
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Efficient Hybrid Rendering of Large-scale
Data for Simulations on Cloud-based
Platform for a Fluid User Experience

Supervisors
Dr. Stefano Scanzio
Dr. Edoardo Lombardi
Dr. Katherine May

Candidate
Sebastian Gutierrez Zambrano

December 2023

Contents

List of Figures 4

List of Tables 6

1 Introduction 9

2 Analysis of frameworks for local and remote rendering in the web 13
2.1 Introduction . 13
2.2 Remote rendering tools . 13

2.2.1 VTK . 13
2.2.2 Mayavi . 14
2.2.3 Open3D . 15
2.2.4 ParaView (ParaViewWeb server-side) 15
2.2.5 Datoviz . 16

2.3 Local rendering tools . 17
2.3.1 Three.js . 17
2.3.2 X3DOM . 17
2.3.3 ParaView (ParaViewWeb client-side) 18
2.3.4 VTK.js . 18

2.4 Selection . 19

3 Development context 21
3.1 Introduction . 21
3.2 Methodology . 21
3.3 Technologies . 23

3.3.1 Development . 24
3.3.2 Tooling . 25
3.3.3 Testing . 26
3.3.4 Deployment . 26
3.3.5 Control versioning and progress 27

3.4 Development workflow . 27

2

4 Project goal 30
4.1 Context and current state of the project 30
4.2 Problematic . 31
4.3 Proposed solution . 34

5 Application development 37
5.1 Introduction . 37
5.2 Requirements elicitation . 37
5.3 Actors . 43
5.4 Interfaces . 44
5.5 Use cases . 45
5.6 Solution design . 50

5.6.1 Use Case Upload Geometry 51
5.6.2 Use Case Generate Geometry Decimation 53
5.6.3 Use Case Preview Geometry 55

5.7 Application Architecture . 58

6 Results 60
6.1 Introduction . 60
6.2 Local rendering approach . 62

6.2.1 Client performance . 62
6.2.2 Frame rate and data transferred 65

6.3 Remote rendering approach . 65
6.3.1 Client performance . 65
6.3.2 Server performance . 68
6.3.3 Frame rate and data transferred 71

6.4 Hybrid rendering approach . 71
6.4.1 Client performance . 72
6.4.2 Server performance . 74
6.4.3 Frame rate and data transferred 77

6.5 Analysis . 77

7 Conclusions 80

Bibliography 82

3

List of Figures

3.1 Agile methodology. 22
3.2 Kanban Board. 23
3.3 Frameworks used for the project development. 25
3.4 ESTECO-OPTIMAD Development workflow. 28
3.5 Jira Kanban’s board. 29

4.1 Static preview of geometry . 31
4.2 Local rendering representation . 32
4.3 Remote rendering representation . 33
4.5 Hybrid rendering representation . 36

5.1 Context diagram . 44
5.2 Use Case Diagram . 45
5.3 Class diagram. 51
5.4 UC1 Upload Geometry EBC diagram 52
5.5 UC1 Upload Geometry Front-end sequence diagram 53
5.6 UC1 Upload Geometry Back-end sequence diagram 53
5.7 UC2 Generate Geometry Decimation EBC diagram 54
5.8 UC2 Generate Geometry Decimation Front-end sequence diagram . 55
5.9 UC2 Generate Geometry Decimation Back-end sequence diagram . 55
5.10 UC2 Preview Geometry EBC diagram 56
5.11 UC3 Preview Geometry Front-end sequence diagram 57
5.12 UC3 Preview Geometry Back-end sequence diagram 57
5.13 Deployment diagram . 58

6.2 GPU usage and CPU load client-side with local rendering. 63
6.2 GPU usage and CPU load client-side with local rendering 64
6.3 GPU usage and CPU load client-side with remote rendering 66
6.3 GPU usage and CPU load client-side with remote rendering 67
6.3 GPU usage and CPU load client-side with remote rendering 68
6.4 GPU usage and CPU load server-side with remote rendering 69
6.4 GPU usage and CPU load server-side with remote rendering 70
6.5 GPU usage and CPU load client-side with hybrid rendering 72

4

6.5 GPU usage and CPU load client-side with hybrid rendering 73
6.5 GPU usage and CPU load client-side with hybrid rendering 74
6.6 GPU usage and CPU load server-side with hybrid rendering 75
6.6 GPU usage and CPU load server-side with hybrid rendering 76

5

List of Tables

2.1 Comparison between remote rendering tools. 20
2.2 Comparison between local rendering tools. 20

5.1 Functional requirement 01. 38
5.2 Functional requirement 02. 38
5.3 Functional requirement 03. 39
5.4 Functional requirement 04. 39
5.5 Functional requirement 05. 40
5.6 Functional requirement 06. 40
5.7 Functional requirement 07. 41
5.8 Non-functional requirements. 42
5.8 Non-functional requirements. 43
5.9 Actors . 43
5.10 Interfaces . 44
5.11 Use Case 1. 46
5.12 Use Case 2. 47
5.13 Use Case 3. 48
5.13 Use Case 3. 49
5.14 Functional requirements mapped into use cases. 50

6.1 Frame rate and data transfer with local rendering 65
6.2 Frame rate and data transfer with remote rendering 71
6.3 Frame rate and data transfer with hybrid rendering 77

6

Acknowledgements

I want to dedicate this thesis to all the people who assisted me on my journey
through my academic career, not only those who helped me academically and pro-
fessionally but also those who provided emotional support during both the good
and bad times. Without any of them, I wouldn’t be here, and I wouldn’t have come
this far.

I am especially grateful to my family, who were always there for me and served
as my driving force. I also want to express my gratitude to my friends and former
university colleagues in Colombia with whom I shared the dream that I am finally
fulfilling. To my girlfriend and my friends here in Italy who helped me adapt and
cope with stepping out of my comfort zone, without them, I would have felt more
alone than ever in this foreign experience.

Finally, I would like to thank Optimad and my colleagues for not only provid-
ing me with the opportunity to develop this thesis but also for opening the doors
for me to start my professional career as a computer engineer.

A special dedication to my pets Cannella and Tomillo, whom I think of and miss
dearly.

7

Summary

The rendering of large 3D models within a web-based application necessitates a
considerable allocation of computational resources. The limitations within a user’s
web browser environment make it impractical for executing such resource-intensive
tasks, therefore resulting in suboptimal user experiences due to perceptibly slow
processing speeds. Consequently, different techniques have emerged to address this
problem, offering the means to visualize large data efficiently within a cloud-based
application.

This thesis work, in collaboration with Optimad Srl, searches for alleviating this
computational load by migrating a portion of it to the cloud. This effort culmi-
nated in the development of a hybrid rendering approach, integrated into a corpo-
rate Computational Fluid Dynamics (CFD) Software-as-a-Service (SaaS) platform,
dedicated to simulating Conjugate Heat Transfer (CHT) phenomena in electronic
devices. This kind of application requires fast rendering capabilities for visualiza-
tions.

In a comparative analysis between local, remote and hybrid rendering, the results
revealed the superiority of the hybrid approach across many aspects, including
frame rate, data transfer, performance, and cost efficiency. Consequently, this the-
sis established the hybrid rendering approach as the optimal choice, conclusively
demonstrating that it is a suitable option to deliver a fluid user experience visual-
ization in cloud-based applications.

8

Chapter 1

Introduction

Throughout the years the significance of 3D visualizations in software applications
has been progressively intensifying for different purposes such as entertainment,
architecture, engineering medicine and education. Due to the evolution of the In-
ternet and the massive creation of data centers, it is now possible to deliver in
lighter, faster, and easy way those applications to user, so that they can use and in-
teract without having the necessity to install and configure them, and simply access
through the World Wide Web and use them as service. 3D visualization on web-
based applications back to the nineties when Virtual Reality Modeling Language
(VRLM) was created, supporting the creation of 3D models and interactive scenes
using text-based markup and scripting language to define geometries, appearance
and behavior of 3D objects and held by a browser that understands the language
and performs the rendering [1].

Since then, the concept of 3D web-based applications has been exploited and many
technologies like X3D, 3DMLW, gITF, O3D, COLLADA were born to increas-
ingly enhance the computing performance, the latency and ease to develop appli-
cations and many research groups and companies adopted them to create their
solutions. An example is a project from High Performance Computing Center
Stuttgart (HLRS) whose objective was by means of their framework COVISE gen-
erates as a result of CFD simulations using HPC resources, geometries objects that
consist of polygons, lines, triangles and textures that in client side are rendered us-
ing WebGL capabilities generating a scene from a vertex buffer array. They found
out that although rendering with WebGL is generally fast even with high number
of triangles, the large amount of vertex transferred from server and the using of
vertex buffer objects are demanding resources which produces a perceptible slow-
down in rendering [2]. All those technologies perform rendering using the GPU
capabilities of the machine that runs the browser, and even though the evolution
of those technologies allowed the execution of efficient algorithms to accomplish
faster rendering, eventually the efficiency depends on client site machines and their

9

Introduction

hardware limitations; as a result, multiple and complex geometries to be visualized
might not yield good renderings or could take more time to be processed. For in-
stance, 3D visualization of large models like geographic scene is not only memory
expensive for all the buildings, textures and coordinates that have to be allocated
but also for the huge data transfer that implies and also the GPU effort to trying to
render it in real-time [3], so prefetching strategy based on prediction strategies and
occlusion culling were implemented to rendering only what in the scene is and only
transfer the potentially 3D models that would be showed in the scene, avoiding a
high resources consuming on client-side [4]. In the same way, for situations whose
objective is to represent cultural heritages where it is desired to have an accurate
and detailed rendering for large 3D models of builds, multi-resolution approaches
are implemented to rapidly load to the client a low-resolution version of the large
models and progressively send from server the rest of the data to be rendered so
while user can see and interact with the models those are getting more visually
appealable without having long waiting time [5].

On the other hand, the concept of server rendering has been adopted to reduce
the computational charge on client-side and leverage all the visualization process-
ing to the server whose hardware requirements and specifications are known to the
developers and guarantees that large models can be rendered hastily and avoid
transferring the raw models to the user. Server-side rendering is the streaming of
images or video of 3D models generated and rendered by the server and emitted to
the client so this one can only display them by using JavaScript and WebGL. Many
projects adopted this approach to create 3D visualizations of large data-sets using
appropriate tools like ParaViewWeb that performs rendering running over a cluster
with MPI in a distant server and uses a message broker to stream the result [6].
Similarly, server-rendering was also implemented in the early era of mobile devices
where powerful GPUs in small devices were still narrow, so techniques to leverage
heavy rendering processes to proxy with strong GPU capacity was a good option [7].
Furthermore, to exploit even more this approach, hardware-accelerated techniques
were developed to improve the server rendering and achieve better performance
[8]. Nonetheless, no matter how powerful a server could be to perform an efficient
rendering and offer notable advantages with respect to pure client rendering, the
overall performance also depends on client bandwidth; if the client does not have
a seamless connectivity [9, 10], that would lead to latency issues, and since server
rendering constantly delivers plenty of images this approach as a result is not ideal
for interactive visualizations.

In the wake of the mentioned disadvantages of both approaches when they ren-
der lots of data, many projects adopted hybrid solutions to take fruitfully the best
features of them to counteract their drawbacks and show better results. The com-
bination of interactive rendering from client-side and the efficient computational

10

Introduction

capabilities of the server-side offers even more benefits. One good example is a
project of Augmented Reality (AR) for a mobile application where the concept of
hybrid rendering is adopted as split rendering and its scope is to generate in the
mobile terminal a low quality rendering and leverages the reflections, shadows and
luminescence to the server since those are the difficult part to render, so at the end
both parts cooperate together to generate a high quality image without using all the
computational resources and reducing latency in both sides. The result made using
split rendering was compared with a full high-quality rendering on server-side and
showed that their quality is almost identical [11]. Similarly, Cloud Baking adopted
the term of using both renderings as collaborative rendering and due to the growth
of cloud-based applications server rendering evolved into cloud rendering, allowing
to the remote rendering to be performed in servers that are far from client device.
This project reduced the latency and let the more expensive operations of render-
ing to the cloud, so client-side just render a simpler 3D scene with a basic ambient
light using WebGL and the server-side renders global illumination, diffuse lighting,
specular lighting, and shadows of the scene for better photo-realistic appearances,
improving the quality of the result by streaming the result of the scene processed
using OpenGL with a WebSocket. The limitations were how to show an interactive
scene where the server rendering always delivers the part of the scene that users
wanted to move [12]. In addition, another advantage of collaborative rendering is
the capacity to improve the frame per second (FPS) on video-games by distributing
the GPU workload when high demand of game calculation is needed; experiments
showed that the smoothness in the game rate FPS is highly improved when GPU
client helps to render components of a remote rendering in a server that has a better
GPU processing time [13].

