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Abstract

The automated design of metasurface (MTS) antennas has been a subject of
extensive research, encompassing both theoretical and practical aspects. The
inherent complexity of these antennas, made by sub-wavelength scattering elements
organized in a periodic lattice over large areas, has forced researchers to devise
more efficient methods for addressing this challenge. Recent strategies have shifted
towards fully numerical modelling, with solutions attained through either direct
methods or optimization algorithms. Among the latter, recently the current-based
approach has emerged as a promising avenue for tackling the design of large
antennas. Nonetheless, like all non-linear and non-convex optimization problems,
it encounters common issues such as slow convergence and the occurrence of local
minima. In this work, a novel adaptive weighting scheme for the current-based
optimization of MTS antennas is proposed. The design of MTS antennas is a multi-
objective optimization problem, i.e., a set of constraints must be concurrently met,
including passivity, losslessness, pattern masks, and more. In order to reduce its
numerical complexity, the problem is formulated as a single objective minimization
with the weighted sum method. The weights assigned to each objective function
reflect the relative significance of specific objectives, nonetheless, it is generally a
complex task to definitively determine the hierarchy of importance. It is possible
to demonstrate that an a priori choice of a set of weights leads to suboptimal
solutions or to the convergence to a local minimum. Therefore, a scheme capable
of adaptively modifying the weights of individual objective functions is valuable for
exploring the Pareto front. The algorithm proposed in this work is based on the
geometrical interpretation of the weights: anchor points can be identified on the
Pareto front, then, a hyperplane is constructed from these points. The components
of the normal unit vector to the hyperplane, which points in the direction of
the knee point, can be used as weights for the objective function. To assess the
performance of the proposed algorithm, its results have been compared to those
achieved by a conventional minimization algorithm performed over an equal number
of iterations for various antenna size and pattern masks. The proposed solution is
able to achieve satisfactory results within a limited number of iterations, whereas
the conventional solution is still far from convergence. In conclusion, the algorithm
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proposed in this study allows the design process to be freed from the selection of
an accurate initial set of weights. Moreover, the numerical results demonstrate
an enhancement in the achieved performance and an increase in the convergence
speed compared to standard algorithms.
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Chapter 1

Introduction

1.1 Metasurface antennas

Nearly the totality of applications related to radar surveillance, satellite communi-
cations and the construction of radio telescopes rely on the use of systems based on
high-directive antennas. In general, high-directive antennas designed for microwave
or millimetre-wave applications employ reflectors to manipulate the radiated field
based on their geometric properties. However, this conventional method often
leads to the creation of bulky and expensive structures, as their performance are
basically related on the size of the reflector. An alternative to reflector antennas
is represented by phased arrays, which enable the design of high-gain antennas
and, among other advantages, including being low-profile, allow for electronically
steering the main lobe towards virtually any directions [1]. Unfortunately, phased
arrays, aside from being an inherently expensive solution, require the presence
of a feeding network, which not only complicates the design, but also makes the
entire structure energy-intensive and affected by losses. Recently, scientific progress
concerning metasurfaces has established a new frontier for antenna design, as they
promise to be used for the construction of low-losses, low-cost, low-profile and
high-directive radiating systems.

Metasurfaces (MTS) are artificial surfaces composed of a lattice, typically
periodic, of sub-wavelength scattering elements placed on a dielectric supporting
layer: they can be engineered as desired to achieve electromagnetic properties
not found in nature. In particular, metasurfaces-based antennas, more commonly
known as metasurface antennas, - in presence of an incident field - allow for the
generation of a radiated field with desired characteristics by controlling the sub-
wavelength pattern in dimension and shape. Although the most popular MTS
antennas are made by printed conductive patches, they can be realized employing
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several technologies (see Figure 1.1 for some examples). Moreover, MTS can
be single layer or multi layer depending on the application and can be further
categorized in terms of incident field, which can be embedded in the MTS (e.g.
using a vertical dipole) and the resulting surface wave confined in the dielectric
excites the scattering elements or can be an external field illuminating the MTS.

(a) (b)

(c) (d)

Figure 1.1: Different technologies for MTS realization: (a) metallic square patches
with variable size , (b) circular patches with variable radius, (c) metal pillars with
variable height, (d) circular slots with variable radius.

The analysis of such kind of structures is usually carried out with full-wave
solvers. A generic full-wave solver solves the Maxwell’s equations with the natural
boundary conditions, i.e. vanishing tangential electric field on a perfect electric
conductor, field continuity at material interfaces and radiation condition at infinity.
The synthesis of a MTS antenna using the full-wave approach is unfeasible due to
the inherent multiscale nature of the problem. Indeed, considering the square patch
realization of a MTS antenna in Figure 1.2, the scattering elements are placed
over a large area (≫ λ), so one can talk about macroscale, the periodicity of the
pattern is proportional to the wavelength (∼ λ), i.e. mesoscale, while patches
and their details are smaller compared to the wavelength (≪ λ), i.e. microscale.
This aspect forces the research towards different approaches to deal with the large
computational effort of the problem and with its geometrical complexity.
In the last 20 years, the analysis of MTS has been revolutionized thanks to the

introduction of the surface impedance distribution, which can be used to describe
the electromagnetic behaviour of MTSs from a macroscopic standpoint. This
parameter derives from an appropriate boundary condition [2], which relates the
average tangential electric field to the jump of the tangential magnetic field over
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(a) (b) (c)

Figure 1.2: Realization of a 20λ-diameter antenna: (a) overall struture
(macroscale), (b) periodic pattern (mesoscale), (c) scattering elements (microscale).

the surface allowing for the homogenization of the MTS (see Figure 1.3). This
approach not only allows for the analysis of the MTS, but also enables a more
efficient design, as the number of unknowns is by far reduced. Indeed, recently
developed MTS antenna design procedures consist in two distinct stages: the
first one aims to derive the sought impedance distribution which complies with
the desired specifications and then the profile can be synthesized using unit cells
(e.g. Figure 1.2). Certainly, the very final step of the design is made by the
validation of the geometry through a full-wave solver, as it represents the best
possible approximation for the electromagnetic behaviour of such structures.

(a) (b)

Figure 1.3: (a) Actual metasurface and (b) homogenized metasurface with the
surface impedance distribution.

1.2 Aim of the thesis
The design approach described in the previous section aims to find the impedance
distribution by solving the integral equation associated with the electromagnetic
problem of scattering by a metasurface. Finding the solution of this direct prob-
lem, which in general is carried out with an iterative approach, becomes pretty

3



Introduction

computational inefficient when dealing with large sized antennas. Therefore, recent
developments in MTS antenna design have shifted towards a current-based ap-
proach, where the impedance distribution is obtained from a current that satisfies
the requirements of passivity, losslessness and radiated field pattern, which can be
obtained by solving a multi-objective optimization problem. Unfortunately, the
nature of such kind of problem, where the objective function to be minimized is the
weighted sum of several functionals, is non-convex and slow convergent. Therefore,
a first attempt to improve the algorithm performance has been made introducing
slack variables, which are able to transform inequality constraints into equality
constraints. Then, focusing on the optimization problem in its original form, other
aspects were analyzed. The assigned weights plays a primary role in finding the
optimal solution. Given the difficulty in assigning optimal weights to the objective
functions a priori, this thesis proposes a novel re-weighting scheme capable of
adaptively determining the weights during the minimization algorithm without
altering the algebraic nature of the problem.

1.3 Thesis outline
The thesis is composed of five main chapters organized as follows:

• Chapter 1 introduces metasurfaces, together with their potentialities, and the
design approach is explained. Then, the aim of thesis is stated.

• Chapter 2 contains a review of the fundamentals needed to understand the
electromagnetic radiation principle of metasurface antennas. A brief descrip-
tion of the Method of Moments is also reported, as it represents the basis for
the optimization techniques described in following chapters.

• Chapter 3 gives a description of the recently developed current-based ap-
proach highlighting its distinctive aspects that formed the basis for subsequent
discussion.

• In Chapter 4, the objective function modification employing slack variables is
presented. Then, the proposed technique for adaptively modify the weights
in a multi-objective optimization problem is described from a mathematical
and algorithmic standpoint. The impact of the method on the final solution
is discussed, as well as possible limitations.

• Chapter 5 collects a series of numerical results using the proposed method,
for different antenna size and radiated field requirements. Results have been
also compared with those obtained by the standard algorithm and presented
in literature.

4
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• In Chapter 6, a summary of the described work is given, as well as possible
future developments and improvements.
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Chapter 2

Electromagnetic formulation

This chapter describes the key ingredients needed to understand the radiation
mechanism of the metasurface antenna and its properties from a physical standpoint.

2.1 EM radiation from sources

2.1.1 Auxiliary potentials method
Maxwell’s equations can be written in the frequency domain for an homogeneous,
isotropic, non-dispersive medium as:

∇×E = −jωµH −M , (2.1)

∇×H = jωϵE + J , (2.2)

∇ ·E = ρe

ϵ
, (2.3)

∇ ·H = ρm

µ
, (2.4)

where ϵ = ϵ0ϵr and µ = µ0µr. The magnetic current density M and magnetic
charge density ρm are fictitious quantities introduced to make Maxwell’s equa-
tions symmetric and their presence will be justified later with the formulation of
the Equivalence theorem. Maxwell’s equation are completed by the continuity
equations:

∇ · J = −jωρe (2.5)
∇ ·M = −jωρm. (2.6)

A very common procedure to solve an electromagnetic problem is to introduce
auxiliary functions, known as vector potentials, which can be related to the sources,
and then find the radiated electromagnetic field E and H .

6



Electromagnetic formulation

Let us suppose the absence of magnetic sources, i.e. M = 0, which implies from
(2.4) that ∇ ·H = 0. Therefore, one can define:

H = ∇×A, (2.7)

as ∇ ·∇×A = 0, where A is the magnetic vector potential. It is worth mentioning
that the choice of A is not unique, since a generic vector is uniquely defined once
assigned its curl and its divergence. From (2.1), in absence of magnetic sources,
∇× (E + jωµA) = 0, so then one can also define:

E + jωµA = −∇Φ, (2.8)

as ∇ × ∇Φ = 0, where Φ is the magnetic scalar potential. By considering the
∇×∇×A and substituting the (2.8), the following expression is obtained:

∇2A + k2A−∇(∇ ·A + jωϵΦ) = −J , (2.9)

where k = ω
√

ϵµ, which can be simplified thanks to the Lorentz gauge

∇ ·A + jωϵΦ = 0. (2.10)

In this way, it can be appreciated that the magnetic vector potential satisfies the
wave equation

∇2A + k2A = −J . (2.11)
The great advantage of this approach is that once determined the vector A by

solving (2.11), the electromagnetic field can be easily evaluated using:

H = ∇×A, (2.12)

E = −jωµA + ∇∇ ·A
jωϵ

. (2.13)

Eqs. (2.12)-(2.13) have been derived considering only electric sources. Similar
expressions can be derived in terms of magnetic current density only by introducing
auxiliary potentials F and Ψ. Therefore, in presence of both electric and magnetic
sources, the electromagnetic field can be computed simply by superposition of both
sources terms.
The (2.11) can be solved with different approaches, one of the most common is by
means of the Green’s function.

2.1.2 Solution with the Green’s function
Let us suppose that M = 0, the equation to be solved (2.11) assumes the form of

Lf = h, (2.14)

7



Electromagnetic formulation

where L is the linear operator −(∇2 + k2), f = A and h = J . The solution of the
problem, for which f and h are generic functions, is found by means of the Green’s
function, defined as

LG(r, r′) = δ(r, r′), (2.15)

where r and r′ are respectively the source point and the observation point, δ(r, r′)
is the Dirac delta.
The solution of the scalar deterministic problem assumes the form:

f(r) =
Ú

V
G(r, r′)h(r′)dV ′, (2.16)

where V is a volume containing r′. The expression of the Green’s function can
be computed for the free space, since it is the region of interest when radiation
from antennas is considered. For the sake of simplicity, let us consider that the
source point r′ coincides with the origin of the coordinates system, moreover let
us employ a spherical coordinates systems (suitable for analize the free space
radiation). Exploiting the symmetries with respect to the coordinates θ and ϕ, the
Green’s function simplifies:

G(r) −→ G(r). (2.17)

The equation to be solved is therefore:

−(∇2 + k2)G(r) = δ(r), (2.18)

expliciting the ∇2 operator, using the simplifying assumptions (related to the
spherical coordinates) and integrating on a spherical volume V , the result is

G(r) = e−jkr

4πr
, (2.19)

which can be generalized in:

G(r, r′) = e−jk|r−r′|

4π|r − r′|
. (2.20)

At last, the magnetic vector potential is found to be:

A(r) =
Ú

V

e−jk|r−r′|

4π|r − r′|
J(r′)dV ′, (2.21)

which can be used together with (2.12)-(2.13) to obtain the following expression
for the EM field

H(r) =
Ú

V
∇× [G(r, r′)J(r′)]dV ′ =

Ú
V
∇G(r, r′)× J(r′)dV ′, (2.22)
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Electromagnetic formulation

E(r) = −jωµ
Ú

V
G(r, r′)J(r′)dV ′ + 1

jωϵ

Ú
V
∇∇ · [G(r, r′)J(r′)]dV ′

= −jωµ
Ú

V
G(r, r′)J(r′)dV ′ + 1

jωϵ

Ú
V

[J(r′) · ∇]∇G(r, r′)dV ′.
(2.23)

It is worth mentioning that all the computations above are referred to an isotropic
medium. When the sources are placed in anisotropic media, the dyadic Green’s
function G(r, r′) must be employed:

G(r, r′) =

Gxx Gxy Gxz

Gyx Gyy Gyz

Gzx Gzy Gzz

 (2.24)

which takes into account the effect of the sources on E(r), H(r) [3, p. 117].

