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Abstract

Nel mondo odierno, basandosi sulle conoscenze acquisite finora, si sa che le risorse sono limitate e
la loro sfruttamento talvolta non & giustificato, poiché il bilancio complessivo tra prodotto finale e materia
prima, che comprende tutti gli aspetti del processo, non € rispettato, causando cosi danni significativi
allambiente [1]. Di conseguenza, c’e stata una crescente preoccupazione nella comunita scientifica nel
trovare soluzioni che ottimizzino le risorse esistenti.

In effetti, grazie ai significativi progressi tecnologici che si sono verificati nel secolo scorso, gli scien-
ziati e gli ingegneri hanno scoperto di poter creare materiali con caratteristiche desiderabili, che hanno
chiamato materiali compositi [2]. In realta, la scoperta di tali materiali risale al tempo degli Egizi, che
utilizzavano un tipo di malta e mattoni che combinavano argilla rinforzata con paglia per costruire le
loro piramidi. Tuttavia, lo sviluppo dei materiali compositi ha preso slancio dagli anni ’30, in particolare
durante la Seconda Guerra Mondiale, principalmente nelle applicazioni militari, come la produzione di
parti per aeromobili.

Inoltre, con il progresso tecnologico raggiunto, € diventato possibile costruire strumenti sempre piu
precisi e sicuri, consentendo cosi studi sperimentali piti realistici e affidabili. E, infatti, la capacita umana
di applicare la conoscenza scientifica combinata con nuove scoperte a "alimentare” il progresso scien-
tifico e portare alla creazione di strumenti e oggetti in grado di soddisfare meglio le proprie esigenze.
In realta, si tratta di un ciclo iterativo di processi, ma la loro spinta al progresso consente al punto di
partenza di ciascuna fase di diventare il punto di arrivo della fase precedente.

Alla luce dell'incremento dell’'accuratezza degli studi di analisi modale condotti in precedenza con ac-
celerometri [3], la tesi attuale ha cercato di effettuare la caratterizzazione dinamica delle travi sandwich
(facce in alluminio e cuore in schiuma di polimero) utilizzando un vibrometro LASER.

Per confrontare e valutare se i risultati ottenuti dalle misurazioni della risposta del vibrometro LASER
sono effettivamente accurati, € stato condotto anche una studio numerico. Pertanto, la tesi sviluppata
¢ stata suddivisa in due parti distinte: una parte sperimentale, in cui una trave con condizioni di bordo
libere & stata dinamicamente eccitata utilizzando uno Shaker e un Hammer; e una parte numerica, in
cui le stesse condizioni sono state introdotte nel software Patran/Nastran per simulare cid che accade
nella parte sperimentale e confrontare i risultati.

Infine, dopo aver ottenuto le prime frequenze naturali e le relative forme modali, verranno tratte delle

conclusioni e saranno analizzate le possibilita per lavori futuri.

Parole chiave: structural Analysis, Modal Testing, LDV, Resonance, FEM.






Abstract

In today’s world, based on the knowledge acquired so far, it is known that resources are limited and
their exploitation is sometimes not justified, as the overall final product-raw material balance, encom-
passing all aspects of the process, does not compensate, thereby causing significant damage to the
environment [1]. As a result, there has been an increasing concern among the scientific community to
find solutions that optimize existing resources.

In fact, through the significant technological advancements witnessed in the last century, scientists
and engineers have discovered that they could create materials with more desirable characteristics,
which they termed composite materials [2]. In truth, the discovery of such materials dates back to
the time of the Egyptians, who used a type of mortar and brick that combined reinforced clay with
straw to build their pyramids. However, the development of composite materials gained momentum
from the 1930s, especially during World War Il, primarily in military applications, such as aircraft parts
manufacturing.

Furthermore, with the technological progress achieved, it has become possible to build increasingly
precise and secure instruments, thereby enabling more realistic and reliable experimental studies. In-
deed, it is the human capacity to apply scientific knowledge combined with new discoveries that "fuels”
scientific progress and leads to the creation of tools and objects capable of better satisfying their needs.
In reality, this is an iterative cycle of processes, but their drive for progress allows the starting point of
each stage to become the endpoint of the previous one.

In light of the improved accuracy of previous modal analysis studies conducted with accelerometers
[3], the current thesis sought to perform the dynamic characterization of sandwich beams (aluminium
faces and polymer foam core) using a LASER vibrometer.

To compare and evaluate whether the results obtained from the LASER vibrometer response mea-
surement are indeed accurate, a numerical study was also conducted. Thus, the developed thesis was
divided into two distinct parts: an experimental part, where a beam under free boundary conditions was
dynamically excited using a Shaker and a Hammer; and a numerical part, where the same conditions
were introduced in the Patran/Nastran software to simulate what occurs in the experimental part and
compare the results.

Finally, after obtaining the first natural frequencies and corresponding vibration modes, conclusions

will be drawn, and possibilities for future work will be extrapolated.

Keywords: Structural Analysis, Modal Testing, LDV, Resonance, FEM.
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Chapter 1

Introduction

1.1 Motivation

Throughout generations, Humanity has witnessed technological advancement that has been driven
by the need to satisfy its various requirements. However, as technological demands increased, partic-
ularly in the aerospace and automotive industries, conventional materials started to exhibit limitations
in terms of performance. Consequently, in order to address these needs, researchers realized that by
combining different materials, they could achieve a final product with optimized properties [1].

Based on this premise, many studies have been conducted in the field of composite materials to
understand how certain combinations of materials can result in a material that encompasses the best
qualities of each component involved in the process [2, 4, 5].

One of the industries that has greatly benefited from the technological advancements in this field
of study is the aerospace industry [6]. A notable example is the Boeing 787 aircraft, which began
commercial operations in 2007. Approximately half of its total weight is made up of composite materials,
and it is about 20% lighter than the earlier Boeing 777 model, which was introduced in 1993 with only
20% of its total weight as composite materials [7, 8]. This demonstrates the increasing utilization of
these materials by the industry due to their ability to develop lighter and highly durable structures. As
a result, this contributes to reduced energy consumption, improved efficiency, and sustainability across
various industries [6, 9].

That being said, this work aimed to perform experimental modal analyses under a Free-Free bound-
ary condition using less conventional tools, such as a Laser Doppler Vibrometer (LDV), for conducting
these experimental activities [3, 10—-13]. Therefore, given the observed importance of composite mate-
rials, the focus of this analysis was on the study of composite materials. Consequently, four composite
beams from the Laboratory of the Department of Mechanical and Aerospace Engineering at Politecnico
di Torino were selected for this work. All of these beams had 7075 aluminium faces and a core of poly-
mer foam WF-110. However, the thickness of these materials varied from beam to beam, which also
led to variations in stiffness and distributed mass for each of these beams. Consequently, this variation

in stiffness resulted in different resonant frequencies when external forces were applied using a Shaker,



as will be observed.

It is worth noting that when the frequency of external excitation coincides with one of the natural
frequencies of a structure, it can lead to vibration amplification, potentially causing structural failures,
ruptures, or even collapse, as seen in the example of the Tacoma Narrows Bridge collapse in 1940 [14].
This phenomenon is known as resonance and is more likely to occur when a structure is subjected to
external forces like wind, earthquakes, turbulence, or other dynamic loads. Therefore, it is essential to
predict the natural frequencies of certain structures and their vibration modes in order to prevent potential
failures by avoiding them under service and ensure the safety, integrity, and durability of structures over
time [15, 16].

1.2 Topic Overview

The main topic addressed in this work is experimental modal testing. To ensure a good understanding
of this subject, it is important to define this concept and explain how modal testing will be applied in this
specific work.

Hence, modal testing serves as a fundamental tool for constructing reliable models that capture the
dynamic behaviour exhibited by structures [17]. By conducting these types of experimental activities,
it becomes possible to determine specific modal characteristics of each structure, such as natural fre-
quencies, modal shapes, and damping. Knowledge of these characteristics will subsequently enable
predictions of structural behaviour under dynamic loads [18, 19].

It is evident that in the aerospace industry, these tests play a crucial role, as aircraft are susceptible
to significant dynamic loads, such as turbulence. Therefore, to ensure the safety of these vehicles when
exposed to such phenomena, it is necessary to conduct modal tests on all their components beforehand
[20, 21].

Having said that it's worth noting that before conducting any modal test, it is customary to create
a preliminary Finite Element Model (FEM) that accurately represents the structure under investigation
[22, 23]. This practice stems from the fact that conducting a numerical analysis allows for an initial
estimation of the dynamic behaviour of the structure under study, providing valuable insights for the
modal test. With this estimation, it becomes possible to identify the optimal locations for excitation
and measurement within the structure, predict the natural frequencies to be obtained in the modal test,
reduce resource consumption, and, early on, determine whether the structure will meet the necessary
requirements [23, 24]. Subsequently, following the execution of the modal test, the quality of these
numerical models should be evaluated by comparing them to the experimentally obtained results. This
evaluation will determine if the models are indeed representative of the realities under study. All these
procedures were implemented in this work and will be comprehensively discussed further [18].

That being said, to perform a modal analysis engineers frequently employ methods that require
measuring the structure’s response using accelerometers [3, 10—13]. However, it is essential to be
aware of potential errors associated with this methodology. The introduction of these devices imposes

a small mass on the structure under examination, which can significantly affect the characteristics of



some structures. Consequently, a limited number of accelerometers can be applied to structures, as the
additional mass becomes considerable beyond a certain number. Furthermore, improper installation of
accelerometers, such as small positioning or fixation errors, may result in imprecise measurements. Ad-
ditionally, these sensors are more susceptible to capturing noise and interference, potentially impacting
and distorting the analysis results [18, 25].

To enhance the precision and reliability of results, technological advancements have given rise to
an alternative method utilizing LDV for data acquisition [26, 27]. This approach involves directing a
laser beam at the structure’s surface and capturing the reflected light with a sensor. Subsequently,
the technology measures the frequency shift of the reflected light, which is then used to determine the
structure’s modal characteristics. Therefore, instead of using traditional piezoelectric accelerometers,
an LDV was employed in this work to perform the experimental modal tests.

1.3 Objectives and Deliverables

As previously mentioned, one of the main objectives of this work is to conduct modal testing on
four beams under Free-free boundary conditions. However, given that suspending a beam in the air
without any support is not feasible, a solution that approximates the free-condition scenario had to be
devised. For this purpose, a configuration with metal beams and elastic supports was conceptualized
and subsequently used, as will be observed.

As previously mentioned, another objective is to create FEM models for each of the four beams
that accurately predict the dynamic behaviour of the structures under study. Despite the availability
of various software, these numerical models were developed and executed using the Patran/Nastran
software. This choice was made because of the ease with which Politecnico di Torino (the university
where this experimental activity took place) could obtain a license for this software. Subsequently, using
MATLAB programs created for the purpose of collecting and analyzing all data from both numerical and
experimental models (see Appendices A and B), the level of correlation between these two models was
determined, allowing for an assessment of the validity of the numerical models.

Finally, another aim of this work was to evaluate the LDV technology in conducting modal testing. As
a result, the potential advantages and disadvantages of this technology in carrying out these activities
will be discussed further.

That being said, the detailed objectives of this study are as follows:

» Develop FEM models for the four beams;

+ Obtain the numerical results from the FEM models;

» Devise a mechanism that best approximates the free-condition scenario for the beams;
» Determine the laser measurement positions to accurately represent the modal shapes;

+ Assess whether the use of LDV technology can provide significant advantages compared to more

conventional solutions for modal testing;



» Acquire the experimental frequencies and modal shapes;

» Create programs to collect and analyze all obtained data to determine the level of correlation
between the two models;

Compare the experimental results with the numerical results and assess their similarity;

Verify if it is possible to validate the previously developed FEM models.

1.4 Thesis Outline

The structure of the thesis has been divided into 8 chapters, ensuring coherence and a logical flow
of the topics to be addressed throughout the work.

Chapter 1 serves as a brief introduction, providing context to the problem under study and outlining
the objectives and steps to be analyzed throughout the research.

In Chapter 2, essential theoretical concepts about the dynamics of discrete systems will be discussed
to enhance the understanding of the subsequent analyses.

Chapter 3 will present a literature review and some fundamental concepts regarding the evolution
and application of the Finite Element Method, allowing the reader to become familiar with the concepts
related to this topic.

Chapter 4 will delve into the numerical aspect, explaining how the numerical model was obtained. It
will cover all parameters introduced into the Patran/Nastran software and the relevant steps that were
applied.

Chapter 5 will cover all concepts related to modal testing in the first part, while in the second part, the
operation of the LDV and its advantages will be explained, along with the strategies that can be applied
to obtain accurate results.

Chapter 6 will focus on the experimental procedure used, including the selection of the measurement
points configuration, the instruments used, and the entire experimental setup.

Chapter 7 will present the experimental results obtained and compare them with the previously ac-
quired numerical results.

Finally, in Chapter 8, a conclusion will be drawn regarding the achievements of this work, and sug-

gestions for future work will be proposed.



Chapter 2

Dynamics of discrete systems

In this chapter, the essential theoretical foundations of the dynamics of discrete systems are covered
for a thorough understanding of this work. The exploration begins with the presentation of basic concepts
in vibration theory. Following this introduction, an examination of the various possibilities that a Single
Degree of Freedom (SDOF) system can assume is conducted. Upon gaining insight into the functioning
of such systems, the focus shifts towards the transition from a time-domain response to a frequency-
domain response — a form of response widely employed in this field of study [28]. With these topics
addressed, the study of systems with multiple degrees of freedom (MDOF) is introduced, revealing

increased complexity in their analysis.

2.1 Basic concepts of vibration theory

Firstly, it is important to begin by defining the concept of vibration. Vibration (or oscillation) refers
to any motion within a certain time interval, such as the simple swinging of a pendulum. Furthermore,
it should be noted that the theory of vibrations extends beyond the study of body movements; it also
encompasses the examination of the forces associated with these movements.

Typically, the representation of a vibratory system includes at least one device capable of storing
potential energy and another device capable of storing kinetic energy. When only these two elements
are represented, energy conservation is assumed. To account for the dissipation that occurs in reality,
often represented by a damper (as will be used in the cases studied), it is added to the system. Thus,

vibratory systems can be classified according to various parameters, such as [29, 30]:

* Undamped or Damped: If the energy transformation process is conservative, meaning that en-
ergy losses can be considered negligible, the system is classified as Undamped, and no devices
capable of dissipating energy are represented. For cases where it is too unrealistic to assume that
the system does not dissipate energy during the transformation process, the system is character-

ized as Damped, and typically one or more dampers are introduced in its representation;

» Free or Forced: Free systems consist of systems that, after an initial disturbance, will vibrate on

their own, meaning they will continue to vibrate without the action of any external force after that



first impact. On the other hand, Forced systems are systems that are continuously subjected to

an external force;

+ Deterministic or Random: As the name suggests, Deterministic systems, unlike Random sys-
tems, are subject to an external force that acts on the system under study and is known for a
certain interval of time. However, due to the difficulty of studying Random vibratory systems,
such as turbulence, sometimes from data collection, a statistical regularity can be found for a cer-
tain interval of time. Consequently, for these cases, it is possible to simplify the study of these
systems by approximating them as Deterministic systems.

Finally, it is also important to mention that harmonic functions are typically used for representing vi-
brations, especially for deterministic systems (which are the subject of study in this work). This approach
is widely used because it not only allows obtaining simple numerical expressions but also proves to be
quite useful in obtaining frequency domain responses by applying the Fourier transform [31].

Thus, any harmonic function is characterized by the following parameters:
» Period: represented by the letter T, it is the time required to complete one full oscillation;

« Frequency: represented by the letter f, it is the inverse of the Period, and physically represents

the number of oscillations that a particular harmonic function completes in one second;

+ Angular frequency: represented by the letter w, it is a vector quantity that measures the speed
at which a body moves along a circular path and is widely used for harmonic functions. It can be
calculated by multiplying 2 x 7 by f (w = 27 - f).

Given this, it is important to note that harmonic functions can also be interpreted, as shown in Figure
2.1, as the result of adding two vectors: one corresponding to the vertical projection in the imaginary
plane and another corresponding to the horizontal projection. It is important to note that the system can
be expressed, as you will see in Equations 2.1, 2.2, and 2.3, using only an imaginary exponential (the
imaginary part in this work will be denoted by the letter 7).

¥ x(1) y(t)
Im
e x(£)= X cos wt y(t) = X sin wt

—~ X X Xt
(IR \WA A
1 0 1 1 ] 0
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(a) Vectorial representation (b) Harmonic motions

L]

Figure 2.1: Harmonis motions represented by rotating vector [31].

Taking this into account, and considering X as any amplitude, the following equations can be written

for displacement (u), velocity (i), and acceleration (i), respectively:



u = X cos (wnt) + jX sin (w,t) = Xeln! (2.1)

U= jw, Xelnt = juw,u (2.2)

i = —w2Xelnt = —2u (2.3)
The Figure 2.2 illustrates the result obtained from the previous equations:
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(a) Vectorial representation (b) Harmonic motions

Figure 2.2: Displacement. velocity and acceleration vectors [31].

2.2 SDOF systems

As previously mentioned, the analysis will commence with SDOF systems, which are systems that
only require one coordinate to fully describe all positions of their motion [29]. Although these systems
may not represent the beams that will be the subject of study in this work, they provide a solid under-
standing of the basic concepts of structural dynamics. Therefore, as illustrated in Figure 2.3, an SDOF

system is typically represented by a mass, a spring and a damper.

k
m_ k- stiffness
F(t) c- damping
_ m |=———bd m - mass
| u(t) - displacement
| —— F(t) - external force
ﬂ - u(t)

Figure 2.3: Spring-Mass-Damper System [32].

It should be noted that for the sake of simplification in certain equations, u(t) (displacement) and



F(t) (external force) will be represented simply as « and F, respectively. That being said, applying the

d (DE, oA OE,\ _ (0L,

Lagrange Equation,

where,

» Ej represents the kinetic energy, defined by the following expression:

» A represents the damping dissipation function, defined by the following expression:

A= —ci? (2.6)
+ E, represents the potential energy, defined by the following expression:
1 2
» L. represents the work done by external forces, defined by the following expression:
L.=Fu (2.8)
Applying these expressions yields the following equation of motion:

; k F
mii+ i+ ku=F & i+ —i+ —u = — (2.9)
m m m

With this in mind, it becomes evident that, based on Equation 2.9, various cases can be studied:

Table 2.1: Different cases for SDOF systems.

c=0 c#0
F =0 | Free vibrations for undamped Free vibrations for damped
systems (first case) systems (second case)
F #0 | Force vibrations for undamped Force vibrations for damped
systems (fourth case) systems (third case)

Considering Table 2.2, a separate study will now be conducted for each of these different cases.

2.2.1 Free vibrations for undamped systems

It is observed that for the first case in Table 2.2, Equation 2.9 can be simplified as follows:



i+ Eu =0 (2.10)
m
Hence, recalling Equation 2.3, the following is obtained:

k
2= Z 2.11
wy = (2.11)

Therefore, assuming that the solution to Equation 2.10 (where M represents any constant) will be of

the following form:

u(t) = Me** (2.12)

Applying Equation 2.12 to the Equation of motion 2.10, the following result is obtained:

w=—w? e w==4jw, (2.13)

Thus, it can be observed that for this case, in addition to the conservation of energy, f = f,., and its

solution can be written as follows:

u(t) = Me*iwn (2.14)

2.2.2 Free vibrations for damped systems

For the second case in Table 2.2, Equation 2.9 can be simplified to the following homogeneous

differential equation:

i+ Sat Fu—o (2.15)
m m

From Equation 2.15 and assuming the solution in Equation 2.12, the following is derived:
c c\2 k
o= =5 2\ (5m) ~m @19
In addition, it is important to define the Critical Damping, c.. This constant takes the value of the
damping constant ¢ that makes the root of Equation 2.16 equal to zero, i.e.:

Ce :Qm\/ﬁ = 2mwy, (2.17)
m

The Damping factor, ¢, is equal to the ratio of ¢ to ¢.. Thus, it is expressed as:

£ Ce_y, (2.18)
m

m  Ce

Consequently, applying Equation 2.18, the solution to Equation 2.12 takes the following expression:



u(t) = Mye(TGonron /1)t |y (e /1) (2.19)

From the previous equation, it is evident that, as expected, for the case of ¢ = 0, the solution obtained
would be the same as the one obtained in 2.14, i.e., the undamped system first case. However, for the
case ¢ # 0, three different scenarios arise.

To understand each of these cases, it is first necessary to define wy, which corresponds to the
angular frequency of damped vibration, i.e., the pseudo-angular frequency of a system with damping.
Thus, w, takes the following expression:

wyg = wny/ (2 -1 (2.20)

Note that, with the help of Figure 2.1, w, represents the imaginary part. Therefore, for the case
0 < ¢ < 1, wq will always be less than w,. However, for cases where ¢ > 1, the system will no longer
oscillate around an equilibrium configuration as w, ceases to be an imaginary number. It is also noted
that for the case of { = 1, the system will have critical damping. Consequently, the system will reach the
equilibrium configuration more quickly, as for situations where ¢ > 1, wg > wi,.

Since wy is greater than w,, the roots of Equation 2.19 will be located on both sides of the root
for the ¢ = 1 situation, as depicted in Figure 2.4, resulting in a slower approach to the equilibrium
configuration. Physically, this case can be interpreted as if the object were immersed in a viscous fluid,

thus experiencing resistance to motion. All cases for different values of ¢ are covered in Figure 2.5.

Im x(1)

______ bwny/C—1

Undamped (£ = 0)

Overdamped ({ > 1)

Underdamped (£ <1)
(wqis smaller
than w,)

Critically
S damped (£ =1)
~

Xp

_C " Re

””” —Wn \/C2—_1

w,

Figure 2.4: Representation of the pos-  Figure 2.5: Comparison of motions with different types of
sible roots of Equation 2.19. damping [29].