Optimad S.r.l with its associate ESTECO SpA are developing a Computational
Fluid Dynamics (CFD) application as Software-as-a-Service (SaaS) based on a
micro-services architecture in which it seeks to enable non-experts in this field
to perform engineering simulations and heat-sink analyses of electronic devices for
Conjugated Heat Transfer (CHT) problems. One of the desired functionalities of
this application is the fluid visualization and interaction of the 3D models that the
potential user can load within the application. Since the modality of the application
is based on a client-server paradigm, the visualization of the model will be through
the client’s web browser. The problem is that the rendering process should not be
exclusively done by the client’s browser, since the size of the model to be analyzed
and the computational power of their devices are unknown; on the other hand,
rendering on the server side can be a viable and effective solution, however, since
the amount of data that will be transmitted through client-server communication
is unknown, a constant request for rendering could lead to a slow model interactive
visualization. Nevertheless, visualization rendering must be fluid and user-friendly
regardless of the size of the model. In this thesis, the main goal is to implement a

11

Introduction

service of the main application that allows the user to interact with large 3D mod-
els in a fluid, effective and computationally efficient manner, both client and server
side, in such a way that the server performs the entire rendering of the model when
the user is not actively interacting with it, while the client’s browser can perform
a local rendering of a lighter version of the model sent by the server when the user
is interacting with it; minimizing both latency and size of data transfers without
compromising the user experience.

The thesis is organized as follows:

• Chapter 2 presents an analysis of the frameworks that can offer the capabilities
to develop the proposed hybrid rendering into the SaaS.

• Chapter 3 presents the methodology, technologies and workflows used for the
development of the application.

• Chapter 4 introduces the current project context, the problematic and the
proposed solution.

• Chapter 5 presents all the software engineering process on the construction
of the solution proposed for the application.

• Chapter 6 shows the tests and the results obtained.

• Chapter 7 contains the conclusions.

12

Chapter 2

Analysis of frameworks for local
and remote rendering in the web

2.1 Introduction
This section will describe some suitable software tools for 3D visualization that
offer state-of-the-art rendering and are designed for usability in research fields such
as geology, astrophysics, medicine, and engineering. For the purposes of this thesis
the tools that will be mentioned are compared to decide the best choice to obtain
an efficient and usable implementation of the hybrid rendering that is intended to
be performed in this case of study, considering that those tools are appropriate for
the context of CFD application in a cloud-based platform, and the compatibility
and usability with the established frameworks that are used in the development of
SaaS must be guaranteed.
To evaluate each tool will be considered criteria such as performance, usability, flex-
ibility, scalability, compatibility, support from vendor and costs, also mentioning
some advantages and limitations. The decisive criteria will be the ease of commu-
nication and synchronization between both local and rendering tools to produce
the desired output.

2.2 Remote rendering tools

2.2.1 VTK
The Visualization Toolkit (VTK) is an open-source collection of software tools sys-
tem for 3D computer graphics and image processing that allows the development of
custom visualization applications starting from implemented visualization pipeline.
It provides a set of C++ libraries for creating and rendering graphics, as well as
Python and Tcl Interfaces for easy scripting [14].

13

Analysis of frameworks for local and remote rendering in the web

It is one of the most popular toolkits adopted in various commercial applications
because of its capabilities that provide a range of visualization techniques including
volume rendering and surface rendering. It is intended to be used for a wide range
of developments for end-user applications such as medical imaging and scientific
visualization; since it runs on multiple operating systems including Windows, Mac
OS, and Linux. Moreover, VTK has a large and active user community that con-
tributes to its development and support, which makes it easy to extend through its
modular architecture and support for plugins. VTK relies on Pyhton wrapping to
expose services to the web using WebSockets for communication.
Nevertheless, VTK requires a steep learning curve which do not make it easy to use,
especially for beginners, considering that despite of its wide community, some parts
of the library are poorly documented or lack examples. In terms of performance,
VTK is not capable of rendering seamlessly large data sets and may not provide ad-
vanced graphic features like real-time ray tracing. However, integration with MPI,
allows VTK to have an excellent support for scalable distributed-memory parallel
processing.

2.2.2 Mayavi

Mayavi is a free open-source scientific data visualization tool for creating 3D plots
and visualizations that is closely integrated with the abundant ecosystem of Python
packages for interactive manipulation of the data and its automation and repro-
duction. It is built on top of VTK library with the objective of being highly
customizable, providing tools for developing scientific applications for interactive
visualizations. Further to being just a visualization library, Mayavi offers plugins,
dialogs and widgets for ease scientific workflow [15].
Since Manyavi is a higher-level interface of VTK, it is capable of creating com-
plex 3D visualizations, also compatible with a wide range of operating systems and
it inherits the support of rendering engines like OpenGL, Mesa and X3D. Unlike
VTK, its learning curve is lower because it does not require technical expertise and
high coding skills to use effectively, however, it can be steep for those who are not
familiar with Python. The tight integration with Python can provide benefits such
as the usage of package like mpi4py for enabling parallel processing to distribute
computation across multiple nodes and processors. Although Mayavi is designed
to be fast and efficient there are some performance issues associated with Python
overhead, where VTK directly in C++ is more efficient to use. Moreover, Mayavi
is designed to be run on a stand-alone machine, so it does not support remote
rendering, but it is possible to extend VTK’s capabilities which allow rendering to
be performed on a server and the results to be streamed to a client machine in
real-time.

14

Analysis of frameworks for local and remote rendering in the web

2.2.3 Open3D

Open3D is an open-source library for rapid software development in 3D data pro-
cessing. It uses efficiently powerful data structures in both C++ and Python and
provides from them useful algorithms for point cloud, mesh processing and 3D
visualizations. It is a user-friendly API, which simplifies the development of 3D
applications having a low learning curve. Open3D was engineered for high perfor-
mance so can handle large-scale point clouds and meshes using algorithms that are
optimized for parallel computing. It supports multi-threading, distributed comput-
ing and GPU acceleration [16].
Open3D has limited platform support, it was mainly designed for Linux and Ma-
cOS, so features are not supported on Windows and building the framework in this
operating system has another procedure. In addition, since it is an emerging library,
its community is still small and supporting is limited although its documentation
is growing but it needs to be polish for beginners.
A key feature of Open3D is the possibility of performing remote rendering in a
C++ or Python server by means of WebRTC as protocol communication. This
method is interesting since WebRTC was initially designed to be a peer-to-peer
protocol to communicate between browsers and transfer mainly video, images and
audio without using a server in the middle. However, Open3D achieves to imple-
ment in a minimalist way this protocol in a standalone application that exposes a
port in which any browser can reach to get directly the information transmitted in
real-time [17].

2.2.4 ParaView (ParaViewWeb server-side)

ParaView is built on top VTK, it is created by Kitware the same company that cre-
ated VTK. It is a general data analysis and visualization application that supports
a variety of data formats, including structured and unstructured grids, point clouds,
and polygonal data. As VTK, ParaView is an open-source application compatible
with many platforms making it accessible to a wide range of users. It is used in
research fields such as engineering, geology, astrophysics, etc. It shares the same
design of being an application for developers as well as end-user software. A notable
difference between VTK and ParaView is that the latter has better performance
since it can support larger data by working across multiple machines simultane-
ously in a cluster (High Perfomance Computing), making highly scalable [18].
On the other hand, although for end-user ParaView has an user-friendly interface
to navigate and create visualizations, for developers it has a steep learning curve
and limited documentation in some areas.

15

Analysis of frameworks for local and remote rendering in the web

Regarding the web communication, ParaViewWeb is a web-based interface for Par-
aView, it is not a re-implementation of it, it is just the infrastructure to communi-
cate ParaView capabilities and its visualizations using a client-server architecture.
Similar to VTK, as web server, they share the same core of communication using
a Python wrapper, however ParaViewWeb has compatible capabilities in the setup
of the rendering, reducing the amount of code needed to transmit remotely the
rendering results [19].

2.2.5 Datoviz

Datoviz is a high-performance open-source Python library for creating interactive
scientific data visualizations supporting graphical primitives such as meshes and
volumes. Datoviz provides a C API that allows not only to be wrapped in Python
but also in other languages such as R, MATLAB, Julia or Rust. It also provides an
integrated graphics stack for 2D, 3D, graphical user interfaces and natively supports
efficient interactions between rendering and general-purpose GPU computing. The
key strength of Datoviz is the performance because of its state-of-the-art rendering
engine Vulkan which is a low-level graphic API created by Khronos consortium, to
be the successor of OpenGL. Vulkan provides scalable, low-overhead, fine-grained
control of GPU and GPU-CPU and removes abstractions in previous generation
graphics API in order to deliver the highest performance, which makes it suitable
for Datoviz for handling especially huge data-sets [20, 21].

Be that as it may, Datoviz is currently in an early development phase, so the
library is not stabilized and some of its use-cases are not implemented yet. Hence,
it has limited documentation and lacks community support which makes it hard
to learn. Moreover, it is only compatible with Linux and MacOS platforms, which
can be a limitation for developers who need to work on other platforms.

Finally, since Datoviz is an emerging library, it is currently a stand-alone library
and although in the future it is planned for Dataviz to have a real-time video
streaming with GPU-powered visualization server for remote rendering, nowadays
that feature is still in development and the implementation for streaming rendering
images shall be leveraged to developers who use the library. Furthermore, it is also
planned to have a web integration using a state-of-the-art web standard WebGPU,
successor to WebGL, which aims to be the evolution JavaScript API for accelerated
graphics computation to modern 3D capabilities based on APIs provided by Vulkan,
Metal and Direct3D 12, so high-performance local rendering in web browsers can
be achieved since WebGPU does not depend on a port API (i.e OpenGL) to the
local machine but it uses directly GPU capabilities [22].

16

Analysis of frameworks for local and remote rendering in the web

2.3 Local rendering tools

2.3.1 Three.js
Three.js is a JavaScript library and API for creation and displaying of 3D graphics
on the web. It offers several tools and functionalities to create complex 3D scenes,
animations and interactive manipulation of the models in the scene. It uses We-
bGL so it has all the capabilities of this API and a wide range of compatibility with
several platforms including desktop and mobile browsers. It was created to adopt
all the functionalities that WebGL can offer without the complexity of it, so it is
intuitive and easy for developers as they do not need to know low-level graphics
programming. It is open-source and has a large community that contributes to
the documentation and provides plenty of examples and resources to help with the
development. It provides 3D features such as texture, lighting and shading, and
it supports different 3D models from meshes to 3D file format that can be easily
imported to the scene [23].
However, Three.js can be resource-intensive especially when rendering complex
scenes with high levels of detail that leads to performance issues on devices who
does not have enough computational requirements. Furthermore, Three.js does not
support by default remote rendering, it is possible however to implement an ad-hoc
proxy for receiving and displaying images from a remote server by using HTTP
requests or custom web sockets and Three.js canvas capabilities, which potentially
leads to a low transfer of data and may limit the seamless interaction with the
scene.

2.3.2 X3DOM
X3DOM is an open-source framework for creating and displaying 3D graphics on
the web using x3D language. It uses X3D standard, which is similar to WebGL
but with a declarative syntax. Its goal is to be embedded into HTML5 DOM so
interactive web applications can rapidly integrate and synchronize 3D models with
the DOM using HTML tags, without the need for plugins or specialized software.
It is accessible to a wide range of users since uses HTML and it is compatible with
the most common technologies on the web and it can be used in any browser that
supports HTML5, making it versatile and suitable for any device. It is extremely
easy to use knowing the basics of web development and no need of advanced knowl-
edge in computer graphics [24].
Unlike Three.js, setting a scene for displaying a simple 3D model is easier, since
no lines of JavaScript code are needed to create the scene, adjust the camera and
show the object. This simplicity is a strong feature as well as a weak one because
it limits the complexity of 3D scenes and as a result performance issues arise. In
the same way, it is not too easy to customize scene and objects programmatically.

17

Analysis of frameworks for local and remote rendering in the web

Besides, it does not have a large community so, compared to other technologies, it
is difficult to find resources that help to learn advanced features of the framework.
Originally, X3DOM was not thought to be a real-time communication for 3D graph-
ics, however, as mentioned in section 2.2.3, WebRTC is suitable to stream content
in HTML in a remote peer connection and its protocol allows fast communication
in the web. The integration of these two technologies has shown prominent results
[25]. It is still necessary to create a custom way to synchronize a bilateral com-
munication if local and remote rendering are planned to be used together using
WebRTC.

2.3.3 ParaView (ParaViewWeb client-side)
As mentioned in section 2.2.4, ParaViewWeb is a framework that leverages the
power of rendering either to VTK or ParaView and displays the results in the
web. The JavaScript library grants the possibility of performing 3D visualizations,
analyzing and manipulating data in web server by relying on a remote processing
server. ParaViewWeb offers an attractive and user-friendly interface for the user
to interact with their visualizations and it is compatible with most of the browsers
today. A crucial property is the communication core for real-time visualization,
thus interaction with data visualization can be performed and changes in the scene
can be seamless even though is a remote environment, this however depends also
on the network latency.
A notable disadvantage for the client library, besides the mentioned previously in its
server-side version, is the low flexibility for local rendering in the user’s machine; it
is possible to perform local rendering in particular cases where small 3D geometries
are displayed in the scene, so the free manipulation of the WebGL canvas in the
client side is not possible. This feature is not actively supported since ParaViewWeb
focus is remote rendering [26].

