weld 
nugget spot). The electrodes clump the sheets to hold them together through mechanical 
force avoiding misalignments and are built in copper alloy to ensure heat generation on the 
workpiece rather than on the electrodes, thanks to its high thermal conductivity and low 
electrical resistance. 
 

 
Figure 4.2 - Resistance Spot Welding (RSW) [196] 

 
RSW process takes place into 2 steps: 

1. First, electrodes are positioned on the surface of the sheets to be welded, and 
pressure is applied. 

2. Then, welding current is applied from electrodes for a small amount of time and when 
current is turned off, pressure is kept for the welded material to solidify by cooling 
down. 

 
Based on the timespan of welding current application, the value of current applied, and the 
resistance between the two electrodes and between metal sheets and electrodes, it is 
possible to regulate the amount of heat generated during the process, on the basis of the 
specific material characteristics of the sheets to be welded. 
 
Usually, this type of welding is preferably applied to sheets of steel or titanium, because of 
their low thermal conductivity and high electrical resistance which allow for an easy spot 
weld. The process can be also applied to other materials, like aluminum and magnesium, but 
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for the former larger welding currents are required (due to higher thermal and electrical 
conductivity), and for both of them oxide might form on the surfaces due to their high thermal 
conductivities.  
 
RSW process is largely employed in automotive manufacturing and aerospace industry, but 
also in other areas of application like electronics, home appliances, medicine (e.g., 
orthodontist sector), construction, railways, and other fields for the production of thin sheets 
components. 
In the manufacturing of a car, around 2000 or 3000 welding spot points can be implied and 
one of the reasons why this welding type is so widely employed is related to the easiness for 
it to be automated with robots and innovative technological systems, which makes it 
appropriate for manufacturing lines producing large quantities (e.g., carmakers). 
 
Resistance seam welding (RSEW) is a variant of spot welding which uses turning wheel-shaped 
electrodes and the workpiece slides between such electrodes while welding current is 
applied, so that a continuous seam between the two parts is created [197]. 
 

 
Figure 4.3 - Resistance Spot Welding vs Resistance Seam welding [198] 

 

4.2 Arc welding 
 
Arc welding process [199] [200] [201] [202] [203] is a fusion welding process used to join metal 
pieces by melting them with an electric arc, that is a controlled electrical discharge between 
the electrode and the base material to be welded. The arc is generated through electricity 
from a power source (either direct or alternating) and the welding region is protected from 
atmospheric contamination by the establishment of a shielding gaseous conductive medium 
(called arc plasma). The arc generates an intense and concentrated heat able to melt the 
materials (with or without filler material), and a strong welded joint is formed as they cool 
down. 
The process can be performed either manually by an operator moving the arc along the 
joining line or mechanically. 
 
There are many different typologies of arc welding processes, and they are grouped into 2 
main categories: consumable electrode methods and non-consumable electrode methods, 
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depending on whether the electrode itself melts and becomes part of the weld seam or not, 
by simply behaving as arc conductor without melting.  
 

 
Figure 4.4 - Arc welding [203] 

 

4.3 Friction Stir Welding (FSW) 
 
Friction stir welding (FSW) [204] is a solid-state welding process which joins materials thanks 
to a non-consumable rotating tool which generates heat. 
Indeed, pieces are joined in the solid phase through a rotating tool composed of a plane or 
shaped base, called shoulder, and a tip, called pin. The tool is rotated and plunged along the 
joint line at the interface between the pieces to be joined. Due to friction of the tool at the 
materials surface, heat is released and this, combined with the force applied, allows for plastic 
deformation of the materials that are joined through generation of mixed softened metal, 
which creates the weld seam as it solidifies back [205]. To create the solid weld, additional 
plasticized material can be contained in the shoulder and injected by the tool to mix with the 
softened material in the weld seam generation. The procedure is defined as solid-state since 
the material is not completely melted: it reaches a certain ductility level which allows the tool 
to progress forward along the interface and mix the two materials, which might also be 
dissimilar [206]. 
 

 
Figure 4.5 - Friction Stir Welding [207] 
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4.4 Laser welding 
 
Laser welding is a precise process used to join materials (mainly metals or thermoplastics) 
through a laser light beam for the creation of the weld. The laser beam is directed towards 
the workpieces and melts them, so that the softened pool cools down and solidifies by fusing 
the pieces together [208] [209]. 
 

 
Figure 4.6 - Laser welding [210] 

 
The laser welding process brings some benefits with respect to the conventional welding 
methods [211] [212]: 
 

• High precision and speed. The laser beam can be controlled very precisely, by directing 
the energy exactly to the location where the weld needs to occur. Also, it can proceed 
fast along the joint surface (especially for thinner materials) thanks to the high heat 
generated.  

• Lower distortions. The consequence to the previous characteristic is the minimization 
of the workpiece zone affected by the welding heat in a way to keep distortions to the 
minimum. Being the energy beam very concentrated, it heats and melts the welding 
pool very quickly, so that the laser can fast proceed along the weld seam and the 
generated heat has no time to spread through the material as it happens for other 
welding procedures. 

• Deeper penetration. Since a highly concentrated heat is generated, laser welding 
allows to generate narrow and deep welds between thicker materials. 

• Adaptability. Laser welding process is versatile as it adapts to joining several typologies 
of materials, like metals, plastics, and some ceramics. Also, dissimilar materials can be 
welded through laser welding, which is usually not possible with other welding 
methodologies. 

• High-quality results in terms of strength and seam appearance. The resulting welds 
are of high quality in terms of mechanical properties and free of some usual weld 
defects, and the generated seam will match the strength, durability, and corrosion 
resistance properties of the welded materials. 
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• Higher productivity. This advantage is related to high precision and speed 
characteristics of the process, which allow to deliver high-volume production 
combined with high-quality production, and to the possibility for laser welding process 
to be easily automated. 

 

5. DT welding applications – Literature review 
 

5.1 Research procedure 
 
In the following, a description of the research procedure applied to derive the information 
used in this thesis work is presented. 
 
Firstly, in order to start developing some personal knowledge on the topics, the necessary 
definitions (e.g., of digital twin and machine learning technologies) were found on the web, 
by looking for the most reliable, detailed, and trusted websites (e.g., IBM, Siemens, etc.).  
 
After that, the research moved down to a more detailed level thanks to Scopus instrument 
[213], and a top-down research approach was carried out, starting from high-level keywords 
down to more precise and detailed queries. 
So, at first the research was carried out more generally to have a wide overview of the number 
of articles existing in terms of Digital Twin, Machine Learning, ANNs, and CNNs. Each keyword 
was used to search within ‘Article title, Abstract, and Keywords’ of the research papers, and 
the keywords have been then merged among themselves and with welding-related keywords 
to obtain more focused results. 
The results of this preliminary research process are displayed in a Venn diagram and in a table 
which allow to have a first overview of the number of articles appeared for each keyword 
used in the procedure and by merging such keywords. These results have been regularly 
updated during the thesis work development, since the number of works found happened to 
change much from time to time, and the reported numbers date back to October 5th, 2023 
(last update). 
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Figure 5.1 - Research process Venn diagram 

 

Keywords Number of 
articles Peak year(s) Main countries Main subject 

areas 

DIGITAL TWIN 18,335 2022 China, Germany, US Engineering, 
Computer science 

DIGITAL TWIN + MANUFACTURING 
PROCESS 3,344 2022 China, Germany, US 

Engineering, 
Computer science 

DIGITAL TWIN + WELDING 144 2022 China, Germany, 
Sweden 

Engineering, 
Computer science 

DIGITAL TWIN + SPOT + WELDING 12 2022 Sweden, Germany, 
China 

Engineering, 
Computer science 

MACHINE LEARNING 607,061 2022 US, China, India Computer science, 
Engineering 

MACHINE LEARNING + DIGITAL 
TWIN 

1,962 2022 US, China, Germany Engineering, 
Computer science 

MACHINE LEARNING + DIGITAL 
TWIN + WELDING 19 2021 US, China, France, 

Sweden 
Engineering, 
Computer science 

MACHINE LEARNING + DIGITAL 
TWIN + SPOT + WELDING 

1 2018 Sweden Engineering 

ARTIFICIAL NEURAL NETWORK 260,503 2022 China, US, India 
Computer science, 
Engineering 

ARTIFICIAL NEURAL NETWORK + 
DIGITAL TWIN 

330 2022 China, Germany, US Engineering, 
Computer science 

ARTIFICIAL NEURAL NETWORK + 
DIGITAL TWIN + WELDING 

2 2023 China 

Engineering, 
Materials science, 
Physics and 
Astronomy 

CONVOLUTIONAL NEURAL 
NETWORK 177,565 2022 China, US, India 

Computer science, 
Engineering 

CONVOLUTIONAL NEURAL 
NETWORK + DIGITAL TWIN 230 2022 China, US, Germany, 

UK 
Engineering, 
Computer science 

CONVOLUTIONAL NEURAL 
NETWORK + DIGITAL TWIN + 
WELDING 

4 2021 US, China 

Engineering, 
Computer science, 
Chemical 
engineering, 
Physics and 
Astronomy 

Table 5.1 - Research process table 
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In the following, a description of the steps followed in the research process is reported: 
 

a. ‘Digital twin’ broad search 
 

 
Figure 5.2 – Digital twin search, Scopus keywords 

 
Clearly, such a general search led to as much as 16,113 articles resulting and by looking 
at documents released per year, the number of articles increased much from 2014 
onwards, till reaching its peak in 2022. This reflects the increasing interest that digital 
twin is rising among researchers, since the number of articles on this topic have been 
exponentially growing over the last few years and the trend will probably be 
confirmed as 2023 comes to an end. 
Most of the articles resulting from the search are out of topic since just mentioning 
the digital twin technology without actually developing it (especially among those 
dating back to before 2018), while most of the ones that are precisely focused on 
digital twin were developed between 2020 and 2023. 
In addition, most of the documents found are from China, and Germany and US follow. 
For what concerns the application field, documents related to digital twin are mainly 
concerning the engineering area, followed by computer science.  
 

