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SUMMARY

Approximate Linear Programs (ALPs) are fundamental models for computing value function

approximations and bounds for high-dimensional Markov decision processes (MDPs) arising

in a wide range of applications. ALP has a manageable number of variables and a large

number of constraints. Constraint generation and sampling are two traditional approaches

to handle the numerous constraints. The former approach has limited applicability. The latter

approach, while broadly applicable, does not guarantee a valid bound on the optimal policy

value. Constraint violation learning is a recent approach for solving ALP that combines first-

order methods with Metropolis Hastings sampling to provide a general purpose approach that

retains the bounding property of ALP and has convergence guarantees. Its use of Metropolis

Hastings however limits its scalability. This thesis introduces a novel adaptation of constraint

violation learning based on Langevin Dynamics (LD) that allows us to scale the solution of

ALPs to higher dimensional applications.

The primary contribution of the thesis is a comprehensive examination of LD for constraint

violation learning. This is a challenging setting for LD because sampling distributions are not

log-concave in general, which is when LD has well understood theoretical properties. Never-

theless, we find that a log-concave regularization term used within constraint violation learning

plays an important role in ensuring the effectiveness of LD. We argue that the core computa-

tional cost of LD is dimension independent. Through a comprehensive numerical study on a

perishable inventory control application, this thesis demonstrates that LD maintains consistent

vii



SUMMARY (continued)

running times even as MDP dimension increase, making it a scalable option for solving ALP.

In contrast, Metropolis Hastings does not scale as effectively, as expected.

This research extends the scalability of ALP using an LD based sampling approach in

constraint violation learning. The exploration of LD for solving ALP is novel, thus bringing

together tools from machine learning and operations research. We are also not aware of the use

of LD to address the large scale nature of mathematical programs (e.g., linear programs). This

thesis takes a first step at exploring this interface and its findings motivate the exploration of

LD for large-scale optimization beyond ALP.

viii



CHAPTER 1

INTRODUCTION

In operations research, Approximate Linear Programming is a pivotal technique to approx-

imate high dimensional Markov decision processes (MDPs). Its significance is underscored

by its ability to provide solutions to MDPs that are otherwise computationally intractable to

solve. However, despite its importance, ALP is often criticized for its lack of scalability, es-

pecially when dealing with high-dimensional problems. In recent developments, [1] introduced

constraint violation learning as a potential solution to overcome the limitations of traditional

approaches such as constraint generation and constraint sampling for solving ALP. Yet, this

approach is not without its own limitations. Specifically, it heavily depends on the computa-

tion of high-dimensional expectations, which [1] tackle using Metropolis Hastings, a sampling

technique that does not scale well with dimension.

Venturing into the realm of machine learning, this thesis introduces a novel approach to

address this limitation: the use of Langevin dynamics for computing high dimensional expec-

tations in constraint violation learning. Langevin dynamics, having shown immense promise

in machine learning for sampling from high-dimensional distributions, offers a novel avenue

to enhance the scalability and efficiency of constraint violation learning in ALP. However, its

application in an ALP setting is non trivial because its theoretical properties have been well

documented in the case of log-concave distributions, a condition not always met.

1
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Langevin dynamics, with its origins in statistical mechanics, has been a cornerstone in

the study of molecular motion. Its ability to traverse complex energy landscapes through the

inclusion of stochastic components, makes it an ideal tool for the challenges posed by ALP.

By leveraging Langevin dynamics, this research aspires to elevate sampling efficiency, ensuring

that the derived solutions are not only optimal but also computationally viable.

As previously mentioned, the distributions from which we sample are not necessarily log-

concave. However, in our research we found that by changing the value of the regularization

term in constraint violation learning, we can influence the log-concavity of the distribution.

Through fine-tuning of the regularization parameter we are able to effectively obtain samples.

It is worth noting that this is one of the first works which introduces the use of Langevin

dynamics into linear programming. Furthermore, to the best of our knowledge, no other work

as studied a distribution whose log-concavity can be modulated by a parameter.

In order to ensure that the samples we obtain are within the state-action domain, we have

added a projection step following the Langevin update. This step acts as a safeguard, ensuring

that our samples remain consistent with the constraints of our problem space.

The proposed methodology’s ability to handle large instances effectively showcases its po-

tential for real-world applications where dimensions can be vast and varied. The crux of this

research lies in the development and meticulous evaluation of an algorithm that seamlessly melds

Langevin dynamics into the ALP framework. While the theoretical foundation is paramount,

the real merit of any method is gauged by its practical application. In this context, the Perish-

able Inventory Control (PIC) problem is utilized as a testing ground. PIC serves as a rigorous
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platform to assess the efficacy, scalability, and adaptability of the Langevin dynamics-infused

approach.

The ramifications of this study are significant. The prospects of diminished computational

demands and therefore superior scalability have the potential to extend the applicability of

ALP. More broadly, melding Langevin dynamics with ALP paves the way for tackling a other

large scale optimization challenges across varied sectors. It also presents another area where

synergies between machine learning and operations research (specifically optimization) appear

to have significant value.

The structure of this thesis is as follows: Chapter 2 provides a literature review, discussing

existing methods and their limitations. Chapter 3 covers the background material, offering

insights into the foundational concepts that underpin the subsequent chapters. In Chapter 4,

the focus shifts to the introduction of constraint violation learning and the detailing of our

innovative approach that harnesses Langevin dynamics. Chapter 5 presents the results derived

from the proposed methodology, offering both a detailed analysis and a comparative perspective

with existing methods. Chapter 6 provides concluding remarks and points towards potential

avenues for future exploration in this domain.



CHAPTER 2

RELATED LITERATURE

Sampling techniques have consistently been a focal point of research, evolving with the

introduction of numerous methods tailored to address its inherent challenges. In recent times,

Langevin dynamics, a technique with origins in physics, has carved a niche for itself within

the machine learning community [2] [3] [4] [5] [6]. The technique’s adeptness in handling high-

dimensional domains hints at its potential versatility, extending beyond its current applications.

The integration of Langevin dynamics into optimization is a more recent endeavor, with lim-

ited literature bridging the two [7] [8]. This is somewhat unexpected, considering the pivotal role

sampling has always played in optimization, particularly when dealing with high-dimensional

distributions. While traditional methods like Metropolis-Hastings have their merits, they often

grapple with challenges in high-dimensional spaces. In contrast, Langevin dynamics offers an

alternative approach, bypassing some of these inherent difficulties. While there is some use of

Langevin dynamics in optimization, to the best of our knowledge, it has not been used to solve

large scale math programs.

Our study embarks on this innovative journey, applying Langevin dynamics within the

context of constraint violation learning for solving Approximate Linear Programs. Historically,

ALPs have been addressed through two primary strategies: row generation [9] [10] [11] and

constraint sampling [12] [13] [14] [15]. The former involves solving a relaxed version of the

ALP with a limited subset of constraints, while the latter pre-samples state-action pairs by

4
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simulating a heuristic control policy. Constraint violation [1] learning, however, differs from

these methods. It identifies and samples constraints that are highly violated and uses them to

solve the ALP.

To the best of our knowledge, this is the first study where the log-concavity of the distribu-

tion being sampled can be controlled using a parameter. This aspect remains largely uncharted,

yet it holds significant importance. Within the domain of Langevin dynamics, the log-concavity

directly influences both the convergence rate and the precision of the samples.

In summary, this work delves into the intricate interplay between Langevin dynamics and

large scale optimization, particularly within the context of constraint violation learning for

Approximate Linear Programs. By introducing a parameterizable log-concavity to the sam-

pled distribution, we open a new dimension of exploration that can significantly impact the

convergence and accuracy of Langevin dynamics.



CHAPTER 3

BACKGROUND MATERIAL

3.1 Approximate Linear Programming

3.1.1 Introduction to Markov Decision Processes

A Markov Decision Process (MDP) is a mathematical model that captures the essence of

decision-making in stochastic environments. It is a fundamental concept in operations research,

artificial intelligence, and many other fields where decisions are made over time under uncer-

tainty.

An MDP is defined by the following components:

• S: denotes the state space.

• A: the action space, which is independent of the state.

• p(s′|s, a): the transition probability density function which represents the probability of

moving from state s to state s′ under action a.

• c(s, a): denotes the cost of taking action a in state s. This cost is a continuous function

spanning both the state and action domains.

• γ: discount factor, which has a value between 0 and 1.

• π : S −→ A : maps each state in set S to an action in set A.

