
POLITECNICO DI TORINO
Master’s Degree in Aerospace Engineering

Master’s Degree Thesis

Low-Thrust Optimal Escape Trajectories
from Lagrangian Point L2 of the

Earth-Moon System

Supervisors

Prof. LORENZO CASALINO

Candidate

MATTIA VENTO

December 2023



To all the Dreamers
who live with the feet on the Earth

and the head in the Space



Abstract

This thesis focuses on optimizing escape trajectories from the Lagrangian point
of the Earth-Moon system in a higher fidelity model using electric propulsion.
Lagrange points represent specific locations in space where objects placed there
tend to remain stationary. At Lagrange points, the gravitational attraction exerted
by two massive bodies exactly balances the centripetal force necessary for a smaller
object to move with them. These points are useful for spacecraft to minimize
the amount of fuel consumption required to maintain their position. Therefore,
the exploitation of these points has become of great interest for the future space
missions. In fact, among many uses, it also allows a gateway to Deep Space
exploration. Among the countless trajectory available for a specific mission, the
ones that require minimal propellant while still satisfying all the other conditions
have been employed to optimize scientific results and minimize the associated costs.

To achieve this objective, this work addresses the optimization of escape trajec-
tories using electric propulsion with the primary aim of reducing the amount of
propellant required and, consequently, maximizing the payload mass. The optimiza-
tion is achieved using an indirect method based on the optimal control theory. This
method transforms the challenge of minimizing propellant usage into a multipoint
boundary value problem, which is resolved through an iterative single-shooting
process based on Newton’s method. The case addressed in this work belongs to
a particular subset of optimal control problems characterized by a discontinuous
control law, known as “bang-bang”. An automated tool is used to handle numerical
complexities and identify suitable preliminary solutions. The problems relating
to the discontinuity of the thrust were addressed, along with the delicacies of the
indirect method, which strongly depend on the initial conditions, such as the a
priori definition of the thrust structure. Pontryagin’s Maximum Principle allows for
adjusting suboptimal solutions when the thrust structure violates them in certain
trajectories arcs.

The dynamical model encompasses the gravitational influences of four celestial
bodies, whereby the spacecraft is influenced by the gravitational forces of the
Earth, Moon and Sun. This model relies on JPL’s ephemerides to account for
the evolution of the positions of these celestial bodies over time. It also includes
solar radiation pressure, the lunisolar gravitational effect and a spherical harmonic
model for the Earth as perturbative additional effects. The complex gravitational
interactions between the Sun, Earth and Moon dictate the trajectory dynamics near
the starting point, i.e. the Lagrangian Point L2. In this highly complex framework,
the optimal trajectory is sought among the sub-optimal ones, differentiating the
various solutions from each other.



In particular, this work focuses on the Earth-Moon system, which presents
more complexities related to the Moon’s motion of revolution. First, a scenario
is analyzed in which the departure date is varied along a whole lunar period
maintaining fixed escape time and free terminal energy. Successively, specific dates
among them are selected, and the escape durations is varied, still with free terminal
energy. Lastly, a more complex analysis is carried out by fixing the terminal energy
and letting the escape duration be free.
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Chapter 1

Introduction

Space exploration has consistently played a pivotal role in the initiatives of various
space agencies. Presently, the engagement in space activities not only manifests as
a consolidated presence in Earth’s orbits, notably exemplified by the International
Space Station (ISS), but also extends to the presence in advanced telecommunica-
tion, navigation, and monitoring systems. As outlined in the Global Exploration
Roadmap, the focus in the present and forthcoming decades will transition towards
exploring our Solar System[1]. Space agencies are increasingly dedicating their
efforts to the establishment of long-term infrastructure in the cis-lunar space. This
renewed commitment is evident in recent missions as for example NASA’s Artemis,
the Chinese Chang’e 6 mission, and the Lunar Orbital Platform - Gateway (LOP-
G), formerly known as the Deep Space Gateway (DSG)[2, 3]. The purpose of this
orbiting platform is to streamline deep space operations, facilitate the utilization of
lunar resources, and serve as a central hub for supplying other spacecraft, such as
the Deep Space Transport, during their journeys to and from far-off destinations.

As attention increasingly gravitates towards missions extending beyond Earth,
such as those targeting the Moon and Mars, the complexities and requirements of
these endeavors become more pronounced. Certain requirements in space missions
can be negotiable, but others significantly limit the options and determine if a
mission is feasible or not. One particularly strict requirement is the availability of
propellant, as there are currently no refueling stations built in the solar system by
humans. Since the inception of space exploration, the assessment of a mission’s
value has been closely linked to the payload — the quantity of "useful" goods a
spacecraft can carry. The goal of maximizing the payload, namely achieving the
maximum scientific return in exchange for the costs associated with the conception,
design, and realization of the mission, plays a fundamental role. This objective can
be attained through two distinct approaches: constructing a larger spacecraft or
creating more available space within the spacecraft itself. The feasibility of the first
approach is limited, while the second involves adjusting the only other variable
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Introduction

quantity within the vehicle, that is the propellant.
The Rocket Equation, formulated by Konstantin Eduardovich Tsiolkovsky in

1903, is fundamental to understand the relationship between the mass of a rocket
and the amount of propellant it consumes during its journey[4]. Mathematically,
the Rocket Equation is expressed as:

mp

m0
= 1 − exp

A
− ∆V

Ispg0

B
(1.1)

The propellant required is a function of g0 , the gravitational acceleration at sea
level, and two other parameters: ∆V , representing the required change in velocity
for the space vehicle to transition from point A to point B, and the Isp term, known
as the specific impulse. The first parameter measures the cost of reaching the
target, while the second measures how efficiently a thruster consumes propellant.
As deep-space exploration missions evolve, an escalating demand for substantial ∆V
underscores the need for a concurrent increase in specific impulse to render these
missions viable. Conventional chemical propulsion systems, which are capable of
generating a large amount of energy in a very short time, but which are characterized
by a specific impulse in the hundreds of seconds range, e.g. the most high-
performance propellant combination to date, LOX-LH2, develop a specific impulse
of 450 seconds. Due to physical limitations, no obvious improvements are possible in
the short term for this type of propulsion. Nonetheless, an alternative solution lies
in electric propulsion, an avenue extensively researched and tested in the past but
only nowadays finding practical applications in space application. Through various
electric propulsion systems—electrothermal, electrostatic, and electromagnetic—it
is possible to achieve specific impulses exceeding 5000 seconds. The drawback of
this type of propulsion lies in the relatively low thrust levels provided over time and
the requisite ∆V tends to be higher than the ideal. Consequently, thrust phases
transition from the minutes of chemical propulsion to the hours, days and even
weeks of electric propulsion. Managing these prolonged thrust phases demands
meticulous precision and continual adjustments over time.

Two primary branches of numerical methods, direct and indirect, have historically
been employed for solving boundary value problems. Both aim to address infinite-
dimensional time-continuous problems[5]. Direct methods transcribe the original
problem into subclasses subject to algebraic constraints, discretizing functions into
a mesh. The refinement level of this mesh balances accuracy and computational
cost, often requiring a high number of variables. Despite computational challenges,
direct methods exhibit robustness against initial guesses but may lack accuracy,
necessitating further refinement. Conversely, indirect methods are generally faster
due to a smaller set of variables. They produce accurate optimal solutions or offer
insights for improving potentially suboptimal ones. Indirect methods introduce
adjoint variables and Lagrange multipliers, forming an augmented problem with
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Introduction

necessary conditions for optimality. Retrieving these conditions case-by-case de-
mands a deeper understanding of the problem. Despite their sensitivity to initial
conditions and potential poor convergence, some drawbacks inherent to indirect
methods can be minimized. In complex problems, direct methods are traditionally
preferred, but similar problems are now being addressed using indirect methods
due to their expanded applicability[6].

1.1 Motivation and Objectives

The trajectory optimization addressed in this thesis delves into the intricacies
of minimizing propellant usage for an escape trajectory from Lagrangian Points
using electric propulsion in a higher fidelity model. The selection of this scenario
could offer an explanation for the notable interest in Lagrangian Points in recent
years. These points represent specific equilibrium positions within the three-body
problem, where small objects like spacecraft can maintain relatively fixed and stable
positions relative to two primary bodies in a rotating reference system. Because
of their various advantages, including suitability for deep space exploration, both
space agencies and the scientific community have displayed immense interest in
utilizing these Lagrangian points. This keen interest is underscored by the planning
and execution of numerous missions, both directed to and from these strategically
significant points in space.

For instance, the European Space Agency (ESA) is actively advancing the
VIGIL mission[7], previously known as Lagrange, with the goal of monitoring solar
activity and providing early warnings for incoming solar storms, enabling better
protection for orbiting spacecraft, ground infrastructure, and future explorers. Two
spacecrafts will be strategically positioned at the Sun-Earth Lagrangian Points L1
and L5 to facilitate this mission. Numerous missions have already been scheduled
and launched for the Sun-Earth Lagrangian Point L2 (SEL2), among them the
EUCLID space telescope[8], which was launched on July 1, 2023. This telescope
is designed to investigate the expansion of the universe, dark matter, and dark
energy. Concurrently, other missions such as PLATO[9] and ARIEL[10], focused
on the study of exoplanets, are still in the development phase. Moreover, missions
are currently in development to depart from these precise points, particularly
in the realm of interplanetary exploration. A noteworthy instance is the Comet
Interceptor mission[11, 12] scheduled for launch in 2029, directed towards the SEL2
point in conjunction with the ARIEL mission. Following an initial waiting phase
for target selection, the Comet Interceptor will leave SEL2, undertaking a mission
to explore a long-period comet (LPC) or an undiscovered interstellar object as it
approaches Earth’s orbit.
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Similarly, NASA, CSA, ESA, and JAXA are currently engaged in the devel-
opment of the Lunar Orbital Platform - Gateway[2]. This innovative platform
will be placed in a stable orbit close to the Earth-Moon Lagrangian Point L2
(EML2), specifically adopting a Neo-Rectilinear-Halo-Orbit with a 9:2 resonance.
Designed as a versatile outpost, the station is poised to play a pivotal role, offering
indispensable support for lunar surface missions, serving as a hub for scientific
endeavors, and acting as a critical staging point for extended deep space exploration,
including initiatives like the Deep Space Transport. Therefore, the examination
of departure trajectories from LOP-G is particularly intriguing, as they demand
minimal propulsive effort and are thus ideally suited for implementation through
electric propulsion.

In prior research, Ref.[13] explored escape maneuvers from the Sun-Earth
Lagrangian Point L2 using the Circular Restricted Three-Body Problem (CR3BP)
model. The approach in this study initially treats maneuvers as impulsive and
subsequently extends them to incorporate finite low-thrust electric propulsion.
Conversely, research on the Earth-Moon Lagrangian Points, as discussed in works
[14], does not primarily focus on low-thrust trajectories. In another study [15],
escape trajectories from EML2 are analyzed within the Sun-Earth-Moon Bi-Circular
Restricted Four-Body Problem (BCR4BP) model, taking into account the Sun’s
gravitational perturbation and the relative angular position of the Moon, but
employs impulsive maneuvers. In the works [16, 17], there is, however, a parallel to
the research conducted in this thesis, which makes an effort to expand upon the
outcomes achieved in the analysis of escape trajectories from EML2.

The selected scenario for this thesis focuses on direct escape trajectories from
the Earth-Moon Lagrangian point L2, employing a higher fidelity model and
electric propulsion. The dynamics in the vicinity of these Lagrangian points are
intricate due to the complex gravitational interaction between the Sun, Earth
and Moon. Consequently, the dynamic model employed in this thesis adopts a
4-body gravitation approach, accounting for the gravitational influences of Earth,
Moon, and Sun. The DE430 JPL’s ephemerides are utilized to track the states
of these gravitational bodies over time. Furthermore, various perturbations and
gravitational effects, such as solar radiation pressure, a spherical harmonic model
for the Earth, and the lunisolar gravitational effect, are taken into account.

This research aims to identify optimal trajectories and establishes a general
framework for distinguishing them from sub-optimal ones. The analysis of time-
continuous problem domains requires the careful selection of a suitable numerical
method. Specifically, employing a numerical model that provides theoretical insights
into improving sub-optimal solutions would be highly beneficial for this purpose.
In this thesis, the optimization is achieved using an indirect method based on
the optimal control theory. This method transforms the challenge of minimizing
propellant usage into a multipoint boundary value problem, resolved through an
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iterative single-shooting process based on Newton’s method. The case addressed in
this work belongs to a particular subset of optimal control problems characterized
by a discontinuous control law, known as “bang-bang”. An automated tool is used
to handle numerical complexities and identify suitable preliminary solutions. The
problems related to the discontinuity of the thrust were addressed, along with the
delicacies of the indirect method, which strongly depend on the initial conditions,
such as the a priori definition of the thrust Pontryagin’s Maximum Principle allows
for adjusting sub-optimal solutions when the thrust structure violates them in
certain trajectories arcs.

The main goals of this thesis are:

• Improve the results of previous research on the escape trajectories from EML2;

• Analyze the influence of Earth’s motion around the Sun and the Moon’s
motion around the Earth on escape trajectories from EML2;

• Investigate scenarios where the departure date is varied along a lunar period
while maintaining a fixed escape time and free terminal energy;

• Select specific dates within the varied departure dates and analyze the effect
of varying escape durations while keeping terminal energy free;

• Perform a more comprehensive and more complex analysis, focusing on the pre-
viously chosen dates, by fixing the terminal energy and allowing the variation
of the escape’s duration;

1.2 Thesis Overview
To achieve the above research objectives, the thesis is organized as follows:

Chapter 2 presents a first view on the reference systems used in the analysis and
a detailed description of the dynamic model. A clarification of basic astrodynamics
concepts is addressed, followed by an in-depth study of the three-body problem
and n-body problem to provide a clear understanding of the context of the scenario
under consideration. In this Chapter is also discussed the perturbative accelerations
included in the model and their impact.

Chapter 3 presents the Optimal Control Theory with a description of the Two-
Point Boundary Value Problem and the Multi-Point Boundary Value Problem
which is the one applied in the case study. The differences between the direct
method and the indirect one are discussed. The Chapter provides major focus on
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the second method which is the one appplied to the case study.

Chapter 4 analyzes the optimal solutions of the escape trajectories from the La-
grangian Point L2 of the Earth-Moon system, computed using the n-body dynamic
model described in Chapter 2. First there is a focus on the Boundary Conditions
followed by an in-depth analysis on three particular cases: fixed duration, variable
duration and variable C3f . Optimal thrust structure, thrust strategies, optimal
thrust directions and favourable exploitation of the lunisolar perturbation are also
addressed.

Chapter 5 provides the conclusion with a summary of the key points of this
thesis..

6



Chapter 2

Dynamic Models

In this Chapter is presented a detailed description of the dynamic model used in
the analysis. While this work is grounded in the use of n-body Equations of Motion
(EOM) in a higher-fidelity model, initial considerations are made regarding the
Three-Body Problem (3BP) to provide a clearer understanding of the context of
the scenario under consideration.

The initial section of the chapter introduces the reference systems used in
ephemeris models. A quick overview is given of the fundamental concepts of orbital
mechanics, which are essential for understanding the following sections of this
thesis. For example, an introduction to the two-body problem and classical orbital
parameters is provided. For more complete information, please refer to well-known
books on orbital mechanics, such as [18–21]. The following part of the chapter
presents the dynamic model for the three-body problem and the n-body problem
in detail. The final section discusses the impact of perturbative accelerations.