 
Figure 5.3 - Digital twin works by year [213] 

 

 
Figure 5.4 - Digital twin works by country [213] 
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Figure 5.5 - Digital twin works by subject area [213] 

 
b. ‘Machine learning’ broad search 

 

 
Figure 5.6 - Machine Learning search, keywords 

 
This research led to a much larger number of results than for digital twin, indeed 
607,061 articles were derived by using ‘Machine Learning’ as a keyword. 
The number of documents per year started increasing from around 2003 on, that is 
much earlier than in the case of digital twin, and the peak occurred in 2022 as well. 
Most of the works are developed in US, followed by China and India, and they mostly 
cover computer science and engineering fields. 
 

 
Figure 5.7 - Machine Learning works by year [213] 

 

 
Figure 5.8 - Machine Learning works by country [213] 
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Figure 5.9 - Machine Learning works by subject area [213] 

 
c. A more specific search was carried out to find out whether there are any research 

works applying artificial neural networks and convolutional neural networks in a 
digital twin framework, and with a focus on welding processes. A good number of 
articles resulted by searching for ANN and CNN applications within general digital twin 
case studies, while very few when zooming in on welding-focused case studies (2 ANN 
paper works and 4 CNN paper works). 

 
The above-described procedure was carried out so to have a general overview of the 
typologies and yearly/geographical distribution of existing works focused on digital twin and 
machine learning technologies. In order to deepen the research and get results that are more 
centered around the topic of interest (i.e., digital twin applications to welding processes), a 
search has been performed by inserting ‘digital twin’ (specifically searched within ‘Article title’ 
category) + ‘welding’ keywords on Scopus search instrument. As expected, the number of 
resulting articles is strongly reduced down to a reasonable number for the analysis purposes 
of this thesis work (60 as for October 5th, 2023) and some of these paper works have been 
analyzed from the most recent down to the least recent ones, discarding those that are not 
interesting for the purposes of this thesis work. Different kinds of digital twin applications 
have been analyzed, from those applying machine learning and neural networks, to those 
simply using a simulation software and displaying a dashboard to the operator. 
 

5.2 Research results 
 
Following this reasoning, out of the 60 works resulting, 21 have been identified as the most 
interesting for this research and analyzed to understand how digital twin has been adopted 
over the years and which are the main applications purposes. 
After the analysis, the various articles and paper works have been categorized on the basis of 
the type, uses, and purposes of each specific application analyzed (e.g., real-time monitoring, 
anomalies detection, etc.). In the first table below, a description of the categories used to 
classify the digital twin applications is presented, while in the second table the actual 
classification of the different case studies is performed. 
As it will be clear from the analysis, almost all digital twin applications analyzed allow for some 
kind of real-time monitoring of the process current condition. This is in line with the 
cornerstone of the digital twin technology, that is the one of providing for real-time mapping, 
mirroring, and synchronization between virtual and real environments. 
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Real-time 
monitoring 

 
Digital twins allowing the operators to monitor the mirrored physical entity. 
Examples collected from the analyzed articles: 

• Dashboard for real-time monitoring of parameters regarding the process and its 
performance (e.g., temperature transient field) 

• Real-time 3D monitoring of the system through 3D modeling software 
• Real-time quality monitoring thanks to the outcomes of a simulation* 
• Real-time monitoring of the process state (e.g., job, idle, etc.) with real-time 

mapping and synchronization between virtual and real process states 
• Real-time quality inspection and monitoring by extracting 3D scans of the parts 
• Real-time quality monitoring through a CNN recognizing patterns in the process 

control charts 
• Real-time monitoring of the process through VR tools 
• Real-time monitoring of human operators health condition by having them wear 

AR and IoT devices 
 

 
Simulation* 

 
Digital twins embedding a simulation model to carry out either offline simulations or real-
time simulations. 
Examples collected from the analyzed articles: 

• Offline simulation to verify the results of an optimization or anomalies detection 
algorithm, before intervening in the real environment 

• Offline simulation to generate or integrate the input dataset needed to train a 
ML algorithm 

• Real-time simulation fed with real-time data (e.g., 3D scan of the parts) and able 
to simulate the corresponding final quality, so to adjust process parameters 
accordingly 

• Offline non-nominal simulation, fed with 3D scan of the parts to be welded 
• Offline simulation of process tools configuration to help in process design 
• Simulation within an AR environment to visualize possible configurations for a 

monitoring system to be established 
 

Anomalies or 
defects 

detection 

 
Digital twins adopting (ML) algorithms or computational models able to identify, and even 
classify, anomalies in the process and defects in the workpieces. 
Examples collected from the analyzed articles: 

• Detection of weld incompleteness through a deep learning algorithm 
• Real-time detection of welding flaws, quality issues, and anomalies in the process 

state through a ML algorithm (e.g., CNN able to recognize unusual patterns in the 
control charts of the process) 
 

Prediction 

 
Digital twins involving machine learning models so to have predictive capabilities. 
Examples collected from the analyzed articles: 

• Prediction of real-time temperature field given welding process parameters, 
some real-time extracted through sensors (e.g., through ML algorithms or an 
iterative numerical computation model) 

• Prediction of future defects with a real-time analysis of process parameters 
• Classification of the human operators’ professional skill level through motion 

tracking and ML algorithms 
• Predictions by ML algorithms trained in a transfer learning approach over the 

different phases of the product or process lifecycle 
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Optimization 

 
Digital twins including algorithms for some kind of optimization. 
Examples collected from the analyzed articles: 

• Optimization of the welding robot starting position and the path followed by the 
robot to perform the weld through advanced algorithms 

• Optimization of the line scheduling sequence through simulation* and algorithms 
• Optimization algorithm for the design of process tools that can ensure final 

quality 
• Optimization of the workshop layout through algorithms fed with real-time 

acquired process data 
 

Decision-
making support 

 
Digital twins providing the operator with suggestions about how to operate. 
Examples collected from the analyzed articles: 

• Suggestions about how to proceed in case of welding defects (identified through 
a CNN) 

• Suggestions about how to adjust the process (e.g., by adjusting fixtures) in a way 
to improve final quality (ML algorithm) 

• Suggestions through an AR environment about the optimal configuration of the 
process monitoring system 

• Suggestion of the optimal workshop layout 
• Suggestions about how to optimize the health and operating conditions of human 

workers 
 

Table 5.2 - Identified categories for DT applications 

 
Case 
study Article Title DT category Purpose Welding 

process 
Machine Learning-

based 

1 
[76] 

‘Real-time 
temperature 
monitoring of 
weld interface 
using a digital 

twin approach’ 

• Real-time 
monitoring 

• Prediction 

Real-time temperature monitoring at the 
welding interface and prediction of the 
materials melting instant through a 
machine-learning algorithm. The dataset 
needed for the model was generated by a 
finite element model able to estimate the 
temperatures at the welding zone 
corresponding to different applied welding 
currents. 

Special type 
friction 

process for 
dissimilar 
materials 

A linear regression 
model is trained over a 
dataset mapping input 
current to temperature 
at the welding zone. 
After training, the 
algorithm is able to 
predict the interface 
temperature on the 
basis of real data about 
current applied. 

2 
[214] 

‘Digital Twin 
Implementation 
of Autonomous 

Planning Arc 
Welding Robot 

System’ 

• Real-time 
monitoring 

• Optimization 
• Simulation 

Real-time 3D monitoring of welding robots, 
optimization algorithm to identify a collision-
free path for the robots to perform the weld, 
and validation of the robot path through 
offline simulation before transferring the 
plan to the physical process. 

Arc welding - 

3 
[75] 

‘Real-time 
detection 

method for 
welding parts 
completeness 

based on 
improved 

YOLOX in a 
digital twin 

environment’ 

• Simulation 
• Anomalies or 

defects 
detection 

3D simulation to virtually generate the 
dataset (of images and videos) needed for 
the training a deep learning algorithm to 
detect parts incompleteness prior welding. 

Arc welding 

A deep learning 
algorithm is trained over 
a hybrid dataset of 
components’ images 
and videos (both from 
the real and the virtual 
environments) and then 
receives real-time visual 
information as input to 
detect weld 
incompleteness defects. 
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4 
[81] 

‘Quality 
Monitoring of 

Resistance Spot 
Welding Based 

on a Digital 
Twin’ 

• Real-time 
monitoring 

• Simulation 
 

Real-time collection of welding current, 
voltage, and electrode force data to feed the 
real-time welding simulation whose results 
allow to monitor welding quality. In case of 
missing compliance with quality 
requirements, welding parameters are 
adjusted in real-time accordingly. 