Both S and A are assumed to be continuous, convex, and compact domains. Additionally

we operate under the assumption that these spaces are full-dimensional to sidestep potential

6
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problems. Given these elements, we can define the expected discounted cost under policy π

over an infinite planning horizon as:

V π(s) = E
π
s

[

∞
∑

t=0

γtc(st, π(st))

]

(3.1)

Where st represents the state at time t when applying policy π from an initial state s0 = s.

The expectation is computed with respect to π and the corresponding transition probability

distribution p(·|s, a). The objective is to determine a policy π by minimizing V π(s) over the

set of all feasible policies Π.

V ∗(s) = inf
π∈Π

V π(s), ∀s ∈ S. (3.2)

Adopting Assumption 1 from paper [1], we substitute the infimum with a minimum. The

optimal policy, π∗, solves the Stochastic Dynamic Program (SDP) given by

V ∗(s) = min
a∈A

[

c(s, a) + γEp[V
∗(s′)|s, a]

]

, ∀s ∈ S. (3.3)

Here, Ep[V
∗(s′)|s, a] represents the expectation determined by p(·|s, a).

Theoretically, this SDP can be formulated as an infinite linear program, as detailed in [16]:

max
V

Eq[V (s)]

s.t. V (s)− γEp[V (s′)|s, a] ≤ c(s, a), ∀(s, a) ∈ S ×A.
(3.4)
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In this formulation, q(·) is a continuous probability density function over S. The goal of this

linear program is to optimize the expectation of V (·) with respect to q(·). By substituting the

action minimization in the original SDP with a series of inequalities, we obtain the constraints.

3.1.2 Approximate Linear Programming for MDPs

Solving the problem as presented in Equation 3.4 is computationally challenging as it is

a doubly infinite linear program. This program encompasses a continuous range of decision

variables and constraints, each corresponding respectively to a specific state and state-action

pair. To address this continuum of variables, we approximate the function V (·) using a set of

stochastic basis functions. For a state space S with dimension d, a basis function is characterized

by a coefficient vector ω = (ω0, ω1, . . . , ωd) ∈ R
d+1, drawn from a density function ρ(ω). A

powerful class of basis functions that can approximate continuous functions well are referred to

as random basis function φ(·) [17] over the state space given the coefficient ω maps a state s to

φ(s|ω) = φ
(

ω0 +
∑d

i=1 ωisi

)

.

Given a collection of B basis functions, associated weights θ = (θ1, . . . , θB) ∈ R
B, and a

constant τ ∈ R, we can represent V (·) as V (s) ≈ τ+
∑B

b=1 θbφb(s). Utilizing this representation,

we derive the following Approximate Linear Programming formulation, denoted as F :

max
(τ,θ)∈RB+1

τ +
B
∑

b=1

θbEq[φb(s)]

s.t. (1− γ)τ +
B
∑

b=1

θb(φb(s)− γEp[φb(s
′)|s, a]) ≤ c(s, a), ∀(s, a) ∈ S ×A.

(3.5)
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Given a value function approximation, an associated action can be computed by leveraging

the right hand side of Equation 3.3 as

min
a∈A

{

c(s, a) + γ
B
∑

b=1

θbEp[φb(s
′)|s, a]

}

. (3.6)

Directly solving ALP poses difficulties due to its infinite constraints and the potential com-

plexity in calculating expectations. Row generation [9] [10] [11] and constraint sampling [12]

[13] [14] [15] are common solution strategies that address one or both of these challenges.
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3.2 Drawing Samples: Metropolis Hastings to Langevin Dynamics

Throughout the 20th century, the task of generating samples from a probability distribution

emerged as a pivotal challenge in applied mathematics and computer science. This endeavor

has been instrumental in advancing fields ranging from statistical simulations to machine learn-

ing. The quest for algorithms that can effectively sample, particularly when confronted with

an undefined or partially known probability density function, has been driven by both the the-

oretical intricacies and the vast array of practical applications it supports. As we delve deeper

into complex data-driven domains, the significance of robust sampling techniques continues to

grow. In this section, we will explore two renowned methods specifically designed to sample

from a probability density function that is known up to a constant term.

3.2.1 Metropolis Hastings

The Metropolis-Hastings (MH) algorithm [18] stands as a cornerstone in the realm of meth-

ods designed to generate samples from a probability distribution, especially when direct sam-

pling proves challenging. The primary objective of MH is to sample from a target distribution

p(x). In many scenarios, while p(x) remains elusive, we possess knowledge of it up to a nor-

malization constant, meaning we are aware of some function f(x) such that p(x) ∝ f(x).

To aid the sampling process, the algorithm introduces a proposal distribution ν(x′|x), which

suggests a potential new state x′ based on the current state x. This distribution is typically

chosen for its ease of sampling. The algorithm begins with an initial state x0. From this current
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state x, a proposed state x′ is drawn from ν(x′|x). The newly generated state x′ is accepted

with probability α computed [18] as:

α(x, x′) = min

(

1,
f(x′)ν(x|x′)
f(x)ν(x′|x)

)

This iterative process is continued for a predetermined number of steps n. The sequence of

states x produced by the algorithm forms a Markov chain. After a certain number of iterations,

known as the “burn-in” period, this chain is believed to have converged to the target distribution

p(x) and can be employed for subsequent analyses. The procedure, which is described in

Algorithm 1, is versatile and allows for sampling from multi-dimensional distributions. The

efficiency of the MH diminishes as the dimensionality of the target distribution rises [19]. In

high-dimensional spaces, the algorithm’s acceptance rate drops, leading to correlated successive

samples and a ”random walk” behavior. This causes the Markov chain to take longer to explore

the state space, resulting in slow convergence and inefficient mixing.

Algorithm 1 Metropolis-Hastings

Initial value x0
for k = 1 to K do

Sample independently x′ ∼ √(·|xk) and u ∼ U(0, 1)

if u < α(xk, x
′) then

xk+1 ← x′

else

xk+1 ← xk
end if

end for
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3.2.2 Langevin Dynamics

The Langevin dynamics is an approach used for sampling from a target probability density

distribution. The approach originates from a discretized form of a specific stochastic differential

equation, commonly referred to as Langevin dynamics. The equation, first proposed by Paul

Langevin [20], and later rigorously formulated by J. L. Doob in [21] [22], described the Brownian

motion of a particle with friction. The diffusion process in Langevin dynamics is mathematically

represented as

dLLD,t = −∇f(LLD,t) dt +
√

2 dWt,

where Wt is a standard Brownian motion. The initial proposal to employ Langevin dynamics

as a method for continuous-time simulation was made by [23] in the realm of pattern theory.

Before delving into the details of the algorithm, it is essential to establish the notation.

Consider a probability distribution that is known up to a constant term. The distribution

can be expressed as:

pθ(x) =
e−E(x)

∫

x∈X
e−E(x) dx

=
e−E(x)

Z(θ)
(3.7)

Where Z(θ) serves as the normalization constant term. In this expression, E(x) is referred to

as the Energy.

The equation referenced in Equation 3.7 establishes the framework for an Energy-Based

Model (EBM). The core principle behind the Langevin dynamics method is to utilize the
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Langevin equation for sampling from this EBM. By applying a time discretization to the

Langevin equation, we arrive at the following approximation:

xk+1 = xk −
ε

2
∇E(xk) + ε ξk where ξk ∼ N (0, 1) (3.8)

Similarly to Metropolis-Hastings, it is sufficient to know pθ(x) up to the normalization constant.

This is because the latter disappears when calculating the gradient of the drift term. It is

noteworthy that the updates in Equation 3.8 bear a resemblance to those in gradient descent.

The key distinction lies in the introduction of a stochastic “noise” term ξk. We can interpret

the Gaussian noise as a non-vanishing gradient noise which allows to get away from the local

minima of the non-convex potentials [24] [25].

Thus, it is reasonable to view the samples as originating from a Gaussian distribution.

xk+1 ∼ N (xk −
ε

2
∇E(xk), ε)

The pseudocode of the Langevin Dynamics algorithm, often referred to as the Unadjusted

Langevin Algorithm (ULA) or Langevin Monte Carlo in the literature [26] [27], is detailed in

2.

The main advantages of employing this technique for sampling include its ability to generate

multiple samples at once and the lack of a need for an acceptance or rejection step, which

makes the process quicker compared to the Metropolis-Hastings method. Furthermore it allows

to sample efficiently from high-dimensional distributions. Traditional sampling methods can



14

Algorithm 2 Langevin Dynamics Sampling

Initial value x0
for k = 1 to K do

Sample independently ξk ∼ N (0, Ip)
xk+1 ← xk − ε

2∇E(xk) + ε ξk
end for

struggle in high-dimensional spaces due to the curse of dimensionality, where the volume of the

space grows exponentially with the number of dimensions. Langevin dynamics can navigate

such spaces more effectively.