2.2.3 Force vibrations for damped systems

Now, for the third case in Table 2.2, Equation 2.9 corresponds to the simplified version. However,
since the differential equation in question is non-homogeneous, its solution will be given by the sum of
a solution to the associated homogeneous equation, u;(t), and a particular solution to the complete

equation, u,(t) [33].

u(t) = uyp(t) + up(t) (2.21)



Thus, the following system of equations can be represented:

Uy + Sy + Eup =0
{ f m f ’I)’Luf (222)

tp + =y + %up = %

By observing the System of Equations 2.22, it becomes evident that w;(¢) will take the form of
Equation 2.19 (the equation deduced for the second case), as it is a homogeneous equation. However,
since for this third case, u(¢) results from the sum of two terms, the constants M; and M- will necessarily

be different because the initial conditions are applied to the system as a whole:

(2.23)

Uo = ug(0) +up(0)
Uy = 17(0) + 11, (0)

For u,(t), it is essential to define F'(t) as the response is associated with the force acting on any
system. Assuming that F'(¢) behaves as a periodic function (see Equation 2.24) and that £} is a constant,

it can be written as a linear combination of harmonic functions.

F(t) = Fyel®t (2.24)

It should be noted that the w in Equation 2.24 corresponds to the angular frequency of the force itself
and is thus different from w,, and wy. Therefore, assuming that F(¢) is described by a harmonic function,
the response (in this case u,(t)) must also be written as a linear combination of harmonic functions,
where its angular frequency will necessarily be the same as that of the force, but with a phase delay ¢
(see Equation 2.25).

u,(t) = upel' e (2.25)

Hence, by substituting Equations 2.24 and 2.25 into the equation for u,(t) in System 2.22 and know-
ing that 5 corresponds to the Frequency Ratio (5 = win), the Equation 2.26 can be deduced::

Ry (%) 428

uge™1? = 2.26
' B 52) + 402 (220
Thus, it is expressed as follows:
Fo 1
ug =V Re2 4+ Im? = i (2.27)
V-3 — a2

_ —arotan 1™ _ 2¢8

p = —arctan Te = arctan e (2.28)

After determining the expressions for the constants in the solution of w,(t) (Equation 2.25), the fol-

lowing equation can be written:

—w?muge? @) 4 cjwuge’ W) 4 kuge? W) = Fyelvt (2.29)
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ku, cos(wt — )

This simplification is useful as it allows for the i g
geometric interpretation shown in Figure 2.6 muu _____________
regarding the particular solution w,(t). Here, w[lp

it is observable that the initial term in Equation ) \L
2.29 corresponds to the inertial force, the sec- 0 ku, >

ond term to the damping force, the third term ot o

» &
)

to the elastic force and the last term to the ex-

F, cos(wt) m-u, cos(wt—¢)

ternal force.
Figure 2.6: Geometric representation of

Equation 2.29 [22].

With that said, it is now important to introduce the concept of Dynamic Amplification Factor, D(t).
This factor is highly relevant as it allows us to assess how much the dynamic response is amplified
compared to the static response, us(t), which represents the response when the system under study

does not need to vibrate to adapt. Thus, it is expressed as:

u,(t) el (wt—p)

D(t) = - (2.30)
will)Ja - g - acpe

Once again, it should be emphasized that the dynamic response u,(t) will be periodic, whereas
us(t) will represent a static response. For this reason, to calculate the maximum value of D(t), it is
only necessary to determine when u,(t) is at its maximum. Thus, D,,,, takes the following algebraic

expression:

Dioe = ! (2.31)

V- g2 —ac2pe

From Equation 2.31 and Figure 2.7, it is impor-

tant to note that for ¢ > § the function D,

will not have any absolute maximum value.
However, for values of ¢ < 2, the function
Dinas Will always have an absolute maximum
value occurring at 8 = /1 — 22, which means

it will be very close to § = 1. As ( increases,

the value of g at which the peak in D, 0C-

Figure 2.7: Variation of D,,,., with 3 for . .
g different values of ¢ [22]. b curs decreases, as confirmed by Figure 2.7.
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Indeed, from Equation 2.28, it can be observed
that for low values of 3, the angle ¢ will take
values very close to zero for any ¢. In this case,
by adjusting the value of ¢ in Figure 2.8, it is
evident that the response will be dominated by
the elastic force, meaning the contributions of
mass and damping are negligible compared to

the contribution of the spring.

mo- ll0

ku, J B
D, —0

¢ ~180°
¢ —>180°

Figure 2.9: Geometric representation of
Equation 2.29 as 8 — oo [22].

Lastly, for values of 3 very close to 1, it can
be observed from Equation 2.28 that the an-
gle ¢ will take values very close to 90°. In
this case, by adjusting the value of ¢ in Fig-
ure 2.10, it is evident that the response will be
dominated by the damping force, meaning the
contributions of the spring and mass are negli-

gible compared to the contribution of damping.

Amplitude, | 4|

o ‘¢Spring*} <~——Mass —»
(k) (m)
dominates dominates

Damping

(c)

controls

2}

180

Phase lag, ¢

|
Resonance

Figure 2.11: Representation of all situations
for the different values of 5 [29].
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Figure 2.8: Geometric representation of
Equation 2.29 as 8 — 0 [22].

Exactly, for high values of 3, the angle ¢ will
take values very close to 180°. In this case, by
adjusting the value of ¢ in Figure 2.9, it can be
observed that the response will be dominated
by the inertial force, meaning the contributions
of the spring and damping are negligible com-
pared to the contribution of the mass.

mou,

& p—1

Dmm —» L
e

=90°
N ¢ —90°

ot

ku,

Figure 2.10: Geometric representation of
Equation 2.29 as g — 1 [22].

This situation is referred to as Resonance,
and as mentioned before, this phenomenon
is particularly important when ¢ < § where
the function D,,.. reaches its absolute maxi-
mum. In this case, the dynamic response is
significantly amplified compared to the static
response of the system, and as will be seen
later, this situation will be the main focus of
study in this work. All these situations are well

represented in Figures 2.11.



2.2.4 Force vibrations for undamped systems

Finally, for the fourth case from Table 2.2, it is observed that this situation is quite similar to the third
case. However, since ¢ = 0, the function D,,.. (as perceived from Equation 2.31) will have a vertical
asymptote at 5 = 1. Thus, for this value of 3, the function D,,,... will tend to infinity, making the system
necessarily unstable in the resonance condition. It is also worth noting that the angle ¢ (from Equation
2.28) for this situation will be exactly 90°.

2.3 Frequency response

In many cases, analysing the response in the time domain proves to be a very complicated task,
involving significant computational costs or even being impossible to perform. To overcome this issue,
the adopted strategy is to transform the time-domain response into the frequency domain. To achieve

this conversion between domains, structural analysis utilizes the Fourier Transform (FT):

+oo
Flw) =710 = —= [ s (2.32)

Indeed, the Fourier Transform (FT) is a specific case of the Laplace Transform (LT) [34], as unlike
the latter, it only involves an imaginary exponential (see Equation 2.32). This detail is quite relevant
because, as mentioned in Chapter 2.1, the equations related to the systems under study can be written
using imaginary exponentials. For this reason, FTs hold significant importance in this field of study, as
they enable the direct transformation from the time domain to the frequency domain.

It is important to note that the FT, unlike the LT, is only valid when initial conditions are zero. This
detail is of particular importance in experimental analyses, as ensuring this requirement is fulfilled is
necessary to obtain reliable results. Additionally, it is essential to understand that, as shown in Figures
2.12(a) and 2.12(b), a harmonic function in the time domain results in peaks at the frequencies of that
harmonic function in the frequency domain and, if a Dirac delta function (a unit impulse with zero initial
conditions) exists in the time domain, it will result in a horizontal line of unit value in the frequency domain
[22, 35]

A o Amplitude
AMPLITUDE
unit impulse - § (t) TF
N omy -
7 |\/ \ | i > >
(a) Fourier transform of a Dirac Delta Function [35] (b) Fourier transform of a Harmonic Function [36]

Figure 2.12: Examples of the application of the Fourier Transform.

After applying the FT to Equation 2.9, the ensuing result is as follows:

-k r
T [u + it u] =T [} & T i+ 2wyt +wiu] =T [F] &
m m m m
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—wW?T (u) 4 2¢wnjwT (u) + W2T (u) = —T [F] (2.33)

1
m
With T'(u) = U(w) and T[F] = F(w), the obtained expression is:

w?

V@) = o ot s ) T @) (2.34)

Considering Equation 2.34, it is possible to define the Transfer Function (H(w)), which, through a
simple multiplication with the function £'(w), allows obtaining the function corresponding to the system’s
response, U(w), in the frequency domain.

U(w)=Hw) - F(w) (2.35)
Where:

_Uw) _ wyy _ 1
H{w) = F(w)  mw? (—w? + w2 + j20w,w) k- [(1—B2)+ (j2¢B)]

(2.36)
Examining the function H(w) more closely, the assumption is made that this function can be ex-
pressed in the following form:
H(w) = Me 9% (2.37)
Thus, it can be observed that the amplitude M of H(w) has the following expression:

M= J(Re)? + (Im)? = L. ! - % Do (2.38)

Bk g aes

Therefore, from Equation 2.38, it is evident that the amplitude of H(w) is directly proportional to

Dinae- It is thus proven that the frequency peaks of H(w) will occur when the function D,,,.. reaches
its maximum value, in other words, as mentioned earlier, the peaks of H(w) will occur at the resonance
condition (when there is damping for 5 ~ 1 = w,, =~ w).

It should also be noted that F'(w) will have a frequency peak at w, which corresponds to the angular
frequency of the external force applied to the system. Since U(w) is the result of the multiplication of
H(w) by F(w), this function may exhibit two peaks, one at w,, and another at w, or it may have a single
dominant peak when w = w,,.

Furthermore, regarding H (w), it is important to mention that in many cases, especially in laboratory
activities, it is more convenient to measure the response in terms of velocity or acceleration rather than
displacement. In such cases, to maintain the validity of the previous expressions, one simply needs to
multiply Equations 2.34 and 2.36 by jw if the response is measured in terms of velocity or by (jw)? if the
response is measured in terms of acceleration. It is also worth noting that H(w) can also be referred to
as the Frequency Response Function (FRF).

Taking all this into account, it is evident that the TF possesses three significant advantages, which

are as follows:
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* w has a well-defined physical meaning, making the analysis of the studied systems more accessi-
ble;

» While in the time domain, it was necessary to solve a differential equation, using the TF only
requires solving a simple multiplication, as shown in Equation 2.35;

+ With the application of the TF, it is possible to estimate the values of ¢ and w,,, which are often
unknown initially. Typically, in a laboratory context, the response and external force are measured
in the time domain. Then, the TF is applied to the response and the applied force. Next, from
Equation 2.35, the experimental values of H(w) are obtained. Finally, by using software such as
PolyMax [37, 38], which compares these experimental values of H(w) with its theoretical expres-
sion (Equation 2.36), the unknowns ¢ and w,, can be estimated.

2.4 MDOF systems

SDOF systems, despite their conceptual relevance in understanding essential theoretical concepts,
have limited applicability to real-world scenarios. Consequently, the study of MDOF systems is of utmost
importance, as many practical systems possess multiple or even infinite degrees of freedom. The chal-
lenge with these systems lies in the fact that, unlike SDOF systems, the structures under investigation
have multiple natural frequencies, requiring the examination of various resonance scenarios.

Hence, similar to SDOF systems, the equations of motion will be derived using Lagrange’s equation.
However, since it involves M degrees of freedom, the resulting equation will be in matrix form. Therefore,
assuming that [M], [C], and [K] represent the matrices for mass, damping, and stiffness, respectively,

the following expression is obtained:

[M]{i} + [C]{a} + [K]{u} = {F} (2.39)

Given Equation 2.39, it is possible to analyse the different cases presented in Table 2.2 for this type
of system as well. However, for reasons that will be explained, it is only useful to address the cases of
free vibrations for undamped systems, force vibrations for undamped systems, and finally, force
vibrations for damped systems, in that order.

2.4.1 Free vibrations for undamped systems

For this case, Equation 2.39 can be simplified as follows:

[M]{i} + [K]{u} = {0} (2.40)

Considering that:

{u} = {¢} eIt (2.41)
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One has:

([K] = wyy [M]) {6} &/* = {0} (2.42)

Thus, upon analysing Equation 2.42, it is evident that it can only be solved in two ways. However,
the solution {¢} = 0 is a trivial solution, meaning that it would not provide any additional information
about the system under study. Therefore, since the term related to the exponential will never be zero,

this problem becomes an eigenvalue problem, that is:

det ([K] — w? [M]) =0 (2.43)

By solving the above determinant, one can obtain all the values of w,, for the system. It is noted that
some of the w,, values may be equal to zero, as they correspond to rigid body modes, where the potential
energy is zero. For example, if an airplane were being analysed, the first 6 values of w,, would be equal
to zero since an airplane has 6 rigid body modes - 3 related to translational directions and another 3
related to rotational directions. Thus, only the 7** mode would have a non-zero w,,, corresponding to a
deformable mode where the potential energy is not zero.

Once the values of w,, (eigenvalues) are obtained, they are substituted back into Equation 2.42 to
obtain the eigenvectors, that is, the {¢} vectors corresponding to each w,, value. Thus, by performing

this substitution, a known vector {¢} is obtained, which is then multiplied by an unknown constant A4;.

{0}, = 4 {¢}, (2.44)

With all the vectors {¢},, it is possible to build a modal matrix [¢], which will be an M x M square
matrix. This modal matrix proves to be highly useful because it enables the diagonalisation of the
stiffness and mass matrices ([K] and [M], respectively), significantly simplifying the calculations to be
performed:

[6]" [K][¢] = [DK] (2.45a) [6]" [M][g] = [Dn] (2.45b)

There are three different ways to define the unknown constant A;, namely:

» Normalise with respect to the maximum value of the vector {qb} , that is, consider the unknown

constants to take values such that the maximum value of the vector {¢}, becomes equal to 1;

» Normalise with respect to the mass matrix, which means defining the unknown constants in such

a way that the modal matrix becomes equivalent to the mass matrix in the identity matrix;

(8] 1[d] = tpasl = 11 (2.46)

» Normalise with respect to the stiffness matrix, which means defining the unknown constants in

such a way that the modal matrix becomes equivalent to the stiffness matrix in the identity matrix;
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(4] 1%1[4] = (px) = 1 (2.47)

Nevertheless, as will be understood later, the use of this type of normalization can lead to signifi-

cant problems and, therefore, it is not very common.

Furthermore, it is important to highlight that the modal vectors enjoy the property of orthogonality,
i.e., {gb}z.T . {¢}j = 0if ¢ £ 5 [39]. From this property, a very useful conclusion can be drawn in the future,
namely, that both the elastic forces and the inertial forces will only do work in their direction. Therefore,
it can be stated that in a multi-degree-of-freedom system, its vibration can be obtained by summing all
the vibrations of the different modes.

Finally, it is also observed that for MDOF systems, the following expression is valid:

L2 = 19bi [K]{o}, (2.48)
" {e) M]{g},

This expression is quite similar to the one verified for SDOF systems (Equation 2.11). However, it is

not very practical because to apply it, one needs to determine the vectors (¢), which, as shown earlier,

requires prior knowledge of the eigenvalues w;,,.

2.4.2 Force vibrations for undamped systems

For this case, Equation 2.39 can be simplified as follows:

[M]{i} + [K]{u} = {F(t)} (2.49)

Analysing Equation 2.49, it is evident that if the matrices [M] and [K] are not diagonal, solving this
system can entail significant computational costs. Therefore, it is common to transform the physical
coordinates into modal coordinates to make these matrices diagonal, as previously mentioned. To
achieve this, the following transformation will be applied:

{u(®)} = [o] - {v(D)} (2:50)

Therefore, applying Transformation 2.50 to Equation 2.49 and multiplying it by [¢]” results in:

[#]" [M][61{(D)} + [¢]" [K] [ {r(1)} = [¢]" {F()} (2.51)

Also, for this case, the three types of normalizations mentioned earlier can be conducted. Thus,
assuming that F,,(t) = [¢]” {F(t)} represents the modal force, depending on the chosen normalization

type, Equation 2.51 can be simplified as follows:

» Normalisation with respect to the maximum value

[Du]{E(0)} + [Dr]{r(t)} = {Fn (1)} (2.52)
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* Normalisation with respect to the mass matrix

[ {o()} + [Q°] {w()} = {Fn(t)} (2.53)

Where [Q?] corresponds to a diagonal matrix that contains, in a sorted order, all the squared

natural angular frequencies of the system under study.

» Normalization with respect to the stiffness matrix

| B0} + 1000 = (a0} 254

Where [ ] corresponds to a diagonal matrix with its diagonal elements orderly containing the

inverse of all the squared angular frequencies of the system under study. Therefore, if the sys-
tem has any rigid-body modes, meaning any w = 0, performing this normalisation will lead to an

indeterminate result. Hence, the reason why this normalisation is uncommon is now clarified.

Given the ease of working in modal coordinates, as they allow the system to be diagonalised and
solve M individual equations (as if M-SDOF systems were considered), the Transfer Function (TF) will

be applied, as previously done for SDOFs systems. For this purpose, it is important to note that:

w(t)} & {v(w)} (2.55a) ()} F {(w)}  (2.550) {Fn(t)} = {F(w)} (2.550)
Thus, applying the TF to Equation 2.51, the result is:

—w? [Da] {v(w)} + [Dx] {v(w)} = {Fu(w)} &

(W)} = (Dx] — w? [Dur]) ™ {Fn(w)} (2.56)

Expanding Equation 2.56 from modal coordinates to physical coordinates yields the following expres-

sion:

{Uw)} = [¢] (IDx] — w? (D)) "' 9] {F(w)} & (2.57)

{U()} = [HW){F(w)} (2.58)

Hence, the function H (w) for undamped MDOF systems takes the following expression:

_ [ellel”
= D] = 2 D] (2:59)
Typically, Equation 2.58 is written in the following form:
N
Ua(w) =Y Han(w) Fy(w) (2.60)



Nevertheless, in this case, H,,(w) takes the following expression:

N
(Pkad)kn
Zl Wy (2 oA (2.61)

It is important to mention that the letter « refers to the point where the response is measured, while
the letter n refers to the point where the structure is excited. Therefore, this way of writing the transfer
function proves to be very useful as it allows for studying the response of the system at the selected
points. It can also be noted that if the variable N in the summation of Equation 2.60 is equal to 1,
meaning that the system under study is excited by a single external force, this formula will be the same
as the one derived for SDOF systems using the TF (Equation 2.35).

Moreover, the term ékaékn in Equation 2.61 measures the intensity with which a particular modal
shape contributes to the response of the structure when subjected to external excitation.

In conclusion, it is also important to highlight that modal shapes often have nodes, which are points
where the structure does not vibrate at the relative frequency of that modal shape. Thus, analysing
Equation 2.61, it can be seen that if the response is measured at a node of a modal shape, k, ¢y Wwill
be zero, or if the structure is excited at a node of a modal shape, k, ¢x,, will also be zero. Therefore, it
can be stated that, when this occurs, the function H,,(w) will lose the frequency peak corresponding to
that modal shape. This is why, when performing an experimental activity, it is important to estimate the
positions of the nodes of the modal shapes to be studied beforehand and, if one wishes to visualize all
the frequency peaks, avoid exciting or measuring the response at those points.

2.4.3 Force vibrations for damped systems

This case has not been considered until now because the matrix [C] in Equation 2.39, unlike the ma-
trices [M] and [K], often proves to be non-diagonalizable when multiplied by the modal shape matrices.

Therefore, to consider this matrix, there are two distinct ways to do it [22, 29].

* The first possibility consists of writing the matrix [C] as a linear combination of the diagonalisable
matrix [Djs] and the diagonalisable matrix [Dg].
[C] =8 [Dm] + 0[Dk] (2.62)

By following this procedure, it ensures that the sum of two diagonalisable matrices will always
result in a diagonalisable matrix. Moreover, with the values of § and g, one can estimate the values
of ¢ as follows:

8+ owh, = 2Ckwn, (2.63)

Indeed, this procedure is not always feasible and advisable because in these cases, there must
be a prior guarantee that [C] is a diagonalisable matrix, meaning that for each natural frequency,

there is only one unique value of (.
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» The second possibility, although more complex, proves to be more useful. Similar to what was
explained for the SDOF case, this approach involves determining the response and excitation in
the frequency domain and then obtaining the experimental values of H(w). Subsequently, the
theoretical expression of H(w) is compared with the experimental values using appropriate soft-
ware. However, the obtained expression for the function H(w) for MDOF systems does not include
the damping term (see Equation 2.61), as it was derived for the situation of force vibrations for
undamped systems. Therefore, to obtain the expression of H(w) that accounts for damping, an
analogy with the Force vibrations for damped systems situation of SDOF systems (see Equation

2.36) must be made. By making this analogy, the following expression is obtained:

N ~ ~
Ho () = Z Prabrn
" — M (w2, — w? + j2Cpwn,w)

(2.64)

In this way, it is important to consider that all FRF plots in Chapter 7 were obtained by applying
Equation 2.64.
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Chapter 3

Numerical analysis of structural

systems with FEM

In this chapter, a literature review will be presented regarding the evolution and application of the
primary numerical method employed across various industries for structural analyses, with particular

emphasis on the aerospace industry, namely the Finite Element Method (FEM).

