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Abstract

Adapting Deep Neural Networks on edge devices, including hardware accel-
erators as done in this thesis, is in general very challenging due to very specific
low-level constraints, like the lack of available memory, the maximum layer dimen-
sion allowed and the limited type of layers and high-level architectures actually
implemented on hardware.
In the context of the Semantic Segmentation, given that a lot of parameters are
needed to well classify every pixel of the image, the problem of the limited amount
of memory is particularly emphasized.
But if the transposition to the edge of the network is done properly , the overall
process is worthy, because it can offer benefits such as faster performance, decreased
power usage, reduced latency and enhanced parallelism. Furthermore, differently
from typical cloud paradigms, it can depend much less from data traffic bandwidth
limits and can be more reliable to maintain security and privacy.
The initial objective of this study is to select a Semantic Segmentation architecture
that is suitable for hardware adaptation, without being too large or complex, yet
capable enough to perform its task effectively. After selecting the network, it is
trained carefully and analyzed to identify properties that can be leveraged in the
subsequent optimization and quantization phase.
The focus of this work is on compressing and adapting in the best possible way
the selected architecture to edge devices. Both the retraining approach with quan-
tization awareness and especially the post-training approach are tested, with the
latter one involving a guided search using a custom Genetic Algorithm to find the
near-optimum quantization configurations.
The results demonstrate that Deep Neural Networks contain redundant information
and that, by carefully compressing and optimizing them, their effectiveness is not
compromised.
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Chapter 1

Introduction

Artificial intelligence (AI) , whose first studies started in the 50s of last century,
is a rapidly evolving field of computer science that focuses on creating intelligent
machines that can perform tasks that typically require human intelligence, such as
visual perception, speech recognition, decision-making, and language translation.
Deep learning (DL) is a subfield of AI that focuses on creating neural networks
capable of learning and making decisions on their own. It is inspired by the
structure and function of the human brain and is designed to mimic the way
humans learn and process information. Deep Neural Networks (DNN) are capable
of analyzing vast amounts of data, identifying patterns, and making predictions
with high accuracy.
In the last decade, these algorithms have rapidly advanced, emerging as promising
techniques that outperform previous machine learning methods. However, DL’s
effectiveness relies heavily on high-performance computing platforms with extensive
storage capacities necessary for training these intricate models.
Cloud computing has been the go-to model for running machine learning algorithms,
utilizing data centers equipped with substantial processing power and storage
capabilities.
Yet, the escalating data traffic and the low-latency demands of many deep learning
services are now challenging this centralized computing approach, making it difficult
to ensure the necessary quality of service. The considerable bandwidth required by
communication networks to handle such vast data volumes presents yet another
significant hurdle. Recent research [1] indicates that by 2030, approximately 30
billion Internet of Things (IoT) connected devices will further compound these
challenges. Moreover, ensuring security and privacy is crucial when handling user
data across a wide range of applications. Finally, in a world dealing with an energy
crisis, the escalating energy demands associated with this approach are increasingly
problematic.
These challenges have driven to the adoption of the edge computing paradigm,
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a decentralized approach that places computing resources, memory, and services
in close proximity to where data is generated. This strategy accelerates response
times, lessens reliance on communication bandwidth availability and when the
targeted hardware is optimized, decrease the power usage and enhance parallelism.
Although it’s a promising concept, this emerging deep learning service faces a
significant challenge: it demands substantial computational power and memory
resources. This poses a problem, especially for edge servers and end devices, which
typically have much lower computing and memory capabilities compared to large-
scale cloud data centers.
In Semantic Segmentation(SS), a popular image vision task that is the objective of
this study, the challenge of limited memory becomes prominent due to the extensive
parameters required to accurately classify each pixel in the image.
Researchers have explored various avenues to address these constraints:

• Developing new designs and calculators’ architectures that integrate edge
servers with cloud servers aiming to achieve efficient computational coordina-
tion.

• Creating optimized DL models that are mindful of computing, memory, and
energy limitations, ensuring more efficient usage of resources.

• Exploring innovative optimizations at the hardware level to enhance both
performance and energy efficiency.

More in details, the target platform for this thesis is an hardware accelerated AI
microcontroller(MCU) developed by STMicroelectronics. This device is already
capable of supporting complex AI algorithms with high power efficiency and
performance, however, being an MCU, it’s desirable in embedded deployment
scenarios, to develop optimized algorithms to further reduce both memory footprint
and energy consumption without impacting accuracy significantly, also by leveraging
network quantization.
So the core of this work is to create optimized semantic segmentation DL models,
that can do well their task but at the same time are suitable for edge devices
like STM microcontoller (MCU) with AI hardware(HW) acceleration, and to find
optima or nearly optima quantization configurations of every network parameter.
The used hardware platform is the one previously mentioned, but this wants to be
a generic study that make general considerations, and that can be useful and can
be easily extended for adapting DNNs (and not strictly SS ones) to almost all kind
of edge devices.
In particular this analysis initially aims to select a suitable Semantic Segmentation
architecture to be adapted, not too large in size and without complicated layers,
but at the same time good enough to do its task.
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Then, given a chosen dataset and an objective, the chosen network is trained and
analyzed to find out properties that helps afterwards.
And the core of this study is the subsequent optimization and quantization of the
selected architecture, in order to compress and make it suited for the edge devices.
Both the retraining approach with quantization awareness, and the post-training
approach, are tested. The latter one has its focus on finding the near-optimum
configuration doing a guided search to juggle all the many possibilities that the
huge search space permits, and a custom Genetic Algorithm (GA) is utilized to
perform it.
The results of all this process and optimization, showed in the final results part,
are very good compared to the initial software(SW) inferences, proving that DNNs
store a lot of redundant information and that by compressing them in a clever way
the overall effectiveness does not change, as it’s said in the conclusions.
So, within this thesis you can find the following main contributions:

• The search of a custom Semantic Segmentation DNN that performs well even
if it’s lightweight, and most importantly even if it is made only by simple
layers easily implementable at the edge. In particular it is composed by a
MobilNetV2 backbone and a custom joint multi-scale upsampling.

• The implementation of a sequential, effective and complete methodology to
deeply analyze a NN from a fixed-point quantization perspective. And then
searching and finding, with a custom targeted GA search which takes into
account the previous statistics, some near-optimal quantization configurations,
thanks to a multi-objective optimization that considers prediction quality,
model size and inference speed.
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Chapter 2

Semantic Segmentation Models

2.1 Semantic segmentation
Semantic segmentation is a deep learning technique that assigns a label or

category to each individual pixel in an image. So it doesn’t distinguish object
instances, but it is utilized to identify a set of pixels that represent unique categories
(Figure 2.1).