Welling and Teh [28] have examined the behavior of the ULA when employing diminishing

step sizes. Their findings indicate that ULA weakly converges towards the intended distribu-

tion. Nevertheless, in the broader context of machine learning applications, fixed step sizes are

commonly utilized instead of diminishing ones, as evidenced by multiple studies [29] [30] [31]

[32] [33].

In cases where the target distribution is log-concave, which corresponds to scenarios where

the energy function is both strongly convex and smooth, a convergence rate bound of O(dǫ−1)

has been established [34]. A smooth function is defined as one with a Lipschitz-continuous

gradient. Higher-order smoothness in the energy function can further enhance the rate of

convergence [35]. Confirming the convergence properties of the Langevin Dynamics become

significantly more intricate when the target distribution lacks log-concavity.

It is worth noting that despite the well-established theoretical guarantees for convergence

when the target distribution is log-concave, many machine learning applications [32] [36] [37]
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do not explicitly consider the log-concavity of the distribution they are sampling from. With-

out log-concavity samples might get trapped in a local minimum failing to explore others or

take longer to move between regions of low energy, thus obtaining biased samples that do not

represent the true distribution. Ignoring the log-concavity of the target distribution could com-

promise both the performance and reliability of machine learning models, making it vital for

practitioners to understand the assumptions behind their chosen sampling algorithms.

Recent studies have determined the rate of convergence for sampling from non-log-concave

distributions under specific conditions. These conditions include the fulfillment of functional

inequalities like the log-Sobolev or Poincaré inequalities [38] [39] [40] [41], or they focus on

manageable categories of non-log-concave sampling that meet particular tail-growth stipulations

[42] [43] [44] [27]. One takeaway from these studies is clear: the rate of convergence deteriorates

significantly when dealing with non-log-concave distributions.



CHAPTER 4

LANGEVIN DYNAMICS FOR CONSTRAINT VIOLATION LEARNING

In this chapter, the focus will be on the algorithmic approach we have adopted to address

the ALP challenge and the novel contributions we have made to resolving this problem.

4.1 ALP Reformulation

We will begin by discussing how the authors in [1] derived a primal-dual reformulation of

Approximate Linear Programs. Specifically, we replace the constraints in Equation 3.5 with

a single constraint that serves as an upper bound for the value of τ . This new constraint is

defined as follows:

τ ≤ τ̄(θ) :=
1

1− γ
min

(s,a)∈S×A

{

c(s, a)−
B
∑

b=1

θb
(

φb(s)− γEp

[

φb(s
′)|s, a

])

}

(4.1)

The objective function of the ALP aims to maximize τ so the inequality in Equation 4.1 is

expected to be an equality at the optimal solution. By replacing τ in the ALP objective from

Equation 3.5 with τ̄(θ), we arrive at the following saddle-point formulation:

F = max
θ∈Θ

min
(s,a)∈S×A

f(θ, s, a) (4.2)

where f(θ, s, a) := 1
1−γ

{

c(s, a)−∑B
b=1 θb (φb(s)− γEp[φb(s

′)|s, a])
}

+
∑B

b=1 θbEq[φb(s)] and

Θ is a compact subset of RB that contains the optimal ALP solution within its interior.

16
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In Equation 4.2, the objective function is linear with respect to the value function approxi-

mation (VFA) weight vector θ, which is maximized. On the other hand, the minimization over

the state-action space aims to identify the most violated constraint, a task that could poten-

tially be nonconvex. However, according to Proposition 1 in [1], this nonconvex minimization

can be substituted by an infinite-dimensional linear infimum over all continuous probability

density functions defined over the state-action space. This set of functions is denoted by Y,

defined as Y :=

{

y : S ×A → R++

∣

∣

∣

∣

∫

S×A
y(s, a) d(s, a) = 1

}

.

Thus, the saddle-point formulation becomes:

F = max
θ∈Θ

inf
y∈Y

Ey[f(θ, s, a)]. (4.3)

To convert the infimum back to a minimum, a Kullback-Leibler (KL) regularization term

D(y, pu) is introduced, defined as D(y, pu) = Ey

[

log y(s,a)
p̄

]

. Here, y is a continuous proba-

bility density function, and pu is a uniform probability density function over S × A with a

constant density value p̄, calculated as p̄ = 1

(
∫
S×A

1 d(s,a))
.

The modified objective function then becomes:

F (λ) := max
θ∈Θ

min
y∈Y

[Ey[f(θ, s, a)] + λD(y, pu)] (4.4)

Since the term Ey[f(θ, s, a)] is linear in both y and θ, and the KL divergence term is convex in

y, the objective function in Equation 4.4 now represents a convex saddle-point problem. The

inclusion of the Kullback-Leibler divergence term in the objective function serves to ensure
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that the distribution y remains similar to pu, the uniform distribution over the state-action

space. Given that pu is a uniform distribution, it is inherently log-concave. Consequently,

the KL divergence term acts as a regularizing force that nudges y towards log-concavity. The

parameter λ modulates the influence of this KL divergence term on the objective function.

Higher values of λ amplify the importance of the KL divergence, thereby making y more log-

concave. Conversely, lower values of λ reduce the emphasis on the KL divergence term, allowing

other components of the objective function to have a more pronounced impact on y.

According to Proposition 2 in [1], for any θ ∈ Θ, there exists a dual minimizer y∗λ,θ ∈ Y

given by

y∗λ,θ(s, a) :=
exp

(

−f(θ,s,a)
λ

)

∫

S×A
exp

(

−f(θ,s,a)
λ

)

d(s, a)
(4.5)

Furthermore, for a specified α > 0, a sufficiently small λ ∈ (0, 1] exists such that F (λ)−F ≤

α. This implies that the saddle-point problem in Equation 4.4 serves as a close approximation

to that in Equation 4.2, and consequently to the original ALP, when λ is adequately small. This

reformulation eliminates the need to solve finite-dimensional nonconvex optimization problems

in Equation 4.2, reducing it to the infinite-dimensional convex optimization problem presented.

4.2 Algorithm

In this section, we outline the algorithm employed to achieve our results. Our approach is

inspired by the Proximal Stochastic Mirror Descent (PSMD) Algorithm presented in [1]. The

authors of this work devised a primal–dual stochastic mirror-descent technique to compute an

α-optimal ALP solution.
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Algorithm 3 PSMD

Input: Stopping tolerance TOL, regularization constant λ0 ∈ (0, 1], and step length η0 > 0

1: Set t = 0, θ̄ = θ0 = (0, ..., 0) ∈ R
B, ȳ = y0 = pu, and λ̄ = λ0

2: while STOP(t, θ̄, ȳ, λ̄, TOL) = FALSE do

3: Perform primal update: Sample state-action pair (ŝ, â) from the density function yt,

generate next stage state š from the MDP density function p(·|ŝ, â) and set

θt+1 = arg min
θ∈Θ

[

ηt〈θt − θ,∇θf̂(θt, ŝ, â)〉+
1

2
‖θ − θt‖22

]

, (4.6)

where

f̂(θt, ŝ, â) :=
1

1− γ

{

c(ŝ, â) + γ

B
∑

b=1

θbφb(š)−
B
∑

b=1

θbφb(ŝ)

}

+

B
∑

b=1

θbEq [φb(s)] . (4.7)

4: Perform dual update:

yt+1 ∝ y
(1+ηtλt)−1

t exp
(

−ηtf̂(θt, ·, ·)/(1 + ηtλt)
)

. (4.8)

5: Update step length and regularization coefficient:

ηt+1 = η0/
√
t + 2; λt+1 = λ0/

√
t + 2. (4.9)



20

6: Compute averaged regularization coefficient and primal and dual solutions

λ̄ =
1

∑t+1
t′=0 ηt

t+1
∑

t′=0

ηt′λt′ ; θ̄ =
1

∑t+1
t′=0 ηt

t+1
∑

t′=0

ηt′θt′ ; ȳ =
1

∑t+1
t′=0 ηt

t+1
∑

t′=0

ηt′yt′ (4.10)

7: Update itaration counter: t = t + 1
8: end while

Output: θ̄ and ȳ

The key distinction between our method and theirs lies in the computation of sample-average

approximations, which are used to manage high-dimensional expectations. We will elaborate

on this difference in the subsequent sections.

The Proximal Stochastic Mirror Descent algorithm is delineated in 3.

• Step 1: initializes the iteration counter and sets the algorithm’s variables, commencing

with a uniform distribution across the state-action space for y0, ȳ.

• Step 2: initiates a loop that persists until a specified stopping criterion is met.