3.1 Introduction to numerical methods used in structural analyses

The FEM, as mentioned earlier, is a widely employed numerical technique for solving differential
equations of complex structures. It is noteworthy that this method, which was developed through the
contributions of several mathematicians, particularly in the early second half of the 20th century [40],
can be regarded as an evolution of a preceding numerical method, specifically the Rayleigh-Ritz method
[41]. The latter was formulated based on the works of mathematicians and physicists Lord Rayleigh
and Walter Ritz in the early 20th century [42]. Despite its diminished practical utility in contemporary
times, it will now be addressed, as comprehending its properties and limitations will facilitate a deeper
understanding of the FEM approach.

Therefore, this method involves approximating the response by summing the product of two functions:
a known spatial function (p.:(x,y)) and an unknown temporal function (n,;(t)), as depicted in Equation
3.1 [22].

M
u(xvyvt) ~ Zpui(xay)nui(t) = [ U(‘T7y)] {T]u(t)} (31)
i=1

It is worth noting that for u(z,y,t) to actually yield a good approximation, at least the geometric
boundary conditions must be satisfied. Consequently, this numerical method possesses four properties
that render its application a considerably intricate task, or even impossible in certain structures. Thus,

these very properties are as follows [15, 22]:

» The unknown function lacks any physical significance, rendering the physical understanding of the
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problem more intricate;

+ Since the temporal function is unknown, it is easier to apply geometric boundary conditions to the
spatial function. However, given that the mass, stiffness, and force matrices (indispensable for this
type of study and which will be discussed in greater detail downstream) are associated with this
spatial function. So, any alteration of the problem’s conditions necessitates recalculating these

matrices, thereby leading to an increase in computational cost;

» The obtained solution is as accurate as the value of M in the summation of Equation 3.1 is larger.
In other words, for u(x, y,t) to represent a better approximation, it is necessary to use more terms,

which may also result in a significant increase in computational cost.

» Furthermore, the spatial function must be defined over the global domain of the structure, which

can be a highly limiting issue when dealing with structures of high associated complexity.

In this manner, all of these challenges were overcome through the FEM. This method is consid-
ered an advancement from the Rayleigh-Ritz method, as it conceptually represents a “kind of change of
variables” from this former numerical approach. Similar to the Rayleigh-Ritz method, FEM also approx-
imates the response by summing the product of two functions: an unknown temporal function (q.;(t))
and a known spatial function (V,;(x, y)), the latter of which is also known as a shape function. However,
the functions N,,; are derived from modifications of the functions p,; in such a way that the temporal un-
known functions acquire specific physical significance. Consequently, the functions ¢,; will represent the
variables under study in the problem, such as axial displacements, transverse displacements, and so on.
These transformations that enable a parallel between these two numerical methods can be observed in
Equation 3.2 [29].

M M
u(l‘,y,t) ~ Zpui(xa y)nm:(t) = Z Nui(xa y)q,“;(t) = [Nu(x, y)] {Qu(t)} (3.2)

Taking this into consideration, it is possible to emphasize that one of the advantages of FEM lies in
the fact that the unknown functions possess specific physical significance, rendering the comprehension
of obtained results more accessible [15, 22].

It is also noteworthy that, given these unknown functions have physical significance in the FEM ap-
proach, in contrast to the Rayleigh-Ritz method, geometric boundary conditions can be directly applied
to these very functions. Consequently, the second issue previously mentioned ceases to exist, as ap-
plying boundary conditions to the temporal function ensures that the spatial functions v,; will always
assume the same algebraic expression regardless of the boundary conditions of the problem at hand.
Therefore, altering the boundary conditions will not necessitate the recalculation of matrices related to
mass, stiffness, and force, matrices which, as mentioned earlier, solely depend on the spatial function
[22].

Furthermore, it is evident that for the application of the FEM method, the analyzed domain is dis-
cretized into multiple subdomains, with each of these subdomains subject to the resolution of the rel-

evant differential equations. These subdomains are referred to as Finite Elements (FE), and each of
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these FE has nodes (points that serve as connections to other FE in the structure). The entirety of these

subdomains is referred to as the MESH. An illustration of this discretization can be seen in Figure 3.1.

Figure 3.1: Example of a discretisation of a mechanical part using FEM [43].

Having said this, this strategy is feasible and proves effective because the shape functions consis-
tently maintain the same algebraic expressions. To enhance result accuracy, contrary to the Rayleigh-
Ritz method (where it's necessary to employ more terms in Equation 3.1), in the FEM approach, increas-
ing the number of Finite Elements (FEs) suffices, ensuring mathematical continuity of the differential
equations at the nodes of these FEs [22].

Finally, the last advantage of FEM over the Rayleigh-Ritz method lies in the fact that applying this
method doesn’t require defining shape functions across the global domain of the structure. Therefore,
for more complex structures, it's common to compute shape functions within a local domain and subse-
quently algebraically transform these functions into a global reference system [22].

Having clarified the conceptual advantages of the FEM method over the Rayleigh-Ritz method, the

properly sequenced methodology followed by this numerical approach will now be outlined, namely:

+ Structure modeling and definition of all boundary conditions and other significant parameters using
specific software for this purpose (such as Patran);

+ Discretization of the structure - a process also referred to as Meshing;

« Calculation of the mass, stiffness, and force matrices in a local reference system through the

differential equations using specific software for this purpose (such as Nastran);

« Transformation of the local reference system used to define these matrices into a global reference

system;
+ Assembly of all these matrices;

+ Attainment of the final solution, often followed by Post Processing of the obtained results to gener-

ate graphs, animations, and other analyses.

3.2 Advantages and disadvantages of the FEM

After providing a brief historical introduction to the FEM and its functioning, it is now crucial to delin-

eate its actual primary advantages and disadvantages. This will serve to elucidate the pitfalls that must

24



be circumvented to attain a solution congruent with the reality under examination.

Commencing with the advantages attributed to this method, it is noteworthy to observe that [23]:

» The FEM can be applied to a wide range of situations, encompassing linear, nonlinear, static, and
dynamic problems. Furthermore, as previously mentioned, it is feasible to analyze structures with

highly intricate geometries and to impose various boundary conditions on said structures;

« By employing the FEM, it becomes possible to obtain a reliable estimation of the properties under
investigation without the necessity of constructing a preliminary physical model. Consequently, the

utilization of FEM can lead to resource savings;

» Parametric analyses can be conducted through the application of FEM, facilitating the identification
of parameters that, when altered, exert a significant impact on the studied system (sensitivity

analysis);

« FEM analyses allow for the adaptation of the mesh according to the obtained results. Thus, in
cases where specific interest lies in comprehensively studying a certain area of a structure, it is
feasible to refine the mesh exclusively in those areas, thereby achieving a more accurate approxi-

mation.

Turning to the drawbacks, it is evident that [23] elucidates the following:

+ At times, contingent on the complexity of the given problem, the application of FEM may entail
substantial computational costs. This issue gains prominence, particularly when the necessity

arises to conduct studies involving three-dimensional models or perform nonlinear analyses;

« In certain instances, inadequate construction of the mesh can yield results that poorly reflect real-
ity;

» The presence of singularities or uncommon boundary conditions might necessitate the utilization
of specialized numerical techniques within FEM. Such circumstances can incur high computational

costs or lead to less reliable approximations;

 The utilization of overly fine meshes (meshes with a high number of finite elements) can also lead
to imprecise solutions. This arises due to the potential amplification of minor errors associated

with any approximate numerical method, such as FEM, within this type of mesh.

Given the multitude of errors arising from human factors and inherent approximations employed
by FEM, the outcomes yielded by this numerical method do not invariably align with the reality under
examination. Consequently, validation of these outcomes through experimental means or alternative
numerical techniques is imperative in the analysis of any structure. Thus, the next section will delve

more comprehensively into the subject of validating FEM results.

25



3.3 Validation of FEM results

Typically, and in line with the approach used to validate the attained outcomes, it is common to com-
pare the results derived from Finite Element Analysis (FEA) with those obtained through experimental
testing. Following this comparison, should it be determined that FEA has failed to yield results congruent
with the reality being studied, the recourse is invariably towards enhancing or rectifying any aspect of the
FEA that engenders this disparity with reality. This iterative process, as depicted in Figure 3.2, persists

until the observed discrepancy ceases to manifest as a significant phenomenon [44].

¥
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Figure 3.2: Flow chart of model updating using correlation analysis of FRFs [44].

Furthermore, it is known that the data processing facilitating the execution of this comparison of

results can assume various formats, with the most common (employed in this work) being the frequency

response graph.

Lastly, it is customary to quantify the level of correlation in the obtained results, and this quantification

also aids in determining whether the FEA should be reiterated to yield more coherent outcomes.

convergence?
\s

nev dynamic FE model
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Chapter 4

Construction and Analysis of

Numerical Models

This chapter will begin with enunciating all the necessary physical and geometrical characteristics for
constructing the numerical model. Subsequently, the results obtained after applying the Finite Element

Method to the constructed numerical models will be presented and analyzed.

4.1 FEM Modelling

As previously mentioned in Chapter 1, all four beams under study are composite beams. Therefore,
it's important to highlight that each of these beams, as illustrated in Figure 4.1, is composed of two
aluminium faces - AL 7075 - and a core consisting of a polymer foam - WF 1710. These two materials
are isotropic, which means they exhibit consistent mechanical behaviour in all three dimensions. Con-
sequently, it is known that material constants related to Young’s modulus (E), shear modulus (G), and

Poisson’s ratio (v) will remain the same for different directions:

Ey=FEy=FE,=F; Guy=G; =Gy =G ; Vpy =V, =V, =V
Thus, it is possible to write the Equation 4.1 for isotropic materials.

E
G =3y (4.1)

From Equation 4.1, it is easily understood that to define such materials, it's only necessary to input
the values of two out of the three unknowns: E, G, and v. Additionally, it's also essential to provide the
value of the mass density (p) for each of these materials, as knowledge of this constant is imperative
for conducting modal analyses. It's worth noting that the values of all these constants were determined

experimentally by Engineer Matteo Sorrenti and are also presented in Table 4.1 [45].
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Table 4.1: Values of the physical constants of the materials that make up the beams under study.

material E [MPa] G [MPq] v p [kg/m?]
AL 7075 67545.6 25393.1 0.33 2750.6
WF 110 194.1 66.9 0.45 109.5

Furthermore, it should be highlighted that, as expected, for constructing the computational model, it
was also necessary to input the values of all the geometric dimensions of both materials composing the
beams under study. These values were measured using a ruler and a digital calliper (see Table 4.2).
Lastly, it should be mentioned that due to the lack of experimental data and the difficulty in predicting the
mechanical behaviour of the adhesive used by the beam manufacturer to bond the AL 7075 faces to the
WF 110 core, it was not considered in the numerical model.

Table 4.2: Geometric properties of the beams under study.

Thickness of each Thickness
Length Width Thickness aluminum faces of core
[mm)] [mm] [mm)] [mm] [mm)]
Beam 1 50004 0.5 8004 0.5 43.32+ 0.01 2 39.32+ 0.01
Beam 2 50004+ 0.5 8004+ 0.5 41,184+ 0.01 1 39.184 0.01
Beam 3 50004 0.5 8004 0.5 33.534+ 0.01 2 29.534- 0.01
Beam 4 50004+ 0.5 800+ 0.5 31.544+ 0.01 1 29.544- 0.01

Figure 4.1: Composition of the 4 beams under study.

Taking all of this into account, it is important to begin by stating that the software used to perform
these numerical analyses were Patran, for modelling the beams and visualizing the results, and Nastran
for obtaining the results. Additionally, in order to optimize the numerical analyses, the .ses files were
parameterized to only change the thickness values of their components, which as can be seen in Table

4.2 is the only geometric dimension that varies from beam to beam.
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With that said, it should be noted that the meshes for all beams were created in the same manner.
In this regard, Solid elements Hexa8 (3D elements with 8 nodes per element) were used for the core
and Shell elements Quad4 (2D elements with 4 nodes per element) were used for the aluminium faces.
In terms of subdivisions, the same configuration was applied to all the beams under study, meaning the
length was divided into 250 FE, the width into 20 FE, and the thickness into 10 FE. Thus, each of the
beams was subdivided into a total of 42579 FE (see Figure 4.2). The convergence of this mesh was

previously ensured by engineer Matteo Sorrenti [45].

Figure 4.2: Mesh of one of the beams under study.

Before revealing the numerically obtained results for each of the beams, it is important to note that
for this analysis, the SOL 103 option in Patran was used because it is the option that enables modal
analyses to be performed, and it was previously defined that Nastran should only calculate all normal
frequencies between 10 Hz and 4000 Hz. The lower limit (10 Hz) is justified by the fact that it is not
intended to study the 6 rigid body natural frequencies, which contrary to what was mentioned in Chapter
2.4.1 do not assume values equal to zero, given the fact that FEM is an approximate numerical method.
The upper limit (4000 Hz) is justified by the decision to study all modal shapes up to and including the
5" flexural modal shape. In the following section (see Chapter 4.2), it is noted that none of the beams
under study exceeds 3060 Hz for this modal shape. Therefore, by conducting the experimental activities

up to 4000 Hz, it should be possible to observe all the desired modal shapes.

4.2 FEA Results

Prior to presenting the numerical results obtained through the application of the FEM method, it is
important to note that, as the structures under study do not exhibit significant geometric complexity (they
are simply rectangular beams), the resonance frequencies will correspond to specific modal shapes.
These modal shapes (which are the same for all the beams, since they all have the same length and
width), as shown in Figure 4.3, can correspond to flexural modes relative to the x-axis, torsional modes
relative to the x-axis, and flexural modes relative to the y-axis. Depending on the number of transverse
nodal lines, these modal shapes assume different orders. For instance, in the case of flexural modal
shapes, the corresponding order of the flexural mode will be the sum of the number of transverse modal
lines plus 1, whereas, for torsional modal shapes, their order will correspond to the number of transverse
modal lines present. In addition, it is important to note that, as explained in Chapter 6, it is not feasible
to experimentally measure flexural modes relative to the y-axis. For this reason, these modal shapes

were disregarded.
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(b) 15t flexural modal form around z  (c) 2"¢ flexural modal form around z

(d) 15t flexural modal form around y  (e) 2™¢ torsional modal form around ==  (f) 37¢ flexural modal form around =z

(i) 5¢" flexural modal form around x

(h) 37 torsional modal form around z

(9) 4" flexural modal form around z

Figure 4.3: Graphical representation of the modal shapes of all the beams under study.
As previously mentioned, the numerical analyses conducted enabled the estimation of all resonance

frequencies ranging from 10 Hz to 4000 Hz. However, for a better understanding of the potential for
resonance frequency measurements using LDV, it was established that, for all beams, only the results of
experimental measurements up to the 5" flexural modal shape would be considered. This decision was
made due to the complexity associated with this modal shape (it has 6 transverse nodal lines). Thus, the

numerical results obtained from the execution of the equations for MDOF systems for force vibrations

and undamped systems (see Chapter 2.4.2) are presented in Table 4.3:

Table 4.3: Numerical results obtained for each of the beams under study.

18t 18t 15t Qnd Qnd 3rd 4th 3rd 5th
Beam| torsional | flexural | flexural | torsional | flexural | flexural | torsional | flexural
704.97 Hz| 715.22 Hz| 1169.4 Hz| 1602.4 Hz| 1669.8 Hz| 2101.5 Hz| 2538.1 Hz| 2589.2 Hz
2nd 15t 15t 2nd 2nd 3rd 4th 3rd 5th
Beam| flexural | torsional | flexural | torsional | flexural | flexural | torsional | flexural
753.14 Hz| 846.32 Hz| 1344.4Hz| 1798.5Hz| 1947.3 Hz| 2489.8 Hz| 2795.3 Hz| 3055.9 Hz
3rd 15t 15t 2nd Qnd 3rd 4th 3rd 5th
Beam| flexural | torsional | flexural | torsional | flexural | flexural | torsional | flexural
620.64 Hz| 693.14 Hz| 1052.6 Hz| 1508.7 Hz| 1511.8 Hz| 1925.3 Hz| 2310.5Hz| 2373.5Hz
4th 1st 1st 2nd 2nd 3rd 4th 3rd 5th
Beam| flexural | torsional | flexural | torsional | flexural | flexural | torsional | flexural
647.61 Hz| 827.48 Hz| 1208.3Hz| 1712.7 Hz| 1770.5 Hz| 2289.5 Hz| 2583.7 Hz| 2815.7 Hz

Finally, a crucial point to emphasize is that the obtained results were compared with those derived

from engineer Matteo Sorrenti’s 2D numerical analysis of the studied beams [45]. The similarity between

the outcomes in both numerical models suggests that errors in the construction of these models were

highly unlikely.
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Chapter 5

Experimental modal analysis

In this chapter, the exploration of two important topics in experimental modal analysis will commence.
The first topic will focus on the relevant systems and concepts associated with experimental tests con-
ducted in this area of study. The second topic will discuss metric correlations and common procedures
for the comparison of the obtained results.

After that, an introduction to the physics underlying the technology of LDVs will be provided. The
discussion will then cover the various types of LDVs and their key characteristics. Subsequently, the
details of Polytec LDVs (the type used in this study) will be explored, along with an examination of the

limitations and strategies that can be implemented in these devices to minimize experimental errors.

5.1 Modal testing

Now, all the concepts and instruments traditionally associated with modal testing will be addressed.
First, mention will be made of the instruments commonly used to excite the system under study (input).
Subsequently, the device typically employed to measure the response and the challenges associated
with it will be discussed. Next, different types of boundary conditions will be covered, with a particular
focus on the Free-free condition. Lastly, the coherence function will be explored, which, as will be
demonstrated, is one of the functions that may allow the assessment of the quality of the experimental

results obtained.

5.1.1 Excitation Input

It is known that to induce vibrations in a system for experimental modal testing, typically two devices
are used, namely, a Imapct Hammer and/or a Shaker. Therefore, it is important to explain each of
these instruments, mentioning their main advantages and disadvantages [46, 47].

Beginning with the enumeration of the primary advantages of the Impact Hammer, they include:

+ This device has a simple and practical setup. In fact, it only requires connecting the hammer’s

cable to the computer, which will then collect the information from the impact and process the data
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accordingly;

» With this device, it is easy to excite multiple points on the structure. Therefore, using this device

allows obtaining various FRF graphs, enabling a more comprehensive study of the structure;
+ Compared to other devices, this is indeed a less expensive alternative.
However, it should be noted that this device has the following disadvantages:

Given that a structure is struck with a hammer, there is always a risk of damaging it during this

process;

As mentioned earlier in Section 2.3, in order to study a wide range of frequencies from a single
impulse, the hammering applied to the structure must approximate a Dirac delta function. This
means that the hammer strike should start from zero initial conditions and not extend over time.
However, it is practically impossible to achieve a perfect Dirac delta function, so the FRF graphs
obtained will only allow the study of a limited frequency range.

Regarding the Shaker, it has the following advantages:

The Shaker allows for the study of a wide range of frequencies because it is capable of applying
sinusoidal excitation. As mentioned in Section 2.3, a sinusoidal force in the time domain cor-
responds to a peak in the frequency domain. Therefore, the Shaker applies multiple sinusoidal
forces at different frequencies within a specified range defined by the user. By doing so, it becomes
possible to observe the response of the system under study for each of the sinusoidal frequencies

applied;

As the force excitation is applied by a machine, and despite any machine or instrument always
having some associated uncertainty, the amplitude of all vibrations will be quite precise when
using such devices. It also prevents any potential damage to the structure under study.

Concerning the drawbacks of this device, the following points are notable:

+ This device is more challenging to install, and for this reason, unlike the Hammer, it is more difficult
to apply excitations at different points of the structure;

« It is generally more expensive than other instruments;

« Since this device needs to be connected to the structure under study, its application can introduce

stiffness into the system, biasing the results.

Given the advantages of the Shaker, including its precision and ability to study a wide range of

frequency values, most of the main studies in this work were conducted using this device. However, as

will be observed, one of the bars under study was also excited using a Hammer to assess whether the

Shaker introduced significant stiffness and mass into them.

Having said that it is also important to mention that both for the LDV and the Shaker, a Hanning

window was used to reduce leakage effects [48].
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5.1.2 Traditional response measurement

Typically, the traditional method for measuring responses involves the use of small piezoelectric
accelerometers. These accelerometers are made of materials with piezoelectric properties, meaning
that they can convert mechanical deformation into an electrical signal, which can be further analysed
using dedicated software. When conducting tests on a structure, these accelerometers are placed at
specific points on the structure, and their readings provide the data needed to generate the desired FRF
plots [18].

piezoelectric
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Accelerometer
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Figure 1: Typical ICP® Accelerometer f th V(s,t)
(a) Example of an accelerometer piezoelectric [49] (b) Beam with piezoelectric accelerometers [50]

Figure 5.1: Experimental structural analyses.

However, the use of such devices can introduce a significant amount of experimental errors. This
is mainly due to the fact that despite being relatively small, the mass of these devices may not be
completely negligible. This effect, known as Mass loading, becomes particularly relevant in lightweight
structures and in structures made of non-linear materials with high damping (such as rubber) [25]. To
illustrate this effect, let's consider an SDOF system, for which Equation 5.1 can be expressed. It should
be emphasized that fy represents the natural frequency of the system without the implementation of
the accelerometers, while f,, represents the natural frequency of the system with the accelerometers in
place. The difference between these two frequencies, denoted as Af (Af = fo — f»), and the mass
variation caused by the implementation of accelerometers, denoted as Am, are also considered in the

Equation 5.1.

_ o H I m+A7n

As shown in Equation 5.1, the use of piezoelectric accelerometers necessitates accounting for the
effect of Mass loading, leading to the consideration of significant uncertainty and potentially affecting
the accuracy of the results obtained [51]. Furthermore, the use of these devices can also alter the center
of mass of the structure under study, which becomes particularly important when investigating forced

vibrations [18].
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5.1.3 Boundary conditions

Indeed, systems can be computationally analyzed by applying different boundary conditions, such as
fixing one or more sides of the object (Fixed-Free), or they can be Simply supported, or no fixation can
be applied (Free-free condition). However, despite both situations being possible to simulate compu-
tationally, in reality, it is impossible to experimentally study any system in a perfect Free-free condition,
as it is physically impossible to suspend the object in mid-air without any support. Furthermore, it is
important to mention that one of the reasons for conducting experimental tests through an approximate
configuration of Free-free condition is the fact that it is the easiest way to compare experimental results
with those obtained numerically.