Throughout this thesis, the same notation as in Mascolo’s Ph.D. dissertation[17]
will be utilized; indeed, the present research commences from such heritage. Vectors,
presented as column vectors, will be represented in bold lowercase font (x), except
for known quantities (such as velocity V and thrust T ); unit vectors in bold
lowercase with a hat (x̂); matrices denoted by a bold uppercase font (A). Quantities
derived with respect to time will be marked through a dot or a plus dot equal
to the order of derivation. Greek letters and calligraphic fonts such as Ralph
Smith’s Formal Script and Zapf Chancery, will be used for describing certain known
quantities and for quantities that have undergone mathematical manipulation, such
as nondimensionalization. If these quantities are represented by the same graphic
characters as the corresponding Latin characters, a superscript will be used to
distinguish nondimensional from dimensional quantities (x̆, x̌).
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2.1 Reference Frames

Ω
ω

ν

K̂

Ĵ

Vernal Equinox
Î

ŵSC(ĥ)

Periapsis p̂SC(ê)
q̂SC

φ

ŵ
û

v̂

θ

Line of nodes
n̂

Perifocal
Plane

Reference
Plane

Figure 2.1: EME2000 {Î, Ĵ , K̂}, Perifocal {p̂SC , q̂SC , ŵSC}, ZEN {û, v̂, ŵ} Ref-
erence Systems

A reference system is generally defined by a fundamental plane, an origin and a
set of mutually orthogonal right-hand axes. Two types of reference frame (RF) can
be distinguished: inertial and non-inertial, with the primary distinction lying in the
state of motion. The first one is characterized by an object either remaining at rest
or moving at a constant velocity unless subjected to an external force. In contrast,
the second one is undergoing accelerating or rotating. In non-inertial one, apparent
forces manifest, such as the centrifugal and Coriolis forces, due to the relative
motion of the reference system itself. The choice between inertial and non-inertial
reference systems depends on the nature of the analysis to be conducted. For
instance, when representing the trajectory of a spacecraft in relation to the Earth,
it is more convenient and comprehensible to utilize an inertial RF.
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2.1.1 Geocentric-Equatorial EME2000
In this study, the equatorial geocentric reference frame aligns precisely with the
Earth Mean Equator and Equinox of Epoch J2000 (EME2000), as illustrated in
Figure 2.1. The origin is situated at the center of the Earth, the fundamental plane
corresponds to the equatorial plane, and the versors {Î,Ĵ ,K̂} are defined with
Î aligned towards the vernal equinox, K̂ normal to the reference plane, and Ĵ
completing the triad. JPL’s ephemerides, belonging to the DE400 series (such as
DE430, employed in this thesis), are referenced within the International Celestial
Reference Frame (ICRF)[22, 23]. The incorporation of libration and nutation
motions in the ICRF leads to the characterization of EME2000 as quasi-inertial.
Despite a rotational difference of 0.01 arcsecond between the EME2000 and the
ICRF dynamical system, determined with an accuracy of 0.001 arcsecond, the
EME2000 RF is still classified as inertial[24].

2.1.2 Perifocal

q̂SC

p̂SC(ê)

r
p

ra rp

a

F νF ′

Figure 2.2: Perifocal reference frame

One of the most practical reference systems employed for describing satellite
motion is the perifocal coordinate system, as shown in the Figure 2.2. Here the
origin is situated at the center of the gravitational body’s in the primary focus,
the fundamental plane corresponds to the plane of the satellite’s orbit and its unit
vectors are {p̂SC ,q̂SC ,ŵSC}. The p̂SC one is precisely aligned with the eccentricity
vector, indicating the direction toward the periapsis, the closest point in the orbit.
Vector ŵSC is normal to the plane of the orbit and it is aligned to the direction
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of the angular momentum vector ĥ. Finally, the unit vector q̂SC completes the
right-handed triad of the perifocal system.

According to Kleper’s first law, in the absence of external perturbations, a
spacecraft in this reference system would describe an infinite conic, assuming it is
closed. The shape and orientation of this conic in space can be uniquely described
with the use of different ways, including the famous Keplerian orbital parameters
{a, e, i, Ω, ω, ν}. In the case of a closed orbit, only three of these are sufficient to
represent the trajectory in the perifocal reference system: the semi-major axis a
and eccentricity e that describe, respectively, its shape and size, and the other
one is the true anomaly ν which define the position of the spacecraft along the
trajectory. The third parameter identifies the angular position of the spacecraft with
respect to periapsis. Sometimes it is also possible to use the mean anomaly M. The
semi-major axis and eccentricity are linked by the semi-latus rectum p = a(1 − e2),
whic is sufficient to represent an orbit in the perifocal RF, by the well-known conic
equation[18, 19, 21]:

r = a(1 − e2)
1 + e cos ν

(2.1)

In order to represent the conic and, consequently, the orientation of the perifocal
plane in three-dimensional space, namely with respect to the EME2000 RF, the last
three orbital parameters are required. Specifically, the orbital plane can be inclined
with respect to the fundamental plane (the equatorial one) by an angle called
inclination i. The intersection between the reference plane and the orbit plane
gives the line of nodes n̂, which defines the transition of the spacecraft during orbit
from the southern to the northern hemisphere and vice versa, at the ascending and
descending nodes, respectively. The main direction of the line of nodes indicates
the ascending node and is measured in the geocentric-equatorial reference system
from the axis through the right ascension of the ascending node (RAAN) Ω. The
last of the six classical orbital parameters is the argument of the periapsis ω, which,
in the case of non-circular and non-equatorial orbits, indicates the position of the
latter from the line of nodes. For a more detailed description, please refer to the
well-known books on orbital mechanics.

2.1.3 Topocentric Zenith-East-Nord
The final reference system under consideration is a topocentric, rotating, non-
inertial, commonly known as the Zenith-East-North (ZEN) RF, defined by the triad
{û,v̂,ŵ}. Generally, this triad is used for the convenient description of the satellite’s
velocity components in the radial, tangent, and normal directions, respectively.
The radial direction is obtained by extending the spacecraft’s position vector with
respect to the centre of the Earth; the tangent one coincides with the direction of

10
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the parallel of the celestial sphere, while the normal one coincides with that of the
meridian.

2.1.4 Coordinate Transformations
The coordinates of a vector can be expressed in any reference system, but there
is often a need to convert between systems. It is important to note that during a
coordinate rotation, only the base of the vector undergoes a change. In other words,
the vector retains its original length and direction, but the specific components
associated with the coordinate axes may vary as it transitions from one system
to another[19]. Moving from one reference system to another involves the use of
rotation matrices. These matrices are crafted from an elementary set of Direction
Cosine Matrices, which, for a generic positive rotation, are in the following form

R1(·) =

1 0 0
0 cos(·) sin(·)
0 − sin(·) cos(·)

 (2.2a)

R2(·) =

 cos(·) 0 sin(·)
0 1 0

− sin(·) 0 cos(·)

 (2.2b)

R3(·) =

 cos(·) sin(·) 0
− sin(·) cos(·) 0

0 0 1

 (2.2c)

To simplify the discussion, consider Figure 2.3, which shows the transition from
the EME2000 inertial RF to the perifocal RF. The first step is a rotation around
the K̂-axis of Ω

rI′J ′K′ = R3(Ω)rIJK (2.3)

from this, the rotated Î-axis coincides with the line of nodes n̂. The next
rotation is around the rotated Î-axis of i

rI′′J ′′K′′ = R1(i)rI′J ′K′ (2.4)

In this way, the K̂ ′-axis, after rotation, coincides with the ŵSC. Lastly, a final
rotation around K̂ ′ of ω

rpqw = R3(ω)rI′′J ′′K′′ (2.5)

resulting in the coincidence of Î ′′′ with p̂SC and Ĵ ′′′ with q̂SC . The angles of
rotation required to align one reference system with another are also known as Euler
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K̂ ≡ K̂
′

Ĵ

Î

K̂
′′ ≡ K̂

′′′

ŵSC(ĥ)

Î
′′′ p̂SC(ê)

Ĵ
′′′

q̂SC
Ĵ

′′

Ĵ
′

ŵ û
v̂

θ
Ω ω

ν

φ
i

Î
′ ≡ Î

′′

n̂

Figure 2.3: Transformation from EME2000 RF to perifocal RF

angles. A maximum of three Euler angle rotations is sufficient for this purpose. The
transformation matrix between two reference systems is denoted by the following
notation: the subscript, composed of a number of single digits indicating the type
of rotation performed, is equal to the number of elementary rotations applied, and
the brackets contain the respective angles used for the rotations. Thus, in the
example

R313(ω, i, Ω) (2.6)
consequently

rpqw = R3(ω)rI′′J ′′K′′ = R3(ω)R1(i)rI′J ′K′ = R3(ω)R1(i)R3(Ω)rIJK (2.7)

In a similar way, the other main rotation used in this work can also be obtained,
and it takes the following form

rZEN = R23(φ, θ)rIJK (2.8)
Inverse rotations can be calculated simply by transposing DCMs.
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2.2 Two-Body Problem
The evolutionary state of a spacecraft, described in an inertial reference system
such as EME2000, takes the form of a set of ordinary differential Equations(2.9),
that describe how the spacecraft’s position, velocity vector, and mass change over
time under the action of external forces and perturbations.

dr

dt
= V (2.9a)

dV

dt
= g + T

m
+ D

m
+ L

m
+ aP (2.9b)

dm

dt
= −T

c
(2.9c)

In the present work, all analyzed trajectories are outside the Earth’s atmosphere;
therefore, the aerodynamic force terms, specifically drag D and lift L, can be
considered negligible. The term g represents gravitational acceleration:

g = − µ

r2
r

r
(2.10)

The above set of equations admits an analytical solution in the so-called Two-
Body Problem (2BP), assuming that the bodies are spherically symmetric and that
there are no additional external or internal forces other than gravity acting along
the line connecting the two bodies. For a more detailed explanation please refer to
[18, 19, 21].

2.2.1 Constants of Motions
Two interesting quantities can be derived from the equations of motion regarding
the nature of the orbital motion.

The first one is the conservation of the specific mechanical energy for any orbit

E = V 2

2 − µ

r
(2.11)

where the first term is the kinetic energy per unit mass and the second is the
potential energy per unit mass.

The second information derived from the Two-Body Problem (2BP) is the
conservation of specific angular momentum for every specific orbit

h = r × V (2.12)
Via ulterior considerations, the specific mechanical energy can be linked to the

shape of the orbit through the semi-major axis
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E = − µ

2a
(2.13)

Two types of orbits, closed and open, can be distinguished depending on the
value assumed by E . Negative values correspond to elliptical orbits; conversely,
a value equal to or greater than zero indicates parabolic or hyperbolic orbits,
respectively.

2.2.2 Sphere of Influence
It is worth defining the concept of the Sphere of Influence (SOI), which refers
to the region where a small body, such as a spacecraft, can be considered to be
influenced primarily by the gravitational attraction of a single celestial body, while
the gravitational effects of other bodies can be neglected. The concept of a SOI
is often applied in preliminary analyses of interplanetary trajectories to simplify
complex problems into more manageable 2-Body Problem sub-problems. The SOI’s
shape is intricately dependent on the gravitational interactions among various
celestial bodies. As a first approximation, it can be considered as a perfect sphere
with a radius of[21]

rSOI = rij

3
mj

mi

4 2
5

(2.14)

where, mi represents the mass of the largest, principal body, mj denotes the
mass of the smallest, secondary body, and rij is the position vector of the j-th
secondary gravitational body relative to the i-th primary gravitational body.

In this thesis, it has been assumed that the escape is complete when the spacecraft
reaches a distance from the main body equal to three times the radius of the sphere
of influence. Given the Earth’s SOI is approximately 0.925 × 106 km, the specified
limit in this analysis is 3 million kilometers relative to the center of the Earth.

2.2.3 Escape Velocity
Since the specific mechanical energy remains constants throughout the whole orbit,
it can be used to compare two states of the same orbit. Writing this equation first
for a generic point situated at a distance r from the center of a gravitational body
and then for a second point at an infinite distance, where the speed will be zero,
provides

E = V 2
e

2 − µ

r
=

✓
✓
✓V 2

∞
2 −

✓
✓
✓µ

r∞
(2.15)

From this, the minimum escape velocity - the speed a spacecraft which starts
from a generic point would need to achieve to reach an infinite distance from the
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gravitational body, following a parabolic trajectory, to arrive with zero velocity -
can be determined

Ve =
ó

2µ

r
(2.16)

2.2.4 Hyperbolic Excess Velocity
In the same way, when the spacecraft is initially given a velocity greater than
the minimum escape velocity, it can be expected that once it reaches the infinite
distance from the central gravitational body, on the respective hyperbolic trajectory,
it will no longer arrive with zero velocity. Instead, there will be a residual velocity,
referred to as hyperbolic excess velocity V∞

E = V 2

2 − µ

r
= V 2

∞
2 −

✓
✓
✓µ

r∞
⇒ V∞ =

ó
V 2 − 2µ

r
=
ñ

V 2 − V 2
e (2.17)

A common way to directly measure excess specific energy is to use the charac-
teristic energy C3, which is defined as twice the mechanical specific energy

C3 = 2E = V 2 − 2µ

r
= −µ

a
(2.18)

It is worth nothing that for trajectories with a hyperbolic excess of velocity C3
is equal to V 2

∞.

2.3 Three-Body Problem
The relations derived from the 2BP form the foundation of a lot of work in
astrodynamics. However, in certain cases, it becomes necessary to include other
bodies to accurately model real physics phenomena. The Three-Body Problem
(3BP) is a particular case of the N-Body dynamical model used in this thesis. This
problem can be further simplified to the Circular Restricted Three-Body Problem
(CR3BP) by introducing some simplifications, which will be explained in detail in
the following sections. The CR3BP studies the interaction that exists between three
bodies, two are the main one and the other one has a negligible mass. In contrast
to the 2BP, there is no-closed-form solution for the equations of motion in the 3BP,
much less in the CR3BP. Indeed, the dynamic model obtained from this scenario
proves chaotic motion of the bodies for most of the initial conditions, necessitating
the use of numerical integration for accurate predictions. A historically well-known
example of a three-body problem is one that involves the Sun, Earth, and the
Moon. This section analyzes 3BP as it relates to a generic binary system.
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r1(t)
r2(t)O

ẐF , ẑS

X̂F

ŶF

r3(t)
r13(t)

r23(t)
ŷS

x̂S

θ(t) ωS(t)

û
ŵ

v̂

Figure 2.4: Synodic reference system

The two main bodies with masses m1 and m2, the larger and the smaller,
respectively, rotate around the barycenter formed by these bodies’ system. It is
possible to define an inertial RF {X̂F ,ŶF ,ẐF }1and a rotating non-inertial RF, also
called the synodic reference system{x̂S,ŷs,ẑs}2, which follows the motion of the
primary bodies that rotate with their angular velocity ωS. This last one is centered
in the barycenter of the system, with the x̂S axis that coincides with the line which
connects the two primary bodies, the ẑS is perpendicular to the plane where the
orbit of the two primary bodies lies, and the ŷS completes the right hand triad.

In the 3BP, the third body is free to move in space under the gravitational
influence of the two main bodies. However, to transition to the Restricted Three-
Body Problem (R3BP) and subsequently to the circular Restricted Three-Body
Problem (CR3BP), certain assumptions must be made. The shift to R3BP is
based on the assumption that the mass of the third body is negligible, as is often
the case with spacecraft. For example, in the Sun-Earth-Moon system mentioned
earlier, where the Moon acts as a tertiary body, its gravitational influence, although
much smaller than the ones of the other two bodies, still affects its relative motion.
Therefore, in the R3BP, the third body has no influence on the primary bodies but
is solely influenced by them[19].

The assumption that allows the transition from R3BP to CR3BP deals with
the orbits of the two main bodies relative to the center of mass of the system. A

1The subscript F indicates fixed reference system.
2The subscript S indicates synodic reference system.
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position vector rij with a double subscript denotes the position of the j-th body
with respect to i-th body, where ri is defined relative to the origin of the RF.
Defining µ∗ as the sum of the two respective gravitational parameters of the two
main bodies, it is possible to define the mean dimensional motion of the binary
system as

n(t) =
ó

µ∗

r12(t)3 (2.19)

Hence, it is possible to derive the angle θ, function of time, between the fixed
reference system and the synodic reference system

θ(t) = n(t)t (2.20)

where t is the elapsed time in seconds. In general, both the mean dimensional
motion and the theta angle exhibit roto-pulsating behavior due to the time-varying
distance between the two primaries. Indeed, when ephemerides are used in the
analyses or the eccentricity of Keplerian orbits is considered, these quantities
become time-dependent. The transition to CR3BP is achieved by assuming that
the orbits of the primaries are circular Keplerian orbits around the center of
mass of the system. In this further simplification, the distance between the two
primaries remains constant over time, therefore the dimensional mean motion
remains constant, and the change in theta is also constant with a velocity equal to
ωS.

