
POLITECNICO DI TORINO
Master’s Degree in Mechatronics Engineering

Master’s Degree Thesis

Body pose estimation in sport science
based on sensor fusion algorithm of

multiple RGB cameras

Supervisors

Prof. Marcello CHIABERGE

Prof. Gentiane VENTURE

Prof. Vincent HERNANDEZ

Candidate

Amir GAMAHDRID

December 2023

A nonna Elvira.

ii

Abstract

The computer vision field includes tasks like image classification, object recognition,
and feature detection. The focus of this work is body pose estimation, where the
human motion is analyzed using human activity recognition algorithms through
pattern detection principles.
The increasing popularity of cost-effective mobile sensors like Microsoft Kinect
has led to the development of various algorithms for activity recognition and tools
that enable sport performance analysis and motion rehabilitation at home. These
algorithms have the potential to promote a healthy lifestyle, discourage unhealthy
habits, and aid in condition tracking, particularly in sports science and healthcare
applications.Therefore, in this work we will use data collected with RGB cameras
to detect and classify sports movements and exercises involving both the upper
and the lower body.
The first step of this work is camera calibration, an essential prerequisite in the
world of 3D computer vision, performed using the OpenCV library in Python
and a checkerboard. The body pose of the subjects will be estimated using the
MediaPipe framework offered by Google, obtaining the skeleton of the subject seen
from different orientation. Afterwards, a set of ArUco markers will be used to
estimate the pose and position of the cameras with respect to a fixed reference
system, which will be used to rotate the 3D joints positions of the skeleton into the
same reference system, in order then to fuse the data and obtain a more accurate
and robust estimation of the body pose.
Four different fusion methods will be exploited: mean fusion, Kalman filter fusion,
mean fusion + DBSCAN and Kalman filter + DBSCAN.
The fusion methods will be then evaluated and compared using the motion capture
system developed by OptiTrack as groundtruth (PrimeX13 cameras and Motive
software).
Finally, using the data coming from the most accurate fusion algorithm, the joint
angles will be computed in order to build a dataset of 24 exercises performed by 4
subjects. The dataset will be then used to train, validate and test a Random forest
classifier and a Multi-layer perceptron classifier.
The results show a good improvement of the performances when using the data
coming from the proposed sensor fusion method instead of the single cameras,
resulting in a satisfactory accuracy in the classification of the exercises and providing
valuable insights for further advancements, possibly with the integration of Inertial
Measurement Units (IMUs), that could offer a promising enhancement by providing
information less susceptible to visual occlusions and better real-time adaptation to
dynamic movements.

i

Acknowledgements

I extend my sincere gratitude to the GV lab at the University of Tokyo. First of all,
I would like to thank professor Gentiane Venture, who accepted me as exchange
student in her lab and gave me the amazing opportunity to conduct this work in
such an innovative and stimulant environment.

Not less important, I am deeply indebted to professor Vincent Hernandez for his
constant support and his trust in me. His expertise and collaboration have greatly
enriched the outcomes of this research, helping me from the beginning to the end
of this run with wise advice and insightful feedback day by day.

I would like to extend my gratitude to professor Marcello Chiaberge for giving me
the chance to conduct this work free from worries and constituting the fundamental
bridge between Politecnico di Torino and the University of Tokyo.

This thesis symbolizes the culmination of my academic voyage over the last two
years, spanning from Italy to Japan. During this time, I’ve experienced substantial
growth both in terms of academics and mostly personally, shaping the individual I
have become today.
I want to express my sincere gratitude to everyone who took part to my journey,
starting from all the people that have always been by my side to the ones that I got
to know during these last years and hopefully will be next to me for a long time.
Lastly, but most importantly, I want to express my infinite gratitude to my mother,
for giving me all the means necessary to reach my goals by making me the person
I am today, through unconditional and endless love.

ii

Table of Contents

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Motivations . 1
1.2 Chapters organization . 2

2 Camera calibration 4
2.1 Overview . 4
2.2 World coordinate system . 6
2.3 Camera coordinate system . 6
2.4 Image coordinate system . 7
2.5 Checkerboard and OpenCV . 9

3 Body pose estimation 13
3.1 Introduction . 13
3.2 Camera pose . 14

3.2.1 ArUco markers . 14
3.2.2 ArUco box pose estimation 16

3.3 Body pose . 21
3.3.1 MediaPipe . 21
3.3.2 Landmarks rotation . 24

4 Sensor fusion 26
4.1 Introduction . 26
4.2 Multi-sensor fusion techniques . 27
4.3 State-space model . 29
4.4 Hard fusion . 29
4.5 Soft fusion . 30

4.5.1 Measurements fusion . 30

iv

4.5.2 Joint continuity method . 31
4.5.3 Kalman filter . 33

4.6 DBSCAN . 36

5 Motion capture system 40
5.1 Introduction . 40
5.2 Mocap overview . 41
5.3 Optoelectronic systems . 42

5.3.1 OptiTrack . 43

6 Human activity recognition 45
6.1 Introduction . 45
6.2 Random forest . 47

6.2.1 Decision tree . 47
6.2.2 ID3 algorithm . 48
6.2.3 Entropy and information gain 48
6.2.4 Ensamble methods . 50

6.3 Multi-layer perceptron . 52
6.3.1 Single neuron . 53
6.3.2 Multi-layer architecture . 54
6.3.3 Training . 56

6.4 Evaluation metrics . 57

7 Experimental setup and results 59
7.1 Sensor fusion and Mocap . 59

7.1.1 Sensor fusion setup . 59
7.1.2 Mocap setup . 62
7.1.3 Experimental results . 64

7.2 Human activity recognition . 68
7.2.1 Data set: exercises . 68
7.2.2 Data set: joint angles . 69
7.2.3 Experimental results . 71

7.3 Discussion and improvements . 74

8 Conclusion 76

Bibliography 79

v

List of Tables

7.1 Classification results . 72

vi

List of Figures

2.1 Radial and tangential distortion . 4
2.2 Coordinates transformation to camera coordinates 6
2.3 Coordinates transformation to image coordinates 7
2.4 Camera calibration flowchart . 9
2.5 Camera calibration using checkerboard 10
2.6 Checkerboard image after calibration 12

3.1 ArUco markers . 15
3.2 ArUco box . 16
3.3 ArUco marker system coordinates 19
3.4 Aruco box detection . 20
3.5 MediaPipe landmarks . 21
3.6 Body pose detection . 24
3.7 Rotated skeletons . 25

4.1 State fusion and measurements fusion methods 28
4.2 Kalman filter loop . 34
4.3 Skeleton merging target and noise rejection 36

5.1 PrimeX13 camera . 43
5.2 Motive software . 44

6.1 Decision tree outlook example . 48
6.2 Random forest algorithm . 50
6.3 Neurons biological similitude . 52
6.4 Single neuron . 53
6.5 Artificial Neural Network architecture 54
6.6 FFNN training . 56
6.7 Confusion matrix . 58

7.1 Fused skeletons . 61
7.2 Markers set . 62

vii

7.3 Markers configuration . 63
7.4 Dumbbell shoulder press comparison 65
7.5 Hip adduction left comparison . 65
7.6 Hip adduction right comparison . 66
7.7 Lunge step up left comparison . 66
7.8 Lunge step up right comparison . 67
7.9 Squat comparison . 67
7.10 Knee angle computation . 70
7.11 Knee angle variation during squat 71
7.12 Random forest confusion matrices 73
7.13 Multi-layer perceptron confusion matrices 74

viii

Chapter 1

Introduction

This introduction will briefly present the motivations, main objectives and imple-
mentations of the work conducted during my Erasmus+ project, in collaboration
with the mechanical engineering department of the University of Tokyo and more
specifically the GV Lab, under the supervision of prof. Gentiane Venture and prof.
Vincent Hernandez.
The initial sections present the reasons behind addressing this subject, along with
an overview of the principles and techniques applied. Subsequently, the second
part outlines the arrangement and layout of the thesis.

1.1 Motivations
Computer Vision involves interpreting image content, including image classification,
object recognition, and feature detection like cancer identification in biomedical
images.
This work focuses on pose estimation, crucial in several computer vision applications
like robot guidance, augmented reality and sport analysis. Human Activity Recog-
nition (HAR) categorizes human motions based on pattern recognition principles,
often using machine learning techniques: this procedure revolves around identifying
connections between points within the physical world and their two-dimensional
image projections.
Cost-effective, mobile sensors like Microsoft Kinect, known for tracking skeletal
joints, have gained popularity in recent times, leading to various algorithms for
activity recognition and tools that can help to perform sport performance analysis
and/or motion rehabilitation at home.
Utilizing data collected from RGB cameras, we will focus on detecting sports
movements and classifying various typical exercises related to both upper and
lower body, such as shoulder press, biceps curl, lunges, squats etc. Applying these

1

Introduction

algorithms in sports science and healthcare can significantly promote a healthy
lifestyle, deter unhealthy habits, and facilitate condition tracking.

1.2 Chapters organization
First, camera calibration is an essential prerequisite in the world of 3D computer
vision: the accuracy of the detection in fact may be significantly reduced because
of the some distortion of the images introduced by the camera itself. The topic of
camera calibration will be discussed in Chapter 2.

After calibrating multiple RGB cameras using the OpenCV library in Python and
a checkerboard, we used a set of ArUco markers to estimate the position of the
cameras with respect to a fixed reference system and then estimated the body pose
using the MediaPipe framework.
Therefore, in Chapter 3 we will discuss the estimation analyzing two phases:

• Camera pose estimation: A popular approach involves using binary square
markers known as ArUco markers. These markers are advantageous because
they provide multiple connection points due to their four corners, allowing
for pose estimation with just one marker. Furthermore, their internal binary
encoding makes them robust and enables the use of error detection and
correction methods.

• Body pose estimation: The task will be completed using MediaPipe, an open-
source framework from Google. MediaPipe provides pre-built, customizable
machine learning pipelines for a range of multimedia tasks, such as face
detection, hand tracking, pose estimation, and 3D object detection. It simplifies
the development of multimedia applications by offering pre-trained models and
modules. MediaPipe is written in C++ but supports multiple programming
languages, including Python and Java, making it versatile and accessible across
various development environments.