Figure 2.1: Semantic Segmentation

It has many applications, like:

• Autonomous Vehicles: Used to identify pedestrians, vehicles, road signs,
and obstacles, aiding real-time driving decisions.

• Augmented Reality: Separates foreground objects from the background,
enhancing realistic interactions in augmented reality applications.

• Medical Image Analysis: Assists in identifying and delineating structures
and organs in medical images for tasks like tumor detection and organ
segmentation.
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• Scene Understanding: Helps analyze complex scenes in images or videos,
essential in applications like video surveillance.

• Robotics: Enables robots to identify objects, supporting tasks such as
accurate object manipulation and grasping.

• Image Editing and Special Effects: Utilized in background removal,
special effects and video editing, allowing precise editing in the entertainment
industry.

There have been many models in the literature that have implemented it and now
there will be an overview of all the most famous ones, dividing them between before
and after an event that marked the way to build semantic segmentation NNs, the
birth of the Fully Convolutional Networks (FCNs).
All this to arrive, in the end, to a final custom model, chosen after having evaluated
pros and cons of every architecture while also thinking about edge hardware
constraints.

2.2 Pre-FCN era
In the past there have been various and heterogeneous attempts to face this task,

using directly semantic segmentation features or using other data representations,
like image segmentation techniques.
Those methods, such as thresholding, clustering and region growing, rely on low-
level features like edges and blobs to identify object boundaries in images, making
them less effective in scenarios requiring semantic information, especially when
similar objects overlap.
Instead methods like Markov Random Fields, Conditional Random Fields, and
forest-based techniques were used precisely for SS, utilizing graphical models to
understand pixel interdependence and infer scene labels.
Another set of studies,known as Layered models, combined pre-trained and distinct
object detectors to extract semantic information.
Then, in the early days of deep convolutional neural networks (DCNNs), attempts
were made to adapt classification networks (e.g., AlexNet, VGG) for segmentation,
by fine-tuning fully connected layers and then using often a refinement process,
since their results were quite unsatisfactory.

2.3 Fully Convolutional Network Discovery
The paper by Shelhamer et al.[2] in 2017 introduced the concept of removing

fully connected layers from DCNNs, and to underline this idea, they named the
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proposed architecture Fully Convolutional Networks.
The use of FCNs marked a significant development in the field of semantic segmen-
tation, demonstrating that DNNs can be trained for semantic segmentation in an
end- to-end manner on variable sized images (Figure 2.2).

Figure 2.2: Fully Convolutional Network, from slides of Advance Machine Learning
course at Polito

The approach of Shelhamer et al. was more clever than simply using a plain FCN,
since they used primitive skip connections to prevent eventual loss of localized
information due to pooling layer, and Deconvolutional layers that can upsample
coarse deep Convolutional layer outputs to dense pixels of any desired resolution.
But generally speaking, the FCNs have some drawbacks such as: inefficient loss of
label localization within the feature hierarchy, struggle to process global context
knowledge, and the lack of a mechanism for multiscale processing.

2.4 Post-FCN approaches

2.4.1 Encoder-Decoder
One way to try to address those problems are the Encoder-Decoder (ED) archi-

tectures, also known as U-nets (named after the pioneering study by Ronneberger
et al. in 2015[3]) and they consist of two parts: the encoder and the decoder.
The encoder reduces the spatial dimension, while the decoder recovers object details
and spatial dimension.
In this way with less layers it is possible to have an effective receptive field size
pretty big that covers all the input image, and so to maintain a quite good global
context knowledge. And obviously also the computation performance is improved,
since thanks to the downsampling, the size of the features are a lot smaller than a
FCN without stride (Figure 2.3).
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Figure 2.3: Encoder-Decoder SS structure, from https://it.mathworks.com

2.4.2 Atrous convolution
Another method to face even more directly this global context issue is employing

dilated (atrous) convolutions, a pretty simple yet effective concept.
When using standard contiguous convolutional filters, the effective receptive field
of units can only increase linearly with layers. However, with dilated convolution,
which has gaps in the filter, the effective receptive field can increase much more
rapidly (Chen et al. 2018[4]). As a result, a rectangular prism of convolutional
layers is created without any pooling or subsampling.
Dilated convolution is an effective and powerful method for preserving feature map
resolutions in detail. However, compared to other techniques, it requires more GPU
storage and computation power since the feature map resolutions do not decrease
within the feature hierarchy (Figure 2.4).

Figure 2.4: Dilated convolution differences, from [5].
From left to right: a normal 3x3 convolution kernel; a 3x3 kernel with dilation rate=2;
a 3x3 kernel with dilation rate=4.
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2.4.3 Spatial pyramid pooling
An additional evolution of the pure FCN is also using a Spatial Pyramid Pooling

(SPP), a pooling layer that eliminates the fixed-size constraint of a CNN, allowing
for variable-sized input images.
This is achieved by adding an SPP layer on top of the last Convolutional layer.
The SPP layer pools the features in a different way depending on their sizes, and
generates fixed-length outputs, which are then passed to the fully-connected layers
or other classifiers.
This allows information aggregation at a deeper stage of the network hierarchy,
between the Convolutional layers and Fully-connected layers (Figure 2.5).

Figure 2.5: Example of a Multiscale Spatial Pyramid Pooling, obtained upsampling
and concatenating three initial features of different resolutions

2.4.4 Relevant examples
A good example of most of those previous methods putted together well is the

Pyramid Scene Parsing Network (PSPN) of Zhao et al.[6], a multi-scale network
designed to improve the learning of global context representation of a scene.
The input image is processed by a residual network (ResNet) as a feature extractor,
using a dilated network to extract different patterns.
The feature maps are then passed through a pyramid pooling module to differentiate
patterns of varying scales. The feature maps are pooled at four different scales,
each corresponding to a pyramid level, and reduced in dimensionality using a 1
× 1 convolutional layer. The outputs of the pyramid levels are up-sampled and
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combined with the initial feature maps to capture both local and global context
information.
Finally, a convolutional layer is used to generate pixel-wise predictions.
A more modern example is given by the FastFCN, a fully convolutional neural
network architecture designed for semantic segmentation tasks. It was proposed in
the paper "FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic
Segmentation" by W. Chen et al[7].
The architecture of FastFCN consists of a backbone network, a feature pyramid
network (FPN), and a segmentation head.
The backbone network is based on a ResNet-like architecture with dilated convolu-
tions to increase the receptive field of the network. The FPN is used to combine
features from different levels of the backbone network to generate a multi-scale
feature map.
Finally, the segmentation head is a series of convolutional layers that produce a
pixel-wise classification of the input image.
One of the key innovations of FastFCN is the use of a lightweight FPN that reduces
the number of parameters and computation required compared to previous FPN
designs. This allows for faster training and inference times while maintaining high
accuracy.