Resistance 
Spot 

Welding 
- 

5 
[14] 

 

‘Deep Learning-
Empowered 
Digital Twin 

Using Acoustic 
Signal for 

Welding Quality 
Inspection’ 

• Real-time 
monitoring 

• Anomalies or 
defects 

detection 

Real-time collection of acoustic signal data 
from the real process for flaws detection 
through a deep learning algorithm, so to 
monitor and ensure welding quality. 

Arc welding 

A deep-learning 
algorithm based on a 
convolutional neural 
network, receives sound 
signals data as input and 
is able to classify them 
based on their time and 
frequency features, so to 
detect any welding faults 
affecting final quality. 

6 
[5] 

‘A Novel 
Method of 

Digital Twin-
Based 

Manufacturing 
Process State 
Modeling and 
Incremental 

Anomaly 
Detection’ 

• Real-time 
monitoring 

• Anomalies or 
defects 

detection 

Real-time identification of the process state 
(through a hierarchical finite state machine 
method) and state synchronization between 
virtual and real models. Identification of 
anomalies in the process which can affect 
the assembly final quality. 

Arc welding 

A machine learning 
algorithm carries out a 
detection mechanism 
able to identify 
abnormal behavior by 
the equipment, on the 
basis of the real process 
state. 

7 
[215] 

‘Digital twin 
model-driven 

capacity 
evaluation and 

scheduling 
optimization for 

ship welding 
production line’ 

• Real-time 
monitoring 

• Simulation 
• Prediction 
• Optimization 

3D simulation model for real-time 
optimization of the line scheduling 
sequence: it is fed with real-time welding 
data (e.g., current, temperature, voltage, 
etc.) and with the help of data mining and 
intelligent algorithms it is able to assess 
parameters affecting production capacity 
and optimize process variables accordingly. 
Real-time analysis of welding parameters to 
predict possible defects in advance (i.e., to 
perform welding quality prediction) and 
adjust parameters consistently. 
Displaying of a dashboard to the operator 
showing production process real-time 
parameters (e.g., current, voltage, etc.) and 
information for process performance 
analysis (charts showing failure rate, 
bottleneck, processing time, etc.). 

Spot 
welding 

- 

8 
[211] 

‘Integration of 
Industry 5.0 

requirements in 
digital twin-
supported 

manufacturing 
process 

selection: a 
framework’ 

• Real-time 
monitoring 

• Optimization 
• Decision-

making 
support 

Support in solving the process selection 
problem among different setup alternatives, 
on the basis of both Industry 4.0 and 
Industry 5.0 criteria. 
During operations, to embed human 
inclusion factors, workers can wear IoT and 
AR wearables to monitor their physical 
status and health: with this information, the 
digital twin can real-time monitor and 
optimize workers efficiency by giving 
suggestions and instructions. 

Laser 
welding 

- 

9 
[4] 

‘Process 
Simulation and 
Optimization of 

Arc Welding 
Robot 

Workstation 
Based on Digital 

Twin’ 

• Simulation 
• Real-time 

monitoring 
• Optimization 

 

Identification of the optimal initial position 
for the welding robot and robot welding 
path so to improve process efficiency and 
reduce process time. The process can be 
monitored, and welding data visualized 
through an UI interface. A virtual simulation 
can be performed to test the process before 
it starts. 

Arc welding - 
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10 
[15] 

‘A detection 
and 

configuration 
method for 

welding 
completeness in 
the automotive 
body-in-white 

panel based on 
digital twin’ 

• Anomalies or 
defects 

detection 
• Decision-

making 
support 

Immersion of the operator into a MR 
environment (head-mounted devices) with 
which they can interact through gestures or 
voice.  Images can be captured through the 
MR tools and sent to a deep learning 
algorithm for incompleteness and defects 
detection. The MR environment will then 
guide the human user in addressing the 
defective workpieces (e.g., repair 
procedures). 

Arc welding 

A deep learning 
algorithm based on a 
Convolutional Neural 
Network is used to 
inspect workpieces 
images coming from the 
real environment so to 
detect welding 
completeness and give 
configuration 
suggestions. 

11 
[192] 

‘Predicting 
Geometrical 
Variation in 
Fabricated 
Assemblies 

Using a Digital 
Twin Approach 

Including a 
Novel Non-

Nominal 
Welding 

Simulation’ 

• Real-time 
monitoring 

• Simulation 

Improving the geometrical quality of the 
final welding assembly (geometry assurance) 
and allow for mass customization. Before 
the welding process takes place, the parts 
can be 3D scanned to understand their initial 
(non-nominal) geometrical variation and 
used to carry out a non-nominal simulation 
to monitor and predict the quality of the 
final welding so to adapt the real process 
settings in a way to optimize the final 
assembly geometrical quality. 

Laser 
welding - 

12 
[212] 

‘A Survey of 
Process 

Monitoring 
Using 

Computer-
Aided 

Inspection in 
Laser-Welded 
Blanks of Light 
Metals Based 
on the Digital 

Twins Concept’ 

• Real-time 
monitoring 

Quality automated inspection: the 3D scan 
of the part is extracted, and quality control is 
performed through an algorithm which 
compares the nominal CAD model of the 
part with the scanned model, to identify any 
deviations from the design. Such an 
approach could help in obtaining product 
licenses by verifying its quality. 

Laser 
welding 

- 

13 
[216] 

‘Digital Twin for 
the Transient 
Temperature 

Prediction 
During Coaxial 

One-Side 
Resistance Spot 

Welding of 
Al5052/CFRP’ 

• Real-time 
monitoring 

• Prediction 

Prediction of the transient temperature field 
generated during the welding process. A 
machine learning interpolation algorithm is 
fed with the welding process parameters. To 
train the algorithm, a FEM model is used to 
generate additional datapoints to increment 
the dataset mapping welding process 
parameters to the transient temperature 
field. 

Resistance 
spot 

welding 

A machine learning 
algorithm receives as 
input a set containing 
the specific welding 
process parameters 
(e.g., welding time, 
current, force applied, 
etc.): if such exact data 
point is mapped already 
by the existing dataset, 
then the prediction is 
easily provided; if this is 
not the case, then a 
multiple dimension 
interpolation is carried 
out over existing 
datapoints within the 
dataset to perform the 
prediction. 

14 
[217] 

‘Integration of 
Digital Twin and 

Machine 
Learning for 
Geometric 

Feature Online 
Inspection 

System’ 

• Real-time 
monitoring 

• Simulation 
• Anomalies or 

defects 
detection 

• Decision-
making 

suggestions 

Achievement of high welding quality: a CNN 
is used to identify anomalies by performing 
pattern recognition over the process control 
charts. Then, a machine learning algorithm 
predicts and suggest fixture adjustments to 
address any anomaly, and such suggestions 
are iteratively simulated within the digital 
twin until an optimal decision is conveyed. 

Arc welding 

A CNN model is able to 
categorize control chart 
patterns. The dataset 
needed for the training 
process is integrated 
with data points derived 
through Monte Carlo 
simulation. Then, 
another machine 
learning algorithm is 
able to suggest 
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adjustments to the 
welding process to reach 
the optimal setting. 
 

15 
[205] 

‘Digital Twins in 
the Design of 

Tools for 
Friction Stir 

Welding’ 

• Simulation 
• Optimization 

Reduction of costs and complexity of tools 
and process design. A digital twin model of 
the tool takes into consideration all the 
elements that will affect the final weld 
quality (e.g., welding parameters and 
operation conditions, etc.) and, through an 
algorithm and a simulation, it determines 
the optimal combination of operational 
parameters and tool configuration to ensure 
outcome quality. 

Friction stir 
welding - 

16 
[73] 

‘Digital twin 
modeling for 
temperature 
field during 
friction stir 

welding’ 

• Real-time 
monitoring 

• Prediction 

Real-time monitoring of the 3D temperature 
distribution around the welding zone so to 
adjust the welding parameters as the 
process moves on. This is done by 
synchronizing the real process with an 
iterative numerical model, which is able to 
reproduce the 3D temperature field in real 
time by applying a heat transfer analysis and 
fusing real data collected through sensors 
and data derived through the computational 
model. 

Friction stir 
welding - 

17 
[13] 

‘Digital Twin for 
Human-Robot 

Interactive 
Welding and 

Welder 
Behavior 
Analysis’ 

• Real-time 
monitoring 

• Prediction 

Enhancement of human-robot interaction to 
increase operational productivity. By using 
motion tracking, the human welder 
demonstrates the welding operations and is 
recorded; a robot executes the 
demonstrated operation; a digital twin 
based on virtual reality collects real-time 
data through sensors and allows for a virtual 
replica of this interaction. The human 
operator can visualize the physical process 
and its performance in real-time through VR 
glasses. The digital twin includes a machine 
learning classification model to classify the 
human welders on the basis of their 
professional skills. 

Arc welding 

An SVM machine 
learning algorithm 
performs welders’ 
behavior analysis by 
classifying the 
professional level of 
human welders on the 
basis of the 
demonstrated welding 
operation. The algorithm 
receives data about the 
movements followed by 
the welder when 
demonstrating the 
welding operation and is 
able to distinguish 
between skilled and 
unskilled welders on the 
basis of the difference 
between their operating 
patterns. 