After having collected the 3D joints positions from multiple cameras, four sensor
fusion algorithm will be deployed in Chapter 4 :

• Mean

• Mean + DBSCAN

• Kalman filter

• Kalman filter + DBSCAN

2

Introduction

Sensor fusion is the process of integrating data from various sensors like cameras,
radar or lidar to gain a more precise and complete understanding of a physical
situation. The primary objective is to enhance accuracy, ensure redundancy, and
boost robustness. By combining information from multiple sensors, errors and
inaccuracies associated with any single sensor can be minimized. Additionally, if
one sensor malfunctions or provides incorrect data, the system can still operate
effectively by relying on data from other sensors, making it more resilient in chal-
lenging conditions.

The four sensor fusion algorithm will be compared using a motion capture system
as groundtruth. For this reason, in Chapter 5 an overview of such technologies will
be given.
A motion capture system, commonly referred to as "mocap" or "MoCap," represents
a technology employed to digitally record and apprehend the motions of objects
or living entities. It is primarily utilized for the analysis and recreation of these
movements in various applications, including computer-generated imagery (CGI),
animation, biomechanical research, sports analysis, and more. In recent years,
optical motion capture has gained significant prominence, especially in applications
related to body movement animation.
In our case, PrimeX13 cameras by OptiTrack have been used to collect the data,
processed then using the software Motive, again by OptiTrack.

In Chapter 6 we will introduce the Random Forest and the Multi-layer Perceptron
classifiers. Using the data coming from the most accurate fusion algorithm, the
two classifier will be used to perform classification tasks using a dataset composed
of the joint angles during 24 exercises performed by 4 subjects.

The experimental setup for the sensor fusion algorithms and the evaluation through
the Mocap system will be described in Chapter 7. Moreover we will define the
dataset used to train, validate and test the models of the two classifiers. In this
chapter, also the results of both the evaluation of the sensor fusion algorithms and
the classification accuracy will be presented.

Discussion and conclusion will be finally given in Chapter 8.

3

Chapter 2

Camera calibration

2.1 Overview
Every time we are dealing with cameras and more generally speaking with sensors,
a key step to perform is calibration. More specifically, camera calibration is an
essential prerequisite in the world of 3D computer vision: the accuracy of the
detection in fact may be significantly reduced because of the some distortion of
the images introduced by the camera itself. We can distinguish two major kinds of
distortion:

• Radial distortion, which causes straight lines to appear curved and becomes
larger the farther the points are from the center of the image.

• Tangential distortion, which occurs when the image-taking lens is not aligned
perfectly parallel to the imaging plane.

Figure 2.1: Radial and tangential distortion

4

Camera calibration

To eliminate such effects, calibration of the camera is essential. The methods in
which a camera can be calibrated can be broadly categorized into two macro-groups:
photogrammetric calibration and self-calibration, as reported by [36].

Photogrammetric calibration entails the meticulous observation of a calibration
object with a known, highly accurate 3D spatial geometry. Typically, the calibration
object comprises two or three mutually perpendicular planes. These approaches
necessitate the use of costly calibration equipment and an intricate setup, but the
process can be executed with remarkable efficiency.

On the other hand, self-calibration techniques operate without the need for any
dedicated calibration object. Simply by moving the camera within a stationary
scene, the inherent rigidity of the scene generally imposes two constraints on the
camera’s internal parameters, relying solely on image data. Consequently, if images
are captured using the same camera with fixed internal parameters, correspondences
between three images suffice to recover both the internal and external parameters,
enabling the reconstruction of the 3D structure with a similarity. Although this
approach offers great flexibility, due to the multitude of parameters that need
estimation, obtaining consistently reliable results is not always feasible.

For this reason, in this work the photogrammetric approach has been exploited.
The goal of the calibration of cameras is to determine all the characteristics of
the cameras themselves: this involves possessing all the necessary parameters
concerning the camera, essential for establishing a precise connection between a 3D
point in the physical environment and its corresponding 2D representation (pixel)
in the image taken by the calibrated camera.
Typically, there are two parameters of interest:

1. Intrinsic parameters: parameters concerning the camera arrangement, such as
focal length, optical center, and radial distortion coefficients of the lens.

2. Extrinsic parameters: parameters related to the camera’s orientation (rotation
and translation) concerning a specific world coordinate system.

In order to extract these parameters, we will analyze in the following sections how
the physical world, the camera and the image are related to each other, following
the documentation provided by OpenCV at [2] and guidelines provided by [27].

5

Camera calibration

2.2 World coordinate system
To define locations of points in the room we need to first define a world coordinate
system.
Thus, we need to define the origin by fixing a corner of the room as (0, 0, 0) and the
X, Y, Z axes by defining the X and Y axis of the room along the two dimensions
on the floor and the Z axis along the vertical wall.
Using the above, we can find the 3D coordinates of any point in this room by
measuring its distance from the origin along the X, Y, and Z axes. In the world
coordinate system, the coordinates of P are given by (Xw, Yw, Zw), as shown in
Figure 2.2.

Figure 2.2: Coordinates transformation to camera coordinates

2.3 Camera coordinate system
After having defined the world coordinate system, the next step is to find the
relationship between the 3D room (i.e. world) coordinates and the 3D camera
coordinates.

Let’s say our camera is located at some arbitrary location (tX , tY , tZ) in the room.
The camera may be also looking in some arbitrary direction, that is we can say
the camera is rotated with respect to the world coordinate system. The relative
rotation of the camera can be expressed through a simple 3x3 rotation matrix R.

6

Camera calibration

The two coordinate values are related by the following equation.xc

yc

zc

 = R

xw

yw

zw

+ t (2.1)

The above relation can also be expressed in homogeneous coordinates by adding
an extra dimension, giving the following representation:

xc

yc

zc

 = T


xw

yw

zw

1


T =

è
R | t

é
(2.2)

2.4 Image coordinate system
Once we get a point in 3D coordinate system of the camera by applying a rotation
and translation to the points world coordinates, we are in the position to project
the point on the image plane, in order to obtain a location of the point in the
image, as shown in Figure 2.3.

Figure 2.3: Coordinates transformation to image coordinates

The optical center (pin hole) is represented using Oc and the image plane is placed
at a distance f (focal length) from it (in reality an inverted image of the point is

7

Camera calibration

formed on the image plane). It can be shown that the project image (x, y) of the
3D point (Xc, Yc, Zc) is given by

x = f
xc

zc

y = f
yc

zc

(2.3)

The above two equations can be rewritten in matrix form as followsx′

y′

z′

 =

f 0 0
0 f 0
0 0 1


xc

yc

zc

 (2.4)

The matrix K shown above is called the Intrinsic Matrix and contains the intrinsic
parameters of the camera.

The above simple matrix shows only the focal length (in this work fx and fy are
considered to be equal and the skew γ is considered to be equal to zero).
However, the pixels in the image sensor may not be square, and so we may have
two different focal lengths fx and fy, and the optical center (cx, cy) of the camera
may not coincide with the center of the image coordinate system. In addition,
there may be a small skew γ between the x and y axes of the camera sensor.
The matrix K thus is more generally an upper triangular matrix composed by:

• (fx, fy): focal lengths

• (cx, cy): optical center

• γ: skew between x and y axes
Taking all the above into account, the camera matrix can be re-written as.

K =

fx γ cx

0 fy cy

0 0 1

 (2.5)

Moreover, in the above equation, the x and y pixel coordinates are referred to the
center of the image. Instead, while working with images the origin is at the top
left corner of the image, thus we can represent the image coordinates using (u, v)
as follows u′

v′

w′

 =

f 0 0
0 f 0
0 0 1


xc

yc

zc

 (2.6)

Therefore, the goal of the camera calibration is to find the 3x3 intrinsic matrix
K defined in Equation 2.5 and the 4x4 extrinsic matrix T defined in Equation
2.2 using a set of known 3D points (xw, yw, zw) and their corresponding image
coordinates (u, v).

8

Camera calibration

2.5 Checkerboard and OpenCV

As explained above, in this work the camera calibration has been performed using
the photogrammetric method. For this reason a 7x10 checkerboard has been used
as known-geometry object and the OpenCV library in python will be exploited to
extract the parameters, following the flowchart show in Figure 2.4.

Figure 2.4: Camera calibration flowchart. Figure from [27]

In the process of calibration the camera parameters are computed using a set of
know 3D points (xw, yw, zw) and their corresponding pixel location (u,v) in the
image. The world coordinates are fixed by the checkerboard pattern, where the 3D
points are the corners of the squares.
For the 3D points we photograph a checkerboard pattern with known dimensions
at many different orientations, as shown in Figure 2.5. Since points are equally
spaced in the checkerboard, the (xw, yw) coordinates of each 3D point are easily
defined by taking one point as reference (0, 0) and defining the remaining ones
with respect to that reference point.

9

Camera calibration

Figure 2.5: Camera calibration using checkerboard

We now have multiple images of the checkerboard and we also know the 3D location
of points on the checkerboard in world coordinates. The last thing we need are the
2D pixel locations of these checkerboard corners in the images.
The calibration process has been performed using the OpenCV library in Python:
the library provides a builtin function called findChessboardCorners that looks for
a checkerboard and returns the coordinates of the corners.

1 ret , c o rne r s = cv2 . f indChessboardCorners (image , PatternSize ,
2 f l a g s)

where the inputs are:

• image: 8-bit grayscale or colored checkerboard image

• PatternSize: number of inner corners in the checkerboard

• flags: operation flags

and it returns:

• corners: output array of detected corners

Then, OpenCV’s function cornerSubPix takes as input the original image and the
location of corners, and looks for the best corner location inside a small neighbor-
hood of the original location. The algorithm is iterative in nature and therefore
we need to specify the termination criteria (e.g. number of iterations and/or the
accuracy).

10

Camera calibration

1 co rne r s2 = cv2 . cornerSubPix (gray , corners , winSize , zeroZone ,
2 c r i t e r i a _ r e f i n e _ c o r n e r)

where the inputs are:

• image: 8-bit grayscale or colored checkerboard image

• corners: initial coordinates of the input corners

• winSize: half of the side length of the search window ((11, 11) in this case)

• zeroZone: half of the size of the dead region in the middle of the search zone
over which the summation in the formula below is not done ((-1,-1) in this
case, which means there is no such a size).

• criteria_refine_corner: criteria for termination of the iterative process of
corner refinement

and it returns corners2, which are the output refined coordinates.
The final step of calibration is to pass the 3D points in world coordinates and their
2D locations in all images to OpenCV’s calibrateCamera method.