Thus, as the objective of this work is to study 4 beams in a Free-free condition, there was a need
to test various support configurations to determine the best solution. As will be observed, the chosen
configuration was the one that allowed for the closest approximation to a perfect Free-free condition,
meaning the one that introduced the least rigidity into the structures under study.

5.1.4 Quality of experimental results

When performing an experimental activity in structural dynamics, it is always necessary to assess
the quality of results obtained. This process is commonly done using the Coherence function, v2. To
derive this function, the process begins by recalling Equation 2.35, which is derived from the Transfer
Function.

Considering that during such tests, multiple measurements are taken, and the final result is an av-
erage of all these measurements (for example, the LDV used in this work performs between 30 to 50
measurements for each of the points it measures) and multiplying it by the conjugate (represented by *)

of the system’s input in Equation 2.35, the result is obtained:

N
3 Fu@)F () (5.2)
n=1

=~

N
1 *
N 2 UnIF ) = H()
Simplifying the expression from the aforementioned equation results in:

_ GFU(CU)

Gru(w) = Hw)Grr(f) & H(w) = Crr(w)

(5.3)

Traditionally, the functions Grr(w) and Gry (w) are referred to as the Average Auto-Spectrum of F
and Averaged Cross Spectrum between input F and output U, respectively.

To obtain the coherence function, it is necessary to deduce the expression for H(w)~t. By carrying

out this deduction, it is known that:

Uw)=HWw) Flw) e Uw) -Hw)™ =FWw) (5.4)

Multiplying each term of Equation 5.4 by the complex conjugate of the system output, and considering

that in experimental tests multiple measurements are commonly performed, the result is obtained:
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N

N
(fv > Un(@)U; <w>) ) = D RU) (5.5)

n=1
Simplifying the preceding equation results in:
_ Gur(w)
Guu(w)
With the two previous derivations, it is known, by definition, that the 42, results from the multiplication
of H(w) by H(w)~!. Therefore, it follows that:

_ Gry(w)-Gur(w) _ N (Zg:l Un(w)F,jf(w)) N (25:1 Fn(w)U,’;(w)) (5.7)

CGrr) Guo@) L (SN F@)Fi W) & (S0 Ua@)Ui ()

Guu(w)H(w)™! = Gurp(w) & H(w)™! (5.6)

v =Hw) Hw)™

Having derived this function, it is now important to explain its physical significance. Therefore, coher-
ence is a function used to compare, through multiplication by conjugates, a hypothetical round trip of the
input signal. If this hypothetical round trip were perfect, the coherence function would assume a value
of 1. However, if the signal were subject to any perturbations (noise), the 2 would assume a positive
value, but less than 1.

Therefore, coherence is a dimensionless parameter that varies between 0 and 1 and evaluates the
quality of the results obtained, i.e., whether the system under study has noise and whether it is capable
of significantly perturbing the results obtained.

Taking all this into account, it is now easy to understand why it is necessary to perform more than
one measurement for each of the points. Thus, in the scenario of making only one measurement, where

N would be equal to 1, Expression 5.7 would take the following form:

*

2 Ul(w

= D). PV

(w) . Ul(UJ)U

—1 (5.8)

*

(w)
As observed in 5.8, +2 would always be equal to 1, and thus it would not be possible to evaluate, in
this particular case, the existence of any possible noise that may exist both at the input and output of the
system.
The Coherence Function can also be interpreted as the introduction of two noise functions, one at

the input and one at the output of the system, as shown in Figure 5.2:

X(f) o Ha | v,
x| h, () RO
N,(f) Y N() IS
— —— = )
n(® | n(0
X | ] A0
Q(t) "liTo Analyzer ——— ¥ ?(t)

Figure 5.2: Representation of a system with the noise functions [52].
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Considering that the input noise function is denoted as Nx(f) and the output noise function as Ny(f),
the system’s input will be symbolized by the variable X(f) (which represents the sum of Ny(f) and X(f),
as depicted in Figure 5.2) and the system’s output will be denoted as Y (f) (which represents the com-
bination of Ny(f) and Y(f), as shown in Figure 5.2). Consequently, the cross-spectrum functions of this

system will be identified as Gyx(w), Gyy(w), and Gxy(w), which can be expressed as follows:

GXX(W) = Gxx(w) + Grx (W) + Gxw, (W) + Gy, (W) (5.9a)
Gyy(w) = Gyy(w) + Gy (@) + Gy, (W) + Gy, () (5.9b)
Gy (w) = Gyy(w) + Gy, (W) + Gy, (w) + Gy n, (W) (5.9¢)

Since the input noise only relates to the input signal function (X(f)) and the output noise only relates

to the output signal function (Y(f)), the cross-spectrum functions can be simplified as follows:

Gx(w) = Gyx(w) + Gy, (w) (5.10a)
Gy (w) = Gyy(w) + Gy, (W) (5.10b)
Gxy(w) = Gyy(w) (5.10c)

The following conclusion is reached:

(5.11)

72 _ éxv(w)g;v(w) Gxy(w)Gyy (w) < Gxy(w)Gyy(w) <1

- CA’YXX(W) (w) B (Gxx(w) + Grn, (W) (Gyy(w) + Gy, (W) T Gxx(w)Gvy (W)

Thus, the reason why the coherence function cannot exceed 1 is now exemplified and demonstrated
[53, 54].

5.2 Metric correlations

Obtaining the modal shapes through experimental modal tests (see Chapter 7), it is necessary to
determine whether they indeed provide a good approximation of the actual behaviour of the structure
under study. To achieve this, Structural Dynamics commonly employs various correlation metrics to
validate the experimentally obtained modal shapes. One of the most well-known correlations used in
this work is the Modal Assurance Coefficient (MAC), which allows assessing the similarity between

any two modal shapes. Thus, this correlation is expressed numerically as follows [22, 47, 55]:

) 2
MAC;P = = Hor} {07} = (5.12)
(tom" {oi}) ({08} - {05})
Where:

» The indices A and B represent the models under study that will be compared. Thus, the letters A
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and B can represent any numerical or experimental model or even different versions of the same
model, with varying levels of simplicity or complexity. It is also noteworthy that if A and B represent
models with a different number of modes, the resulting MAC matrix, obtained by applying Equation

5.12, will not be square;
* ¢2 - is the modal shape  calculated by model A;

« ¢P - is the modal shape s calculated by model B;

Itis also important to mention that the MAC can take any value between 0 and 1. When it approaches
1, the compared modal shapes exhibit a high degree of similarity, whereas values close to zero indicate
significant differences between the compared modal shapes. Therefore, if models A and B have the
same number of modes and model A is the experimental model of the reliable numerical model B, the

diagonal of the MAC matrix will have higher values.

5.3 Introduction to LDV

In order to obtain better and more consistent experimental results reflecting reality, Yeh and Cummins
developed the first laser vibrometer in 1964 [51]. Initially, this technology was quite rudimentary due to
its low sensitivity, and it could only be used on very diffuse surfaces. However, in the 1980s, it underwent
significant software development, leading to the mass marketing of different and distinctive LDVs in the
1990s. The success of this technology is explained by its non-invasiveness (as it does not damage the
structures being studied) and its ability to solve the Mass Loading problem.

Therefore, nowadays, it is already possible to see that these devices are used in an even more
extensive list of applications, ranging from biomedical to quality control. They can even be employed in
the implementation of modal analysis and resonance frequencies [26, 27].

It is worth mentioning the existence of a variation of this technology, namely the Scanning Laser
Doppler Vibrometer, SLDV. Instead of measuring displacements or velocities, this technology enables
the scanning of real structures, thereby allowing the creation of even more accurate numerical models.
However, for the purpose of this activity, only an LDV will be used, and thus, it will be the technology
explored in greater detail [26, 51].

Thus, to understand how to proceed to obtain acceptable results and to be aware of the necessary
precautions during the experiment, it is essential to grasp the operation and theory behind a LDV. With
this in mind, it is important to mention that an LDV is a device utilized for measuring vibrations using a

laser light source, and the underlying theory that governs this technology is the Doppler effect [26].

5.3.1 Explanation for the use of laser light

It is important to begin by explaining why this sportive device utilizes a laser as its radiation source.
This choice is attributed to the laser's emission of electromagnetic radiation, which operates based on
the mechanism of "stimulated emission.” This type of radiation source possesses the following charac-
teristics [56]:
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* The laser light beam is Coherent and Monochromatic;

— Coherent: The emitted light has a constant wavelength (or frequency) and phase in time

and space;

— Monochromatic: The emitted light is characterized by a single wavelength or a set of prop-

erly defined wavelengths.

+ Laser light is Collimated: This means that laser light consists of rays that are approximately
parallel. Laser light can be easily manipulated by lenses and mirrors, which align the emitted
rays coherently with each other. Consequently, the collimated nature of laser light ensures high
accuracy associated with the vibrometer, enabling measurements of small volumes and precise

positioning of the laser beam in the desired location.

+ Laser light can be Linearly polarized: This fact is of great importance because when a light
beam is linearly polarized, the plane containing the electric field and the direction of propagation of
the wave remains constant. This property plays a significant role in the occurrence of interference
phenomena between electric fields that lie in the same plane. Serving as the foundational principle
behind the operation of any interferometer, this aspect will be explored later.

Given that Laser light possesses all these essential characteristics, crucial for the proper functioning
of a laser vibrometer, this will be discussed later, the decision to use a laser source in the development
of an interferometer such as the LDV is therefore justified [56].

5.3.2 Theory of the Doppler effect

Before anything else, it is imperative to comprehend the nature of the Doppler effect to understand
how an interferometer operates in conjunction with the LDV. Taking this into account, it is noted that this
effect was discovered by Christian Doppler in 1842 [56]. Thus, this physicist arrived at the theoretical
formulation of the effect by placing a set of professional trumpeters in an open car of a moving train
passing through the same station. He then asked these two groups to play the same note and hold it for
a certain period of time. When the moving train passed by the station, Christian noticed that the notes
of both groups did not match.

Disregarding the hypothesis that one of the groups made a mistake while playing the note, as they
were two sets of professional trumpeters, Christian Doppler recognized that the sound of a given note is
defined by the frequency of the note’s wave. Based on this observation, he theorized that the frequency
(physical property that defines the tone of any note on any musical instrument) of emitted waves changes
when the source or receiver of any wave is in motion (see Figure 5.3) [56].

This principle was later demonstrated, generalized and is nowadays widely used in various devices.
Through this effect, the explanation encompasses not just the change in the sound of a siren from a
moving ambulance as one approaches or moves away from it but also how Edwin Hubble demonstrated

the expansion of the universe [27, 51, 58].
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Doppler shift in sound

Longer Wavelength Shorter Wavelength
Low Frequency High Frequency

Figure 5.3: Representation of Doppler effect [57].

5.3.3 Application of the effect Doppler effect in LDV

Now, applying the Doppler effect to an LDV, representation starts with a fixed laser radiation source,
denoted by the letter S, and a vibrating sandwich beam denoted by the letter P (in our case, set to
vibrate by a Shaker with an LDV). As expected, when the radiation contacts the surface P, a change in
its frequency will be observed. Furthermore, although this is not the case in reality, the assumption is
made for simplicity that the photodetector, represented by the letter O, is positioned at a different location

from the light source (see Figure 5.4) [56].

Figure 5.4: Doppler effect with source S and observer O in different locations [56].

Thus, knowing that the frequency is given by the expression:

f= (5.13)

<

A
Where c is the speed of light and X is the wavelength.
Consequently, the frequencies at the point P and O will be given by the following expressions, re-

spectively:

(c+ |v| cos(61)) (c+ |v| cos(62))
A A

Given the previous expressions, it can be seen that the frequency shift of the SP segment (A, ) and

fr= (5.14a) fo= (5.14b)

the frequency shift of the PO segment (A, ), will be defined by the following mathematical expressions:

|v| cos(61)
A

|v| cos(62)

Afp = ;

(5.15a) Afo = (5.15b)
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Hence, in this particular case, the total frequency shift caused by the Doppler effect (fp) can be

expressed by the following mathematical expression:

el feos) + cont)] _ M [76%5]
Afp=Afp+Afg = V| |cos 1)\ cos(02)] _ w;\( 1—02) (5.16)

However, as already mentioned, this situation is not a faithful depiction of what happens in an LDV.
To achieve a more accurate representation, it should be considered that the source and receiver are in

the same position, as indicated in Figure 5.5.

Figure 5.5: Doppler effect with source S and observer O in the same location: back-scattering [56].

Therefore, 8, = 6, = 6. Thus, the total frequency shift caused by the Doppler effect can be expressed
as follows:
21)3

Afp==F (5.17)

Furthermore, as demonstrated, the Doppler effect is easily verifiable acoustically. This is due to the
speed of sound at the earth’s surface, which is approximately 340 m/s. For instance, considering a train
traveling at 100 km/h and emitting a sound with a frequency of 200 Hz, the frequency shift caused by
the Doppler effect will be approximately 8 Hz. Consequently, there would be a frequency difference of
about 8.2%, a value easily measurable by any measuring device [56].

However, this is no longer true for light. The reason is that the speed of light is equal to 2,99792458 x 103
m/s. Considering the same train moving at the same speed of 100 km/h and measuring the frequency
shift of the light emitted from its headlights (assuming the light has a normal wavelength, i.e., A = 632,8
nm), the resulting value would be approximately 43.89 MHz. Although this value is relatively high in
absolute terms, it is quite small in relative terms compared to the frequency of the light exiting the head-
lamp, which is approximately 474,68 x10° Hz. As a result, the measuring apparatus would have to be
capable of measuring a frequency difference of approximately 9x10-* % Hz, which is challenging to
achieve, because it is difficult for a device to measure such a small frequency difference.

Thus, to enable the measurement of the Doppler effect of the laser light emitted by LDVs, these
devices incorporated various strategies. All these different strategies will be discussed below, with a

specific focus on the strategy present in the LDV to be used for this activity [56].
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5.3.4 Different LDVs

There are several existing LDVs that can be used. However, the three most widespread are the
Michelson’s interferometer, the Mach-Zehnder interferometer and the Polytec LDV, as given in Figure
5.6 [51, 59].

BS1 LASER ! !

iy ]Um

(a) Michelson’s interferometer (b) Mach-Zehnder interferometer
PBS1 PBS2 mj‘_}‘s'
LASER o
| = A
B2 PD1 —_—
Bragg x(t)
b cell
2 e(t)
PD2 +

(c) Polytec LDV

Figure 5.6: The schemes of the different interferometers [56].

In particular, the Michelson’s interferometer device introduces a fixed target to overcome the problem
previously reported. This approach allows for an easier comparison of the frequency shift of two altered
beams (one of these alterations is known since the frequency shift caused by the fixed target in the
radiation is previously determined). However, this laser vibrometer has a major drawback as ensuring
the two arms in the device’s scheme are exactly symmetrical can be quite challenging. It has been found
that even a small inclination in one of the arms or a slight deviation in the used beam splitter (which will
be analyzed in more detail later) can seriously compromise the results obtained with this device, as can
be seen in Figure 5.7 [59].

Figure 5.7: Representation of the possible Michelson’s interferometer problem[59].
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To circumvent this problem, the Mach-Zehnder interferometer opts to implement a Rotating Diffrac-
tion Grating as a rotating component (see Figure 5.8). Consequently, while the issues of component
inclination and arm symmetry present in the Michelson’s interferometer are not as preponderant in the
results obtained, the drawback of this vibrometer lies in the fact that it uses a component that vibrates.
Using this vibrating component requires ensuring that the speed remains constant and that all its vari-
ous parts are always in perfect condition. However, this can be challenging to maintain, particularly over

time, as normal wear and tear may affect its components.

Figure 5.8: Frequency shift through a Rotating Diffraction Grating [56].

Finally, the Polytec LDV stands out. These vibrometers, in practice, are modified Mach-Zehnder
vibrometers that use an electronic component called an Acousto-optic modulator instead of a Rotating
Diffraction Grating. The use of this electronic component has resulted in more reliable results, and
with advancements in technology, the component has become much more accessible. As a result,
the Polytec LDV has become the most widespread vibrometer nowadays and is the one used for this
experimental activity. In the following section, a more detailed discussion of this vibrometer will be
provided [51].

5.4 Introduction of Polytec LDV

Considering that the Polytec LDV (see Figure 5.6(c)) will be the vibrometer used to conduct this activ-
ity, the analysis will begin with an individual examination of all its components to thoroughly understand
its operation. Following this detailed analysis, the primary precautions to be taken will then be addressed

while using it and discuss the main strategies to adopt in order to achieve better results.

5.4.1 Components of Polytec LDV

As you would expect, a Polytec LDV comprises several components, each serving a specific function.

Below, the function of each component of this type of vibrometer will be explained:

- Optical fiber

The Polytec LDV uses fibre optics to transmit the radiation emitted by the laser source. As can be

seen in Figure 5.9, this material usually has a layer of glass fibre at its core.
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(a) Light propagation in a step-index optical fibre (b) Total internal reflection in optical fibre

Figure 5.9: Optical fibre representations[56].

This is the layer through which the radiation transmission occurs. The core is coated with a cylin-
drical layer of a material with a lower refractive index than the material used in the core. This detail
is fundamental, because, as it is easy to understand, it is very important to ensure that all radiation
leaving the light beam is reflected, i.e., that no portion of the emitted radiation is refracted. For this
to happen, according to the equation of Snell-Descartes the refractive index of the second layer

(n;) must be lower than the refractive index of the core (n;).

n; sin@; = ny sin 0, (5.18)

Given that 0; = critical and that 6; = 90°:

.My
0critical = arcsin — (5.19)
g

Thus, if the radiation is emitted at an angle higher than 6..,.;;;c.;, all the radiation emitted by the
source will be reflected. Finally, it is worth noting the existence of a third layer, a layer whose sole
purpose is to protect and coat the optical fibre itself [56].

Polarizing beam splitter (PBS) e Quarter wave plates (\/4 plates)

As mentioned earlier, the linear polarization of laser light is a phenomenon that ensures the de-
pendence between the electric field and the wave itself, facilitating interference between the waves
compared in the photodetector. Radiation sources with this characteristic often utilize Polarizing
beamsplitters (PBS) and Quarter wave plates (/4 plates), as shown in Figure 5.10(b).
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Figure 5.10: Devices used when the radiation source is linearly polarized [56].

Starting by explaining the function of PBSs, these are peculiar radiation beam splitters, since as
can be seen in Figure 5.10(a) the S part of the wave (orthogonal part) will always be reflected,
while the P part of the wave (parallel to the plane) will always be emitted. Both parts will continue

with the same amplitude.

The wave plates ()\/4) are used as optical isolators to prevent the light reflected by the target
from taking the opposite path. These plates change the phase of the transmitted beam at 45° in
relation to the beam parallel to the plane, as it passes through PBS; (see Figure 5.12), resulting
in a circular configuration. When this beam collides with the vibrating beam and strikes the object
under study, the reflected beam experiences a Doppler-induced frequency change and passes
through the wave plate \/4 once again. This time, the beam’s phase undergoes a further shift,
becoming 90° in relation to the incoming radiation at PBS,. As a result, the beam passing through
PBS; is now orthogonal to the plane and is reflected, ensuring that the radiation does not return.

A schematic of the process is shown in Figure 5.11 [51, 56].
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Figure 5.11: Quarter wave plate working principle [51].

* Lens

Another component of great relevance that is present in the Polytec LDV is the front lens. This is

true because the vast majority of surfaces are not specular, but rather diffuse, that is, the reflected
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radiation has a non-zero reflection angle. Thus, by using the front lens it becomes possible to

collect radiation that had been scattered when the radiation was reflected.

Thus, it should be noted that with the introduction of this device, not only is it not necessary to pay
special attention to the alignment of the laser with the vibrating surface under study, but the signal
collected is significantly improved when studying objects with diffuse surfaces. However, with the
use of front lenses, the amplitude of the beam passing through them will be smaller. Therefore,
when the phenomenon of interference between the two beams occurs, this must be taken into

account so that the final result is not compromised [56].

Acousto-optic modulator
This component is used to solve the problem

already mentioned, namely that of the difficulty PBS1 PBS2

of measuring the almost negligible frequency f

shift caused by the Doppler effect of the radia-

tion. Thus, this component, also called Bragg BS2
Cell (see Figure 5.12), applies a frequency t Bragg Cellf+fo foifo

shift of value fz in the radiation that is reflected

in the first PSB, which allows, as will be seen, Figure 5.12: Radiation circuit with the

to solve the problem in question. introduction of a Bragg Cell [56].
Hence, in order to demonstrate that the introduction of this device solves the mentioned problem,
let’s start by noting that the electric field (Eror) observed in one of the photodetectors is obtained

by the following expression:

Eror = R - llwrwn)t=01] 4 g cil(wEwp)i—62] (5.20)

It should be noted that R and S represent the values of the amplitudes of the two beams and
that these amplitudes will assume different values. This variation occurs because the Polytec LDV
uses a front lens, as previously mentioned, which decreases the amplitude of the radiation passing
through it. It is important to note that the output of a photodetector is proportional to the square
modulus of the electric field of the incident radiation (Re represents the real part and I'm represents

the imaginary part):

I |E2op| = (Re)? + (Im)* &
& |Bdor| = {[Reos ((w+wp)t = 01) + Scos (w £ wp) t) — 2] } +

+ {[Rsin((w +wp)t—=01)+ Ssin((wtwp)t) — 92]2} &
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& I« |Efop| = {[R*+ S% +2RS cos ((wp £ wp) t+ 6> — 61)] } (5.21)

As can be observed, the angular frequency of the wave emitted in the radiation source, has dis-
appeared. Thus, it can be seen that the photodetectors will be able to analyse these angular

frequencies because wg and wp assume significantly lower values compared to w.