18 
[77] 

‘Towards a 
digital twin 
setup for 

individualized 
production of 

fabricated 
components’ 

• Real-time 
monitoring 

• Simulation 

Advancement towards individualized 
production, where the production process is 
adapted on the basis of the specific 
individual welding, by taking into 
consideration the initial geometrical 
variations in the parts vs their nominal 
design, which could affect final quality. 
3D scans of the parts are collected before 
the process takes place to extract their 
unique features, and real-time fed to a 
simulation that is run iteratively to predict 
the final quality of the weld so to adjust the 
process accordingly and achieve higher final 
quality. 

Laser 
welding - 

19 
[218] 

‘An AR based 
Digital Twin for 

Laser based 
manufacturing 

• Simulation 
• Decision-

making 
support 

Give support in the choice of the process 
optimal monitoring system to be introduced. 
Augmented reality is introduced within a 
digital twin to support the choice of the 
optimal equipment configuration of the 

Laser 
welding 

- 
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process 
monitoring’ 

monitoring system. The main components of 
such monitoring system are modeled, 
simulated, and projected through AR to the 
user. The model suggests alternative 
solutions, the user can try to install some 
components in the AR environment, 
simulate them, and see the properties of 
such a configuration. 

20 
[74] 

‘Transfer 
learning as an 
enabler of the 

intelligent 
digital twin’ 

• Simulation 
• Prediction 

Application of the concept of transfer 
learning to the industrial processes. Through 
transfer learning, machine learning 
algorithms can learn new tasks on the basis 
of knowledge acquired on previous related 
tasks, so to address the complexity of 
collecting large and diversified datasets for 
the ML training process and achieve high-
quality algorithms. 
Introducing cross-phase industrial transfer 
learning allows to transfer knowledge from 
one asset’s lifecycle phase to another and 
reduce the time needed for a ML algorithm 
to be trained. 

 

With a digital twin model 
which includes 
simulations, machine 
learning algorithms can 
be pre-trained and 
tested even before the 
actual physical process 
exists (i.e., during its 
design phase). As the 
real system is built, then 
the algorithm’s 
knowledge is transferred 
to the real asset (i.e., 
from design to operation 
phase) and the network 
can be fine-tuned 
through training over 
the real data available. 

21 
[219] 

‘A digital twin-
based layout 
optimization 
method for 

discrete 
manufacturing 

workshop ‘ 
 

• Optimization 
• Simulation 
• Decision-

making 
support 

Sub-optimal workshop layout might affect 
production efficiency and quality due to 
issues like unclear partitioning, 
unreasonable distribution of equipment, 
and unreasonable material distribution 
route. The optimal layout can be derived 
through a digital twin which allows to make 
equipment layout decisions in real-time by 
collecting data from the process: 
optimization algorithms are run and 
iteratively tested through simulations until 
the optimum is found and the real assets are 
arranged accordingly. 

 - 

Table 5.3 - Categorization of the analyzed research papers 

 

5.3 Intelligent digital twin - Potentiality of ML in the DT framework 
 
In the previous chapters, digital twin and machine learning have been separately described. 
As it emerged from the literature review, though, their simultaneous adoption through a 
Machine Learning-based Digital Twin model, or ‘Intelligent Digital Twin’ [74], provides several 
additional benefits with respect to other kinds of digital twins. Indeed, an Intelligent Digital 
Twin extends the plain digital twin technology by enriching it with the adoption of artificial 
intelligence, which provides for new capabilities and applications. Such a digital twin model is 
able to observe the environment through sensor operating data and analyze it with the other 
models included within the digital twin, in a way to learn new information and gain new 
knowledge so to carry out tasks like fault prediction, anomaly detection, machine condition 
evaluation, production sequence optimization, etc. 
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Figure 5.10 - Intelligent Digital Twin vs plain Digital Twin [74] 

 
Some of the main additional capabilities that can be provided by an ‘Intelligent Digital Twin’ 
are listed in the following: 
 

• Improved predictive capabilities. Machine learning algorithms are able to analyze 
historical data and patterns (by training over large and complex datasets) to derive 
accurate predictions about the future behavior and performance of the physical entity 
mirrored by the digital twin. 

• Anomaly or fault detection. Machine learning algorithms are able to detect any 
anomaly or fault as deviations appear from the expected behavior and process 
parameters. As a consequence, such a digital twin could show the operator an alert 
signal and even suggest possible corrective actions. 

• Real-time optimization. As the manufacturing process moves forward, a machine 
learning model can suggest optimizing actions to the operator on the basis of real-
time collected information, so to maximize the manufacturing operation by adjusting 
process parameters accordingly (e.g., with the purpose of optimizing the final quality). 

• Enhanced decision-making support. Thanks to machine learning algorithms, operators 
have the possibility to make more informed decisions, since the digital twin model can 
provide more comprehensive and real-time data-driven insights and 
recommendations to the users. In case the framework implied more advanced control 
strategies, the digital twin model would be able to even make autonomous decisions 
and actions. 

• Real-time adaptation. Machine learning algorithms are continuously trained over new 
real-time input data, in a continuous learning fashion, in a way that makes the digital 
twin constantly able to adapt itself to reality by updating its internal models (e.g., 
simulations) on the basis of the physical environment evolution. This makes it possible 
for the digital twin to become more and more accurate and effective the more it is 
used. 
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6. A CNN for image classification and quality monitoring 
 

6.1 The context: quality in RSW processes 
 
In case unsuitable choices are taken when setting the welding process, some issues might 
arise on the assembled workpiece, and even cause some damage to the structure of the 
welded materials by affecting the overall welding quality. 
It is crucial to set the welding schedule and parameters in a way that the produced welds are 
of acceptable quality. It is the manufacturer who should determine the weld quality for the 
specific welding process, in line with the American national standard according to which 
acceptable quality is there in case of ‘a weld that meets the applicable requirements’ [252]. 
 
One way for the manufacturer to verify quality is to use process characteristics as indicators 
of weld quality. The presence of expulsion, for instance, is frequently used as a welding quality 
indicator. Being an ejection of liquid metal during the welding process, it clearly indicates the 
potential weakness of the weld performed and can be easily noticed since usually distinctly 
visible. Expulsion is an example of defect of the welding process, and its presence is 
undesirable both in terms of appearance and performance of the spot weld since it might 
affect its strength.  
It can be generally identified through visual inspection of the weld, since traces of ejected 
liquid metal are visible either at electrode-sheet interface or sheet-sheet interface. 
So, an expert operator is able to easily perceive an expulsion as it occurs, without specific 
experience or training needed: however, expulsion can be also detected through sensors, by 
extracting welding process signals like electrical signals (e.g., power input), mechanical signals 
(e.g., electrode force), and acoustic signals (e.g., acoustic emissions). These signals undergo 
an instantaneous and sudden change in their trend (drop or rise) in case expulsion occurs 
during the welding process. 
 

6.2 What is an expulsion? What does it entail? 
 
Expulsion phenomenon can be frequently observed during resistance spot welding. 
In line with ISO 17677-1 (2021) definition, an expulsion (also called splash, spatter, or flash) is 
the phenomenon of molten metal particles being ejected either (i) between the faying 
surfaces of the workpieces (i.e., surface of a sheet in contact with the other sheet to which it 
is to be joined) or (ii) at the contact interface between sheet and electrode during the welding 
process. In the second case surface quality might be affected (as well as the electrode life), 
but if the expulsion is limited to the sheet surface weld strength is not affected. The first kind 
of expulsion, instead, is strongly undesirable since it deeply affects the weld quality due to 
liquid metal loss from the nugget during welding. The molten metal taking part to the 
expulsion, indeed, belongs to the material which was destined to the weld nugget to be 
generated and is instead ejected [220]. In case of heavy expulsion, voids can appear within 
the nugget so to cause strong degradation of the weld strength. 
In line with that, expulsion should be reduced in RSW so to address the problem of eliminating 
nonconforming and low-quality welds. It is crucial to be able to monitor and control 
expulsions, so that welding parameters can be changed to reduce the incidence of such 
defect. 
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A wrong welding schedule can cause expulsion. It is common practice in industry to apply a 
set welding parameters close to the limits beyond which expulsion occurs (e.g., extreme 
welding current) so to achieve large weld nugget size which is important to meet weld quality 
requirements. However, since such expulsion boundaries for parameters vary depending on 
the actual welding condition (e.g., electrode wear), it usually happens that weldings are 
performed under expulsion condition. 
 
The causes of expulsion are disparate and involve electrical, thermal, metallurgical, and 
mechanical factors. However, the expulsion process can be explained through the interaction 
of two forces: 

• Force supplied by the electrodes. 
• Force from the liquid material within the nugget region towards the solid containment 

surrounding it. This force derives from the pressure that the molten metal is submitted 
to due to the compressive force between the sheets. Indeed, during resistance spot 
welding, the sheets are not allowed to expand freely, but are constrained by the 
electrodes pressure so to maintain electrical and thermal contact at the interfaces and 
to try to contain the liquid metal. 

Particularly, ‘expulsion occurs when the force from the liquid nugget onto the solid 
containment equals or exceeds the effective electrode force’ [221]. 
 

 
Figure 6.1 - Scheme of the forces acting during resistance spot welding [221] 

 
Depending on the workpieces material, it is possible to understand which force to apply 
through the electrode by studying the properties of the nugget liquid (e.g., pressure, 
temperature distribution, etc.) and of the workpiece materials so to predict the severity of 
the correlated expulsion [221] [222] [223] [220]. 
 