2.3.4 VTK.js
VTK.js is a JavaScript library for 3D graphic visualizations, volumetric rendering
and data processing based on VTK C++ library. It includes several rendering
techniques and accelerated volume rendering using ray casting developed initially
in WebGL 1.0 but then adapted in version 2.0. It is not intended for end-users but
for developers who can develop a web-based application using the VTK original
framework. Unlike ParaViewWeb, VTK.js has high-performance visualization uses
WebGL for local rendering and it is designed to be modular so it is extensible, and
developers can easily add new functionalities and features to their applications. In
fact, VTK.js aims to be the replacement of ParaViewWeb in client-side because it
has not only the same capabilities including remote rendering but also modern code,
and compatibility with popular frameworks such as React and Angular. Moreover,

18

Analysis of frameworks for local and remote rendering in the web

it has an active community of developers who continuously improve the library and
make it efficient including also in their source code the possibility of using state-of-
art rendering engine WebGPU [27].
For the remote rendering, VTK.js shares core communication with VTK server and
ParaViewWeb server, so it is versatile and can fit perfectly with any of the two.
No additional coding for transmission of stream images is needed, it is enough to
select a port of communication.
Nonetheless, VTK.js, as its C++ version, requires a significant amount of learning
and its documentation is not as comprehensive as other libraries.

2.4 Selection
After describing the potential frameworks to be selected with their strengths and
points to be improved, some criteria were established to compare them and choose
the more suitable tool that could be adopted in the on-course developing SaaS for
the main scope of the thesis. Table 2.1 and Table 2.2 summarize the characteristics
based on the criteria of each tool for rendering and local rendering respectively.

First of all, from Table 2.1 it can be appreciated that Datoviz is a modern frame-
work that was born in recent years and in future it can be even more powerful and
wide-spread, but despite its state-of-the-art technologies, it is still growing a need
to be improved especially in compatibility and remote communication. In the same
way, Mayavi is a good option, it has good documentation, a good interface, and
it is easier to use than VTK; however, it does not have as good performance as
the other tools and it does not have by default a core communication for remote
rendering. VTK, Open3D and ParaView are the remaining libraries to be selected.

Second of all, regarding browser rendering as illustrated in Table 2.2, X3DOM
is a good tool for showing in a fast and easy way 3D models without a high degree
of knowledge in computer graphics. However, those benefits are also limitations
on its performance, restricting the possibility to customize rendering pipelines and,
nowadays it does not have modern rendering engine. Using WebRTC is a good
way to communicate with a server for the exchange of data in visualization, but
it is necessary to implement it in a proper way. Three.js has a steeper learning
curve than X3DOM but it is still a fast option to display 3D models on the web,
it has good documentation and a large community. The main problem is that
is a general-purpose library, so additional features like remote rendering are not
implemented and it is leveraged for developers. ParaViewWeb, on the contrary,
was developed mainly for remote rendering and browser rendering performance is
limited. As a result for VTK.js was selected for local rendering on the web, it is
constantly updated using state-of-the-art rendering engine, it can handle in a good

19

Analysis of frameworks for local and remote rendering in the web

manner local and remote rendering and it has a high performance.

Finally, as VTK.js was selected in local rendering, Open3D had to be discarded.
Although Open3D is modern and it has a good documentation, low learning curve
and interesting way to perform remote visualization in web; it was discarded be-
cause VTK.js offers the possibility to alternate between local rendering and remote
rendering to another server that executes either VTK or ParaViewWeb, provid-
ing a high degree of usability in terms of communication. Furthermore, VTK and
ParaView are tools that, despite their absence of good documentation, have been
used for Optimad in previous projects as stand-alone libraries, thus, a high level of
knowledge is already acquired. ParaViewWeb server-side has been selected because
of its performance, it was designed to support larger data than VTK and to work
with parallel computing systems.

Criteria VTK Mayavi Open3D ParaView Datoviz
Performance Medium Medium High High Very High

Usability Low Medium High Low Low
Rendering engine OpenGL OpenGL OpenGL OpenGL Vulkan

Scalable ✓ ✓ ✓ ✓ ✓
Compatibility Cross-platform Cross-platform Windows limitations Cross-platform No Windows

Documentation Limited Good Good Limited Limited
Open-source ✓ ✓ ✓ ✓ ✓

Remote communication VTK server Not included WebRTC ParaViewWeb server Not included

Table 2.1: Comparison between remote rendering tools.

Criteria Three.js X3DOM ParaViewWeb VTK.js
Performance Medium Low High High

Usability Medium High Medium Medium
Rendering engine WebGL X3D WebGL WebGL/WebGPU

Compatibility Cross-platform Cross-platform Cross-platform Cross-platform
Documentation Good Good Limited Limited

Open-source ✓ ✓ ✓ ✓
Remote communication Not included WebRTC VTK/ParaViewWeb server VTK/ParaViewWeb server

Table 2.2: Comparison between local rendering tools.

20

Chapter 3

Development context

3.1 Introduction
This section will describe the methodology, technologies and workflows for the de-
velopment of the application. Although the scope of this thesis is to show only
the development of the 3D models visualization and interaction, the context also
exposes the whole picture of the entire development for the application and the
pipelines of working that Optimad and ESTECO implement to achieve their goal.
Most of the technologies and frameworks were adopted based on previous expe-
riences in other projects that both enterprises have worked on. The selection of
the tool in charge of the rendering in Chapter 2 had to fulfill the technologies
constraints described in this section.

3.2 Methodology
In order to ensure a flexible, iterative, incremental, and optimal workflow for the
development process, agile methodology was implemented in this project. The
methodology was used to plan, describe, assign, execute, and review tasks required
to complete the SaaS platform.
Agile methodology is known for its flexibility in the development stages, promoting
a higher degree of collaboration between teams, and facilitating continuous im-
provements. In contrast to methodologies like Waterfall and V model, which follow
a linear approach and often lead to significant time delays and rigid modifications
during execution, agile methodology allows for iterative and incremental develop-
ment. The project is divided into smaller interactions called sprints, enabling faster
evaluation, testing, and refinement of requirements without impeding the overall
workflow.
Another key aspect of agile methodology, considered in the context of this project,
is the recognition that some requirements may be volatile, and therefore the core

21

Development context

functionalities are prioritized throughout the development process. This approach
allows for value delivery based on customer feedback and active involvement in the
development. The customer can assess the ongoing results and verify if they meet
their needs, making it possible to modify requirements for a more accurate solution.
For the same reason, agile methodology relies on empirical observations to make
decisions, rather than relying solely on the initial plan. This approach provides
better predictability of the final outcome and allows for adjustments during the
sprints. As a result, teams working on different features need to have transparent
communication to bring constant reviewing and testing between them to gradually
improve the product in each sprint [28, 29, 30]. Fig. 3.1 shows a diagram of Agile
methodology.

Figure 3.1: Agile methodology.

Agile methodology has several models that derive from it, like Scrum and Kanban.
Both models work with the same philosophy of being iterative and incremental
with a high degree of flexibility. A notable difference is how the improvements and
progress are discussed and the existence of roles. Scrum presents specific roles and
hierarchies to perform certain activities and the progress is shown as a discussion of
the opportunities, difficulties, and experiences to improve [31]. On the other hand,
Kanban in project management context, proposes a visualization paradigm where
tools like boards and cards are used to represent the state of the current tasks
to see the overall progress of the project and simultaneously the progress of each
singular task. In Fig. 3.2 is shown the board proposed by Kanban for visualizing

22

Development context

the progress and organization of a project.

Figure 3.2: Kanban Board.

The main purpose of the Kanban board is to represent the task as a card to allow
the team members to track the progress of the project in a visual way. Each card
could have a brief description of a user story that can be grouped in subdivision
of a bigger feature to be implemented. They move along the columns to represent
their current state. Backlog refers to the user stories to be implemented with a
given description, priority, category and assignee, then in the Doing column, are
shown those tasks that are being developed by one or more members. Once a task
is finished, it goes to Review column so the other members of the team and cus-
tomers can give feedback, allowing the flexibility of modification; and finally when
a task is successfully finished and reviewed, goes to Done column to keep track
of what has been done and what remains. All the cards can move forward and
backward if it is necessary thanks to the flexibility of Agile [32].
Optimad and ESTECO team has chosen Kanban model as a methodology for the
development of the SaaS platform because of the previously mentioned advantages
of Agile methodology, the usability that Kanban offers as it can be used not only for
software engineering tasks but also for tasks of other nature related to the project
and the positive results found in the post-mortem of previous projects.

3.3 Technologies
In a micro-services approach, individual components of a system operate autonomously,
dynamically adjusting their resource allocation based on demand. They collaborate

23

Development context

seamlessly with one another to collectively deliver a wide range of functionalities
within the overarching system. To follow this design pattern, a series of technolo-
gies were adopted in this project to develop the cloud-native application with a
certain level of knowledge and experience for optimizing the efficiency on the de-
veloping time, taking control of versioning, monitoring the progress and testing
current implemented requirements.

3.3.1 Development

Java is one of the most suitable programming languages for developing micro-
services architectures due to its readability and reliability. Using Java to develop
this kind of architecture is advantageous since its annotation syntax is simple to use
and plenty of frameworks are built on top of it. MicroProfile, SpringBoot, Eclipse
Vert.x and Quarkus are some of the most notable frameworks used nowadays [33].
Quarkus is used in the development of this project for being a framework that incor-
porates and implements features from MicroProfile and Vert.x to provide extended
capabilities for micro-services such as authentication, REST services, security and
mailing. In addition, Quarkus is designed to be efficient and lightweight in the cre-
ation of applications for containerized environments. It supports containerization
technologies such as Docker and Kubernetes with a focus on optimizing memory
consumption while providing a developer friendly environment [34].
Those characteristics are fundamental for this project where different sub-systems
are in charge of running simulations, assessing and displaying geometries and han-
dling user data need to work together in an efficient and scalable way in order to
bring to the user a seamless and transparent experience leveraging the bigger pro-
cedures to the pieces running in HPC machines while the user can interact with
other features.
Given the flexibility of Quarkus for integrating other frameworks with different
scopes to complement an application, several database engines could be integrated
easily and configured for development. In this particular case a non-relational
database like MongoDB was considered because of the context of the methodology
mentioned in Section 3.2 where requirements can change along the life cycle of the
project, so a flexible database that allows to change the initial structure of the
data without affecting the current data is suitable and appropriate. Furthermore,
developing with containerized MongoDB can bestow an easy way to implement,
test and interact with the database while allowing the transition to a production
guaranteeing the same behavior [35].
Vert.x serves as the main interface for creating and managing various asynchronous
components and services within an application. It is used in this project as an ac-
cess point to storage in a development and production environment, files regarding
the eventual manipulation of geometries that the user can upload and simulation

24

Development context

Figure 3.3: Frameworks used for the project development.

results. This is useful since no manual modification of the path where the infor-
mation will be stored is needed as Vert.x works as an interface for any final cloud
object storage [36].
Angular is used as a front-end framework for building the interface application de-
livered to the user that consumes the micro-services. It provides a robust set of
features and tools for developing a rich interactive user interface. It offers RxJS
library, which embraces the reactive programming need in a micro-services architec-
ture since it has to handle asynchronous data streams such as HTTP requests and
responses. Moreover, Angular follows the Model-View-Controller (MVC) architec-
tural pattern using Typescript, which is a typed super-set of JavaScript, improving
code organization, components re-utilization and enhancing the productivity [37].

3.3.2 Tooling

For the automation building and organization of build script tasks is used Gradle,
which grants key features like supporting wide range of project structures and han-
dling projects of different sizes. For the construction of the platform is fundamental
to support multi-module builds, because separated projects need to build and work
all together to represent each service in the architecture. It is also helpful since sim-
plifies the dependency management providing a dependency resolution mechanism
and extracts external dependencies from remote repositories like Maven Central
[38].
In addition, IntelliJ IDEA, the IDE currently used for having a good integration
development environment for Java, has also an excellent integration with Gradle,

25

Development context

supporting Gradle-based projects seamlessly, easing the build scripts and perform-
ing of various tasks. IntelliJ automatically detects the presence of a Gradle build
script and configures the IDE accordingly.
Moreover, IntelliJ offers robust support for static type checking, allowing devel-
opers to leverage its code assistant. Continuously evolving, it provides numerous
dynamic suggestions through IntelliSense. As an instance, the editor can propose
available methods along with their expected parameters, a valuable functionality
for expediting development [39].