2.2 Scattering formulation

2.2.1 Boundary conditions
Let us consider two media with different characteristics (ϵ1, µ1 and ϵ2, µ2) separated
by a surface S. E1, H1 and E2, H2 are solutions of Maxwell’s equations in medium
1 and in medium 2 respectively. n̂ is the unit vector normal to the surface (oriented
from medium 1 to medium 2). From Maxwell’s equations, if both electric and
magnetic sources are present on the interface between the two media, it can be
shown that:

(E2 −E1)× n̂ = MS, (2.25)

n̂× (H2 −H1) = JS. (2.26)

Eqs. (2.25)-(2.26) tell us that the tangential components of the fields are discon-
tinuous and the amount of discontinuity is given by equations above. The same
can be said about the normal components, since:

n̂ · (ϵ2E2 − ϵ1E1) = ρmS
(2.27)

n̂ · (µ2H2 − µ1H1) = ρeS
. (2.28)

When no sources are present on the boundary, i.e. the discontinuity is between
two dielectric, eqs. (2.25-2.26) and (2.27-2.28) becomes:

(E2 −E1)× n̂ = 0 −→ Et
2 = Et

1 (2.29)

n̂× (H2 −H1) = 0 −→H t
2 = H t

1 (2.30)

n̂ · (ϵ2E2 − ϵ1E1) = 0 −→ ϵ2E
n
2 = ϵ1E

n
1 (2.31)

9
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n̂ · (µ2H2 − µ1H1) = 0 −→ µ2H
n
2 = µ1H

n
1 (2.32)

which tell that the tangential components are continuous, while the normal compo-
nents are discontinuous.

In the case of a perfect electric conductor (PEC), for which σ →∞, E1 = H1 = 0
and no magnetic sources are present. Since on the surface of a PEC a flow of
electric current density is present, it can be shown that:

E2 × n̂ = 0 −→ Et
2 = 0, (2.33)

n̂×H2 = Js −→H t
2 = Js (2.34)

n̂ · ϵ2E2 = ρeS
−→ En

2 = ρeS

ϵ2
(2.35)

n̂ · µ2H2 = 0 −→ Hn
2 = 0. (2.36)

One can conclude that: the tangential component of the electric field and the
normal component of the magnetic field vanish, while the tangential magnetic field
and the normal magnetic field are discontinuous next to a PEC.

2.2.2 Equivalence theorem
The uniqueness theorem states that the solution of an electromagnetic problem,
created by sources placed in a region, is unique when the tangential component of
the field (electric or magnetic) is specified over the boundary of the region. From
this result, another important theorem can be formulated, the surface equivalence
theorem [4]. Let us consider an homogeneous medium and a closed surface S which
contains the sources (J and M). The surface S can be an actual surface or a
fictitious one, introduced only to separate conceptually the volume in which the
sources are present V1, with the rest of the space V2. These electric and magnetic
current densities radiate an EM field E1, H1 everywhere: the surface equivalence
theorem tells us that an equivalent problem can be formulated if in place of the
sources, one considers E, H as arbitrary solution of Maxwell’s equations inside V1
and E1, H1 outside V1. In order to this field to exists, it must satisfy the boundary
conditions across the surface S, which means that surface equivalent electric and
magnetic sources must exist, i.e.

n̂× (H1 −H) = JSeq (2.37)

(E1 −E)× n̂ = MSeq (2.38)

which radiate into an unbounded homogeneous space, therefore radiated field can
be computed through (2.22)-(2.23). Since only the radiation in V2 is of interest,

10
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the field inside V1 can be anything: one of the most common choice is to take
E = H = 0, for which (2.37)-(2.38) become

n̂×H1 = JSeq (2.39)

E1 × n̂ = MSeq (2.40)
which can be used, together with (2.22)-(2.23) (and the dual formulas in terms of
M ), to solve the electromagnetic problem.

(a) (b)

Figure 2.1: Surface equivalence theorem illustration: (a) actual and (b) equivalent
problem.

The equivalence theorem can be applied also if S is an actual closed surface
separating two media. Let us consider two volume, V1 and V2, filled with different
materials, ϵ1, µ1 and ϵ2, µ2; in the unbounded medium V2, an electromagnetic field
is present, which can be due to either sources placed in V2, or can be a generic
incident field (e.g. a plane wave) generated by the sources placed in the unbounded
medium in absence of the obstacle. The total electromagnetic field radiated in the
unbounded medium will be given by the incident field, plus a perturbation due to
the obstacle in V1, called scattered field.

Etot = Einc + Es (2.41)

Htot = Hinc + Hs. (2.42)
By using the surface equivalence theorem, one can impose zero field inside V1

and replace the characteristics of medium 2 with those of the background medium
(i.e. the unbounded space). The problem does not change if equivalent sources are
placed on the S such that:

n̂×Htot = JSeq , (2.43)

11
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Etot × n̂ = MSeq , (2.44)

which are now allowed to radiate into an homogeneous unbounded space. Therefore,
the scattered field, Es(JSeq , MSeq) and Hs(JSeq , MSeq), which are function of the
equivalent sources, can be computed through (2.22)-(2.23) (and the dual formulas
in terms of M ), supposing that one is able to express the Green’s function of the
background medium.
Let us suppose that the boundary condition of the tangential component of the
electric field on S preserves its continuity, so then MSeq = 0. This allows to write
a set of equations 

Et
tot = BC(JSeq)

Es = L(JSeq)

Et
tot = Et

inc + Et
s

(2.45)

which can be used to write the electric field integral equation (EFIE):

BC(JSeq) = L(JSeq)|t + Et
inc. (2.46)

When dealing with scattering problems in presence of a infinitely extended PEC
plane, the LHS of the (2.46) is equal to zero, while in the case of metasurface, an
appropriate boundary condition must be applied, as will be detailed in the next
chapter.

Since Einc is a known quantity, the Equation 2.46 can be solved in terms of the
equivalent current only and therefore it lends itself to numerical solutions.

2.3 Method of moments
The electromagnetic problem described in the previous section can be numerically
solved using the Method of Moments (MoM) [5]. The general problem in (2.46)
has the following form:

L(f) = g, (2.47)

where L is a linear integral-differential operator (e.g. the one extrapolated from
(2.22)-(2.23)), g is the forcing known term (e.g. the incident field) and f is the
unknown function (the equivalent current density). In order to solve numerically
the (2.47), f must be expanded into a sum of N basis functions:

f =
NØ

n=1
Infn, (2.48)
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(a) (b)

Figure 2.2: Surface equivalence theorem in presence of an actual obstacle: (a)
actual and (b) equivalent problems.

where In is the unknown coefficient and fn is a basis function chosen such that
it reflects the behaviour of the unknown function within its domain in order to
obtain a good approximation. Substituting the (2.48) into (2.47) and exploiting
the linearity of the operator L,

NØ
n=1

InL(fn) ≈ g, (2.49)

therefore, the residual of the approximation is simply given by

R = g −
NØ

n=1
InL(fn) (2.50)

and one must find the coefficients In such that the residual R is minimized. To do
so, the inner product is introduced

⟨wm , fn ⟩ =
ÚÚ
D

wm(r) · fn(r) dD, (2.51)

where wm is the testing (or weighting) basis function and D is the intersection of
the definition domain of the actual basis functions Df and of those used as testing
Dw.
Enforcing that the residual is outside the subspace defined by the testing function,
i.e.

⟨wm , R ⟩ = 0 ∀m = 1, . . . , N (2.52)
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and substituting it inside the (2.50), one gets
NØ

n=1
In⟨wm , L(fn) ⟩ = ⟨wm , g ⟩. (2.53)

The previous equation can be written in compact form as

Z I = V, (2.54)

thus, the generic EFIE can be discretized. In (2.54)

Z =


⟨w1 , L(f1) ⟩ ⟨w1 , L(f2) ⟩ . . . ⟨w1 , L(fN) ⟩
⟨w2 , L(f1) ⟩ ⟨w2 , L(f2) ⟩ . . . ⟨w2 , L(fN) ⟩

... ... . . . ...
⟨wN , L(f1) ⟩ ⟨wN , L(f2) ⟩ . . . ⟨wN , L(fN) ⟩



I =


I1
I2
...

IN

 V =


⟨w1 , g ⟩
⟨w2 , g ⟩

...
⟨wN , g ⟩


The linear system (2.54) must be solved with respect to I and then the unknown
function f can be reconstructed through (2.48). Iterative methods, such as linear
conjugate gradient algorithms, as well as direct solvers that alter the original
system, such as Gaussian Elimination or LU decomposition, can be used to obtain
the solution.
The choice of the testing function can be done following the Galerkin method, where
the same basis function are chosen for both the discretization of the f and for the
testing, i.e. wn = fn.

When dealing with scattering or radiation problems in three-dimensional space,
it is a very common practice to discretize the surface by dividing it into triangular
cells. In this way, it is possible to model surfaces of arbitrary shape and size. In
this scenario, one of the most common choices for addressing the problem is to use
RWG basis functions, which are local basis functions defined on pairs of triangles
that share an edge [6]. Considering two adjacent triangles T +

n and T −
n , the basis

function fn associated with the common edge en is defined as

fn(r) =



ln
A+

n
ρ+

n (r) r ∈ T +
n

ln
A−

n
ρ−

n (r) r ∈ T −
n

0 otherwise

(2.55)
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where ln is the edge length and A±
n is the area of the T ±

n triangle. The vector ρ+
n

points in the opposite direction of the free vertex v+ of T +
n and is defined as

ρ+
n = r − v+ r ∈ T +

n , (2.56)

while ρ−
n points in the opposite direction of the free vertex v− of T −

n (see Figure 2.3)

ρ−
n = v− − r r ∈ T −

n . (2.57)

By their definition, RWG basis functions are assigned only to internal edges,
therefore, each internal triangular cell has three basis function assigned to. These

Figure 2.3: Graphical representation of RWG basis function.

basis functions are the most commonly used when dealing with 3D electromagnetic
problems thanks to their properties here summarized:

• The current has no component normal to boundary edges, i.e. those which
are not common to any triangles.

• The normal component to internal edges is continuous across the edge.

• The parallel component to internal edges is discontinuous.

• The surface divergence of fn is

∇s · fn =



ln
A+

n
r ∈ T +

n

− ln
A−

n
r ∈ T −

n

0 otherwise

(2.58)

This makes the charge density constant within each triangle, while the net
charge density of the pair of adjacent triangles T +

n and T −
n is null.
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Chapter 3

Current-based optimization
algorithm

The development framework for the work carried out is the Current-Based Op-
timization Algorithm [7]. In this chapter, a brief description of the algorithm is
provided, highlighting its distinctive aspects that formed the basis for subsequent
discussions. This algorithm is capable to obtain an equivalent current distribution,
and then an impedance distribution, satisfying the requirements on the radiated
field and the constraints on the realizability of the metasurface antenna.

3.1 Electromagnetic problem formulation
Concerning metasurfaces, the discontinuity of the tangential magnetic field is
related to the tangential electric field through the surface impedance Z(r), which
is in general a space-varying tensor. The resulting relation is called Impedance
Boundary Condition (IBC) [2]:

Etan = Z · [n̂× (H+ −H−)]. (3.1)

The surface equivalence theorem states that the electromagnetic field outside a
closed surface S, that bounds a volume containing the sources, can be expressed
in terms of equivalent sources, determined from the knowledge of the tangential
components of the fields on S:

Jeq = n̂×H ,

Meq = −n̂×E.
(3.2)

Considering the Figure 3.1, by making the volume that bounds the MTS
collapsing to the SIBC from both sides, the total equivalent electric and magnetic
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Figure 3.1: Graphical application of the Equivalence theorem. The dashed line
represents the volume containing the sources.

currents are given by:
Jeq = n̂× (H+ −H−),

Meq = −n̂× (E+ −E−).
(3.3)

Typically, a metasurface is made by printed metallic patches, therefore it does
not introduce any electric field discontinuity: as consequence, Meq = 0. With (3.3),
(3.1) can be written as:

Etan = Z · Jeq. (3.4)

The tangential electric field can be written as:

Etan = [Einc + Es]tan, (3.5)

where Es = LJeq is the electric field radiated by the equivalent currents and L is
the electric field integral operator (EFIO). In this way, the (3.4) becomes:

[Einc(r) + LJeq(r)]tan = Z(r)Jeq(r) ∀r ∈ SIBC , (3.6)

which is the electric field integral equation defined in (2.46) when the IBC is
employed (EFIE-IBC). The EFIO in (3.6) is defined as:

LJ(r) =
ÚÚ

SIBC

G
EJ

(r, r′) · J(r′) dS(r′), (3.7)

where G
EJ

is the multilayer dyadic Green’s function [8].
Since the specifications on the radiated fields are in the far-field region (FF), the
radiation operator is employed:

RJ(r) = jk0

2π
G

F F
(r̂) ·

ÚÚ
SIBC

J(r′)ejk0r̂·r′
dS(r)′, (3.8)
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where G
F F

is the multi-layer far field tensor,

G
F F

= −gT M(r̂)θ̂ρ̂− cosθgT E(r̂)ϕ̂ϕ̂. (3.9)

In (3.9), ρ̂, θ̂, ϕ̂ are the unit vectors for the spherical coordinates system, while gT E

and gT M are the transmission line transfer functions for the TE and TM components.

The (3.6) requires the employing of numerical methods in order to find its
solution, therefore it must be discretized using the Method of Moments approach,
in which the metasurface is represented as a triangular mesh and the current J is
approximated as a linear combination of the RWG basis functions Λn:

J(r) =
NØ

n=1
InΛn, (3.10)

where N is the number of internal mesh edges. By testing the integral equation
with the Galerkin’s method, as detailed in the previous chapter, the (3.6) becomes
the linear system:

Vinc + LI = ZI, (3.11)
where I contains the RWG basis coefficients and

(Vinc)m = ⟨Λn , Einc ⟩
(L)mn = ⟨Λn , LΛm ⟩
(Z)mn = ⟨Λn , ZΛm ⟩

(3.12)

The previous expression allows both the evaluation of the equivalent electric current
coefficients I from the impedance Z, solving the linear system

(Z− L)I = Vinc, (3.13)

as well as the impedance computation from the found I. The latter approach is the
one employed in [7].

3.2 Constraints definition
The design of a metasurface antenna aims to achieve the desired radiated field using
a structure that is feasible. Therefore, first and foremost, the feasibilty condition
must be enforced, which translates into a structure that overall neither dissipates
nor provides active power. The expression of the complex power density absorbed
by a metasurface, computed from the Poynting Theorem, is:

p̃ = Etan · [n̂× (H+ −H−)]∗. (3.14)
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If the considered impedance is scalar, i.e.