• Step 3: performs the primal update, where ηt signifies the step size at the t-th iteration.

The update can be conceptualized as a gradient ascent operation succeeded by a projection

onto the feasible set.

• Step 4: updates the dual variables. A closed-form expression for this update is derived

from Equation 4.5. When sampling from yt+1, the calculation of the normalization con-

stant in the denominator can be circumvented if a sampling method compatible with
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probability density functions known up to a constant is employed. Thus, only the denom-

inator needs to be explicitly calculated for the update.

• Step 5: reduces both the step length and the regularization coefficient.

• Step 6: calculates moving averages for these coefficients, as well as for the primal and

dual variables.

Upon completion, PSMD outputs a Value Function Approximation weight vector θ̄ and a

state-action density function ȳ.

To determine the termination of Algorithm 3, a stopping criterion is essential. A straightfor-

ward approach is to set a maximum iteration count, T , chosen heuristically. Once this threshold

is reached, the algorithm halts and outputs a solution. However, this method does not yield a

lower bound on the optimal policy cost. In [1], a technique for approximating a lower bound was

introduced, which we adopted both as a stopping criterion for Algorithm 3 and for estimating

the optimality gap.

We begin by introducing two functions, primal and dual:

P(y) = max
θ∈Θ

Ey[f(θ, s, a)] (4.11)

D(θ) = inf
y∈Y

Ey[f(θ, s, a)] (4.12)

We know that D(θ) ≤ F ≤ P(y), implying that the difference, P(y) − D(θ), represents the

duality gap of the saddle-point problem Equation 4.2.
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The function D(θ̄) offers a lower bound on F . However, its computation is intricate due to

the presence of an infimum across the state-action space. To circumvent this, we introduce a

regularized version:

min
y∈Y

Ey[f(θ̄, s, a)] + λ̄D(y, pu) (4.13)

where λ̄ denotes the averaged regularization coefficient determined by PSMD. Mirroring the

approach in equation Equation 4.4, we can bypass the direct optimization over the state-action

space, given that equation Equation 4.13 inherently has a definitive optimal solution.

The optimal solution of Equation 4.13 is represented by y∗
λ̄,θ̄

(s, a). Consequently, it can be

reformulated as:

Ey∗
λ̄,θ̄

[f(θ̄, s, a)] + λ̄D(y∗
λ̄,θ̄

, pu) (4.14)

While this expression serves as an upper bound for D(θ̄), Lemma 1 from [1] enables us to

transform it into a lower bound. Specifically, we obtain:

D(θ̄) ≥ Ey∗
λ̄,θ̄

[f(θ̄, s, a)] + λ̄D(y∗
λ̄,θ̄

, pu) + λ̄C̄ + nλ̄ log(λ̄) (4.15)

where C̄ is defined as:

C̄ := log(p̄)− L(R + QS×A) + n log(R)− log

(

Γ
(

n
2 + 1

)

π
n
2

)

(4.16)
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In this expression, R represents the radius of the largest ball contained within S ×A; QS×A de-

notes the diameter of the set S×A; Γ(z) is the standard gamma function given by
∫∞

0 xz−1e−xdx

for z > 0 ; and L is the Lipschitz constant associated with f(., ., .)5.

Theorem 2 from [1] allows us to simplify the expression in Equation 4.15 by omitting the

nonnegative term, yet retaining a valid lower bound:

l(θ̄) := Ey∗
λ̄,θ̄

[f(θ̄, s, a)] + λ̄C̄ + nλ̄ log(λ̄) (4.17)

Given that D(θ̄) is an underestimate of F , which itself provides a lower bound on the optimal

policy cost, it follows that l(θ̄) also establishes a lower bound on the policy cost.

With this lower bound in hand, we introduce an additional stopping criterion for our al-

gorithm. We first simulate the ALP policy, which concludes the PSMD associated with the

current θ̄, to derive an upper bound. Subsequently, we compute the lower bound l(θ̄) and halt

the algorithm when the inequality P(ȳ) − l(θ̄) ≤ α is satisfied for a predetermined α > 0.

Moreover, the derived upper and lower bounds facilitate the computation of an optimality gap.

4.3 Implementation

In this section, we delve into the intricacies of the PSMD implementation.

The primary inputs for PSMD encompass a stopping tolerance TOL, an initial regularization

coefficient λ0, and an initial step length η0. Typically, the choice of TOL is influenced by the

acceptable time allocation of the user. The tuning of these parameters will be elaborated upon
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in the results section. Once the optimal parameters are identified, they are employed to run

PSMD to completion.

In the third step of Algorithm 3, in order to handle the potentially high-dimensional expec-

tations in the term Eyt∇θf(θt, s, a) we approximate the expectation with respect to yt, using

an unbiased point estimate ∇θf(θt, ŝ, â), using the sample pair (ŝ, â) drawn from the density

function yt. Additionally, the function f(θt, ŝ, â) is substituted with an unbiased point esti-

mate f̂(θt, ŝ, â). This is done by replacing the expectation Ep[φb(s)|ŝ, â] in f(θt, ŝ, â), for the

definition of f(θt, ŝ, â) see Equation 4.7, with a sample average approximation φb(š) based on

a single state š drawn from the MDP transition density function p(·|ŝ, â).

While these unbiased approximations are theoretically sound, they might exhibit high vari-

ance in practice, potentially affecting the algorithm’s empirical performance. To mitigate this,

low-variance versions of these sample average approximations can be crafted using multiple

samples. For instance, the term f̂(θ, ŝ, â) can be replaced with a version based on multiple

samples, enhancing the stability of the primal update.

In essence, by generating multiple samples and leveraging them, we can derive a low-variance

stochastic gradient, enhancing the robustness of the algorithm.

In our implementation, we replace the term f̂(θ, ŝ, â) with f̂N (θ, ŝ, â) which relies on N

samples denoted as sn where n = 1, . . . , N , drawn from p(·|ŝ, â)
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f̂N (θ, ŝ, â) :=
1

1− γ

{

c(ŝ, â) + γ
B
∑

b=1

θb

(

1

N

N
∑

n=1

φb(sn)

)

−
B
∑

b=1

θbφb(ŝ)

}

+
B
∑

b=1

θbEq[φb(s)].

We can obtain a low-variance stochastic gradient ∇θf̂(θ, s, a), by using f̂N (θt, s, a) and gener-

ating a set of H samples {(ŝh, âh)}Hh=1 from yt. This results in a more stable gradient, given by

1
H

∑H
h=1∇f̂(θt, ŝh, âh), which can be employed in the primal update Equation 4.6 as a substitute

for ∇f̂(θt, ŝ, â).

This gradient is constructed based on samples from yt and p(·|ŝ, â) which are respectively

the state-action distribution and the MDP state transition distribution. Sampling becomes

straightforward when the density function of the distribution is well-defined.

Given that the distribution yt is an Energy Based Model, Langevin dynamics emerges as a

natural choice for sampling.

The main advantage of Langevin dynamics is that its inherent structure does not directly

depend on the problem’s dimensionality. This means that its execution time might remain rela-

tively stable, irrespective of the dimensionality of the distribution from which we are sampling.

One reason for this is that it continuously updates samples without needing an accept-reject

step, which often becomes a bottleneck in high-dimensional spaces. On the other hand, the

Metropolis-Hastings algorithm struggles as dimensionality increases. With MH, as the data

grows, it gets harder to find and accept new samples. This can result in the so-called ”random
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walk” behavior, where the Markov chain takes a long time to explore the entire state space. As

the dimensionality grows, the space that needs to be explored expands exponentially, leading

to an expected exponential increase in the MH algorithm’s runtime.

While we base our approach to sample from yt on the algorithm outlined in Section 3.2.2,

we introduce a variation to better suit our requirements. Considering the continuous, convex,

and compact nature of the State-Action set, it is essential to incorporate a projection step onto

the feasible set, ensuring that the samples are in S ×A.

The algorithm, as described in 2, is modified as follows:

Algorithm 4 Projected Langevin Dynamics

Initial value x0

for k = 1 to K do

Sample independently ξk ∼ N (0, Ip)

xk+1 ← ΠS×A

(

xk − ε
2∇E(xk) + ε ξk

)

end for

Here, ΠS×A(x) denotes the projection of x onto the set S ×A.

For the optimization in Step 3, we can employ a standard convex optimization solver. In

our study, we opted for Gurobi [45].



27

We now delve into the computation of the lower bound. Evaluating this bound entails

handling high-dimensional expectations.