1 ret , i n t r in s i c_matr ix , d i s t o r t i o n _ c o e f f s , rvecs , tve c s =
2 cv2 . ca l ibrateCamera (objPoints , imagePoints , imageSize)

where the inputs are:

• objPoints: vectors of 3D points

• imagePoints: vectors of the 2D image points

• imageSize: size of the image

and it returns:

• intrinsic_matrix: intrinsic camera matrix

• distortion_coeffs: lens distortion coefficients

• rvecs: rotation specified as a 3×1 vector. The direction of the vector specifies
the axis of rotation and the magnitude of the vector specifies the angle of
rotation

• tvecs: 3x1 translation vector

11

Camera calibration

The result of the above method is shown in Figure 2.6, where all the corners of the
board are detected and the rotation and translation vectors are reported in top left
corner.

Figure 2.6: Checkerboard image after calibration

12

Chapter 3

Body pose estimation

3.1 Introduction
Computer Vision is a field that focuses on interpreting image content: it involves
tasks like classifying entire images (e.g., on social media platforms like Facebook
and Instagram), recognizing objects within images (such as faces or license plates,
as seen in Facebook and Google Street View), and detecting specific features or
patterns within images, like identifying cancer in biomedical images. The ulti-
mate goal of computer vision is to develop systems that possess similar visual
perception abilities as the human visual system, where humans use their eyes to see
objects, and the brain interprets the visual information to understand what they see.

In this work, we will focus on the task of body pose detection.
Pose estimation holds great significance in numerous computer vision applications,
including robot guidance, augmented reality, and various other contexts. This pro-
cedure revolves around identifying connections between points within the physical
world and their two-dimensional image projections. This particular phase often
presents considerable challenges, prompting the frequent adoption of synthetic or
identifiable indicators to simplify the process.

The body pose detection in this work comprehends two tasks:

• Camera pose estimation: one widely favored methodology involves employing
binary square identifiable markers (ArUco). The principal advantage of these
markers lies in their capability to furnish an adequate number of connections
(thanks to their four corners) for deriving the camera’s pose from just one
marker. Additionally, their inner binary encoding enhances their resilience,
permitting the implementation of error detection and correction techniques.
With the help of the documentation provided by OpenCV at [3], we will

13

Body pose estimation

discuss what are and how to use ArUco markers.

• Body pose estimation: the task will be carried out using MediaPipe, an open-
source framework developed by Google (documentation available at [1]) that
offers a collection of pre-built, customizable machine learning (ML) pipelines
for various multimedia processing tasks: as explained in [19], it simplifies
the development of multimedia applications by providing pre-trained models
and modules for tasks like face detection, facial landmark detection, hand
tracking, pose estimation, objectron (3D object detection and tracking), and
more. Written in C++, It supports various programming languages like
Python and Java, making it accessible and usable across different development
environments.

3.2 Camera pose
3.2.1 ArUco markers
An ArUco marker is an artificial square marker constructed with a broad black
outline and an embedded binary matrix that defines its unique identifier (ID).
The prominent black border streamlines its rapid detection within the image, while
the binary encoding enables its recognition and enables the utilization of error
identification and rectification methods.
The marker’s dimensions dictate the dimensions of the internal matrix. For instance,
a 4x4 marker comprises 16 bits. Some examples of ArUco markers are shown in
Figure 3.1.

14

Body pose estimation

Figure 3.1: ArUco markers. Figure from [3]

A typical problem that may arise is that the marker may appear rotated within the
environment. However, the detection process must have the capability to discern
its original orientation to ensure unambiguous identification of each corner. This
orientation determination also relies on the binary encoding.

A marker dictionary encompasses the collection of markers considered for a partic-
ular application. Essentially, it’s a compendium of binary codifications for each
marker within it. The dictionary’s key attributes include its size, denoting the
number of markers it comprises, and the marker size, indicating the bit count.

One might assume that the marker ID corresponds to a decimal number derived
from converting the binary codification. However, this isn’t feasible, especially
for markers with a substantial number of bits, as managing such large numbers
becomes impractical. Instead, the marker ID is straightforwardly the marker’s
index within its associated dictionary. For example, in a dictionary, the first five
markers would have IDs: 0, 1, 2, 3, and 4.

When dealing with an image containing ArUco markers, the detection process
should furnish a roster of recognized markers. Each detected marker comprises:

• The precise positions of its four corners in the image, in their original sequence

• The marker’s ID

15

Body pose estimation

The marker detection process comprises two primary phases:

1. Identification of marker candidates: this stage entails a comprehensive analysis
of the image to pinpoint square shapes that might qualify as markers. It
commences with adaptive thresholding to segment the markers, followed by
contour extraction from the thresholded image. Contours that lack convexity
or fail to approximate a square shape are discarded. Additional filters are
applied, such as eliminating contours that are excessively small, overly large,
or too close to each other.

2. Post-candidate detection: the validation step necessitates confirming whether
these candidates genuinely constitute markers by scrutinizing their inner en-
coding. This step commences by extracting the marker bits for each candidate.
Achieving this involves applying a perspective transformation to bring the
marker into its canonical form. Subsequently, Otsu thresholding is used to
distinguish between white and black bits in the canonical image. The image
is subdivided into cells according to marker size and border size. The count
of black or white pixels within each cell determines the bit type. Finally,
an analysis is performed to ascertain if the marker belongs to the specific
dictionary. Error correction techniques are applied as needed.

In this work, a box with customized ArUco markers, shown in Figure 3.2, was used
in order to estimate the camera pose.

Figure 3.2: ArUco box

3.2.2 ArUco box pose estimation
To perform the box detection the ArUco module inside the OpenCV library in
Python has been used. After setting all the parameters they have been stored using

16

Body pose estimation

the DetectorParameters() function.
Therefore, the detection is performed using the detectMarkers() function. This
function is the most important in the module, since all the rest of the functionality
is based on the detected markers returned by detectMarkers().

1 corners , ids , r e j e c t e d = aruco . detectMarkers (inputImage , d i c t i onary ,
2 parameters)

where the inputs are:
• inputImage: 8-bit grayscale or colored image containing the markers to be

detected

• dictionary: the marker dictionary that the function expects to identify

• parameters: The parameters of the markers, obtained using DetectorParame-
ters()

and it returns:
• corners: the list of corners of the detected markers. For each marker, its four

corners are returned in their original order (which is clockwise starting with
top left)

• ids: the list of ids of each of the detected markers in corners

• rejected: the list of marker candidates, i.e. shapes that were found and
considered but did not contain a valid marker

After the corners and the IDs of the marker have been detected, they can be used
to estimate the relative position and pose of the marker with respect to the camera.
To perform camera pose estimation, you need to know the camera’s calibration
parameters (the camera matrix and distortion coefficients). As a result of the
calibration, a camera matrix, a matrix of 3x3 elements with the focal distances
and the camera center coordinates (a.k.a intrinsic parameters), and the distortion
coefficients, a vector of 5 or more elements that models the distortion produced by
your camera, are obtained.

All the above have been estimated following the procedures in Chapter 2.
In order to estimate the camera pose the function estimatePoseSingleMarker()
have been used.

1 rvecs , tvecs , _ = aruco . es t imatePoseS ing leMarkers (
2 detected_corners , marker_length ,
3 camera_matrix , d i s t o r t i o n _ c o e f f i c i e n t s)

17

Body pose estimation

where the inputs are:

• detected_corners: the vector of corners detected by detectMarkers()

• marker_length: the size of the marker side, in meters

• camera_matrix: the camera matrix obtained during the camera calibration
process

• distortion_coefficients: the distortion coefficients obtained during the camera
calibration process

and it returns:

• rvecs: the rotation vector of the camera with respect to the detected marker

• tvecs: the translation vector of the camera with respect to the detected marker

18

Body pose estimation

The marker coordinate system that is assumed by this function is placed in the
center (by default) or in the top left corner of the marker with the Z axis pointing
out, as shown in Figure 3.3. Axis-color correspondences are X: red, Y: green, Z:
blue.

Figure 3.3: ArUco marker system coordinates

Finally, we can use the drawDetectedMarkers() function provided by the ArUco
module followed by the drawFrameAxes() function provided by OpenCV to draw
the detected markers in the input image and check whether the markers have been
correctly detected.

1 drawn_image = aruco . drawDetectedMarkers (drawn_image ,
2 detected_corners , detected_ids) ;
3

4 drawn_image = cv2 . drawFrameAxes (drawn_image , camera_matrix ,
5 d i s t o r t i o n _ c o e f f i c i e n t s , rvec ,
6 tvec , edge_length)

where the inputs for drawDetectedMarkers() are:

• drawn_image: the input image, where the markers will be drawn to obtain
the output image

• detected_corners: the corners of the markers detected

• detected_ids: the id of the marker detected

19

Body pose estimation

and the inputs for drawFrameAxes() are:

• drawn_image: the input image, where the markers will be drawn to obtain
the output image

• camera_matrix: the camera matrix obtained during the camera calibration
process

• distortion_coefficients: the distortion coefficients obtained during the camera
calibration process

• rvecs: the rotation vector of the camera with respect to the detected marker

• tvecs: the translation vector of the camera with respect to the detected marker

The results of the box detection and the camera pose estimation are shown in
Figure 3.4.

Figure 3.4: Aruco box detection

In this work we will use four cameras, placed in each corner of the room. The
rotation matrix and translation vector of the cameras will be used in the following
chapters to transform the data coming from all the different cameras into a unique
reference system, in order to make them comparable with each other. For this
reason, the variable rvec has been transformed into a rotation matrix using the
OpenCV function cv2.Rodrigues and saved, as well as tvec, into a dictionary.

20

Body pose estimation

3.3 Body pose
3.3.1 MediaPipe
MediaPipe Pose represents an advanced machine learning system designed for
precise human pose tracking: it discerns 33 3D landmarks and creates background
segmentation masks for the body based on RGB video frames, employing the
BlazePose research methodology [7]. Leading-edge methods currently rely predom-
inantly on desktop environments and are compatible with most mobile phones,
modern desktops/laptops, Python, and web applications. Possible applications of
the MediaPipe Pose framework are shown in [35] and [16].

The MediaPipe algorithm utilizes a two-step detector machine learning pipeline.
Initially, the detector identifies the specific person or pose within the frame. Subse-
quently, the tracker processes the cropped frame containing the pose of interest to
predict the pose landmarks and segmentation masks.