2.4.5 Other Approaches
Another research direction comprehends Attention-based Networks: these net-

works use attention mechanisms to selectively focus on important regions of the
input image for segmentation.
Examples of attention-based networks include Attention U-Net[8] and DANet[9].
As far as self-attention is concerned, Transformers have recently been applied to
semantic segmentation tasks with promising results. Transformers are a type of
neural network architecture that was originally developed for natural language
processing tasks, but has been applied to computer vision tasks as well (like Vision
Transformer ViT[10]).
Overall, transformers have shown promising results for SS tasks, particularly in
cases where it is required to capture long-range dependencies between pixels in the
input image.

2.5 Challenges to adapt to the edge
After all this theoretical research, it’s time to make some practical considerations.

For example the lack of memory resources in edge devices hits particularly the
Semantic Segmentation task, because there is the need of a lot of parameters to
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classify well every single pixel of an image. So quite complex or quite big structures,
like Resnet, or some attention-based ones can’t be used as backbone to extract
image features, but there is the need to resort to something more feasible and
smaller.
For what instead concern Upsampling Layers the situation is not improving, for the
lack of implementations at the edge (because more common layers are prioritized)
leading to a difficult adaptation. So Atrous convolutions, Deconvolutions, or even
quite simple Upsampling layers that use bilinear or nearest neighbours interpolations
are unusable, not to mention Transformers.
Another problem for the inference speed is that the ArgMax final function of a
Neural Network, which is useful to extract the predicted class, must be done pixel
by pixel a lot of times, leading to significant slowdowns of the model.

2.6 The Q-Segs: the final custom models
Based on everything it has been said before, now it’s time to create a semantic

segmentation model on which to base all subsequent steps.

2.6.1 MobileNetV2 backbone
As backbone, for its smallness but also effectiveness, it’s used a MobileNetV2[11],

a lightweight and efficient deep learning architecture designed for mobile and edge
devices with limited computational resources. It achieves efficiency through several
key features, like:

• depthwise separable convolutions to reduce computations, splitting
convolutions into depthwise and pointwise convolutions.

• shortcut connections to allow direct gradient flow, enabling the training
of deep networks.

• clipped version of the Rectified Linear Unit (ReLU) which ensures
that the values do not exceed 6 (ReLU6), preventing large activations and
enhancing network robustness.

So at the end the MobilNetV2 is cut before the final Pooling and Classification
layers, and it’s expanded putting parameter α=4 to have some more features, very
useful for this task.
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2.6.2 Joint multi-scale upsampling
For the upsampling part, it’s used a joint multi-scale upsampling, obtained

selecting significant features from the backbone, exactly those who precede the
reduced resolution steps.
First they are reduced in dimensionality using a 1 × 1 Convolutional layer. Then
they are jointly upsampled, letting everything as simple as possible, to obtain a sort
of nearest neighbour interpolation. It is done using a combination of Reshape and
Concatenate Layers iteratively, followed by 3 x 3 Convolutional layers to extract
features at each step. In this way multi-scale context information can be extracted
from multi-level features, and this leads to better performances (Figure 2.6).

Figure 2.6: Custom upsampling, obtained with a combination of Concatenate and
Reshape layers

That can be implemented in slightly different modalities which will be explained
later, and in order to test both of them, the final models will be two.

2.6.3 Final part
At the end it’s utilized a final Convolution Layer together with an ArgMax to

extract pixel-wise predictions, instead of a Fully Connected Layer, always for the
reason of saving resources.

2.6.4 Q-Seg1
Q-Seg1 is one of the two final models.

It has the particularity that upsamples all the features independently from each
other in the middle steps, and only at the end concatenates them to extract global
knowledge.
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In particular it has 3922680 total parameters (subdivided in 3877896 trainable and
44784 non-trainable) (Image 2.7)

Figure 2.7: Q-Seg1. The NN inputs and outputs are indicated explicitly, the blue
polygons enclose a sequence of layers, the grey one stands for the Concatenate Layer,
and the coloured rectangles indicates NN features of different depths and resolutions that
are used for the upsampling part.

2.6.5 Q-Seg2
The Q-Seg2 has the particularity that during the upsampling, it progressively

compares and concatenates two by two the features, that become of the same size
and so that have the same resolution.
Specifically it has 3946680 total parameters (subdivided in 3902328 trainable and
44352 non-trainable) (Image 2.8)
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Figure 2.8: Q-Seg2. The NN inputs and outputs are indicated explicitly, the blue
polygons enclose a sequence of layers and the coloured rectangles stands for NN features
of different depths and resolutions that are used for the upsampling part.
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Chapter 3

Training And Inference Set-Up

3.1 Metrics
Before getting into the practical part, here is a rundown of metrics that will be

used from here on out.

3.1.1 Mean intersection over union
The Intersection over Union (IoU) is a metric used to evaluate the performance

of semantic segmentation algorithms. It is calculated as the area of overlap between
the predicted segmentation and the ground truth, divided by the area of union
between the predicted segmentation and the ground truth (Figure 3.1).

Figure 3.1: Intersection over Union (IoU)

Then the actual mean IoU of an image is calculated by taking the IoUs of each
class and averaging them.
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IoU can also be seen as:

iou = true_positives/(true_positives + false_positives + false_negatives)
(3.1)

Those are statistics taken by a confusion matrix, that is a table layout that provides a
representation of an algorithm’s performance, and each row of the matrix represents
instances in an actual class, while each column represents instances in a predicted
class.
True Positives (TP) occur when the actual value is positive and the prediction is
also positive. True negatives (TN) occur when the actual value is negative and the
prediction is also negative. False positives (FP), also known as Type 1 errors, occur
when the actual value is negative but the prediction is positive. False negatives
(FN), also known as Type 2 errors, occur when the actual value is positive but the
prediction is negative.