3.3.3 Testing

On the back-end side, Quarkus delivers a module for testing, which is designed to
facilitate the development, integrating the benefits of Mockito’s mocking capabil-
ities with the Quarkus infrastructure to simplify the process of writing unit tests
and promoting good testing practices by decoupling resources and dependencies
from the test and making work in an isolated way. Similarly, Quarkus makes use
of JUnit annotation to organize and modulate the setup of integration and unit
testing in order to execute more than one test concurrently.
The testing framework on the front-end side used for testing Angular components,
REST calls and interface test is Jasmine, which offers complete capabilities to per-
form tests, mocking and spying the components needed to assess and providing
a well-organized hierarchical structure that helps in maintaining a large suite of
tests. Jasmine works along with Karma to generate Continuous Integration (CI)
and Continuous Development (CD) pipelines, executing live test and generating
test reports to keep track of workflow.

3.3.4 Deployment

During the development phase Docker and Kubernetes files and scripts are used
locally to setup how the micro-services are going to be connected and configured
in terms of CPU, memory and network performance, with the purpose of having
an easy and reliable transition of what is being developed and what is going to be
produced at the end. Amazon Web Service (AWS) is going to be the responsible for
deploying the final micro-service architecture and it will display Kubernetes over
it, so the orchestration of multiple containers is going to be simplified since the
infrastructure is handled by the services that AWS offers. Furthermore, services
of monitoring, hosting, storage and security are going to be provided by AWS
guaranteeing that the whole application will work efficiently and optimally. Since
in the future this application will be maintained and new features are going to
be released, AWS allows to continuously update the application and infrastructure
without cutting functionalities and performances [40].

26

Development context

3.3.5 Control versioning and progress
Github is being used as the git repository to handle the control versioning during
the development. The possibility of collaborating seamlessly among team members
on the same project, allows a higher degree of distribution of tasks without worrying
on the conflicts between versions. Working remotely between teams facilitates code
reviewing, discussion and documentation. Additionally, in the project is being used
Github Actions, which creates CI/CD pipelines in which the building and testing
of the application is triggered every time a new feature is being implemented to
the main workflow of development to ensure that any feature does not cause any
problem to the current state of the project.
To keep track of the user stories and the tasks to be resolved, Jira is the tool used in
the platform that allows to visualize as the methodology explained in Section 3.2,
the Kanban board where the project management gets easier to understand and ex-
tends the planning of future features to be implemented. One of its characteristics is
that any card of the board can be seen as an issue that then is categorized into bugs,
tasks, user stories or spikes; and then those are encapsulated on bigger events called
epics where represent a big functionality to be developed. Communication and col-
laboration through descriptions, comments, mentions and file attaching that Jira
provides, represent a huge advantage to reporting and analyzing that the progress
is being going fruitfully [41].
For communicating technical issues, development progress or questions, Mattermost
is used, which is the main channel of communication between the team members.
Here, all the members share ideas, make calls, discuss relevant topics and keep
updated on all the progress that has been made.

3.4 Development workflow
Prior to entering the development phase, it is imperative to provide an introduction
to the internal software development process carried out within the company. This
process is succinctly outlined in Figure 3.4
This is an iterative process that typically spans one to two weeks per defined task,
which is essential for developing project features. Its purpose is to maintain a co-
herent and accurate project progression, fostering ongoing software construction
enhancement. Comprising various phases aligned with software development best
practices, prioritizing phases beyond raw coding. These stages contribute signifi-
cantly to achieving an optimal end result while minimizing the expense of rectifying
issues during the early development stages.
Exploring deeply into the process, the first step involves taking a task that has been
initially placed in the Backlog on Jira’s Kanban board. This task is then assigned
to a developer and transitioned to the Doing column, signifying that a dedicated
team member is actively working on it. Each task is structured as a user story,

27

Development context

Figure 3.4: ESTECO-OPTIMAD Development workflow.

including a clear description of the features’ requirements, accompanied by specific
acceptance criteria. These criteria play a crucial role in the subsequent code review
process, ensuring that all necessary aspects are thoroughly examined.
During the coding phase, each developer ensures not only the creation of functional
code that addresses the required features but also incorporates good programming
practices throughout the development process. These practices encompass the es-
tablishment of unit and integration tests that comprehensively cover each individual
component and the interaction between them, respectively; this ensures that all ele-
ments function effectively both in isolation and when integrated to work seamlessly
together. To facilitate streamlined code reviews for peers, lint checks are imple-
mented, enhancing code readability and ensuring a clear presentation of new im-
plementations. As outlined in 3.3, IntelliJ in conjunction with Gradle and Quarkus
aids in generating a project framework. This empowers developers to easily incor-
porate new modules, libraries, or components as necessary, thereby guaranteeing
the compatibility of each new service with its predecessors.
Once a developer deems a feature as complete, it is shared using Git, and a new
pull request is initiated to merge the feature into the main project. The implemen-
tation of the said feature is then communicated through Mattermost, where peers
are asked for their review and feedback.

28

Development context

During the review phase, team members collaborate by sharing their feedback on
the code. They provide suggestions for improvements and, if necessary, point out
areas that require changes. This ensures that any issues or deviations from the ac-
ceptance criteria are promptly identified. Additionally, the team focuses on main-
taining a clean coding style. This effort goes beyond passing lint tests, as they
aim to enhance readability. Once the team members have thoroughly reviewed and
tested the code as users, the working branch becomes almost ready for merging.

Figure 3.5: Jira Kanban’s board.

Simultaneously, alongside the code review process, the CI/CD pipeline is initiated
using a script. This script builds the application with the latest changes and per-
forms various checks, such as verifying coding standards, identifying conflicts with
libraries, and validating versions. Once the build is complete, the same CI/CD
pipeline runs all integration and unit tests. These tests ensure that there are no
conflicts with the current branch, thus guaranteeing a seamless integration of the
new feature when it is merged.
Finally, in the absence of conflicts, Github provides the choice to squash all commits
into a single one before merging into the master branch. Following this, the corre-
sponding task is marked as complete in Jira and transitioned to the Done column.
This approach ensures comprehensive issue tracking, enabling project monitoring
and progress assessment. The Kanban board is consistently updated throughout
each workflow phase, exemplifying its role in task management within Jira, as il-
lustrated in Figure 3.5.

29

Chapter 4

Project goal

4.1 Context and current state of the project
Optimad S.r.l, in collaboration with its affiliate, ESTECO SpA, is currently in
the process of developing a Software-as-a-Service (SaaS) Computational Fluid Dy-
namics (CFD) application. This application is structured upon a micro-services
architecture designed to empower users who may not possess extensive expertise in
the field of fluid dynamics to facilitate engineering simulations and heat-sink analy-
ses for electronic devices, specifically addressing Conjugated Heat Transfer (CHT)
problems.
In order to achieve their goal, users have the capability to upload their own ge-
ometries, facilitating the execution of simulations with customizable inputs. This
process enables users to assess the suitability of these geometries for their intended
purposes. Users have the possibility to initiate numerous simulations, employing a
variety of geometries and inputs, and subsequently receiving detailed reports sum-
marizing the outcomes for each individual simulation.
It is important for users to be provided with the capability to verify and ensure that
the geometries they upload align precisely with their intended selections. In pursuit
of this objective, the project has incorporated a feature that facilitates the retrieval
and presentation of a static preview of the uploaded geometry from an isometric
camera perspective. Figure 4.1 illustrates the appearance of this functionality as it
is presented to the user.

30

Project goal

Figure 4.1: Static preview of geometry

While this feature offers the capability to visualize an uploaded geometry to
confirm its alignment with the user’s intended upload, it is important to note that
it provides only an isometric view, offering a limited level of detail. Optimad is
concerned about the possibility of users uploading geometries that closely resemble
one another, with subtle variations that may only become discernible upon closer
examination through zooming and rotation.
For the mentioned reasons, this project aims to incorporate a new functionality to
replace the existing one. This new feature will enable users to visualize and in-
teract with the uploaded geometries, offering a comprehensive examination of the
entire 3D model. Crucially, this functionality must ensure seamless visualization of
the geometry, regardless of its size or complexity. This optimization will efficiently
manage server system resources, alleviating the need for users to use their compu-
tational capabilities. Moreover, it is imperative that these enhancements do not
lead to a substantial increase in application costs.

4.2 Problematic
Displaying a 3D model visualization within a web-based application has become
increasingly feasible, owing to the technological advancements mentioned in Chap-
ter 1. Modern web browsers now feature robust graphics engines that harness the
computational resources available on client machines to efficiently render geome-
tries. This rendering process is commonly referred to as Local rendering since it is
processed entirely on the client-side. Figure 4.2 provides a visual representation of
the local rendering process.
Nonetheless, a key implication of this approach is that the 3D model must reside

31

Project goal

within the browser’s memory. Consequently, the geometries comprising the model
must either be retrieved from a server or re-uploaded by users each time they access
the application.

Figure 4.2: Local rendering representation

A potential remedy for this issue involves storing the geometries in the browser’s
local storage when they are initially uploaded and maintaining them there until a
session concludes. However, a significant challenge arises when dealing with the size
of these geometries. For applications that deal with CFD simulations and demand
a high level of detail, users often upload geometries of considerable complexity, re-
sulting in files that can weigh in the order of megabytes, or even gigabytes. This
implies a substantial constraint as browser storage capacities are limited.
Moreover, retrieving these extensive geometries each time they need to be visu-
alized incurs a considerable computational and economical cost. This is due to
the substantial volume of data transferred between the server and client, especially
when multiplied by the potential number of concurrent clients. Additionally, many
web browsers struggle with the rendering of large 3D models due to the substan-
tial memory requirements and the overhead involved in utilizing the user’s graphic

32

Project goal

hardware. Consequently, the user experience may be compromised, leading to re-
duced frame rates and slow performance on the user’s machines.

On the contrary, given the impracticality of burdening the user with the entire
computational load, an alternative approach has been contemplated. This ap-
proach involves streaming a continuous series of rendered images through a server
endowed with superior computational capabilities. This technique is commonly re-
ferred to as Remote Rendering, as it relocates all processing activities away from
the client’s computer. Consequently, the client side role is reduced to merely dis-
playing the stream of images within a dedicated canvas. In effect, this eliminates
the necessity for rendering processing on the client side and prevents the need to
retain large data in browser memory. Figure 4.3 illustrates a representation of a
remote rendering process.

Figure 4.3: Remote rendering representation

This approach effectively addresses the majority of issues associated with lo-
cal rendering. By offloading the computational workload onto a dedicated server
equipped with higher capabilities, it is ensured optimal rendering of geometries of
any size. Furthermore, since the user would have already provided the geometry,
the expense of transferring it is a one-time occurrence. Nonetheless, it is crucial
to consider that the primary purpose of this application is to conduct simulations
and heat-sink analyses for CHT problems. Therefore, the cost associated with
implementing an interactive preview feature should not surpass that of the core
functionality of the software. This is particularly relevant when considering the

33

Project goal

transmission of high-fidelity images of a geometry rendered on a server located re-
motely from the user’s machine, as it involves substantial data transfer, which can
vary depending on the duration and level of user interaction with the interactive
preview.

Optimad has concerns regarding this approach, primarily due to two key factors.
First, the frame rate depends on the smoothness of the image stream, a factor
inherently reliant on user network capabilities and the variability in image sizes,
it is possible that this approach may potentially undermine the overall user expe-
rience. Furthermore, the second concern pertains to the economic implications of
data transfer in a multi-user environment. Optimad is interested in avoiding allo-
cating a substantial portion of the project budget to this functionality, as it does
not constitute one of the primary core aspects of the project.

In summary, there is a need to develop an interactive preview system for geometries
of large size that offers seamless user-friendliness while concurrently mitigating the
escalation of both economic and computational costs.

4.3 Proposed solution
Considering the advantages and disadvantages outlined earlier, an alternative solu-
tion is being proposed within the context of this thesis. The objective is to evaluate
the efficacy of this proposed solution in addressing the challenges delineated by the
two conventional approaches. This new approach seeks to combine the merits of
the preceding solutions, thereby leveraging the strengths of both while minimizing
their respective weaknesses.

This approach for this thesis will be called Hybrid rendering since both client and
server will participate in the geometry rendering. This approach consists of render-
ing a lighter version of large geometry with a process called Decimation. Decimation
is the process of reducing the number of points in a data-set while trying to pre-
serve its overall shape and important features. It is particularly useful when dealing
with large data-set, in this case, large geometries, as it can significantly reduce the
memory and computational resources required for visualization [42].
This version of the geometry is generated by the server after the completion of the
initial upload. Subsequently, it is retrieved by the client, enabling the browser to
render it efficiently, thereby saving substantial computing resources. It is assured
that this optimized version will consistently maintain a constant file size of 1 MB,
achieved by minimizing data points while preserving the original geometric integrity.