Figure 3.5 illustrates the human modeling process using BlazePose’s pose detector
and landmark model, enabling precise tracking of the 33 key points on the human
body from a single frame.

Figure 3.5: MediaPipe landmarks. Figure from [11]

21

Body pose estimation

In this work, the MediaPipe framework was used to extract the 33 landmarks of
the subject coming from each of the four cameras used. Subsequently, the data has
been rotated using the rotation matrices obtained in the Section 3.2, in order to
get the landmarks position of each camera in the same unique reference system.

First, the mp_pose.Pose() object is instantiated as posed the method pose.process()
is used to extract the pose of the subject:

1 with mp_pose . Pose (static_image_mode=False , min_detect ion_conf idence
=0.5 , min_tracking_conf idence =0.5) as pose :

2

3 results_mp = pose . p roce s s (images)

where the inputs are:

• static_image_mode: whether the image to be processed is static or not

• min_detection_confidence: the minimum confidence score for the pose detec-
tion to be considered successful

• min_tracking_confidence: the minimum confidence score for the pose tracking
to be considered successful

The attributes of results_mp can then be used to extract all the information we
need to describe the body pose and store them in the following dictionaries:

• results_hollistic_i: 2D image coordinates

• results_hollistic_w: 3D world coordinates

• results_hollistic_v: Visibility pose

1 r e s u l t s _ h o l l i s t i c _ i [i] = _process_mp_to_image ()
2 r e s u l t s _ h o l l i s t i c _ w [i] = _process_mp_to_w ()
3 r e s u l t s _ h o l l i s t i c _ v [i] = _process_mp_to_vis ibi l i ty ()

22

Body pose estimation

where:

1 de f _process_mp_to_image (s e l f) :
2 r e s u l t s _ i = np . array ([[p . x ∗ image_width , p . y ∗ image_height] f o r

p in results_mp . pose_landmarks . landmark]) . astype (dtype=i n t)
3 re turn r e s u l t s _ i
4

5 de f _process_mp_to_w(s e l f) :
6 landmarks = results_mp . pose_world_landmarks . landmark
7 results_w = np . array ([[landmarks [k] . x , landmarks [k] . y , landmarks [

k] . z] f o r k in range (n_landmark)])
8 re turn results_w
9

10 de f _process_mp_to_vis ibi l i ty (s e l f) :
11 landmarks = results_mp . pose_landmarks . landmark
12 r e s u l t _ v i s i b i l i t y = np . array ([[landmarks [k] . v i s i b i l i t y] f o r k in

range (n_landmark)])
13 re turn r e s u l t _ v i s i b i l i t y

After all the landmarks have been extracted, we can proceed drawing the skeletons
using the mp_drawing.draw_landmarks() function as follows:

1 Drawing . mp_drawing . draw_landmarks (image=image ,
2 landmark_l ist=results_mp_pl ,
3 connec t i ons=mp_hol i st ic .POSE_CONNECTIONS,
4 landmark_drawing_spec=Drawing . mp_drawing .

DrawingSpec (
5 ∗∗Drawing . pose_landmarks_parameters) ,
6 connection_drawing_spec=Drawing . mp_drawing .

DrawingSpec (
7 ∗∗Drawing . pose_connection_parameters))

23

Body pose estimation

The results of the above computation for one of the four cameras in our setup are
shown in Figure 3.6.

Figure 3.6: Body pose detection

3.3.2 Landmarks rotation
After computing the body pose for each one of the four cameras, we obtain four
skeletons of the same subject detected from different points of view. We are only
interested in the 3D world coordinates of the 33 skeleton landmarks, which are the
variable [x, y, z] contained for each frame in the dictionary results_hollistic_w.

Using the rotation matrix R and translation vector t obtained in Section 3.2.2 for
each camera, we rotated the data in order to obtain the 33 joints position all in
the same reference system as shown in Equation 3.1, which is the one of the ArUco
box.

xrotated

yrotated

zrotated

 = T


xw

yw

zw

1


T =

è
R | t

é
(3.1)

24

Body pose estimation

The resulting four skeletons of the subject performing an N pose, rotated in the
same reference system, are shown in Figure 3.7.

Figure 3.7: Rotated skeletons: Camera 1; Camera 2; Camera 3; Camera 4

The next step will be the fusion of the data coming from the different cameras
(Chapter 4) in order to obtain an estimation of the pose as accurate as possible.

25

Chapter 4

Sensor fusion

4.1 Introduction
Sensor fusion is the process of combining data from multiple sensors (cameras,
radar, lidar etc.) to obtain a more accurate and comprehensive understanding of a
physical phenomenon, environment, or object.
The primary goal of sensor fusion is to improve the accuracy and ensure redun-
dancy and robustness: by combining data from multiple sensors, it is possible to
reduce errors and inaccuracies associated with any single sensor, leading to more
reliable and precise measurements, as shown in [23] and [13], where skeleton fusion
algorithms were deployed. Moreover, if one sensor fails or provides erroneous data,
the system can still function using data from the other sensors, making the system
more robust in challenging conditions, such as poor visibility or adverse weather,
where a single sensor may be unreliable.
Sensor fusion is commonly used in applications like tracking the position and
movement of objects, such as in military surveillance, robotics, and autonomous
navigation, like the case of [12], which applied sensor fusion algorithms to UAV
navigation: in our case, it will be used to fuse the body pose data coming from
different cameras, obtained in Chapter 3.

The two main approaches to sensor fusion are hard fusion and soft fusion.
In the first case, the data from different sensors are combined into a single, integrated
data-set, involving mathematical operations like averaging or weighted summation.
Instead, in the second case, the fusion involves combining data from multiple
sensors while retaining their individual characteristics and uncertainties, enhancing
techniques such as Bayesian inference or Kalman filtering, as already done in the
field of human pose fusion by [26], [24] and [17].

26

Sensor fusion

In this work, the fusion of the data will be performed using four different techniques:

• Mean value

• Kalman filter

• Mean value + DBSCAN

• Kalman filter + DBSCAN

In order to test the methods mentioned above, a set of six exercises has been
performed by the subject:

• Dumbbell shoulder press

• Hip adduction left

• Hip adduction right

• Lunge step up left

• Lunge step up right

• Squat

4.2 Multi-sensor fusion techniques
Imagine the challenge of tracking a moving target using N diverse sensors, each
with distinct measurement characteristics and noise profiles. How can we merge
the measurements from these multiple sensors to derive a collective estimation of
the target’s state that outperforms the individual sensor-based estimates? Various
strategies for multi-sensor data fusion exist to address this issue. In this study, we
will employ the Mean fusion and Kalman filter fusion techniques.

Specifically, with respect to the Kalman filter approach, we can consider two
primary fusion methods: state-vector fusion and measurement fusion.
As shown in [10] and [25], state-vector fusion techniques involve utilizing a set of
Kalman filters to generate separate state estimates based on each sensor’s data,
which are subsequently integrated to produce an enhanced joint state estimate.
On the other hand, measurement fusion methods directly fuse the sensor measure-
ments to obtain a weighted measurement and then use a single Kalman filter to
obtain the final state estimate based upon the fused observation.

The block scheme comparing the two techniques is shown in Figure 4.1.

27

Sensor fusion

Figure 4.1: State fusion and measurements fusion methods. Figure from [10]

Although it has been demonstrated that the two measurement fusion techniques
exhibit functional equivalence when the sensors, each with distinct noise char-
acteristics, possess identical measurement matrices, it’s crucial to consider their
respective advantages and disadvantages.

In comparative investigations involving state-vector fusion and measurement fusion,
it has been observed that measurement fusion methods typically deliver superior
overall estimation performance. On the other hand, state-vector fusion methods
offer lower computational and communication overhead, along with the benefits of
parallel implementation and fault tolerance. It’s worth noting that state-vector
fusion methods are effective only under the condition of consistent Kalman filters,
limiting their practical applicability.
In many real-world scenarios like navigation and target tracking, underlying pro-
cesses are frequently nonlinear. Consequently, the corresponding Kalman filters
rely on linearized process models (e.g., Jacobian linearization or neurofuzzy local
linearization) and tend to be inconsistent due to model errors introduced during the
linearization process. Therefore, when employing Kalman-filter-based multisensor
data fusion in these practical settings, measurement fusion is the preferred choice
over state-vector fusion.

In our specific case, the measurement fusion approach will be adopted.

28

Sensor fusion

4.3 State-space model
Like the model built in [26], we can consider a linear system. The dynamics of our
sensors are modelled by the following discrete-time state-space model:xk = Akxk−1 + Bkuk + wk

yk = Hkxk + vk

(4.1)

where k represents the discrete-time index and A, B, H, x, y and are the state
transition matrix, input transition matrix, measurement matrix, state vector,
measurement vector and input control vector, respectively. It is assumed that w is
the process noise vector, which has zero mean with a covariance matrix Q = EwwT ,
and v is the measurement noise vector, which also has zero mean with a covariance
matrix R = EvvT . In this work, since we consider an uncorrelated covariance
matrix, Q and R become diagonal matrices given by:

Q =
Qii = E

î
wwT

ï
Qij = 0

(4.2)

R =
Rii = E

î
vvT

ï
Rij = 0

(4.3)

where the dimension of the measurements is D and the linear dynamic targets
are tracked by N sensors. Both yk and vk in Equation 4.4 and Equation 4.5 are
augmented to establish the DN× 1 observation vector as follows:

yk =
5
(y1

k)T (y2
k)T

...
1
yN

k

2T
6T

(4.4)

vk =
5
(v1

k)T (v2
k)T

...
1
vN

k

2T
6T

(4.5)

4.4 Hard fusion
In the hard fusion case, in this work a simple averaging technique has been adopted.
The fusion has been performed computing the mean value of the joint position
coming from each one of the four cameras adopted.

ȳk = 1
N

A
NØ

i=1
yk

B
(4.6)

This method is quite straightforward, nevertheless as shown by Equation 4.6 it
presents as typical drawback the fact that it is not possible to take into account the

29

Sensor fusion

different behaviour and the working condition (e.g. self-occlusion, setup dependent
noise etc.) of all the sensors in used, that is the measurement noise vector v and
the process noise vector w are not considered in the fusion.
In this case, all the sensors that could not detect any joint were excluded from the
computation of the mean value.