A direct non-dimensionalization approach based on the characteristic quantities
of length, mass, and time is considered advantageous[17, 25] because it improves
the equations for numerical integration and facilitates the comparison of solutions
for different three-body systems. The characteristic length l∗ is the fixed average
distance between the two primary bodies

l∗ = r1 + r2 (2.21)

the characteristic mass m∗ of the system is the sum of the primeries masses

m∗ = m1 + m2 (2.22)

while the characteristic time t∗ is not directly imposed, it results from the
imposition of the non-dimensional universal gravitational constant to equal one in
the formulation of Kepler’s third law, from which it is derived

T ∗ =
ó

(l∗)3

Gm∗ (2.23)
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thus, the non-dimensional quantities for distance, mass, and time in CR3BP are
as follows

ρ12 = r12

l∗ = 1 (2.24a)

µ = m2

m∗ (2.24b)

τ = T

T ∗ = 2π (2.24c)

from which the non-dimensional relationships between the masses are obtained

µ = µ2

µ∗ 1 − µ = µ1

µ∗ (2.25)

analogously, the position of the system’s center of mass relative to most massive
main body

ρCG =
q

ρiµiq
µi

= µ (2.26)

thus

ρ1 = r1

l∗ = −µ (2.27a)

ρ2 = r2

l∗ = 1 − µ (2.27b)

2.3.1 Equation of Motion
Starting from Newton’s Second Law, the following compact form of the Equations
of Motion (EOM) is obtained

r̈ = −
nØ

i=1
i /=j

µi

r2
ij

rij

rij

(2.28)

where r13 and r23 are the position vectors of the spacecraft with respect to the
main bodies defined as

ri3 = r3 − ri i = 1,2 (2.29)

For clarity, the subscript 3 will be omitted for spacecraft only. Projecting the
equations of motion in the synodic RF directions gives
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ẍ = − µ1

r3
13

(x − x1) − µ2

r3
23

(x − x2) (2.30a)

ÿ = − µ1

r3
13

y − µ2

r3
23

y (2.30b)

z̈ = − µ1

r3
13

z − µ2

r3
23

z (2.30c)

with the relative position vectors

ri3 =
ñ

(x − xi)2 + y2 + z2 (2.31)

In order to project the EOMs into the inertial reference system, it is necessary
to first recall the transport theorem for a generic variable f .

F df

dt
=

R df

dt
+R/F ω × Rf (2.32)

where the prescripts F and R indicate the fixed or rotating reference system,
respectively, to which the parameter in question is evaluated, while R/F indicates
that the quantity is measured in the rotating RF relative to the inertial RF. Finally,
the velocity in the inertial reference system is

F ṙ =
F dr

dt
=

R dr

dt
+R/F ωS × Rr (2.33)

The acceleration, on the other hand, can be written as follows:

F r̈ =
F dṙ

dt
=

RdF ṙ

dt
+R/F ωS ×F ṙ

=
R d

dt

1
Rṙ +R/F ωS ×R r

2
+R/F ωS ×

1
Rṙ +R/F ωS ×R r

2
=R r̈ +R/F ω̇S ×R r +R/F ωS ×R ṙ +R/F ωS ×R ṙ +R/F ωS ×

1
R/F ωS ×R r

2
F r̈ =R r̈ +R/F ω̇S ×R r + 2

1
R/F ωS ×R ṙ

2
+R/F ωS ×

1
R/F ωS ×R r

2
(2.34)

The first term on the right side of the Equation (2.34) represents the acceleration
in the synodic reference frames, while the remaining three terms are commonly
called to as tangential, centrifugal, and Coriolis acceleration. Under the assumptions
of CR3BP, where circular orbits are considered, and consequently, no variations of
ωS occur, the terms for tangential and centripetal accelerations are zero.

Given that
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ωS = ωS ẑS (2.35)

and taking into account the Kleper’s third law

ωS = µ1 + µ2

r3
12

(2.36)

expanding the equation (2.33) and explicitly expressing the quantities for the
general case of 3BP result in the following velocity components

F ṙ = (ẋx̂S + ẏŷS + żẑS) +

-------
x̂S ŷS ẑS

0 0 ωS

x y z

-------
= (ẋx̂S + ẏŷS + żẑS) + [(−yωS) x̂S − (−xωS) ŷS + (0) ẑS]

F ṙ = (ẋ − yωS) x̂S + (ẏ + xωS) ŷS + żẑS

(2.37)

Neglecting the prescript R and R/F in the last line of the equation (2.34) for
the sake of clarity, the acceleration shows the following components

F r̈ = r̈ + ω̇S × r + 2ωS × ṙ + ωS × (ωS × r)

= r̈ +

-------
x̂S ŷS ẑS

0 0 ω̇S

x y z

-------+ 2

-------
x̂S ŷS ẑS

0 0 ωS

ẋ ẏ ż

-------+ ω ×

-------
x̂S ŷS ẑS

0 0 ωS

x y z

-------
= (ẍ − 2ẏωS − yω̇S) x̂S + (ÿ + ẋωS − xω̇S) ŷS + (z̈) ẑS +

-------
x̂S ŷS ẑS

0 0 ωS

−yωS xωS 0

-------
=
1
ẍ − 2ẏωS − yω̇S − xω2

S

2
x̂S +

1
ÿ + 2ẋωS + xω̇S − yω2

S

2
ŷS + z̈ẑS

(2.38)

Equalizing the corresponding components of equations 2.30 and 2.38

ẍ − 2ẏωS − yω̇S − xω2
S = − µ1

r3
13

(x − x1) − µ2

r3
23

(x − x2) (2.39a)

ÿ + 2ẋωS + xω̇S − yω2
S = − µ1

r3
13

y − µ2

r3
23

y (2.39b)

z̈ = − µ1

r3
13

z − µ2

r3
23

z (2.39c)

Consider the classical non-dimensionalization of CR3BP as follows:
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ξ = x

l∗ (2.40a)

η = y

l∗ (2.40b)

ζ = z

l∗ (2.40c)

ρ = r

l∗ (2.40d)

By employing the assumptions of CR3BP, namely ωS = 1 and hence ω̇ = 0, we
obtain the following set of non-dimensional ODEs for the cartesian components

ξ̈ − 2η̇ − ξ = −1 − µ

ρ3
13

(ξ + µ) − µ

ρ3
23

[ξ − (1 − µ)] (2.41a)

η̈ + 2ξ̇ − η = −1 − µ

ρ3
13

η − µ

ρ3
23

η (2.41b)

ζ̈ = −1 − µ

ρ3
13

ζ − µ

ρ3
23

ζ (2.41c)

2.3.2 Jacobi Constant
The Jacobi integral is the sole pseudo-integral of motion that exists in the CR3BP
within the rotating synodic RF. It is especially important for investigating the
stability and accessible regions influenced by the third body in the binary system.

Defining the potential function U in the inertial RF as

F U =
2Ø

i=1

µi

ri3
(2.42)

where the index 3 indicates the spacecraft and i denotes the i-th gravitational
body. In order to write the same potential in the rotating RF, it is necessary to
consider the centrifugal potential as well and thus

RU = µ1

r13
+ µ2

r23
+ 1

2ωS

1
x2 + y2

2
(2.43)

non-dimensionalizing gives the following expression of pseudopotential

RU = 1 − µ

ρ13
+ µ

ρ23
+ 1

2
1
ξ2 + η2

2
(2.44)

Deriving with respect to non-dimensional coordinates
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∂U

∂ξ
= ξ − 1 − µ

ρ3
13

(ξ + µ) − µ

ρ3
23

[ξ − (1 − µ)] (2.45a)

∂U

∂η
= η − 1 − µ

ρ3
13

η − µ

ρ3
23

η (2.45b)

∂U

∂ζ
= −1 − µ

ρ3
13

ζ − µ

ρ3
23

ζ (2.45c)

Comparing equation (2.45) and (2.41) yields

ξ̈ − 2η̇ = ∂U

∂ξ
(2.46a)

η̈ + 2ξ̇ = ∂U

∂η
(2.46b)

ζ̈ = ∂U

∂ζ
(2.46c)

Focusing again on the dimensional equations (2.39), multiplying each component
of equation by 2ẋ,2ẏ,2ż, and summing them gives:

2ẍẋ + 2ÿẏ + 2z̈ż − 2ω2
S (ẋx + ẏy) = 2ẋ

∂U

∂x
+ 2ẏ

∂U

∂y
+ 2ż

∂U

∂z
= 2dU

dt
(2.47)

Integrating the previous equation results in Jacobi’s integral

ẋ2 + ẏ2 + ż2 = V 2 = 2U − JC (2.48)
The term on the left side of the equation corresponds to the square of the

velocity V 2. On the right side, the first term contains the pseudopotential U , which
includes the ω2

S (x2 + y2) term, and the second term is JC , commonly known as
Jacobi’s constant. This constant can be understood as analogous to the inverse
of the mechanical specific energy E ; the greater the value of JC , the less energy
the spacecraft possesses in the synodic system. In its non-dimensional form, the
Jacobian integral equation appears as

ξ̇2 + η̇2 + ζ̇2 = v2 = 2U − JC (2.49)

2.3.3 Equilibrium Solutions
Although nowadays there is still no analytical solution for the complete set of ODEs
(2.46), Joseph-Louis Lagrange demonstrated the existence of equilibrium points,
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which are named after him[26]. Therefore, following Lagrange’s approach, first
step is set the gradient vector of the pseudopotential function equal to zero, which
means imposing zero velocity and acceleration in the rotating reference system.

∇U = 0 (2.50)
in scalar form

∂U

∂ξ
= ξ − 1 − µ

ρ3
13

(ξ + µ) − µ

ρ3
23

[ξ − (1 − µ)] = 0 (2.51a)

∂U

∂η
= η − 1 − µ

ρ3
13

η − µ

ρ3
23

η = 0 (2.51b)

∂U

∂ζ
= −1 − µ

ρ3
13

ζ − µ

ρ3
23

ζ = 0 (2.51c)

A set of coordinates {ξi, ηi, ζi} that satisfy the above equations can be determined
for each of the five Lagrangian points (LPs). The last equation is immediately
satisfied by setting ζ = 0, indicating that all equilibrium points lie in the ξ̂S − η̂S

plane. Setting η and ζ to zero yields a quintic equation as a function of ξ. The
roots, three of which are real, do not exist in closed form and must be computed
numerically. In the context of the CR3BP problem, the equilibrium solutions are
commonly referred to as libration points. Since the first three lie on the ξ-axis, they
are specifically called collinear libration points. Euler was the first to identify these
solutions in 1765. The other two equilibrium solutions, first found by Lagrange,
can be determined by setting the distances of the primaries with respect to the
spacecraft equal to one,namely ρ13 = ρ23 = 1; these points are also known as
equilateral libration points or triangular libration point.

Figure 2.5 shows the positions of the five LPs in the Earth-Moon system. As
mentioned before, it is possible to find the collinear points along the ξ-axis and
the equilateral libration points at the vertices of an equilateral triangle, with the
distance between the primaries as its base. L4 and L5’s radial positions are depicted
by the dashed circle while L3 is located outside this zone. The smaller primary
body, the Moon in this case, is located between L1 and L2. It seems that these
points are equidistant from the Moon but in reality L2 is little further away. The
dotted circles represent the orbits of the primaries concerning the barycenter when
observed from an inertial RF. Given that the center of mass of such a system is
4760 km from the center of the Earth, it resides inside the Earth at 73% of its
radius[21].

The complete form for the numerical calculation of the position of collinear
points is[27]:

ξ5 ∓ (3 − µ) ξ4 + (3 − 2µ) ξ3 − µξ2 ± 2µξ − µ = 0 (2.52)
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η̂S

ξ̂SL1 L2L3

L5

L4

Figure 2.5: Lagrangian Points in Earth-Moon synodic RF

Supposing that the smaller primary body is at least an order of magnitude
smaller than the larger primary, the first two LPs are located approximately at the
same distance relative to the smaller primary, close to the radius of Hill’s sphere

xLi ≈ ∓r12

ó
µ2

3µ1
i = 1,2

Among the five Lagrangian points, L1, L2, and L3 are considered unstable, while
L4 and L5 are stable. Points L4 and L5 exhibit stability as long as the mass of the
primary body is at least 24.96 times of the one of the secondary body. When a
body positioned at L4 or L5 starts to drift from this point, accelerating away, the
Coriolis force comes into play, correcting its trajectory and maintaining a stable
orbit around the Lagrangian point. For additional details on the stability of these
points, refer to [28–30].
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2.3.4 Zero Velocity Surfaces
A significant outcome derived from the previous treatment of the Jacobi integral,
wherein the relative velocity in the synodic RF is set to zero, is the concept of
Zero-Velocity Surfaces (ZVS). When a specific value of the Jacobi constant is given,
the equation for a surface representing the boundaries that the third body, the
spacecraft, cannot cross while moving within an allowed region is automatically
provided.

JC = 2U = 2
A

1 − µ

ρ1
+ µ

ρ2

B
+
1
ξ2 + η2

2
(2.53)

By inverting the signs in equation (2.49), the quantities resemble those of energy
in the (2BP), thus the representation of these surfaces aligns to be similar to what
is expected for potential energy. Figure 2.6 shows these surface for the Earth-Moon
system.

Figure 2.6: 3D Earth-Moon Zero-Velocity Surfaces at LPs energy. Credits:[17]

A spacecraft traveling in close proximity to the primary body at a low speed,
near orbital velocity, and thus possessing a low initial energy value and consequently
a high JC value, will be confined to a circle-like zone (Figure 2.7a). As the initial
energy (both kinetic and potential energy) increases, JC becomes less positive.
Consequently, more accessible regions for the spacecraft broaden, allowing it to
reach these regions with zero velocity. The first encountered region is one that
intersects L1 (Figure 2.7b), creating a corridor to the Moon, the ZVS level shown
in Figure 2.6 in green. Further energy increases open up additional areas, including
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those behind the Moon (Figure 2.7c). A spacecraft able to reach the L2 ZVS
has enough energy to escape the Earth-Moon system along specific trajectories
leveraging the gravitational pull of the primary body. As the energy continues to
increase, the corridor widens until escape in the opposite direction from the Moon
becomes possible (Figure 2.7d), corresponding to the level of L3, outlined in red
in Figure 2.6. Finally, when the spacecraft can access L4 and L5, represented by
black dots, it will have enough energy to cross any region, therefore there will be
no more prohibited areas (Figure 2.7e and Figure 2.7f).

The same concepts are shown in Figure 2.8, where all regions in white correspond
to JC > JC,L1, orange regions to JC,L2 < JC < JC,L1, yellow regions to
JC,L3 < JC < JC,L2, and red regions to JC,L4 = JC,L5 < JC < JC,L3.