3.1.2 Memory usage
Computational efficiency is an essential aspect of any algorithm implemented on

a real system, and a comparative assessment of the speed and capacity of various
semantic segmentation algorithms is a challenging task. The computational load
of SS algorithms is evaluated using two primary metrics: computational memory
usage and execution time.
Memory usage is crucial when semantic segmentation is used in limited performance
devices such as the edge ones. Memory usage for a complex algorithm like semantic
segmentation can change significantly during operation, which is why peak memory
usage is such a common metric.
In the case of this thesis it is used mainly the static memory to measure a NN, so
the weights/biases sizes saved in memory, since it’s the most relevant and important
aspect for the reference architecture.
But in a case it is utilized also an estimation of the run time memory needed for the
model to being executed in the edge. It consists in measuring the output dimension
(of every layer) and multiply it for the size assigned for that given output. It is
obviously an estimate, an upper bound to be more precise, since it doesn’t take
into account the possibility that intermediate buffers may be reused.

3.1.3 Execution time
Execution time is measured as the total processing time, from the moment a

single image is introduced to the system until the pixel-wise semantic segmentation
results are obtained.
The performance of this metric is significantly dependent on the hardware used.
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In this case, it will be measured as FPS, that stands for Frames Per Second. It
is a measure of how many individual frames or images, a video or an animation
displays per second.

3.2 Datasets
The success of any machine learning application is heavily reliant on the quality

and quantity of data used for training.
For this reason both Cityscapes and Coco-Stuff datasets will be used to train and
to assess the goodness of NN models, but they will be customized a bit to better
fit our application scenario and to provide an improved prediction images quality;
therefore the quality of the predictions cannot and does not aim to be directly
comparable with the state of art of the models.

3.2.1 Cityscapes
Cityscapes[12] is a dataset that focuses on the semantic understanding of ur-

ban street scenes, so it is used for outdoor generic tries (Image 3.2). It includes
high-resolution images from 50 different cities, captured at different times of the
day and in different seasons, with varying backgrounds and scene layouts.
The images with fine annotations, suited for semantic segmentation, are 2975 for
training and 500 for validations. Standardly there are 30 different class labels
(vehicles, people, riders, etc.), but in this work some of them, those similar to each
other, were merged for having a better output representation, so at the end they
are only 19.

Figure 3.2: Cityscapes dataset
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3.2.2 Coco-Stuff
Common Objects in Context (COCO)[13] is a massive image set that includes

200,000 labelled images, 1.5 million object instances, and 80 object categories. It
covers almost every possible type of scene and is used for object detection, semantic
segmentation, and captioning.
COCO-Stuff[14] is an extension that provides more detailed annotations, including
object and stuff (non-rigid, background objects) categories. It includes over 10,000
images from the original COCO dataset, annotated with 80 object categories and
91 stuff categories. This dataset is valuable for training and evaluating algorithms
related to semantic segmentation, where the goal is to categorize every pixel in an
image into a specific object or stuff category.
Coco-Stuff is a pretty generic dataset, so in this case, for an indoor offices appli-
cation more suitable for a DEMO, only images that depict offices were selected
(Image 3.3). Therefore at the end there are 6350 train images, 280 val images
and 20 classes, in which it is included an open set class, since it is thought for
a very detailed application and it is not possible to classify individually all the
immeasurable types of objects that may be in a room.

Figure 3.3: CocoStuff dataset subset

3.2.3 Data augmentation
In both cases, given that the selected images aren’t a lot and to try to have

a more robust and generic NN, it is used data augmentation of the following
typologies:

• Horizontal Flip with p=0.5.
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• Color Jitter that tweaks images’ brightness, contrast, saturation and hue
with p=0.5.

• only in the case of Cityscapes dataset, Random Crop of half the input
size with p=0.4 (since Coco-Stuff annotations/images aren’t so targeted and
with this type of augmentation there is the risk of letting out all the relevant
information).

3.3 Optimizer and scheduler
For the training phase it is utilized an Adam optimizer [15] with initial learning

rate(LR) of 5e-4 and batch size of 4.
As scheduler, instead, it has been created a custom one that every 2 epochs divide
by 1.5 the current LR, until it reaches 6e-6.
And it stops the training either if it reaches 40 epochs, or if there isn’t a mIoU
improvement for 5 consecutive epochs.

3.4 Batch Normalization Fusion
Before the inference phase of the trained model, there is a process of incorpora-

tion of Batch Normalization layers information into the previous Convolutional or
Depthwise Convolutional layers.
This is done first to simplify the model structure for the hardware, and then to
cut some redundant parameters (the γ and β of the Batch Normalization layers),
in order to have to search for fewer quantization configurations. The following
formulas explain how, at inference time, the weights and the biases of the Con-
volutional/Depthwise Convolutional layers are adjusted by means of the Batch
Normalization parameters and the Moving Average and the Moving Standard
Deviation of the current batch:

Conv2d(x) = x ∗ W + bias

BatchNorm(x) = γ ∗ x−MovingAvg
MovingStd+ε

+ β

W = W ∗ γ
MovingStd+ε

bias = bias−MovingAvg
MovingStd+ε

∗ γ + β

(ε is a hyperparameter with value near 0 that is used to prevent eventual divisions
by 0)
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Chapter 4

Quantization Model Statistics

4.1 Target device
Now that these considerations have been done, let’s dig a little deeper into the

target.
The embedded device on which these neural networks need to be adapted, as
already said, is a STM microcontoller (MCU) with AI HW acceleration.
It is also composed of a neural processing unit (NPU), which is a specialized
type of processor designed to accelerate machine learning and artificial intelligence
workloads. NPU devices are designed to perform complex mathematical operations
quickly and efficiently, using techniques such as matrix multiplication and convolu-
tional neural networks. They are optimized for low power consumption and high
performance, making them ideal for use in mobile devices and other embedded
systems.
Like almost every embedded device, they support also a fixed-point notation to store
fractional numbers, and this method is utilized in this study for the quantization
of the NN model.

4.2 Fixed-point notation
The main difference between floating-point notation and fixed-point notation is

that in floating-point notation, the position of the decimal point is not fixed, while
in fixed-point notation, the position of the decimal point is fixed.
In floating-point, a number is represented as a combination of a mantissa and an
exponent. The mantissa represents the significant digits of the number, while the
exponent represents the position of the decimal point. This allows for a wide range
of values to be represented with a high degree of precision.
In fixed-point notation, a number is represented with a fixed number of digits
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reserved for the fractional part of the number. The position of the decimal point is
fixed, which means that the range of values that can be represented is limited by
the number of bits used to represent the integer part of the number.
However, in embedded computation, fixed-point notation is more efficient than
floating-point notation, as it requires less memory and processing power.
In particular, the used device utilizes a type of fixed-point notation called Qmn
notation, adding also the signed version when the number to be quantized requires
it. The Q in Qmn notation stands for "quantization", which refers to the process
of converting a continuous number into a digital number by rounding the values to
the nearest quantization level. The m and n values in the Qmn notation represent
the number of bits used to represent the integer and fractional parts of the number,
respectively, and the total of the two can vary based on the context.
In pure Qmn notation, the most significant bit (MSB) is used to represent the most
significant bit of the integer part of the number, and the range of values that can
be represented is from 0 to 2m − 2−n.
While in Qmn signed notation, the MSB is used to represent the sign of the number,
and the range of values that can be represented is from −2m−1 to 2m−1 − 2−n.
This means that Qmn notation can only represent non-negative numbers and the
total number of bits is m+n, while Qmn signed notation can represent both positive
and negative numbers and the total is m+n+1 (Figure 4.1).