Z = ZI, (3.15)

where I is the identity tensor, the (3.14) becomes:

p̃ = Etan · J∗
eq = Z(Jeq · J∗

eq) = Z|Jeq|2. (3.16)

By imposing Re{p̃} = 0, which guarantees a passive and lossless structure, the
only one solution is:

Re{Z(r)} = 0 ∀r ∈ SIBC . (3.17)
Furthermore, to ensure that the structure can be realizable with metallic patches,

the reactance must be capacitive and must adhere to technological bounds,

XL ≤ Im{Z(r)} ≤ XU ∀r ∈ SIBC . (3.18)

About the specifications on the radiated field, they are typically expressed in
terms of field amplitude F (r̂, I) ∝ |E(r̂, I)|2 - where r̂ is the far field direction -
and refer to the total amplitude and to the co- and cross-polarization components.
The result of the design must be an antenna radiating a field whose amplitude is
bounded, i.e.

ML(r̂, I) ≤ F (r̂, I) ≤MU(r̂, I), (3.19)
for each far field direction. The requirement on the main lobe (co-polarization) can
be defined in terms of absolute value, while the amplitude of the side lobes and the
cross-polarizations levels must refer to the main beam effective level. Therefore, it
is convenient to define a reference main lobe level as follows,

Fref (I) = 1
Ω0

ÚÚ
Ω0

F co(r̂, I) dΩ(r̂), (3.20)

which represents an average on an angular region Ω0 around the maximum radiation
direction r̂0. In this way, the side lobes and the cross-pol level will always comply
the specification even if the the main lobe does not. The value of Fref(I) is only
lower bounded, i.e.,

Fref (I) ≥M0, (3.21)
and all the other requirements ca be stated relatively to it:

µco
L (r̂)Fref (I) ≤ F co(r̂, I) ≤ µco

U (r̂)Fref (I) ∀r̂ ∈ ΩML, (3.22)

where µco
L and µco

U represent the lower and the upper relative level associated to
the main beam and ΩML is the main lobe region.
For the cross-polarization and the total amplitude:

F cx(r̂, I) ≤ σcx(r̂)Fref (I) ∀r̂ ∈ ΩML, (3.23)
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F tot(r̂, I) ≤ σSL(r̂)Fref (I) ∀r̂ ∈ ΩSL, (3.24)

where σcx and σSL defines respectively the desired relative level for the cross-pol
and the side lobes. ΩSL is the side lobe region.
A graphical example of the masks defined above is described in Figure 3.2.

Figure 3.2: Graphical representation of the radiated field masks: M0 and Fref are
respectively the objective level and the reference level for the main lobe. Relative
levels for cross-pol and side lobes are represented by vertical arrows.

3.3 Algorithm formulation
As explained in section 3.1, the design of MTS antennas is done by means of
numerical methods in order to solve (3.11). In order to do so, the metasurface
SIBC must be meshed considering a lattice of Nc triangular cells Si. An example
of the triangular mesh is shown in Figure 3.3. The most straightforward approach
to obtaining the spatial distribution of impedance is starting from an initial guess
for Z - computed as the ratio of the power absorbed to the magnitude square of
the current - and then evaluating the current coefficient I solving (3.11). From the
current, the radiated field can be evaluated and the value of I for the next iteration
is found computing the one that best approximates the radiated field.
Since this approach requires the solution of the linear system (3.11) at each iteration,
it is unfeasible, from a computational standpoint, for solving large-sized antennas.
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(a) (b)

Figure 3.3: Triangular mesh of a 10λ0 diameter circular metasurface antenna.
The hole in the centre has a λ0/2 diameter and hosts the feed.

Therefore, the algorithm in [7] has been formulated such that only the current is in-
volved in the optimization process, while the impedance will be evaluated at the end.

The optimal current is computed solving the unconstrained optimization prob-
lem,

I∗ = arg min
I∈CN

f(I), (3.25)

where the function f is formulated such that from I∗, the resulting metasurface
antenna adheres to all the constraints defined in section 3.1. In particular,

f(I) = frlz(I) + frad(I). (3.26)

The first term in (3.26),

frlz(I) = wact

NcØ
i=1

ρact
i (I) + wrct

NcØ
i=1

ρrct
i (I) + wscal

NcØ
i=1

ρscal
i (I), (3.27)

is formulated such that the resulting current from (3.35) leads to a scalar impedance
(scal), a passive and lossless structure (act) with a resulting reactance (rct) limited
by technological bounds. The second term in (3.26) is

frad(I) = ρref (I) + wML

Ø
j∈ΩML

(ρco
j (I) + ρcx

j (I)) + wSL

Ø
j∈ΩSL

ρtot
j (I), (3.28)

which guarantees that the radiated field is inside the masks (see Figure 3.2).
By using (3.27) and (3.28), the f(I) is a scalar function made by the weighted sum
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of several objective functions: each w is a scalar positive quantity to be assigned
a-priori.
The constraints defined in section 3.1, on the contrary to traditional optimization
problems, are employed as objective functions, therefore it is important to express
each of them as function of the current I only. It is worth mentioning how the term
related to the scalarity must be enforced. A scalar impedance relates the electric
field and the current density in such a way that they have the same orientation, i.e.
E = ZJ∗, as two vectors related by a scalar quantity are parallel the each other.
Therefore, this condition can be enforced by using

|E · J∗| = |E||J∗|. (3.29)

About the other constraints, those definite via inequality, like reactance bounds
and radiated field levels, they have been defined in the overall objective function
using the ramp function

ramp(x) = max(x,0), (3.30)
which means that any inequality can be written as:

a ≤ x ≤ b→

ramp(a− x) = 0
ramp(x− b) = 0.

(3.31)

Actually, the ramp function does not have a continuous derivative, so this problem
has been solved by using the squared ramp function ramp2(x) = max(x,0)2 (see
Figure 3.4).

The function f(I) has been organized into functionals of the current I only which
are, for practical reasons, fourth-degree polynomials. Let us consider as example
the terms associated with the active power, i.e. ρact

i (I) = Pi with i = 1, . . . , Nc: the
sought current must guarantee that the power over each cell is equal to zero. Since
the power is proportional to the square of the current, it is natural to represent its
functional as a second-degree polynomial of the current. In this way, the sum of
the active power over each mesh cell can be zero, but it is not guarantee that each
cell does not dissipate, nor provide active power, as positive and negative terms can
be summed together. Therefore, since the sum of positive terms is zero if and only
if all terms are zero, the functional has been organized as squared second-degree
polynomial. In this way, a pure zero of the functional guarantee both passivity and
losslessness. The general algebraic expression of the objective function is

f(I) =
Ø

i

qi(I)si(I) +
Ø

i

ramp2(ti(I)), (3.32)

where qi, si and ti are multivariable quadratic function of the current coefficient in
the form:

qi(I) = Re{IHAiI + IHbi + ci} (3.33)
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and A ∈ CN×N and symmetric, b ∈ CN , c ∈ C and I ∈ CN . The objective function

(a) (b)

Figure 3.4: Comparison between (a) ramp function and (b) squared ramp function.

(3.26) is minimized using the Non Linear Conjugate Gradient algorithm [9] (see
App C): the update value of the current coefficient array is computed through

Ik+1 = Ik + αkpk, (3.34)

where Ik is the current value of the current, pk is the update direction and αk is
the coefficient to be found.
The value α is computed using the linesearch procedure [7, p. 4896], which consists
in a one dimensional minimization of the objective function along the search
direction:

α∗ = arg min
α∈R

f(I + αp). (3.35)

The linesearch is a relatively simple task, provided that the objective function is
written as function of the only α, because it would require to find a minimum of a
piece-wise (due to the presence of the ramp functions) fourth-degree polynomial. As
a matter of fact, the derivative of the functional is a third-degree polynomial with
two maxima and one minimum, which can be easily found by inspection. Although
the choice of using fourth-order polynomials is advantageous from a computational
perspective, it makes the optimization problem inherently non-convex. This can
be confirmed by fixing an initial value of I and a search direction p: the objective
function will then be a sum of fourth-order polynomials, so generally non-convex.
This aspect will be discussed in more details in the following chapter.

At last, solving the (3.11) with the optimum I⋆ the surface distribution Z(r)
can be obtained [7, p. 4897].
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In order to do so, one must start formulating an expression of the impedance
distribution in terms of L basis functions Φi(r)

Z(r) =
LØ

i=1
ziΦi(r). (3.36)

Then, Zmn can be found by its definition in (3.12) and the (3.11) can be solved
with respect to z (which collects the coefficients zi) as a linear least-square opti-
mization problem. The choice of the basis functions used to expand the impedance
distribution in (3.36) is arbitrarily, as well as the testing functions for computing
the IBC matrix Z. In particular, one can choose

Φi(r) = Πi(r) =
1 for r ∈ Si

0 elsewhere
(3.37)

with L = Nc and Si is the domain spanned by the basis function. Then, by choosing
as testing functions the complex conjugate of the optimized current over the mesh
cell, i.e.

Ψj(r) = Πj(r)J∗(r) =
J∗(r) for r ∈ Sj

0 elsewhere
(3.38)

where Sj is the area of the mesh cell and j = 1, . . . , Nc, the EFIE-IBC results as a
diagonal and square system, therefore it can be solved in closed form.
Since the impedance is basically computed involving the ratio of the electric field
E and current density J , indeterminate forms may arise, which are the reason why
a regularization is needed. There are four possible combinations of values: when
both E and J are non-zero the impedance is computed solving the EFIE-IBC.
When the current is null and the field is not it represents an open circuit (Z =∞),
while when the electric field is null and the current is not, it represents a short
circuit (Z = 0), corresponding to a PEC boundary condition. At last, when both
current and electric field are null, the impedance is undefined and therefore it is
computed by interpolating values of the neighboring cells.
The above mentioned conditions are summarized in Table 3.1.
Practically speaking, the regularization of the impedance is done employing two
thresholds τv and τi, respectively for the electric field and the current density, in
order to handle numerical tolerances.

The very last step of the optimization consists of solving the EFIE-IBC in (3.13)
with respect to the current with the previously obtained impedance, the result is
then used to compute the radiated field. This last stage is not really mandatory,
but since the direct problem is the most studied and has well-established properties,
the convergence of the solution of (3.13) is sign of a good-quality result.
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|J | = 0 |J | /= 0

|E| = 0 Z undefined Z = 0

|E| /= 0 Z =∞ Z = |E|/|J |

Table 3.1: Summary of all possible combinations of J and E.
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Chapter 4

Optimization strategies

As detailed in chapter 3, the Current-Based Optimization Algorithm [7] minimizes
the function (3.26), which is the weighted sum of several optimization functions.
First of all, problem formulation based on slack variables is described. Then, the
meaning and the impact of the weights in a multi-objective optimization problem
will be discussed. A new method to adaptively determine and modify the weights
during the algorithmic process is finally proposed.

4.1 Slack variables
Within the scope of optimization problems, slack variables are introduced to
transform inequality constraints into equality constraints. Let us consider a simple
linear programming problem:

min
x

cTx

s.t. Ax ≥ b,
(4.1)

where x ∈ RN collects the unknown coefficients and c, b ∈ RN and A ∈ RN×N are
known terms. The inequality constraint in (4.1) can be written as:

s = Ax − b ≥ 0, (4.2)

where s ∈ RN collects the slack variables. Therefore, the optimization problem
becomes

min
x

cTx

s.t. s− (Ax − b) = 0
s.t. s ≥ 0,

(4.3)

so the inequality constraint has been transformed to an equality constraint at the
expense of guarantee that s ≥ 0.
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4.1.1 Objective function formulation
The current-based optimization problem described in the previous chapter aims
to minimize a function containing several (local) inequality constraints, which are
managed through the ramp function. This makes the objective function piecewise
fourth-degree polynomial and therefore the linesearch, i.e. the minimization of the
function along the direction dictated by p (see App. C), is performed iteratively.
To overcome this problem, an attempt was made by introducing slack variables to
address the inequality constraints.

Let us consider, for the sake of brevity, the objective function related to the
realizability of the MTS antenna:

f(I) = wact

NcØ
i=1

ρact
i (I) + wimp

L

NcØ
i=1

ρimp
Li (I) + wimp

U

NcØ
i=1

ρimp
Ui (I) + wscal

NcØ
i=1

ρscal
i (I). (4.4)

Active power and scalarity terms are expressed as equality constraints, while
reactance bounds are employed with the ramp functions. In this particular case,
impedance constraints are expressed in terms of power density as function of the
RWG current coefficients I:

XLiJi(I) ≤ Qi(I) (4.5)
XUiJi(I) ≥ Qi(I), (4.6)

where Ji(I), Qi(I) are power densities averaged over the area Ai of the i-th mesh
cell Si

Ji(I) = 1
Ai

ÚÚ
Si

|J(I)|2 dS (4.7)

Qi(I) = 1
Ai

Im
î ÚÚ

Si

E · J∗(I) dS
ï
. (4.8)

Quantities in (4.7)-(4.8) are functions of the current coefficients through the local
Gram matrix computed with RWG basis and testing functions. Conditions outlined
in (4.5)-(4.6) can be restated by introducing Nc slack variables for the lower
reactance bounds and Nc slack variables for the upper bounds as:

|simp
Li |2 + XLiJi(I)−Qi(I) = 0, (4.9)

|simp
Ui |2 +Qi(I)−XUiJi(I) = 0, (4.10)

where si ∈ C. The impedance functionals of (4.4) becomes:

ρimp
Li (I, simp

Li ) = (|simp
Li |2 + XLiJi(I)−Qi(I))2 = (|simp

Li |2 + Ψimp
Li (I))2, (4.11)

ρimp
Ui (I, simp

Ui ) = (|simp
Ui |2 +Qi(I)−XUiJi(I))2 = (|simp

Ui |2 + Ψimp
Ui (I))2, (4.12)

where si will act as extra optimization variables.
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4.1.2 Gradient and linesearch
Now that the objective function is formulated, the gradient must be computed with
respect to the current and to the extra slack variables.