ξ η ζ JC

L1 0.83740242 0.00000000 0.00000000 3.188326
L2 1.15618808 0.00000000 0.00000000 3.172147
L3 -1.00506193 0.00000000 0.00000000 3.012145
L4 0.48785136 0.86602540 0.00000000 2.987999
L5 0.48785136 -0.86602540 0.00000000 2.987999

Table 2.1: Positions and Jacobi Constants of the Earth-Moon system, synodic
RF. Credits:[17]

Table 2.1 presents the coordinates and respective Jacobi Constants for each of
the five Lagrangian points in the Earth-Moon system, as discussed in this paper.
The numbering of the LPs is based on the decreasing values of the JC , reflecting
the order in which these points become accessible.
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(a) JC ≥ JC,L1 (b) JC,L1 = 3.1883

(c) JC,L2 = 3.1721 (d) JC,L3 = 3.0121

(e) JC,L4 < JC < JC,L3 (f) JC,L4 = JC,L5 ≥ 2.9880

Figure 2.7: Forbidden regions in the Earth-Moon system for decreasing values of
Jacobi’s constant. Credits:[21]
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Figure 2.8: Earth-Moon Zero-Velocity Surfaces at LPs energy. Credits:[17]
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2.4 N-Body Problem

Although the CR3BP is a very useful tool for performing preliminary analysis and
considerations in multi-body dynamical systems, achieving high-fidelity trajectory
optimization requires the use of a more accurate dynamical model that describe the
solar system more more closely, taking into account the effects and perturbations
due to the other bodies and phenomena in the solar system. In this dissertation, the
JPL DE430 planetary ephemerides are utilized in the NBP dynamical model. This
model considers four gravitational bodies (Sun, Earth, Moon, and spacecraft) and
incorporates various perturbations and effects, which will be thoroughly discussed
in Section 2.6.

rij(t)

rij(t)

rkj(t)
rki(t)

rkj(t)

Î

Ĵ

K̂

θk(t)

φk(t)
θi(t)

φi(t)
θk(t)

φk(t)

Figure 2.9: N-Body Problem EME2000 RF

Unlike in the 3BP scenario, it is more convenient to employ a non-rotating
reference system when dealing with the equations of motion in the NBP. In this
study, trajectories in the ephemeris model are computed with Earth as the central
body and in light of the above, the reference system used is EME2000. As illustrated
in Figure 2.9, the central body is denoted as the k-th among the n bodies, the
spacecraft is denoted as i, and all other bodies are represented as j-th.

In a generic inertial RF, the acceleration experienced by the spacecraft is
described by Equation 2.28, which for the sake of clarity is given again below

29



Dynamic Models

r̈i = −
nØ

j=1
j /=i

µj

r2
ji

rji

rji

(2.54)

The formulation is most useful when expressed relative to the center of mass of
the central body, manifesting as the following second-degree differential equation[19]

r̈ki = −(µi + µk)
r3

ki

rki +
nØ

j=1
j /=i,k

µj

A
rij

r3
ij

− rkj

r3
kj

B
(2.55)

It is worth noting that although all quantities of the NBP, including positions
and velocities, are time-dependent, the notation (t) denoting dependence in time is
omitted from the NBP equations for the sake of simplicity.

The position vectors rkj obtained from the DE430 JPL ephemerides are given in
rectangular coordinates {xkj, ykj, zkj} with respect to the Earth in the ICRF, namely
rkj = xkj Î + ykjĴ + zkjK̂. Since, as mentioned in Section 2.1.1, the difference
between ICRF and EME2000 is negligible, the second one is used. Instead, the
spacecraft position vector rki is computed during the trajectory analysis process.
The relative position vector rij can be obtained by a simple subtraction of vectors
as follows

rij = rkj − rki (2.56)

In general, for questions related to numerical accuracy, a method similar to that
used in CR3BP is employed, namely non-dimensionalizing the variables, masses and
lengths, with respect to characteristic quantities[17]. For the sake of completeness,
these characteristic quantities, for the Earth-Moon system, are shown in Table 2.2.

Quantity Earth-Moon
l∗ rEM

µ∗ µE + µM

Derived

JC

ó
(l∗)3

µ∗

V ∗ l∗

J ∗

Table 2.2: Characteristic quantities in NBP for Earth-Moon system

Thus, the non-dimensionalized formulation of Equation 2.55 is as follows
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¨̆rki = −(µ̆i + µ̆k)
r̆3

ki

r̆ki +
nØ

j=i
j /=i,k

µ̆j

A
r̆ij

r̆3
ij

− r̆kj

r̆3
kj

B
(2.57)

where the generic position vector is

r̆kj = rkj

l∗ = x̆kj Î + y̆kjĴ + z̆kjK̂ (2.58)

2.5 Equation of Motion in Spherical Coordinates
The set of Equations of Motion (2.9) can be formulated in cardinal directions.
In particular, the position of the spacecraft is expressed in polar coordinates in
the EME2000 reference system, by its radius r, its latitude φ and its longitude
θ. Instead, the velocity is projected onto the spacecraft centred topocentric ZEN
RF, thus with components: a radial (Zenith), a tangential (East) and a normal
(North)[17].

dr

dt
= u (2.59a)

dθ

dt
= v

r cos φ
(2.59b)

dφ

dt
= w

r
(2.59c)

du

dt
= − µ

r2 + v2

r
+ w2

r
+ Tu

m
+ (aP )u (2.59d)

dv

dt
= −uv

r
+ vw

r
tan φ + Tv

m
+ (aP )v (2.59e)

dw

dt
= −uw

r
− v2

r
tan φ + Tw

m
+ (aP )w (2.59f)

dm

dt
= −T

c
(2.59g)

where the projections of the thrust vector is

Tu = T sin αT (2.60a)
Tv = T cos αT cos βT (2.60b)
Tw = T cos αT sin βT (2.60c)

in which αT is the in-plane thrust angle in the ZEN RF and βT is the out-plane
thrust angle.
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2.6 Perturbing Accelerations
The dynamic model incorporates three primary perturbative accelerations affect-
ing the spacecraft’s motion: those caused by the gravity of the Sun and Moon,
solar radiation pressure, and the Earth’s non-sphericity. Consequently, the vector
comprising all perturbative accelerations in Equation(2.9) is composed of:

aP = alsp + aSRP + aJ (2.61)

The formulation of these perturbative accelerations has been extensively dis-
cussed in various textbooks, including [16, 17, 19, 31] which can be consulted for
more specific details.

2.6.1 Lunisolar Effect
Perturbations from lunisolar effects have been widely discussed over time because
they are crucial in forecasting deviations in specific orbits, especially highly elliptical
ones, from expected behavior[17, 31, 32].

The positions of the Sun and Moon are determined through the DE430 JPL
ephemerides[22], supplying the body position vector rEb in rectangular coordinates
relative {xEb, yEb, zEb} to the Earth, the central body, in the ICRF. Note again that
ICRF and EME2000 are used interchangeably in this thesis due to their negligible
difference. The subscript b is used to indicate a generic body, hence with b = s for
the Sun and b = l for the Moon.

rEb = xEbÎ + yEbĴ + zEbK̂ (2.62)

By applying the rotation defined in Equation (2.8), the coordinates in the
spacecraft topocentric frame are obtained

(rEb)u = xb cos θ cos φ + yb sin θ cos φ + zb sin φ (2.63a)
(rEb)v = −xb sin θ + yb cos θ (2.63b)
(rEb)w = −xb cos θ sin φ − yb sin θ sin φ + zb cos φ (2.63c)

The perturbative acceleration experienced by the spacecraft abg, caused by the
third body with gravitational parameter µb and position vector with respect to the
Earth rEb , is equivalent to the gravitational accelerations exerted by the perturbing
body on the spacecraft aSCb and on the Earth aEb, as follows

abg = aSCb − aEb = − µb

r3
bSC

rbSC − µb

r3
Eb

rEb (2.64)
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Ĵ

Î
E

r

ûν̂

θ

θbaSCb

aEb

rEb

b, µb

SC

rbSC

Figure 2.10: Representation of third-body gravitational perturbation

where the spacecraft relative position vector with respect to the perturbing body
is defined as rbSC = r − rEb. Projecting the acceleration in the topocentric RF
gives the following perturbing components

(abg)u = µb

r3
bSC

[(rEb)u − r] − µb

r3
Eb

(rEb)u (2.65a)

(abg)v = µb

r3
bSC

(rEb)v − µb

r3
Eb

(rEb)v (2.65b)

(abg)w = µb

r3
bSC

(rEb)w − µb

r3
Eb

(rEb)w (2.65c)

with

rbSC =
ñ

[r − (rEb)u]2 + (rEb)2
v + (rEb)2

w (2.66)

Note that, since gravity depends only on position, the perturbing acceleration
depends only on r, θ, φ as well as time. The lunisolar perturbation results from the
sum of the gravitational disturbances caused by both the Moon (b = l) and the
Sun (b = s).

In scenarios where the third body is significantly distant compared to the Earth-
spacecraft distance, such as the case with the Sun where rEs ≫ r, and coplanarity
of the orbits is assumed, a straightforward expression for the tangential and radial
components of the perturbative acceleration can be derived[16, 17, 31]
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(aSCs − aEs) · û = 3
2

µs

r3
Es

{1 + cos [2 (θs − θ)]} (2.67a)

(aSCs − aEs) · v̂ = 3
2

µs

r3
Es

sin [2 (θs − θ)] (2.67b)

2.6.2 Solar Radiation Pressure
Solar radiation pressure is the second perturbation considered by the dynamical
model used in this thesis. It is related to the force that a photon emitted by the
Sun, traveling at the speed of light and therefore having some momentum, exerts
when hitting a surface[16, 17, 31].

The physical properties of the spacecraft used in this work are as follows

Quantity Symbol Value Dimension
Mass m0 850 kg

Cross-Section Surface S 5.7 m2

Surface Reflectivity ηR 0.7

Table 2.3: Spacecraft characteristic values

The photon pressure p at generic distance r from the Sun is

p = P
4πr2 clight (2.68)

where P = 1367W/m2 is the total power radiated by the Sun, which depends
on the inverse square of the distance from the Sun in astronomical units(AU). The
photon pressure at r∗ = 1AU is p∗ = 4.55682 · 106N/m2. Assuming

Γ = (1 + ηR) pS (2.69)

the components of acceleration on a spherical body of mass m and cross-section
S within a distance from the Sun rsSC result in:

(asrp)u = − Γ
mr3

sSC

[(rEs)u − r] (2.70a)

(asrp)v = − Γ
mr3

sSC

(rEs)v (2.70b)

(asrp)w = − Γ
mr3

sSC

(rEs)w (2.70c)
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Similar to the previous case, the SRP is a function of the variables r, θ, φ, but it
also depends on the instantaneous mass of the spacecraft, which changes during the
propulsive phase of the trajectory. The influence of solar radiation pressure results
in an acceleration directed from the Sun to the spacecraft, inversely proportional
to the square of the distance between the two bodies. This acceleration, along
with the gravitational acceleration from the Sun, exhibits a similar dependence
on distance and is parallel but in opposite directions[31].It is worth noting that
the formulation presented here is a simplified version; in fact, it assumes that the
surface always faces the Sun.

2.6.3 Earth Asphericity

The Earth’s gravitational potential is described by the spherical harmonic Earth
Gravitational Model EGM2008[33]; the "tide-free system" is implied in this work,
for detailed information please refer to [34]. The potential due to the non-spherical
nature of the Earth for a body located at a distance r from the center of the Earth,
with longitude θLo and latitude φ, is defined as[16, 17, 19, 31]

V = −µE

r

1 +
NØ

n=2

3
rE

r

4n nØ
m=0

[Cnm cos (mθLo) + Snm sin (mθLo)] Pnm sin φ


(2.71)

where µE is the gravitational parameter and rE is the semimajor axis of the
Earth ellipsoid.

In this dissertation, associated Legendre functions,Pnm, of the eighth order, and
spherical harmonic coefficients, Cnm and Snm,of the eighth order are implemented.
Since nutation and precession are neglected, the Earth’s rotation is assumed to
be uniform, and thus the Earth’s declination and latitude coincide. The Earth’s
longitude is obtained as

θLo(t) = θ − θG(t) = θ − [θGref + ωE (t − tref )] (2.72)

where θGref = 280.46061837504 deg is the Greenwich right ascension at the refer-
ence time tref , whic is the J2000 epoch, January 1, 2000 at 12:00:00 UTC (51544.5
MJD), and ωE is determined by assuming a sidereal day equal to 86164.098903690351
s, with the neglect of precession. The perturbing acceleration resulting from the
asphericity of the Earth is the gradient of Φ = V + µE/r, and its components in
the topocentric reference system are evaluated as follows
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(aJ)u = ∂Φ
∂r

(2.73a)

(aJ)v = ∂Φ
∂θ

1
r cos φ

(2.73b)

(aJ)w = ∂Φ
∂φ

1
r

(2.73c)

Differentiation with respect to r and θ is uncomplicated, while derivation with
respect to φ involves computing the derivatives of the associated Legendre functions,
which are obtained recursively by employing the properties of Legendre polynomials.
Derivatives are evaluated directly with respect to φ, assuming Pnm equal to 0 for
m > n, gives[31]

Pn1 for m = 0è
Pn(m+1) − (n + m) (n − m + 1) Pn(m−1)

é
2 for m > 0

(2.74)

In the present thesis, escape trajectories from the Lagrangian L2 point of
the Earth-Moon binary system are examined, and consequently, the influence of
the gravitational model is nearly zero and could be neglected. Nevertheless, the
potential model presented here has been implemented in a manner that allows
for the evaluation of such perturbations in any future studies that may require it,
without the need to modify the code. In the analysis under consideration, however,
the influence remains entirely negligible.
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Chapter 3

Optimal Trajectories

Dealing with an Optimal Control Problem (OCP) involves finding the optimal
control law that maximizes or minimizes a specific index of merit. The optimal
trajectory is the one that maximizes the final mass of the spacecraft, given the initial
mass, or similarly, is the trajectory that minimizes the mass of propellant used to
complete a transfer from an initial point to an end point. The parameters that
influence the achievement of the desired target must be appropriately controlled
during the trajectory’s evolution, ensuring adherence to constraints and maximizing
the index of merit. The following chapter is divided into four sections: the first
one provides a description of the two main numerical methods, direct and indirect,
that can be used to solve OCPs; the second one first describes a generic OCP
as a Two-Point Boundary Value Problem (TPBVP), followed by a Multi-Point
Boundary Value Problem (MPBVP); the third one shows how the MPBVP is
implemented and how it is solved through the single-shooting method; in the last
one is presented the application to the case study.

3.1 Direct and Indirect Numerical Method
The fundamental principle underlying all numerical optimization methods is the
decomposition of a generally complex problem into a sequence of finite subproblems,
making them more manageable. In the context of low-thrust trajectory optimization
for optimal control problems, the aim is to exploit numerical methods to transform
the continuous problem into an approximate set of finite-dimensional subproblems.
This transformation, known as transcription, aims to convert the governing set of
ordinary differential equations into a problem characterized by a finite number of
variables.

Numerical methods can be broadly categorized into two main types: direct and
indirect methods.
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Direct methods reformulate the optimal control problem as a nonlinear pro-
gramming problem. The trajectory is discretized, and state and control variables
are typically approximated through constant parameterization for each arc of the
trajectory. Essentially, direct methods perform a parametric optimization of the
time-continuous problem, converting it into an approximate finite-dimensional prob-
lem by discretizing both the state and the controls. Although direct methods can
handle diverse problem formulations with minimal programming effort, achieving
accurate solutions demands a particularly dense mesh for domain discretization,
involving a large number of parameters, making them computationally expensive.
Despite domain refinement efforts, direct methods may still suffer from accuracy
issues, often necessitating solution refinement techniques. Nevertheless, with mod-
ern computers capable of handling high computational costs, one of the historical
drawback of direct methods is being mitigated.

Indirect methods, on the other hand, reconfigure the optimal control problem
into a Boundary Value Problem (BVP) using optimal control theory (OCT). The
trajectory can be divided into arcs, which proves useful when dealing with disconti-
nuities in the problem. The Pontryagin Maximum Principle (PMP) determines the
optimal control law. The unknowns of the problem that must be found, in order to
satisfy all boundary conditions and imposed constraints, are the initial variables.
Indirect methods first investigate the optimality conditions of the continuous-time
optimal control problem, leading to the BVP, which remains continuous through the
Euler-Lagrange equations. To solve it, the BVP is discretized in time to obtain a
numerical solution. Unlike direct methods, the indirect ones handle the continuous
form of state and control variables. Solutions provided by indirect methods are
highly accurate and generally have minimal computational cost and time compared
to direct methods due to the smaller size of the problem. However, they are subject
to convergence problems, mainly due to sensitivity to initial conditions and the
need to account for possible discontinuities along the trajectory. It is noteworthy
that solving an OCP with indirect methods requires the manual computation of
problem-dependent quantities by OCT. Lawden has significantly contributed to
the application of these methods in the field of space trajectory optimization; for
specific details, refer to the text [35].