However, this new version may not show a high-fidelity depiction of the geometry,

34

Project goal

as it has undergone significant point reduction. Figure 4.4 illustrates the difference
between the original geometry and its decimated form. The primary function of a
decimated version is to alleviate operations regarding interaction, such as rotation
and zooming on the client side. Subsequently, when a user interacts with the model
and navigates to the specific portion of the geometry they wish to inspect, a high-
fidelity rendering process is initiated on the server side. This mechanism closely
resembles remote rendering, but with the distinction that instead of streaming a
multitude of images, a single image is transferred each time a user ceases their
interaction with the geometry. Figure 4.5 provides a visual representation of the
hybrid rendering process.

(a) Original geometry (b) Decimated geometry

Figure 4.4: Decimated geometry example

35

Project goal

Figure 4.5: Hybrid rendering representation

In this way, it is expected that the primary limitations inherent in the first two
approaches can be effectively mitigated. This is owing to the fact that there would
be a notable reduction in the computational load imposed on the client side, all the
while ensuring that user experience remains unaffected. Simultaneously, the volume
of data transmitted from the server to the client would be substantially diminished,
as only a single image would be streamed each time a user ceases interaction, as
opposed to during interaction. Consequently, this approach would yield a reduction
in data transfer costs, thereby aligning with the significance of this functionality
and its corresponding budget constraints.

36

Chapter 5

Application development

5.1 Introduction
This section will comprehensively present the software engineering processes neces-
sary for building the application. These processes encompass requirement elicita-
tion, analysis, actor and use case design, as well as application architecture. Certain
parts of this chapter will present the current overall system described, especially in
sections 5.3, 5.4, 5.5, 5.6 and 5.7, however, the focus of this chapter lies principally
on how the proposed solution is developed and integrated with the current system.

5.2 Requirements elicitation
The development initiative was initiated with the formulation of mockups and con-
ceptual ideas. Optimad, a specialist in numerical analysis and CFD simulations,
sought to transform one of their existing applications into a web-based interface.
This transformation aimed to enhance user-friendliness by incorporating an appeal-
ing and intuitive graphical user interface.
ESTECO, closely affiliated with Optimad, joined the development efforts due to
their wealth of experience and expertise in similar undertakings. As a result, the
primary source of the project’s requirements stems from Optimad itself. As high-
lighted in the preceding chapter, the initial phase involved the creation, discussion,
and organization of requirements into user stories using an iterative approach. This
dynamic process led to the emergence of new user stories during meetings, while
implementation of Epics was still under development.
Within the scope of this thesis, the following tables will exclusively outline the de-
scriptions of requirements tied to the functionalities of the proposed solution (hy-
brid rendering). Additionally, requirements pertaining to the conventional solution
(involving local and remote rendering) will be included for comparative analysis.
In Tables 5.1 to 5.7 are described the functional requirements.

37

Application development

Requirement FR01 Requirement type Functional
Description Upload a geometry file that can be used

as a heat-sink or a source body.
Reason Based on the geometries uploaded, the

user can know which geometries are go-
ing to be used for simulations.

Acceptance criteria The uploaded file is only STL exten-
sion. The uploading should show the
progress. The geometry will be lost if
the server goes down during the up-
loading. A geometry identifier must be
generated after being uploaded.

Priority Medium

Table 5.1: Functional requirement 01.

Requirement FR02 Requirement type Functional
Description Enable client-side rendering of up-

loaded geometries for interacting pre-
view

Reason Visualize geometry to make sure that
the geometry corresponds to the file
that was uploaded previously by the
user

Acceptance criteria Client-side rendering processed by
user’s machine. The front-end must
give the possibility to rotate the camera
view and zoom in/out. The geometry
visualized must be the expected that
was uploaded.

Priority Medium

Table 5.2: Functional requirement 02.

38

Application development

Requirement FR03 Requirement type Functional
Description Enable server-side rendering of up-

loaded geometries for interacting pre-
view

Reason Visualize geometry to make sure that
the geometry corresponds to the file
that was uploaded previously by the
user. Visualize geometries whose file
size is too big to be processed by user’s
machine

Acceptance criteria Server-side rendering processed by a re-
mote server. The front-end must give
the possibility to rotate the camera
view and zoom in/out. The geometry
visualized must be the expected that
was uploaded.

Priority Medium

Table 5.3: Functional requirement 03.

Requirement FR04 Requirement type Functional
Description Generate a decimated/lighter version

from an uploaded geometry.
Reason A lighter version of big geometries is

needed to be displayed on the user’s
machine.

Acceptance criteria The size of the decimated geometry
must have an overall size of 1MB.
Should be generated on the back-end
with an existing geometry ID.

Priority Medium

Table 5.4: Functional requirement 04.

39

Application development

Requirement FR05 Requirement type Functional
Description Display geometry decimation status

when is being generating even when the
user navigates to another component.

Reason The visualization of the geometry will
not block the user from using other
functionalities. If the generation takes
long, the user should see the status at
any moment.

Acceptance criteria The status must be tracked. The status
should be displayed once the geometry
has finished to be uploaded. Changing
the page must retrieve the status of the
decimation generation

Priority Medium

Table 5.5: Functional requirement 05.

Requirement FR06 Requirement type Functional
Description Retrieve to user the decimated geome-

try when is generated.
Reason An existing decimated geometry needs

to be retrieved to the user in order to
display it locally.

Acceptance criteria The resulting decimated geometry is
delivered as a structure of vertices or
triangles persisted in user’s memory.
The decimated geometry should be de-
livered when a decimated has finished
to be created.

Priority Medium

Table 5.6: Functional requirement 06.

40

Application development

Requirement FR07 Requirement type Functional
Description Enable automatic switch client-side

and server-side rendering of uploaded
geometries for interacting preview.

Reason Visualize interactively a geometry to
make sure that the geometry corre-
sponds to the file that was uploaded
previously by using a lighter version of
geometry for the client side and the de-
livery of the full geometry processed by
a server

Acceptance criteria Client-side rendering of a decimated ge-
ometry when the user interacts with
it (zoom in/out, camera rotation).
Server-side rendering of the complete
geometry when the user stops interact-
ing with it. The transition between ren-
dering should be automatic.

Priority Medium

Table 5.7: Functional requirement 07.

41

Application development

All functional requirements must be implemented while also satisfying non-
functional requirements, ensuring the application’s performance, usability, scala-
bility, availability, security and licensing, and compatibility. In Table 5.8 the non-
functional requirements are described.

Requirement Type Description
NFR01 Compatibility The application should be compatible

with any device equipped with a mod-
ern web browser, including both desk-
top PCs and laptops.

NFR02 Performance The platform should be able to han-
dle visualizations for large and com-
plex geometries efficiently, with mini-
mal degradation in performance.

NFR03 Performance The application must implement effi-
cient storage management to accom-
modate the storage requirements of ge-
ometries and intermediate data gener-
ated during the visualization process.

NFR04 Scalability The system should scale seamlessly
to accommodate a growing number of
users requests without compromising
response times.

NFR05 Security User-uploaded geometries and simula-
tion data must be securely stored and
transmitted to prevent unauthorized
access or data breaches.

NFR06 Cost Efficiency The application should be designed
to efficiently utilize and optimize re-
sources, to avoid incurring excessive in-
frastructure costs.

Table 5.8: Non-functional requirements.

42

Application development

Requirement Type Description
NFR07 Security Ensure compliance with relevant data

protection regulations, such as GDPR.
NFR08 Availability The platform should maintain high

availability, ensuring that visualiza-
tions can be run at any time without
extended downtime.

NFR09 Usability The user interface should be intuitive
and user-friendly, allowing users to eas-
ily upload geometries, configure simula-
tion parameters, and interpret results.

NFR10 Licensing Ensure compliance with software li-
censing agreements for any third-party
libraries or tools utilized in the simula-
tion process.

NFR11 Performance 95% of application requests must be
served within 2 seconds to meet user
experience expectations

Table 5.8: Non-functional requirements.

5.3 Actors

After establishing and collecting both the functional and non-functional require-
ments, it becomes crucial to address additional facets of the project needed for its
development. These facets pertain to the entities engaged within the application,
their interfaces, and the broader system context. Specifically, the actors and their
descriptions are outlined below, providing insight into the key entities that will
interact with the application. The system’s actors are delineated in Table 5.9.
The intended users comprise individuals with expertise limited to 3D graphic de-
sign, lacking familiarity with CFD. They seek to assess and simulate uploaded
geometries to determine the successful completion of CFD tests for their models.

Actor Description
User Uses the application to upload geome-

tries and make CFD simulations.
Administrator Manages and oversees various aspects

of the application to ensure its proper
functioning, security, and efficient use.

Table 5.9: Actors

43

Application development

Figure 5.1 represents the context of the system that reports how the actors are
supposed to interact with the system.

Figure 5.1: Context diagram

The actor in the role of Administrator, within this context, serves as a maintainer
for ESTECO-Optimad. They possess an enhanced authorization to manipulate
system features, enabling a quicker response in case of any internal malfunctions.
For normal scenarios, this role will not participate actively with the functionalities
of the application, so User will not need directly Administrator to interact with
the system.

5.4 Interfaces
After mentioning the system actors, the subsequent step involves establishing the
mechanisms through which these actors can interact with the application. These
mechanisms can be categorized into two distinct types: the logical interface and
the physical interface. The logical interface delineates the conceptual interaction
between the entity and the application, including various technologies and inter-
faces. On the other hand, the physical interface explains the tangible means by
which this interaction occurs, encompassing any pertinent hardware components.
Table 5.10 provides an overview of the essential interfaces for the entities to interact
with the application.

Actor Logical Interface Physical Interface
User GUI Network, monitor, mouse, keyboard
Administrator GUI, company VPN Network, monitor, mouse, keyboard

Table 5.10: Interfaces

44

Application development

Both actors will interact with the application through a graphical user interface.
The distinction lies in the fact that only the Administrator can get access through
a VPN in order to use privileged functionalities; Considering that the application
operates as a web-based system, a computer with Internet access is necessary for its
use. Furthermore, the application has been optimized for utilization on smartphone
browsers.

5.5 Use cases
Figure 5.2 presents a detailed diagram illustrating the interactions between actors
and the system, showcasing how their various requirements are mapped to specific
use cases and the associated behaviors. Each use case provides insights into certain
pre-conditions, post-conditions, and scenarios. It is important to note that this
diagram encompasses all the use cases that will be present in the final application,
but only those pertinent to the thesis will be elaborated upon.

Figure 5.2: Use Case Diagram

In Tables 5.11 to 5.13 are described in detail only the use cases relevant to the

45

Application development

thesis. The use case Preview Geometry will show a scenario for each rendering
mode used in the thesis.

Name Upload Geometry
ID UC1
Pre-conditions User must be logged in and have a Case created.
Post-conditions The geometry that the user uploaded is persisted with

a new ID.
Nominal scenario

1. User clicks on button Add device.

2. System opens file chooser.

3. User chooses the STL file of the desired geometry.

4. System divides the file into chunks and sends it to
the server.

5. System shows a progress bar until is complete

6. System builds the file from the chunks, persists it
and generates a unique identifier.

7. System initiates Use Case 2.

Non-nominal scenario

1. User clicks on button Add device.

2. System opens file chooser.

3. User chooses the STL file of the desired geometry.

4. System divides the file into chunks and sends it
to the server, but the server is overloaded or there
are connection problems.

5. System shows a failure message and displays a
Retry button.

Table 5.11: Use Case 1.

46

Application development

Name Generate Geometry decimation
ID UC2
Pre-conditions User must be logged, have a Case created and a geom-

etry uploaded successfully.
Post-conditions The geometry that the user uploaded has now a deci-

mated version that is sent back to the browser.
Nominal scenario

1. System checks if the geometry file has a size higher
than 1MB.

2. System decimates the number of triangles of the
STL file into a number that fits with a file size of
1MB.

3. System shows a progress bar while decimating un-
til is complete

4. System retrieves the decimated file to the user.

5. System enables View button.

Non-nominal scenario

1. System checks if the geometry file has size higher
than 1MB.

2. System decimates the number of triangles of the
STL file into a number that fits with a file size of
1MB.

3. System takes more than it should or there are con-
nection problems.

4. System shows an error message.

5. System keeps disable View button.

Table 5.12: Use Case 2.

47

Application development

Name Preview Geometry
ID UC3
Pre-conditions User must be logged, have a Case created and a geom-

etry uploaded successfully with a decimated version in
memory if needed

Post-conditions The geometry is displayed to the user this one can in-
teract with it.

Nominal scenario -
Local rendering 1. System clicks on View button.

2. System shows in a canvas the full geometry up-
loaded in memory.

3. User interacts with it (zoom in/out, move).

4. System renders with user resources the geometry.

Nominal scenario -
Remote rendering 1. System clicks on View button.