4.5 Soft fusion
4.5.1 Measurements fusion
As explained in Section 4.2, we will enhance and then describe the measurement
fusion method, as we will directly combine sensor measurements to generate a
weighted fused measurement.
In measurement fusion, the N sensor models can be integrated into a single model,
as shown in [26]: the fused measurement covariance, Rk , fused measurement
matrix, Hk , and fused measurement vector, yk , are given as

R̄k =
A

NØ
i=1

(Ri
k)−1

B−1

(4.7)

H̄k = R̄k

A
NØ

i=1
(Ri

k)−1Hk

B
(4.8)

ȳk = R̄k

A
NØ

i=1
(Ri

k)−1yk

B
(4.9)

As depicted in Equation 4.9, the combined measurement vector yk is derived by
weighting each individual measurement vector. These weights are determined by
the inverse of each measurement covariance matrix, denoted as (Ri

k)−1. Therefore,
when the observation’s variance is substantial, its impact on the fused measurement
is relatively feeble. Conversely, if the observation exhibits lower variance, it can
exert a more substantial influence on the resulting fused value.

30

Sensor fusion

4.5.2 Joint continuity method
Equations 4.7-4.9 provide insight into the crucial aspect of appropriately combining
measurements, where the key consideration is establishing the covariance matrix
for each measurement. To accomplish this, in this work we followed the approach
introduced by [26] to fine-tunes the augmented measurement noise vector, denoted
as v in Equation 4.5 and assign the reliability of each measurement.

In order to assess the reliability of a tracked skeleton, we concentrate the evalua-
tion on the continuity of the human motion: discontinuous motion often results
from challenges in estimating the 3D position of a joint and falls into two distinct
categories.

In the first case, the joint may be moving rapidly, but the computed joint velocity,
based on both current and previous measurements, appears to be slow.
On the other hand, the joint may actually be moving slowly, but the calculated
joint velocity, derived from current and past measurements, appears to be fast.
To differentiate between these two cases we employ a straightforward voting mech-
anism and we assign high measurement noise values to the joints exhibiting discon-
tinuous motion, in such a way that unreliable values have minimal impact on the
fused measurement.

Algorithm I outlines our proposed approach for detecting these two types of
discontinuous joint motion and assigning high measurement noise values accordingly.
In this work, we do not explicitly estimate the velocity of each measurement;
instead, we implicitly calculate it by computing the distance between the current
observation and the previously estimated 3D joint positions using Kalman filtering.
If this distance exceeds the threshold denoted as θf , it constitutes a positive case,
supporting the hypothesis that the corresponding joint is moving fast. After that,
if the number of positive cases exceeds half of the sensors, we categorize the joint
as a fast movement joint; otherwise, it is considered a slow movement joint. Once
the joint type is determined, we estimate the reliability of measurements from each
sensor: if, for instance, a given joint is determined to be fast by the majority of the
sensors, we will assign a high measurement noise value to the sensors that instead
classified it as slow, and vice versa. The noise value assigned will be the maximum
value between an initial value vin and a term directly proportional to the velocity
of the joint.

31

Sensor fusion

Algorithm 1 Determining Reliability based on Continuity (yk, yk−1, vk)
▷ M: Number of joints to be tracked
▷ N: Number of sensors
▷ X[M][N]: M x N 2D array (non-fast joints:0, fast joints:1)
▷ d(y’, y”): Euclidian distance between y’ and y”
▷ θf : Threshold distance(cm) for fast & non-fast joint motion
▷ γ: Scaling factor

for m← 1 to M do
count← 0
for n← 1 to N do

if d(yn
k,m, yn

k−1,m) > θf then
X[m][n]← 1
count← count + 1

else
X[m][n]← 0

end if
end for
if count > N

2 then
for n← 1 to N do

if X[m][n] = 0 then
vn

k,m,x ← max(vk,m,x, γd(yn
k,m, yn

k−1,m))
vn

k,m,y ← max(vk,m,x, γd(yn
k,m, yn

k−1,m))
vn

k,m,z ← max(vk,m,x, γd(yn
k,m, yn

k−1,m))
end if

end for
else

for n← 1 to N do
if X[m][n] = 1 then

vn
k,m,x ← max(vk,m,x, γd(yn

k,m, yn
k−1,m))

vn
k,m,y ← max(vk,m,x, γd(yn

k,m, yn
k−1,m))

vn
k,m,z ← max(vk,m,x, γd(yn

k,m, yn
k−1,m))

end if
end for

end if
end for

32

Sensor fusion

4.5.3 Kalman filter
The Kalman filter, as clearly explained by [31], is a set of recursive mathematical
equations that provides an efficient computational way to estimate the state of a
dynamical system, often in the presence of noisy measurements. It was developed
by Rudolf E. Kalman in the 1960s and has found widespread use in various fields,
including control systems, robotics, economics, and more. The filter is very powerful
in several aspects: it supports estimations of past, present, and even future states,
and it can do so even when the precise nature of the modeled system is unknown.
The Kalman filter addresses the general problem of trying to estimate the state
x ∈ Rn of a discrete-time controlled process that is governed by the linear stochastic
differential equation:

xk = Axk−1 + Buk−1 + wk−1 (4.10)

with a measurement vector z ∈ Rm that is defined as:

zk = Hxk + vk (4.11)

The random variables wk and vk represent respectively the process and measurement
noise. They are assumed to be independent, white, and with normal probability
distributions:

p(w) ∼ N(0, Q)
p(v) ∼ N(0, R)

(4.12)

The Kalman Filter is highly beneficial in scenarios involving imprecise sensor data:
it functions through a continual process of refining its estimation by incorporating
a forecast of the system’s state and the latest measurements collected as time
progresses.
The filter operates through a feedback control mechanism, as shown in Figure 4.2,
where it estimates the state of a process at a particular time and then acquires
feedback in the form of measurements, which are often noisy.
Going into details on how the filter works, we can come up with four steps, that
will be therefore translated into Python code as instructed by [18]:

1. Initialization: the filter starts with an initial estimate of the system’s state
and an initial estimate of the error in that state.

2. Prediction: the filter predicts the next state of the system based on a mathe-
matical model of the system’s dynamics. This prediction includes an estimate
of how the state will evolve over time and how uncertain that prediction is.

33

Sensor fusion

3. Update: when new sensor measurements become available, the filter compares
them to the predicted state. It calculates the difference between the predicted
and measured values, known as the "measurement residual" or "innovation."
The Kalman Gain then determines how much the filter trusts the prediction
versus the measurement. Afterwards the filter updates its state estimate and
its estimate of the state’s uncertainty based on the measurement.

4. Repeat: prediction and update are repeated as new measurements arrive,
continually refining the state estimate based on the latest data. This recursive
process is what makes the Kalman Filter powerful for tracking dynamic systems
in real-time.

Figure 4.2: Kalman filter loop

The Kalman Filter operates under the assumption that the system’s dynamics
and measurement noise follow Gaussian distributions, typically having a normal
distribution. It efficiently merges predictive and measurement data to yield a state
estimate that minimizes the mean squared error between prediction and the true
state.

Going more into the mathematics shown in Figure 4.2, given the state-space model
described by Equation 4.1, the Kalman filter provides an unbiased and optimal
estimate of the state-vector in the sense of minimizing the estimate covariance. The
algorithm works in a two-step process, comprising prediction and update steps.

34

Sensor fusion

The prediction step of the Kalman filter is given by:

x̂k|k−1 = Akx̂k−1|k−1 + Bkuk (4.13)

Pk|k−1 = AkPk−1|k−1A
T
k + Qk (4.14)

where x̂k|k−1 is an a-posteriori state estimate at time k given observations up to
and including time k-1, and where Pk|k−1 denotes the covariance matrix at time k
given observations up to and including time k - 1.

The update step of the Kalman filter is given by:

x̂k|k = x̂k|k−1 + Kk

1
ȳk − H̄kx̂k|k−1

2
(4.15)

Pk|k = I −
1
KkH̄k

2
Pk|k−1 (4.16)

where Kk denotes the Kalman Gain Matrix and ȳk − H̄kx̂k|k−1 is called Innovation.
The Kalman Gain Matrix Kk and Innovation Matrix Sk are described by the
following equations:

Kk = Pk|k−1H̄
T
k S−1

k (4.17)

Sk = H̄kPk|k−1H̄
T
k + R̄k (4.18)

35

Sensor fusion

4.6 DBSCAN
In the merging process, a key aspect is to consider only in-lier candidates. This can
be done by noise filtering the joints based on their position: noisy candidates are
recognized by identifying the sensors that had issues recognizing the target joint.
In this work, following the work of [17], we used DBSCAN to identify out-liers: in
this way we were able to distinguish the noisy candidate based on the distance
from the in-lier candidates, as shown in Figure 4.3.

Figure 4.3: Skeleton merging target and noise rejection. Figure from [17]

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a
clustering algorithm used in machine learning and data mining. Unlike partitioning-
based clustering methods like k-means, where you need to specify ’k’ (the number
of clusters), DBSCAN is a density-based clustering method: it can identify clusters
of arbitrary shapes in data based on the data density distribution and can also
identify points that don’t belong to any cluster (i.e., noise).
On top of that, DBSCAN can identify clusters of varying shapes, whereas methods
like k-means typically identify spherical clusters.

36

Sensor fusion

The fundamental premise guiding its operation is that candidates within a common
cluster will tend to be positioned close to each other. Employing an approach
that clusters adjacent data based on data density, DBSCAN demonstrates strong
clustering capabilities, even when dealing with data of irregular shapes.

Additionally, DBSCAN possesses the ability to classify noisy data points during
the clustering process, thereby diminishing the degradation of the clustering qual-
ity that may result from the involvement of outliers. Its operation involves the
utilization of hyperparameters, specifically the ϵ parameter, defining the radius for
searching neighboring data, and the minimum count of neighboring data points,
denoted as Nc.

As a drawback, DBSCAN might not perform well when clusters have significantly
different densities: in this case tuning the hyperparameters ‘eps‘ and ‘min samples‘
can be difficult, especially for datasets with varying densities.

Decomposing the algorithm in steps, this is how DBSCAN works:

1. Parameter selection: the hyperparameters ϵ (radius of a neghborhood around
a data point) and Nc (minimum number of points) are selected.

2. Neighborhood computation: for each data point, the algorithm compute how
many points lie within an ϵ radius of it.

3. Cluster assignment:
- If a point has at least Nc points within its ϵ radius, it is labeled as a core
point. All points within the ϵ radius of a core point are part of the same
cluster.
- If a point is within the ϵ radius of a core point but does not have enough
points within its own ϵ radius, it’s labeled as a border point.
- Points that are neither core nor border points are considered noise.