For a more in-depth understanding of numerical methods and their application
to low-thrust trajectory optimization, please see Ref.[5] and Ref.[36], respectively.

Over the years, numerous studies at the Politecnico di Torino have established a
highly efficient framework for applying optimal control theory to space trajectories.
This has resulted in the development of a robust and performant code, which is
also utilized in this thesis[17, 37].
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3.2 Optimal Control Theory
The objective of optimal control theory is to maximize a specified quantity, the
merit index J , by determining an optimal control law from a set of possible ones.
This law has to satisfy all constraints as the trajectory evolves from the initial
state to the final state in the dynamic model. In the OCP, a set of first-order
differential equations ẋ is defined to describe the variation over time of n state
variables. These ODEs are functions of the state vector x(t) itself, the control
vector uuu(t) (which contains m control variables), and the time t, the independent
variable.

ẋ(t) = f (x(t), uuu(t), t) (3.1)

Finding the optimal solution involves computing the optimal trajectory x∗(t)
that, subject to the control law uuu∗(t), either maximizes or minimizes the index of
merit, depending on the specific case.

3.2.1 Two-Point Boundary Value Problem
When the trajectory is determined solely by conditions at its external boundaries,
namely at the initial time t0 and final time tf , the problem represented by the
Equation (3.1) is referred to as Two-Point Boundary Value Problem. The various
constraints that the trajectory must respect are grouped in the constraints vector
XXX

XXX (x0, xf , t0, tf ) = 0 (3.2)

where XXX : [Rn,Rn,R,R] → Rq contains all the q constraints. Similarly, the
constraint vector uuu could be subject to bounds, but this will be discussed later.

As mentioned earlier, the optimum in OCT is achieved by computing the
maximum or minimum of the merit index, defined as follows

J = φ (x0, xf , t0, tf ) +
Ú tf

t0
[Φ (x(t), uuu(t), t)] dt (3.3)

Two scalar parameters are involved in the formulation of the functional J :
the first φ depends on the values assumed by the state variables and time at the
extremal boundaries, while the integral of the function Φ depends on the values
assumed by the state variables, the controls, and time itself over time. In simple
terms, it quantifies how the solution evolves from the initial state to the final state.
By setting each of the two scalar functions to zero individually yields two specific
formulations: Lagrange’s formulation results from setting φ to zero, and Mayer’s
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formulation results from setting Φ to zero. For the sake of simplicity, from now on,
φ (x0, xf , t0, tf ) will simply be referred to as φ, and XXX (x0, xf , t0, tf ) as XXX .

At this point, the fundamental manipulation underlying indirect methods is
introduced. In these methods, the optimum is determined from the augmented
merit function J ∗, which includes a measure of how much the state variables and
constraints are respected during the evolution of the solution of the ODEs in the
dynamic model. Thus, the adjoint variables, gathered in the adjoint vector λ(t),
associated with the state variables, and the Lagrange multipliers µ, linked to the
boundary conditions, are introduced

J ∗ = φ + µT XXX +
Ú tf

t0

è
Φ + λT (f − ẋ)

é
dt (3.4)

where λ ∈ Rn and µ ∈ Rm. The Equation (3.4), as the Equation (3.3), is a
function of the state variables x(t), and consequently of their derivatives ẋ(t),
and of the control variables uuu(t). If both the equations of state and the boundary
conditions are satisfied, then XXX = 0 and f = ẋ and thus the functional J is equal
to the augmented functional J ∗. Consequently, the solution of the augmented
problem in Equation (3.4) is mathematically equivalent to the solution of the
problem in Equation (3.3), provided that all constraints are satisfied.

The time derivatives of the state variables ẋ that are integrated during the
optimization process are potentially unknown. Therefore, it is useful to eliminate
them by integrating the −λT ẋ term by part

Ú tf

t0
−
1
λT ẋ

2
dt = −

1
λT

f xf

2
+
1
λT

0 x0
2

+
Ú tf

t0

1
λ̇T x

2
dt (3.5)

by substituting in the Equation (3.4), the following is obtained

J ∗ = φ + µT XXX +
1
λT

0 x0 − λT
f xf

2
+
Ú tf

t0

1
Φ + λT f − λ̇T x

2
dt (3.6)

In Equation (3.6) now appears the system’s Hemiltonian H

H = Φ + λT f (3.7)

Calculating the first derivative of the functional gives
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δJ ∗ =
A

∂φ

∂t0
+ µT ∂XXX

∂t0
− H0

B
δt0+ (3.8)

+
A

∂φ

∂tf

+ µT ∂XXX
∂tf

+ Hf

B
δtf+ (3.9)

+
A

∂φ

∂x0
+ µT ∂XXX

∂x0
+ λT

0

B
δx0+ (3.10)

+
A

∂φ

∂xf

+ µT ∂XXX
∂xf

− λT
f

B
δxf+ (3.11)

+
Ú tf

t0

CA
∂H
∂x

+ λ̇T

B
δx + ∂H

∂uuu
δuuu
D

dt j = 1, . . . , np (3.12)

In order to maximize or minimize the merit index J ∗, it is necessary to find
its stationary points; consequently, its first derivative must be zero for any choice
of δt0, δtf , δx0, δxf , δx and δuuu. Therefore, a meticulous selection of the added
variables and Lagrange multipliers, ensuring that the respective multiplicative
coefficients cancel out, is essential. From each specific term in Equation (3.8),
different sets of conditions emerge. If the multiplying coefficients of the first two
lines are zero, two algebraic equations are obtained at the initial and final times,
known as the transversality conditions. The second two lines yield 2n algebraic
equations, one for each state quantity at the initial and final bounds, referred
to as the optimality conditions. The last two multiplication coefficients lead to
two important results: n Euler-Lagrange ODEs for the adjoint variables and m
algebraic equations for the control.

3.2.2 Boundary Conditions
The boundary conditions consist of the two transversality conditions and the 2n
optimality conditions. Nullifying the respective coefficients of ∂t0, ∂tf , ∂x0 and
∂xf in the set of Equations (3.8) gives

∂φ

∂t0
+ µT ∂XXX

∂t0
− H0 = 0 (3.13a)

∂φ

∂tf

+ µT ∂XXX
∂tf

+ Hf = 0 (3.13b)

∂φ

∂x0
+ µT ∂XXX

∂x0
+ λT

0 = 0 (3.13c)

∂φ

∂xf

+ µT ∂XXX
∂xf

− λT
f = 0 (3.13d)
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Considering the two transversality Equations (3.13a) and (3.13b), a notable
distinction emerges based on whether time is present or absent in the function
φ and whether it is constrained or unconstrained. When time does not appear
in φ and is unconstrained, the Hamiltonian is null at that point, both for the
initial and final times. In these cases, the values of time become dependent on the
optimization process. Conversely, when either one or both times are constrained,
the corresponding Hamiltonian is unrestricted, and its value depends on the
optimization process. For example, consider missions with an assigned duration ∆t,
where an initial epoch, t0, is assigned, leading to the subsequent assignment of the
final epoch, tf = t0 + ∆t. In this circumstance, both H0 and Hf are nonzero. On
the contrary, in missions where the final epoch is not constrained but subject to
the optimization process, and only the initial epoch t0 is assigned, one has H0 /= 0
and Hf = 0.

Similarly, when considering Equations (3.13c) and (3.13d), if the specific i-
th state variable xi does not appear in the φ function or in any constraint, its
adjoint variable λxi

is zero at the same point. Conversely, if xi is constrained, the
corresponding adjoint variable is unconstrained. For instance, consider a simple
Hohmann transfer where both the inital radius r0 and the final radius rf are
constrained at their respective initial and final times, such that their corresponding
adjoint vectors,λr0 and λrf

, are nonzero. In contrast, if the initial radius r0 is left
free, thus subject to the optimization process, the results is λr0 = 0[17].

Equation for adjoint and control variables

Nullifying the multiplicative coefficients in the last line of Equation (3.8) produces
a set of ODEs that describe how the adjoint variables and controls evolve over
time. Specifically, as mentioned earlier, canceling the coefficient of δx yields the
Euler-Lagrange equations for the adjoint variables

λ̇ = dλ

dt
= −

A
∂H
∂x

BT

(3.14)

Instead, nullifying the coefficient of δuuu provides m algebraic equations for the
controls

A
∂H
∂uuu

BT

= 0 (3.15)

In general, one or more elements of the control vector uuu can be constrained within
a specific allowed interval UUU. Since uuu(x(t), t), the specific controls can depend on
either the state variables or time itself. In this work only explicit and constant
constraints are considered. For example, considering the thrust of the thruster,
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it cannot take negative values, consequently its minimum allowable value, Umin,
must be 0, while the maximum value Tmax, although dependent on the thruster
type, certainly cannot be infinite, consequently the maximum allowable value is
Umax = Tmax. It is concluded that the thrust level is in the range 0 ≤ T ≤ Tmax,
namely within the allowable range Umin ≤ u ≤ Umax.

In the presence of explicit constraints, the optimal control value for each point
of the trajectory is determined by the Pontryagin Maximum Principle (PMP),
or analogously in the case of a minimization problem, the Pontryagin minimum
Principle (PmP), by identifying the value that extremizes the Hamiltonian of
Equation (3.7) at each specific point. Two possibilities can occur:

• if the control obtained from Equation (3.15) is within the allowable range, it
represents the optimal control;

• if the control obtained from Equation (3.15) is outside the allowable range,
the optimal control is at the limit of the allowable range, meaning it takes on
its maximum or minimum value

Further consideration is necessary in the particular case where the Hamiltonian
is linear concerning one of the constrained control variables, as the control does
not explicitly appear in Equation (3.15). Two additional possibilities arise in this
scenario:

• if the coefficient of the control in Equation (3.15) is nonzero, H is maximized
by imposing that the control takes the maximum admissible value,ui = Ui,max,
if the coefficient is positve, or the minimum allowed value, ui = Ui,min, the
coefficient is negative. This condition is known as bang-bang control, pre-
cisely what occurs in the implemented OCP, where the Hamiltonian is linear
concerning the selected control variable, namely thrust T ;

• If the coefficient of the control in Equation (3.15) is zero for a finite time
interval, a singular arc occurs, and it is necessary to set all successive time
derivatives of the coefficient equal to zero until the control specifically appears
in one of them, the optimal control is then determined by setting this time
derivative equal to zero.

In summary, since a Two-Point Boundary Value Problem is formulated, with
the m imposed boundary conditions XXX = 0, one encounters 2 + 2n + m equations
derived from the transversality, optimality, and control equations, respectively.
These equations implicitly determine two times (t0 and tf ), the initial state values
of the 2n state ODEs (for x and λ) and the m adjoint constants (µ).
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3.2.3 Multi-Point Optimal Control Problem
The trajectory can be partitioned into np subintervals, known as phases or arcs, to
improve robustness and convergence of the code. It is precisely in this scenario,
where constraints are also imposed at internal points of the trajectory, that the
Multi-Point Boundary Value Problem (MPBVP) originates. The variables are
continuous within each arc, while they may present discontinuities at the interface
points between two adjacent arcs. As illustrated in Figure 3.1, the j-th arc begins
at point (j − 1)+ and ends at point j−. Additionally, each j-th arc spans a generic
duration ∆tj , typically unknown and thus subject to the optimization process, and,
in the most general case, varies from arc to arc.

0

x0

t0

x0+

t0+

x1

t1

x1+

t1+

x1−

t1−

x2

t2

x2+

t2+

x2−

t2−

≈

xnp−1

tnp−1

xnp−1+

tnp−1+

xnp−1−

tnp−1−

np

xnp

tnp

xnp−

tnp

Figure 3.1: Simplified representation of an MPBVP trajectory composed of np

arcs

In this context, boundary conditions can be imposed on both internal and
external boundaries. Furthermore, they can be functions of both the state variable
and the independent time variable, taking the following form

XXX
1
x(j−1)+ , xj− , t(j−1)+ , tj−

2
= 0 j = 1, . . . , np (3.16)

The functional J becomes

J = φ
1
x(j−1)+ , xj− , t(j−1)+ , tj−

2
+

npØ
j=1

Ú tj−

t(j−1)+

Φ (x(t), uuu(t), t) dt (3.17)

Here, the function φ depends on the values of variables and times at each
boundary, namely, both for the extremal boundary of the entire trajectory and for
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each arc. Instead, the sum of all integrals of the function Φ always depends on the
evolution of the state variables, the controls, and time itself, with the additional
consideration of how the solution evolves from arc to arc. The augmented functional
results

J ∗ = φ + µT XXX +
npØ

j=1

Ú tj−

t(j−1)+

è
Φ + λT (f − ẋ)

é
dt (3.18)

and, after integrating by part

J ∗ = φ + µT XXX +
npØ

j=1

1
λT

(j−1)+x(j−1)+ − λT
j−xj−

2
+

npØ
j=1

Ú tj−

t(j−1)+

1
Φ + λT f − λ̇T x

2
dt

(3.19)
The first-order derivative δJ ∗, expressed for each arc, is given by

δJ ∗ =
A

∂φ

∂t(j−1)+

+ µT ∂XXX
∂t(j−1)+

+ H(j−1)+

B
δt(j−1)++ (3.20a)

+
A

∂φ

∂tj−

+ µT ∂XXX
∂tj−

+ Hj−

B
δtj−+ (3.20b)

+
A

∂φ

∂x(j−1)+

+ µT ∂XXX
∂x(j−1)+

+ λT
(j−1)+

B
δx(j−1)++ (3.20c)

+
A

∂φ

∂xj−

+ µT ∂XXX
∂xj−

− λT
j−

B
δxj−+ (3.20d)

+
npØ

j=1

Ú tj−

t(j−1)+

CA
∂H
∂x

+ λ̇T

B
δx + ∂H

∂uuu
δuuu
D

dt j = 1, . . . , np (3.20e)

The optimality and transversality conditions are more conveniently expressed in
the MPBVP by considering the j-th extreme as the upper extremal of the (j −1)-th
interval or the lower extremal of the j-th interval, thus

∂φ

∂tj+

+ µT ∂XXX
∂tj+

− Hj+ = 0 j = 0, . . . , np − 1 (3.21a)

∂φ

∂tj−

+ µT ∂XXX
∂tj−

+ Hj− = 0 j = 1, . . . , np (3.21b)

∂φ

∂xj+

+ µT ∂XXX
∂xj+

+ λT
j+ = 0 j = 0, . . . , np − 1 (3.21c)

∂φ

∂xj−

+ µT ∂XXX
∂xj−

− λT
j− = 0 j = 1, . . . , np (3.21d)
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Regarding the Euler-Lagrange equations, the considerations in Section 3.2.2
remain applicable in the context of the MPBVP.

3.3 Boundary Value Problem
As described in the previous section, the OCT transforms the original BVP into
an augmented one, where some initial values may be unknown. The solution
to this augmented problem is determined by finding the optimal initial state
y∗

0 =
î1

x∗T
2 1

λ∗T
2ïT

that enables reaching the desired final state y∗
f while

satisfying all constraints. The use of indirect methods requires particular attention
to the robustness of the code and its high sensitivity to initial conditions. In this
study, the objective is to optimize the low-thrust trajectory of a spacecraft in the
high-fidelity dynamical model of the 4BP. Analyzing this scenario requires special
care, given the strong nonlinearity of the 4BP, which may lead to several numerical
problems hindering convergence. Considering these highlighted issues, it becomes
evident that significant improvements can be achieved by dividing the trajectory
into arcs with an associated control law, as detailed in Section 3.2.3. The chosen
method for computing the solution is single-shooting, selected for its simplicity of
implementation, computational efficiency, and speed.