6.3 Proposed approach 
 
As mentioned, excessive expulsion is an undesirable outcome, as it is not symptomatic of a 
quality welding process but is a fallacy of the process itself. Indeed, this unwanted ejection of 
material beyond the weld zone can result in a weak weld joint (i.e., weak adherence between 
the material surfaces) and cause quality issues in the next production or operation steps that 
the workpiece needs to undergo. Structural problems might arise because the molten metal 
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taking part to the expulsion, belongs to the material which was destined to the weld nugget 
to be generated. Among other issues, also safety risks and dangers for the surrounding 
facilities might arise: indeed, molten pieces of hot metal are shot out, and might cause fires, 
burn the operators’ skin, etc. 
 
To these ends, the present work takes part in trying to address the issue of weld joint quality, 
by being a portion of the overall framework that would be needed to pursue such an 
objective. A deep learning algorithm, specifically a Convolutional Neural Network model, is 
proposed to potentially be included within a digital twin framework for welding quality 
monitoring and control. The inclusion of such an algorithm within a digital twin model could 
avoid the need for the human operator to perform visual inspection of the joined workpieces 
for expulsion detection, by instead carrying it out automatically through the image capturing 
process and the neural network predicting capabilities. 
The algorithm performs an image classification task to identify the presence of expulsion or 
not in the assembled workpiece: data has been acquired from the real environment of a RSW 
welding process in the form of pictures of the workpieces after the assembly has occurred, 
and then submitted to the algorithm which is able to extract features from the images 
themselves and classify them accordingly. Specifically, a simple and explicit variable is 
extracted, that is, whether the final welded assembly shows any expulsion or not: this variable 
represents the dependent variable for the CNN model to predict by receiving and being 
trained over captured images as input data. 
 
As already mentioned, the proposed CNN is not thought as a standalone solution, but as an 
integral component of a larger digital twin framework which could help in quality monitoring 
of the process. Indeed, as described within this thesis work, the combination of digital twin 
technology and advanced machine learning models is proving to have great potentialities in 
terms of real-time quality assurance, in welding processes as well as in other fields. 
 
In the diagram below, the steps followed for developing the presented application are 
highlighted, so to simplify the reading of the next paragraphs in which the different phases 
are described in detail. 
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Figure 6.2 - Steps followed to develop the present application 

 

6.4 Experimental campaign in laboratory 

For the purpose of gathering images needed to structure the dataset for the algorithm to run, 
an experimental campaign was carried out in J-Tech laboratory [224] with the help of an 
expert operator through an industrial 650 kVA Medium Frequency Direct Current (MFDC) 
resistance spot welding machine with a control unit, mod. TE700 by Tecna industry. 

156 DP590 steel slats of size 45x105x1mm were used as base materials for the welding 
process, so that 78 welds were carried out overall (2 sheets joined per operation). For each 
weld completed, a picture was taken of front and back of the welded specimens (as shown in 
Figures 6.3-6.4 examples) and a table was filled with the operating parameters of the specific 
welding process and the opinion of the expert operator (over a 0-4 scale) about the existence 
or not of any expulsion on the workpiece and its severity. 



 96 

 
Figure 6.3 - Workpiece with expulsion 

 

 
Figure 6.4 - Workpiece without expulsion 

 

6.5 The dataset 
 
As shown in Figures 6.3-6.4, completed workpieces are numbered through an ID going from 
1 to 78, specifying whether the picture is frontal or back, by adding ‘R’ to the identification 
code in case of back image. This step revealed to be pretty useful after the lab experiment 
when ordering the pictures and structuring the dataset in the best way possible to train the 
algorithm. 
As further explained in the following description of the algorithm, a supervised learning 
approach is used and for this reason, the dataset elements needed to be ordered and labeled: 
the set of pictures has been, indeed, split between those workpieces showing expulsion and 
those not showing any, as shown in Figure 6.5. 
 

 
Figure 6.5 - Labeled folders 
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Within each folder, the images are named after their identification number and the class 
folder they belong in (e.g., 78_YES, 18_NO, etc.). 
 

6.6 Images concatenation 
 
Right after the lab experiment, there were 156 images overall: 2 pictures for each weld, 
representing front and back of the welded workpiece (as shown in Figures 6.6-6.7). 
 

 
Figure 6.6 - Front picture of the workpiece 

 

 
Figure 6.7 - Back picture of the workpiece 

 
The algorithm, though, needed to receive as input one single picture for each welding process 
so to be able to understand whether that specific process generated any expulsion or not on 
the single merged workpiece. 
For this reason, before writing the actual CNN algorithm, a preliminary code was written and 
run in order to concatenate front and back pictures for each weld, ending up with one single 
image for each process, for a total of 78 pictures overall (as the number of total welds 
performed). 
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6.6.1 Image concatenation – Code 
 

 
Figure 6.8 - Screenshot of Images Concatenation code from Jupiter Notebook platform 

 
As a first step, the needed libraries were imported: 

a. Python built-in ‘os’ module, which allows to interact with operating systems and the 
local directories on the device [225]. 

b. Pillow (PIL, Python Imaging Library), which is a library providing image processing 
capabilities and, in particular, the ‘PIL.Image’ module which supplies the PIL image 
class and many correlated functions to manage images [226].  

 
A function is defined to carry out the concatenation of front and back images of the individual 
weld, receiving indeed front and back images as input parameters (JPG images). Through 
PIL.Image.new() function, a new empty Image object (newIm) is constructed with specified 
size (width of one image and height equal to the sum of heights of the two images). Through 
PIL.Image.paste() method, front and back pictures are pasted to this new Image instance and 
vertically concatenated one to the other. 
 
A ‘for’ loop is run 78 times, one per each final image to be obtained. Each image has been 
accurately named specifying its identification number and whether it is a front or back picture, 
and then saved within the expulsion_ YES and expulsion_NO folders. This allows to 
concatenate each frontal image to its corresponding back picture through the previously 
defined function, resize, and re-save the new image in a new database through the 
PIL.Image.save() method. The size of the concatenated image initially corresponded to (6000, 
8000) pixels, and has been proportionally downsized by a x10 factor to (600, 800) for the 
future network to run more smoothly with input images of manageable size. 
The new dataset containing the concatenated images is again structured into expulsion_NO 
and expulsion_YES folders, as it will be expected by the ML algorithm based on a supervised 
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learning approach, and each image is named after its identification number and YES/NO 
expulsion feature. 
 
An example of final image is given in Figure 6.9. 
 

 
Figure 6.9 - Example of resulting concatenated image (59_YES) 

 

6.7 The ML algorithm – A Convolutional Neural Network 
 
As anticipated in the introduction, the purpose of this case study is the one of developing a 
machine learning algorithm which is able to learn how to distinguish images representing 
welded workpieces with expulsion from those without [121]. 
This objective lies within the image recognition realm and as such, a convolutional neural 
network has been developed for this purpose, able to get images as input and perform a 
binary classification of such data inputs: the algorithm is, indeed, able to identify the category 
each workpiece image belongs to, that is ‘expulsion’ or ‘no expulsion’. 
 

 
Figure 6.10 - Scheme of the developed CNN for image classification 
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The developed model is a supervised machine learning algorithm, since the input images are 
structured into labeled folders for the model to understand the two categories of interest and 
be able to learn how to distinguish between them through the training process. 
 
In principle, starting from the full dataset, it is possible to manually split it into training, 
validation, and test sets through the ‘simple hold-out split’ methodology, by holding out a 
certain percentage of samples from the dataset to constitute validation and test sets. Then, 
the algorithm is trained over the selected training set by iteratively changing synapses 
weights, and its performance is evaluated through the chosen validation set, which contains 
new data not yet seen by the model. 
Still, such splitting approach is not completely unbiased and depending on the selected 
validation and test sets and, consequently, the remaining training set, the performance 
metrics for the algorithm might change. For instance, it might be that the selected training 
set of samples is not representative of the patterns in the real population and so, as the model 
is applied to real cases and new data, it does not work properly. 
So, the issue is related to how to split the full dataset between training, validation, and test 
sets, so to properly validate and test the model accuracy, with the purpose of deriving the 
best model configuration (in terms of hyperparameters setting) to be then applied to real 
cases after the training process has been satisfactorily completed. The most appropriate 
solution is to apply the so-called K-fold cross-validation technique, which is one of the most 
used testing methodologies and is based on training and validating the model repeatedly to 
perform the hyperparameters tuning procedure, till reaching the most adequate model 
configuration in terms of high prediction accuracy. 
First of all, a certain number of samples in the original datasets are set aside for the test set 
and are not used until the end of the training process. In this specific application, the choice 
of the images to include within the test set has been done in a way for the test set to be 
representative of the whole dataset population, so by maintaining the same proportion of 
images belonging to the first class (i.e., ‘expulsion’) with respect to those belonging to the 
second class (i.e., ‘no expulsion’). Since the whole dataset contains 48 pictures showing 
expulsion, and 30 not showing any, then the test set keeps this 5:3 proportion. 
Then, the remaining portion of the dataset is split into K subsets of equal size (called ‘folds’): 
at each iteration, one of the K folds is kept aside and used as validation set while the remaining 
K-1 folds are used as training set to train the model. The performance of the specific model 
configuration on the validation set is calculated at each iteration, and after all K iterations are 
completed, the K scores are averaged across all iterations so to obtain the overall 
performance of the specific model configuration (with a certain hyperparameters setting) 
[152]. 
In the present application, the original dataset has been split into training set on one side, 
and validation and test sets on the other, according to an approximately 7:3 proportion: the 
set aside test set contains 8 data samples (images), and the training and validation sets 
contain 56 and 14 samples respectively. In the cross-validation procedure, K is set to 5 
meaning that the dataset (after test set exclusion) is split into 5 folds and 5 training iterations 
are performed, each with a different validation set and a different resulting accuracy value. 
The model is then evaluated based on the average accuracy over the 5 sets used for 
validation. 
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Figure 6.11 - 5-fold cross-validation scheme [227] 

 
In the specific case study object of this thesis work, a special typology of K-fold cross-
validation was applied, called Stratified K-Fold Cross Validation, which is more suitable for a 
binary classification problem, as the one under consideration. 
 