∇̃Iρ
imp
Ui = 2(|simp

Li |2 + Ψimp
Li (I))∇̃Ψimp

Li (I),
∇̃Iρ

imp
Ui = 2(|simp

Ui |2 + Ψimp
Ui (I))∇̃Ψimp

Ui (I),
(4.13)

where ∇̃Ψimp
Li (I) and ∇̃Ψimp

Ui (I) are already computed for the gradient of the original
objective function. About the complex gradient with respect to the slack variable,
one can notice that i-th variable si, counts only for the i-th functional, i.e. one
must compute the complex derivative of ρi only with respect to its counterpart:

∂̃ρi

∂si

= 2(|si|2 + Ψi)
∂̃|si|2

∂si

. (4.14)

Here, one must consider that for a given function h(z) : C→ C, with z = z′ + jz′′,
the partial derivative of h with respect to z is:

∂̃h

∂z
= 1

2

A
∂h

∂z′ + j
∂h

∂z′′

B
, (4.15)

which can be generalized into the definition of the complex gradient:

∇̃h(z) = 1
2 (∇′h(z′, z′′) + j∇′′h(z′, z′′)) , (4.16)

where ∇′ and ∇′′ are gradients with respect to the real and to the imaginary part
of z respectively.
Therefore, (4.14) becomes:

∂̃ρi

∂si

= 2(|si|2 + Ψi)si (4.17)

and the gradient of the objective function with respect to the slack variables can
be computed with:

∇̃sf = 2w



|s1|2 + Ψ1

|s2|2 + Ψ2
...

|sNc |2 + ΨNc


⊙



s1

s2
...

sNc


(4.18)

where the previous expression, for the sake of brevity, only considers one single set
of slack variables (e.g those introduced for the lower reactance bounds). It is worth
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mentioning that, since the array (|s1|2 + Ψ1, . . . , |sNc |2 + ΨNc)T in (4.18) is already
stored in memory, as it is used for the gradient computation with respect to I (see
(4.13)), the gradient with respect to the slack variables can be computed without a
significant computational effort.

In order to perform the linesearch procedure, the objective function must be
written in terms of the step length α as:

f(α) = f(I0 + αp, s0 + αsp). (4.19)

This is still a simple task, because slack variables show in the functionals in the
form of the magnitude squared, indeed:

|si|2 = sis
∗
i = (s0

i + αsp
i )(s0

i + αsp
i )∗ = |s0

i |2 + α2Re{s0
i s

p
i }+ α2|sp

i |2, (4.20)

therefore, collecting also the current coefficients, the minimum of the polynomial
can be computed in closed form.

4.1.3 Convergence

As demonstrated, the introduction of slack variables allows to avoid the use of ramp
functions for satisfying inequality constraints. However, the number of optimization
variables grows significantly due to the local nature of the constraints. To verify the
performance of the proposed modification, a metasurface antenna with diameter
equal to 6λ0 has been used as test and the design has been carried out minimizing
both the original objective function (with ramp functions) and the one employing
slack variables, with the same initial conditions and over an equal number of
iterations. The proposed structure has been meshed with Nc = 2047 triangular
cells and the sought current has been expanded with N = 4812 RWG basis functions.
Just considering the inequality constraints associated with reactance bounds, 2Nc

slack variables must be employed to properly express the objective function. This
aspect, while not computationally penalizing as observed, results in a slowdown of
the convergence of the minimization algorithm, as evident from Figure 4.1.
For this reason, the optimization strategy proposed in the following will refer to the
problem in its original form, namely where the inequality constraints are managed
through ramp functions.
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Figure 4.1: Convergence plot of the optimization performed over 200 iterations:
optimization function expressed with ramp function versus slack variables.

4.2 Multi-objective optimization problem: the
weighted sum method

The standard form of a multi-objective optimization problem can be simply derived
from the single-objective one considering the function to minimize as an array of
several optimization functions:

min
x

F(x) = [f1(x), f2(x), . . . , fK(x)]T

s.t. gj(x) ≤ 0 j = 1, . . . , m

s.t. hi(x) = 0 i = 1, . . . , p,

(4.21)

where x ∈ RN is the design (or decision) array, K is the number of optimization
functions, m the number of inequality constraints and p the number of equality
constraints.
From (4.21) it is clear that x and F have different dimension space and in particular,
each solution of the decision space (RN) maps a single value in the objective
space (RK), while the inverse mapping is not unique [10]. Furthermore, it is
trivial to understand that except for the case K = 1, which collapses in the single-
objective optimization problem, values in the decision space that minimize a single
function will conflict with others, so an improvement of one function may lead to a
deterioration of the others. Therefore, there is no a single optimal solution, but a
set of solutions which represents a trade-off among all the objective functions.
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Figure 4.2: Mapping between the decision space (R3) and objective space (R2).

Figure 4.2 shows the mapping between the decision space and the objective
space: the portion of the objective space in grey represents the values obtained in
the objective space considering the feasible solutions, i.e., those that satisfy the
constraints in (4.21), taking into account the possible trade-offs among the objective
function values. The feasible region, however, is populated by non-optimal values
of the objective function F, meaning values that are neither optimal for f1 nor for
f2. On the other hand, outside the feasible region, particularly near the origin of
the reference system for the objective space, it is possible to distinguish a region
known as the unfeasible region, which is therefore unreachable by any set of design
variables [11]. The boundary between the objective feasible region and the objective
unfeasible region is called Pareto front and it is made by a set of non-dominated
solutions, meaning that no solution is dominated by another, yet at the same time
they are better than any other solutions in the feasible region [12].
In accordance with the explanation presented above, the strict definition of Pareto
front is given [13]:

Definition 4.2.1 A solution x⋆ ∈ Xf , where Xf is the feasible solutions set, is a
Pareto-optimal solution if:

∄ x ∈ Xf : x ≻ x⋆. (4.22)

With the notation x ≻ x⋆ it is customary to indicate that x dominates x⋆, that is to
say x is equal or superior to x⋆ among all objective function values and it is better
than x⋆ for at least one objective function value [14].
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Figure 4.3: [15] Representation of the Pareto front (blue line), optimal (red dots)
and non-optimal (black dots) solutions.

Definition 4.2.2 All Pareto-optimal solutions constitute the Pareto-optimal set
P ⋆:

P ⋆ ≜ { x⋆ | ∄ x ∈ Xf : x ≻ x⋆ }. (4.23)

Definition 4.2.3 The surface obtained by combining all the objective functions
corresponding to the set P ⋆ is called Pareto front PF ⋆:

PF ⋆ ≜ { F(x⋆) = [f1(x⋆), f2(x⋆), . . . , fK(x⋆)]T | x⋆ ∈ P ⋆ }. (4.24)

One of the most common ways to deal with multi-objective optimization problems
is by using the weighted sum method. The array of objective functions F(x) in
(4.21) can be substituted by a scalar objective function made by a weighted sum of
all the components of F(x):

U(x) =
KØ

k=1
wkfk(x). (4.25)

U(x) is usually called utility function. With this approach the (4.21) is organized
into a simpler single-objective problem, with the possibility of inheriting the same
optimization techniques.
The reason why the optimization problem described in 3 has been organized using
a single scalar function as (4.25) is that in the design of a metasurface antenna
there are not many functions one would optimize in the literal sense, while the
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number of constraints is in general huge, since each of them must refer to a single
mesh-cell. Typically, the structure constituting the antenna must be lossless, hence
one can address the problem minimizing the the real part of the active power, but,
for the aforementioned reasons, it would be impractical. Moreover, the real part of
the active power is not something one wants to minimize, but a quantity that must
be equal to zero for each cell. Therefore, since one would keep the surface reactance
and the radiated field (co- and cross- polarization) between given boundaries and
obtain a lossless structure, the optimal design of a metasurface antenna allows every
possible solutions, provided that the above mentioned constraints are satisfied. For
these reasons, the problems entailed by the design of these kinds of antennas are
more feasibility problems rather then optimization ones.

4.3 Meaning of the weights
Considering the (4.25), wk with k = 1, . . . , K represents the weight to be assigned
to each objective function. As explained in the previous section, the weighted
sum method allows to restate the multi-objective optimization problem as a single
objective function. The first problem that arises while employing this method is
that the scalar utility function U(x) is not necessarily equivalent to the F(x) of
(4.21), because, intuitively, since the choice of the weights can be arbitrary, also
the solution x can be different [16].
In this section, the conceptual meaning of weights and their impact on the solution
of an optimization problem will be addressed.
As the name suggests, the weights to assign to each objective function can reflect
the importance of a specific goal. In many commercial CAD softwares for electronic
design one can set a multi-objective optimization choosing the weights so that one
goal will be reached sooner than the others. However, not all design problems
have prioritary goals than others that can be overlooked, but quite the opposite:
generally it is not possible to distinguish a preference. As suggested by [17], let us
consider as an example the optimization of two functions:

min
x

f1(x) = 10(x1 − 1)2 + (3x2 − 2)2

f2(x) = (x1 − 3)2 + (x2 − 2.5)2 (4.26)

with the design array x = [x1, x2] ∈ R2 and x1,2 ∈ [0,4].
Moreover, let us consider that the designer cannot distinguish any priority: both
functions must be minimized in the same way. When f1 is minimized, f2 = 7.36,
while when f2 is minimized, f1 = 70.25. These two functions can be shrinked into
one to be minimized using the weighting sum method: let us assign w1 = w2 = 1,
the result, computed with one of the function in the Matlab suite, is [1.18, 0.85] →
[0.63, 6.03].
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Evaluating both functions for each possible value of x in the criterion space, one
can appreciate that f1 has a range between zero and 190, f2 between 0 and 15.25.
Since the range of f1 is much larger to the range of f2, it can be natural to assign
w1 = 1 and w2 = 2, in order to compensate their magnitude. The result is: [1.334,
1] → [2.11, 5.03], so this solution does not dominate the previous one, as only f2
assumes a lower value. Even if the weights are assigned trying to equalize the
magnitudes of f1 and f2, so w1 = 0.08 and w2 = 0.92, the result is [2.07, 1.69] →
[36.67, 0.22].
From this example, it is possible to conclude that assigning weights in such a
way that reflects the magnitudes of single functionals, as also experimented for
the Current-Based Optimization algorithm, does not lead to improvements, or at
least not always. It is also worth mentioning that very often weights are chosen
a-posteriori, based on repeated optimization: this approach can be inefficient for
the user aiming to pursue the optimization, especially when dealing with complex
scenarios, i.e. when many functions and unknowns are involved. It is worth to
analize the meaning of the weights from a mathematical standpoint.
Considering the (4.25), weights represent the gradient of the function U with respect
to F. In fact, if one simplifies the expressions in the case of only two objective
functions, so that F(x) = [f1(x), f2(x)] and U(x) = w1f1(x) + w2f2(x):

∇FU =


∂U
∂f1

∂U
∂f2

 =


w1

w2

 (4.27)

The previous expression means that by choosing a set of weights one gets the
direction of decreasing U values, represented by −∇FU , which allows to find a the
U -function contours tangent to the pareto optimal set [17]. The figure 4.4 offers a
a graphical representation of the gradient and of the U -function contours in the
case of two objective functions.
For the reason explained above, the choice of the weights is a critical operation due
to the fact that with different set of weights it is possible to "explore" the entire
feasibility space, and especially because with a specific set, it is possible to point
towards any solution on the Pareto front. Moreover, among all possible solutions
on the Pareto front, often the designer chooses the so-called knee point (shown in
Figure 4.5), that is the one which minimizes the distance between the Pareto curve
and the utopia point, for which all objective functions are minimized and in general
not feasible [18].
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Figure 4.4: Graphical interpretation of the weights in a 2d-space: black solid line
are the U -function contour tangent to the Pareto front (red dashed curve). The
direction of decreasing U pointed by the arrow is dictated by the weights.

Figure 4.5: The knee point on the Pareto front (blue dots) minimizes the distance
from the utopia point.

4.4 Adaptive weight scheme

In this section, the basic algorithm for determining the optimal set of weights will
be formulated, specifically tailored to the case of the Current-Based Optimization
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Algorithm described in chapter 3 and it is presented as a way to tackle the
non-convexity of the objective function. Although this re-weighting algorithm is
described quantitatively and mathematically for the specific case, it is conceptually
feasible for any multiobjective optimization problem dealt with through the weighted
sum method.

4.4.1 Concept of hyperplane

The U -function contours described in the previous section (see Figure 4.4), for the
specific case of only two objective functions, are lines oriented in the orthogonal
direction of the gradient of U with respect to F and tangent to the Pareto front.
The n-dimension generalization of that lines can be obtained through the concept
of hyperplane.
An hyperplane is a subspace of one dimension less than its ambient space: for a
2-dimensional space, the hyperplane is a 1-dimensional line (see Figure 4.4), for a
3-dimensional space, the hyperplane is a 2-dimensional plane. The hyperplane can
be described in Cartesian coordinates with the following linear equation:

a1x1 + a2x2 + · · ·+ anxn = 1, (4.28)

in which ai is the hyperplane coefficient. By comparison with the previous equation,
it is possible to write the expression of the U -function in the form of hyperplane
equation as follows:

w1f1 + w2f2 + · · ·+ wnfn = 1, (4.29)

where (w1, . . . , wn) corresponds to the normal to the hyperplane.
The mathematical analogy between the hyperplane equation and the utility function
can be used to describe the re-weighting procedure. The goal of the algorithm is to
set the weights in such a way the U -function contour points towards the knee point
of the Pareto front. To do so, let us suppose that during the minimization of the
objective functions, two Pareto optimal solutions are obtained (in the case of only
two objective functions): from them it is possible to construct the hyperplane and
find the new set of weights evaluating the normal. Then, minimizing the functions
with new weights, a new solution on the Pareto front is obtained (see Figure 4.6)
[19]. This type of procedure that updates the weights to find new solutions on the
Pareto front can be applied iteratively in order to obtain a minimum.
Figure 4.6 shows an example case and, in fact, the solutions for which the line is
constructed determine a normal, thus a set of weights, which points toward the
knee point as desired. By the way, the chance to head towards that point is strongly
dependent on the solutions used and this aspect will be addressed in the following.
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Figure 4.6: Hyperplane in 2-dimensional space constructed from two anchor points
(previous solutions): the normal unit vector to the hyperplane points towards the
knee point (new solution).