0

x0

t0

t

t1

tε

∆t2

t2

≈

tnp−1

np

tnp

Figure 3.2: Simplified representation of nondimensional time tε in the j-th arc

The generic arc is divided into nE equidistant sub-elements, as shown in Figure
3.2. One of the primary challenges with indirect methods is the unknown duration of
each arc, potentially resulting in a highly ill-conditioned problem. Consequently, to
avoid these problems, for the purpose of integration the independent time variable
t is replaced by a new nondimensional time variable defined as follows

tε = j − 1 + t − tj−1

tj − tj−1
= j − 1 + t − tj−1

∆tj

(3.22)
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with

∆tj = tj − tj−1 j = 1, . . . , np (3.23)

In this way, the integration extremes of the subintervals are fixed and correspond
to the consecutive integer values of the new variable at the boundaries.

The general form of the complete ODE set for the indirect method is

ẏ = f (y(t), t) (3.24)

while in nondimensional form

˙̌y = f (y̌ (tε) , tε) (3.25)

where y̌ includes state and adjoint variables. The problem may also involve
constant variables; hence, a new vector, z, is introduced to account for the constants
vector c

z =
î
yT cT

ïT
(3.26)

Introducing the nondimensional variable tε in place of t, a new set of ODEs
emerges

˙̌z = dž

dtε

= f (ž (tε) , tε) (3.27)

where

˙̌y = dy̌

dtε

= ∆tj
dy(t)

dt
(3.28a)

˙̌c = dč

dtε

= 0 (3.28b)

The boundary conditions are now expressed as

XXX (š) = 0 (3.29)

where š is the vector containing the values that the variables take at both
internal and external boundaries, namely

š =
î
y̌T

0 y̌T
1 . . . y̌T

np−1 y̌T
np

čT
ïT

(3.30)

As previously mentioned, solving the MPBVP means finding the optimal initial
values that lead to desired final states while satisfying all constraints through a
numerical iteration method. Subsequently, the single-shooting method is employed
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to determine the optimal initial state q̌∗
0 that satisfies the boundary conditions

XXX (q̌∗
0) = 0. The iteration process begins with the definition of a guess initial vector

for the unknown variables q̌r = ž0. Although, in reality, only some initial values of
the variables are unknown, here is considered the more general formulation where
all initial values are unknown. In each r-th iteration, the error on the boundary
conditions is computed as X̌XX (q̌r). In the subsequent (r + 1)-th iteration, the BCs
become a function of the values assumed by the boundary conditions and the state
vector at the previous r-th iteration, namely with a first-order Taylor’s expansion

XXX (q̌r+1) = XXX (q̌r) + ∂XXX (q̌r)
∂q̌r+1

(q̌r+1 − q̌r) (3.31)

the partial derivatives of the constraint vector with respect to the forward-in-time
free-variable vector quantities compose the Jacobian matrix J̌ .

Henceforth, the notation is simplified as follows

X̌XX r = XXX (q̌r) (3.32a)
J̌
1

X̌XX r

2
= J̌

1
X̌XX (q̌r) , q̌r+1

2
(3.32b)

If a solution exists, then X̌XX r+1 = 0, and hence, the iterative solution has the
following form

X̌XX r +
è
J̌
1

X̌XX r

2é
(q̌r+1 − q̌r) = 0 (3.33)

Consequently, at each iteration, the state of the vector q̌r and the updated value
of the constraint vector XXX r can be calculated

q̌r+1 = q̌r −
è
J̌
1

X̌XX r

2é−1
X̌XX r (3.34)

The Jacobian matrix is calculated as a product between two matrix

J̌
1

X̌XX r

2
= ∂X̌XX r

∂q̌r+1
= ∂X̌XX r

∂šr

∂šr

∂q̌r+1
(3.35)

This condition can be described by a State Transition Matrix (STM) that linearly
maps the successive states at (r + 1)-th step relative to those of the previous r-th
step. By considering tε0 as the initial nondimensional time and tε > tε0 as a generic
forward value in nondimensional time, the STM can be written as

∂žr

∂q̌r+1
= Φ̌ (tε, tε0) (3.36)

The ODEs describing the evolution of STM take the following form
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˙̌Φ (tε, tε0) = d

dtε

Φ̌ (tε, tε0) (3.37)

= d

dtε

A
∂ž

∂ž0

B
(3.38)

= ∂

∂ž0

A
dž

dtε

B
(3.39)

= ∂ ˙̌z
∂ž

∂ž

∂ž0
(3.40)

˙̌Φ (tε, tε0) = Ǎ (tε) Φ̌ (tε, tε0) (3.41)

the initial STM is the identity matrix, namely Φ̌ (tε0 , tε0) = I. The Jacobian
matrix Ǎ is a block matrix composed as follows

Ǎ (tε)


∂ ˙̌x
∂x̌

∂ ˙̌x
∂λ̌

∂
˙̌
λ

∂x̌

∂
˙̌
λ

∂λ̌

 (3.42)

The method presented also allows to take into account the discontinuities of
the variables at the boundaries; in fact, a generic discontinuity located at the j-th
boundary can be included both in the vector of variables ž and in the STM Φ̌
through a vector relation ȟ that links the values of the variables before and after
the discontinuity

žj+ = ȟ · žj− (3.43a)

Φ̌
1
tε+ , tε0

2
= ∂ȟ

∂žj

Φ̌
1
tε− , tε0

2
(3.43b)

In conclusion, the optimal initial state ž∗
0 that allows the trajectory to evolve

to the desired final state ž∗
f(ž∗

0 , tε) while respecting imposed constraints X̌XX is
determined by simultaneously integrating the principal set of ordinary differential
equations and state transition matrices

ž = f (ž (tε) , tε) (3.44a)
˙̌Φ (tε, tε0) = Ǎ (tε) Φ̌ (tε, tε0) (3.44b)

The required precision Emax in the code is
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Emax = max(Xi ) (3.45)

The linear mapping procedure employed in STMs introduces errors that may
affect convergence during the iterative process, potentially leading to an increase
in error rather than its reduction at the boundary conditions. In order to increase
robustness and improve convergence, two important features are implemented

• The correction applied at each iteration is only a fraction of the determined
one

žr+1 = žr − k1 ·
è
J̌
1

X̌XX r

2é−1
X̌XX r (3.46)

where k1 is the relaxation parameter. Values between 0.1 and 1 are usually
appropriate to ensure convergence in most cases. Lower values can be used
during the first rough assumptions for unknown values, while higher values can
be chosen when the initial solution is already reasonably close to the optimal
solution;

• At the end of each iteration, the current error is compared with the errors in
the boundary conditions from the previous iteration

Emax,r+1 < k2Emax,r (3.47)

here k2 = 2 ÷ 3 is usually suitable to help the first step of the iterative process
in converging, even though the first two steps increase the maximum error
by establishing the correct direction of optimality in the search space. If the
error in the new iteration is significantly larger than in the previous one, the
bisection method is applied to the correction, up to a maximum of five times.
After the fifth application, the process is automatically stopped since it is
unable to converge from the selected trial solution.

3.4 Application of OCT in the Case Study
The dynamic system subject to optimization is obtained by neglecting the terms
related to aerodynamic forces in the ODEs given in Equation 2.9

dr

dt
= V (3.48a)

dV

dt
= g + T

m
+ aP (3.48b)

dm

dt
= −T

c
(3.48c)
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The objective of the optimization is to maximize the final mass of the spacecraft
at the end of the trajectory, thereby minimizing the mass of propellant used. The
Mayer formulation is chosen, namely φ = 0. The state vector x(t) is

x =
î
r θ φ u v w m

ïT
(3.49)

The augmented state vector y(t) is obtained by adding, for each variable, its
respective adjoint variable

y =
î
r θ φ u v w λr λθ λφ λu λv λw m λm

ïT
(3.50)

Since the optimization targets the final mass of the spacecraft at the end of the
trajectory, the merit index is the value as of the mass at the last arc, where j = np

J = φ = mf = mnp (3.51)

Expressing the Equations of Motion in spherical coordinates as in Equation
(2.59) produces the following form of the Hamiltonian

H = λT f =
2nØ
i=1

λifi = λru + λθ
v

r cos φ
+ λφ

w

r
+

+ λu

C
− µ

r2 + v2

r
+ w2

r
+ Tu

m
+ (aP )u

D
+

+ λv

5
−uv

r
+ vw

r
tan φ + Tv

m
+ (aP )v

6
+ (3.52)

+ λw

C
−uw

r
− v2

r
tan φ + Tw

m
+ (aP )w

D
+

+ λm
T

c

written in compact form results

H = λT
r V + λT

V

A
T

m
− µ

r

r3

B
− λm

T

c
(3.53)

Defining the Switching Function parameter as follows

SF = λT
V

T

T
− λm

m

c
(3.54)

and, introducing the SF parameter into Equation (3.53) yields the following
form of the Hamiltonian
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H = λT
r V − λT

V µ
r

r3 + T

m
SF (3.55)

The control vector uuu(t) corresponds to the thrust vector T , encompassing both
modulus and direction. As extensively discussed in the previous sections, the
optimal control vector that maximizes the functional is the one that maximizes
the Hamiltonian. The linearity of the H with respect to the thrust T , as explained
in Section 3.2.2, leads to a bang-bang control method. Consequently, the thrust
must be set to its maximum T = Tmax when SF > 0, while it must be null when
SF < 0. An important consideration regarding the direction of optimal thrust
can be deduced from Ref.[35]: the optimal thrust direction that maximizes the
switching function, and consequently the Hamiltonian, is parallel to the adjoint
velocity vector λV , called primer vector

λV =

λu

λv

λw

 λV = ∥λV ∥ (3.56)

As seen in Section 3.2.2, in Equation (2.60), the thrust vector T in the ZEN RF
takes the following form

T =

Tu

Tv

Tw

 = T

 sin αT

cos αT cos βT

cos αT sin βT

 T = ∥T ∥ (3.57)

where αT is the thrust elevation angle and βT is the heading angle, as illustrated
in the Figure 3.3.

û

ŵ

T

v̂

βT

αT

Figure 3.3: Thrust angle in the topocentric RF of the spacecraft
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The optimal values of the thrust angles can be calculated by deriving the
Hamiltonian in spherical coordinates in Equation (3.52) with respect to the angles
themselves

∂H
∂αT

= 0 = λu cos αT − (λv cos βT + λw sin βT ) sin αT (3.58a)

∂H
∂βT

= 0 = −λv sin βT + λw cos βT (3.58b)

from which the following optimal directions are obtained

sin αT = λu

λV

(3.59a)

cos αT cos βT = λv

λV

(3.59b)

cos αT sin βT = λw

λV

(3.59c)

The optimization process using indirect methods in highly nonlinear dynamical
systems, such as the one implemented in this thesis, may give rise to numerical
challenges in evaluating the error gradient, particularly concerning the handling
of thrust discontinuity. Consequently, issues related to convergence may arise. In
scenarios where the switching function takes on small values oscillating around zero
and changes sign multiple times during the integration process, various numerical
problems may occur. This could lead to the elimination of any desired thrust
phase or the insertion of an undesired coasting phase. Such situations happens, for
example, when a solution is on the boundary between a single-burn structure (a
first thrust phase followed by a coasting phase) and a two-burn structure (thrust-
coast-thrust-coast), especially if the second thrust phase has a short duration. Even
if the described scenario occurs for only a few integration steps, the error gradients
may be computed with low accuracy, compromising the convergence of the solution.
To address this issue, this dissertation adopts a proactive approach by determining
the structure of the switching function a priori. In other words, the sequence of
thrust and coast phases is chosen in advance. Initially, the simplest structure,
the two-arc structure, is assumed. In case the Pontryagin Maximum Principle is
violated, the initially chosen structure is modified through a simple inspection of the
switching function, which offers guidance on necessary adjustments to the strategy.
Furthermore, an additional boundary condition is imposed requiring the switching
function to be zero at the switch points where the thruster transitions from on to off
or vice versa. This approach significantly enhances numerical accuracy, convergence
speed, and overall robustness.
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Chapter 4

Escape Trajectories from
Earth-Moon L2

This chapter examines the escape trajectories from the Lagrangian Point L2 of
the Earth-Moon system, computed using the n-body dynamic model described in
Chapter 2. The dynamics in the vicinity of this point are highly complex. Escape
trajectories are characterized by an initial phase in which the spacecraft must
initiate the evasion, requiring the thrust to overcome the gravitational pull of the
Moon, followed by a phase in which the gravitational pull of the Sun begins to play
a key role.

The influence of the Sun on the evolution of the escape trajectory depends
mainly on the relative positions of the spacecraft and the Sun itself at each moment.
Recalling Equations 2.67, restated below for simplicity, it can be observed that the
solar perturbation produces acceleration in the radial and tangential directions of
the spacecraft

(aSCs − aEs) · û = 3
2

µs

r3
Es

{1 + cos [2 (θs − θ)]} (4.1a)

(aSCs − aEs) · v̂ = 3
2

µs

r3
Es

sin [2 (θs − θ)] (4.1b)

Two proportional terms are defined to describe the influence of the Sun based
on the angular difference between the Sun and the spacecraft ∆θ = θs − θ [38, 39]

σu = 1 + cos (2∆θ) (4.2a)
σv = sin (2∆θ) (4.2b)

The trends of the two terms σu,σv and the overall term σ = σu + σv are depicted
in Figure 4.1.
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Figure 4.1: Solar gravitational perturbation proportionality terms
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Figure 4.2: Polar plot of σu,σv and σ in function of ∆θ in SC-Earth rotating RF
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Figure 4.2 presents a polar plot of the proportionality terms, with σu multiplied
by a coefficient of 1/2 to range from 0 to 1[17]. The values of σ represent the sum
of the two contributions, where the positive values are shown as continuous lines,
and the negative ones are indicated by dashed lines.

In the more general case, significant values of σu, indicating an increase in
tangential velocity, are likely more advantageous in the initial phases. Conversely,
in the later phases, when the escape is nearing completion and velocities tend to
become radial, substantial values of σv are more beneficial. However, it is important
to note that these generalizations may not always hold true, and the expected
performance could vary depending on the position of the Sun relative to the starting
point at the time of departure. Large positive values of σv, indicating a positive
influence on spacecraft energy, are observed when the Sun is in the first and third
quadrants of the spacecraft rotating system. In the second and fourth quadrants,
the influence is either negative or null. As for σu, there are no values resulting in a
negative influence; the maximum positive effect occurs when −45° < ∆θ < 45° or
∆θ > 135° and ∆θ < −135°. When considering the sum of the two contributions σ,
the most favorable combination for a positive effect on spacecraft energy is when
∆θ ≈ 22.5° or ∆θ ≈ −157.5°, while the least favorable combination occurs when
∆θ ≈ 112.5° or ∆θ ≈ −67.5°.

In the following treatment, the analysis begins by evaluating the influence of
varying the departure date throughout an entire lunar month on the performance
of the escape trajectory. Subsequently, attention is directed towards analyzing
the influence related to the variation of the escape duration. Finally, in a more
complex analysis, the influence of the variation in the final characteristic energy is
examined.

4.1 Boundary Conditions
In the context of low-thrust escape trajectories employing electric propulsion, the
direction of the thrust that the spacecraft must provide plays a key role. For instance,
within the framework of the two-body problem, considering a low Earth orbit, the
spacecraft must consistently thrust in the direction of the tangential velocity to
accumulate sufficient energy for a successful escape from Earth’s gravitational pull.
Depending on the orbit under consideration, the thrust may need to align parallel to
the direction of velocity v̂ for planar orbits or adopt a specific in-plane thrust angle,
namely with a specific projection in the ZEN reference system, for inclined orbits.
However, the more complex the dynamical model considered, the less obvious
becomes the search for the optimal direction of thrust that should be applied due
to the influence of the combined gravitational attractions of other bodies, which
can lead to completely unexpected solutions. In the Earth-Moon system analyzed
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in this thesis, this complexity is further aggravated by the interactions of the
gravitational forces of both bodies in addition to that of the Sun. In particular, this
combined effect is predominant during the initial phases of the escape when the
spacecraft is close to these two bodies, while as it moves away, the preponderating
effect becomes the Sun’s gravitational pull. Since the scenario is complex and the
sensitivity of indirect methods to initial conditions is elevated, it’s fundamental
to judiciously choose these conditions. This section provides a presentation of the
initial conditions chosen.