4. Expansion: Starting from an arbitrary core point, DBSCAN explores and
expands the cluster by checking the neighboring points and determining if
they can be added to the same cluster. The process continues recursively until
the entire cluster is discovered.

5. Iterate: DBSCAN then proceeds to the next unvisited core point to start a
new cluster and continues the process until all points are either assigned to a
cluster or marked as noise.

The detailed operation procedure of DBSCAN is described in Algorithm 2 and
Algorithm 3.

37

Sensor fusion

Algorithm 2 DBSCAN
▷ X: Candidates set
▷ ϵ: Searching area
▷ Nc: Minimum number of neighboring data
▷ y: labels
▷ k: number of clusters

Initialize k = 0
for all x ∈ X do

yx ← UNASSIGNED
end for
for all x ∈ X do

if yx = UNASSIGNED then
Xx = SCAN(x, ϵ)
if |Xx| ≥ Nc then

k ← k + 1
yx ← k
for all z ∈ Xx do

if yz = UNASSIGNED then
yz ← k
Xz = SCAN(x, ϵ)
if |Xz| ≥ Nc then

Xx ← Xx
t

Xz

end if
end if

end for
else

yx ← NOISE
end if

end if
end for
return y

38

Sensor fusion

Algorithm 3 SCAN
▷ X: Data point
▷ ϵ: Searching area
▷ Xx: Neighbors

for all z ∈ X do
if Euclidiandistance(x, z) ≤ ϵ then

Xx ← Xx
t

z
end if

end for
return Xx

In this work, the algorithm defines the probability that the data in the cluster are
the same as the actual location of the target joint. In other words, it is assumed
that the more densely the positions of candidate joints recognized from different
cameras belong, the higher the probability that the data constituting the cluster is
the same as the actual joint coordinates.
Moreover, there are cases where the movement of the identified joint surpasses the
actual joint motion extent, or in some cases, no joint movement is recognized at all.
To address this issue, we assigned the position [0, 0, 0] to the untracked data point.
This point will subsequently be discarded either during the DBSCAN operation or
in the following stages within the sensor fusion process.

Following the application of DBSCAN, we identified the cluster with the highest
number of data points as the candidate group representing the target joint.
Among the hyperparameters of DBSCAN described above, Nc was fixed to 1 and ϵ
was fixed to 10 cm.

39

Chapter 5

Motion capture system

5.1 Introduction
A motion capture system, commonly referred to as "mocap" or "MoCap," represents
a technology employed to digitally record and apprehend the motions of objects
or living entities. It is primarily utilized for the analysis and recreation of these
movements in various applications, including computer-generated imagery (CGI),
animation, bio-mechanical research, sports analysis, and more. In recent years,
optical motion capture has gained significant prominence, especially in applications
related to body movement animation, as shown in [29]. Although commercially
available systems offer high-quality results, many of them come with prohibitive
costs.
More specifically, in sports research the need for motion analysis of the athlets
often arises, with applications like the one depicted by [6]. This process involves
the recording of human movements, with a particular focus on capturing the overall
body position (segments) of the subject.

In this work, an optoelectronic system has been used as groundtruth to evaluate
the four fusion methods described in Chapter 4.
Specifically, PrimeX13 cameras by OptiTrack have been used to collect the data,
processed then using the software Motive, again by OptiTrack.

40

Motion capture system

5.2 Mocap overview
To appreciate why motion capture stands out as one of the preferred choice for
animation and body movement analysis, a short overview of the methodologies
used by this technology is presented.
Broadly, Mocap can be categorized into Marker-based Motion Capture and Mark-
erless Motion Capture.

• Marker-based Motion Capture: these systems are generally divided into four
categories, as well explained by [28] and [29]. The main characteristics of each
of these categories are briefly described:

1. Acoustic Systems: a collection of sound emitters is strategically positioned
on the key joints of the actor, while sensitive receptors are placed in the
vicinity of the capture area. Subsequently, the emitters are activated
sequentially, emitting a range of frequencies detected by the receptors.
These frequencies are then used to calculate the positions of the emitters
in three-dimensional space. While these systems offer certain advantages,
they come with a set of challenges. These include difficulties in accurately
describing data at specific moments, limitations on movement due to
unwieldy cables, a restricted number of transmitters that can be used
simultaneously, susceptibility to external noise and interference, which
can impact the capture process. However, one notable benefit is that
these systems do not face issues related to obstruction or interference
from metallic objects.

2. Mechanical Systems: this system is comprised of sliders and potentiometers
strategically placed at desired joints, allowing for precise positioning
and orientation measurements at a high sampling rate. These devices
provide absolute measurements unaffected by magnetic fields or unwanted
reflections. However, they tend to be quite obstructive in nature.

3. Magnetic Systems: distinguished by their rapid data processing capabili-
ties, magnetic systems operate at a sampling rate of approximately 100
frames per second (fps). They employ a set of receptors positioned on
the actor’s joints to measure 3D position and orientation relative to an
emitter antenna. The emitter antenna emits a primary signal, with each
receptor requiring a connected cable. Noteworthy advantages include
low computational costs for data processing, freedom from obstruction
(leading to enhanced data accuracy), and cost-effective equipment. Never-
theless, a significant drawback is the substantial use of cables to connect
to the antenna, which limits the degree of freedom.

41

Motion capture system

4. Optical Systems: the actor wears specialized clothing adorned with reflec-
tors, often LEDs, positioned on key joints. Special cameras are strategi-
cally placed to track the movement of these reflectors as the actor moves.
These high-resolution cameras capture 2D coordinates from the reflectors
through a segmentation process. The collected 2D data from independent
cameras are then analyzed to generate the 3D coordinates of the reflectors.
The advantages of this approach include a high sampling rate, unrestricted
movement, and the ability to use numerous reflectors. Downsides encom-
pass the potential obstruction of one or more markers during the capture
process and the necessity of post-processing the camera-obtained data
through software, which reduces real-time interactivity.

• Markerless Motion Capture: this method eliminates the need for specialized
equipment to track an actor’s motion. Instead, motion is recorded directly
from a video data sequence using motion-based algorithms designed to track
and detect objects. This process is accomplished using software, bypassing
computational constraints and providing flexibility. For example, Microsoft’s
Kinect represents a low-cost motion capture system accessible to a broader
audience.

5.3 Optoelectronic systems
The utilization of optical motion tracking systems has seen a growing presence
across various domains, including the realms of entertainment, bio-mechanics, and
sports sciences.
These systems operate based on stereophotogrammetry: they generate three-
dimensional coordinates for points on an object undergoing measurements from
two or more photographic images captured from distinct points. These systems
typically comprise cameras, markers, and processing software.

According to [21], as the adoption of motion analysis has expanded, it’s worth
noting that besides the leading, high-priced systems like Vicon (Oxford Metrics,
UK), more affordable camera setups have emerged that were not initially designed
for scientific purposes but have found their way into scientific motion labs. One
notable example is OptiTrack (NaturalPoint, Corvallis, OR, USA), which originated
in animation motion capture and has since found applications in biomechanics. Its
primary uses now encompass virtual reality (VR), robotics, movement sciences,
and animations.
The proliferation of cost-effective systems also necessitates validation studies that
assess the accuracy of these new systems compared to the established gold standard
systems in scientific research. Furthermore, various technical aspects, such as

42

Motion capture system

the capture volume, the smallest detectable marker size, the frequency, and the
resolution of the motion capture system, may be crucial factors to consider when
evaluating their suitability for specific applications.

5.3.1 OptiTrack
In this work, cameras [4] and software [5] by OptiTrack have been utilized to collect
and process data.
OptiTrack is a brand of motion capture technology and systems developed and
manufactured by NaturalPoint, a company based in Corvallis, Oregon, USA.

It specializes in high-precision, camera-based motion capture systems: these sys-
tems typically use multiple high-speed cameras placed around a capture volume to
track the positions of reflective markers placed on the subject. The data collected
from these cameras is then processed to create highly accurate 3D motion data.

The cameras used, PrimeX13, is shown in Figure 5.1

Figure 5.1: PrimeX13 camera

OptiTrack systems are known for their accuracy and reliability, making them
popular in many professional settings that require precise motion capture data.
For this reason, the data captured by this system have been used as groundtruth
to evaluate the performance of the sensor fusion algorithms.

The software Motive by OptiTrack was used to calibrate the cameras, collect the
data and process it by labelling the markers detected in each frame.

43

Motion capture system

Figure 5.2: Motive software

44

Chapter 6

Human activity recognition

6.1 Introduction

Human Activity Recognition (HAR) is a field of study using machine learning (ML)
models to identify human movements from data provided by sensors such as optical
motion capture systems, inertial measurement units or force plates, to name a few.
Past research has demonstrated the effectiveness of machine learning techniques
in effectively classifying diverse activities from sensor data [22] [37] [34]. Various
types of sensors are employed in HAR systems, including digital cameras, depth
sensors, wearable sensors, and gyro sensors.
In the context of human assistive devices, this classification can serve as input to the
control system for adapting to the assistance ratio of active orthosis or exoskeleton
based on the type and intensity of the activity being performed. Alternatively, it
can function as a redundant system to verify whether the robot’s assistance aligns
with the user’s intent. In addition, HAR can be implemented in safety systems
to determine if the user is approaching a hazard or experiencing loss of stability
and respond accordingly. In these scenarios, human motion encompasses both
gestures and activities: gestures entail hand movements conveying messages to
either another person or a machine, while activities involve general body movements
such as walking, running, or playing tennis, among others.

The large amount of data from additional sensing tools in clinical settings can
overwhelm clinicians, requiring considerable time and expertise for analysis. To
address this issue, the work in [15] Hernandez et al. shows how data dimensionality
reduction techniques like Adversarial Autoencoder (AAE) can simplify time-series
signals into a 2D latent space, facilitating analysis and identifying signal similarities.
This data representation not only facilitates experts but also serves as a valuable
self-assessment tool for non-experts, such as patients in home rehabilitation or

45

Human activity recognition

athletes in training.

Accurate measurement and estimation of joint kinematics (joint angle) are crucial for
developing analysis tools in fields like rehabilitation, sports science, and ergonomics.
The gold standard for estimating joint angles is through motion capture systems,
but these are expensive and require a dedicated laboratory setting, limiting their
accessibility and usability.