Finally, it is worth noting that, if the speed of the object under study is positive, the frequency is
given by f = fp + fp, and if it is negative, the frequency is given by f = f5z — fp. Thus, it is then
proven that introducing a Bragg Cell in the circuit of the Polytec LDV can overcome the problem

mentioned above [56].

» Photodetectors and Differential Amplificator

The presence of two other components in the
Polytec LDV must be highlighted: the photode- BS2 PD1
tectors and the differential amplifier (refer to
Figure 5.13) [51, 56].

Starting with the photodetectors, it should be

noted that it is in these components that the

phenomenon of interference between the two

radiation waves occurs, allowing for the mea-

surement of the desired physical magnitude.

The outputs of these devices can be written as Figure 5.13: Photodetectors and Amplifier
follows: scheme [56].
PD, = s(t)= {[R2 + 5% —2RS cos ((wp £wp)t+ 0y — 01)]} (5.22)
PDy = so(t) = {[R*+ S* +2RScos ((wp wp)t+ 0, —61)]} (5.23)

It should also be noted that the Polytec LDV utilizes a differential amplifier, which plays a crucial
role in eliminating some of the noise obtained from the photodetectors. As a result, the introduction

of this device significantly improves the response obtained, given by the following expression [56]:

e(t) = A(s2 — s1) = 4RS cos ((wp L wp) ths — 61) (5.24)

5.4.2 Limits of the Polytec LDV

As expected, this technology presents certain inherent uncertainties that warrant attention, even
though it typically produces satisfactory results.
One significant uncertainty to be highlighted is related to the laser radiation emission source. Al-

though this uncertainty is generally not considerable, it must be taken into account, and typically, the
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LDV manufacturer provides information about the potential wavelength variation. Additionally, the optical
components that form the LDV also introduce associated uncertainties, which should not be overlooked,
as they collectively impact the wavelength variation of the laser beam [25].

Another noteworthy limitation of this technology, particularly crucial in modal analysis, is the misalign-
ment of the laser beam concerning the component due to velocity. When the object under study exhibits
only an out-of-plane velocity component, the beam misalignment issue becomes relatively easier to

address, owing to the greater ease of aligning the laser beam, as illustrated in Figure 5.14.
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Figure 5.14: Representation of the velocity

component measured by an LDV for different Figure 5.15: Error due to optical path misalign-

types of vibrations [25]. ment with respect to surface velocity and ra-
tio between in-plane and out-of-plane compo-
nents [25].

However, when the structure exhibits in-plane vibration velocity (a common occurrence at various
resonance frequencies), this problem becomes more challenging to address and can significantly impact
the obtained results, as illustrated in Figure 5.15. Consequently, it is crucial to emphasize the necessity
for special attention in studying flexural resonance frequencies along the y axis [25].

It is important to highlight that all Polytec lasers, despite incorporating a front lens, have an optimal
measuring distance. This distance is specified by the device manufacturer and must be carefully con-
sulted and strictly adhered to in order to avoid experimental errors. This limitation is particularly critical
when studying aeronautical components, as they often feature surfaces with colors that impede light
diffusion. However, this can be overcome by applying a reflective coating on the structure’s surface that
will interact with the laser light [56].

Lastly, it is crucial to mention that the activity should not be conducted in environments with high dust
levels. The presence of dust particles can significantly alter the refractive index of the air, leading to

substantial experimental errors [60].
5.4.3 Strategies to improve Polytec LDV results

Over time, various strategies have been studied and developed to enhance the outcomes obtained
with this technology. As previously mentioned, one of the primary challenges affecting results is the ne-
cessity to use LDVs in environments with adverse conditions, resulting in noisy responses. To address

this issue, LDV manufacturers have improved the devices’ software by implementing windowing tech-
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niques [61] and simple interpolation techniques of results [62]. These techniques have proven highly
effective in noise reduction. Moreover, it has been observed that longer measurement durations also
serve as an effective approach to mitigate such noise [25].

Another effective strategy is ensuring a proper focusing of the light beam before each measurement
is essential to enhance the obtained results. Although this process can be time-consuming, it yields
significant improvements in response, especially for surfaces that present challenges in light diffusion.
In modern LDVs, there is also the option of having the instrument itself perform the focusing task, which
proves highly advantageous, as it can achieve more precise focusing compared to relying solely on the
human eye.

It is also worth noting that, in order to enhance the obtained response, LDVs often offer the option of
measuring the Signal-to-Noise Ratio (SNR) with the device itself. If the SNR obtained is excessively high,
the LDV disregards the response and slightly adjusts the beam’s position until it achieves a response
with a reasonable SNR value. However, this strategy may require spending additional time to obtain a
low noise response (with a low SNR value) [25].

It is also important to highlight a strategy that was very well studied at the end of the '90s ([63,
64]) and which is now very well founded and which largely explains the success of the LDV, namely,
Multipoint measurements (see Figure 5.16). As the name itself indicates, this idea involves measuring
a set of points at the same time (usually, the devices in question measure a set of 16 or 32 points). Using
this strategy, all transient events can be measured more effectively and with greater accuracy, since
16/32 measurements can be taken in a single instant of time. Also, as expected, utilizing Multipoint
measurements allows for a significant reduction in the time required to carry out any experimental
activity. This factor is crucial because it allows us to minimize the impact of all the other strategies
mentioned above, strategies which, as has been mentioned, imply the need to spend more time on
their implementation. It should be noted that, as this strategy involves the installation of several optical
components, it is not always an economically viable solution. Consequently, not all LDVs, including the

one used for this laboratory activity, are able to implement this approach.

Figure 5.16: Example of multipoint measurements on linear and square pattern [65].

Finally, it is worth mentioning that various studies have shown significant improvements in results
when the front part of the LDV (the head of the device) is isolated. This isolation helps mitigate the
influence of environmental conditions on the experiment, leading to more accurate and reliable mea-

surements [60].
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Chapter 6

Experimental Procedures

Before beginning the experimental analysis, the experiment preparation was carried out. All the pro-
cedures, which will now be described, were conducted in the LAQ-AERMEC Aeromechanical Structural
Systems, Laboratory of the Department of Mechanical and Aerospace Engineering at Politecnico di
Torino.

Thus, the first step was to define the configuration of the measured points on the beams under
study. In fact, this task is quite relevant in the study that will be pursued, as explained in the theoretical
foundations, the FRF graphs show significant differences and vary from point to point.

Once the configuration of points to be experimentally measured was determined, the beams were
prepared for examination using the LDV. Additionally, the emitted light beam from the LDV was verified
to ensure proper reflection from the beams under study.

Subsequently, great care was taken during the assembly of all devices involved in conducting this
laboratory activity. All procedures adopted for the completion of these assemblies will also be addressed

in this current chapter.

6.1 Configuration of points to be measured

Starting by explaining the configuration of the selected points, it was established that to understand
the potential of the frequency measurement method using the laser vibrometer, the experimental activity,
as mentioned in Chapter 4, should focus on studying all modal forms up to the 5t* flexural.

Another aspect taken into consideration when selecting the measurement point configuration is that
it should assist the LDV software in representing the modal shapes. Thus, as seen in Figure 4.3, both
the flexural and torsional modal shapes exhibit a parabolic behaviour along the x-axis. Consequently, if
only the respective maximum and minimum points of each modal shape were selected, it could result in
a representation of motion in straight lines, which might not adequately convey the parabolic behaviour
of these modal shapes.

Regarding the choice of measurement point configuration, it is worth noting that the laser does not

incorporate the aforementioned Multipoint Measuring strategy, which, as mentioned, would allow more
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than one point to be measured simultaneously, thereby reducing the time required to carry out the
experimental activity. Given that there was a limited amount of time available for this laboratory activity
and considering that the greater the number of selected points, the more time the laser would require
to perform the experimental activity, the choice in question required a compromise between quality and
optimization of time for the implementation of the activity at hand.

Taking all of this into account, the chosen measurement point configuration is represented in Figure
6.1
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Figure 6.1: Point configuration chosen to take measurements.

This was the point configuration chosen to be implemented, as considering what has been previ-
ously mentioned, higher-order modal shapes are more difficult for software to predict. Therefore, since
the highest modal frequency studied was the 5" flexural mode, priority was given to this modal shape.
Thus, starting on the y-axis of symmetry, points were placed to measure the maximum displacements for
this specific modal shape, that is, the 11, 23, 35, 47, 59 points. Then, 8, 14, 20, 26, 32, 35, 44, 50, 56, 62
points were placed near the maximum displacements to assist the software in describing the aforemen-
tioned parabolic behaviour of the modal shapes. Two measurement points were also placed at the ends
(points 2 and 68), and one intermediate point between each maximum of the 5" flexural modal shape
(points 5, 17, 29, 41, 53, 65). These last points correspond to the nodes (see Chapter 2.4.2) of this
modal shape. In fact, this strategy, as observed downstream, proved to be effective in representing all
flexural modal shapes. This occurred because not only some of these 23 points are also minimum and
maximum points of previous flexural modal shapes, but also because it is expected that 23 points are
already a significant number, capable of representing flexural modal shapes of lower orders.

Having said that it should be noted that, with all the points mentioned so far, it would not be possible
to obtain torsional frequencies and their respective modal shapes. This is because these points are on
the y — axis of symmetry, which is a nodal line for all torsional modal shapes as can be seen in Figure
4.3. Therefore, to overcome this problem, the same line of points was replicated 30 cm up and 30 cm
down. This option solves the mentioned problem because, except for the first torsional modal shape all
other torsional shapes share the same transverse nodal line as the lower-order flexural modal shape.

For example, the 2"¢ torsional modal shape shares the same transverse nodal line present in the 1
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flexural modal shape (see Figure 4.3).

Consequently, if that line of points was capable of correctly representing all flexural modal shapes up
to and including the 5" order, by reflecting that same line of points upwards and downwards, the correct
representation of the first 6 torsional modal shapes could be achieved. This is quite positive because,
as observed in the numerical analysis, none of the 4 beams have the 6! torsional shape preceding the
5" modal shape. It should also be noted that it was decided to replicate that line of points both in the
positive and negative direction of the y — axis so that the software could more explicitly represent all the
torsional modal shapes in question.

The configuration represented in Figure 6.1 was used for all the beams in question because although
the frequencies at which the modal forms occur vary from beam to beam, as well as their succession
(sometimes the torsional forms precede the flexural forms), because, as mentioned above, the position
of all the nodal lines is common to all modal forms of all the beams under study.

6.2 Procedures carried out on the beams

After selecting the point configuration to be used for the experimental analysis, the preparation of the
beams themselves was carried out. As these beams were not built exclusively for this experiment and
had already been used for other experiments, it was necessary to clean them. After this cleaning, the
points in Figure 6.1 were marked on the beams under study.

After marking the point configuration, a simple test was conducted to determine if the aluminium
surface would be able to reflect laser light effectively. This concern arose because, as noted in Chapter
5.4, one of the major disadvantages of these methods for acquiring results is that aeronautical surfaces
are usually unable to reflect light effectively. Thus, through this simple test, it became apparent that
these sandwich beams were no exception. Proceeding with the experiment with the bars in that state
would compromise the reliability of the results. Therefore, it was necessary to apply a small reflective
tape only at the points where measurements were to be taken. The application of this reflective tape can
be seen in Figure 6.2.

With the application of this reflective tape, it was observed that the LDV could capture the signal from
the beam satisfactorily, allowing the experiment to proceed (see Chapter 5.4.3).

6.3 Structure assembly

With the bars ready, the process of assembling the structure for this laboratory activity began. This
structure, as can be seen in Figure 6.2, is a square metal structure with circular through holes. Using
these through holes, the structure was attached to a specific table for this purpose using screws and
nuts.

In order to connect the bars under study to this metal structure, various methods were tried. Since
the objective of this activity was to study the beams in the Free-free condition situation (see Chapter

5.1.3), the most suitable configuration would be the one that introduces the least rigidity into the system
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under study. In Figure 6.2 it is possible to see the different ways of connecting the bars to the metal

structure that were experimented with.

(a) 1%t configuration- 2 plastic straps and (b) 2"¢ configuration- 3 plastic straps and no (c) 3" configuration- 3 plastic straps

1 elastic band) elastic band and 1 elastic band

Figure 6.2: Different configurations tested for carrying out the experimental activity.

As shown in Figure 6.2, none of the three presented configurations allow the beams under study to
move along the y-axis. Thus, due to the impossibility of achieving a perfect study of the beams under
Free-free condition, it was necessary to disregard flexural modal shapes in that plane.

With this in mind, given this constraint, an effort was made to choose the configuration that mini-
mized stiffness in the directions where the beams could move. Consequently, after experimenting with
the different configurations mentioned earlier, it was concluded that the presence of elastics was more
beneficial for achieving this goal. Thus, the 15! configuration in Figure 6.2 was excluded. On the other
hand, a higher number of plastic straps allowed the elastics to be subjected to lower tension, thereby
minimizing stiffness. For this reason, the 3"¢ configuration in Figure 6.2 was the chosen setup for the
execution of this work.

Finally, the last aspect that was ensured in this part of the experimental procedure was the horizon-
tality of the beams under study. This horizontality was verified using an inclinometer and is actually an
aspect of great relevance since the lack of this factor could lead to significant discrepancies between the
support points of the beams, given that the stiffness would not be equal at these points.

6.4 Shaker assembly

To apply the force to the structures under study, as previously mentioned, a Model K2007E01 shaker
was used, as shown in Figure 6.3. In this way, after assembling the entire structure, the process of
connecting the Shaker to the same table where the rest of the structure was located began, using screws
and nuts. After that, the tip of the Model K2007E01 arm was connected to the beam, as can be seen in
Figure 6.4. This connection was made at approximately 350 cm from the x-axis origin and 25 cm from
the y-axis origin (see Figure 6.1 for better comprehension), with special care taken to avoid any bending

of the shaker arm. Avoiding this bending effect entails avoiding the point where this connection occurs
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and becomes another point of support, thereby minimizing the additional stiffness that this component
could introduce in the structure. Note that this support effect by the Shaker was studied, but both the
results obtained and the respective conclusions will be explained in Chapter 7.

Figure 6.3: Shaker Model K2007E01  Figure 6.4: Assembly of the shaker in the structure under
that was used in this experiment [66]. study.

After the Shaker was mounted, a small verification of its connection to the structure under study was
carried out. To perform this verification, a low-frequency sinusoidal force (e.g. 10 Hz) was applied and
the input and output signals were analysed. When these signals are perfect sine waves, it means that

the connection was successful, and the experiment can continue.

6.5 Laser assembly

The last stage of preparation for this activity involved the assembly and preparation of the laser for
the experimental activity.

Firstly, a dark cloth was placed behind the entire structure under study in order to reduce ambient
light. Then, the user support document for this device was consulted to determine the optimal distance
for positioning the laser [67]. Thus, upon analyzing Figure 6.5, it becomes clear that there are several
optimal distances — that is, distances allowing the LDV to capture the laser light beam most effectively.
The first occurs at 141 mm, and all other optimal distances follow by adding 204 mm. Therefore, consid-
ering the available space in the laboratory, the decision was made to position the LDV at 1365 mm, i.e.,
at the 7t optimal distance (141 + 204 x 7). To perform this task with greater precision, a laser distance
meter was used.

Once the laser was positioned, the software program for the device was started and the measurement
observed with the laser distance meter was entered. After this, the camera optics of the laser were
opened in order to visualize, in the software, the beam that was going to be used. Then, there was a
need to enter into the software all the points that were to be measured, that is, the points where the

adhesive tape was applied.
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Figure 6.5: Relation between stand-off distance and signal level [67].

For each of the points, care was taken to ensure not only its alignment but also to ensure that the
signal that the laser was capturing at each of these points was at its maximum. This was not always
possible on the first attempt because although the adhesive tape provided a good reflection of the laser
light, it had, in some cases, small deformations that compromised the quality of the signal.

After making these small adjustments, the 2D assignment was carried out, meaning the laser itself
was employed to interpret the points intended for measurement so that it could then perform an auto-
focusing process in order to improve the results, as described in Chapter 5.4.3.

Finally, to optimize the time required for the execution of each test, a 500 Hz high-pass filter was
applied. This choice was influenced by the observation from the numerical analyses that the first fre-
quencies of interest for our numerical study appeared around 700 Hz. Additionally, a low-pass filter of
4000 Hz was applied, as the intention was to study all modal forms up to the 5" flexural modal shape,
and the 5" modal shapes appeared around 3000 Hz for all the beams under investigation in our nu-
merical study. As you will observe in Chapter 7, these filtering strategies did not have any negative
consequences for this work, because no experimental modal form appeared before 500 Hz, and none
of the 5" flexural modes exceeded 4000 Hz.

With this in mind, with the implementation of all these strategies the LDV only required approximately

2 hours to conduct each of the experimental tests.
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Chapter 7

Results

In this chapter, all the results obtained will be presented and discussed. In this first part, some
fundamental details for understanding the nature of this data and the way it will be treated will also be
addressed.

The results obtained regarding the coherence of the experimentally acquired data for each of the
studied beams will be disclosed initially. In this way, as was observed in Chapter 5.1.4, this analysis will
allow us to draw conclusions about the quality of this data.

After this, an analysis of the obtained modal shapes will be carried out, that is, it will be verified if
they resemble those obtained by computational methods. After that, for each of the beams, an analysis
of the FRF graphs of some previously selected points will also be carried out. Also in this section, the
results obtained regarding the MAC analyses conducted for the different beams will be presented and
discussed.

To conclude this chapter, the experiment conducted in parallel with the main experiment using an
Impact Hammer (Model T086C03 [68]) will also be addressed. This will lead to the conclusion of whether
the Shaker used to excite the structures under study indeed adds significant stiffness to the structure,

and if so, whether this significantly compromises the results obtained.

7.1 Previous considerations

Initially, it's important to recall, as mentioned in Chapter 6.4, that due to the limitations of the structure
used to assemble all components of this activity, the Shaker had to be fixed at 350 cm from the origin
of the x-axis and 25 cm from the origin of the y-axis (see Figure 6.1). However, after a meticulous
examination of the numerically obtained graphical representations (see Figure 4.3), it was found that
it is likely that this point is a node for the 4! flexural modal shape. Therefore, if this is confirmed
experimentally, and considering what was explained in Chapter 2.4.2, this fact could have a significantly
negative impact on the results obtained for this modal shape. Another issue that should be mentioned
is the possibility that the beams under study may not be free from deformations or even manufacturing
defects. Therefore, this can be another external factor to consider that may negatively influence the
results to be presented.

It's also important to note that for each of the selected points (see Figure 6.1), the LDV performed

between 30 to 50 measurements, and the final FRF graph for each of these points is the average of
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all these measurements. To predict the modal shapes, the LDV uses the final FRF graphs from each
of the selected points and averages all these graphs. This average representation will be reproduced
downstream and is from which the experimental natural frequencies of the structures under study were
defined (see Figures 7.2, 7.11, 7.20 and 7.29). It is also from these average transfer functions that
coherence functions, analyzed in Chapter 7.2, will be calculated.

In addition, in the analysis of the results, numerical transfer functions will also be compared with other
experimental ones from 3 specific points. Thus, in order to study the similarity between these functions,

the following points from Figure 6.1 were chosen for this study:
» Point 1: From the analysis of the graphical representations in Figure 4.3, it is expected that this

point is not a node for any of the modal shapes under study. Therefore, it should be possible to

observe all the peaks relative to all the modal shapes under study;
» Point 2: From the analysis of the graphical representations in Figure 4.3, it is expected that this

point is a node for all the torsional modal shapes. This occurs because all torsional modal shapes
have a longitudinal nodal line along the y-axis of symmetry. Thus, it is expected that in the transfer
functions related to this point, only the frequency peaks relative to the flexural modal shapes can

be visualized;
+ Point 36: From the analysis of the graphical representations in Figure 4.3, it is expected that this

point is a node for all the antisymmetric modal shapes, namely, 2"¢ and 4*" flexural and 1% and
37 torsional. Therefore, it is expected that in the transfer functions related to this point, only the

frequency peaks relative to the symmetric modal shapes can be visualized.

To collect the experimental data in order to proceed with the construction of FRF graphs for these
specific points, it was necessary to use a function called readuff [69]. The use of this function was
essential because it allows MATLAB to read universal files (.unv), which is the file format used by the
LDV software to store the calculated data.

To construct numerical FRF graphs for these points, some intermediate steps were required since
Patran/Nastran does not provide them directly. Therefore, a file with the modal vectors relative to the
displacement of those points was downloaded from this software. Then, a file capable of reading and
extracting these values was created using MATLAB (see Appendix A).

Afterward, Equation 2.64 was used. It's important to note that since Patran/Nastran only provides
displacement-related responses, and the LDV used measures velocity-related responses, it was nec-
essary to multiply Equation 2.64 by jw, as explained in Chapter 2.4. It's also worth mentioning that in
Equation 2.64, the constant M, was assumed to be unity since it was decided to normalize the response
with respect to mass (see Chapter 2.4.2). As for the values of the constant ;. in Equation 2.64, these
were estimated through the procedure outlined in Chapter 2.3. However, special attention must be paid
to this detail because Nastran calculated these resonance frequency values assuming the condition of
Force Vibrations for undamped systems (see Chapter 2.4.2), as initially, this constant is often unknown.
Thus, by introducing values for ¢, the frequency peaks will be slightly lower, as explained in Chapter
2.2.3 and in cases where the frequency peaks are too close, they may blend together.