4.1.1 Terminal Conditions
As previously described in Section 2.2.2, the escape is assumed to be complete
when the spacecraft reaches a distance from the main body equal to three times the
radius of the main body’s sphere of influence. Thus, in this analysis, the terminal
distance rf is set at approximately three times the radius of the Earth’s sphere of
influence, namely 3 million km.

Considering a circular orbit with a radius equal to the distance between the
Lagrangian point and the center of the Earth as the starting point of the escape,
an upper time limit for the escape can be calculated using Hohmann’s formulation.
In the two-body problem, the Hohmann ellipse is the transfer that requires the
smallest ∆V to reach a specific final point from a specific starting point. The
position of Lagrangian point L2 is computed using Hill’s sphere formulation, with
the assumption that the mass of the Moon is significantly smaller than that of the
Earth:

rHl = rEl

A
µl

3µE

B1/3

= 6.1524 · 104 km (4.3)

The initial position with respect to the Earth is determined as

r0 = rEl + rHl = rEl

1 +
A

µl

3µE

B1/3
 = 4.4592 · 105 km (4.4)

The Hohmann transfers semimajor axis is:

ah = r0 + rf

2 = 1.722960 · 106 km (4.5)

consequently, the transfer duration Th = T /2 is calculated as half the period
of the Hohmann ellipse:

Th,max = π

öõõô a3
h

µE

= 130.25 days (4.6)
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The duration value just obtained represents the upper limit for the scenario
considered. The spacecraft reaches the terminal point of the transfer with a velocity,
determined as follows

Vf =

öõõô2µE

A
1
rf

− 1
2ah

B
= 0.1854 km/s (4.7)

Since the escape is considered complete upon reaching rf , the trajectory is an
open path and consequently, the calculated velocity Vf approximates the hyperbolic
excess velocity V∞

V∞,min = 0.1854 km/s (4.8a)
C3f,min = 0.0344 km2/s2 (4.8b)

The latter two quantities represent the lower limit of the hyperbolic excess
velocity and characteristic energy, respectively.

A reasonable choice of terminal conditions can be made by considering the
upper and lower limits mentioned above. For the duration of the escapes ∆t, a
range of 60 to 90 days has been selected, while for the characteristic energy C3f , a
range of values between 0.1 and 0.5 km2/s2. These conditions have been applied
alternatively, resulting in three different case studies:

• Fixed escape duration

• Variable escape duration

• Fixed characteristic energy

4.1.2 Initial Conditions
The starting point L2 is determined by the Hill sphere formulation in Equation
(4.3), where the time-dependent distance between the two main bodies appears and
is obtained from the JPL DE430 ephemerides. This is precisely why a variation in
the starting date may significantly impact the performance of the escape. In fact,
the variation in the states of the Moon and Sun over time influences the nature
of the trajectory, meaning that even if the other initial conditions are the same,
a variation in the start date will induce different behaviors and solutions. In this
thesis, the analysis begins by examining escape trajectories with a duration set
at 75 days and departure date that varies systematically in one-day increments
over an entire lunar month. The average duration of the synodic month, which
varies slightly over time, is about 29.53 days[40]. Consequently, the analyses in
this phase involve starting epochs spanning from 19/10/2025 to 15/11/2025. In
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this first phase, extensively discussed in the following sections, the identification
of three solution families occurred, labeled with the Roman numerals I, II, and
III. Additionally, the first family is further divided into three sub-families labeled
with the letters A, B, and C. Consequently, five starting epochs, presented in Table
4.1, have been chosen for the subsequent analyses, facilitating a comprehensive
description of each family’s behavior.

ID Color Epoch (UTC) Family Sub-Family
E1 2025/10/19 06:26:52.6170 I A
E2 2025/10/21 06:26:31.5324 I A
E3 2025/10/22 06:26:20.9901 I B
E4 2025/10/29 06:25:07.1942 II
E5 2025/11/03 06:24:14.4828 III
E6 2025/11/11 06:22:50.1446 I C

Table 4.1: Selected departure epochs

The initial conditions of the state variables x0(E) are always known for each
starting epoch. The position vector is determined by using the Equation (4.4)
to identify the radius, coupled with JPL ephemerides to accurately position the
spacecraft at the L2 point. On the other hand, the initial velocity vector is
established by imposing the same angular velocity as the relative motion of the
primaries.

The initial conditions that must be provided to the code for each starting epoch
pertain to the adjoint variables λ0(E) and are unknown.

λ0(E) =
î
λr λθ λφ λu λv λw

ï
(4.9)

To induce an optimization process that converges, reasonable values for these
variables must be provided. Some exhibit reasonably intuitive evolution over time,
while others have less predictable behavior. The adjoint variables related to velocity
play a crucial role; their magnitude indicates the relevance of thrust the direction
of the specific velocity to which the adjoint variable refers at a given time; the
sign indicates whether this thrust aligns (if positive) or opposes (if negative) the
direction of the specific velocity. In simpler words, a higher magnitude of one
adjoint variable than the others emphasizes importance in the direction of thrust
along the corresponding velocity. The adjoint variable λr provides a measure of
the significance of the change in radius over time. Therefore, at the beginning of
the escape, its value is naturally positive, indicating the start of the escape. The
other two adjoint variables assume a less important role.

Another crucial piece of information to determine a priori, as explained in
Section 3.4, is the structure of the thrust arcs, that is, the number of phases into
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which the trajectory should be divided. The structure typically involves an initial
thrust arc to initiate the escape maneuver, followed by a coasting phase to reach
the final destination. The structure described is the simplest one, a double arc with
a single thrust phase. In cases where the PMP is violated, more complex structures
can be chosen, such as a four-arc structure in which there are two thrust and two
coasting phases. It’s noteworthy that in scenarios where the final destination is
fixed and the terminal velocity is free, the final values of the adjoint variables for
the velocity components are zero, in fact, in the terminal phase of the trajectory
the switching function is negative and the thruster is off.

4.1.3 Propellant Consumption

The final equation in set (2.9) describes the fuel consumption over time resulting
from the applied constant thrust. This assumption is based on the constancy of
available power and specific impulse at 1 AU, leading to a constant thrust. The
available power, and consequently the thrust, are inversely proportional to the
square of the distance from the Sun

T (rsSC) = 2ηT P (rsSC)
c

= 2ηT

c

P ∗

r2
sSC

= T ∗

r2
sSC

(4.10)

where the efficiency ηT is assumed constant; the effective exhaust velocity c is
proportional to the specific impulse Isp, since c = Ispg0 and thus is also costant; P ∗

and T ∗ are the values of available power and thrust at 1 AU.
The implemented electric propulsion system is a Hall-effect thruster, the main

characteristics of which are shown in Table 4.2.

Quantity Value Dimension
P ∗ 4.2 kW
Isp 2000 s
ηT 0.625

Table 4.2: Implemented electric propulsion system’s main characteristic

Following the calculation of the optimal trajectory, the final mass of the spacecraft
is known. Consequently, by applying the Tsiolkovsky relation, seen in Equation (1.1)
and provided below for clarity, the ∆V required by the mission can be calculated.

∆V = −Ispg0 ln
3

mf

m0

4
(4.11)
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4.2 Escapes with imposed mission duration ∆t

By varying the departure date over an entire lunar month, from October 19, 2025
to November 15, 2025, and fixing the evasion duration at 75 days while leaving the
final energy free, an entire family of solutions emerges, as illustrated in Figure 4.3.
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Figure 4.3: EML2 escape trajectories over a lunar month - fixed ∆t = 75 days,
free C3f , EME2000 RF

Given the intricate nature of the analyzed system, the trajectories are found to be
organized into distinct families. The solutions highlighted in Figure 4.3, with their
detailed performance outlined in Table 4.3, have been selected to represent each of
these solution families and will be utilized as reference from now on. Additionally,
a 4-arc solution is also included, which will be analyzed in detail later.

Figure 4.4a presents the trend of propellant request and final characteristic
energy for all solutions along the entire lunar month. Family 1, spanning from E1
to E4, exhibits the maximum C3f and minimum propellant consumption at the

61



Escape Trajectories from Earth-Moon L2

ID Line ID Departure Family Sub np mf ∆V C3f

E Date Family kg m/s (km/s)2

1 19/10/2025 I A 2 848.003 46.135 0.2330
2 21/10/2025 I A 4 847.690 53.372 0.1823
3 22/10/2025 I B 2 847.094 67.170 0.2067
4 29/10/2025 I A 2 843.181 157.975 0.0072
4 29/10/2025 II 2 849.114 20.453 0.4796
5 03/11/2025 III 2 849.033 22.315 0.2042
6 11/11/2025 III 2 840.806 213.298 0.0549
6 11/11/2025 I C 2 847.703 53.078 0.4584

Table 4.3: EML2 escape trajectories performance - fixed ∆t = 75 days, free C3f

beginning. Moving toward E4, the propellant request increases significantly, and
C3f decreases to zero values, suggesting that these specific evasions are not feasible.
At E2, there is a slight local increase in C3f . Family 2, extending from E4 to E5,
is characterized by very high performance, which means high C3f and low fuel
consumption. Family 3, which ranges from E5 to E6, has a behavior similar to that
of Family 1, with higher performance at the beginning, then decreasing toward
E6. Family 1, which starts at E6, after one lunar month, tracks the performance
observed at E1. Similar conclusions can be derived from Figure 4.4b, which displays
the trend of final mass and C3f over the entire lunar month.

Looking at Figure 4.5, which illustrates the trend of the adjoint variables λr,0,
λu,0, and λv,0, it becomes evident that the worsening of escape performance occurs
when the gradient of the optimal adjoints tends to reach very high or very low
values. In fact, at the end of the escape trajectory these must be zero, and thus a
high initial gradient implies low escape performance.

The relative position between the Sun and spacecraft significantly influences
the escape performance. In cases where becomes particularly disadvantageous
achieving high levels of terminal energy, even with prolonged thrust phases, it is
not possible. The relative Sun-Spacecraft and Moon-Spacecraft angles are shown in
Figures 4.6a and 4.6b, while the in-plane thrust angle is represented in Figure 4.6c.
Additionally, Figure 4.7 presents a polar view of the Sun-Spacecraft angle evolution
along the trajectory, overlaid on the representation of solar perturbation coefficients
in Figure 4.2. The radial coordinate represents the Earth-Spacecraft position vector.
The polar plot has been obtained through mathematical nondimensionalization;
moreover, the initial coordinates of the various represented families are slightly
separated for clarity.

The first selected departure date E1 is characterized by a two-arc structure,
resulting in a single thrust phase, and low propellant consumption. The starting
point is positioned near the maximum of overall solar perturbation σ, precisely
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Figure 4.4: EML2 escape trajectories over a lunar month - trend over time of
cost and free final characteristic energy - fixed ∆t = 75 days, free C3f

between the decreasing of positive tangential solar perturbation σv and the rising
of radial solar perturbation σu. Thrust is applied until the radial solar perturbation
also contributes significantly to the escape.

Departures at E4, still characterized by a single-burn, diverge into two distinct
families. The initial point is positioned within a region neutral to solar perturbations.
The departure within the first family demonstrates significantly inferior performance
compared to the second family. The first strategy aims to maximize the positive
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Figure 4.5: EML2 escape trajectories over a lunar month - trend over time of
adjoint variables λr,0, λu,0, λv,0 - fixed ∆t = 75 days, free C3f

tangential solar perturbation σv during the initial phase,in fact the angle of the
optimal thrust begins rather radial and then evolves toward a more tangential
direction. In this way the spacecraft is able to take advantage of the σv, but because
it will spends a lot of time, in the later phase of the escape, in a very disadvantageous
zone, namely the one with the maximum negative σ peak, it is forced to produce a
very long burn. This solution represents a local optimum rather than a global one;
indeed, the solution belonging to family II exhibits markedly higher performance.
The latter is characterized by a strategy that accepts a shorter thrust phase applied
solely at the beginning of the trajectory, precisely at the neutral point ∆θ ≈ 90°.
This approach ensures that the radial acceleration enables the spacecraft to remain
longer in the positive perturbative region, facilitating the attainment of sufficient
velocity to pass swiftly the negative σ region and successfully complete the escape.
In the E6 departures, starting from the diametrically opposite neutral point, the
same behavior as just described for E4 departures is found. The solution exhibiting
the highest performance is the one that belongs to the first family while the one
with the worst performance belongs to the third. These two departures are a clear
example of how exploiting positive solar perturbations leads to a better performance
and a reduction of the used propellant; conversely, the greater the propulsive effort
employed in unfavorable areas the greater the propellant demand and the lower
the final energy achieved.

Investigating it is possible to come to the conclusion that the characteristic
energy trends over time for both E4 and E6. This aligns with the earlier discussion,
as it can be observed that for the solutions involving a long initial thrust phase,
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Figure 4.6: EML2 selected escape trajectories over a lunar month - trend over
time of Sun-SC relative angle, Moon-SC relative angle and optimal thrust angle -
fixed ∆t = 75 days, free C3f

C3 first rises vertically due to the thrust exerted, but then decreases to the point
where C3 becomes lower in comparison to the strategy involving a shorter thrust
arc.

Examining Figure 4.6c, it is evident that the EML2 escapes are characterized by
a significant radial thrust component. This is attributed to the spacecraft’s need
to steadily move away from the Moon after departure to prevent being recaptured
by the Moon’s gravitational pull.

The departure at E5 employs an initial thrust arc to capitalize on the entire
peak of the solar perturbation, leading to commendable performance with minimal
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Figure 4.7: EML2 selected escape trajectories polar plot - fixed ∆t = 75 days,
free C3f , Earth-Spacecraft rotating RF

fuel consumption.
The departure at E2, in contrast to the previously analyzed departures, features

a 4-arc structure. The switching function trend for E1, E2, and another intermediate
departure date. The first and last departures employ a two-arc strategy, while E2
utilizes the four-arc approach. Moving forward continuously from the preceding
solutions to E2 reveals a non-monotonic trend in the initial phase, signifying the
presence of a peak following an initial slope. When this peak is no longer situated
at negative SF values, the PMP is violated and consequently the thrust structure
in the violated arc must be modified. In this case, the thrust structure has been
modified accordingly by inserting a second burn. Since the trend of δv reflects that
of SF , the change in initial assumptions can be clearly seen in Figure 4.5 when λ
changes drastically in the family I.

Figure 4.8 shows the entire family of solutions plotted in the Sun-Earth synodic
RF centered on the Earth. The solutions with departures E1,E2,E3,E4 of family I,
and E6 of family I occupy the first and fourth quadrants, resulting in ∆θ = 180°,
thereby leveraging the radial component of the solar perturbation in the final
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stages of the escape. Conversely, for the E5 and E6 departure dates of family III,
a symmetrical scenario unfolds, culminating in the escape towards the Sun, still
allowing favorable exploitation of the radial component during the concluding
phase of the escape. The sole trajectory that deviates from ending at ∆θ = 0° or
∆θ = 180° is the one with departure E4 of family II, which end at ∆θ = 45°. This
deviation is attributed to a more intensive exploitation of the tangential component.
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Figure 4.8: EML2 escape trajectories over a lunar month - fixed ∆t = 75 days,
free C3f , SE synodic RF

Henceforth, the departures outlined in Table 4.4 are taken as a reference for
subsequent analysis.
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ID Epoch (UTC) Family Sub-Family
E1 2025/10/19 06:26:52.6170 I A
E3 2025/10/22 06:26:20.9901 I B
E4 2025/10/29 06:25:07.1942 II
E5 2025/11/03 06:24:14.4828 III
E6 2025/11/11 06:22:50.1446 I C

Table 4.4: EML2 selected escape trajectories

4.3 Escapes with variable mission duration ∆t

In this section, an analysis is conducted to assess how a variation in the escape
duration impacts its performance. The duration is varied within the range of 60 to 90
days. Due to the Moon’s proximity to the starting point and the intricate lunisolar
gravitational perturbations, the families described in the final free energy scenario
become even more distinct. Figure 4.9 illustrates the manifold of solutions for each
departure date under consideration, while Table 4.5 presents the performance for
the selected durations in this analysis.