The sample average approximation of l(θ̄) is given by:

l̂(θ̄) := E(H′, N ′)

[

1

H ′

H′

∑

h=1

f̂N ′

(θ̄, ŝh, âh)

]

+ λ̄C̄ + nλ̄ log(λ̄)

The N ′ samples are drawn from p(·|s, a) for every one of the H ′ samples, which are generated

from the density:

ŷλ̄,θ̄(s, a) ∝ exp

(

− f̂N ′

(θ̄, s, a)

λ̄

)

As with Step 3, we employ Langevin dynamics to obtain state-action samples from ŷλ̄,θ̄(s, a).

To compute l̂(θ̄), the constant C̄ must be defined. While parameters p̄, R, and QS×A in its

definition can be straightforwardly computed given our state-action space’s simple structure,

in more complex scenarios, C̄ can be substituted with a lower bound C̄LB, as detailed in [1].



CHAPTER 5

PERISHABLE INVENTORY CONTROL

In this chapter, we discuss the results obtained from applying our algorithm to various Per-

ishable Inventory Control instances. These instances are particularly important for understand-

ing the scalability and applicability of our approach. Initially, we focus on a two-dimensional

PIC instance with partially backlogged demand and zero order lead time to provide insights into

the algorithm’s behavior. Subsequently, we extend our experiments to more complex setting,

specifically Perishable Inventory Control with Partial Backlogging and Lead Time instances

with three, five, and ten-dimensional state spaces. The results are evaluated based on specific

performance metrics and are compared with existing benchmarks to demonstrate the effective-

ness of our algorithm.

5.1 Perishable Inventory Control partially backlogged demand and zero order lead

time

To evaluate the effectiveness of our approach, we initially chose to apply it to a single-

product inventory-control system characterized by partially backlogged demand and zero order

lead time. This selection was motivated by prior studies conducted by Nahmias and Smith [46],

Rabinowitz et al. [47], and Benjaafar et al. [48], which served as a foundation for our research.

The decision to focus on this particular inventory-control system was driven by several

factors. Firstly, the system exhibits a two-dimensional state space, allowing for a comprehensive

28
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analysis of the state-action dynamics. This two-dimensional nature of the system enables us

to graphically visualize and interpret the results, facilitating a more intuitive understanding of

the observed behaviors.

Furthermore, we can compare the results obtained using Langevin dynamics with those

obtained using Metropolis Hastings sampling for the same application previously studied in [1] in

order to assess the effectiveness of our approach. This allows us to evaluate the performance and

relative advantages of these two sampling techniques within the context of the given application.

5.1.1 MDP Formulation and Instance

In our MDP formulation, the state s is bounded by an upper bound us > 0 and a lower

bound ls < 0, which are respectively 10 and -10. The state represents the on-hand inventory,

where negative values indicate backlogged orders.

The action a corresponds to the order quantity, which is constrained within the range [0, ā],

where ā represents the maximum order size. We assume that orders are placed prior to the

realization of stochastic demand G, which follows the distribution PG, modeled as a truncated

normal distribution on the interval [0, 10] with mean 5 and a standard deviation 2.

To determine the next inventory level s′, we consider the current inventory s, the order

quantity a, and the demand G. The transition function ensures that s′ lies within the specified

bounds: s′ = min(max(s + a−G, ls), us).

This function captures two scenarios: if the demand exceeds the inventory, resulting in

backlogged orders, the excess demand (ls − s − a + G) is lost at a cost cl per unit. If the

inventory exceeds the capacity, the surplus units (s + a−G− us) are disposed of at a disposal
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cost cd per unit. Together PG and the non linear state transition function s′ infer the transition

density p(s′|s, a) .

The purchasing, holding, and backlogging costs per unit are denoted as cp, ch, and cb,

respectively. The MDP cost function at state s and action a is therefore defined as:

c(s, a) = cpa + chE
[

(s′)+
]

+ cbE
[

(−s′)+
]

+ cdE [(s + a−G− us)+] + clE [(ls − s− a + G)+]

where (s)+ = max{0, s}, the expectations are computed with respect to the distribution

PG, cp = 20, cd = 10, cl = 100, ch = 2, and cb = 10

In this study, we focused on the use of polynomial basis functions, tailored for a one-

dimensional state space. These functions are constructed using a linear combination of the

constant term one, the linear term s, and the quadratic term s2.

5.1.2 Results

For our specific instance, as set in [1], we set γ to 0.95, H and N are respectively 10 and

50.

In the context of the Proximal Stochastic Mirror Descent method and Langevin dynamics,

the parameter λ plays a crucial role in balancing the trade-off between the objective function

and the KL-divergence from a reference distribution in the mirror-descent algorithm. This

balance significantly impacts the shape of the distribution from which we sample. When the

sampling distribution is log-concave, Langevin dynamics can efficiently explore the state space

due to the single-peak, unimodal nature of log-concave distributions.
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(a) Bounds using λ = 0.1.
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(b) Bounds using λ = 0.01.
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(c) Bounds using λ = 0.001.
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(d) Bounds using λ = 0.0001.

Figure 1: Comparison between the policy cost and lower bound behaviour using different values
of lambda

In the initial stages of our research, we encountered difficulties in achieving convergence

with the algorithm. We were using the same parameters as in [1], which chose a λ that was

too small to work effectively when sampling with Langevin dynamics. This small λ leaned

the balance towards the objective function, potentially making the resulting distribution less

log-concave and hindering the efficiency of Langevin dynamics. This led to slow convergence

and less accurate samples, as shown in Figure 1.

Conversely, a large λ may lean the balance towards minimizing the KL-divergence from the

reference distribution, potentially enhancing the log-concavity of the distribution. While this

might improve the efficiency of Langevin dynamics, it could also result in an overly conservative
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solution that does not fully exploit the structure of the problem to achieve the optimal objective

function value. Therefore, the choice of λ is a critical consideration in the application of the

PSMD method and Langevin dynamics, requiring tuning to ensure a balance between the

objective function and the divergence from the reference distribution, while also considering

the log-concavity of the resulting distribution.

After careful consideration and multiple trials, we decided to adjust the parameters. To

fine-tune these parameters, we closely observed the decrease in the policy cost over the first

50 iterations. The detailed decreases are reported in Table I. It’s worth noting that negative

decreases, in this context, represent an increase in the policy cost. We found that setting λ to

1 and η to 0.1 provided the best results.

TABLE I: TUNING OF λ AND η

η λ Decrease in Policy Cost

0.1

0.0001 -1215
0.001 187
0.01 198
0.1 194
1 221
10 234

0.01

0.0001 -629
0.001 -12
0.01 36
0.1 80
1 122
10 -323
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After the successful tuning of the parameters λ and η , our next step was to optimize the

number of steps for the Langevin dynamics K and the step length ε in the Langevin dynamics

update used for both the PSMD update and the lower bound computation. We conducted a

series of experiments for the PSMD update, testing four different configurations:

• 100 steps with a decreasing step size, which started at 0.001

• 1000 steps with a decreasing step size, also starting at 0.001

• 100 steps with a fixed step size of 0.001

• 1000 steps with a fixed step size of 0.001

In these experiments, the step size was decreased in accordance with the square root of the

number of Langevin dynamics steps. This approach allowed us to progressively refine the step

size, enhancing the precision of the Langevin dynamics. The results of these configurations are

illustrated in Figure 2. These figures depict the progression of the lower bound and policy cost

for each configuration, providing a clear visual representation of the impact of different step

sizes and step counts on the performance of the PSMD update.

In addition to these configurations, we also conducted experiments with larger and smaller

starting step sizes. However, these configurations did not yield satisfactory results, producing

less accurate samples and slower convergence. As such, they are not included in our discussion.

Upon analyzing the results of our experiments, we found that the most effective configuration

was 1000 steps with a fixed step size of 0.001. This configuration provided the best balance

between computational efficiency and accuracy of the results, enabling us to achieve a high-
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(a) 100 steps, decreasing step size
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(b) 1000 steps, decreasing step size
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(c) 100 steps, fixed step size
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(d) 1000 steps, fixed step size

Figure 2: Policy cost and lower bound changing numbers of step and step size

quality solution with a reasonable computational cost. Following the tuning process for the

PSMD update, we applied a similar approach to optimize the parameters for the lower bound

computation. We experimented with the same configurations of step sizes and counts, namely

100 steps with a decreasing step size starting at 0.001, 1000 steps with a decreasing step size

starting at 0.001, 100 steps with a fixed step size of 0.001, and 1000 steps with a fixed step

size of 0.001. The step size was again adjusted in accordance with the square root of the

number of Langevin dynamics steps. After a thorough analysis of the results, we found that

the most effective configuration for the lower bound computation mirrored that of the PSMD

update. Specifically, 1000 steps with a fixed step size of 1e-3 yielded the best balance between
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computational efficiency and accuracy of the results. This consistency in optimal parameters

across different aspects of our algorithm further validates our approach and provides a clear

direction for future experiments.