6.7.1 Convolutional Neural Network – Code 
 
In the following, a line-by-line description of the developed code is proposed. 
The algorithm was developed in Python coding language on Jupiter Notebook environment 
[121]. 
 

 
Figure 6.12 - Importing the libraries 

 
The usual first step consists in importing the needed libraries: 

a. TensorFlow is an open-source library to carry out deep learning tasks with Python 
[228]. 

b. TensorFlow Datasets is an API that provides a collection of ready-to-use datasets and 
several functions to work with datasets [229]. 

c. Keras is an open high-level Python API for neural networks, and it can run on top of 
TensorFlow library [230]. Importing the ‘tensorflow.keras.preprocessing.image’ 
module of Keras allows to perform preprocessing tasks over image datasets. 

d. By importing the ‘layers’ module of Keras, it is possible to work with layers which are 
the basic building blocks of neural networks [231]. 
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e. Scikit-learn is another open-source library providing tools for predictive data analysis. 
In particular, its ‘sklearn.model_selection’ module provides different methodologies 
to split the dataset into training and validation sets and perform an evaluation of the 
model, among which the Stratified K-Fold cross-validation technique is imported. The 
sklearn.metrics module of Scikit-learn library, instead, implements different functions 
to evaluate the performance of models and in particular, confusion_matrix scoring 
method, accuracy, and loss are imported to evaluate the accuracy of the classification 
[232]. 

f. NumPy is a library which allows to work with arrays, typically used as inputs to feed 
ML models [233]. 

g. Matplotlib library allows to create data visualizations and its ‘pyplot’ module, in 
particular, is able to graphically plot data [234]. 

h. As for the image concatenation code, Python built-in ‘os’ module is imported, which 
allows to interact with operating systems and the local directories on the device. In 
particular, the os.listdir() method is imported, which returns a list containing the 
names of the entries in a specific directory [225]. 

c. Pillow (PIL, Python Imaging Library) is a library providing image processing capabilities 
and, in particular, the ‘PIL.Image’ module which supplies the PIL image class and many 
correlated functions to manage images [226].  

 

 
Figure 6.13 - Seeding the random number generator 

 
Generally, neural networks algorithms work on a stochastic basis, meaning that training the 
same network multiple times with the same dataset might yield different classification results 
(i.e., accuracy of predictions over the same validation and test sets can be different) [235]. In 
this way, accuracy results obtained from two different training procedures would not be 
comparable one with the other and it wouldn’t be possible to understand which model setting 
is the most appropriate, since obtained accuracies would not be comparable and a better 
result could be simply due to randomness in the network (e.g., synapses weight are randomly 
initialized at the beginning of the training process). 
This code line allows to seed the random number generator, making the program fully 
deterministic and reproducible so that the same results can be obtained every time the same 
network (with same hyperparameters setting) is applied to the same dataset (e.g., synapses 
weight are randomly initialized in the same way every time the same training process is 
started over) [236]. 
 

 
Figure 6.14 - Importing the dataset 
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After these preliminary steps, the images dataset has been imported on Jupiter Notebook 
from a local folder and the binary labels (i.e., ‘expulsion_YES’ and ‘expulsion_NO’) are 
automatically inferred by the algorithm thanks to the two pre-labeled folders. Images size has 
been chosen on the basis of a trial-and-error approach: a larger size for the images made the 
algorithm strongly inefficient and running very slow, so to make it difficult to perform 
hyperparameters tuning and evaluate its performance and accuracy. 
In this algorithm, the features within the images represent the independent variables since 
they are the known features of the problem under analysis, and the labels represent the 
dependent variables, as they are the targets that the algorithm needs to predict by classifying 
the images. The imported dataset contains both the images themselves and the automatically 
inferred labels: (image, label). In line with the format required by the CNN as input, two 
NumPy arrays are created, one containing the images and the other the labels (x and y 
respectively). 
 

 
Figure 6.15 - Building the CNN model 

 
Here, as a first step, the Stratified K-fold Cross-Validator is defined. The reason why Stratified 
K-fold cross-validation is used rather than plain K-fold cross-validation is that the former is an 
extension of the latter to be specifically used for classification problems. 
With Stratified K-fold cross-validation, splits do not occur randomly, but rather the ratio 
between the target classes (i.e., ‘expulsion_YES’ vs ‘expulsion_NO’) is preserved and kept in 
each fold equal to the one in the complete dataset. 
In principle, if the available dataset was large enough, regular K-fold cross-validation could be 
used since the ratio between the two classes would be more likely to be maintained within 
each fold, despite random splitting [237]. In the presented case, though, the dataset is not 
large enough for this reasoning to be valid and Stratified K-fold cross-validation seemed to be 
more appropriate. 
 
Then, the Convolutional Neural Network architecture is finally built, by constructing a 
Sequential model via Keras: 

a. A variable corresponding to the model itself is created and the CNN is initialized as a 
sequence of layers by defining it as an instance of a Keras Sequential object: an input 
layer, one hidden layer, and an output layer [238]. 

b. Feature scaling is performed by introducing a Keras rescaling layer, so to rescale all 
input images down to the same scale [239]. 
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c. Two Keras Layers for data augmentation are included within the network: RandomFlip 
[240] and RandomZoom [241] layers to respectively flip (horizontally in this case) and 
zoom the input images so to augment the training set. 

d. Two convolutional layers [242] and two max pooling layers [243] are added to the 
network, to respectively carry out the convolution and max pooling operations over 
the images. After having tried with higher amounts of filters and kernel sizes, each 
convolutional layer was finally set to contain 64 filters of 3x3 size which resulted in a 
good trade-off between accurate features extraction and computational efficiency. 
The pool size corresponds to the size of the matrix that is used in the Max Pooling 
operation, and in this case a 2x2 filter is applied. According to the specified ‘strides’ 
parameter, this window slides over the image by 2 pixels per time. 
After each convolution is carried out, ReLu activation function is applied to the 
resulting feature maps to break the linearity introduced by the convolution operation. 

e. The flattening operation is carried out through a Keras Flatten Layer [244], to prepare 
the extracted features before being fed into the fully-connected portion of the CNN. 

f. Then, 1 hidden layer is created as a Dense layer [245] with 8 units, while the input 
layer is implicitly created and will contain as many input neurons as the features of 
the input data. The choice of the number of hidden layers and hidden neurons will be 
discussed in the following section dedicated to hyperparameters tuning. 
The Dense objects are a specific typology of layers defined as fully connected layers, 
since they connect each node in the layer to each node belonging to the previous and 
to the following layers. 
As it is common practice, both hidden layers apply the ReLu activation function on the 
pre-activation output of their units, because of its implementation simplicity and 
effectiveness. 

g. The output layer is built as a Dense layer as well, containing 1 single neuron since the 
algorithm is supposed to perform a binary classification of the input images into the 
two categories ‘expulsion_YES’ or ‘expulsion_NO’ and so, to predict a binary variable 
for which only 1 neuron is sufficient (taking value corresponding to 1 or 0 to distinguish 
the two classes). In line with this reasoning, Sigmoid function was chosen for this 
binary classification problem over Softmax activation function because of it higher 
computational simplicity: indeed, Sigmoid function allows to have one single output 
node with the probability of the input to belong to class 1, while SoftMax would have 
implied 2 output nodes, one corresponding to the probability of the output to belong 
to class 1 and the other to the probability of it to belong to class 0 [246]. 

h. After the model is built, it needs to be compiled by firstly specifying the ‘optimizer' to 
be used: the best optimizers are the ones performing SDG, like the ‘adam’ optimizer 
that is a variant of the SDG optimization approach and is applied in this case study. 
The loss (or cost) function is specified, that is the way the difference between 
predictions and real values is computed during the training process: in this case, a 
‘binary_crossentropy’ cost function was introduced, that is the one commonly 
introduced in case the algorithm is supposed to carry out a binary classification. 
Finally, evaluation metrics are chosen to evaluate the performance of the CNN, and in 
this specific algorithm the accuracy metric has been selected. Over the epochs, the 
accuracy evaluation metric is expected to incrementally grow while the loss function 
value is supposed to decrease.  
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Figure 6.16 - Training the model over the training set 

 
Two pair of empty lists are created, since they are going to contain the accuracy per each fold, 
computed with 2 different approaches, as it will be explained in the following. 