2. System sends from the browser the geometry ID
to be rendered.

3. System retrieves the geometry file from ID and
displays it into a canvas remotely.

4. User interacts with it (zoom in/out, move).

5. System retrieves camera position from the browser
and from these, renders and sends images of the
geometry back to it.

Table 5.13: Use Case 3.

48

Application development

Name Preview Geometry
ID UC3
Nominal scenario -
Hybrid rendering 1. System clicks on View button.

2. System sends from the browser the geometry ID
to be rendered.

3. System retrieves the geometry file from ID and
displays it into a canvas remotely.

4. User interacts with it (zoom in/out, move).

5. System renders with user resources the geometry
decimated.

6. User stops interacting with the geometry.

7. System retrieves camera position from the browser
and from these, renders and sends images of the
geometry back to it.

Non-nominal scenario

1. System clicks on View button.

2. System is overloaded or is not able to display the
geometry.

3. System displays an error message.

Table 5.13: Use Case 3.

49

Application development

To take an insight into their interconnection, now is presented a mapping be-
tween functional requirements and use cases in Table 5.14.

UC1 UC2 UC3
FR01 ✓
FR02 ✓
FR03 ✓
FR04 ✓
FR05 ✓
FR06 ✓
FR07 ✓

Table 5.14: Functional requirements mapped into use cases.

5.6 Solution design
It is now possible to start designing the key components required for building the
application, incorporating its domain model and the execution of various scenarios,
based on established use cases and their respective functional requirements.
In Figure 5.3, it is presented the class diagram of the application, illustrating the
entities that abstractly represent the attributes and relationships of objects needed
within the program. It is important to note that, given the nature of the project
and methodology, these entities are only a subset of the potential entities that may
emerge during its development. As of the writing of this thesis, these are the enti-
ties identified and that are actively developing during the sprints.
The core of the business logic lies in allowing Users to create portfolios of sim-
ulations, referred to as Cases. Within these Cases, users can upload two types
of Geometry: Device and Source. These components are essential for conducting
CFD analyses within the context of a Compact Heat Exchanger (CHT) used for
heat sinks. The Source represents the electrical or electronic equipment generating
heat, and its characteristics vary depending on the Material used and its attributes.
On the other hand, the Device signifies the contact point with the surrounding en-
vironment where heat is released or dissipated [43].
These geometries enable the possibility to run multiple simulations with different
configurations. Since some simulations can be time-consuming, it is provided a
progress status indicator to keep users informed about the progress of each simu-
lation.

50

Application development

Figure 5.3: Class diagram.

Subsequently, the upcoming subsections will provide an in-depth exploration
of how entities are interconnected and how they interact to fulfill the use cases
outlined in Section 5.5. It employs Entity-Boundary-Controller (EBC) diagrams to
illustrate the flow and connections between users and the responsible components
for executing the desired functionalities. The sequence diagrams delineate the steps
and timeline governing the communication among components, ultimately leading
to the successful execution of desired functionalities.

5.6.1 Use Case Upload Geometry
Figure 5.4 shows the interaction between the boundaries and controllers to effec-
tuate the uploading of a geometry using the software design pattern Model-View-
Controller (MVC). The geometry is saved in memory during the uploading on the
front-end side, however, once it is uploaded, the binary file is saved in an Amazon
Elastic File System (EFS) and its information is persisted in a database.

51

Application development

Figure 5.4: UC1 Upload Geometry EBC diagram

In Figures 5.5 and 5.6 are presented the sequence diagram of the front and
back-end side respectively. The file is divided in chunks in order to facilitate the
transfer and data load towards the back-end and once is totally uploaded decides
whether to begin with the decimation or not. Whenever an error is presented is
informed directly to the user. In the same way, the back-end reconstructs each
chunk, generates a unique identifier and saves the information properly.

52

Application development

Figure 5.5: UC1 Upload Geometry Front-end sequence diagram

Figure 5.6: UC1 Upload Geometry Back-end sequence diagram

5.6.2 Use Case Generate Geometry Decimation
As explained in Section 4.3, the decimation process is necessary to deliver to the
user a lighter version of the geometry, keeping the most important points to preserve
its original shape.

53

Application development

In Figure 5.7 shows how the boundaries and controllers interact to generate the
decimation.

Figure 5.7: UC2 Generate Geometry Decimation EBC diagram

In Figures 5.8 and 5.9 are presented the communication between elements for
decimating. The process starts when a large geometry is encountered, since the
geometry is already saved in storage, it is enough to ask for the decimation using
a unique identifier generated in the previous use case. Since decimating is a time-
consuming process, the front-end uses a polling approach to verify if the decimated
version of the geometry has finished to be created, in a positive case, it is asked for
the binary file and saved in the user’s browser memory. In the back-end, a service
is in charge of asking for the decimation and continuously checks if the decimated
version is located in a particular path in the shared file system.

54

Application development

Figure 5.8: UC2 Generate Geometry Decimation Front-end sequence diagram

Figure 5.9: UC2 Generate Geometry Decimation Back-end sequence diagram

5.6.3 Use Case Preview Geometry

In Figure 5.10 is presented the elements involved for displaying the hybrid rendered
interactive preview. This scheme shows the necessity of facades used to retrieve the
location of the path, since Cases Business has the logic to provide the path of a
geometry from its ID. In full remote rendering the scheme will be the same but the
sequence will be different, and in a full local rendering is not needed those facades,

55

Application development

since everything is done in the user’s browser.

Figure 5.10: UC2 Preview Geometry EBC diagram

In Figures 5.8 and 5.9 are shown only the sequence of procedures and communi-
cations to perform a hybrid rendering. The process starts by asking for WebSocket
connection between the front-end with the service in charge of doing the rendering
remotely and sending it the geometry ID that wants to visualize. Once the connec-
tion is established, the user can start interacting with the canvas, visualizing the
decimated version that was retrieved in the previous use case and once the user
stops interacting, the front-end sends the camera position of the last frame and it
gets back a high fidelity image of the geometry rendered in the back-end. In the
same way, the back-end asks for the path of the geometry and loads it in memory
to render it. Once it is uploaded in memory, it listens through the WebSocket
for camera position coordinates in order to synchronize both views and deliver a
seamless interaction.

56

Application development

Figure 5.11: UC3 Preview Geometry Front-end sequence diagram

Figure 5.12: UC3 Preview Geometry Back-end sequence diagram

57

Application development

5.7 Application Architecture
In this section is presented the whole architecture necessary to build and deploy
the entire system. Figure 5.13 shows the application deployment diagram which
complements the technologies and frameworks mentioned in Section 3.3 and shows
how the software components are distributed in physical nodes and how they in-
teract with each other.
The front-end will be deployed using Amazon Content Delivery Network (CDN)
which is useful for distributing static and dynamic content in a fast and reliable
way. The SideCar is presented in this component but it is assumed that it will be
present along with the application, so every component knows which entities they
are working with. Along with Angular components needed for proper front-end
functioning, there are external libraries such as VTK.js (selected in Section 2.4), a
ESTECOS’s custom GUI design system called SOUL, and Flowjs which is in charge
of partitioning the STL files in chunks for delivering to back-end.
Some of the back-end services will be hosted on Elastic Kubernetes Service (EKS),
an Amazon Web Service that offers Kubernetes cluster provisioning and manage-
ment. In contrast, the high-resource-demanding HPC processes will be entirely
managed through AWS Parallel Cluster. The deployment will be leaded by Marco
Cisternino who is the architecture specialist from Optimad.

Figure 5.13: Deployment diagram

58

Application development

Each service will operate within Docker containers deployed in Pods, which will
dynamically scale based on demand. Some of these services will utilize Vert.x and
Netty, which integrate seamlessly with Quarkus. In the specific case of the render-
ing service for remote access, it will be deployed using an Apache server to facilitate
multi-user visualization. This approach is aligned with the recommendation from
ParaViewWeb developers and is consistent with the choice in Section 2.4.
RabbitMQ seamlessly integrates with Kubernetes and has been chosen as the event
manager whenever a new simulation state update occurs. These updates are ac-
companied by an email service that notifies users about the simulation state. Ad-
ditionally, this external system is utilized for user management. There will be two
databases: one exclusively for this application and another to manage user data.
The latter will not be exclusive, as future Optimad applications may share the
same user information. To handle payments securely, Stripe will be employed as
an external platform responsible for processing all user payments.
Ultimately, the simulations will be executed on an HPC cluster, requiring a job
scheduler capable of managing simulation queuing and notifications. These simula-
tions will be conducted using Optimad’s software, Immerflow, and post-processed
through a custom PVPython script, which is a Python interface for ParaView.
These components will utilize a shared storage facility for post-processing and
shared storage to establish a unified location for sharing geometry binaries, in-
tegrating with an Amazon Elastic File System.

59

Chapter 6

Results

6.1 Introduction
This chapter provides a wide illustration and analysis of the results obtained through
a comparative evaluation of performance across various rendering approaches: Lo-
cal, Remote, and Hybrid. These results have been acquired from the execution of
stressful tests involving four distinct geometries each characterized by varying di-
mensions. These geometries are represented in STL files of considerable scale, which
typically align with the types of geometries that users might employ for Compu-
tational Fluid Dynamics (CFD) simulations. Figure 6.1 showcases the geometries
utilized in these tests: Figure 6.1a, measuring 365 MB in size with 7,665,694 trian-
gles; 6.1b, with a size of 594 MB and 3,860,958 triangles; Figure 6.1b, measuring
906 MB and featuring 19,019,730 triangles; and Figure 6.1c, with a size of 1.37 GB
and 29,614,110 triangles.

Each geometry was subjected to visualization sessions utilizing the aforementioned
rendering approaches, each lasting 20 minutes. During each session, the geom-
etry was interacted with a two-second intervals, employing random movements
generated by an automated pointer. This two-second pause was intentionally in-
corporated to highlight how high-fidelity rendering was achieved after cessation of
interactions with the geometries.

On the client side, the visualization sessions were run using a computer equipped
with Windows 10 Pro 64-bit with an 11th Gen Intel Core i5-1135G7 processor
running at 2.40GHz (using 8 CPUs), 16GB of RAM, and an Intel(R) Iris(R) Xe
Graphics card with 8GB of GPU RAM. The web browser employed was Firefox
version 118.0.2. On server-side, an Amazon EC2 instance (g4dn.xlarge type) was
selected. This server has 16GB of RAM, a 25 Gb/s bandwidth, 4 vCPUs based
on Intel Cascade Lake architecture, and was enhanced with an NVIDIA T4 GPU.
These instances are good at delivering high-performance capabilities for graphic

60

Results

(a) cylinders.stl (b) fluid.stl

(c) heatsink_cooler.stl (d) heatsink_rele.stl

Figure 6.1: Geometries used for test results

applications.
The results comprehend the collection of performance data from both the local and
server-side components, gathering metrics such as CPU load, GPU usage, frame
rate (FPS), the volume of data transmitted from the server during visualization,
and the latency for hybrid rendering, quantified from the moment of user inter-
action cessation to the rendering of a high-fidelity image of the geometry. This
information was fundamental in the assessment of whether the proposed approach
outperformed traditional methods, and in determining its suitability for integration

61

Results

into the production version of this SaaS offered by Optimad and ESTECO.

6.2 Local rendering approach
This section presents the performance data obtained using local rendering approach.
In this particular scenario, visualization sessions exclusively employed the original
version of the geometries. This was done to assess the capability of client browser
in handling complex and sizable geometries. As the rendering process is entirely
executed on the client-side, the focus is exclusively on client-side performance, while
server-side performance remains negligible throughout the visualization process.

6.2.1 Client performance
In Figure 6.2 are illustrated the GPU usage and CPU load regarding the geometries
cylinders.stl, fluid.stl, heatsink_cooler.stl and heatsink_rele.stl respectively during
the whole visualization. The data was taken using sampling at regular intervals of
approximately six seconds.

The provided graphics present a consistent trend in the extensive usage of the
client machine’s GPU. In all four graphics, GPU usage illustrates prominent peaks,
reaching approximately 100% utilization with occasional momentary drops. This
particularity is primarily attributed to the nature of rendering, which only engages
the GPU when new frames are displayed. Consequently, during periods of inactiv-
ity or minimal user interaction, the GPU remains relatively idle.

In a similar way, the CPU load shows a similar pattern, marked by periodic peaks
corresponding to each interaction made by the user and processed by the system.
Notably, the CPU load, while presenting peaks, consistently maintains a consider-
ably lower percentage of utilization compared to the GPU usage. This behavior
remains relatively consistent, with minor variations observed when processing more
complex geometries.

These graphics demonstrate that rendering large geometries has a huge impact on
GPU performance. This effect for long visualizations tends to result in a general
degradation of the user’s computer performance, particularly due to the consider-
able memory space occupied by these large geometries.

62

Results

(a) cylinders.stl

(b) fluid.stl

Figure 6.2: GPU usage and CPU load client-side with local rendering.