4.4.2 Algorithm formulation
In order for the re-weighting algorithm to be perfectly integrated, and without
computational efficiency losses, with the Current-Based Optimization Algorithm,
it is necessary to start from how the latter has been algebraically formulated.
The generic expression of one single objective function is:

fi(x) = (xHAix + xHbi + ci)2 (4.30)

with A ∈ CN×N and symmetric, b ∈ CN , c ∈ C and x ∈ CN , in which N is the
number of unknowns. The index i ∈ [0, K], where K is the number of objective
functions.
As explained in 3, the minimization of the entire objective function is carried out
with the non-linear conjugate gradient algorithm, which involves the linesearch
procedure. The linesearch process implies the minimization of the function f(x) =
f(x0 + αp), where x0 is the solution at the starting point of the iterative method, p
is the update direction and α is the coefficient to be found. Therefore, each fi in
4.30 must be made explicit with respect to α:

fi(x0 + αp) = (Q0
i + αQ1

i + α2Q2
i )2, (4.31)

where:
Q0

i = xH
0Aix0 + xHbi + ci (4.32)

Q1
i = xH

0Aip + pHAix0 + pHbi (4.33)
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Q2
i = pHAip. (4.34)

In the previous expressions, the apex refers to the order of the coefficient, which
can be assembled as:

Q0 = [. . . , Q0
i , . . . ]T,

Q1 = [. . . , Q1
i , . . . ]T,

Q2 = [. . . , Q1
i , . . . ]T,

(4.35)

At this point, the Pareto front with respect to the coefficient α can be obtained.
Now, one needs to search the solutions on the Pareto front that can be used as
points to construct the hyperplane. Since all objective functions are made by a 4th

order polynomial expression, a relatively simple task is to apply the derivative to
each objective functions and find α⋆

i by imposing them equal to zero.

f ′
i(α⋆

i ) = dfi(α)
dα

-----
α⋆

i

= 0

The linesearch algorithm has already a procedure which finds the stationary point
of fourth-degree polynomials starting from the coefficients, therefore no additional
procedures are needed to perform this task.
In this way, a K-by-K matrix can be constructed:

P =



f1(α⋆
1) f2(α⋆

1) . . . fK(α⋆
1)

f1(α⋆
2) f2(α⋆

2) . . . fK(α⋆
2)

... ... . . . ...

f1(α⋆
K) . . . . . . fK(α⋆

K)


(4.36)

which is made by points known in the literature as anchor points. An example of
anchor points in the case of K = 2 is shown in Figure 4.6.
These points, in addition to being computationally straightforward to calculate -
since, as previously mentioned, they only involve the derivative of a fourth order
polynomial - ensure that the knee point is located between them if the Pareto front
has a convex shape. Therefore, the normal to the hyperplane constructed from
anchor points will head towards the knee point, or very close to it.
Defining the coefficients of the hyperplane as an array:

n = [n1, n2, . . . , nK ]T

The normal to the hyperplane can be obtained solving with respect to n the
following linear systems which involves the matrix P in (4.44):

P n = [1,1, . . . ,1]T (4.37)
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The set of weights is obtained by normalizing n:

w = n
||n|| (4.38)

Then with the set of weights in the form of an array w = (w1, w2, . . . , wK)T, the
new objective function is obtained by:

w ⊙ Q0

w ⊙ Q1

w ⊙ Q2
(4.39)

Now, by using the linesearch procedure with this set of weight, a new stationary
point can be computed: with the resulting coefficient αnew, a new point on the
Pareto front is obtained, that is (f1(αnew), f2(αnew), . . . , fK(αnew)) .
From this point on, the optimization proceeds like gradient descent algorithms,
therefore, the new starting point and the update direction must be computed:

xnew
0 = x0 + αnew p (4.40)

pnew = −∇̃xU (4.41)

The complex gradient can be computed considering that:

U(x) =
KØ

i=1
wifi(x)

And taking into account the 4.30:

∇̃xU =
KØ

i=1
2wi(xHAix + xHbi + ci)∇̃x(xHAix + xHbi + ci)

Which becomes:

∇̃xU =
KØ

i=1
2wi(xHAix + xHbi + ci)(Aix + bi) (4.42)

The complete algorithm is outlined in the pseudo-code Alg. 1.
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Algorithm 1 Hyperplane Adaptive Weight (HAW) scheme
Input: x0, p, A, b, c, Ntimes

Output: x⋆

for i = 0 : Ntimes − 1 do
Compute Q0, Q1, Q2 ▷ with (4.32),(4.33),(4.34)
Compute α⋆

k ▷ Using the linesearch procedure
Compute P ▷ with (4.44)
Compute w ▷ with (4.37),(4.38)
Q0 ← w ⊙ Q0

Q1 ← w ⊙ Q1

Q2 ← w ⊙ Q2

Compute αnew ▷ Using the linesearch procedure
xi+1 ← xi + αnewpi

Compute ∇̃xi
U ▷ with (4.42)

pi+1 ← −∇̃xi
U

end for
x⋆ ← xNtimes

In the next section, a minimization example is proposed, which shows graphically
how the algorithm works.

4.4.3 Example
In this section, a simple example made by 2 objective functions (for graphical
reasons) and 10 unknowns is proposed.
For the sake of simplicity, A, b, c, x0, p are real quantities and randomly generated.
As detailed in the previous section, the minimization proceeds in the direction
pointed by the arrow, which is computed from the norm to the straight line passing
through the two anchor points (see Figure 4.7). Stopping the optimization at
the sixth iteration (Figure 4.7f), one can appreciate how the function has been
minimized by considering the value of the Euclidean norm in a K-dimension space:

d =

öõõô KØ
i=1

(fi(x⋆))2 (4.43)

In this way, if the value of d is close to zero, it means that all the functions are
minimized. On the other hand, since the the Euclidean norm is influenced by
the highest term in (4.43), it is enough that just one objective function is not
minimized to ensure that d assumes high values. When dealing with a small number
of unknowns (< 100) and few objective functions(< 5) the performance of this
algorithm is comparable, in most cases, to those already available in the Matlab
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(a) First iteration. (b) Second iteration.

(c) Third iteration. (d) Fourth iteration.

(e) Fifth iteration. (f) Sixth iteration.

Figure 4.7: Graphical representation of the HAW algorithm: sky-blue dots
represent the Pareto front while the direction of the blue arrow is dictated by the
weights computed using (4.37-4.38).
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suite. However, when the comparison is made using a realistic example, involving
thousands of variables and about ten objective functions, the existing algorithms,
which of course are general purpose, become unusable. Instead, the proposed
algorithm is able to achieve good results in reasonable time even under particularly
heavy workloads.

4.5 Hyperplane Adaptive Weighting scheme
Once the re-weighting scheme based on the concept of the hyperplane has been
defined, one just needs to integrate it in the Current-Based Optimization Algorithm.
The algorithm outlined in Alg. 1, as shown, can minimize an arbitrary number of
objective functions with an arbitrary number of unknowns.
It is worth mentioning that when the optimization of MTS antennas is considered,
the Euclidian norm cannot be considered a consistent metric in the understanding of
the quality of the result. The reason is that objective functions like those associated
with the losses of the MTS will never be equal to zero, as a residual amount of
power dissipation, in general, will always be present. Therefore, a lower value of
the Euclidian norm is not always an index of good quality of the design
As principle, Alg. 1 can theoretically substitute the non-linear conjugate gradient
algorithm 4, but, for several reasons, the final algorithm that optimizes a metasurface
antenna is made by an hybrid version of the NLCG and the HAW.
These reasons are basically three:

• Null determinant of P: the matrix definite in (4.44) can be made by column
of all elements equal to zero; since the determinant is null, the matrix is
not invertible and the the linear systems in (4.37) cannot be solved. These
columns of all zeros are generally a result of objective functions associated
with constraints defined via ramp functions. For instance, if the impedance
value evaluated in a certain iteration adheres to the constraint set by the
designer, then the value of the objective function associated with impedance
will be equal to zero, and consequently, so will its derivative.
A way to overcome this problem is to remove the null columns (and their
corresponding rows) from the matrix, resulting in a K ′ ×K ′ square matrix.

f 1
1 f 1

2 . . . f 1
K

f 2
1 f 2

2 . . . f 2
K

... ... . . . ...

fK
1 . . . . . . fK

K


→



f 1
1 f 1

2 . . . f 1
K′

f 2
1 f 2

2 . . . f 2
K′

... ... . . . ...

fK′
1 . . . . . . fK′

K′


(4.44)

Where fk
k is a compact form for fk(α⋆

k) and the index k = [1, . . . , K ′] ⊆
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[1, . . . , K].
The resulting matrix has no more null determinant, therefore it can be used
to compute the normal and then the new set of weights.
Regarding the removed objective functions, the weight assigned to them in the
weighted sum can be chosen either equal to 1 or can be set to the value from
the previous iteration. There is not a strong theoretical reason for choosing
one path over the other, but it has been observed that the latter yields better
and more stable results.

• Near singular matrix: although one can easily remove the zero-elements
columns and avoid the determinant to be exactly equal to zero, the matrix
P can still be near singular. In the present case, it may happen that two or
more rows of P are coincident within a certain tolerance value. This aspect
ensures that the norm to the hyperplane, evaluated from the solution of a
linear system, is not unique, but numerically inaccurate and the resulting
error can lead to non-exact results or even to the divergence of the solution.

• Non convex Pareto front: as detailed in the previous section, the anchor points
ensure that the knee point is in between them, provided that the Pareto front
has a convex shape. In some cases, the Pareto front could be non convex, as
shown in Figure 4.8 with two objective functions, therefore the knee point is
not found anymore in the direction dictated by the norm.
When more than two objective functions are involved it is not simple to
understand the shape of the Pareto front, therefore, understanding its convexity
(or concavity) requires further studying.

Although the problem of the null determinant can be numerically solved as ex-
plained above, the same cannot be done, under the present conditions, with the
other two.
The optimization starts by choosing a number of iterations Ni for the NLCG and
a number of weight update Nw, in this way, the total number of iterations for
the overall optimization algorithm becomes Ni × Nw. The NLCG performs the
minimization with a default set of weights, then the HAW performs the update
and the NLCG starts over again. Alternatively, one can compute the first set of
weights by running the proposed method with the starting coefficient x0 and then
performs the minimization with the NLCG. As shown in Alg. 2, the optimal set
of weights is obtained by Alg. 1, while the computation of αnew and the solution
update is computed by the NLCG (Alg. 4) .
The chosen number Nw should be not too large to avoid potential singularities of
matrix P leading to errors or divergences, nor too small, otherwise, the effect of
re-weighting would not be as effective in optimization. Moreover, the selection
of Ni should take into consideration the total number of iterations intended to
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Figure 4.8: Pareto front in 2-dimensional space (solid line): dashed lines separate
convex from non convex parts.

be performed, as well as the type and the antenna into account. Undoubtedly, a
minimum of empirical investigation is required to obtain the optimum value for
Nw.

In order to make this method adaptive also during the minimization of the
objective function, one can monitor the value of the objective function U(x) during
the NLCG iterations. This monitoring results to be not too heavy from a computa-
tional standpoint: the U -function is made by the weighted sum of several functions;
in each of them the heaviest term is the discretization of the linear operator L or
R (near field or far field), which can be computed only once. Therefore, if the
value U(xi)/U(x0), where i = 1, . . . , Ni, with a certain set of weights, is not varying
during the algorithm, it probably means that a local minimum is almost reached
and a new set of weights must be computed in order to keep exploring the solution
space.
In practice, this approach can be implemented by fixing a tolerance τ such that if:

-----U(xi+1)− U(xi)
U(x0)

----- < τ (4.45)

for more than a certain number of iterations, the NLCG quits and a new set of
weights is associated to the objective function.
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Algorithm 2 NLCG-HAW algorithm
Input: x0
Output: x⋆

for i = 0 : Nw − 1 do
Compute U(xi)
Compute ∇̃U
p← −∇̃U
Compute wi ▷ with HAW (Alg. 1.)
Assign wi to U
Compute xi+1 ▷ with NLCG (Alg. 4), xi as input current.

end for
x⋆ ← xNw
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Chapter 5

Numerical results

In this chapter several numerical results of optimization of metasurface antennas
with different background media, dimensions, impedance constraints and radiated
field specifications are reported.

5.1 Optimization setup
In all cases, the supporting structure of the printed metallic patches constituting
the metasurface is made by a single dielectric layer and a ground plane, both
infinitely extended in the (x-y) plane.

The feeding for the MTS antenna is provided through a vertical dipole placed
in the centre of the structure. Its radiated field is approximated as a TM0 surface
wave, whose tangential expression in cylindrical coordinates is

E = E0H(2)
1 (βswρ)ρ̂, (5.1)

where E0 is the amplitude constant, chosen such that the power is normalized
to 1W, H(2)

1 is the Hankel function of the second kind of order 1 and βsw is the
propagation constant of the surface wave (see App. B).
The initial current for the optimization is made by a x̂-oriented surface current
constant in magnitude (see Figure 5.1). It can be shown that this current radiates
broadside with linear polarization, therefore, as principle, it should not be used to
create a circular polarized radiated field. It is anyway employed in order to test
the robustness of the algorithm.
As explained in section 3.2, the impedance must be capacitive-only, so the opti-
mization process requires the specification of reactance bounds. Depending on the
type of substrate considered (dielectric thickness h and dielectric constant ϵr and
on the desired central frequency), the reactance bounds can be different, in order
to make the metasurface realizable with printed metallic patches.
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Figure 5.1: Starting current for circular MTS antennas: magnitude and direction.

About the radiation performance of the antenna, the target is to maximize the
field magnitude (|E|2 = E ·E∗) in the main beam, so the objective level M0 can
be chosen equal to the magnitude the antenna will radiated with 100% efficiency
(physical limit), but in general is set to be one or two order of magnitude lower.
The other field specifications are relative to Fref , which is, for the sake of simplicity,
equal to the field magnitude in the maximum angular direction. ΩML defines the
main lobe region and µco

L is the lower relative bound for the co-polarization, i.e.
the main lobe must be higher than (Fref |dB + µco

L ) in the region ΩML. Also the
polarization of the radiated field (linear or circular) is a requirement.
The validation of the design quality passes through the evaluation of metrics such
as the directivity D and the aperture efficiency ηap (see App. A), as well as checking
if the resulting radiation pattern complies with the field masks (see Figure 3.2).