Comprehending human activity encompasses both recognizing specific activities
and uncovering patterns across different activities such as sitting, standing, walking,
and stair climbing, based on input from wearable sensors such as inertial sensors
(i.e. IMUs) , or external sensors like motion sensors, cameras, and depth sensors.

Ground reaction force (GRF) sensors offer a valuable approach for Human Activity
Recognition (HAR), providing comprehensive data on user movement dynamics
[15]. Traditional force plates are costly and require trained personnel, but a cost-
effective alternative is the Wii Balance Board (WiiBB), equipped with pressure
sensors to estimate the center of pressure variation. The WiiBB, with its Bluetooth
connection, allows real-time data acquisition, is affordable, easy to set up, and
addresses privacy concerns. Numerous studies have demonstrated the WiiBB’s
reliability in various applications, including balance assessment, postural instability
analysis, weight-bearing distribution, and functional recovery of standing balance
in different populations.

Furthermore according to [14] by Hernandez et al., inertial measurement units
(IMUs) are now lightweight, affordable, and energy-efficient, providing a practical
alternative for joint angle measurement. They can be worn on the body or
integrated into clothing, allowing continuous monitoring in various environments.
With wireless data transmission, IMUs are suitable for real-time and remote
monitoring in sports science, clinical biomechanics, and human/robot interaction.
While IMUs don’t directly measure joint angles, they can estimate them using 3D
acceleration and angular velocity signals. However, challenges such as drift, noise,
and movement impact on the body make accurate pose estimation a complex task
with IMU systems.

In this work, we utilize data collected from RGB cameras and process it using the
methodologies outlined in preceding chapters, with a focus on detecting sports
movements and classifying various typical exercises related to both upper and lower
body. Applying these algorithms in sports science and healthcare can significantly
promote a healthy lifestyle, deter unhealthy habits, and facilitate condition tracking.
We will classify the exercises using the random forest algorithm for time series
in [8] and the multi-layer perceptron. An overview of the two classifiers is given
in Section 6.2 and Section 6.3 following the theoretical concepts covered by [20]
(Chapter 3 and Chapter 4) and by [9].

46

Human activity recognition

6.2 Random forest
Random Forest is a powerful ensemble machine learning algorithm used for both
classification and regression tasks and it is considered to be one of the most effective
and versatile algorithms in the field of machine learning. The term "ensemble" refers
to its ability to combine the predictions of multiple individual models (decision
trees) to make more accurate and robust predictions.
Random Forest in fact is built upon a collection of decision trees, which are simple
models that make decisions by splitting the data into subsets based on the values
of input features and then assigning a label or value to each leaf node.

6.2.1 Decision tree
Decision tree learning is an approach to approximate target functions with discrete
values. In this method, the acquired function is portrayed through a decision tree
structure. These learned trees can also be presented as collections of if-then rules,
enhancing their comprehensibility to humans.
The classification process in decision trees involves the traversal of instances through
the tree, starting from the root and ending at a leaf node, which provides the
final classification for the instance. Each node within the tree corresponds to a
test involving a specific attribute of the instance, and each branch stemming from
a node represents one of the potential attribute values. To classify an instance,
one commences at the root node, evaluates the attribute mentioned at that node,
and subsequently proceeds down the branch corresponding to the attribute value
exhibited by the example. This sequential procedure is iteratively applied as one
navigates through the sub-tree rooted at each new node encountered along the way.

In Figure 6.1 a binary classification of whether is it convenient to play football
or not based on the weather is shown. Here there are three independent variables
(outlook, humidity and wind) to determine the dependent variable (play football
or not).
Instances are described by a fixed set of attributes (e.g., Outlook) and their
values (e.g., sunny, overcast, rain). The most straightforward scenario for training
decision trees occurs when each attribute assumes a limited set of non-overlapping
values. The intended function produces distinct discrete result values. Decision
tree techniques can readily be expanded to grasp functions with more than just
two possible output values. A more substantial adaptation even allows the learning
of target functions that yield real numerical results, although the utilization of
decision trees in such cases is not as widespread.

47

Human activity recognition

Figure 6.1: Decision tree outlook example

6.2.2 ID3 algorithm

The majority of algorithms devised for acquiring decision trees are variations of a
fundamental procedure that employs a top-down, eager exploration of the potential
decision tree configurations. An illustration of this approach is found in the ID3
algorithm (Quinlan 1986) and its successor, C4.5 (Quinlan 1993).
ID3 learns decision trees by crafting them from the top down, beginning with the
question, "which attribute should serve as the root node’s test?" To resolve this
query, every attribute of the instances is scrutinized using a statistical evaluation
to evaluate its effectiveness in classifying the training examples independently.
The most suitable attribute is chosen and employed as the test criterion at the
root node of the tree. Subsequently, a descendant node is generated for each
feasible value of this attribute, and the training examples are directed to the
appropriate descendant node (i.e., along the branch corresponding to the example’s
attribute value). This entire procedure is then reiterated using the training examples
associated with each descendant node to determine the optimal attribute for testing
at that specific point in the tree.

6.2.3 Entropy and information gain

A central point in the ID3 algorithm is to measure how well a given attribute
separates the training examples according to their target classification.
For a general discrete distribution of the output values p1, ..., pm with pi ≥ 0 andq
i

pi = 1, the entropy is defined as

48

Human activity recognition

H = −
mØ

i=1
pilog2pi (6.1)

When working with a data set, denoted as ’S,’ the concept of ’Entropy’ within the
range of [0, log2 m] serves as an indicator of the degree of impurity present in the
samples. A low entropy value means that the elements in S tend to predominantly
belong to a single class. For instance, if all elements are labeled as "YES," the
entropy is reduced to zero.
On the other hand, a high entropy value suggests that the elements in S are mixed.
For instance, when the elements are divided equally between "YES" and "NO," the
entropy is at its maximum, which is one.
With entropy as a means to evaluate the impurity within a set of training examples,
we can now establish a metric for assessing the effectiveness of an attribute in
classifying the training data. This metric is referred to as "Information Gain" (IG),
and it quantifies the expected reduction in entropy resulting from the partitioning
of examples based on a specific attribute.

More precisely, the information gain IG(y,A) of attribute A relative to a collection
S is defined as

IG(y, A) = H(y)−
Ø

v∈values(A)

|Sv|
|S|

H(yv) (6.2)

where values(A) is the set of all possible values for attribute A, and Sv is the subset
of S for which attribute A has value v.

The previous formula is related to the conditional entropy of y given A

H(y|A) =
Ø

v∈values(A)
Prob {A = v}H(y|A = v)

H(y|A = v) = −
mØ

i=1
Prob {y = yi|A = v} log2Prob {y = yi|A = v}

(6.3)

Given those information, the information gain is thus defined as:

IG(y, A) = H(y)−H(y|A) (6.4)

Therefore, IG is the expected reduction in entropy caused by knowing the value of
attribute A.

49

Human activity recognition

6.2.4 Ensamble methods
Plain DT may overfit and have high variance on the validation data: what it
can be done to reduce it is averaging over different models (when predictions are
independent):

var(x̄) = var(x)
N

(6.5)

The challenge associated with generating multiple models for subsequent averaging
lies in the limitation of having just one training data set. To overcome this
constraint, we must introduce additional data sets.
In the case of Random Forest, a methodology known as "Bootstrap Aggregating"
or "Bagging" comes into play. This technique entails the individual training of
multiple decision trees on randomly selected subsets of the data, followed by the
merging of their predictions. This approach effectively mitigates issues related to
high variance and overfitting that are commonly encountered when working with
decision trees, as shown in Figure 6.2.

Figure 6.2: Random forest algorithm

50

Human activity recognition

For classification tasks, each decision tree in the Random Forest makes a prediction,
and the final prediction is determined by a majority vote or averaging among the
trees.
The "random" aspect in Random Forest comes from two sources:

• Bootstrapped Sampling: when creating each individual decision tree in the
forest, a random subset of the training data (with replacement) is used. This
means that each tree is trained on a slightly different data set.

• Feature Randomness: at each node of a decision tree, a random subset of
features (input variables) is considered for splitting the data. This helps to
decorrelate the trees and make the ensemble more robust.

The ensemble nature of Random Forest provides several advantages, including
improved accuracy, robustness to noisy data, and the ability to handle high-
dimensional feature spaces. It’s also less prone to overfitting compared to a single
decision tree.

51

Human activity recognition

6.3 Multi-layer perceptron
A Multi-layer perceptron (MLP) is a type of artificial neural network (ANN) that
is widely used in machine learning for various tasks, including classification and
regression. In this work the MLP architecture has been used as classifier, so only
this task will be taken into account. As MLP is the most basic Neural Networks
architecture nowadays, a brief overview of how the classifier works will be given.
Neural networks are loosely inspired on some early theories of human neuron
functionality. Our brain has about 10e11 neurons, each of which communicates
with (is connected to) about 10e4 other neurons.

Figure 6.3: Neurons biological similitude

MLP is a supervised learning algorithm with labeled training data (x(i), y(i)), where
x(i) is the i-th input and y(i) is the corresponding response.
In classical Neural Networks each neuron is a linear combination of input features ,
followed by a non-linear activation function, essential for generalization. It gives a
way of defining a complex, non-linear form hypotheses hW,b(x), with parameters
W, b that we can fit to our data.
The key components of an MLP neural network that will be discussed in the
following sections are:

• Input Layer : the input layer consists of one or more neurons (nodes) that
receive the initial input data. Each neuron in the input layer corresponds to a
feature or attribute of the input data.

• Hidden Layers: between the input and output layers, there can be one or more

52

Human activity recognition

hidden layers. These hidden layers contain neurons that perform transforma-
tions on the input data using weighted connections and activation functions.

• Output Layer : the output layer produces the final result of the network’s
computation. The number of neurons in the output layer depends on the
specific task. For example, in a binary classification problem, there might be
one output neuron that indicates the probability of belonging to one of the
two classes. In a multi-class classification problem, there would be one output
neuron for each class.

• Weights: each connection between neurons in adjacent layers is associated
with a weight. These weights are learned during the training process and
determine the strength of the connection between neurons. Learning involves
adjusting these weights to minimize the error in the network’s predictions.

• Activation Functions: each neuron in the hidden layers and sometimes in the
output layer is associated with an activation function. Activation functions
introduce non-linearity into the network, allowing it to model complex relation-
ships in the data. Common activation functions include sigmoid, hyperbolic
tangent (tanh), and rectified linear unit (ReLU).