63

Results

(c) heatsink_cooler.stl

(d) heatsink_rele.stl

Figure 6.2: GPU usage and CPU load client-side with local rendering

64

Results

6.2.2 Frame rate and data transferred
Table 6.1 illustrates the frame rate and data transferred during each geometry’s
visualization session. Peculiarly, a considerable decrease in frames per second is
observed as the geometry’s size increases, with the exception of fluid.stl which, de-
spite being larger than cylinders.stl exhibits a superior frame rate. This situation
can be potentially attributed to the fact that, although fluid.stl possesses a larger
file size, it contains fewer triangles than cylinders.stl. This difference in triangle
count is an important factor, as it results in a reduced processing load between
frames in fluid.stl displaying.

Since all visualization sessions used local rendering, the only data transmission
involved was the transfer of the initial geometries from the server to the browser
for display. This process incurs a significant data transfer expense for each visual-
ization.

Geometry Frame rate Amount data transferred
cylinders.stl 21 fps 365 MB
fluid.stl 38 fps 594 MB
heatsink_cooler.stl 10 fps 906 MB
heatsink_rele.stl 3 fps 1.37 GB

Table 6.1: Frame rate and data transfer with local rendering

6.3 Remote rendering approach
This section describes the performance data acquired through the remote render-
ing approach. In this case, visualization sessions made use of the server’s rendering
capabilities to process completely all the geometries. Consequently, information
regarding to the server’s GPU and CPU, together with the client’s performance in-
formation, was collected to evaluate the amount of load to which the computational
resources was offloaded from the client and transferred to the server.

6.3.1 Client performance
In Figure 6.3 are illustrated the GPU usage and CPU load regarding the aforemen-
tioned geometries in the same order as the previous section. The data was taken
using sampling at regular intervals of approximately six seconds.

The four graphics show similar patterns in both GPU utilization and CPU load

65

Results

throughout the visualization sessions. Such behaviors align with the expected out-
come, given that the web browser primarily handled the processing and rendering
of a sequence of images. These images, despite being generated at the highest
possible quality, do not impose a processing load comparable to processing real
geometries data. Remarkably, the GPU and CPU data present fluctuations within
the range of 20% to 30%, occasionally showing marginal deviations. These metrics
generally indicate a standard utilization of the client machine’s resources for this
kind of operation, with no issues of resource overhead.

(a) cylinders.stl

Figure 6.3: GPU usage and CPU load client-side with remote rendering

66

Results

(b) fluid.stl

(c) heatsink_cooler.stl

Figure 6.3: GPU usage and CPU load client-side with remote rendering

67

Results

(d) heatsink_rele.stl

Figure 6.3: GPU usage and CPU load client-side with remote rendering

6.3.2 Server performance
Figure 6.4 illustrates the resulting graphics generated by Monitor Amazon EC2
taking GPU usage and CPU utilization for the four visualizations with different
geometries. Amazon used a five-minute interval sampling in which each sampling
took the overall average of GPU/CPU utilization between intervals.

In all four graphics, the performance presented a considerable degree of efficiency,
with figures consistently ranging between 12% and 17%, despite variations in the
geometrical sizes. This outcome remarks the server’s exceptional capacity to seam-
lessly handle extensive visualizations involving huge geometrical complexities, while
avoiding any significant performance overhead.

A good example of the server capabilities is the comparable behavior displayed
by cylinders.stl and heatsink_rele.stl. Despite heatsink_rele.stl being nearly four
times larger in size and having approximately 22 million additional triangles com-
pared to cylinders.stl, both geometries presented performance levels well below 16%
of the server’s overall capacity. This observation demonstrates that server could
manage even larger geometries.

68

Results

(a) cylinders.stl

(b) fluid.stl

Figure 6.4: GPU usage and CPU load server-side with remote rendering

69

Results

(c) heatsink_cooler.stl

(d) heatsink_rele.stl

Figure 6.4: GPU usage and CPU load server-side with remote rendering

70

Results

6.3.3 Frame rate and data transferred

Table 6.2 represents the frame rate and data transmission associated with remote
rendering visualizations. The frame rate was calculated by tallying the images re-
ceived by the server and displayed by the browser per second. The volume of data
transmitted from the server to the client was determined by taking the quantity of
images transferred in each visualization, which were executed at the utmost possi-
ble quality.

Remote rendering presented a frame rate between 22 and 24 fps, which can fluctu-
ate depending on client network conditions. On the other hand, the amount of data
transfer is not directly proportional with respect to size of the geometries, since for
example the largest geometry showed the lowest data transfer (81 MB) whereas
fluid.stl transferred 1.42 GB, surpassing its original file size. This behavior could
depend on the level of detail represented in each visualization, The more complex
graphical details rendered in each frame, the larger the resultant image becomes.
Besides, less frames per second sent by the server, less the overall amount of data.
That could explain why fluid.stl had the largest amount of data transferred, since
is the one that showed more details on each frame and more frames displayed per
second.

Geometry Frame rate Amount data
transferred

cylinders.stl 24 fps 740 MB
fluid.stl 24 fps 1.42 GB
heatsink_cooler.stl 23 fps 127 MB
heatsink_rele.stl 22 fps 81 MB

Table 6.2: Frame rate and data transfer with remote rendering

6.4 Hybrid rendering approach

This section encompasses the data results of the hybrid rendering approach. Similar
to remote rendering, the data collected includes both client and server performance
metrics, as well as the data transfer rate and frame rate achieved during the visual-
izations. Furthermore, this approach also covers an assessment of the latency that
occurs between the cessation of interaction with the geometry and the generation
of a high-fidelity image by the server.

71

Results

6.4.1 Client performance
Figure 6.5 shows the client performance of the four geometries visualizations. As
mentioned before, the data was taken every six seconds nearly.
As expected, the graphics presented a similar behavior having a GPU usage around
40% and a CPU load around 30%. This is because, in theory, the geometries ren-
dered on client-side have almost the same characteristics (same number of triangles
and the same size). Overall, these tests presented a normal and safe usage of CPU
and GPU resources on client machines.

(a) cylinders.stl

Figure 6.5: GPU usage and CPU load client-side with hybrid rendering

72

Results

(b) fluid.stl

(c) heatsink_cooler.stl

Figure 6.5: GPU usage and CPU load client-side with hybrid rendering

73

Results

(d) heatsink_rele.stl

Figure 6.5: GPU usage and CPU load client-side with hybrid rendering

6.4.2 Server performance
Similar to the server performance on the remote rendering, Figure 6.6 shows the
resulting graphics generated by Monitor Amazon EC2 using a five-minute interval
sampling, taking the overall average of GPU/CPU utilization between intervals.
The performances do not include decimation operations since the algorithm used
saves computational costs and takes only a few seconds, therefore the number of
resources needed is negligible [44].

Surprisingly, in all four graphics there was a trend of GPU and CPU utilization
lower than 10%. In this approach it is visible the small fluctuations in performances
as the geometry size increases having for example in the last figure a GPU usage
roughly to 8% while in the first two are 2%. In general, this usage was expected
since the server did not render the geometries actively but only when there was a
pause every two seconds.

74

Results

(a) cylinders.stl

(b) fluid.stl

Figure 6.6: GPU usage and CPU load server-side with hybrid rendering
75

Results

(c) heatsink_cooler.stl

(d) heatsink_rele.stl

Figure 6.6: GPU usage and CPU load server-side with hybrid rendering
76

Results

6.4.3 Frame rate and data transferred
Table 6.3 illustrates the frame rate, amount of data transferred, and the average
image delay during the visualizations using hybrid rendering.

Considering the decimated version of the geometries rendered on client-side, the
frame rate for all the geometries was 60 fps which means that there was a seamless
visualization and interaction on each geometry. In addition, the overall amount
of data transferred including the transmission of the decimated geometry was in-
credibly low for each geometry. Similar to remote rendering, the size of the images
depends on the graphical details of each frame transmitted. In fact, this pattern
was also observed on a smaller scale with fluid.stl and heatsink_rele.stl, with the
former showing the highest volume of data transferred and the latter being associ-
ated with a comparatively lower volume.

In general, the average image latency delivered by the server after each interac-
tion is around 250 ms. In particular, depending on the geometry size, this delay
resulted in a gradual increment. That fact occurred for the time employed by the
server to process larger data.

Geometry Frame rate Amount data
transferred

Average image
latency

cylinders.stl 60 fps 3.8 MB + 1 MB 217.54 ms
fluid.stl 60 fps 6.2 MB + 1 MB 218.56 ms
heatsink_cooler.stl 60 fps 3.3 MB + 1MB 240.55 ms
heatsink_rele.stl 60 fps 2.5 MB + 1MB 274.73 ms

Table 6.3: Frame rate and data transfer with hybrid rendering

6.5 Analysis
After presenting the results of the three aforementioned approaches, it is now im-
perative to analyze their respective trends in order to discern the differences in
performance and assess which one is more opportune to a seamless user experience
while maintaining cost-effectiveness.

First of all, the local rendering approach exhibited the most inferior performance.
Despite its advantage in reducing computational costs on the server side, as it
offloads all the workload to the client, it disappointingly met expectations by de-
livering low performance. This can be attributed to the inherent computational
overhead incurred when handling large datasets in the web browser, particularly

77

Results

with the GPU when rendering large geometries. Even with the most modest of
geometries, the graphical performance presented noticeable struggles during ren-
dering. Additionally, the frame rate analysis revealed a direct correlation between
the size of the geometry and the decreasing fluidity of visualization. Another draw-
back of this approach lies in the necessity to transfer the original geometry from
the server for each new visualization session, resulting in an unsatisfactory user
experience characterized by prolonged transfer wait times and an expensive data
transfer cost.

In reference to remote and hybrid rendering, both approaches presented adequate
performance with regard to user experience. In normal user usage, the client-side
performance of both approaches is generally satisfactory. Notably, remote ren-
dering evidenced greater efficiency, approximately 10%, when compared to hybrid
rendering, across both CPU and GPU performance metrics. In addition, remote
rendering in some cases presented an eye-human acceptable frame rate (between
24-30 fps) to perceive cinematic. Be that as it may, the results also revealed that, as
the complexity of the rendered geometry increases, the frame rate tends to decline.
Consequently, scenarios related to the frame rates observed in heatsink_cooler and
heatsink_rele as detailed in Table 6.2 are susceptible to perceptible flicker, which
can be discomforting to the human eye [45]. It is essential to clarify that the actual
frame rate in real-world situations is subject to the quality of the client’s network
connection. A stable and robust bandwidth is imperative to ensure a seamless
stream of images and consequently, a higher frame rate.

Furthermore, another crucial disadvantage of remote rendering, is the large amount
of data transferred from server, being comparable to the amount of data transferred
in local rendering. This approach, despite being adequate enough to have a normal
visualization, represents a huge cost in terms of data transferred that, mentioned
in Chapter 4.1, is something that Optimad desires to avoid.

On the contrary, the results revealed that hybrid rendering exhibited superior per-
formance during testing, with the exception of client-side performance, as previ-
ously mentioned, where remote rendering displayed a slight advantage. From a
general perspective, rendering a modestly-sized geometry on the client-side yields
standard CPU and GPU utilization, thereby preventing any considerable overhead.
Consequently, the frame rate consistently ranked highest for all four geometries,
contrasting with remote rendering, where the number of displayed frames is con-
tingent on network conditions and its latencies [46]. On the other hand, server-side
performance was optimal. Despite remote rendering also exhibiting minimal CPU
and GPU utilization, the hybrid approach required fewer interventions to process
high-quality images. Consequently, data transfer volumes were significantly lower,
allowing Optimad to afford amount of data similar to those detailed in Table 6.3.

78

Results

The latency in delivering high-quality images fell short of ideal, as real-time inter-
actions typically demand a latency of no more than 100 ms. However, this latency,
while not optimal, is sufficiently manageable and does not significantly impede fluid
user experience.

79

Chapter 7

Conclusions

In conclusion, this thesis explored the application of a hybrid approach for render-
ing large 3D geometries in a cloud-based CFD platform, focusing on the use of the
ParaViewWeb with VTK.js frameworks integrated with the technologies that are
currently used in Optimad. The results and analysis provided valuable insights into
the efficiency, user experience, and cost-effectiveness of this approach compared to
local and remote rendering. Several key points emerged from the study.

The use of ParaViewWeb with VTK.js demonstrated an easily learnable curve and
simplified configuration for achieving the desired rendering scope. This accessibility
was essential not only for creating the approach proposed but also the possibility to
implement the other two compared approaches, in order to assess their advantages
and disadvantages.

The local rendering approach proved to be inferior in terms of performance due
to computational overhead on the client side and the need to transfer large geome-
tries, leading to extended wait times and high data transfer costs. This approach
is not recommended for handling large 3D geometries in web applications.

Both remote and hybrid rendering approaches demonstrated satisfactory user expe-
riences. Remote rendering was slightly more efficient on client-side, but it suffered
from decreased frame rates as the complexity of rendered geometries increased, po-
tentially leading to perceptible flicker. A stable network connection is crucial for
optimal performance in remote rendering.