To make this comparison more effective, both the numerical and experimental transfer functions were

made dimensionless by dividing by their respective maximum values. This results in dimensionless plots,
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ranging in this particular case from 0 to 1. All the files with the MATLAB codes produced for this work

can be found in the Appendices A and B.
Finally, to compare the differences between the frequencies obtained for the modal shapes in numer-
ical and experimental models (dif), Equation 7.1 was utilized. Here, frp denotes the frequencies from

the numerical model, and fx,, denotes the frequencies from the experimental model.

dif:%xmo (7.1)

This difference between models, as can be observed from Equation 7.1, was calculated concerning
the results obtained numerically. This is because only numerically can the free-condition be simulated,

a strategy observed in other modal analyses [3].

7.2 Evaluation of the quality of results
That being said, the coherence plots obtained for the tests that will be used for data analysis can be

observed in Figure 7.1.
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Figure 7.1: Graphs obtained for the average coherence of all the experimental tests that will be analysed

As can be observed from the analysis of the graphs in Figure 7.1, all experimental tests exhibited
good coherence values. Despite some oscillations, especially at anti-resonance frequencies, the co-

herence function always assumed values close to 1, and the minimum values were never below 0.85.
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Therefore, it can be stated that for none of the tests, the existing noise significantly affected the results

obtained. Consequently, the analyses that will be performed next should be a fair representation of the

reality under study.

7.3 Analysis of the D01 beam
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Figure 7.2: Graph showing the frequency
peaks for which LDV was able to predict the
modal shapes of the D01 beam.

Frequency peaks Peak values [Hz] ( [%]
15t 767.5 0.68
ond 1280 1.71
3rd 1862.5 1.68
4th 2377.5 1.81
5th 2768.75 1.81
6t 2880 219

Table 7.1: Frequency peaks to be analysed and the
Damping factor for beam DO1.

From the observation of the graph in Figure 7.2, it can be seen that the LDV probably wasn’t able

to predict a modal shape for a possible frequency peak around 1700 Hz (see the red circle in Figure

7.1). However, in the subsequent analysis of the selected points, it will be studied whether this possible

frequency peak corresponds to a modal shape. In Table 7.1, all the frequency peaks recognized by the

LDV and for which it was able to predict modal shapes are listed. These graphical representations for

modal shapes were extracted from the animations generated by the LDV software and can be seen in

Figure 7.3 and each of these peaks will be analysed individually.

(a) Graphic representation for (b) Graphic representation (c) Graphic representation for (d) Graphic representation for
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Figure 7.3: Graphical representations obtained for the modal shapes for beam DO1.
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- 1%t frequency peak (767.5 Hz)- By observing Figure 7.3(a), this frequency peak may correspond
to a flexural-torsional mode, which results from the combination of the 15 flexural and 1%¢ tor-
sional modes. This observation is more evident in the animation produced by the software from
which this Figure was taken. Thus, it is noted that numerically, as can be seen in Table 4.3, the 15¢
torsional and 1! flexural modes are separated by only approximately 10 Hz, a difference that may
have been quite difficult to discern experimentally;

« 274 frequency peak (1280 Hz)- From the observation of Figure 7.3(b), it is possible to perceive that
this frequency peak may correspond to the 2"¢ flexural numerical mode. Additionally, through
the animation, it becomes clearer that this mode may represent a second-order flexural shape;

+ 37 frequency peak (1862.5 Hz)- By observing Figure 7.3(c), it is possible to notice that the fre-
quency peak may represent the 37 flexural numerical mode. However, through the observation
of the animation, it exhibits some torsion despite being a flexural mode. This may be justified
because the 2"¢ torsional mode may have been suppressed, i.e., it may correspond to the small
frequency peak that seems to exist and that the LDV was not able to recognize (see the red circle
in Figure 7.2). It should also be noted that the 3"¢ flexural and 2"¢ torsional numerical modes are
separated by only about 50 Hz (see Figure 4.3), a difference that is also not very significant and
therefore may have been difficult to verify experimentally;

« 4 frequency peak (2377.5 Hz)- Although Figure 7.3(d) is not very clear, but it can be seen
through the animation that it may represent the 4'* flexural numerical mode. The difficulty in
visualizing this mode is likely due to the position of the shaker, a problem that was mentioned

previously;

- 5" frequency peak (2768.75 Hz)- Although Figure 7.3(e) is not very clear, it may represent the
37< torsional numerical mode. The low clarity of this mode shape (which is quite noticeable when
viewing its animation) is related to the fact that this torsional mode has a small fraction of flexion.
This can be justified by the fact that both numerically and experimentally this mode shape is very
close to the 5" flexural mode;

+ 6! frequency peak (2880 Hz)- This frequency peak may represent the 5 flexural numerical
mode. However, it is possible to observe that it also exhibits some torsion, which can once again
be justified by the numerical proximity between the 5'” flexural mode and the 37¢ torsional mode
(see Table 4.3).

The following table summarizes all the information and presents the differences between the two
analyzed models, namely the numerical model and the experimental model. However, it is important to
note that whenever two numerical modal shapes gave rise to a single experimental modal shape, the
difference between the models was calculated using the numerical modal shape that best represented
the experimental modal shape obtained. For example, for the 15t modal shape obtained for beam DO1,
which is a flexo-torsional modal shape, it was considered that the numerical modal shape that best
represented it was the 15¢ flexural modal shape, since flexure is more predominant than torsion in this

case. This reasoning was applied to all the beams studied.
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Table 7.2: Results obtained for the modal forms of beam DO1.

numerical experimental
modal forms modal forms differences between
modal frequency modal frequency models (%)

shape type | of the modal form [Hz] shape type of the modal form [Hz]

1% torsional 704.97

15 flexu-torsional 767.5 6.81

1%¢ flexural 715.22

2nd flexural 1169.4 2nd flexural 1280 9.46

374 flexural 1669.8 37 flexural 1862.5 11.54
47 flexural 2101.5 4" flexural 2377.5 13.12
37 torsional 2538.1 37 torsional 2768.75 9.09

57 flexural 2589.2 5t flexural 2880 11.23

By observing the Table 7.2, it is easy to see that, despite not having verified the modal shape cor-

responding to the second torsional mode, the experimental modal shapes follow the same order as the

numerical ones. It should also be noted that the differences between models are significant but more

or less constant, within a range of 6.81% to 13.12%. Also, before moving on to the analysis of the FRF

graphs for the selected points, it's important to emphasize that since the LDV did not identify the 274

torsional mode, it was not possible to obtain a value for ¢ of the resonance frequency corresponding to

this modal shape. However, given that it is very close to the 3¢ flexural mode, it was assumed that the

¢ for the 27¢ torsional mode is the same as that for the 3"¢ flexural mode. Furthermore, it is noted that

this kind of approximation was made for the other beams in cases similar to the one just described.

7.3.1 Analysis of FRF plots of selected points for beam D01
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Firstly, by analyzing Figures 7.4 and 7.5, it can be seen that Point 1, as expected in Section 7.1,
does not correspond to any node for any of the analyzed modal shapes, as all frequency peaks related
to them can be seen in the previous graphs. Furthermore, it is important to highlight that, as seen in
Figure 7.5, the numerical and experimental FRF plots have a similar trend, with the frequency peaks of
the numerical model appearing earlier than those of the experimental model. It is also evident that the
4" flexural modal shape, as suspected, is not significant both numerically and experimentally (see the
yellow circle in Figure 7.5). Additionally, the lack of clarity observed in the 37 torsional modal shape
and 5" flexural modal shape may be due to a mixture of these modal shapes in both numerically and
experimentally obtained Frequency Response Functions (FRFs) (see the black circle in Figure 7.5).

Regarding the 1%t flexural and 1%¢ torsional modal shapes, although two close but distinct frequency
peaks can be observed in the numerical FRF, this is not the case in the experimental FRF, which can

explain the identification of a 15¢ flexo-torsional modal shape (see the green circle in Figure 7.5).

q)omparison between the graphics obtained for point 2 of beam D01
10 v

Experimental graphics for point 2 of beam D01

10° T 3 " \ N\
g / \‘,‘7 7_/,// N L ”»,,/ \\ = /A~“ ‘,\“‘: “‘
£ iy - I\ : e
“‘ ¥ - /\ ~ \‘\‘\/;; /
f y "J" \ \/ //
500 1000 1500 2000 2500 3000 - “’
Ty = 10?2 /
g w ‘ . A
= 100 e — S N = g 1/
5 A e 10°
§ ° ‘\. \
& Yol
,A; -100 k’v'*\'\ "‘\\ 104 :E:p"::r‘rc::ual
% s 1508 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
r[HZ] f[Hz]
Figure 7.6: Experimental FRF for point 2 of Figure 7.7: Comparison of numerical and ex-
beam DO1. perimental FRF for point 2 of beam DO1.

Analyzing Figures 7.6 and 7.7, it is possible to verify that, as expected in Section 7.1, point number

2 is a node for all torsional modal forms since all frequency peaks related to these forms have been lost.

Similarly, by visualizing these plots, the difficulty of representing the 4t* flexural modal form is even more

evident (see the yellow circle in Figure 7.7).
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Analyzing Figures 7.8 and 7.9, for point 36, as expected in Section 7.1 it can be concluded that this
point is a node for all anti-symmetric modal shapes, as the peaks related to these modal shapes are not
present. Also, in Figure 7.9, the overlap of the 2" torsional and the 37 flexural modes can be observed,
as two peaks should have been observed since these are symmetric modal shapes. However, only one
narrow peak was observed, but it was quite narrow (see the yellow circle in Figure 7.9). The fact that
this mixing of modes is also present in the numerical FRF may indicate that these peaks were too close

together, and when considering the ¢, it may be impossible to differentiate these two modes.

7.3.2 MAC analysis for beam D01
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(a) Graphical representation of MAC analysis for beam DO01. (b) MAC analysis results for beam DO01.

Figure 7.10: MAC analysis for beam DO1.

From the analysis of Figure 7.10, satisfactory results were obtained in the MAC analysis, as all other
modes have a high correlation level (above 0.92) with only one numerical mode, except for the 15t and

5t experimental modes.

Furthermore, also from the analysis of Figure 7.10, it is possible to corroborate the statement that
was previously made, namely, the fact that the first experimental mode is a 1°¢ flexo-torsional mode.
This is because this experimental mode resembles the 15¢ torsional numerical mode by about 12% and
the 1% flexural numerical mode by about 82%. It is also important to note that, despite the 4t* and
5" experimental modes showing a significant correlation with their respective numerical modes, these
correlations had a slightly lower level of similarity (0.92 and 0.73, respectively), which again indicates

the previously mentioned low clarity of these modal shapes.
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7.4 Analysis of the D02 beam

Frequency peaks Peak values [Hz] (¢ [%]

. ot 795 115
& gnd 920 156

i | | 3rd 1436.25 1.66
=TI | 4th 1940 2.53
/9 | D 0| 5th 2125 1.84
1/ | 64" 2773.75 1.94
‘ 7th 3018.75 2.90

- B §th 3320 1.92

Figure 7.11: Graph used by the software to

represent the modal shapes for beam D02. Table 7.3: Frequency peaks to be analysed and the

Damping factor for beam D02.

Analyzing now beam D02, when comparing the graph obtained for this beam (see Figure 7.11) with
graph for beam D01 (see Figure 7.2), one can observe that the software was able to reproduce the
modal shape related to the small peak, which is for this beam near 2000 Hz (see the red circle in Figure
7.11). Therefore, it is already possible to suspect that, for this beam, the software was able to reproduce
the 2" torsional modal shape. Thus the modal shapes obtained for the frequency peaks presented in

Table 7.3 will now be shown and analysed individually.

(a) Graphic representation (b) Graphic representation (c) Graphic representation (d) Graphic representation
for 795 Hz. for 920 Hz. for 1436.25 Hz. for 1940 Hz.

(e) Graphic representation (f) Graphic representation (g) Graphic representation (h) Graphic representation for
for 2125 Hz. for 2773.75 Hz. for 3018.75 Hz. 3320 Hz.

Figure 7.12: Graphical representations obtained for the modal shapes for beam D02.

- 1% frequency peak (795 Hz)- From the observation of Figure 7.12(a), it is possible to see that this

peak may correspond to the 1¢¢ flexural numerical mode, despite having some torsion;

+ 27 frequency peak (920 Hz)- By observing Figure 7.12(b), it is possible to perceive that this peak
may represent the 1°* torsional numerical mode. Thus, as the difference between the 15 flexural
and the 1%t torsional mode is higher for this beam, the laser was able to differentiate these two

modal shapes;
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3" frequency peak (1436.25 Hz)- From the observation of Figure 7.12(c) and the corresponding
animation, it is possible to see that this peak may represent the 2"¢ flexural numerical mode,

although there is a small amount of torsion present;

4" frequency peak (1940 Hz)- From the observation of Figure 7.12(d), it appears that this peak
may correspond to the 2" torsional numerical mode. However, by observing the animation, it is

also clear that the representation of this mode was not very clear, as it had many perturbations;

5t" frequency peak (2125 Hz)- By observing Figure 7.12(e), it can be seen that this peak may
represent the 37 flexural numerical mode. Unlike the 37 flexural mode of beam D01, this modal
shape seems to have good clarity. This can be explained by the fact that the laser was able
to capture, albeit with some difficulties, the 2"¢ torsional mode, which may have resulted in less

torsion for this flexural mode;

6" frequency peak (2773.75 Hz)- Although there are not significant displacements, it is possible
to notice that this peak may correspond to the 4t flexural numerical mode. The difficulty in
visualizing this possible mode persisted for this beam; however, the animation of this mode was

slightly more informative when compared to the equivalent animation for beam DO1;

7" frequency peak (3018.75 Hz)- This peak may represent the 37¢ torsional numerical mode,
and, unlike what happened for beam D01, this mode proved to be a little more clearer. This can
be justified by the greater numerical difference observed between this modal shape and the 5"

flexural mode (about 300 Hz);

8" frequency peak (3320 Hz)- This peak may represent the 5 flexural numerical mode, and,

unlike what happened in beam D01, it seems to have good clarity.

Table 7.4: Results obtained for the modal forms of beam DO02.

numerical experimental
modal forms modal forms differences between
modal frequency modal frequency models (%)

shape type | of the modal form [Hz] | shape type of the modal form [Hz]

1%t flexural 753.14 1%t flexural 795 5.56

1%t torsional 846.32 1% torsional 920 8.71

2nd flexural 1344.4 274 flexural 1436.25 6.83
274 torsional 1798.5 274 torsional 1940 7.87

374 flexural 1947.3 374 flexural 2125 9.13

4th flexural 2489.8 4*" flexural 2773.75 11.40
37 torsional 2795.3 37 torsional 3018.75 7.99

5 flexural 3055.9 5t flexural 3320 8.64
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From the Table 7.4, it is clear that all experimental modal shapes have the same order as the nu-
merical modal shapes. As observed for the D01 beam, the differences in frequency values between the
numerical and experimental models are also significant for this beam, ranging around 5.56% but never

exceeding 11.40%.

7.4.1 Analysis of FRF plots of selected points for beam D02
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Figure 7.13: Experimental FRF for point 1 of Figure 7.14: Comparison of numerical and ex-
beam DO02. perimental FRF for point 1 of beam D02.

The first observation that can be made by analyzing Figures 7.13 and 7.14 is that point 1 does not
correspond to any node for any of the analyzed modal shapes, as expected in Section 7.1. Furthermore,
it is important to note that, for this beam as well, the numerical and experimental FRFs appear to have
a similar trend.

Additionally, it is once again evident that the 4" flexural mode, as suspected, is not significant either

numerically or experimentally (see yellow circle in Figure 7.14).
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Figure 7.15: Experimental FRF for point 2 of Figure 7.16: Comparison of numerical and ex-
beam DO02. perimental FRF for point 2 of beam DO02.

In this case, it is also verified that this point corresponds to a node for all torsional modal shapes, as
the frequency peaks related to these modal shapes have been lost, as expected. Similarly, by visualizing

Figures 7.15 and 7.16, the difficulty of representing the 4*" flexural modal shape is evident once again
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in both the numerical and experimental FRFs (see yellow circle in Figure 7.16). This modal shape has a

slight phase shift change, specifically from 170° to approximately 90° (see green circle in Figure 7.15).

Experimental graphics for point 36 of beam D02
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Figure 7.17: Experimental FRF for point 36 of

beam D02.
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Figure 7.18: Comparison of numerical and ex-
perimental FRF for point 36 of beam D02.

Indeed, by observing Figures 7.17 and 7.18, it is possible to see that this point corresponds to

a node for all anti-symmetric modal shapes, as all peaks related to these modal shapes have been

lost again. Also, by observing these same figures, it is possible to understand why the 2" torsional

modal shape was obtained with little definition. This occurred in both numerical and experimentally

FRFs, because the peak related to this modal shape, besides being quite close to the 3" flexural peak,

is almost insignificant, making it impossible to distinguish it completely from the peak related to the

aforementioned flexural modal shape (see yellow circle in Figure 7.18).

7.4.2 MAC analysis for beam D02

(a) Graphical representation of MAC analysis for beam D02.
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(b) MAC analysis results for beam D02.

Figure 7.19: MAC analysis for beam D02.
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From the analysis of Figure 7.19, it can be observed that satisfactory results were obtained in the
MAC analysis for this particular beam. This is corroborated by the fact that all elements on the diagonal
of the matrix in Figure 7.19(b) exhibit a high level of similarity. Thus, it is noted that only the 2"¢, 4",
and 7t* modes of both models showed a slightly lower level of similarity among themselves, albeit never
falling below 88%. Another aspect to consider is that each mode in each of the models only resembles
one mode in the other model. In other words, the first experimental mode corresponds to the first
numerical mode, and so forth. This indicates, once again, that the numerical model can be considered

a good approximation of the reality under study.

7.5 Analysis of the D03 beam

Frequency peaks Peak values [Hz] ( [%]

, 1%t 662.5 0.84

i gnd 770 1.68

% 3rd 1158.75 1.57

: 4th 1690 2.08

5th 2210 1.54

6t 2660 1.87
Table 7.5: Frequency peaks to be analysed and the

1000

Feaencrte Damping factor for beam DO03.

Figure 7.20: Graph used by the software to
represent the modal shapes for beam DO03.

From the observation of Figure 7.20, it can be seen that the laser was not able to detect two possible
frequency peaks, one at approximately 1500 Hz and another at approximately 2500 Hz. Therefore,
downstream, in the detailed analysis of the selected points, it will be studied whether these possible
peaks actually correspond to frequency peaks (see the red circles in Figure 7.20). Thus the graphical
representations obtained for the frequency peaks shown in Table 7.5 are shown in Figure 7.21, and each

of these peaks will now be analysed individually.

- 1% frequency peak (662.5 Hz)- By observing Figure 7.21(a), it is possible to see that the frequency
peak could correspond to the 1t flexural numerical mode;

- 274 frequency peak (770 Hz)- Upon observation of Figure 7.21(b), it is possible to perceive that
the frequency peak could represent the 15 torsional numerical mode. Furthermore, by viewing

the animation of this LDV prediction, it corroborates this hypothesis;

- 374 frequency peak (1158.75 Hz)- From the observation of Figure 7.21(c), it is possible to perceive
that this frequency peak could represent the 2"¢ flexural numerical mode;

+ 4 frequency peak (1690 Hz)- From the observation of Figure 7.21(d), it is possible to notice
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that this frequency peak could represent the 37¢ flexural numerical mode. However, through the
observation of the produced animation, it is evident that this mode, despite being a flexural modal
shape, presents some torsion. This could have happened due to the same reason explained for
beam D01, that is, the small peak at approximately 1500 Hz (see the first red circle in Figure 7.20),
which the software could not recognize, might represent the 2"¢ torsional mode. Thus, as it is very
close to the 37 flexural mode, the sharpness of this modal shape was compromised,;

+ 5" frequency peak (2210 Hz)- Despite the lack of clarity in the representation of Figure 7.21(e),
this frequency peak could represent the 4" flexural numerical mode. The low clarity of this modal
shape (which is noticeable when viewing its animation) may be related to the previously mentioned
fact, namely, the position where the Shaker was placed may not facilitate the visualization of this

mode;

+ 6" frequency peak (2660 Hz)- The frequency peak represented in Figure 7.21(f) could corre-
spond to the 5" flexural numerical mode. However, it is possible to observe that, despite being
a flexural mode, it has some torsion. This torsion could be related, once again, to the fact that
there may be a frequency peak at 2500 Hz, which was not detected by the LDV (see the second
red circle in Figure 7.20), and which could correspond to the 37 torsional mode.

Hz.

(d) Graphic representation for 1690 Hz. (e) Graphic representation for 2210 Hz. (f) Graphic representation for 2660 Hz.

Figure 7.21: Graphical representations obtained for the modal shapes for beam DO03.

After this analysis, it should be mentioned that for this beam, which is significantly thinner than the
previous two (see Table 4.2), the LDV was able to represent the low-frequency modal shapes with greater
clarity. However, it had more difficulty identifying and representing higher-order modal shapes, as some
of them were separated by only a few Hz (the 2" numerical torsional mode and the 3" numerical flexural
mode have a difference of only approximately 3 Hz, while the 3¢ numerical torsional mode and the 5"

numerical flexural mode exhibit a difference of approximately 63 Hz, as can be observed in Table 7.6).
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Table 7.6: Results obtained for the modal forms of beam D03.

numerical experimental
modal forms modal forms differences between
modal frequency modal frequency models (%)

shape type | of the modal form [Hz] | shape type of the modal form [Hz]

15¢ flexural 620.64 15¢ flexural 662.5 6.74

1%t torsional 693.14 1% torsional 770 11.09

274 flexural 1052.6 274 flexural 1158.75 10.08

374 flexural 1511.8 374 flexural 1690 11.79

4th flexural 1925.3 4*" flexural 2210 14.78

5" flexural 2373.5 5t flexural 2660 12.07

Based on Table 7.6, it is clear that, although the 2" and 3" torsional modal shapes were not iden-

tified, the experimental modal shapes follow the same order as the numerical modal shapes. It is also
important to note that the differences between the two models were significant (between 6.74% and
14.78%), particularly for the higher-order modal shapes (above 1500 Hz). This likely occurred because

these higher-order modal shapes were very close to modal shapes that the LDV could not identify.