To evaluate the convergence of our algorithm towards the solution, we employed the opti-

mality gap as a key metric. The optimality gap provides a measure of how close our algorithm’s

solution is to the best possible solution. It is computed using the formula:

Optimality Gap =
UB− Best LB

Best LB
× 100%

Where UB stands for Upper Bound and LB for Lower Bound. This percentage-based metric

offers a clear perspective on the relative difference between the algorithm’s output and the

optimal solution. The choice to use a constant step size significantly improved the performance

of the algorithm, after 1000 PSMD iterations, we achieved an optimality gap of 1.75%, in

Figure 3 we can see the evolution of the optimality gap with respect to the iterations.

When comparing the results obtained using Langevin Dynamics and Metropolis Hastings,

we observed distinct differences. The growth of the lower bound and the decrease in policy cost

were more stable when using Langevin Dynamics. This stability is evident in the Figure 4 (b),

where the progression of the lower bound and policy cost over iterations is shown.

In contrast, when using Metropolis Hastings, we noticed some abrupt fluctuations in the

progression of the lower bound and policy cost as it can be seen in Figure 5, indicating instability.
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Figure 3: Optimality gap with respect to the iterations using Langevin Dynamics.

However, it is important to note that while Langevin Dynamics provided more stability, it

required more iterations for the lower bound to grow as we can clearly see in Figure 4 (b).

In Figure 7, we present a comparative analysis of the points sampled using Langevin Dy-

namics and Metropolis Hastings. It is evident from the figure that the points sampled with

Langevin Dynamics are predominantly concentrated in areas where the energy function is at its

lowest. This concentration suggests that Langevin Dynamics is efficient in its sampling process.

On the other hand, the points sampled with Metropolis Hastings are more dispersed across

the energy function. This dispersion indicates a higher degree of variability in the Metropolis

Hastings sampling process.
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Figure 4: Evolution of the lower and upper bounds over 1000 iterations using Langevin Dy-
namics.
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Figure 5: Evolution of the lower and upper bounds over 1000 iterations using Metropolis
Hastings.

5.2 Perishable Inventory Control with Partial Backlogging and Lead Time

To assess the scalability of our methodology, we implemented it on Perishable Inventory

Control instances featuring partially backlogged demand [49] [15] and lead time [50] [51] [49]

[15]. This serves as a robust testbed for evaluating the algorithm’s performance across varying
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Figure 6: Comparison between the points sampled using Langevin Dynamics and Metropolis
Hastings
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Figure 7: Comparison between the points sampled using Langevin Dynamics and Metropolis
Hastings
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dimensions. Additionally, we compare the results with Langevin Dynamics with the results

presented in previous studies [1] and [52].

5.2.1 MDP Formulation and Instance

In our MDP model, we consider an order lead time of J periods and an item lifetime of I

periods from the moment of receipt. The orders scheduled to arrive j periods from now are

denoted by qj , where 1 ≤ j ≤ J − 1, and the on-hand inventory with i periods of remaining

lifetime is represented by zi, for 0 ≤ i ≤ I − 1.

The state s is defined as the vector

s = (z0, z1, . . . , zI−1, q1, q2, . . . , qJ−1) ∈ R
I+J−1.

All inventories, both on-hand and in the pipeline, are required to be non-negative, with the

exception of z0. The value of z0 can be either non-negative, indicating no backlogged orders

and the disposal of any remaining expired items at the end of the current period, or negative,

representing the quantity of backlogged orders calculated as (G−∑I−1
i=0 zi)

+. Here, G denotes

the stochastic demand following distribution PG.

The order quantity a is restricted to the interval [0, ā]. The lower bound for z0 is ls < 0,

and its upper bound is us = ā. Consequently, zi ∈ [0, ā] for i = 1, . . . , I − 1 and qj ∈ [0, ā].



41

Assuming that demand occurs prior to the arrival of an order and is met using a first-in,

first-out policy, the MDP transitions to a new state

s′ =

(

max

{

z1 − (G− z0)+, ls −
I−1
∑

i=2

zi

}

, z2, . . . , zI−1, q1, q2, . . . , qJ−1, a

)

The demand G follows a truncated normal distribution PG in the interval [0, 10] with mean

5 and a variable standard deviation σ.

The cost function c(s, a) is defined as:

c(s, a) = γJcpa + E

[

ch

(

I−1
∑

i=1

zi − (G− z0)+

)

+

+ cb

(

G−
I−1
∑

i=0

zi

)

+

+ cd(z0 −G)+ + cl

(

ls + G−
I−1
∑

i=0

zi

)

+

]

where cp, ch, cb, cd, cl are respectively the purchasing, holding, backlogging, disposal, lost

sales costs. cp and cl for this instances are fixed to 20 and 100.

The maximum allowable backlogged orders are set to be equal to the maximum order level,

i.e., ls = −ā.

We focus on using the Fourier basis functions, which are versatile and applicable to any state

space. Defined as φ(·) = cos(·), their coefficients are determined as ρ(ω) : ω0 ∼ uniform([−π, π])

and ωi ∼ normal(0, ̺) for i ≥ 1, where ̺ is a user-specified parameter.
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We examine 24 different perishable inventory control instances: twelve three-dimensional

with l = J = 2, six five-dimensional with l = 2 and J = 4, and the remaining six ten-dimensional

with l = 5 and J = 6. The cost function parameters, discount factor, maximum ordering level

ā, and demand standard deviation σ are varied across these instances, with specific values

provided in tables Table II, Table III, Table IV.

TABLE II: PARAMETERS FOR THE 3-D INSTANCES
WITH σ = 2 AND CL = 100

Three-dimensional
state and action space

γ ch cd cb ā

Instance 1

0.95

2 5 10 10
Instance 2 2 5 10 50
Instance 3 5 10 8 10
Instance 4 5 10 8 50
Instance 5 2 10 10 10
Instance 6 2 10 10 30
Instance 7

0.99

2 5 10 10
Instance 8 2 5 10 50
Instance 9 5 10 8 10
Instance 10 5 10 8 50
Instance 11 2 10 10 10
Instance 12 2 10 10 30

5.2.2 Results

In this section, we delve into the results obtained for the PIC with Partial Backlogging and

Lead Time instances. For all instances under consideration, both H and N, which represent
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TABLE III: PARAMETERS FOR THE 5-D INSTANCES
WITH γ = 0.95 AND CL = 1000

Five-dimensional
state and action space

ch cd cb σ

Instance 13 1 8 2 5
Instance 14 1 8 2 2
Instance 15 1 2 8 5
Instance 16 1 2 8 2
Instance 17 2 8 5 5
Instance 18 2 8 5 2

TABLE IV: PARAMETERS FOR THE 10-D INSTANCES
WITH γ = 0.95 AND CL = 1000

Ten-dimensional
state and action space

ch cd cb σ

Instance 19 1 8 2 5
Instance 20 1 8 2 2
Instance 21 1 2 8 5
Instance 22 1 2 8 2
Instance 23 2 8 5 5
Instance 24 2 8 5 2

the number of samples drawn from p(·, s, a) and yt, are set to values of 10 and 50, respectively.

All instances and configurations utilized in this section are analogous to those detailed in [52],

allowing for a direct comparison between our findings.

We employ Fourier basis functions to represent our value function approximations. The

number of these basis functions varies based on the dimensionality of the instances:

• 150 basis functions for the three-dimensional instances,
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• 300 for the five-dimensional instances,

• 600 for the ten-dimensional instances.

For the bandwidth parameter, a mixture of 10−2 and 10−3 is utilized.

With these configurations in place, we proceed to discuss the results and insights derived

from the application of our approach to the PIC instances.

Our initial step involved fine-tuning the parameters λ and η. We focused our tuning efforts

on three representative instances, each corresponding to a distinct dimensionality of the state-

action space: Instance 1, Instance 13, and Instance 19. The optimized values derived from

these instances were then consistently applied to all other instances of the same dimensionality.

Our evaluation metric was the decline in policy cost observed over the initial 50 iterations of

the algorithm. Table V elucidates the policy cost reduction achieved with various λ and η

combinations. Based on the table, for the 3D case, λ = 0.001 and η = 0.1 emerged as the

optimal choice. Meanwhile, for both five and ten-dimensional cases, λ = 0.0001 and η = 0.1

were found to be the most effective.