5.2 Medium sized antenna
The first proposed numerical result is a the design of a medium sized antenna with
diameter equal to 10λ0: this kind of geometry involves a number of cell Nc = 15428
and N = 22991 RWG basis function. About the realizability specifications, the
chosen substrate is made by a dielectric thickness h equal to 0.508 mm, a relative
dielectric constant ϵr equal to 3.34 and no magnetic property (µr = 1); it allows,
together with the desired frequency f0 = 23 GHz, the realization of a surface
reactance bounded between -1000 Ω and -100 Ω. The radiated field specific in
terms of radiation pattern is a pencil beam broadside shape (i.e. the main lobe
must be oriented orthogonally to the aperture plane) with circular polarization.
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The region of the main lobe ΩML has been chosen equal to 6° (so the parameter
θML is chosen equal to 3°, as it represent half of the width), while the side lobes
region ΩSL starts from 10°. The reference level, as detailed above, will always be
referred to the magnitude of the field in the main lobe, i.e. Fref = F (θ = 0◦): the
relative upper level for the main lobe µco

U is trivially equal to 0 dB, while the lower
bound µco

L = −3 dB. Side lobes, σSL, and cross-polarization, σcx, are respectively
equal to -20 dB and -15 dB. All the simulation parameters are listed in Table 5.1

f0 23 GHz

Size d = 10λ0

Im{Z}[Ω] −1000÷−100

θML 3°

θSL 10°

µco
L -3 dB

σSL -20 dB

σcx -15 dB

Table 5.1: Design parameters for a medium sized antenna with pencil beam
radiation pattern.

5.2.1 Circular polarization
The optimization has been carried out with the standard NLCG algorithm referred
in chapter 3, and the NLCG-HAW described in chapter 4. For both simulations,
the starting conditions are the same and so it is for the iterations, whose number
has been chosen equal to 400. Actually, for the latter implementation the number
of re-weighting has been chosen equal to 4, so 100 iterations are performed with
each set of weights.
The aim of this first optimization is to see how the method proposed in chapter 4
makes the design process insensible to the choice of the starting weights. As a
matter of fact, the same naively choice of starting weights has been done for both
methods.
It can be interesting to see numerically how the re-weighting has been performed
during the optimization. In the following, the values of the functionals and the
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assigned weights are reported. In Table 5.2 the generic term f has been extrapolated
from (3.27)-(3.28), e.g:

fact =
NcØ
i=1

ρact
i (I),

and the first row refers to the values computed with the starting current. As can be
seen, the starting current guarantees that the radiated field pattern specifications
are satisfied at the expense of the dissipated active power. In Table 5.3 the first
row refers to the weights computed with the starting current, while the symbol
× means that the default weight has been chosen, as the functional is equal to
zero. By looking at the optimized currents in Figure 5.2, the one obtained by

fact fL
imp fU

imp fscal fref fL
co fU

co fcx ftot

St 6 · 10−4 0 4 · 10−4 10−4 0 0 0.13 2 · 109 0

1 2 · 10−9 10−8 3 · 10−10 10−7 9 · 106 0 16.5 0 3 · 103

2 10−8 2 · 10−8 2 · 10−13 9 · 10−6 3 · 106 0 8.15 0 102

3 6 · 10−6 4 · 10−6 10−17 10−6 0 0 6.52 0 0

4 10−7 3 · 10−9 10−15 10−7 0 0 0.03 0 0

Table 5.2: 10λ0 - pencil beam - circular polarization: functionals values during
the optimization performed with 4 weight updates.

wact wL
imp wU

imp wscal wref wL
co wU

co wcx wtot

1 0.85 × 0.14 0.49 × × 3 · 10−7 2 · 10−15 ×

2 0.03 0.02 0.9 0.01 6 · 10−14 × 2.3 · 10−9 2 · 10−15 2 · 10−11

3 0.94 0.3 0.04 0.17 10−11 × 5.7 · 10−10 2 · 10−15 3 · 10−12

4 0.48 0.01 0.3 0.8 2 · 10−11 × 8 · 10−10 2 · 10−15 3 · 10−12

Table 5.3: 10λ0 - pencil beam - circular polarization: assigned weights during the
optimization performed with 4 weight updates.

the method described in this work (Figure 5.2b) is cleaner and smoother than the
one obtained by the NLCG (Figure 5.2a). The same can be told about the surface
impedance distribution (Figure 5.3): the one in Figure 5.3b exhibits a clear spiral
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shape, as also obtained by [20] on the basis of theoretical considerations.

(a) (b)

Figure 5.2: 10λ0 - pencil beam - circular polarization: optimized surface current
using (a) NLCG and (b) NLCG-HAW.

(a) (b)

Figure 5.3: 10λ0 - pencil beam - circular polarization: regularized surface
impedance distribution using (a) NLCG and (b) NLCG-HAW.

About the radiated field, the directivity is proposed in Figure 5.4-5.5: blue
dashed lines represent the main lobe level and the side lobes mask, solid magenta
line represents the cross-polarization mask (whose requirement is referred in the
region of the main lobe), vertical arrows are the relative levels. As can be seen
in both planes, the requirements regarding side lobes are not fully met using
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only NLCG (Figure 5.4a-5.5a), whereas they are when using the version with the
re-weight algorithm (Figure 5.4b-5.5b). The obtained cross-pol. level is, instead,
almost fully met using both approaches.

(a) (b)

Figure 5.4: 10λ0 - pencil beam - circular polarization: co- and cross- pol., cut for
ϕ = 0. (a) NLCG result, (b) NLCG-HAW result.

(a) (b)

Figure 5.5: 10λ0 - pencil beam - circular polarization: co- and cross- pol., cut for
ϕ = 90. (a) NLCG result, (b) NLCG-HAW result.

The achieved maximum directivity Dmax(computed in the broadside direction
θ = 0°) and the aperture efficiency ηap are respectively 22.35 dB and 17% for the
NLCG-only and 24.26 dB and 27% for the hybrid implementation.
The same antenna has been further optimized with the NLCG only and the same
set of weights. After 1000 iterations, the algorithm quits, since a a local minimum
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is reached. The final results after 1000 iterations are now comparable with those
obtained by the hybrid approach performed over 400 iterations: Dmax = 23.85 dB,
ηap = 24% and the radiated field now complies with the masks (Figure 5.7). As
can bee seen from Figure 5.6, the optimized current and the regularized impedance
now have a clean spiral shape, as theoretical results suggest.

(a) (b)

Figure 5.6: d = 10λ0 - pencil beam - circular polarizated field - NLCG only: (a)
optimized surface current and (b) regularized surface impedance distribution.

(a) (b)

Figure 5.7: d = 10λ0 - pencil beam - circular polarized field - NLCG only: co-
and cross-pol., (a) cut for ϕ = 0 and (b) ϕ = 90.

This first result aims to demonstrate how the design of a metasurface antenna
could be penalized by an irrational weights selection. The method shown in this
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work, on the other hand, is capable of fully recovering from an inaccurate initial set
of weights and can produce a respectable result after a limited number of iterations.

5.2.2 Linear polarization

Using the design parameters of Table 5.1, the same 10λ circular MTS antenna has
been designed using only the NLCG-HAW algorithm, requiring a linear polarized
field. The number of total iterations is still 400. This time Nw = 8, as it has been
experimentally observed that a larger number of re-weighting leads to better results
for linear polarized antennas. Figure 5.8 illustrates how the impedance profile

(a) (b)

Figure 5.8: d = 10λ0 - pencil beam - linear polarized field: (a) optimized surface
current and (b) regularized surface impedance distribution.

and consequently the optimum current differ from the spiral-shaped of circular
polarized antennas. Theoretical results back up this conclusion [21]. As can be
seen, the range of the reactance is between −185Ω and −135Ω with decreasing
values close to the feeding. Regarding the radiated field, the cut for ϕ = 0° exhibits
two symmetric "shoulders" next to the main beam. This characteristic is shared
by all antennas designed in this work and it is partly caused by the choice of the
incident field. Despite being linear polarized, the incident surface wave has a radial
direction, making the design of circular polarized field simpler and the radiation
pattern clearer in both cuts.
The maximum directivity for this 10λ0 antenna with linear polarized field (Fig-
ure 5.9) is equal to 23.5 dB, with an aperture efficiency of 24%, so not too far from
the performance of the same antenna with circular polarized field.
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(a) (b)

Figure 5.9: d = 10λ0. Pencil beam - linear polarized field: co- and cross-
polarization. Cut for (a) ϕ = 0° and (b) ϕ = 90°.

5.2.3 Full-wave solution
In order to validate the result of the optimization, the surface impedance distri-
bution obtained for the 10λ0-antenna with circular polarization employing the
NLCG-HAW algorithm has been subjected to realization by means of unit cells.
The database employed is made by l = λ0/8 square unit cells and the pattern
is obtained by mapping the values of the impedance distribution sampled over
squared cells with those realized by the unit cells. Actually, the correspondent value
of the side of the single unit cell is found varying l from 20% to 98% and looking
for those that best approximate the value of the surface impedance. Databases
are in general constructed through direct simulation of the geometry employing
a full-wave solvers, but this aspect will not be discussed further, as it does not
represent the topic of this work.

Once the impedance has been synthesized with the geometry, the radiated field
can be computed with a full-wave periodic solver. In Figure 5.10, one can appreciate
the realized surface impedance with the unit cell and the magnitude of the current
density over each cell, while Figure 5.11 shows a comparison between the optimized
radiated field and the realized one: as can be seen, the two plots do not differ by a
significant amount, which is index of the good quality of the solution.
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(a) (b)

Figure 5.10: d = 10λ0 - pencil beam - circular polarized field: (a) unit cells and
(b) current distribution over unit cells.

Figure 5.11: d = 10λ0 - pencil beam - circular polarized field: co- and cross-
polarization. Cut for ϕ = 0, comparison between the optimized radiated pattern
and the realized one.

5.3 Large sized antenna
In this section, results of the design of a large sized antenna (d = 20λ0) are
reported. For this geometry, the simulation involves a number of cell Nc = 61594
and N = 92096 RWG basis function. The chosen substrate is the same of the
d = 10λ0 antenna, so ϵr = 3.34, h = 0.508 mm and µr = 1 and the central
frequency is f0 = 23 GHz. Thanks to the large size of the antenna it is possible to
obtain a very directive pattern with very tight beam, therefore the requirement
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for this design are ΩML = 3°, so θML goes from -1.5° to 1.5° and the side lobes
starts from ±5°. Relative levels for side lobes and cross-polarization component
are not changed from the previous design. All the simulation constraints are
listed in Table 5.4. Results for the same antenna using the NLCG are reported in
[7], therefore this section reports only those obtained with the employing of the
re-weighting algorithm.

f0 23 GHz

Size d = 20λ0

Im{Z}[Ω] −1000÷−100

θML 1.5°

θSL 5°

µco
L -3 dB

σSL -20 dB

σcx -15 dB

Table 5.4: Design parameters for a large sized antenna with pencil beam radiation
pattern.

5.3.1 Circular polarization
For the circular polarized field the simulation has been carried out performing four
times the re-weighting scheme over a total number of iteration equal to 800. The
size of the antenna and thus the number of RWG employed needed more iteration
with respect to the 10λ-antenna to obtain satisfactory results in terms of surface
impedance distribution and radiated field pattern. Results in Figure 5.12 show a
clear spiral shape for both optimized current and realized surface impedance, with
the latter varying in a range between −400Ω and −200Ω and values progressively
decreasing close to the feeding point. The resulting radiated field pattern is shown
in Figure 5.13: as can be seen, all the constraints are satisfied and the directivity
in the broadside direction is equal to 30.3 dB, with an aperture efficiency of 29%.
Almost identical radiation performance can be found in [7], which means that
maybe for this substrate characteristics and radiation specifics a design limit has
been reached.
It is worth mentioning that results in Figure 5.12-5.13 has been obtained at first
attempt and without any simulation background. Later on, further simulations
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were performed with various numbers of re-weighting and iterations, but all yielded
comparable (or worse) solutions to those shown and therefore they are not reported.

(a) (b)

Figure 5.12: d = 20λ0. Pencil beam - circular polarized field: (a) optimized
surface current and (b) regularized surface impedance distribution.

(a) (b)

Figure 5.13: d = 20λ0. Pencil beam - circular polarized field. Cuts for (a) ϕ = 0°
and (b) ϕ = 90°.

5.3.2 Linear polarization
For the linear polarized field specifications, the NLCG-HAW algorithm has been
performed for 800 iterations, with a weight update each 100 iterations. As can be
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seen from Figure 5.14, the realized surface impedance is clearly within the desired
ranges and exhibits a smooth behaviour, as well as the optimized current. The
radiated pattern in Figure 5.15 complies with the specifications in both plane cuts
and the directivity in the broadside direction is equal to 29.8 dB, which is 1 dB
more than the value obtained in [7]. Also in this case, it is worth mentioning that
this result has been obtained at first attempt and with a naive set of starting
weights.

(a) (b)

Figure 5.14: d = 20λ0. Pencil beam - linear polarized field: (a) optimized surface
current and (b) impedance after regularization.

(a) (b)

Figure 5.15: d = 20λ0. Pencil beam - linear polarized field: co- and cross-
polarization. Cuts for (a) ϕ = 0° and (b) ϕ = 90°.
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5.3.3 Full-wave solution
The 20λ0-antenna with linear polarized field optimized in the previous section hes
been subjected to realization with the same database employed for the 10λ0-antenna
circularly polarized. As can be seen from Figure 5.16, the unit cell pattern and the
current density magnitude over the cells complies with the distribution obtained in
Figure 5.14 and the realized radiated pattern (Figure 5.17) overlaps the optimized
one, at least in the neighborhood of the main lobe.

(a) (b)

Figure 5.16: d = 20λ0 - pencil beam - circular polarization: (a) unit cells and (b)
current distribution over unit cells.

Figure 5.17: d = 20λ0 - pencil beam - linear polarization: co- and cross- polariza-
tion. Cut for ϕ = 0, comparison between the optimized radiated pattern and the
realized one.
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5.4 Small sized antenna
This section shows the design of a small sized antenna with d = 6λ0. For this
geometry the number of cells is Nc = 2047 and N = 4812 RWG basis function
are involved. The chosen substrate is made by a dielectric thickness h = 0.76 mm,
ϵr = 3 and the central frequency is 32 GHz. These specifications allow a range of
reactance between −600Ω and −100Ω. The desired pattern shape is still pencil
beam but, for this structure, a larger ΩML has been chosen and the same has
been done for the side lobe region. The chosen relative levels does not changes
from previous design. All the simulation parameters are listed in Table 5.5. The
simulations have been carried out both with circular and linear polarization.

f0 32 GHz

Size d = 6λ0

Im{Z}[Ω] −600÷−100

θML 5°

θSL 20°

µco
L -3 dB

σSL -20 dB

σcx -15 dB

Table 5.5: Design parameters for a small sized antenna with pencil beam radiation
pattern.