Hybrid rendering outperformed the other approaches in most aspects. It provided
consistent frame rates, low CPU and GPU utilization on client-side, and optimal
server-side performance. The reduced data transfer volume made it an attractive
choice, aligning with the goals of organizations aiming to minimize data transfer
costs. While the latency in delivering high-quality images in the hybrid approach

80

Conclusions

was not ideal for real-time interactions, it was manageable and did not significantly
obstruct the overall user experience.

While specific monetary data was not presented in the study, it was indicated
that the hybrid rendering approach showed promise in terms of being economically
efficient compared to alternatives which presented a significant data transfer from
the server, as a result, in high data transfer costs. Therefore, using this approach
implies potential cost savings for organizations implementing this technology.

In future work, it is suggested to explore the other tools mentioned in Chapter 2 to
assess whether they can provide better performance, since some of them resulted
to be more recent than the ones used in this thesis. Additionally, there is room
for improvement by evaluating more efficient decimation algorithms or evaluating
transfer costs and provide a larger decimation size target to prevent the loss of the
original geometry’s form, further enhancing the user experience. In this way, future
tests in production scenarios will be performed to obtain a real user perception of
visualizations.

In summary, the study underlines the advantages of the hybrid rendering approach,
with ParaViewWeb and VTK.js as key enabling technologies, for efficiently render-
ing large 3D geometries in web applications. It offers a balanced mix of perfor-
mance, user experience, and cost-effectiveness, making it a promising choice for
organizations looking to leverage 3D visualization in web applications.

81

Bibliography

[1] “VRML97 Functional specification and VRML97 External Authoring Inter-
face (EAI) International Standard ISO/IEC 14772-1:1997 and ISO/IEC 14772-
2:2002.” ISO/IEC International Standard, 1997. ISO/IEC 14772-1:1997 and
ISO/IEC 14772-2:2002.

[2] F. Niebling, A. Kopecki, and M. Becker, “Collaborative steering and post-
processing of simulations on hpc resources: Everyone, anytime, anywhere,” in
Web3D Symposium Proceedings, pp. 101–108, ACM, 2010.

[3] S. Scanzio, S. Cumani, R. Gemello, F. Mana, and P. Laface, “Parallel im-
plementation of Artificial Neural Network training for speech recognition,”
Pattern Recognition Letters, vol. 31, no. 11, pp. 1302–1309, 2010.

[4] R. Miao, J. Song, and Y. Zhu, “3d geographic scenes visualization based on
WebGL,” in 2017 6th International Conference on Agro-Geoinformatics, pp. 1–
6, IEEE, 2017.

[5] A.-L. Boutsi, C. Ioannidis, and S. Soile, “An integrated approach to 3d web
visualization of cultural heritage heterogeneous datasets,” Remote Sensing,
vol. 11, no. 21, 2019.

[6] J. Jomier, S. Jourdain, U. Ayachit, and C. Marion, “Remote visualization of
large datasets with MIDAS and ParaViewWeb,” in Proceedings of the 16th
International Conference on 3D Web Technology, Web3D ’11, pp. 147–150,
ACM, 2011.

[7] W.-K. Yoo, S. Shi, W.-J. Jeon, K. Nahrstedt, and R. H. Campbell, “Real-time
parallel remote rendering for mobile devices using graphics processing units,”
in 2010 IEEE International Conference on Multimedia and Expo, ICME 2010,
pp. 902–907, 2010.

[8] K. Engel, O. Sommer, and T. Ertl, “A framework for interactive hard-
ware accelerated remote 3d-visualization,” in Data Visualization 2000 (W. C.
de Leeuw and R. van Liere, eds.), (Vienna), Eurographics, Springer, 2000.

82

BIBLIOGRAPHY

[9] G. Cena, S. Scanzio, and A. Valenzano, “A Prototype Implementation of Wi-
Fi Seamless Redundancy with Reactive Duplication Avoidance,” in 2018 IEEE
23rd International Conference on Emerging Technologies and Factory Automa-
tion (ETFA), vol. 1, pp. 179–186, 2018.

[10] G. Cena, S. Scanzio, and A. Valenzano, “Improving Effectiveness of Seam-
less Redundancy in Real Industrial Wi-Fi Networks,” IEEE Transactions on
Industrial Informatics, vol. 14, no. 5, pp. 2095–2107, 2018.

[11] H. Kato, T. Kobayashi, M. Sugano, and S. Naito, “Split rendering of the
transparent channel for cloud AR,” in IEEE 23rd International Workshop on
Multimedia Signal Processing, MMSP 2021, 2021.

[12] C. Liu, W. T. Ooi, J. Jia, and L. Zhao, “Cloud baking: Collaborative scene
illumination for dynamic web3d scenes,” ACM Transactions on Multimedia
Computing, Communications and Applications, vol. 14, no. 3s, 2018.

[13] X. Wu and G. Pei, “Collaborative graphic rendering for improving visual ex-
perience,” in Collaborative Computing: Networking, Applications and Work-
sharing. CollaborateCom 2008 (E. Bertino and J. B. D. Joshi, eds.), vol. 10 of
Lecture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, (Berlin, Heidelberg), Springer, 2009.

[14] W. Schroeder, L. S. Avila, and W. Hoffman, “Visualizing with vtk: A tutorial,”
IEEE Computer Graphics and Applications, vol. 20, no. 5, pp. 20–27, 2000.

[15] P. Ramachandran and G. Varoquaux, “Mayavi: 3d visualization of scientific
data,” Computing in Science and Engineering, vol. 13, no. 2, p. 40 – 51, 2011.
Cited by: 448; All Open Access, Green Open Access.

[16] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A modern library for 3D data
processing,” arXiv:1801.09847, 2018.

[17] G. A. P. Eriksson and S. Håkansson, “Webrtc: Enhancing the web with real-
time communication capabilities,” Ericsson Review (English Edition), vol. 89,
no. 1, pp. 4–9, 2012.

[18] J. Ahrens, B. Geveci, and C. Law, “Paraview: an end-user tool for large-data
visualization,” in Visualization Handbook (C. D. Hansen and C. R. Johnson,
eds.), pp. 717–731, Burlington: Butterworth-Heinemann, 2005.

[19] S. Jourdain, U. Ayachit, and B. Geveci, “Paraviewweb, a web framework for 3d
visualization and data processing,” in Proc. of the IADIS Int. Conf. - Computer
Graphics, Visualization, Computer Vision and Image Processing, CGVCVIP
2010, Visual Commun., VC 2010, Web3DW 2010, Part of the MCCSIS 2010,
pp. 502–506, 2010. Cited By :18.

83

BIBLIOGRAPHY

[20] C. Rossant and N. Rougier, “High-performance interactive scientific visualiza-
tion with datoviz via the vulkan low-level gpu api,” Computing in Science and
Engineering, vol. 23, no. 4, p. 85 – 90, 2021.

[21] M. Bailey, “Introduction to the vulkan graphics api,” in ACM SIGGRAPH
2018 Courses, SIGGRAPH 2018, 2018.

[22] A. Dakkak, C. Pearson, and W. . Hwu, “Webgpu: A scalable online develop-
ment platform for gpu programming courses,” in Proceedings - 2016 IEEE 30th
International Parallel and Distributed Processing Symposium, IPDPS 2016,
pp. 942–949, 2016. Cited By :10.

[23] R. Cabello, “Three.js.” http://threejs.org/, 2010.

[24] J. Behr, P. Eschler, Y. Jung, and M. Zöllner, “X3dom - a dom-based html5/
x3d integration model,” Proceedings of Web3D 2009: The 14th International
Conference on Web3D Technology, pp. 127–135, 2009.

[25] H. Andrioti, A. Stamoulias, K. Kapetanakis, S. Panagiotakis, and A. G.
Malamos, “Integrating webrtc and x3dom: Bridging the gap between commu-
nications and graphics,” in Proceedings of the 20th International Conference on
3D Web Technology, Web3D ’15, (New York, NY, USA), p. 9–15, Association
for Computing Machinery, 2015.

[26] Kitware, “Paraviewweb.” https://kitware.github.io/paraviewweb/docs/,
Accessed 2023.

[27] Kitware Inc., “Vtk.js.” https://kitware.github.io/vtk-js/, Accessed
2023.

[28] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, et al., “The agile
manifesto,” 2001.

[29] K. Petersen, C. Wohlin, and D. Baca, “The waterfall model in large-scale de-
velopment,” in Product-Focused Software Process Improvement (F. Bomarius,
M. Oivo, P. Jaring, and P. Abrahamsson, eds.), (Berlin, Heidelberg), pp. 386–
400, Springer Berlin Heidelberg, 2009.

[30] R. S. Pressman, Software engineering: a practitioner’s approach. Palgrave
macmillan, 2005.

[31] K. Schwaber, “Scrum development process,” in Business Object Design and
Implementation: OOPSLA’95 Workshop Proceedings 16 October 1995, Austin,
Texas, pp. 117–134, Springer, 1997.

84

http://threejs.org/
https://kitware.github.io/paraviewweb/docs/
https://kitware.github.io/vtk-js/

BIBLIOGRAPHY

[32] E. Brechner, Agile Project Management with Kanban. Best practices, Microsoft
Press, 2015.

[33] K. Finnigan, Enterprise Java microservices. Simon and Schuster, 2018.

[34] T. Koleoso and T. Koleoso, “Microservices with quarkus,” Beginning Quarkus
Framework: Build Cloud-Native Enterprise Java Applications and Microser-
vices, pp. 51–132, 2020.

[35] A. Boicea, F. Radulescu, and L. I. Agapin, “Mongodb vs oracle–database
comparison,” in 2012 third international conference on emerging intelligent
data and web technologies, pp. 330–335, IEEE, 2012.

[36] J. Ponge, Vert. x in Action: Asynchronous and Reactive Java. Manning Pub-
lications, 2020.

[37] A. Moiseev and Y. Fain, Angular Development with TypeScript. Simon and
Schuster, 2018.

[38] A. L. Davis and A. L. Davis, “Gradle,” Learning Groovy 3: Java-Based Dy-
namic Scripting, pp. 105–114, 2019.

[39] T. Hagos, Beginning IntelliJ IDEA. Springer, 2022.

[40] M. Stigler, Amazon Web Services, pp. 41–81. Berkeley, CA: Apress, 2018.

[41] P. Li, Jira Essentials. Packt Publishing Ltd, 2015.

[42] O. Gazi, “Understanding digital signal processing,” 2018.

[43] D. Bohn, J. Ren, and K. Kusterer, “Conjugate heat transfer analysis for film
cooling configurations with different hole geometries,” in Turbo Expo: Power
for Land, Sea, and Air, vol. 36886, pp. 247–256, 2003.

[44] Kitware, “vtkBinnedDecimation.” https://vtk.org/doc/nightly/html/
classvtkBinnedDecimation.html. Accessed on October 22, 2023.

[45] B. Tag, J. Shimizu, C. Zhang, K. Kunze, N. Ohta, and K. Sugiura, “In the
eye of the beholder: The impact of frame rate on human eye blink,” in Pro-
ceedings of the 2016 CHI Conference Extended Abstracts on Human Factors
in Computing Systems, CHI EA ’16, (New York, NY, USA), p. 2321–2327,
Association for Computing Machinery, 2016.

[46] S. Scanzio, F. Xia, G. Cena, and A. Valenzano, “Predicting Wi-Fi link quality
through artificial neural networks,” Internet Technology Letters, vol. 5, no. 2,
p. e326, 2022.

85

https://vtk.org/doc/nightly/html/classvtkBinnedDecimation.html
https://vtk.org/doc/nightly/html/classvtkBinnedDecimation.html

	List of Figures
	List of Tables
	Introduction
	Analysis of frameworks for local and remote rendering in the web
	Introduction
	Remote rendering tools
	VTK
	Mayavi
	Open3D
	ParaView (ParaViewWeb server-side)
	Datoviz

	Local rendering tools
	Three.js
	X3DOM
	ParaView (ParaViewWeb client-side)
	VTK.js

	Selection

	Development context
	Introduction
	Methodology
	Technologies
	Development
	Tooling
	Testing
	Deployment
	Control versioning and progress

	Development workflow

	Project goal
	Context and current state of the project
	Problematic
	Proposed solution

	Application development
	Introduction
	Requirements elicitation
	Actors
	Interfaces
	Use cases
	Solution design
	Use Case Upload Geometry
	Use Case Generate Geometry Decimation
	Use Case Preview Geometry

	Application Architecture

	Results
	Introduction
	Local rendering approach
	Client performance
	Frame rate and data transferred

	Remote rendering approach
	Client performance
	Server performance
	Frame rate and data transferred

	Hybrid rendering approach
	Client performance
	Server performance
	Frame rate and data transferred

	Analysis

	Conclusions
	Bibliography