Following the calibration of λ and η, our subsequent focus shifted to fine-tuning the number

of Langevin dynamics steps, K, and the step size for the Langevin dynamics update, ε. Contrary

to varying step sizes, we opted for constant ones, drawing from the insights gained in Section

5.1.2 which highlighted their superior performance. Our evaluation metric remained consistent,

examining the decline in policy cost over the initial 50 iterations. The outcomes of this tuning

process are detailed in Table VI.
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TABLE V: TUNING OF λ AND η FOR THREE REPRESENTATIVE INSTANCES

η λ
Decrease in Policy Cost

Instance 1 Instance 13 Instance 19

0.1 0.0001 297 843 1354
0.001 639 594 726
0.01 332 66 242
0.1 -58 -51 -58
1 -101 -113 -337

0.01

0.0001 123 137 268
0.001 165 138 197
0.01 84 82 186
0.1 12 -68 74
1 -143 -46 49

TABLE VI: TUNING OF K AND ε FOR THREE REPRESENTATIVE INSTANCES

K ε
Decrease in Policy Cost

Instance 1 Instance 13 Instance 19

100
0.01 24 19 -25
0.001 63 4 46

1000
0.01 118 287 498
0.001 639 843 1354

Optimal outcomes across all instances were achieved with K = 1000 and ε = 0.001. A

natural inquiry might be the reason behind not experimenting with larger K values paired with

smaller ε. The reason is tied to the sequential nature of Langevin dynamics updates. Given the

sequential nature of Langevin dynamics sampling algorithm, elevating the value of K would

substantially extend the running time. Given our primary aim to scale approximate linear
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programs and the satisfactory results already attained with the current parameters, there is

little incentive to venture into greater K values.

Having meticulously fine-tuned our hyperparameters, we proceeded to run our algorithm

using this optimal set of parameters. The outcomes, specifically the optimality gap achieved,

are detailed in Table VII. For a clearer comparative analysis, we juxtaposed our results with

the baseline values from [52], which used FALP.

We observed that Langevin dynamics yielded comparable results even for the larger in-

stances. Figure 8, Figure 9, and Figure 10 illustrate the evolution of the upper bound in

relation to the lower bound for the three representative instances, as well as the progression of

the optimality gap.
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Figure 8: Three dimensional instance evolution of (a) lower and upper bound (b) optimality
gap over 1000 iterations.
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TABLE VII: COMPARISON BETWEEN OPTIMALITY GAP REACHED WITH PSMD
AND FALP

Dimensionality of the State-Action space
Optimality Gap
PSMD FALP

3 D

Instance 1 0.5 % 0.1 %
Instance 2 6.1 % 5.9 %
Instance 3 0.3 % 0.2 %
Instance 4 0.5 % 0.2 %
Instance 5 0.5 % 0.2 %
Instance 6 1.9 % 1.7 %
Instance 7 0.6 % 0.2 %
Instance 8 5.9 % 5.6 %
Instance 9 0.4 % 0.3 %
Instance 10 2.2 % 1.5 %
Instance 11 0.8 % 0.3 %
Instance 12 1.5 % 1.5 %

5 D

Instance 13 18.8 % 19.6 %
Instance 14 22.4 % 21.0 %
Instance 15 17.3 % 15.6 %
Instance 16 14.7 % 12.1 %
Instance 17 17.2 % 15.9 %
Instance 18 18.0 % 16.1 %

10 D

Instance 19 14.1 % 13.0 %
Instance 20 6.7 % 6.1 %
Instance 21 12.0 % 11.4 %
Instance 22 9.6 % 7.0 %
Instance 23 16.5 % 14.5 %
Instance 24 10.4 % 9.1 %

In this section, we presented a comprehensive analysis of the results obtained for the PIC

with Partial Backlogging and Lead Time instances. The results, as showcased in the tables and

figures, indicate that our approach, utilizing Langevin dynamics, is effective in handling even

the larger instances. The comparative analysis with FALP further underscores the efficacy of
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Figure 9: Five dimensional instance evolution of (a) lower and upper bound (b) optimality gap
over 1000 iterations.
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Figure 10: Ten dimensional instance evolution of (a) lower and upper bound (b) optimality gap
over 1000 iterations.

our method. As we transition to subsequent sections, these findings provide a solid foundation,

reinforcing the potential of our approach in addressing complex optimization challenges in

various dimensions.
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5.3 Computational Insights: From Efficiency to Scalability

In the preceding section, we delved into the results obtained on the PIC instances, high-

lighting the efficacy of our algorithm in harnessing Langevin dynamics to achieve encouraging

outcomes. While the performance metrics and optimality gaps provided a promising narrative,

it is essential to also understand the computational underpinnings that drive these results.

In this concluding section, our focus will be on the computational intricacies of Langevin

dynamics. We will discuss the scalability of our approach. As we scale up the problem di-

mensions, it is crucial to observe how our methodology responds. We will also explore any

complications that arise and discuss potential strategies for their mitigation or resolution. By

the end of this discourse, we aspire to present a holistic view of our approach, encompassing

both its theoretical prowess and its computational practicality.

All computational code for this research was written using PyTorch [53], a widely-used deep

learning framework. The decision to use PyTorch was strategic, given its native support for

GPU acceleration, which is essential for tensor operations. This feature is especially beneficial

when sampling with Langevin dynamics, as tensor-based calculations can be parallelized and

executed more rapidly on a GPU compared to CPU-based computations.

For the experiments conducted in this study, a single NVIDIA Tesla T4 GPU was employed.

The Tesla T4 is designed for inference workloads and is equipped with 16 GB of GDDR6

memory and 320 Turing Tensor Cores. It provides a peak performance of 8.1 TFLOPS for

single-precision tasks, making it a suitable choice for our computational needs. Utilizing this

specific GPU ensured that our computations were not only accurate but also efficiently executed.
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Langevin dynamics offer a distinct advantage when it comes to sampling from high-dimensional

distributions, making them particularly suited for complex problems that span multiple dimen-

sions. One of the primary advantages is the absence of an accept-reject step, which is a char-

acteristic feature of the Metropolis-Hastings algorithm. This absence significantly accelerates

the sampling process. The Metropolis-Hastings method, while powerful, can become compu-

tationally intensive due to the repeated evaluations required in its accept-reject mechanism,

especially in high-dimensional spaces. By bypassing this step, Langevin dynamics streamline

the sampling process, leading to faster convergence and reduced computational overhead.

As we highlighted in previous chapters, one of the main advanteges of Langevin dynamics

is that it remains largely unaffected by the problem’s dimensionality. Thanks to its continuous

updates and the absence of a accept-reject step. In many sampling techniques, the accept-reject

step becomes increasingly complex as dimensionality rises, often leading to inefficiencies. How-

ever, Langevin dynamics avoids this issue, allowing for more efficient exploration of the state

space, even in high-dimensional scenarios. This dimension-independent behavior is a corner-

stone of our thesis and plays a fundamental role in the results we observe. This implies that

the execution time of the algorithm remains relatively stable, irrespective of the dimensionality

of the distribution from which we are sampling.

Given these attributes, we expect that the execution time of our approach, which leverages

Langevin dynamics, will exhibit a level of independence from the dimensionality of the problem

at hand.
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Figure 11: Comparison of Average Running Time using PSMD and FALP for 3D, 5D, and 10D
Instances Over 1000 Iterations .

As depicted in Figure 11, which presents the average running time of instances segmented by

the dimensionality of the state-action space, the instances using PSMD required 84, 88, and 93

minutes for three, five, and ten dimensions respectively. Transitioning from a three-dimensional

instance to a five-dimensional one led to a 4.6% increase in total runtime. In a similar vein,

progressing from five to ten dimensions resulted in a 5.4% increment. Such a modest increase

in runtime is expected as dimensionality grows, given the heightened computational complex-

ity of associated operations. PyTorch’s tensor operations are optimized such that even as the

dimensionality of the tensors increases, the operations do not take much longer. This optimiza-

tion ensures that the computational complexity does not scale with dimension in a substantial
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way, allowing for relatively consistent performance across different dimensionalities. We also

attempted to execute the code using Metropolis-Hastings sampling with a set runtime limit of

three hours. However, for all three instances, the code had not completed its execution by the

end of the allotted time.
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Figure 12: Comparison of average uniform sampling time for 3D, 5D, and 10D spaces.

A potential factor that could significantly impact running times is the reliance on external

sampling functions, such as those from torch.distributions. The efficiency of these functions

tends to degrade as the dimensionality of the state space increases. For instance, in Figure 12,

the average running times over 1,000 trials required to sample 1,000,000 samples from 3D, 5D,
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and 10D State-Action spaces are presented. It is evident that as the state dimensionality rises,

obtaining uniform samples from the state-action space becomes increasingly computationally

demanding.