7.5.1 Analysis of FRF plots of selected points for beam D03

the graphi for point 1 of beam D03
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Figure 7.22: Experimental FRF for point 1 of

beam D03.
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Figure 7.23: Comparison of numerical and ex-
perimental FRF for point 1 of beam DO03.

By observing Figures 7.22 and 7.23, the first observation that can be made is that point 1 is not a
node for any of the analyzed modal shapes, as all the frequency peaks related to them were observed
in previous graphs. It is also important to highlight that, as seen in Figure 7.23, the numerical and

experimental FRFs show a similar trend. Furthermore, it is also worth noting that from previous plots,
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it is possible to realize that both the supposed peaks for both models are still quite difficult to observe,

especially the peak at 1500 Hz in the experimental model where the LDV was not able to consistently

capture it (see yellow circles in Figure 7.23).
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Figure 7.25: Comparison of numerical and ex-

Figure 7.24: Experimental FRF for point 2 of
perimental FRF for point 2 of beam DO03.

beam D03.

In this case, it is also observed in Figures 7.24 and 7.25 that point 2 corresponds, as expected in
Section 7.1, to a node for all torsional modal forms, since the frequency peaks for these modes are not
present. Similarly, from the visualization of these plots, besides the continuing difficulty in representing
the 4! flexural modal form for this beam (see green circle in Figure 7.25), the noise in the experimental
model for the frequency of 1500 Hz disappeared, and the peak of the 5¢" flexural mode became clearer
(see yellow circles in Figure 7.16). Thus, these observations support the premise that those two peaks,
not identified by the laser, should represent the 2"¢ and 3"¢ torsional modal forms, something that

probably could not be previously verified due to their proximity to the 37¢ and 5" flexural modes.
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Figure 7.27: Comparison of numerical and ex-

Figure 7.26: Experimental FRF for point 36 of
perimental FRF for point 36 of beam D03.

beam D03.

Indeed, by observing Figures 7.26 and 7.27, this point corresponds to a node for all anti-symmetric
modal shapes, as all the peaks related to these modes have been lost. In these graphs, the difficulty of
visualizing the frequency peak related to the 2" torsional mode is evident again for both models (see
yellow circle in Figure 7.27). Additionally, for these FRF plots, the peak related to the 5! flexural mode

is much clearer, as the 3" torsional mode was suppressed (see black circle in Figure 7.27).

70



7.5.2 MAC analysis for beam D03
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(a) Graphical representation of MAC analysis for beam D03. (b) MAC analysis results for beam D03

Figure 7.28: MAC analysis for beam D03.

From the analysis of Figure 7.28, it is evident that except for the 2" and 5" experimental modes, all
other experimental modes have a very high level of similarity with only one numerical mode (with MAC
always above 0.98). Therefore, it is noticeable that the two experimental modes that did not exhibit a
high MAC value were also the ones where the LDV was unable to represent their modal shape with good
clarity. Lastly, it should also be noted that neither the 4 nor the 7¢* numerical modes correlated with
any of the experimental modes, which supports the previously mentioned hypothesis, specifically that
the LDV was unable to identify two possible frequency peaks that would likely resemble these numerical

modes.

7.6 Analysis of the D04 beam

% Frequency peaks Peak values [Hz] ( [%]
15t 653.75 1.52
ond 722.5 —

3rd 880 2.35

“ P 4th 1286.75 1.42

2 5t 1940 1.79

) 6t 2575 1.97
7th 2827.5 2.75

e e gth 3098.75 1.98

2000
Frequency [ Hz]

Figure 7.29: Graph used by the software to Table 7.7: Frequency peaks to be analysed and the
represent the modal shapes for beam D04. Damping factor for beam D04.
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By analyzing Figure 7.29, it is evident that the first two peaks are extremely close to each other. This

observation is quite unusual since, upon a quick comparison with the numerical analysis (see Figure

4.3), there should only be two frequency peaks below 1000 Hz. Additionally, it's important to note that

the two peaks typically associated with the 39 torsional and 5" flexural modes (see red circles in Figure

7.29) were well-differentiated by the software. With that in mind, the graphical representations obtained

for the frequency peaks listed in Table 7.7 are shown in Figure 7.30, and each of these peaks will now

be analyzed individually.

(a) Graphic representation (b) Graphic representation (c) Graphic representation (d) Graphic representation
for 653.75 Hz. for 722.5 Hz. for 880 Hz. for 1286.75 Hz.

<& ~5

(e) Graphic representation (f) Graphic representation (g) Graphic representation (h) Graphic representation for
for 1940 Hz. for 2575 Hz. for 2827.5 Hz. 3098.75 Hz.

Figure 7.30: Graphical representations obtained for the modal shapes for beam D04.

1%t frequency peak (653.75 Hz)- Upon observing Figure 7.30(a), it appears that this frequency
peak might correspond to the 1°¢ flexural numerical mode. Although it exhibits some little torsion;

2nd frequency peak (722.5 Hz)- From the observation of Figure 7.30(b), it seems that this fre-
quency peak could also represent the 15 flexural numerical mode. However, through the ani-
mation produced by LDV, it becomes evident that this modal shape has more torsion compared
to the previous one. Additionally, by examining Figure 7.29, it's noticeable that this peak is much
less significant than the preceding one. Therefore, considering these reasons, this peak will be
disregarded, and in the subsequent analysis of the FRF plots for the selected points, this issue will

be revisited;

374 frequency peak (880 Hz)- By observing Figure 7.30(c), it appears that this frequency peak
might represent the 1°¢ torsional numerical mode, and through the animation, this mode can be

visualized with good clarity;

4t frequency peak (1286.75Hz)- From the observation of Figure 7.30(d), it can be noticed that
this frequency peak could represent the 2" flexural numerical mode, which exhibits a good level

of clarity;

5'" frequency peak (1940 Hz)- By observing Figure 7.30(e), it is possible to notice that the fre-

quency peak could correspond to the 37¢ flexural numerical mode. Also, by looking at the ani-
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mation, it can be seen that this mode is not as clear as the previous ones due to the existence of

some torsion;

+ 6" frequency peak (2575 Hz)- Although Figure 7.30(f) is not very clear, but it can be noticed that

this frequency peak might correspond to the 4" flexural numerical mode. Once again, this lack

of clarity might be explained by the position of the Shaker;

- 7" frequency peak (2827.5 Hz)- By observing Figure 7.30(g), this frequency peak could corre-

spond to the 3"¢ torsional numerical mode, and similar to what happened with beam D02, this

frequency peak has good clarity;

« 8" frequency peak (3098.75 Hz)- By observing Figure 7.30(h), it can be seen that this frequency

peak could correspond to the 5 flexural numerical mode, and from the animation, it can be

seen that this modal shape has good clarity, similar to what was observed for beam DO02.

Taking all of this into account, it should be noted that the laser did not identify the second torsional

mode. However, by analyzing the graph in Figure 7.29, it can be seen that all existing peaks were

identified, indicating that the peak corresponding to this mode must be very insignificant and therefore

did not appear in that graph . Further downstream, this fact will be analyzed in more detail.

Table 7.8: Results obtained for the modal forms of beam D04.

numerical

modal forms

experimental

modal forms

differences between

modal frequency modal frequency models (%)

shape type | of the modal form [Hz] | shape type | of the modal form [Hz]

1% flexural 647.61 15 flexural 653.75 0.95
1%t torsional 827.48 15" torsional 880 6.35
274 flexural 1208.3 274 flexural 1286.75 6.49
374 flexural 1770.5 374 flexural 1940 9.57
4th flexural 2289.5 4" flexural 2575 12.47
374 torsional 2583.7 374 torsional 2827.5 9.44
5th flexural 2815.7 5t flexural 3098.75 10.05

By observing Table 7.8, it's evident that despite the 2"¢ torsional mode not being identified, the

experimental modal shapes follow the same order as the numerical modal shapes. It's important to note

that the differences between the models are significant, especially for modal shapes above 1700 Hz

(ranging from 0.95% to 12.47%), but were slightly lower for this beam compared to the other beams

studied. It's worth mentioning that the modal shape with the highest difference of frequency was the

4*h flexural mode, which again supports the previously mentioned hypothesis that the positioning of the

Shaker may have negatively influenced the visualization of this modal shape.
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7.6.1 Analysis of FRF plots of selected points for beam D04
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Figure 7.31: Experimental FRF for point 1 of Figure 7.32: Comparison of numerical and ex-
beam D04. perimental FRF for point 1 of beam D04.

By examining Figures 7.31 and 7.32, the first observation to be made is that point 1 is not a node
for any of the analyzed modal shapes, as all the frequency peaks related to them were observed in
the previous plots. Furthermore, it is important to highlight that, as seen in Figure 7.32, the numerical
and experimental FRF plots are somewhat similar, with the frequency peaks of the numerical model
appearing before those of the experimental model.

Another important observation to note is that both the experimental and numerical FRF for this point
do not show any frequency peak that could correspond to the 2"¢ torsional mode (see black circle in
Figure 7.32). Also, it is noticeable that the peak related to the 3" flexural mode is slightly broader for
both models, suggesting that the 2"¢ torsional mode may have mixed with this same modal shape (see
yellow circle in Figure 7.32).

Furthermore, by analyzing Figure 7.32, it can be confirmed that the frequency peak detected by the
laser at 722.5 Hz is only present in the experimental model (see green circle in Figure 7.32). However,
this peak may not correspond to a specific modal shape since there is no significant phase change-

approximately 125° to approximately 100° (see green circles in Figure 7.31).

graphics for point 2 of beam D04 Cﬂomparison between the graphics obtained for point 2 of beam D04
10 T

10% 7 T
z A I\ e ’\
E o /"‘ \‘\‘\—\/—./ i INEE 4 ‘\\ el " w’ “ \ : s
% / = // }“ i / | )/\ | \“ /
£ "'27’/ = M0 | \ /
500 1000 1500 2000 2500 3000 - w! // \ \/ / N~ / \T A‘\
i £ /] / / \ "~ \
3 / \ \
% 9 “. ." \\\ 10'2 ““ \’ \(‘
5 - g ] / |
& 100 B — | | H numerical
- | \ i | ) H experimental
¥ i S 1500 . Ll ] i 500 1000 1500 2000 2500 3000
[Hz] f[Hz]
Figure 7.33: Experimental FRF for point 2 of Figure 7.34: Comparison of numerical and ex-
beam D04. perimental FRF for point 2 of beam DO04.

Observing Figures 7.33 and 7.34, it is possible to see that the point in question is a node for all tor-

sional modes, as the frequency peaks for these modes are not present. Another important observation
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to be made is that the peak corresponding to the 3¢ flexural mode is more sharper (see yellow circle in
Figure 7.34) when compared to the peak corresponding to this modal shape in Figure 7.32. Therefore,
since this point is a node for all torsional modes, the hypothesis that the peak corresponding to the 274
torsional mode has mixed with the peak of this flexural mode is corroborated. Finally, it is also possible
to observe that the peak corresponding to the 4" flexural mode is not very significant, which explains

why this mode was difficult to visualize (see black circle in Figure 7.34).
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Figure 7.35: Experimental FRF for point 36 of Figure 7.36: Comparison of numerical and ex-
beam D04. perimental FRF for point 36 of beam D04.

By observing Figures 7.35 and 7.36, it is possible to confirm that this point corresponds to a node
for all anti-symmetric modal shapes, as all the peaks related to these shapes have been lost. Also,
after analyzing these plots, the peak related to the 37 flexural mode becomes slightly wider again (see
yellow circle in Figure 7.36), as the 2" torsional mode is a symmetric modal form and at this point, only
anti-symmetric modal forms are canceled out, as previously mentioned. Therefore, the theory that the

274 torsional mode mixed with the 37¢ flexural mode is once again corroborated.

7.6.2 MAC analysis for beam D04
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Figure 7.37: MAC analysis for beam D04.
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By examining Figure 7.37, it is evident that each of the experimental modes relates to the corre-
sponding numerical mode, with high similarity values observed in all cases (the lowest value observed
was approximately 0.94 for the relationship between the 7" experimental mode and the 8th numerical
mode). Additionally, from the analysis of the previous figure, it can be deduced that the 4" numerical
mode did not relate to any other experimental mode, which further supports the hypothesis that this
mode may have mixed with the 3" flexural mode, making its identification impossible. Lastly, it is worth
mentioning that, except for the numerical mode that did not relate to any of the experimental modes
(which did not occur, for example, with beam D02), the MAC analysis values for this beam were higher

than those obtained for any of the other beams studied.

7.7 Hammer Test

It was observed that the differences between the numerical and experimental models were on the or-
der of 10%. Therefore, one of the hypotheses raised was that the Shaker introduced significant stiffness
at the contact point with the structure, even mitigating the aforementioned bending effect, thus altering
the natural frequencies of the experimental model.

In order to investigate this hypothesis, it was decided to disconnect the Shaker from one of the struc-
tures under study and excite it with the Impact Hammer. If the obtained frequencies were significantly
lower, then it would confirm that this was one of the factors that influenced the differences observed
between the two models.

Graph obtained for point 1 of beam D02 for the hammer test
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Figure 7.38: Experimental FFR for point 1 of beam D02 for Hammer test.

In addition, it should be noted that beam D02 was selected for this study because it allowed obtaining
all the lowest modal shapes, which were crucial for comparing the results of this experiment. Since the
method used to connect the Shaker was identical for all the beams under study, it was sufficient to

conduct this study on beam D02 only.
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Furthermore, it's worth highlighting that this study’s effectiveness is quite positive. Even though the
higher-frequency modal shapes were not studied, any potential effect of increased stiffness when us-
ing the Shaker, if it existed, would likely have a relatively consistent impact across all modal shapes.
Additionally, this experimental activity was conducted solely for point 1 of configuration 6.1 to compre-
hensively analyze all possible natural frequencies obtainable through this type of test.

Having discussed this, Figure 7.38 displays the frequency peaks obtained in this test, and Table 7.9

provides a comprehensive comparison of all the results.

Table 7.9: Comparison of the results obtained for all the experiments for beam D02.

Shaker Test Hammer Test
numerical
modal Experimental diferences Experimental diferences
frequen-
shape type . frequencies between frequencies between
cies [Hz]
[Hz] models (%) [Hz] models (%)
15t flexural 753.14 795 5.56 788.75 4.51
1%t torsionall 856.32 920 7.44 923.75 7.87
2nd flexural 1344 .4 1436.25 6.83 1452.5 8.04

Upon examining Table 7.9, it becomes evident that the results from the experimental test using the
Shaker and the Impact Hammer show relatively minor differences. Specifically, only the first natural
frequency obtained with the Impact Hammer is slightly lower than that obtained in the Shaker test (by
approximately 7 Hz). Consequently, it can be inferred that the issue under investigation is not significant,
and therefore, it is unlikely to be the primary cause of the significant discrepancies observed between
the numerical and experimental models.

Therefore, the observed frequency differences between both models may be related to various fac-
tors, such as defects in the beams themselves, a significant increase in stiffness due to the configuration
used, or even the need to recalculate the physical constants of the materials to perform modal updating
[18].
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Chapter 8

Conclusions

Before proceeding with the conclusions, it's important to provide a concise overview of the entire ex-
perimental activity. In this project, four composite beams, located in the Laboratory of the Department of
Mechanical and Aerospace Engineering at Politecnico di Torino, were examined. These beams featured
7075 aluminium faces and a WF-110 polymer foam core. However, the thickness of these materials
varied from beam to beam, resulting in different results for each of these beams. Also, in this project, it
was aimed to perform the Modal Test in a Free Condition. Thus, different configurations were studied
to understand which one better simulated this situation.

In addition, to enable a preliminary estimation of the dynamic behaviour of the structures under study,
a Finite Element Model was built for each of these structures, and a numerical analysis was performed
on each of these Finite Element Models. This entire process was carried out using the Patran/Nastran
software. The numerical studies were not only very useful for the implementation of the experimental
activity but, after the analysis of the results obtained, these numerical studies were validated.

It is also important to note that in this project, unlike the usual modal test practice (where accelerom-
eters are traditionally used for response measurement [3, 10—13]), a Laser Doppler Vibrometer was
used. This was done because another goal of this project was to understand the feasibility of using this
technology for modal testing. Thus, for the correct implementation of this technology, a preliminary study
of it was also necessary.

Finally, after the structural analysis of the beams under study, where the first resonance frequen-
cies and their corresponding vibration modes were obtained, the results for both models were compared
and analyzed. To achieve this, two MATLAB programs were developed. One allowed the collection of all
the numerical and experimental data needed to create the Frequency Response Analysis plots, and the

other program facilitated the Modal Assurance Criterion analysis between the mentioned models.

That said, we will now begin to outline all the relevant conclusions that can be formulated, considering
everything discussed in Chapter 7.

First and foremost, it should be noted that the use of the LDV can be considered a good alternative
to the use of more conventional devices for conducting this type of experimental activity. This is evident

from the good results obtained for the coherence function, never lower than 0.85.
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The configuration of points chosen to perform the measurements (6.1) fulfilled the proposed objec-
tives, as expected. With this configuration, whenever the frequency peaks associated with modal shapes
were clearly identified, the LDV was able to reproduce all modal shapes quite smoothly, something easily
observable through the visualization of the animations produced by this device. In these animations, it
was always possible to identify the presence of flection, torsion, or both phenomena, depending on the
prediction made by this device for each modal shape.

In addition, another important consideration to make is that the experimental modal shapes, for all
beams under study, had the same order as the numerical modal shapes. Furthermore, it's noteworthy
that the frequencies of the experimental modal shapes were consistently higher than the frequencies
of the numerical modal shapes, with these differences typically hovering around 10% (for the higher-
frequency modal shapes, this difference tended to be higher). Therefore, despite the significant dif-
ferences observed between the two models, the fact that they shared the same modal order and the
coherence between the FRF plots obtained for both models, which showed a somewhat similar trend,
allows us to conclude that the numerical models can indeed be considered a good approximation of the
reality under study.

Furthermore, it is worth mentioning that the only beam in which all the intended numerical modal
shapes could be visualized was beam D02. Therefore, as observed, for beams D04, D03, and D01, it
was not possible to observe the 2" torsional mode, with the 37 torsional mode also not being observed
for D03, and a first-order flexural-torsional mode being observed for D0O1. Considering this, it can be
concluded that beams D02 and D04 were the most suitable for experimental analysis. These beams
shared the same thickness of the aluminium surfaces (1 mm), and they exhibited significant differences in
the frequency values for each of the modal shapes in the numerical analyses. Thus, to obtain satisfactory
results in this type of activity, it is important for the beams under study to have significantly different
natural frequency values.

Also, it's worth noting that the modal shape with the highest difference of frequency in all beams
studied was the 4! flexural mode. This observation supports the earlier suggestion that the Shaker’s

position may impede the acquisition and visualization of this specific modal shape.

Regarding the MAC analyses conducted, it can be concluded that both models exhibited a hight
correlation. Except for a few isolated cases where the frequency difference between modal shapes
was not significant, all modal shapes had values above 0.95. Moreover, all modal shapes (except for
the 1¢¢ flexo-torsional mode of beam DO01) correlated only with their corresponding modal shape in the
numerical model. This further supports the previous statement that the constructed numerical models
can be considered good approximations of the real models under study.

Lastly, regarding the Shaker, it was also found that it does not introduce significant stiffness in the
structures under study, and the frequency differences obtained arise due to factors that still need to be
studied. However, one of the causes that cannot be ruled out and likely introduced significant stiffness
is the configuration itself that was used to approximate the study under Free-free conditions. Although it
was believed that this configuration introduced the least stiffness to the beams under study and thus rep-

resented the best possible approximation to the Free-free condition (see Chapter 5.1.3), it still introduced
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some stiffness, which could have been a determining factor in the significant frequency differences ob-

served. Also, the possibility that the beams under study may have their own deformations and their

own manufacturing defects cannot be ruled out, and these defects could have negatively influenced the

obtained results

8.1

Achievements

The main achievements obtained with the completion of this work were as follows:

+ A sufficiently detailed FEM model of the composite beams to be studied was successfully created;

It was demonstrated that the use of LDV technology can be advantageous for modal testing, es-

pecially for lightweight and small-sized structures;

By conducting experimental activities, it was possible to collect experimental data for the four
beams under study;

With the collected data, it was possible to analyze the dynamic behaviour of all the beams under

study;

The selected configuration of measurement points proved effective in capturing and predicting all
modal shapes by the LDV;

The results of the numerical and experimental models were similar and consistent, as the modal
shapes consistently exhibited the same order in both models, and the frequency differences re-

mained relatively constant for all beams studied;

Highly satisfactory results were obtained for the MAC index for almost all modal shapes of all

beams;

Despite the previously mentioned issues, the structure assembly created allowed for a reasonably
satisfactory simulation of the Free-free condition;

Considering all the experimental results obtained, it is possible to affirm that the previously devel-
oped FEM models made good approximations to the structures under study.