Figure 4.1: QMN notation, 8 bit case. The violet square stands for the optional sign
bit. The green squared indicates the bits reserved for the integer part (m), while the blue
ones are the bits for the fractional part (n)
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4.3 Main goal
The main goal of this study is to quantize both weights and outputs of the

chosen NN model in the cleverest possible way, that means to quantize as much as
possible without losing too much prediction quality.
In this case, the STM microcontoller (MCU) with AI HW acceleration is pretty
flexible about the total bits to choose from for the quantization of every weight,
with some exceptions they range from 2 to 16. On the other side concerning the
outputs’ quantization, they are limited to 8 and 16.
And let’s not forget that, even if it’s quite safe and with almost irrelevant conse-
quences to assume that almost every tensor also needs the bit for the negative part,
from each total number of bits it is necessary to choose what is the right number
of bits for the integer part(m) and for the fractional part(n).
In the next section, taking for granted having for each tensor a fixed total number
of bits (a value from the bits possibilities for the quantization, from now on called
bit-space), there will be a study on how to choose m and n correctly, by means of
some statistics.

4.4 Qmn stats
The framework used is Qkeras, given its great quantization customization and

the fact that it can simulate in software how a quantized NN would behave.
Using as inputs the chosen dataset and a not quantized model already trained for
the target application, for each tensor of each layer different statistics are computed.
If the tensor is a weight, getting his values is easy because they are already saved,
but if it’s an output there is the need of doing a real time inference using the
dataset as input to get the dynamic ranges of the values, however the general
methodology is anyway the same and it is the following.
For every bit of the bit-space:

• The maximum value of the tensor is recorded.

• If possible, the m parameter of Qmn quantization is set in a way to keep
it as little as possible but at the same time to avoid cutting the maximum
value. If the maximum value is greater than what the chosen total number of
bits can represent, then it will necessarily be clipped.

• Parameter n is derived accordingly.

• Given the chosen quantization, the integer and fractional part errors obtained
quantizing are also computed, in order to get an estimate of how much
precision is lost.
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The first one is simply the count all the clipped values that exceed the range
of the possible interval of values with that m, and then normalizing it by the
total number of values.
The second error is calculated elevating by n every float value to get the
approximate correspondent fixed-point notation, and then casting it to integer
to find out if there are any differences with the previous value. Then it needs
to be normalized by the elevation by n and the total number of values.

Those are called Qmn stats and they are useful to calculate the next statistics,
called the Metric stats, that are needed to estimate the bits in the bit-space best
suited for each tensor.

4.5 Metric stats
By taking as inputs the chosen dataset, a not quantized model already trained

for the target application and the Qmn stats previously calculated, for each tensor
and for every bit of B is measured the impact that the quantization following the
stats has on the whole model.
And it’s done quantizing only one tensor at the time and looking at the impact
that has on the model metric, the mIoU in this case.
In this way it can be somehow estimated which are the bits in the bit-space best
suited for each tensor, and what are the configurations to absolutely avoid, since
they cause a significant mIoU drop even quantizing only that tensor in that way.

4.6 Heuristic criterion and retraining
With the Qmn stats and the dynamic ranges, given a total number of bits, it’s

immediate to find the best subpart to represent the integer part (and consequently
the fraction part). But how can the total number of bits be decided for every
weight/output of the model?
One simple but effective heuristic criterion is using directly the Metric stats just
found and looking at the drop in the metric score:
For every parameter of the NN, starting from the smallest bits of the bit-space, if
the mIoU is below a chosen threshold, then it is chosen a less strict quantization,
for example 16 instead of 8 bits.
Otherwise it is used the stricter quantization.
By looking at the metric statistics, it can be noticed that only a few layer lead to a
great reduction of the model performance when using an 8 bits quantization.
Simply quantizing in this way and so using only a post-training quantization,even
if the previous precautions have been taken, the metric of the whole model will
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drop anyway, because the Metric stats refer to the quantizations of only single
parameters and when it is done for the whole model all the little mIoU drops
accumulates their effects.
So it is necessary doing also a Quantization-Aware Training, and in this way the
model can get approximately the same mIoU score of the non-quantized version.
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Chapter 5

Genetic Algorithm Search

5.1 Post-training quantization
Using a quantization-aware training to boost the quality of the quantized model

predictions isn’t always a feasible solution. First of all because there is a lack of
control, then it is very hard to define in advance which quantizations are better
suitable for a retraining and finally it is impossible to predict in advance how
good will perform a certain model, it can work very well or it can under-perform.
Moreover, if validation data is enough to do an optimum post training quantization,
training data and high-performance AI environments with high storage capacities
are also needed to perform a quantization-aware retraining and there isn’t often
the opportunity to do like that.
So this chapter will focus on perform a very good post-training quantization, in
particular using a custom specialised Genetic Algorithm (GA) search, and it is the
main contribution of this study.

5.2 Genetic algorithm
Metaheuristic algorithms have gained popularity in recent years for solving

complex real-life problems in various fields such as economics, engineering, man-
agement and politics. These algorithms rely on intensification and diversification
as key elements, and striking a proper balance between them is crucial for effective
problem-solving.
Most meta-heuristic algorithms get inspired from biological evolution, swarm be-
havior and physics laws, and they can be broadly classified into two categories:
single-solution and population-based.
Single-solution algorithms use a single candidate solution and improve it through
local search, but may get stuck in local optima.
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Population-based algorithms, on the other hand, use multiple candidate solutions
to maintain diversity in the population and avoid getting stuck in local optima.
GA, which mimics the Darwinian theory of survival of the fittest in nature, is
a popular population-based algorithm among metaheuristic algorithms. It was
proposed by J.H. Holland in 1992 [16] and consists of chromosome representation,
fitness selection and biological-inspired operators as its basic elements.
So each individual of a population has encoded in itself, more precisely in its
genome, the parameters to optimize in this search. Each of the variables is called a
gene.
As time passes and new generations are created, the individuals of the population
are substituted by others that derive from them ( their offspring) that in general
are nearer to the optimal solution of the search. More in details, as also shown in
Figure 5.1, the steps of a genetic algorithm are as follows:

• Initialization: The algorithm starts by creating an initial population of
potential solutions to the problem. Each solution is represented as a set of
parameters or genes.