Figure 4.10 displays the Sun-Spacecraft angle for the selected durations for each
start date, while Figure 4.11 shows the optimal thrust angle αT .

In addition, Figure 4.12 shows the polar views of all escape trajectories as a
function of Sun-Spacecraft angle ∆θ and Figure 4.13 shows the trajectories in the
Sun-Earth synodic RF, centered on Earth.

For the initial departure E1, durations shorter than the reference, i.e., 75 days,
employed in the analysis conducted in the previous section necessitate a modification
in the thrust structure. Specifically, the introduction of a second thrust arc becomes
essential to take advantage of the positive solar perturbations occurring in the third
quadrant. The duration of this thrust phase increases as the available time for
the escape decreases, aiming to better exploit the peak of the positive tangential
component σv and accumulate sufficient energy before reaching the ∆ = 180°
condition, where the radial component facilitates completing the escape. It is
noteworthy that the direction of the initial thrust is not only strongly radial but
also αT > 90° indicating that the spacecraft decelerates at the beginning of the
trajectory, implying a passage closer to the Moon that still guarantees adequate
energy for initiating the escape. The described scenario results in a higher final
characteristic energy but also entails increased propellant consumption. Conversely,
for durations approaching higher values, the strategy remains the same as in the
free terminal energy analysis. As the duration increases, the thrust arc shortens,
causing the spacecraft to spend more time in the subsequent unfavorable zone.
This inevitably leads to a decrease in terminal energy but an improvement in fuel
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consumption.
Departures E3, E5, and E6 exhibit characteristics similar to those of E1. Specif-

ically, for E3 and E6, everything previously discussed remains applicable, except
that in these cases, the situation involving the presence of αT > 90° does not occur.
Conversely, E5 mirrors the behavior observed in E1, with the introduction of the
4-arc structure occurring at 60 days in this case. Such a departure, marked by an
initial position at the σ peak, enables achieving very high performance.

Finally, concerning the departure E4 with decreasing duration, the obtained
solutions align with those belonging to family I, as observed in the analysis presented
in Section 4.2. This strategy involves a single long thrust phase from the initial
position, situated in a region neutral to solar perturbations, aiming to maximize
the exploitation of the σ peak. This is also evident in the trend of the optimal
thrust angle, where the initially dominant radial component gradually decreased
in favor of a more tangential component. In the other case, when the duration
tends to increase, the strategy resembles that of the family II solution presented in
Section 4.2, in that thrust is applied in a reduced fashion and only at the beginning,
when the spacecraft is in the neutral region.

Solutions with departures E1, E3, and E6 occupy the first and fourth quadrants,
resulting in ∆θ = 180°, thus exploiting the radial component of the solar perturba-
tion in the final phases of the escape. In contrast, for the E5 departure dates, a
symmetric scenario occurs, culminating in the escape toward the Sun, still allowing
favorable exploitation of the radial component during the final phase of the escape.
The only trajectories that deviate from ending with ∆θ = 0° or ∆θ = 180° are
those with E4 departure that instead end with ∆θ ≈ 45° and ∆θ ≈ 157.5°.
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Ĵ
;
10

6
k
m Earth

60 Days - (I) A
65 Days - (I) A
70 Days - (I) A
75 Days - (II)
80 Days - (II)
85 Days - (II)
90 Days - (II)

(c) Departure date E4

-3 -2 -1 0 1 2 3
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Figure 4.9: EML2 selected escape trajectories over a lunar month - variable ∆t,
free C3f , EME2000 RF 70
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Duration Line ID Family Sub np mf ∆V C3f

Days Family kg m/s (km/s)2

60 I A 4 844.613 124.708 0.4832
65 I A 4 846.148 89.092 0.3974
70 I A 4 847.257 63.407 0.3232
75 I A 2 848.003 46.135 0.2330
80 I A 2 848.191 41.787 0.1282
85 I A 2 848.248 40.464 0.0791
90 I A 2 848.276 39.826 0.0647

(a) Departure date E1

Duration Line ID Family Sub np mf ∆V C3f

Days Family kg m/s (km/s)2

60 I A 4 844.603 124.933 0.3782
65 I A 4 845.841 96.213 0.2992
70 I A 4 846.733 75.536 0.2246
75 I B 2 847.094 67.169 0.2067
80 I A 2 847.855 49.561 0.1066
85 I A 2 848.087 44.196 0.0763
90 I A 2 848.200 41.578 0.0683

(b) Departure date E3

Duration Line ID Family Sub np mf ∆V C3f

Days Family kg m/s (km/s)2

60 I A 2 841.138 205.553 0.0745
65 I A 2 842.045 184.416 0.0358
70 I A 2 842.695 169.283 0.0084
75 II 2 849.114 20.453 0.4796
80 II 2 849.069 21.490 0.4411
85 II 2 849.029 22.415 0.4192
90 II 2 848.992 23.270 0.4248

(c) Departure date E4

Table 4.5: EML2 escape trajectories performance - variable ∆t, free C3f
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Duration Line ID Family Sub np mf ∆V C3f

Days Family kg m/s (km/s)2

60 III 4 847.780 51.283 0.5413
65 III 2 848.906 25.256 0.4331
70 III 2 849.002 23.037 0.3012
75 III 2 849.033 22.314 0.2042
80 III 2 849.049 21.955 0.1351
85 III 2 849.058 21.742 0.0991
90 III 2 849.064 21.601 0.0921

(d) Departure date E5

Duration Line ID Family Sub np mf ∆V C3f

Days Family kg m/s (km/s)2

60 I C 4 842.842 165.872 0.6656
65 I C 4 845.211 110.807 0.5301
70 I C 4 846.887 71.955 0.4414
75 I C 2 847.703 53.078 0.4584
80 I C 2 847.654 54.213 0.4758
85 I C 2 847.605 55.340 0.4662
90 I C 2 847.553 56.540 0.4688

(e) Departure date E6

Table 4.5: EML2 escape trajectories performance - variable ∆t, free C3f
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Figure 4.10: EML2 selected escape trajectories - trend over time of Sun-SC
relative angle - variable ∆t, free C3f

73



Escape Trajectories from Earth-Moon L2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time from departure, days

0

15

30

45

60

75

90

105
O
p
ti
m
al

th
ru
st

a
n
gl
e
,

T
,
d
eg

60 Days - (I) A
65 Days - (I) A
70 Days - (I) A
75 Days - (I) A
80 Days - (I) A
85 Days - (I) A
90 Days - (I) A

(a) Departure date E1

0 1 2 3 4 5 6 7 8 9 10 11 12
Time from departure, days

0

15

30

45

60

75

90

O
p
ti
m
al

th
ru
st

an
gl
e
,

T
,
d
eg

60 Days - (I) A
65 Days - (I) A
70 Days - (I) A
75 Days - (I) B
80 Days - (I) A
85 Days - (I) A
90 Days - (I) A

(b) Departure date E3

0 1 2 3 4 5 6 7 8 9 10
Time from departure, days

0

15

30

45

60

75

90

O
p
ti
m
al

th
ru
st

an
gl
e
,

T
,
d
eg

60 Days - (I) A
65 Days - (I) A
70 Days - (I) A
75 Days - (II)
80 Days - (II)
85 Days - (II)
90 Days - (II)

(c) Departure date E4

0 1 2 3 4 5 6 7 8 9 10
Time from departure, days

0

15

30

45

60

75

90

105

O
p
ti
m

al
th

ru
st

an
gl

e
,

T
,
d
eg

60 Days - (III)
65 Days - (III)
70 Days - (III)
75 Days - (III)
80 Days - (III)
85 Days - (III)
90 Days - (III)

(d) Departure date E5

0 2 4 6 8 10 12 14 16 18 20 22
Time from departure, days

0

15

30

45

60

75

90

O
p
ti
m
al

th
ru
st

an
gl
e
,

T
,
d
eg

60 Days - (I) C
65 Days - (I) C
70 Days - (I) C
75 Days - (I) C
80 Days - (I) C
85 Days - (I) C
90 Days - (I) C

(e) Departure date E6

Figure 4.11: EML2 selected escape trajectories - trend over time of optimal thrust
angle - variable ∆t, free C3f
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Figure 4.12: EML2 selected escape trajectories polar plot - variable ∆t, free C3f ,
Earth-Spacecraft rotating RF 75
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Figure 4.13: EML2 selected escape trajectories - variable ∆t, free C3f , SE synodic
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4.4 Escapes with constrained final energy C3f

In the latter section, an analysis is conducted to assess how imposing the final
characteristic energy affects the escape performance. For each of the five previously
selected dates, C3f is varied from 0.1 km2/s2 to 0.5 km2/s2. Again, due to the
complex lunisolar gravitational perturbations, the solutions exhibit distinct families.
Figure 4.14 displays the manifold of solutions for the selected dates, while Table
4.6 presents their respective performances.

Figure 4.15 shows the Sun-Spacecraft angle for each starting date, while Figure
4.16 displays the optimal thrust angle αT .

Figure 4.17 illustrates the polar views of all escape trajectories as a function of
Sun-Spacecraft angle ∆θ and Figure 4.18 shows the trajectories in the Sun-Earth
synodic RF, centered on Earth.

Starting from the first departure E1, the low-energy scenario is characterized
by the presence of a single thrust phase that progressively shortens as the final
characteristic energy decreases. This allows the spacecraft to spend more time
in the negative contribution region of the solar perturbation, losing energy until
the final required energy is reached. This implies an evident reduction in fuel
consumption. Once again, the thrust direction is predominantly radial. In the
opposite scenario, where a high C3f must be achieved, the thrust structure requires
the introduction of a second thrust arc when the spacecraft is in the unfavorable
region. This last propulsive phase becomes longer the higher the final energy
required.

Departures E5 and E6 exhibit behavior quite similar to that just described, but
with all trajectories characterized by a two-arc thrust structure. The solutions for
E6 feature longer average thrust phases than in the E5 case because their starting
point is located in the region where the contribution of solar perturbations is
neutral (∆θ = 90°).

Departures at E3 requiring low final energy exhibit behavior similar to that found
in the analysis with free terminal energy. As C3f decreases, the thrust structure is
modified by the insertion of a second thrust arc, indicating that for low values of
final energy, the solutions align with the E2 solution presented in Section 4.2. It
is important to note that for C3f less than 0.1 km2/s2, the second thrust phase
is eliminated again. In the scenario requiring high energy, the elimination of the
second thrust arc is evident. The spacecraft continues to thrust during the initial
phase, even while in the negative solar perturbation zone aims of accumulating all
the required energy before reaching the peak of σu at ∆θ = 180°.

For E4, only two solutions have been found, which follow the behavior observed
in the free final energy scenario. The solutions for C3f equal to 0.3, 0.2, and 0.1
km2/s2 do not seem to be viable. Further solutions can be found imposing smaller
values of C3f less than 0.1 km2/s2, result in solutions that belong to the family I,
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as visible in the analysis carried out with fixed duration.

C3f Line ID Family Sub np Duration mf ∆V
(km/s)2 Family Days kg m/s

0.10 I A 2 82.37 848.224 41.032
0.20 I A 2 76.74 848.094 44.035
0.30 I A 2 74.40 847.806 50.689
0.40 I A 4 71.76 846.932 70.921
0.50 I A 4 67.21 845.374 107.037

(a) Departure date E0

C3f Line ID Family Sub np Duration mf ∆V
(km/s)2 Family Days kg m/s

0.10 I A 2 81.46 847.924 47.956
0.20 I A 4 75.27 847.182 65.141
0.30 I A 4 70.23 846.353 84.339
0.40 I A 2 67.48 845.316 108.382
0.50 I A 2 61.74 843.676 146.473

(b) Departure date E3

C3f Line ID Family Sub np Duration mf ∆V
(km/s)2 Family Days kg m/s

0.40 II 2 86.36 848.940 24.479
0.50 II 2 72.84 849.135 19.962

(c) Departure date E4

C3f Line ID Family Sub np Duration mf ∆V
(km/s)2 Family Days kg m/s

0.10 III 2 84.77 849.058 21.750
0.20 III 2 75.26 849.035 22.290
0.30 III 2 70.06 849.003 23.025
0.40 III 2 66.11 848.942 24.429
0.50 III 2 63.44 848.770 28.402

(d) Departure date E5
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Ĵ
;
10

6
k
m Earth

C3f 0.1 - (III)
C3f 0.2 - (III)
C3f 0.3 - (III)
C3f 0.4 - (III)
C3f 0.5 - (III)

(d) Departure date E5

-3 -2 -1 0 1 2 3
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Figure 4.14: EML2 selected escape trajectories over a lunar month - free ∆t,
fixed C3f , EME2000 RF 79
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C3f Line ID Family Sub np Duration mf ∆V
(km/s)2 Family Days kg m/s

0.10 I C 2 85.77 847.743 52.157
0.20 I C 2 79.73 847.740 52.209
0.30 I C 2 75.81 847.736 52.309
0.40 I C 2 73.80 847.725 52.564
0.50 I C 4 66.49 845.769 97.860

(e) Departure date E6

Table 4.6: EML2 escape trajectories performance - free ∆t, fixed C3f
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Figure 4.15: EML2 selected escape trajectories - trend over time of Sun-SC
relative angle - free ∆t, fixed C3f
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Figure 4.16: EML2 selected escape trajectories - trend over time of optimal thrust
angle - free ∆t, fixed C3f
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Figure 4.17: EML2 selected escape trajectories polar plot - free ∆t, fixed C3f ,
Earth-Spacecraft rotating RF 83
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Figure 4.18: EML2 selected escape trajectories - free ∆t, fixed C3f , SE synodic
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Chapter 5

Conclusion

In conclusion, this thesis has delved into the intricate realm of optimizing escape
trajectories from the L2 Lagrangian point in the Earth-Moon system. The choice
of this particular scenario may provide insight into the heightened attention to-
ward Lagrangian Points in recent times. These points signify specific equilibrium
positions within the context of the three-body problem, enabling small objects like
spacecraft to sustain relatively stable positions in relation to two primary bodies
within a rotating reference system. Since Lagrangian points (LPs) are considered
very attractive from the scientific community, due to their diverse advantages,
particularly their suitability for deep space exploration, is necessary to find effective
methods for analyzing trajectories to and from these regions.

In this context, this discussion centers on the space trajectory optimization
of low-thrust electric propulsion escapes within a high-fidelity model. Specifi-
cally, escape trajectories within the Sun-Earth (SE) and Earth-Moon (EM) binary
systems are considered in a dynamical model that includes 4-body gravitation,
Solar Radiation Pressure (SRP), and spherical harmonics representing the Earth’s
asphericity.

Indirect methods were deemed suitable for this purpose and were extensively
employed in this work. Chapter 3 provides a thorough discussion of Optimal
Control Theory (OCT) and the Multi-Point Boundary Value Problem (MPBVP),
identifying the indirect method as the most suitable for addressing the application
of OCT to the space trajectory optimization problem.

Pontryagin’s Maximum Principle (PMP) was applied to enable crucial post-
processing operations, facilitating adjustments to a converged solution when the
Thrust Structure (TS) violated the PMP in certain arcs. This comprehensive
approach enhances the reliability and effectiveness of trajectory optimization in
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Conclusion

the complex dynamics of escape trajectories from Lagrangian Points.

This study offers an analysis of how the performance of escape trajectories is
influenced by variations in departure date, duration, and by fixing the characteristic
energy C3.
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