Another consideration is the potential instability of certain functions. In our implementa-

tion, we employ the torch− truncnorm package [54] to represent our demand using a truncated

normal distribution. This package is grounded in PyTorch’s normal distribution framework,

which is documented to have stability concerns [55] during the sampling process.

It is important to note that our current implementation runs on a single GPU. However, the

inherent structure of our code lends itself to parallelization, which could substantially reduce

running times. Utilizing the parallel processing capabilities inherent to GPUs, particularly

when paired with frameworks like PyTorch, can result in notable computational efficiencies.

Distributing the computational tasks across multiple threads can expedite convergence, a benefit

that becomes increasingly pronounced in high-dimensional spaces.

In reflecting upon our computational journey, it is evident that our algorithm exhibits re-

silience to increasing dimensionality. The observed rise in running time, while present, remains

notably restrained even as we venture into higher-dimensional spaces. This modest escala-

tion in computational demand, juxtaposed against the complexity of the problems we address,

underscores the potential of our approach to be extended to even larger instances.

However, it is imperative to recognize that no computational methodology is without its

intricacies. Our approach, while robust, is not exempt from the challenges posed by external

dependencies and potential instabilities.
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Looking ahead, the ubiquity of GPUs in modern computational setups presents an enticing

opportunity. As these powerful tools become increasingly accessible, harnessing the collective

power of multiple GPUs could offer significant advancements in computational efficiency. The

prospect of parallelizing our algorithm and distributing its workload across several GPUs holds

promise for even more rapid convergence and enhanced efficiency.

In conclusion, while our current methodology has showcased significant potential and promise,

the landscape of computational optimization is dynamic and expansive. As we stand at this

juncture, it is clear that the path forward will demand continuous exploration, adaptation,

and learning. Embracing these tenets will be instrumental in navigating the challenges that lie

ahead, propelling us towards new frontiers of efficiency and scalability.



CHAPTER 6

CONCLUSION

As this research journey culminates, we reflect upon our endeavors, achievements, and

challenges. Our primary objective was to investigate the capabilities of Langevin Dynamics in

the context of optimization, specifically when sampling from an Energy-Based Model.

The central questions that guided our exploration were:

• Does Langevin dynamics sampling function effectively in the context of optimization?

• Can Langevin dynamics sampling, when applied to constraint violation learning, scale

efficiently to higher dimensions?

To address these pivotal questions, we turned our attention to Perishable Inventory Control in-

stances, progressively increasing the state-action space dimensionality. This approach provided

a tangible and practical framework to test the efficacy and scalability of Langevin dynamics in

real-world optimization scenarios.

Regarding our first question, while the efficacy of Langevin dynamics in sampling is well-

established in certain contexts, its application to non-log concave functions is less explored.

In this work, we delved deeper into this area, adapting and applying Langevin dynamics to a

context where its performance was not immediately guaranteed. This adaptation required inno-

vative approaches and considerations, emphasizing the distinctiveness of our work in harnessing

Langevin dynamics for this specific setting. Given that the functions we aimed to sample from

55
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in the PSMD algorithm are Energy-Based Models, the choice of Langevin dynamics for sam-

pling was natural. Our findings, as elaborated in the preceding chapters, were promising. The

algorithm adeptly handled varying dimensions ranging from simpler two-dimensional instances

to the more intricate ten-dimensional ones. When compared to methodologies like PSMD using

Metropolis-Hastings and FALP, our approach stood out.

Addressing the second question on the scalability of Langevin dynamics, when applied

to constraint violation learning, we delved deeper into the computational intricacies. High-

dimensional optimization problems are notorious for their computational demands. The ”curse

of dimensionality” is a well-known challenge, where the solution space grows exponentially

with the problem’s dimensionality, making exhaustive searches infeasible. However, Langevin

dynamics, characterized by its iterative and adaptive sampling techniques, presents a promising

counter to this predicament.

Given this backdrop, we anticipated that Langevin dynamics would demonstrate resilience

and consistency, even as we scaled the dimensionality of our problems.

Our experiments, provided a clear trajectory of the algorithm’s performance. The minimal

escalation in computational time, even with the increasing problem dimensions, affirmed the

algorithm’s robustness and efficiency.

A novel aspect of our research was the exploration of the parameter lambda’s role in con-

trolling the log concavity of the distribution used for sampling. To our knowledge, this is the

pioneering work that delves into Langevin dynamics sampling applied to a distribution where

log concavity can be modulated through a parameter, lambda. Our experiments provided valu-
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able insights into optimal parameter settings, paving the way for more efficient and effective

implementations in future applications.

Yet, no research journey is devoid of challenges, and ours was no exception. A signifi-

cant limitation we grappled with was the dependency on external sampling functions, notably

those from torch.distributions. As we ventured into higher state dimensionality, these func-

tions began to show signs of reduced efficiency, complicating the uniform sampling process from

the state-action space. Additionally, we encountered stability issues, particularly when mod-

eling demand using a truncated normal distribution, necessitating meticulous navigation and

problem-solving.

A significant limitation arises from the bounded nature of our state-action space. Unlike

an unrestricted domain, our state-action space is confined, necessitating the inclusion of a

projection step following the Langevin dynamics update. This step ensures that the sampled

points remain within the designated boundaries of the space. This projection was feasible

primarily because of the simple structure of our state-action set. However, in more complex

applications, such a direct projection might not be viable due to the intricate structure of the

state-action space. It is also worth highlighting that the convergence rate of the Projected

Langevin dynamics, which we utilized, is inferior to that of the standard Langevin dynamics.

This discrepancy in convergence rates underscores the challenges and trade-offs one might

encounter when adapting the algorithm to more complex scenarios.

The introduction of Langevin dynamics into the PSMD framework has undeniably enhanced

its capabilities. However, this integration has also introduced an added layer of complex-
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ity in terms of hyperparameter tuning. PSMD, in its original form, already necessitated the

fine-tuning of several parameters to ensure optimal performance. With the incorporation of

Langevin dynamics at two distinct points within the code, additional parameters have emerged

that require meticulous calibration. This proliferation of parameters has significantly extended

the tuning process. Given the expansive parameter space and the computational demands as-

sociated with exhaustive tuning, we had to strategically limit the range and combinations of

parameters we explored. This constraint, while necessary for the feasibility of our experiments,

underscores the challenge of hyperparameter sensitivity and the trade-offs researchers often face

between comprehensive exploration and practical execution.

Future work could focus on several promising avenues to further enhance the capabilities

and efficiency of our approach. As we have seen, the computational demands of our approach

can be intensive, and a deeper exploration into distributed computing techniques stands as

a promising avenue for future research. By leveraging multiple GPUs, we can significantly

expedite computations, making it feasible to tackle larger and more complex problem instances.

The inherent parallel nature of many optimization and sampling algorithms, especially when

integrated with frameworks like PyTorch, makes them prime candidates for such distributed

approaches.

Building on the merits of Langevin dynamics in sampling, there is an expansive landscape

of sampling techniques suggesting room for improvement or variation within the Langevin

dynamics framework itself. Future endeavors could delve into modifications or alternative

techniques that still fall under the Langevin dynamics umbrella but might be better suited
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for specific challenges. This exploration becomes especially pertinent when dealing with state-

action spaces of intricate geometries or when traditional Langevin dynamics face challenges.

Furthermore, as we push the boundaries of what our algorithms can achieve, understanding

their behavior in extreme conditions becomes paramount. Rigorous scalability studies, espe-

cially targeting very high-dimensional problems, could be the next step. Such studies would

not only test the limits of our current approach but also provide insights into potential bottle-

necks or areas of improvement. Systematically increasing problem complexity and observing

algorithmic performance can offer valuable information that guides subsequent refinements and

innovations.

This research stands as one of the pioneering efforts to incorporate Langevin dynamics to

solve large scale linear programs. While traditional optimization techniques have their merits,

the integration of Langevin dynamics offers a fresh perspective and a set of tools with comple-

mentary benefits. However, as with any nascent integration, there remains a vast expanse of

uncharted territory. The full breadth and depth of what Langevin dynamics can offer to solve

large scale linear programs is yet to be fully realized.

Furthermore, the performance of Langevin dynamics, in Constraint Violation Learning when

applied to diverse types of problems, remains an open question.

In conclusion, while this thesis has shed light on the potential of Langevin dynamics in

optimization, it also paves the way for future investigations. We are at the early stages of this

exploration, and the future holds promise for further advancements in this exciting confluence

of Langevin dynamics and optimization.
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