• Selection: The algorithm selects the fittest individuals from the population
to be used as parents for the next generation. The selection process is based on
a fitness function that evaluates how well each individual solves the problem.

• Crossover: The algorithm combines the genes of the selected parents to
create new offspring. This is done by randomly selecting a crossover point
and swapping the genes between the parents.

• Mutation: The algorithm introduces random changes to the genes of the
offspring to create diversity in the population. This is done by randomly
flipping or changing the value of a gene.

• Evaluation: The fitness of the new offspring is evaluated using the fitness
function and only the best are kept.

• Termination: The algorithm terminates when a satisfactory solution is
found or when a maximum number of generations is reached.
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Figure 5.1: Genetic Algorithm Search

5.3 Fitness
Optimization problems often involve multiple objectives and this study is not

an exception.
In the past these objectives were typically combined in an ad hoc manner to form
a scalar objective function, often through a linear combination of attributes or by
converting objectives into constraints.
Multiobjective GA (MOGA)[17] is a modified version of the simple GA that differs
in how fitness functions are assigned. Despite this difference, the remaining steps
are similar to those of GA. The main goals of Multiobjective GAs are convergence,
diversity and coverage.
The genetic algorithm (GA) can be adapted to handle multiple objectives by
incorporating the concept of Pareto domination[18] into its selection operator and
applying a niching pressure to spread its population out along the Pareto optimal
tradeoff surface.

5.3.1 Sub-metrics
As highlighted before, the quantization problem is to find out the best configu-

rations (in terms of the number of bits for each parameter) to adapt NNs at the
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edge.
It is important to notice that in this case the parameters are not intended as single
numbers (trainable or not) of the NN, but as the type of the tensors of each layer.
So for example a classic Convolutional layers has 3 different parameters: the kernel,
the bias and the output tensors.
So this optimization can be formulated as:

maxq M(ϕq(x))
minq |ϕq|
(maxq fps(ϕq(x)))

(5.1)

The sub-metrics are those explained in Section 3.1, and they are calculated for
every individual:

• M(ϕq(x)) is the metric M computed on the prediction of the model ϕ (quan-
tized following the configuration q ∈ Q) on data X, in this case the mIoU. It
is calculated easily doing an inference with the validation dataset.

• |ϕq| is the size of the quantized model in bits. Depending on which parameter
of the individual is considered (a weight/bias or an output), it can be the
static size or the esteemed dynamic size.

• (fps(ϕq(x))) are the frames per second esteemed compiling the model ϕ for
the target device, so it’s a very hardware-specific metric.
It is put inside curved brackets because it is calculated only optionally, and
when it happens, it is used instead of the size metric (even if in the case
of comparisons between individuals with very similar fps, the size metric
still makes a little contribution). It is done in this way because, even if this
metric is very suited and accurate for finding best model’s adaptations speed
performances, differently from the size it is very slow to calculate.

5.3.2 Pareto front
The Pareto frontier is a concept from economics that refers to the set of optimal

outcomes that cannot be improved upon without making at least one other outcome
worse off. In other words, it’s the set of solutions that are considered "efficient" or
"non-dominated" in a multi-objective optimization problem.
In particular, in a 2D Pareto front , the x-axis represents one objective and the
y-axis represents another objective. Each point on the graph represents a solution
to the optimization problem and the Pareto frontier is the set of points that are
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not dominated by any other point. This means that there is no other solution that
is better in both objectives than any point on the Pareto frontier. By identifying
the set of non-dominated solutions, it can then be chosen the solution that best
fits some priorities and trade-offs (Figure 5.2).

Figure 5.2: Pareto front graph, from [19].
In this example it is assumed that both metrics f1 and f2 must be minimized. The circles
are all the feasible solutions, while the green ones indicates the non-dominate solutions
(the best ones). In this case, the chosen optimal solution is the one with the minimum
distance from the intersection of the lines, perpendicular to the axes, drawn from the
two most external non-dominated points.

In this application, the optimization problem has those two objectives: minimizing
size and maximizing the mIoU.
So a set of solutions(individuals) that trade off between these two objectives are
generated and plotted on a 2D graph. The red dotted line corresponds to the mIoU
of the not-quantized model, in order to have a point of reference.
The main Pareto frontier is the set of solutions that are both the lowest size and
the highest mIoU, and any other solution is dominated by at least one point of
them. This can be done iteratively to find out on which level of Pareto frontier
assign each point, and that’s the real fitness value for each individual.
So the GA search favors the solutions that are part of the most "external" frontiers,
which have a smaller Pareto number, so it is actually a minimization of a single
objective, the Pareto front.

5.4 Search space dimension
Now it is time to make some considerations about the search space dimension

of the GA applied to this context.
Let’s focus on the scenario of only the following number of bits permitted for
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the quantization of every parameter: 4 – 8 – 12 – 16. In this case the bit-space
dimension (B) is equal to 4.
Even with the Batch Normalization layers already removed (as explained on Section
3.4) the average number of parameters of a performing Semantic Segmentation
model small enough to fit in the edge are many anyway. In particular the number of
model weights(+ biases)(W) are more or less 135. The number of model outputs(O)
are instead more or less 175.

5.4.1 Naive approach
With these premises, the total search space dimension would be the following:

BW +O = 4310 ∼ 4.35 ∗ 10186 Obviously this is a naive approach, infeasible even for
the GA search, with almost no hopes to find sub-optimal solutions.

5.4.2 Search division
A way to reduce this problem is dividing the search into 3 sub-tasks, all

independently configurable:

• Weight search (4-8-12-16 bit-space): BW = 4

• Output search (8-16 bit space): BO = 2

• Put the best results of the previous steps together (All search, not properly
a GA)

In this way, if necessary, different bit-spaces can be used for different sub-tasks and
the process can be optimized in terms of search time and in terms of search space
dimension, losing the complete independence of all the variables (a reasonable prize
to pay). Doing that, it is also kept in consideration(as explained in Section 4.3)
that in the target device the quantization of the outputs is stricter than the weights
one.
So the total search space dimension is reduced like that: BW

W + BO
O = 4135 + 2175 ∼

1.9 ∗ 1081.
But sadly the weight search space dimension is still too big to be handled from the
algorithm, so it is necessary to make other changes.