 
At this point, Stratified K-fold cross-validation can start by iteratively splitting the dataset 
between a training set and a validation set, interchanging at each repetition the images 
included within these two sets. This is done within a ‘for’ loop in which the i index indicates 
the current K-fold cross-validation iteration, and the StratifiedKFold.split() method yields two 
sets: one containing the indices of the training set and the other the indices of the validation 
set resulting from the split. 
At each iteration, the model is trained on the selected training set by calling the Keras 
Model.fit function. It firstly receives the NumPy arrays containing training set images and 
corresponding labels. Then, epochs are specified representing how many times the training 
set is passed through the model during the training process of each fold: in this case, for each 
of the 5 steps of K-Fold Cross-Validation, the training set is passed to the network 1000 times 
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(epochs). The choice of this number of epochs will be discussed in the following section 
dedicated to hyperparameters tuning. Finally, by specifying the ‘shuffle’ argument equal to 
True, the training data will be shuffled in a different order before each epoch: this is useful to 
avoid that the model learns any sequence from the data which might finally lead to 
overfitting. 
As the model is under training, the progress of the training process over epochs and folds is 
presented as follows: the indexes of training set and validation set of the specific K-fold cross-
validation iteration are displayed, and then, for each epoch, accuracy and loss of predictions 
over the training set are shown. 
 

 

 
Figure 6.17 - Example of training process visualization 

 
The next steps will be focused on the evaluation of the model over the validation set, with 2 
different approaches. This has been done to have a double check over the procedure followed 
and indeed, in the end, both procedures yielded the same exact results in terms of accuracy 
of the model predictions across all the model configurations tested. 
 
FIRST APPROACH: model.predict() 
 
The model.predict() method of Keras framework returns the output predictions related to the 
input samples it receives as parameters: in this case, the method is fed with the validation set 
over which predictions need to be carried out so to evaluate the model performance. 
Since the function yields the predictions in the form of probabilities of each sample in the 
validation set to belong to class 1, these probabilities are better be transformed into Boolean 
predictions, that is, equal to 1 if the sample image belongs to ‘expulsion_YES’ class and equal 
to 0 if it belongs to ‘expulsion_NO’ class. This is done thanks to a ‘for’ loop, which is also used 
to compare each prediction with the ground truth, that is, with the true label of each sample 
image (available since the dataset is labeled), so to count the right predictions performed. 
After that, accuracy for this fold is derived as the fraction of right predictions over the total 
predictions performed: at each iteration, 14 predictions are performed on the validation set, 
because it is composed of 14 elements resulting from the split of the overall 70 samples into 
5 folds of 14 samples (4 folds for the training, 1 for the validation). Accuracy is appended to 
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the initially created list of accuracies, containing accuracies derived through model.predict() 
method performed for each of the folds. 
Then, the confusion matrix is derived for the specific fold, for a better understanding of 
correct and incorrect predictions over the validation fold. 
 

 
Figure 6.18 - Example of returned accuracy and confusion matrix by the algorithm 

 
SECOND APPROACH: model.evaluate() 
 
The model.evaluate() method keeps its computation more enclosed within itself with respect 
to model.predict(). Indeed, it simply receives features and labels of the validation set as 
parameters and yields the metrics corresponding to the predictions it internally performed. 
Again, accuracy is appended to a list containing all the accuracies derived through the 
model.evaluate() method for each of the folds. 
 
By comparing the accuracies derived from model.predict() and model.evaluate(), it is possible 
to verify that they yield the same exact results, giving in this way more consistency to the 
followed procedure. 
 

 
Figure 6.19 - Average accuracies for the two validation methodologies 

 
Starting from the lists containing accuracies per fold, the average accuracy is calculated for 
both the validation methods introduced and it is proven to be the same. 
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Figure 6.20 - Accuracy resulted through the 2 validation methods for a specific hyperparameters configuration 

 

 
Figure 6.21 - Model run over the test set 

 
After the K-fold cross-validation procedure is terminated, and the best model configuration 
has been derived accordingly through hyperparameters tuning (as described in the following 
section), the model is set to the chosen hyperparameters and trained from scratch over the 
whole dataset (except for the test set), without the need for distinguishing anymore between 
training and validation sets. Indeed, validation set is not useful anymore: it has been used for 
deriving the best model configuration through hyperparameters tuning; now that the best 
model setting has been found, such model needs to be trained; this training can be performed 
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over the whole initial dataset by keeping apart some datapoints for the final testing. As this 
training process comes to an end, the model is then ready to be applied to newly unseen and 
unlabeled data. The model.predict() function is called on the model to perform predictions 
over the test set which was set aside at the beginning. Within a ‘for’ loop, the algorithm 
understands whether the prediction made over a sample in the test set is correct or not by 
comparing it with the name with which the image was locally saved on the device (e.g., 
52_NO) which contains an indication of the image label (without actually passing the 
algorithm the label information as it occurred for training and validation sets). In this way, a 
test accuracy can be computed as the ratio of correct predictions over total predictions 
performed on the test set samples. 
 

 
 

Figure 6.22 - Example of how performed predictions over the test set are displayed 

 

6.8 Hyperparameters tuning 
 
As anticipated, hyperparameters tuning is the process of running the network several times 
by changing its hyperparameters until the best setting is achieved in terms of prediction 
accuracy. This process allows to derive the best model configuration for the problem under 
analysis: depending on the chosen hyperparameters, and so, on the chosen model 
configuration, the algorithm will derive the network’s internal parameters during the training 
process and achieve certain values for prediction accuracy accordingly.  
So, it is clear how this tuning process is crucial for achieving the best accuracies possible, since 
it indirectly influences (by affecting the internal learnable parameters, like synapses weights) 
the outcome of the model in terms of final validation and test accuracies. 
 
In this application, 3 hyperparameters have been chosen to perform the tuning, while all the 
others are kept constant throughout the whole process: 

• Number of hidden layers (1 or 2) 
• Number of neurons within the hidden layers (4, 8, or 12) 
• Number of epochs (250, 500, 750, or 1000) 

 
In order to have a clearer understanding of the behavior of the developed algorithm, the 
hyperparameters tuning and testing procedures have been repeated 5 times by interchanging 
images within the training, validation, and test sets: so, for each of the 5 procedures, the 3 
datasets contained different images and, consequently, yielded different prediction accuracy 
results over both validation and test sets. 
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Each test set used was composed of 8 images, with same proportion between pictures 
showing expulsion (5) and those not showing any (3), so to keep consistency with the 
proportion between classes existing in the overall original dataset. 
 

6.9 Analysis of the results 
 
For each of the 5 testing procedures described above, validation accuracy and test accuracy 
have been calculated to derive the best model configuration, as they are directly influenced 
by the chosen model architecture and hyperparameters, and the quality, other than size, of 
the training set. Then, an analysis of the correct or incorrect prediction over each single image 
within each test set has been performed, so to study and understand that some images are 
more likely to be incorrectly predicted by the CNN than others, since harder to classify for 
some reason. 
 
As an example, in the following a table is reported showing the resulting accuracies for 
different model configurations when performing the testing with the ‘best’ and the ‘worst’ 
selected test sets (in terms of fraction of images correctly classified over the different 
attempted model configurations). 
 

 
Figure 6.23 - 'Best' test set 
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Figure 6.24 – ‘Worst’ test set 

 
The 5 tables used for this analysis (one per different test set introduced) are structured as 
follows: 

• Identification number for the model configuration tested and hyperparameters 
chosen for that specific setting. 

• Resulting validation accuracy derived through the K-fold cross-validation 
methodology. 

• Resulting test accuracy computed as correct predictions over total predictions 
performed over the specific test set. 

• Detail of how the individual images within the test set have been (correctly or 
incorrectly) classified by each model configuration, with computation of an accuracy 
per image defined as the fraction of times in which the specific image has been 
correctly predicted throughout all the model configurations attempted. 

 
Then, the results of the 5 analyses have been displayed through graphs representing trends 
in validation accuracy and test accuracy as the number of epochs, number of hidden layers, 
and number of hidden neurons vary. To serve as an example, the graphs related to the Test 
set 3 case are reported and analyzed. 
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Figure 6.25 – Accuracy results from Test set 3 

 
It can be noticed that variations in test set accuracy are wide from one configuration to the 
other: the reason is that being the test set so small (i.e., composed of 8 images), as soon as 
one algorithm configuration wrongly classifies 1 image more with respect to another setting, 
the test accuracy decreases by 12.5 percentage points. 
 
In general, it can be noticed that when fixing the number of hidden layers and hidden neurons 
(together with all the other hyperparameters not specifically studied in this application) while 
varying the epochs, the validation and test accuracies increase with the number of epochs (or 
at least stay constant). This is due to the network refining its understanding of the training 
data and as such, making better predictions.  
However, there are some exceptions to this general behavior. 
A large number of epochs, indeed, does not always imply an increase in accuracy: increasing 
epochs might increase prediction accuracy up to a certain point, beyond which the model 
might start overfitting the training data and accuracy deteriorates [247] [248] [249]. 
Indeed, in those cases which show validation accuracy or test accuracy decreasing as the 
number of epochs increases, the network might be overfitting the training set: an epoch is a 
single pass of the complete training dataset through the network, which uses it to update its 
internal parameters; by increasing the number of epochs it might occur that the model gets 
too specialized to the specific training set by memorizing it and being uncapable to generalize 
what it learnt to new unseen datasets. The model gets too dependent on the features in the 
training set, by learning the noise within the data (i.e., patterns and features irrelevant for 
the classification of interest) and will generate higher prediction error rate over validation 
and test sets. For this reason, while the model keeps on performing better and better on the 
training set, its ability to perform correct classifications over validation and test sets gets 
worse, with validation and test accuracies staying constant or even decreasing (usually, test 
accuracy is lower than validation accuracy in case of overfitting). 
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So, the number of epochs is a crucial parameter to be set. If set too high, overfitting might 
arise; while if set too low, then underfitting might occur with the model not being trained for 
long enough to learn the patterns within the data and so, failing in capturing the features 
needed to perform satisfying predictions over all the datasets (training, validation, and test). 
 