5.4.1 Circular polarization
For this 6λ0-diameter antenna the NLCG-HAW algorithm has been performed
over 400 iterations with 4 weight updates. As can be seen from Figure 5.18, the
current exhibits a clean spiral shape. The surface impedance distribution has a
spiral shape too with smooth values, but the reactance upper bound is exceeded by
a small amount. From Figure 5.19 it can bee seen that the radiated field complies
with almost all the required specifications in both plans. The directivity in the
broadside direction is equal to 20.2 dB and the aperture efficiency is equal to 32%.
The obtained directivity value is rather low both because the required main lobe is
wider and because, given the dimensions of the MTS, it is difficult to realize high
directive antennas.
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(a) (b)

Figure 5.18: d = 6λ0. Pencil beam - circular polarized field: (a) optimized surface
current and (b) regularized surface impedance distribution.

(a) (b)

Figure 5.19: d = 6λ0. Pencil beam - circular polarized field: co- and cross-
polarization. Cuts for (a) ϕ = 0° and (b) ϕ = 90°.

5.4.2 Linear polarization
For the 6λ0-antenna with linear field requirement, the simulation has been carried
out still over 400 iterations, but with 8 weight updates (one each 50 iterations),
since it shows slightly better results with respect to the previous choice. The
current distribution and the surface impedance (Figure 5.20) shows a shape similar
to the one obtained with other antenna size. The radiated field (Figure 5.21) shows
a maximum directivity of 21.2 dB, while the aperture efficiency is 31%. However,
the field pattern in the ϕ = 0 plane cut does not comply with the side lobes
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specification. The small size of this antenna, together with the chosen substrate,
makes difficult the realization of good-directive radiators with low side lobe levels.

(a) (b)

Figure 5.20: d = 6λ0. Pencil beam - linear polarized field: (a) optimized surface
current and (b) regularized surface impedance distribution.

(a) (b)

Figure 5.21: d = 6λ0. Pencil beam - linear polarized field: co- and cross-
polarization. Cuts for (a) ϕ = 0° and (b) ϕ = 90°.

5.4.3 Full-wave solution
The 6λ0-antenna with circular polarized field designed in the previous section has
been realized with the squared unit cell database and the full-wave solution is
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then computed. As can bee seen from Figure 5.22, the unit cell pattern and the
magnitude of the current density over the cells basically complies with results in
Figure 5.18. However, as can be seen from Figure 5.23, the realized pattern does
not completely overlap the optimized one: this is probably due to the fact that the
attained surface impedance distributions (Figure 5.18b) exceeds the upper bound
value. It cannot be excluded that employing a different unit cell database it would
be possible to synthesize that impedance and reach a more consistent result in
terms of radiated field pattern.

(a) (b)

Figure 5.22: d = 6λ0 - pencil beam - circular polarized field: (a) unit cells and
(b) current distribution over unit cells.

Figure 5.23: d = 6λ0 - pencil beam - circular polarized field: co- and cross-
polarization. Cuts for ϕ = 0, comparison between the optimized radiated pattern
and the realized one.
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5.5 Medium sized, squinted beam
This result shows the design of a medium sized antenna with d = 12λ0 with circular
polarized radiated field and squinted beam radiated pattern. This geometry involves
a number of cells Nc = 27984 and N = 41776 RWG basis function. The employed
substrate is made by a dielectric thickness h equal to 1.27 mm with a dielectric
constant ϵr equal to 3. The central frequency f0 is 23 GHz. The allowed reactance
range goes between −1000Ω and −100Ω. The main lobe is located in the ϕ = 0°
plane cut, i.e. ϕ0 = 0° and it is centered at θ0 = 30°. It extends from 26.7°
to 33.3°, i.e. the main lobe region ΩML is equal to 6.6°. The side lobes region
starts from 44.42° up to 90° and from 17.45° up to -90°. The reference level is
the directivity obtained in the main lobe, i.e. Fref = F (θ = 30°), while the lower
bound is µco

L = −3 dB. Side lobes, σSL, and cross-polarization, σcx, are respectively
equal to -20 dB and -15 dB. All the requirements are listed in Table 5.6. The

f0 23 GHz

Size d = 12λ0

Im{Z}[Ω] −1000÷−100

θ0 30°

ϕ0 0°

ΩML 6.6°

θU
SL 44.42°

θL
SL 17.45°

µco
L -3 dB

σSL -20 dB

σcx -15 dB

Table 5.6: Design parameters for a medium sized antenna with squinted beam
radiation pattern.

optimization has been carried out employing the NLCG-HAW algorithm over 1000
iterations with 4 weight update (one each 250 iterations). The optimized surface
current and the surface impedance in Figure 5.24 shows the typical squinted beam
with circular polarization pattern behaviour, as also reported in [22] based on
theoretical considerations. From Figure 5.25, one can appreciate that the main
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lobe is effectively centered at θ = 30° and the radiated pattern specifications are
basically satisfied.

(a) (b)

Figure 5.24: d = 12λ0. Squinted beam - circular polarized field: (a) optimized
surface current and (b) regularized surface impedance distribution.

(a) (b)

Figure 5.25: d = 12λ0. Squinted beam - circular polarized field: (a) directivity in
the plane cut ϕ = 0 and (b) top view of the pattern in the u− v plane.
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Chapter 6

Conclusions

In this work, optimization strategies for the design of MTS antennas have been
described. The aim of the proposed techniques was to improve the convergence
performance of the current-based approach without modifying in a significant way
the original algorithm and especially without increasing its numerical complexity.

Two different approaches have been considered. The introduction of slack
variables makes the objective function purely polynomial. However, the large
number of extra optimization variables, as it has been shown, slows down the
convergence of the optimization. Therefore, continuing to work with an objective
function that employs ramp functions for the inequality constraints seems to be
the wisest choice, at least until further developments.

The hyperplane adaptive weighting method has been introduced to free the user
from an accurate choice of the starting weights. It has been observed that, without
any preliminary analysis, and therefore without any knowledge of the orders of
magnitude of optimal weights, it is possible to achieve results comparable with those
attained by the standard algorithm after thorough manual research on the optimal
set of weights. The proposed re-weighting scheme thus makes the current-based
optimization algorithm more robust and reliable, even managing to improve results
presented in literature that were already considered at the limit of capability. Of
course, the proposed algorithm has room for improvements. Managing the potential
near-singular matrices of anchor points could be the key to make the algorithm
even more reliable. Similarly, developing a general criterion to balance the number
of weight updates and the total number of iterations could further enhance its
performance.

The intrinsic non-convexity of the objective function remains an insurmountable
problem to date. Regarding possible future developments, the path of convexifica-
tion is worth pursuing, enabling us to fully leverage the well-established properties
of existing minimization algorithms. At last, results in terms of current density
and surface impedance distribution could be potentially further improved through
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techniques like smoothing or filtering.
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Appendix A

Antenna generalities

A.1 Field polarization
In most applications, electromagnetic field sources have a sinusoidal waveform.
Therefore, in the presence of a linear and stationary propagation medium, the
resulting field will be sinusoidal in time. This time-harmonic electromagnetic field
(i.e. sinusoidal) is made by a pair of vectors assigned for any time and point in
space:

E(r, t) = Re{E(r)ejωt},
H(r, t) = Re{H(r)ejωt},

where r is the position vector, ω incorporates the frequency of the electromagnetic
field and E and H are complex vectors.
Focusing only on the electric field, one can write the complex vector E(r) as:

E = Exx̂ + Eyŷ + Ezẑ,

where the spatial dependency has been suppressed for the sake of brevity. The
components of E are complex numbers called phasors.
Another common expression for E is in terms of in-phase and in-quadrature
components,

E = E(t = 0)− jE(t = T/4) = E′ + jE′′,

with E′ and E′′ time invariant real vectors that define the plane where the electric
field E(r, t) describes a locus. It can be demonstrated that, in general, this locus is
an ellipse, and so will be the polarization of the field.
Therefore, the polarization can be defined as the oscillation direction of the electric
field while the electromagnetic wave is propagating. Since the electromagnetic
wave is made by a couple of vectors (E and H), always orthogonal the each other,
the magnetic field will be polarized in the orthogonal direction to the one of the
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electric field and to the propagation direction.
When the polarization is linear, the electric field oscillates in a single direction
while propagating, while when the polarization is circular or elliptical the field
rotates and it depends on the spatial orientation of the in-phase and in-quadrature
components and on their amplitudes. Here, the main conditions are summarized:

|E′| = 0,|E′′| /= 0

or

|E′| /= 0,|E′′| = 0 Linear polarization

or

E′ ×E′′ = 0

|E′| = |E′′|

and Circular polarization

E′ ·E′′ = 0

A common way to describe the polarization of the field is by means of the
polarization unit vector, defined as

p̂ = E

|E|
= E′ + jE′′ñ

|E|2
= p̂′ + jp̂′′ (A.1)

Most of elementary antennas, for instance, those composed of a metallic wire
(dipoles), radiate a linearly polarized field, while circular polarized field can be
obtained combining two of them (e.g. turnstile antenna). Designing a metasurface
antenna with the method described in chapter 3 allows also to obtain the desired
polarization.
It is worth mentioning that generally the overall polarization of the field is elliptical,
but in practice all antennas have a nominal one, which is the one in the direction
of maximum radiation. The nominal polarization, also known as co-polarization, is
affected by a spurious radiation or cross-polarization: to quantify this unwanted
effect one can compute separately the co- and cross-polarization components,

Eco = E · p̂∗

Ecx = E · q̂∗.
(A.2)

In (A.2), p̂ and q̂ are respectively the co- and cross-polarization unit vectors; they
are orthogonal to each other and their definition can be given in different ways.
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A.2 Directivity, gain and efficiency
This section provides the description of the most common parameters for evaluating
the quality of an antenna design.

The Poynting vector S = 1
2Re{E ×H∗} describes the power density associated

with the electromagnetic field and can be written in far field condition as

S(r, θ, ϕ) = 1
2ζ0

Re{E × r̂ ×E∗} = 1
2ζ0

E ·E∗r̂, (A.3)

obtained considering the expression H = 1
ζ0

r̂ × E, where ζ0 is the free space
impedance.

The directivity represents a normalized distribution funtion of the power density
over angular directions and it is defined as:

d(θ, ϕ) = S(r, θ, ϕ)
Sav(r) , (A.4)

where Sav(r) is the average power density over a sphere of radius r,

Sav(r) = 1
4πr2

ÚÚ
sphere

S(r, θ, ϕ)dΣ = Prad

4πr2 , (A.5)

where Prad is the power radiated by the antenna. Therefore, the expression of the
directivity function is:

d(θ, ϕ) = S(r, θ, ϕ)
Prad/4πr2 . (A.6)

Without any other specifications, the term "directivity" refers to the maximum
of the function, so

D = max
θ,ϕ

d(θ, ϕ) (A.7)

The same definition holds for the gain, but, instead of the radiated from the
antenna, the power delivered (or accepted) is considered. The amount of power
radiated is a fraction of the accepted power equal to the ohmic efficiency:

η = Prad

Pin

< 1, (A.8)

as a consequence, the gain function can be written as

g(θ, ϕ) = S(r, θ, ϕ)
Pin/4πr2 = ηd(θ, ϕ). (A.9)
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Without any other specifications, the gain refers to the maximum of the gain
function

G = max
θ,ϕ

G(θ, ϕ). (A.10)

The effective area (or equivalent area) is an antenna parameter referred to the
reception mode and allows to transform an electromagnetic quantity (power density)
into an electric one (power). It is defined as the quantity that, multiplied by the
incident power density, gives the available output power of the antenna:

Aeff = Pav

Sinc

(A.11)

which is valid supposing that there is no polarization mismatch between the Tx
and Rx antenna, i.e. |p̂T X · p̂RX |2 = 1. The effective area allows to define another
important figure of merit for the performance of aperture antennas, thus MTS
antennas, which is the aperture efficiency ηap:

ηap = Aeff

Ageom

, (A.12)

where Ageom is the geometric area of the aperture.
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Appendix B

Source field for circular
metasurface

The feeding for circular metasurface antennas designed in this work is provided
through the electromagnetic field radiated by a vertical dipole placed in the centre
of the structure. Since the MTS is basically made by a ground plane (modelled
as a PEC), a dielectric substrate and air, the source field will be the surface wave
generated by the dipole in the dielectric slab.
It can be demonstrated that the most excited mode by a feed with vertical dipole is

Figure B.1: Slab geometry.

the TMz, where subscript z means transversal to the z direction. High-order modes
are also excited, but their amplitude is negligible for the purpose of MTS design.
The geometry of the problem (see Figure B.1) suggests to employ a cylindrical
coordinates system, where clearly the source dipole is oriented along the ẑ axis.
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Source field for circular metasurface

Since the sought solution is the TMz, the magnetic vector potential can be
written as A(ρ, ϕ, z) = A(ρ, ϕ, z)ẑ. It must satisfy the Helmholtz’s equation:

∇2Az + k2Az = 0, (B.1)

where k = ω
√

ϵµ is the wave number. Once the magnetic vector potential is
obtained solving (B.1), the electric and magnetic field components in cylindrical
coordinates can be simply derived by using:

Eρ = 1
jωµϵ

∂2

∂ρ∂z
Az Hρ = 1

µρ

∂

∂ϕ
Az, (B.2)

Eϕ = 1
jωµϵ

1
ρ

∂2

∂ϕ∂z
Az Hϕ = − 1

µ

∂

∂ρ
Az, (B.3)

Ez = 1
jωµϵ

( ∂2

∂z
+ k2)Az Hz = 0. (B.4)

Thanks to the symmetry of the geometric problem with respect to ϕ, which implies
∂/∂ϕ = 0, Az(ρ, ϕ, z) = Az(ρ, z), Eϕ = 0 and Hρ = 0.
One is interested in the solution travelling towards positive ρ direction, so then
the radial dependency of the magnetic field vector is expressed with the Hankel’s
function of order zero. The general solution of (B.1) is:

Az(ρ, z) = H(2)
0 (kρρ)

Ae−jkzz + Bejkzz z > 0
Csin(kzz) + Dcos(kzz) −h ≤ z ≤ 0,

(B.5)

which represents a plane wave travelling along the ẑ axis in the free space (z > 0),
while inside the dielectric (−h ≤ z ≤ 0), the electromagnetic field is confined. The
(B.5) must be completed by the dispersion relation:

k2 = k2
ρ + k2

z (B.6)

It is trivial to understand from the very beginning that B = 0, since one is interested
only in a wave propagating towards the positive z-direction. Then, in order to find
the constant terms A, C and D, one must enforce the boundary conditions to the
electric and magnetic field.