5.4.3 Weight search space cut
The weight search space can be further cut by removing the search of weights

whose sizes are very small, because they are almost irrelevant in the optimization
process and they don’t give an effective benefit in terms of speed/memory occupa-
tion.
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To do so, given that the size of a weight i is |wi|, the mean of the sizes of all
weights also needs to be calculated. And the weights to keep in the search are
those whose |wi|

mean(|w|) > threshold (by default 0.01), and the others can be put to
16 bits automatically.
In this way about 35 weights can be cut and the weight search space dimension
goes from 4135 to 4100, that corresponds more or less to 1.61 ∗ 1060; unfortunately
once again there are too many possibilities to handle.

5.4.4 Biased probability intervals
Since cutting the search space isn’t enough, there is the need to use complemen-

tarily another approach, that is pushing the search in a reasonably right direction.
Usually when creating the initial population, the genes are chosen randomly from
the possibilities (the bit-space) and also when it is needed to change a gene in the
mutation operation, the choice is still random.
So the new idea is having biased choices and biased probability intervals for this
operations (Figure 5.3), and for doing that, as it occurred in the heuristic criterion
with the training-aware approach, the previously calculated Metric stats are
utilized (Section 4.5).

Figure 5.3: From random to biased intervals

For every parameter, intervals of probability for the biased choices can be extracted
reversing and normalizing some special means of every bit of the bit space.
The mean is calculated summing all the distances from the mIoU found quantizing
with that specific bit, to all the mIoU of the bigger bits (and also the mIoU of the
not quantized model), and then dividing by the number of the distances.
In this way, mIoU of every single bit are evaluated relatively to those of other bits,
as it is shown in Figure 5.4.
The main idea of this approach is that if already quantizing in a certain way just a
single parameter the mIoU is quite low, then if I quantize also the entire model is
very likely that the mIoU would drop significantly. And so it is chosen a very low
probability for that quantization for that parameter.
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Figure 5.4: Biased probability intervals (of a single NN parameter).
The X axis indicates the number of bits of the quantization, while the Y measures the
mIoU obtained quantizing only that parameter in that way. In this example 60 is the
mIoU of the not quantized NN. The red lines indicates all the distances from which each
average is obtained. Then, confronting the different averages, those who are bigger will
have smaller intervals of probability.

5.5 Final GA algorithm

5.5.1 Implementation
By putting all these components and concepts together, the custom GA algo-

rithm is created.
At the beginning, 30 biased initial individuals are generated. Then they are evalu-
ated with a fitness function to understand how good they are in respect to mIoU,
size and fps, and the Pareto front put together all those informations.
And then, for each generation, 45 new offspring are generated starting from the
current population, 30% of times with a mutation operation and the remaining
70% with a crossover operation.
For choosing the "parent" individuals, it is used a K-Way tournament selection.
K=8 individuals are selected from the population at random and the best out of
these is picked to become a parent.
The crossover operation is a simple one-point crossover, in which a random point
is selected and the genes before are selected from a parent and those after from the
other one, creating a new individual.
The mutation, as previous explained, is a biased resetting, so a biased value from the
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set of permissible values is assigned to a randomly chosen gene. But this operation
isn’t done one single time for the creation of the same individual. It all depends
from the amount of parameters that the search must optimize (so the number of
genes). The thresholds set are every 150 parameters and when one of these is
exceeded, the number of genes that can be modified is increased by one. However
only the possibilities increase, to really decide how much genes are modified there
is a random choice starting from one up to the number of possibilities.
So when all the offspring are generated, there is the need to choose some of them to
not make grow population indefinitely. Elitism is the chosen approach, so a fitness
based selection is used to keep only the best ones (obviously first removing any
duplicates). But there isn’t the usual fixed population threshold (that is only a
lower bound), and as long as the individuals have Pareto front equal to 1, they are
kept in the population. This, combined with Pareto front fitness, almost make up
for the fact that there isn’t a specific methodology to enhance diversity.
As termination criterion, for reasons of times, the algorithm stops when a cer-
tain amount of generations is reached, but it can easily be extended to halt at
convergence.

5.5.2 Search results
The Figures 5.5, 5.6, 5.7 shows respectively the results of Weight search,

Output search, and All search (done for the Q-Seg1 on Cityscapes dataset as
an example).
As it can be seen, by doing Post-Training Quantization, the model usually get
approximately the same score of the non-quantized version, reducing at the same
time decidedly the size, so the final results are satisfactory.
Since it is a Pareto front implementation, one of the final configurations can be
chosen as needed, picking the suited trade-off between mIoU, size and fps.
In those cases, the model not quantized mIoU is ∼ 57.98% (red dotted line).
For the first Weight search, since the bit space dimension is pretty high (4), 100
generations are used, and a Pareto fitness of mIoU and model size is adopted.
For the Output search with a B of 2, they are needed only 30 generations, and
the metrics are the same of the previous one.
And at the end, for the All search that puts together the previous results, given that
is the final search and it is used to actually decide the quantization configuration,
there is the need for more accuracy and so the mIoU and the fps are used as metrics,
even if in this way the process is slower.
It’s worth noticing that the range of the mIoU in the graph is the usual 0-100 (%),
while that of the size and the fps changes model by model, because it is normalized
according to the minimum and maximum value the metric could get if the model
is quantized in the smallest and in the biggest way possible.

40



Figure 5.5: Weight search (Q-Seg1,
Cityscapes)

Figure 5.6: Output search (Q-Seg1,
Cityscapes)
The estimates about the outputs size are an up-
per bound, as already said in Section 3.1.2, since
they do not take into account the possibility that
intermediate buffers may be reused

Figure 5.7: All search (Q-Seg1, Cityscapes)
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5.5.3 Estimated search time
Obviously the following calculations are a not precise esteem of the duration of

this post-training quantization, since they depend from the type of calculator it is
being used and the workload it currently has.
In particular, the supercomputer used for this algorithm’s execution has 2 Intel
Xeon Gold 6240R CPU with a total of 48 cores, 96 threads’, 2 Quadro RTX 8000
GPUs with 48 MB of memory each, and 1 TB of RAM. It is worth noticing that
the resources of this calculator are often divided between differemt tenants.
Having said that, it’s quite useful having some reference numbers.
The preprocessing steps (executed once per model) are these:

• Qmn stats to quantize well (dynamic ranges. . . ): ∼ 37 minutes

• Metric stats quantizing one parameter at a time: ∼ 37 minutes * 4 (bit
space size) : ∼ 148 minutes

GA initializations:

• dataset caching for fast inference ( 1 minute) + (3 initializations (weights,
outputs, all) * ∼ 3 minutes): ∼ 10 minutes

GA searches:

• Weight search with mIoU and size metrics: 30 individuals (default number
of initial population) * ∼ 1.6 s + 100 (default number of generations) * 45
(default number of offspring) * ∼ 1.6 s: ∼ 120 minutes

• Output search with mIoU and size metrics: 30 individuals (default number
of initial population) * ∼ 18 s + 30 (default number of generations) * 45
(default number of offspring) * ∼ 18 s: ∼ 414 minutes

• All search with mIoU and fps metrics: ∼ 35 (best weight individuals) * ∼
18 (best output individuals) * ∼ 39 s: ∼ 409.5 minutes

So the total amount of search time is ∼ 1138.5 minutes = ∼ 19 hours
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Chapter 6

Results

Results demonstrate the effectiveness of both the retraining approach with the
heuristic criterion, and the post-training quantization with the GA search.
With the latter one there is more control about the particularities of the chosen
quantization configurations, both because they are optimized based on mIoU, size
and fps, and because there is the possibility of choice of the best suited configuration
for the application (thanks to Pareto front fitness). Moreover there isn’t the need
to use training data.
But in general the results are slightly better (on both datasets) if a retraining
approach is used, both for mIoU and the model size.
But it is worth noticing that a perfect tuning of the GA hyperparameters was
not done (for example diversifying them whenever a dataset or a specific model is
changed), but an attempt was made to remain fairly general. Furthermore, GA
search was stopped at a certain number of generations, giving up continuing the
research, and the more accurate fps metric was only used on the final all search.
Having said that, both the quantization approaches demonstrate to obtain more
or less the same prediction accuracy as the not-quantized model, but with the
model size reduce a lot. In effect, the results oscillate from a size of the quantized
model equal to 23.96% compared to the original one, going up to 26.32%. So,
regarding the average size of each parameter, there has been a transition from a
32-bit floating-point to approximately an 8-bit fixed-point.
For what concerns instead the different Segmentation models created at the be-
ginning, they both perform well. However, it can be seen that Q-Seg1 provides
slightly better inferences, given that the images outlines are smoother and less
segmented, differently from Q-Seg2.
Table 6.1 shows the results for Cityscapes dataset, and Table 6.2 for CocoStuff.
"N" is an abbreviation for "Normal" and refers to the not quantized model, instead
"Q" stands for "Quantized" and indicates the model already adapted for the edge.
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Model
name

Q. type N.
mIoU

Q.
mIoU

MIoU
ratio
(Q/N)

N. size
(MB)

Q. size
(MB)

Size
ratio
(Q/N)

Fps

Q-Seg1 GA 57.98 57.82 99.72% 15.42 3.87 26.32% 4.36
Q-Seg1 Heuristic 57.98 59.95 103.4% 15.42 3.71 26.08% 5.44
Q-Seg2 GA 58.11 57.76 99.4% 15.52 4.14 26.7% 4.7
Q-Seg2 Heuristic 58.11 57.89 99.62% 15.52 3.86 24.88% 6.89
Table 6.1: Cityscapes dataset, comparison between different models/quantizations.

Model
name

Q. type N.
mIoU

Q.
mIoU

MIoU
ratio
(Q/N)

N. size
(MB)

Q. size
(MB)

Size
ratio
(Q/N)

Fps

Q-Seg1 GA 36.89 37.01 100.33% 15.42 4.03 26.11% 6.92
Q-Seg1 Heuristic 36.89 38.8 105.17% 15.42 3.8 24.61% 11.21
Q-Seg2 GA 36.42 36.21 99.42% 15.52 3.73 25.21% 6.87
Q-Seg2 Heuristic 36.42 37.08 101.81% 15.52 3.72 23.96% 12.66
Table 6.2: CocoStuff dataset, comparison between different models/quantizations.

The following images instead give some examples about how actual inferences looks
like (for the different methodologies/datasets/models utilized).
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Figure 6.1: Cityscapes legend

Figure 6.2: Cityscapes image Figure 6.3: Cityscapes target
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Figure 6.4: Cityscapes Q-Seg1 inference (without quantization)

Figure 6.5: Cityscapes Q-Seg1 inference
(Ga search quantization)

Figure 6.6: Cityscapes Q-Seg1 inference
(Heuristic quantization and retraining)

Figure 6.7: Cityscapes Q-Seg2 inference (without quantization)
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Figure 6.8: Cityscapes Q-Seg2 inference
(Ga search quantization)

Figure 6.9: Cityscapes Q-Seg2 inference
(Heuristic quantization and retraining)

Figure 6.10: CocoStuff legend
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Figure 6.11: CocoStuff image Figure 6.12: CocoStuff target

Figure 6.13: CocoStuff Q-Seg1 inference (without quantization)

Figure 6.14: CocoStuff Q-Seg1 inference
(Ga search quantization)

Figure 6.15: CocoStuff Q-Seg1 inference
(Heuristic quantization and retraining)
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Figure 6.16: CocoStuff Q-Seg2 inference (without quantization)

Figure 6.17: CocoStuff Q-Seg2 inference
(Ga search quantization)

Figure 6.18: CocoStuff Q-Seg2 inference
(Heuristic quantization and retraining)
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Chapter 7

Conclusions And Future Works

In conclusion, this thesis demonstrate that it’s possible to achieve good results in
the Semantic Segmentation task using Neural Networks with not many parameters
and constituted by basic layers.
Furthermore the process of optimization and quantization has proven to be effective
for edge devices adaptation, reducing considerably the size of the model while
maintaining the overall effectiveness of the neural network.
The just explained process has been done analyzing the trained model in the right
way and doing targeted and clever configuration search.
The results obtained from this process have shown that neural networks store a
significant amount of redundant information, which can be compressed in a clever
way without affecting the overall effectiveness.
This finding has important implications for the field of artificial intelligence and
machine learning, as it suggests that there is significant potential for improving
the efficiency and performance of neural networks through optimization techniques.
Further research in this area could lead to the development of more advanced and
effective neural network models.
This could be done also trying to quantize even more and testing binary nets[20]
on the Semantic Segmentation task.
Another possible branch of research is attempting to use other types of quantization
different from fixed-point QMN, with a wide range of applications in various fields.
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