Another reason behind this exceptional behavior might be related to the relatively small 
training dataset available in this case study: it might be that such dataset is not large enough 
for the model to be trained and that the model is too complex compared to the training set 
size, so that the network will keep on learning from the same data without improving (or even 
worsening). 
 
In principle, to choose the proper number of epochs for the model, attempts could be 
performed to see at what point overfitting starts arising, as it was done in this specific 
application through hyperparameters tuning via cross-validation. By experimenting different 
number of epochs and monitoring the resulting validation and test accuracies, the optimal 
number of epochs can be derived also depending on the specific model architecture chosen 
(e.g., number of hidden layers, number of hidden neurons). 
 

 
Figure 6.26 - Identification of overfitting [250] 

 
However, as previously mentioned in the document, one possible way to address the choice 
of the right number of epochs and to avoid the overfitting issue is to introduce some 
regularization techniques like dropout or early stopping. 
This can be easily done with classes provided by Keras (EarlyStopping [251]). EarlyStopping 
allows to interrupt the training process of the model when a specifically indicated metric has 
stopped improving: in case the validation loss is monitored, the network ends its training 
process as that metric starts increasing; in case the validation accuracy is monitored, the 
training process ends as that metric starts decreasing. 
 
For what concerns the impact of number of hidden layers and number of hidden neurons on 
the model performance, in general, if the CNN has too few hidden layers, it might not be able 
to identify the complex patterns within the datasets so that it underfits the data, leading to 
poor validation and test accuracies. Too many hidden layers, instead, can make the model too 
complex so that it might start overfit the training data making validation and test accuracies 
deteriorate. So, the optimal number of hidden layers for the network depends on the specific 
problem and on the complexity of the dataset available: in the specific case, in which a CNN 
has been developed, the number of hidden layers affects the ‘depth’ and precision with which 
the network learns the features within the images. Typically, deeper CNNs can learn more 
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complex features, but it actually depends on the complexity of the problem to be solved: for 
simpler problems, like the one presented, also single-layer networks can perform good 
classifications. As it will be clearer in the last paragraphs of this chapter, 1 hidden layer 
seemed enough for this specific application, since by increasing the number of layers up to 2, 
accuracies didn’t improve enough to justify the much higher computational cost and time 
introduced by the additional layer. 
 
To understand the behavior of the model with respect to different input images, the 5 test 
sets have been picked of different ‘difficulty’ levels, proving that the model finds is difficult to 
identify the expulsion where it is not even clearly evident to human eyes. 
Indeed, there are certain images where expulsion is barely visible that are never (or almost 
never) correctly classified by the algorithm: in line with the definition of expulsion, indeed, 
not necessarily the expulsion defect appears at the contact interface between sheet and 
electrode and is clearly visible; indeed, it might take place between the faying surfaces of the 
workpieces and be completely (or almost completely) hidden (in cases in which the ejection 
does not go outside the overlapped section of the workpieces).  
Here some examples of those images that the algorithm finds difficult to classify no matter 
its model configuration (i.e., the chosen hyperparameters). 
 

 
Figure 6.27 – Example of image difficult to be classified by the CNN 
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Figure 6.28 - Example of image difficult to be classified by the CNN 

 
In conclusion, to identify the best model configuration for this problem, a summary table has 
been derived, showing the tried model configuration with average (validation and test) 
accuracies calculated over the 5 testing attempts performed. 
 

 
Figure 6.29 - Summary for model configuration choice 

 
In line with these results, configurations 2, 3, 4, 7, 8, and 12 seem to be the best candidates 
to be chosen for the problem under analysis. 
Indeed, despite some similarly good results can be achieved with configuration involving 2 
hidden layers, choosing such configuration is not worth it in terms of computational costs and 
times. As an example, configuration 19 brings slightly better results than configuration 7: 
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however, given (i) the ‘simple’ task needed to be carried out to solve this problem (i.e., binary 
classification by identifying a relatively simple variable, that is the existence of expulsion or 
not) and (ii) the basically inexistent improvement in accuracy brought about by introducing 2 
hidden layers rather than 1, it is more convenient to choose simpler configurations to reduce 
the network complexity (and consequently, computational costs and times) by still reaching 
comparably high accuracy values. 
In a trade-off between relatively ‘low accuracy increase with higher computational costs and 
times’, and ‘not much lower accuracy with much lower computational costs and times’, the 
second scenario has been preferred when choosing the most suitable model configurations 
for the problem under analysis. 
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Conclusion 
 
This thesis work led through a journey into the union between digital technologies and 
manufacturing processes, to discover how the approach in industrial operations is changing 
and evolving towards a more digitalized and automated setting. 
Leading this transformation are Digital Twins with their ability of basically nullify the gap 
between real and virtual worlds, providing for a virtual mirror of reality in a way to help in the 
real environment management. 
A theoretical overview of the concepts and a literature review made it possible to realize how 
the digital twin technology is typically applied in the field of welding processes: real-time 
monitoring, anomalies detection, real-time support in decision making, and many more. From 
this research process, it became clear how the integration of Machine Learning procedures 
within a Digital Twin framework is beneficial since making the framework itself ‘Intelligent’ 
and able to perform data-driven predictions and analyses. 
To this end, this thesis work wishes to provide a practical exploration of the intersection 
between digital twin and machine learning (particularly deep learning) capabilities: a 
Convolutional Neural Network is introduced, tailored for image classification in Resistance 
Spot Welding and designed for detecting welding expulsion events. Such a model is not 
thought as an isolated solution, but rather as a building block which could enrich a broader 
digital twin framework for welding real-time quality monitoring, since expulsion can critically 
affect the final quality of the assemblies and should be kept under control as a quality index. 
It is not easy to recognize the goodness of a welding joint, and a digital representation of the 
welding process able to predict the quality of such joint could be strongly beneficial. 
As revealed by the analysis of the network results, the classification accuracies are pretty good 
if one considers the relatively small size of the input images dataset with respect to the huge 
ones emerged from the literature review. 
 
However, also limitations and challenges implied by the developed work should be 
acknowledged and future works should address such limitations by refining even more the 
CNN model accuracy and optimize its performance. 
Firstly, the small size of the input dataset of images is clearly problematic and affecting the 
final accuracy values by the network. Future works should focus on the extraction of a much 
larger dataset, containing a larger number of diversified data points for the algorithm to train 
over a larger set of features and learn additional information to perform a more accurate 
classification. 
Secondly, in the work presented a simple and straight-forward independent variable is 
derived from images features, that is the existence or absence of any expulsion trace on the 
final workpiece. Is such variable directly connected to the strength of the weld spot? Of 
course, the presence of expulsion could seriously impact the assembly strength, but not 
necessarily a workpiece classified as containing expulsion signs is not strong enough to 
continue to the following step of its manufacturing process. So, subsequent works should try 
to extract a more direct quality metric, able to directly assess the goodness of the welding 
joint, by even using the output variable extracted by the present model as input variable for 
another algorithm able to derive more direct quality indicators. Also, a more accurate 
algorithm could be able to predict a non-binary categorical variable not only to identify the 
simple presence of expulsion or not, but also its severity over a certain scale of values. 
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As a third point, evidently the process of input images extraction post-welding process should 
be automated as much as possible: in the present work, the focus was on understanding the 
functioning of a CNN, and for this purpose images were taken manually after the RSW process 
was ended. Understandably, this is not feasible over an industrial production line where the 
physical production process should not be delayed by the time needed by an operator to take 
pictures of the performed assemblies. The introduction of an industrial device for capturing 
existence or absence of expulsion during the welding process should be taken into account 
(e.g., an industrial camera for machine vision applications), so to accelerate the data 
extraction procedure. 
Fourthly, some improvements can be obtained in terms of hyperparameters tuning. Indeed, 
much more hyperparameters could be tuned like the learning rate, the number of filters, and 
the size of kernels used for the convolution, and more. In addition, automated tuning 
approaches could be introduced within the algorithm, able to automatically derive the best 
model configuration in terms of hyperparameters, like Grid Search, Random Search, Bayesian 
optimization, etc. 
Finally, the developed network is based on a supervised learning approach: this implies that 
an expert operator should manually classify the images within the training set by assigning 
‘expulsion’ or ‘no expulsion’ labels to each image data point. Despite it would require a much 
larger input dataset, future works could focus on the development of a network based on an 
unsupervised learning approach to relieve the human operator of such preliminary time-
consuming labeling duty. 
 
In conclusion, this thesis work tries to give contribution but especially to highlight the 
challenges and opportunities ahead in a field which is wide and continuously evolving. A lot 
of research is still needed to understand the huge functionalities that digital twins and 
machine learning models can provide for improving monitoring and control over the 
manufacturing processes. The boundaries of these technologies should be pushed again and 
again, overcoming existing and future limitations, and embracing the limitless potential of 
Industry 4.0 enabling technologies in redesigning the future of the industrial landscape. 
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