Ground plane
The presence of the ground plane at z = −h implies:

Et = 0 −→ Ed
ρ = 0, (B.7)
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where superscript d means that the considered component is the one in the dielectric.
From (B.2), together with (B.5), the obtained expression is 1:

Ed
ρ(ρ, z = −h) = kρkd

z

jωµϵ
H(2)

1 (kρρ)[−Csin(kd
zh)−Dcos(kd

zh)] = 0 (B.8)

−→ D = −Ctan(kd
zh). (B.9)

Air-dielectric interface
At z = 0 of the electric field tangential components must be enforced:

E+
t = E−

t −→ Ea
ρ(ρ, z = 0) = Ed

ρ(ρ, z = 0), (B.10)

where superscript a is used to represents the in-air component. This implies:

jka
z A− kd

z

ϵr

tan(kd
zh)C = 0. (B.11)

Moreover, also the continuity of the tangential magnetic field is imposed:

H+
t = H−

t −→ Ha
ϕ(ρ, z = 0) = Hd

ϕ(ρ, z = 0), (B.12)

−→ A− C = 0. (B.13)
It is clear that the constants A and C must satisfy simultaneously (B.11) and
(B.13). The resulting homogeneous linear system provides non trivial solution if
the determinant is null, therefore another condition must be enforced:

jka
z −

kd
z

ϵr

tan(kd
zh) = 0 (B.14)

Since the field must be evanescent in the free space, the wave number ka
z is purely

imaginary and it can be written αz = jka
z , where αz is the attenuation constant

along the z-direction. Therefore, by using (B.6):

kd
z =

ñ
k2 − k2

ρ

αz =
ñ

k2
ρ − k2

0,
(B.15)

the (B.14) can be solved in order to find kρ.
The expressions of the electric field in air and dielectric are:

Ea
ρ = βswαz

jωµ0ϵ0
AH(2)

1 (βswρ)e−αa
zz, (B.16)

1The derivative of H(2)
0 is H(2)

1
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Ed
ρ = βswkd

z

jωµ0ϵ0ϵr

AH(2)
1 (βswρ)[sin(kd

zz) + tan(kd
zh)cos(kd

zz)], (B.17)

where βsw = kρ, as the dielectric substrate is considered lossless. Since one is
interested in the surface wave exciting the MTS, only the components along ρ̂ are
reported.
The value of the costant A can be chosen such that the expression of the field, e.g.
the (B.16), simplifies in:

Ea
ρ = E0H(2)

1 (βswρ)e−αa
zz, (B.18)

where E0 is chosen such that the power is normalized to 1W. At last, the expression
of the incident electric field exciting the MTS is simply obtained by forcing z = 0
in (B.18):

Einc = E0H(2)
1 (βswρ)ρ̂ (B.19)
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Appendix C

Linear and non-linear
conjugate gradient
algorithms

The linear conjugate gradient (LCG) method is one of the most employed technique
for solving large linear systems [9]. It is proposed as an iterative method for solving
equations like:

Ax = b, (C.1)

where A ∈ RN×N is symmetric and positive definite and x, b ∈ RN are column
vectors. This problem can be equivalently written as a quadratic form to be
minimized:

min
x

f(x) = 1
2xTAx − bTx. (C.2)

The gradient of (C.2) corresponds to the residual of the system defined in (C.1),
i.e:

∇f(x) = r(x) = Ax − b. (C.3)

The LCG incorporates line search methods in order to obtain the final solution, in
fact, given the xk at the k-th iteration, the next step of the iterative algorithm is
computed through:

xk+1 = xk + αkpk, (C.4)

where pk is the search direction, in general chosen as gradient descent, and the
scalar αk is the step length. The line search procedure can be basically considered
as a minimization of the f function with respect to α, which defines how far one is
moving from the point xk in the direction dictated by pk.
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When the objective function are in the form of (C.2), the value of αk can be
computed analitically. Starting from the expression of f(αk):

f(α) = f(x + αkp) = 1
2(x + αkp)TA(x + αkp) + bT(x + αkp) =

1
2(xTAx + αxTAp + αpTAx + α2pTAp)− bTx − αbTp =
1
2α2pTAp + 1

2α(xTAp + pTAx)− αbTp− bTx + 1
2xTAx,

(C.5)

where the subscript k has been dropped for the sake of simplicity, one can compute
the derivative with respect to α and imposes it equal to zero:

αpTAp + 1
2(xTAp + pTAx)− bTp = 0. (C.6)

Considering that (pTAx)T = xTAp, as A is symmetric, one obtains:

α = −(xTA− bT)p
pTAp , (C.7)

which, using the (C.3), is equivalent to:

αk = − rT
kpk

pT
kApk

. (C.8)

The update direction pk, is obtained through:

pk = −rk + βkpk−1, (C.9)

where the scalar term βk can be computed by imposing a property called conjugacy
of the vectors pk with respect to A [9, p. 108]:

βk = rT
krk

rT
k−1rk−1

. (C.10)

All the steps described above are summarized in the pseudocode Alg. 3.

In order to generalize the LCG algorithm, making it suitable for minimizing
objective functions like those described in chapter 3, the non-linear conjugate
gradient (NLCG) version is derived. Basically, few changes are made with respect
to the previous procedure:

• αk is computed such as it minimize a generic non-linear function with respect
to the search direction pk.
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• pk is the gradient descent direction, so it can be computed from the knowledge
of the gradient of the objective function at the k-th iteration.

• The expression of βk is not the one described in (C.10) anymore and its
definition is given in different ways, depending on the versions of the algorithm
proposed in literature over the years.

The NLCG algorithm is summarized in the pseudocode Alg. 4. About the expression
of the scalar βk, several version are proposed, named according to their inventor:

• Fletcher-Rheeves:

βF R
k = ∇f T(xk)∇f(xk)

∇f T(xk−1)∇f(xk−1)
(C.11)

• Polak-Ribière:

βP R
k = ∇f T(xk)(∇f(xk)−∇f(xk−1))

||∇f(xk−1)||2
(C.12)

• Hestenes-Stifel

βHS
k = ∇f T(xk)(∇f(xk)−∇f(xk−1))

(∇f(xk)−∇f(xk−1))Tpk−1
(C.13)

The choice of the formula for βk may depend on the application and in general
requires a bit of experimentation.

Algorithm 3 Linear conjugate gradient algorithm
Input: x0
Output: x∗

Compute r0
p0 ← −r0
for k = 0 : Kmax − 1 do

Compute αk ▷ with (C.8)
xk+1 ← xk + αkpk

Compute βk+1 ▷ with (C.10)
pk+1 ← −rk+1 + βk+1pk

end for
x∗ ← xkmax
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Algorithm 4 Non-linear conjugate gradient algorithm
Input: x0
Output: x∗

Compute ∇f(x0)
p0 ← −∇f(x0)
for k = 0 : Kmax − 1 do

Compute αk by minimizing f(xk + αkpk)
xk+1 ← xk + αkpk

Compute ∇f(xk+1)
Compute βk ▷ with (C.11)-(C.12)-(C.13)
pk+1 ← −∇f(xk+1 + βkpk)

end for
x∗ ← xkmax
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Notation

Notation Description
a Scalar in R or C
E Geometric vector in R3 or C3

û Unit vector in R3 or C3

a 1-D array, column vector in RN or CN

an n-th element of the array a
A 2-D array, matrix in RN×M or CN×M

Anm (n, m) element of the matrix A
a∗, a∗, A∗ Conjugate

aT, AT Transpose
aH, AH Hermitian, conjugate-transpose
f · g Dot product
f × g Cross product
⟨f , g ⟩ Bilinear product

aTb Row-column product
a⊙ b Element-wise product
∇f Gradient
∇̃f Complex gradient

80



Bibliography

[1] O. Quevedo-Teruel, H. Chen, A. Díaz-Rubio, G. Gok, and A. Grbic et al.,
«Roadmap on metasurfaces», Journal of Optics, vol. 21, no. 7, Jul. 2019.

[2] E. Kuester, M. Mohamed, M. Piket-May, and C. Holloway, «Averaged transi-
tion conditions for electromagnetic fields at a metafilm», IEEE Transactions
on Antennas and Propagation, vol. 51, no. 10, pp. 2641–2651, 2003.

[3] F. Marzano and N. Pierdicca, Fondamenti di antenne. Radiazione elettromag-
netica e applicazioni. Carocci, 2011.

[4] C. A. Balanis, Advanced Engineering Electromagnetics, 2nd Edition. Wiley,
2012, ch. 7 - Electromagnetic Theorems and Principles.

[5] W. Gibson, The Method of Moments in Electromagnetics (A Chapmann &
Hall book). CRC Press, Taylor & Francis Group, 2021.

[6] S. Rao, D. Wilton, and A. Glisson, «Electromagnetic scattering by surfaces of
arbitrary shape», IEEE Transactions on Antennas and Propagation, vol. 30,
no. 3, pp. 409–418, 1982.

[7] M. Zucchi, F. Vernì, M. Righero, and G. Vecchi, «Current based automated
design of realizable metasurface antennas with arbitrary pattern constraints»,
IEEE Transactions on Antennas and Propagation, vol. 71, no. 6, pp. 4888–
4902, 2023.

[8] K. Michalski and J. Mosig, «Multilayered media green’s functions in integral
equation formulations», IEEE Transactions on Antennas and Propagation,
vol. 45, no. 3, pp. 508–519, 1997.

[9] J. Nocedal and S. J. Wright, Numerical Optimization, 2e. New York, NY,
USA: Springer, 2006.

[10] R. Denysiuk, «Evolutionary multiobjective optimization: Review, algorithms,
and applications», Ph.D. dissertation, 2014. [Online]. Available: https://
www.researchgate.net/publication/305409038_Evolutionary_Multiob
jective_Optimization_Review_Algorithms_and_Applications.

81

https://www.researchgate.net/publication/305409038_Evolutionary_Multiobjective_Optimization_Review_Algorithms_and_Applications
https://www.researchgate.net/publication/305409038_Evolutionary_Multiobjective_Optimization_Review_Algorithms_and_Applications
https://www.researchgate.net/publication/305409038_Evolutionary_Multiobjective_Optimization_Review_Algorithms_and_Applications


BIBLIOGRAPHY

[11] R. Wildman and A. Gaynor, «11 - topology optimization for robotics appli-
cations», in Robotic Systems and Autonomous Platforms, S. M. Walsh and
M. S. Strano, Eds., Woodhead Publishing, 2019, pp. 251–292.

[12] M. Akbari, P. Asadi, M. Besharati Givi, and G. Khodabandehlouie, «13 - arti-
ficial neural network and optimization», in Advances in Friction-Stir Welding
and Processing, M. K. B. Givi and P. Asadi, Eds., Woodhead Publishing,
2014, pp. 543–599.

[13] L. Jiao, R. Shang, F. Liu, and W. Zhang, «Chapter 3 - theoretical basis of
natural computation», in Brain and Nature-Inspired Learning Computation
and Recognition, L. Jiao, R. Shang, F. Liu, and W. Zhang, Eds., Elsevier,
2020, pp. 81–95.

[14] D. Simon, Evolutionary Optimization Algorithms. Wiley, 2013, ch. 20 - Multi-
Objective Optimization.

[15] P. Mergos and A. Sextos, «Multi-objective optimum selection of ground
motion records with genetic algorithms», 2018.

[16] X.-S. Yang, «Chapter 14 - multi-objective optimization», in Nature-Inspired
Optimization Algorithms, Oxford: Elsevier, pp. 197–211.

[17] R. Marler and J. Arora, «The weighted sum method for multi-objective
optimization: New insights», Structural and Multidisciplinary Optimization,
vol. 41, pp. 853–862, Jun. 2010.

[18] X. Gu, G. Sun, G. Li, L. Mao, and Q. Li, «A comparative study on multiob-
jective reliable and robust optimization for crashworthiness design of vehicle
structure», Struct Multidisciplinary Optim, Aug. 2014.

[19] N. Ryu and S. Min, «Multi-objective optimization with an adaptive weight
determination scheme using the concept of hyperplane: Multi-objective op-
timization with an adaptive weight», International Journal for Numerical
Methods in Engineering, vol. 118, Dec. 2018.

[20] G. Minatti, F. Caminita, M. Casaletti, and S. Maci, «Spiral leaky-wave
antennas based on modulated surface impedance», IEEE Transactions on
Antennas and Propagation, vol. 59, no. 12, pp. 4436–4444, 2011.

[21] S. Pandi, C. A. Balanis, and C. R. Birtcher, «Design of scalar impedance
holographic metasurfaces for antenna beam formation with desired polar-
ization», IEEE Transactions on Antennas and Propagation, vol. 63, no. 7,
pp. 3016–3024, 2015.

[22] M. Bodehou, D. Gonzalez-Ovejero, C. Craeye, and I. Huynen, «Method
of moments simulation of modulated metasurface antennas with a set of
orthogonal entire-domain basis functions», IEEE Transactions on Antennas
and Propagation, vol. 67, no. 2, pp. 1119–1130, Nov. 2018.

82


	List of Tables
	List of Figures
	Introduction
	Metasurface antennas
	Aim of the thesis
	Thesis outline

	Electromagnetic formulation
	EM radiation from sources
	Auxiliary potentials method
	Solution with the Green's function

	Scattering formulation
	Boundary conditions
	Equivalence theorem

	Method of moments

	Current-based optimization algorithm
	Electromagnetic problem formulation
	Constraints definition
	Algorithm formulation

	Optimization strategies
	Slack variables
	Objective function formulation
	Gradient and linesearch
	Convergence

	Multi-objective optimization problem: the weighted sum method
	Meaning of the weights
	Adaptive weight scheme
	Concept of hyperplane
	Algorithm formulation
	Example

	Hyperplane Adaptive Weighting scheme

	Numerical results
	Optimization setup
	Medium sized antenna
	Circular polarization
	Linear polarization
	Full-wave solution

	Large sized antenna
	Circular polarization
	Linear polarization
	Full-wave solution

	Small sized antenna
	Circular polarization
	Linear polarization
	Full-wave solution

	Medium sized, squinted beam

	Conclusions
	Antenna generalities
	Field polarization
	Directivity, gain and efficiency

	Source field for circular metasurface
	Linear and non-linear conjugate gradient algorithms
	Bibliography