8.2 Future Work

Taking into account all the work carried out in this project and all the conclusions that have already

been mentioned, it is possible to highlight the following suggestions that could be explored in future

work:

+ Build and test composite beams of different configurations based on a prior and reliable numerical

model that predicts a more significant difference in frequency between all modal shapes. By

80



conducting experimental activities with these beams, it will be possible to verify, with a higher
degree of certainty, whether the modal shapes that were not captured by the LDV in this work were
due to having an insignificant frequency difference from other modal shapes;

Utilize SLDV technology to scan the structures under study, thereby enhancing the precision of the

numerical models;

Seek a solution for the Shaker’s placement to investigate whether it was the reason for obtaining
not only lower resolution of the 4" flexural modes in all beams but also the largest frequency
differences between the two models under study;

Utilize other correlation metrics in addition to the MAC index. This approach will enable the com-
parison of results obtained from these different correlations with the MAC index, providing more
insights into the reliability of the results in this work;

Employ an LDV equipped with Multipoint measurement technology to increase the number of mea-
surement points without significantly extending the duration of the laboratory activity. This will

further enhance the resolution and accuracy of the modal shapes predicted by the LDV;

Test different structure assembly configurations to discover an alternative setup that not only re-
duces the stiffness introduced by the current configuration in the beams under study but also

enables the examination of flexural modal shapes in the y-axis.
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Appendix A

MatLab code developed for FRF plots

The following MATLAB code was developed to collect all the experimental and numerical data for

beam D01, enabling the visualization of all the FRF plots presented in Chapter 7 (it is worth noting that
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23
24
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28
29

a similar program was developed for each of the other beams):

c

%% FRF Plots for beam D01 %%

clc
clear all

close all

[DS, Info, errmsg] = readuff('DOl_provad_-ridotta.unv'); % take experimental data

i o

file_ l=fopen('DOl_report_forca_-freg.txt','r'");

file_2=fopen('DOl_report_forca_z.txt','r'); % draw strength

w=[400:1.25:3000]; % change in freguency of numerical data

H=zeros ([length(w) 11]);

% remove frequencies

dados=input ([ 'What point do you want to assess \n (you can choose one of the', ...

'points indicated: 1,2,18,36) \n','s']);

verification_point= false;

while verification_point == false

if dados == '1°'

results,point=DS{33}.measData; % experimental data for point 1

x-points=DS{33}.x; % change in frequency of experimental data

file 3=fopen('DO0l_report_extremidade_z.txt','r'); %

numeric data from point

title_l1="'Comparison between the graphics obtained for point 1 of beam DO1';

title_2="Numeric graphics for point 1 of beam DO1';

title_3="Experimental graphics for point 1 of beam DO1';

y-label_1='"|H|_{1,£}';
y-label_2_.1= '"|H|_{1, £} numerical';

y-label_2_.2= '<H_{1,£}>"{ } numerical phase';
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y-label_3.1= '|H|_{1,f} experimental';
y-label_3.2= '<H_{1,£f}>"{ } experimental phase';

verification_point= true;

elseif dados == '2'
results_point=DS{32}.measData; % experimental data for point 2
x,points=DS{32}.x; % change in frequency of experimental data
file 3=fopen('DOl_report_sem.rotacionais_z.txt','r'); % numeric data from point 2
title_l1="'Comparison between the graphics obtained for point 2 of beam DO01';
title_2="Numerical graphics for point 2 of beam DOl';
title_3="Experimental graphics for point 2 of beam DO1';
y-label_1="|0|_{2,f}";
y-label_ 2_1= "H‘,{Z,f} numerical';
y-label 2.2= '<a_{2,£}>"{ } numerical phase';
y-label_ 3.1= '|H|_{2,f} experimental';
y-label 3.2= '<H_{2,£f}>"{ } experimental phase';

verification_point= true;

elseif dados == '18'
results_point=DS{47}.measData; % experimental data for point 18
x,points:DS{47}.x; % change in frequency of experimental data
file 3=fopen('DOl.report_sem_l_flessionais_z.txt','r'); % numerical data of point 18
title_l='Comparison between the graphics obtained for point 18 of beam DO01';
title_2="Numerical graphics for point 18 of beam D01';
title_3="Experimental graphics for point 18 of beam DO01';
y-label_-1='|H|_{18,f}"';
y-label_2_.1= '|H|_{18, £} numerical';
y-label_2_.2= '<u_{18,f}>"{ } numerical phase';
y-label_3_.1= '|H|_{18,f} experimental';
y-label_3.2= '<H_{18,£f}>"{ } experimental phase';

verification_point= true;

elseif dados == '36'
results_point=DS{25}.measData; % experimental data for point 36
x-points=DS{25}.x; % change in frequency of experimental data
file 3=fopen('DOl_report_sem_antisimetricas_z.txt','r'); % numerical data of point 36
title_1l='Comparison between the graphics obtained for point 36 of beam DO1';
title_2="'Numerical graphics for point 36 of beam DO01';
title_3="Experimental graphics for point 36 of beam DO01';
y-label_1='"|H|_{36,£}";
y-label_2_1= '|H|_{36,f} numerical';
y-label 2_2= '<H_{36,£}>"{ } numerical phase';
y-label_3_.1= '|H|_{36,f} experimental’;
y-label_3.2= '<H_{36,£f}>"{ } experimental phase';

verification_point= true;
else

disp ('Choose one of the points indicated: 1,2,18,36")

dados=input ('What point do you want to assess \n ','s'")
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end
end
a=0;
Cond=true;

while Cond==true

a=a+l;
aline=fgetl(file_1); % to advance each line of the txt file
if mod(a+l,4)==
linha=regexp (aline, '\S ' ,'split');
w_proprio ((a+l)/4)=str2double(linha(5)); % to transform the string of
% the txt file into a number
end
if strcmpi(aline(1:3), 'END')
Cond = false;
end
end
a=0;
Cond=true;

while Cond==true

a=a+l;

aline=fgetl (file_2);

if mod(a,2)== 0
linha=regexp (aline, '\S ' ,'split');
eig.val_for (a/2)=str2double (linha(4));

end

if strcmpi(aline(1:3), 'END'")
Cond = false;

end

end

a=0;
Cond=true;
while Cond==true
a=a+l;
aline=fgetl (file.3);
if mod(a,2)== 0
linha=regexp (aline, '\S ' ,'split');
eig.val_extre (a/2)=str2double (linha (4));
end
if strcmpi(aline(1:3), 'END')
Cond = false;
end

end

for a=l:length(w_proprio)
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129
130
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138
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150
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157
158
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160
161
162
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164
165
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167
168
169
170
171
172
173
174
175
176

for i=1:length (w)
H(i)= H(i)+ li*w(i)~*(eig-val_extre(a)~*eig-val_for(a))/...
(w_proprio(a) "2-w(i) "2); % Calculation of numerical H
end

end

H_points=abs (H);
for r=1l:length (H)
if H_points (r)== inf
Hpoints(r)=0; % to eliminate the numbers that, due to the transformation
% from imaginary to real, are Inf because their imaginary
% part is equal to zero

end

end

figure (1)

semilogy (w, H.points/max (H-points), 'b")

hold on

semilogy (x_-points,abs (results_point)/max (real (abs (results_point))),'r")
hold on

grid on

title(title.1)

legend ('H numerical', 'H experimental', 'Location', 'south')
ylabel (y_label_1)

xlabel ('£_{[Hz]}")

axis ([w(l),w(length(w)),0,11)

figure (2)

subplot (2,1,1)

semilogy (w, H.points/max (H_.points), 'b")

title(title_2)

grid on

ylabel (y-label_2_1)

xlabel ('f_{[Hz]}")

axis ([w(l),w(length(w)),min(H.points/max (H.points)), ...
max (H_points/max (H_points))])

subplot (2,1, 2)

plot (w,angle (H) *180/pi, 'b")

ylabel (y_-label_2_2)

xlabel (' f_{[Ez]}")

axis ([w(l),w(length(w)),min(angle (H)*180/pi),max (angle (H)*180/pi)])

figure (3)

subplot (2,1,1)

semilogy (x-points,abs (results_point) /max (real (abs (results_point))),'r")
title(title.3)

ylabel (y_-label_3_1)

xlabel (' f_{[Ez]}")

grid on
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178
179
180
181
182
183
184
185
186

axis ([w(l),w(length(w)),min(abs(results_point)/...

max (real (abs (results_point)))),max (abs (results_point) /...

max (real (abs (results_point))))])
subplot (2,1, 2)
plot (x_points,angle(results_point)=180/pi, 'r")
grid on
ylabel (y-label_3_.2)
xlabel (' f_{[Hz]}")

axis([w(l),w(length(w)),min(angle (results_point)*180/pi), ...

max (angle (results_point)*180/pi) 1)
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Appendix B

MatLab code developed to perform

MAC analyses

The following code was developed to perform MAC analyses for any of the beams under study:

oo

%% MAC Analysis %%

clc
clear all
close all
dados = input (['Which MAC value do you want to access? \n You can access the ',
'MAC values of bar 1,2,3,4 ',
'(type 1,2,3,4, depending on which beam you want to analyze) \n'}, 's');

verification_point= false;

while verification_point == false
if dados == '1'

% Open the file for reading experimental points

'

file.1l = fopen('posicoes_pontos_exp.DOl.txt','r");

numero_freg_proprias_exp=6; %number of experimentally measured frequencies

o

for the beam studied

o

5 Open the file for reading experimental normal vectors

file .2 = fopen('NormalModesDOl cor.txt','r');

comp-linha_file_ex=6;

% Open the file for reading numerical points and numerical normal vectors
file_.3 = fopen('pontos_todos_numericos_-DOl_cor.txt','r');

numero_freg_proprias_-num=8; S%number of numerically studied

$frequencies for the beam studied

title_1="Modal Assurance Criterion of beam DO1';
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verification_point= true;

elseif dados == '2'

o

% Open the file for reading experimental points

1

file.l = fopen('posicoes_pontos_exp D02.txt',"'r'");
numero_freg_proprias_exp=8; S%number of experimentally measured

$frequencies for the beam studied
comp_linha_file_ex=3;

5 Open the file for reading experimental normal vectors

file 2 = fopen('NormalModesD02_cor.txt','r');

% Open the file for reading numerical points and numerical normal vectors
file.3 = fopen('pontos_todos_numericos_DO02_cor.txt','r");
numero_freg.proprias_num=8; S%$number of numerically studied

%$frequencies for the beam studied

title_1="Modal Assurance Criterion of beam D02';

verification_point= true;

elseif dados == '3'
% Open the file for reading experimental points

file.l = fopen('posicoes_pontos_.exp D03.txt',"'r');

numero_freg_proprias_exp=6; %number of experimentally measured
%frequencies for the beam studied

comp-linha_file_ex=3;

% Open the file for reading experimental normal vectors

file .2 = fopen('NormalModesDO3_cor.txt','r"');

o

% Open the file for reading numerical points and numerical normal vectors

file.3 = fopen('pontos_todos_numericos_DO3_cor.txt',"'

r');
numero_freg_proprias-num=8; S%number of numerically studied

$frequencies for the beam studied

title_1="'Modal Assurance Criterion of beam DO03';

verification_point= true;

elseif dados == '4'
% Open the file for reading experimental points

file.l = fopen('posicoes_pontos_exp-D04.txt','r");
numero_freg.proprias_exp=7; %number of experimentally measured

%$frequencies for the beam studied
comp-linha_file_ex=3;

o

% Open the file for reading experimental normal vectors

file 2 = fopen('NormalModesDO4_ cor.txt',"'r');

o

% Open the file for reading numerical points and numerical normal vectors
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78 file.3 = fopen('pontos_todos_numericos_.DO4_cor.txt','r');

79 numero_freqg_proprias_num=8; S%number of numerically studied
80 $frequencies for the beam studied
81 title_1="Modal Assurance Criterion of beam D04';

82 verification_point= true;

83

84 else

85 disp('Choose one of the beams indicated: 1,2,3,4")

86 dados=input ('Which MAC value do you want to access?','s')
87 end

88 end

89

90 % Initialize variables

91 pontos = zeros(3, 70);

92 a = 0;

93 Cond = true;

94

95 % Read data from the file and populate the 'pontos' matrix

96 while Cond == true

97 a=a + 1; % Counter for the current line number (goes up to 140)

98 aline = fgetl(file_1); % Read the current line from the file

99

100 % Process odd lines (excluding line 140)

101 if mod(a, 2) ~= 0 && a < 140

102 linha = regexp(aline, '\s ', 'split'); % Split the line by whitespace
103 pontos(1l, (a + 1) / 2) = str2double(linha(5)); % Convert the 5th element of
104 %the line to a number and store it
105 %in the 'pontos' matrix
106 % Process even lines

107 elseif mod(a, 2) == 0

108 linha = regexp(aline, '"\s ', 'split'); % Split the line by whitespace
109 numeros = 0; % Initialize a vector to store numbers

110 % Iterate over each element in the line

111 for i = l:numel (linha)

112 str = strtrim(linha{i}); % Remove whitespace from the element

113 if ~.isempty(str) % Check if the element is not empty

114 numeros (i) = str2double(str); % Convert the element to a number
115 %$and store it in the 'numeros' vector
116 end

117 end

118 b = 1; % Counter for storing valid coordinates

119 c = 0; % Counter for iterating over 'numeros'

120 % Filter out zeros and store the non-zero coordinates

121 while ¢ < length (numeros)

122 c=c+ 1;

123 if numeros(c) ~= 0

124 coordenadas (b) = numeros(c); % Store the non-zero coordinate

125 % value in the 'coordenadas' vector
126 b=Db+ 1;
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127 end

128 end

129 pontos (2, a / 2) = coordenadas(l); % Store the x—coordinate in the 'pontos' matrix
130 pontos (3, a / 2) = coordenadas(2); % Store the y-coordinate in the 'pontos' matrix
131 % Check for the end of the file marker

132 elseif strcmpi(aline(1:3), 'END')

133 Cond = false;

134 end

135 end

136

137 pontos(:, end) = []; % Remove the last column corresponding to the force point

138

139 1linha2 = pontos(2, :); % Get the second row of the matrix

140 [., indices] = sort(linha2); % Sort the second row and obtain the sorting indices

141 pontos = pontos(:, indices); % Sort the matrix based on the indices from the second row
142

143 1inha3 = pontos(3, :); % Get the third row of the matrix

144

145 % Sort groups of three columns in descending order based on the values in the third row
146 for i = 1:(size(pontos, 2) — 1) / 3

147 index = 3 x i; % Calculate the starting index of each group

148 cols = [index - 2 index - 1 index]; % Columns corresponding to the group

149 values = linha3(cols); % Values in the third row corresponding to the group

150 [~, indices] = sort(values, 'descend'); % Sort the values in descending order

151 %and obtain the sorting indices

152 indices = indices + index - 3; % Adjust the indices to match the correct columns
153 pontos(:, cols) = pontos(:, indices); % Update the matrix with the sorted columns
154 end

155

156 a=0;

157 matriz=zeros (2,70, numero_freq proprias_exp); % Initialize a 3D matrix
158
159 % Read data from the file and populate the matrix

160 for i=l:numero_freqg proprias_exp

161 t=0;

162 Cond=true;

163 while Cond==true

164 a=a+l;

165 t=t+1;

166 aline=fgetl (file.2);

167 if mod(a,2)~= 0 && strcmpi(aline(l:3), 'END')==false

168 linha=regexp(aline, '\S ' ,'split');

169 numeros = 0; % Initialize a vector to store numbers

170 for r = 1l:numel (linha)

171 str = strtrim(linha{r}); % Remove whitespace from the element

172 if .isempty(str) % Check if the element is not empty

173 numeros (r) = str2double(str); % Convert the element to a number
174 %and store it in the 'numeros' vector
175 end
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176 end

177 if length (numeros)== comp-linha_file_ex

178 matriz(2,t/2,i)=numeros (comp_linha_file_ex); % Store the number in the
179 $second row of the corresponding column
180 elseif length (numeros)== 1

181 matriz (1, (t+1)/2,1i)=numeros(l); % Store the number in the first

182 $row of the corresponding column

183 end

184 elseif mod(a,2)== 0 && strcmpi(aline(l1:3), 'END')==false

185 linha=regexp (aline, '\S ' ,'split');

186 numeros = 0; % Initialize a vector to store numbers

187 for r = 1l:numel (linha)

188 str = strtrim(linha{r}); % Remove whitespace from the element

189 if ~isempty(str) % Check if the element is not empty

190 numeros (r) = str2double(str); % Convert the element to a number

191 % and store it in the 'numeros' vector
192 end

193 end

194 if length(numeros)== comp-linha_file_ex

195 matriz(2,t/2,1i)=numeros (comp_linha_file_ex); % Store the number in the
196 % second row of the corresponding column
197 elseif length (numeros)== 1

198 matriz (1, (t+1)/2,i)=numeros(l); % Store the number in the first row of the
199 % corresponding column

200 end

201 else

202 Cond = false; % Exit the loop if 'END' is encountered

203 end

204 end

205 end

206

207 coluna.70 = find(matriz(1l,:,1) == 70); % Find the column index where the value 70 is

208 % in the first matrix

209 matriz(:,coluna.70,:) = []; % Remove the column with index 'coluna.70' from all matrices
210

211 % Sort the first rows of each 2D matrix in ascending order

212 for i = l:size(matriz, 3)

213 [~, order] = sort(matriz(l,:,1i)); % Get the order of the elements in the first row
214 matriz(:,:,1) = matriz(:,order,i); % Reorder the columns based on the order of the first row
215 end

216

217

218 % Get the values from the first row of the 'pontos' matrix
219 1linhal = pontos(l, :);

220

221 % Create a copy of the 'matriz' matrix

222 matriz_ordenada = matriz;

223

224 % Sort the two-dimensional matrices based on the values in the first row of 'pontos'

96



225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

for i = l:size(matriz, 3)
matriz_ordenada(:, :, i) = matriz(:, linhal, 1i);
end
% Replace the original 'matriz' with the sorted 'matriz_ordenada’

matriz = matriz_ordenada;

a=0;

o

matriz_nume=zeros (3,69, numero_freqg proprias_.num); % Initialize a 3D matrix
% Read data from the file and populate the matrix
for i=l:numero_freqg.-proprias_num
Cond=true;
t=0;
while Cond==true
a=a+l;
t=t+1;
aline=fgetl (file.3);

if strcmpi(aline(1:3), 'END')==false
linha=regexp(aline, '\S ' ,'split');
numeros = 0; % Initialize a vector to store numbers
for r = l:numel (linha)

str = strtrim(linha{r}); % Remove whitespace from the element

o

if ~isempty(str) % Check if the element is not empty

numeros (r) = str2double(str); % Convert the element to a number and

% store it in the 'numeros' vector
end
end
matriz_nume (1,t,1i)=numeros(2);
matriz_nume (2,t,1)=numeros (3);
matriz_nume (3,t,1)=numeros (4);
else
Cond = false; % Exit the loop if 'END' is encountered
end
end

end

for b=l:numero_freqg.proprias_num

linha2_num = matriz_nume (2, :,b); % Get the third row of the matrix of each normal vector

o

for 1 = 1:(size(matriz_nume, 2)) / 3
index = 3 % i; % Calculate the starting index of each group
cols = [index - 2 index - 1 index]; % Columns corresponding to the group
values = linha2_num(cols); % Values in the third row corresponding to the group
[~, indices] = sort (values, 'descend'); % Sort the values in descending order and
% obtain the sorting indices
indices = indices + index - 3; % Adjust the indices to match the correct columns
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% Sort groups of three columns in descending order based on the values in the third row



274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

o

matriz_nume (:, cols,b) = matriz_nume(:, indices,b); % Update the matrix with
% sorted columns
end

end

MAC.matrix = calculateMACMatrix (matriz_nume, matriz, title.l);

fclose(file_1l); % Close the file '"file_1'

fclose(file_2); % Close the file '"file 2"
fclose(file 3); % Close the file 'file 3'

function MAC.matrix = calculateMACMatrix (matrixl, matrix2, title_1)
% Check the number of matrices in the third dimension
n = size(matrixl, 3);

m = size(matrix2, 3);

o

% Initialize the MAC matrix

MAC.matrix = zeros(n, m);
% Iterate over all combinations of matrices
for i = 1:n

for j = 1:m
% Get the vectors corresponding to the second row of the matrices
vectorl = matrix1(3, :, 1)';
vector2 = matrix2(2, :, J)';
% Check if the sizes of the vectors allow MAC calculation

if numel (vectorl) > 1 && numel (vector2) > 1
% Normalize the vectors relative to the maximum absolute value
vectorl = vectorl / max (abs(vectorl));
vector2 = vector2 / max (abs (vector2));
% Calculate the MAC between the vectors

MACmatrix (i, j) = calculateMAC (vectorl, vector?2);

end

end

end

% Generate the three-dimensional bar graph with colors
figure (1)
% Create a 3D bar graph using the MAC.matrix data

barMAC = bar3 (MAC.matrix);

% Iterate over each bar in the bar graph
for k = 1l:length (barMAC)
% Get the ZData (heights) of the current bar

zdata = barMAC (k) .ZData;
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the



323 % Set the color data of the current bar to its ZData

324 barMAC (k) .Chata = zdata;

325

326 % Set the face color of the current bar to interpolated colors based on the ZData
327 barMAC (k) .FaceColor = 'interp';

328 end

329

330 % Set the colormap to 'jet', which maps values to a range of colors
331 colormap (jet) ;

332

333 % Add a colorbar to the figure to represent the mapping of colors
334 colorbar;

335

336 % Set the y-axis label

337 ylabel ('Numerical modes', 'fontsize',15);

338

339 % Set the x-axis label

340 xlabel ('Experimental modes', 'fontsize',15);

341

342 % Set the title of the figure

343 title(title_ 1);%

344

345 % Display a box around the plot

346 box on

347 end

348

349 function MAC = calculateMAC (vectorl, vector?2)

350 % Normalize the input vectors relative to the maximum absolute value
351 vectorl = vectorl / max (abs(vectorl));

352 vector2 = vector2 / max (abs(vector2));

353

354 % Calculate the Modal Assurance Criterion (MAC)

355 MAC = abs (vectorl' x vector2) "2 / ( (vectorl' x vectorl) x (vector2' x vector2) );
356 end
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