6.3.1 Single neuron
Considering the case of a single neuron shown in Figure 6.4, it takes as input
x ∈ Rn and a "+1" intercept term and outputs

y = hW,b(x) = f(b + wT x) = f(b +
nØ

i=1
wixi) (6.6)

where f : R→ R is called the activation function.

Figure 6.4: Single neuron

The linear combination part is computationally simple, but it contains many
coefficients, hence multiplications and additions (y = wx + b).

53

Human activity recognition

The non-linear (i.e. activation function) is one of several non-linear functions and
is essential for generalization. Some typical activation functions are:

• Sigmoid

• Hard threshold

• Hyperbolic tangent

• ReLu

• Soft ReLu

In order to learn any function, it is sufficient to have one hidden layer of neurons.
More layers help speed up the training by reducing the overall network size.

6.3.2 Multi-layer architecture
A neural network is formed by hooking together many simple neurons.
The "+1" inputs are called bias units, and correspond to the intercept term.
The leftmost layer is called the input layer and the rightmost layer the output layer,
while the middle layer is called hidden layer. A typical architecture is shown in
Figure 6.5.

Figure 6.5: Artificial Neural Network architecture

We let nl denote the number of layers (i.e. the depth of the neural network).
Our neural network has parameters (W, b) = (W (1), b(1), W (2), b(2)), where we write
W

(l)
ij to denote the parameter (or weight) associated with the connection between

unit j in layer l and unit i in layer l+1. Also b
(l)
i is the bias associated with unit i

in layer l+1.

54

Human activity recognition

We also let sl denote the number of nodes in layer l. This is the number of features
of layer l.
We will write a

(l)
i to denote the activation of unit i in layer l.

We shall also let z
(l)
i denote the total weighted sum of inputs to unit i in layer l,

including the bias term (e.g. z
(2)
i =

nq
j=1

W
(1
ij xj + b

(1)
i)) so that a

(l)
i = f(z(l)

i).

In general, for l = 1, ..., nl − 1 let W l ∈ Rsl+1,sl , bl ∈ Rsl+1 denote the parameters
of layer l+1. We can compute activations at any layer via a non-linear recursion,
initialized with a(1) = x: for l = 1, ..., nl − 1:

z(l+1) = W (l)a(l) + b(l)

a(l+1) = f(z(l+1))
(6.7)

The equations provided above outline a typical feedforward neural network (FFNN).
This neural network is characterized by its connectivity structure, which lacks any
directed loops or cyclic connections. The FFNN has the remarkable capability to
effectively approximate a wide range of functions with great precision.

In the context of neural networks, it’s crucial that the network’s output unambigu-
ously signifies the correct output class. However, the outputs of the neurons in the
final layer may not necessarily have uniform magnitudes or weights. To address
this concern, the SoftMax function is employed as the output layer in scenarios
involving classification problems.

hW,b(x)i = softmax(z(nl))i = exp(z(nl)
i)q

j
exp(z(nl)

j)
(6.8)

where z
(nl)
i is the i-th element of z(nl) = W (nl)a(nl) + b(nl) In this way we can have a

vector of arbitrary values (activations from the last layer) and give back as output
a vector of values whose sum is always 1.

Given a network topology and parameters W,b we can measure the mismatch, or
error, between a training example (x,y) and the network response hW,b(x):

eW,b(x, y) = hW,b(x)− y (6.9)

55

Human activity recognition

6.3.3 Training

Figure 6.6: FFNN training

Training a FFNN is about finding values of the network parameters (W,b) so to
make the training error J(W,b) small (cross-entropy for classifier). The goal of
training is to minimize J(W,b) as a function of W and b. To train our neural
network we will initialize each parameter Wij and each bi to a small random value
near zero and then apply an optimization algorithm, such as stochastic gradient
descent. One iteration of gradient descent updates the parameters W,b as follows:

W
(l)
ij ← W

(l)
ij − α

∂J(X, b

∂W
(l)
ij

b
(l)
i ← b

(l)
i − α

∂J(X, b

∂b
(l)
i

(6.10)

where α is called the learning rate (a too low learning rate may result in slow
convergence, a too high learning rate may lead to unstable behaviors).

An efficient recursive method for computing the above derivatives is called the back
propagation algorithm, which is essentially based on the chain rule for computing
derivatives. The algorithm works as follow:

1. Initialization: initialize the linear part of the neurons with random weights

2. Propagate: after presenting an input data propagate to the output and compute
the prediction error.

3. Adjust: adjust weights based on estimated impact on error. Use sensitivity i.e.
partial derivative of output with respect to the internal and primary inputs to
propagate error backwards.

4. Repeat: repeat for all the of data in the training set. For efficiency, it can be
mini-batched (propagate N input patterns, back-propagate the cumulative
error and update the weights).

56

Human activity recognition

6.4 Evaluation metrics
In classification, the simplest way to measure the performance is the accuracy,
which is defined as:

Accuracy = number of correct predictions
total number of predictions (6.11)

However, accuracy doesn’t tells everything about the performance of the classi-
fication. For instance, for a binary classification (1 or 0), there may be the case
where mistakenly classify 1 as 0 can have way worst consequences than mistakenly
classify 0 as 1. Moreover, the population over which we are classifying may be
highly unbalanced, resulting in very poor evaluation when using only the accuracy.

For these reasons, we can distinguish between Type I and Type II errors:
- Type I (False Positives, FP): individuals that are classified as positive, while they
are negative in reality.
- Type II (False Negatives, FN): individuals that are classified as negative, while
they are positive in reality.

Given this distinction, we can define:

• Precision (PPV): the probability that the true state is positive, given that the
sample is classified as positive.

p = Prob {x = 1|y = 1} (6.12)

• Sensitivity (TPR, or recall): the probability that the classifier returns positive,
given that the sample is positive in reality.

r = Prob {y = 1|x = 1} (6.13)

• Specificity (TNR): the probability that the classifier returns negative, given
that the sample is negative in reality.

s = Prob {y = 0|x = 0} (6.14)

These main classification performance criteria can be estimated more easily by
constructing the so called "Confusion Matrix", a 2x2 matrix that suitably arranges
the number of samples that fall in the four possibilities (TP, FP, FN, TN).

57

Human activity recognition

Figure 6.7: Confusion matrix

Using this matrix, we can thus define:

• Precision p: the number of TP divided by the number of all classified positive
results.

p = Prob {x = 1|y = 1} = TP

TP + FP
(6.15)

• Recall r: the number of TP divided by the number of total actual positives.

r = Prob {y = 1|x = 1} = TP

TP + FN
(6.16)

• Specificity s : the number of TN divided by the number of total actual
negatives.

s = Prob {y = 0|x = 0} = TN

FP + TN
(6.17)

In this work, since we will classify exercises based on the joint angles time-series,
a confusion matrix will be built and the accuracy will be considered as perfor-
mance metric, since we don’t have any substantial difference within the wrong
classifications.

58

Chapter 7

Experimental setup and
results

7.1 Sensor fusion and Mocap

7.1.1 Sensor fusion setup

The parameters used in this work were threshold distance (cm) for dividing fast
and non-fast measurement θf and scaling factor γ in Algorithm I, set to 3 cm and
3.0 respectively. While the input transition matrix B was considered to be equal to
0, the state transition matrix A, measurement matrix H, process noise matrix Q
and measurement noise matrix R, were defined as follows

A =



1 0 0 δt 0 0
0 1 0 0 δt 0
0 0 1 0 0 δt
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(7.1)

where δt = 30ms

H =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 (7.2)

59

Experimental setup and results

Q =



0.001 0 0 0 0 0
0 0.001 0 0 0 0
0 0 0.001 0 0 0
0 0 0 0.1 0 0
0 0 0 0 0.1 0
0 0 0 0 0 0.1


(7.3)

R =

v 0 0
0 v 0
0 0 v

 (7.4)

The value of v was set to vin = 0.005 when the cameras were coherent identifying
the joint as fast or slow and and vhigh = 1 when the joint was not detected by the
camera. Any other intermediate values were set following Algorithm I.

The fused skeletons resulting from the above methods are shown in Figure 7.1.

60

Experimental setup and results

Figure 7.1: Fused skeletons: Mean; Kalman filter; Mean + DBSCAN;
Kalman filter + DBSCAN

61

Experimental setup and results

7.1.2 Mocap setup

In this study, the motion capture system has been used as a groundtruth to evaluate
the accuracy of the methods illustrated in Chapter 4. In order to do that, the
following six exercises illustrated before have been performed by the subject and
data from motion capture system and cameras have been acquired simultaneously.
The position of the markers have been chosen in order to respect the human phys-
iognomy following the guidelines provided by [32] and [33] and make the comparison
with the 33 landmarks acquired using the MediaPipe framework in Chapter 3 and
fused in Chapter 4 as reliable as possible. Then, cutting and synchronizing the
data was essential to compute the mean squared error between the points in the
proper way.

A set of 40 markers was applied as shown in Figure 7.2 in such way that the
corresponding landmark position could be easily computed. For instance, the point
corresponding to the elbow landmark was computed as the mean value of the HME
and HLE markers. The same reasoning was used for all the other markers.
The configuration of the marker placed on the subject is shown in Figure 7.3.

Figure 7.2: Markers set

62

Experimental setup and results

((a)) Front view ((b)) Raw view

((c)) Side view

Figure 7.3: Markers configuration

63

Experimental setup and results

7.1.3 Experimental results
The fusion methods to be evaluated are:

• Mean value

• Kalman filter

• Mean value + DBSCAN

• Kalman filter + DBSCAN

We compared the motion capture system with both the four different fusion method
and also with the individual cameras.

The results demonstrates a significant reduction in errors and inaccuracies associated
with single sensors, resulting in more reliable and precise measurements. When
using individual cameras, the error between the Mocap system and detected joint
positions ranged from 10 cm to 25 cm. However, by combining joint positions,
these errors decreased to a maximum of 10 cm with a variance of . Notably, the
average error was generally smaller (around 5 cm) for joints like elbows, shoulders,
hips, and knees, which are crucial for human activity recognition, particularly in
sports science. For instance, while in exercises like the dumbbell shoulder press
we can notice a smaller variance of the errors, around 3 cm, in other exercises we
could have a larger variance. This type of problem though must be interpreted:
when considering lower body exercises like the squat, which has larger variance,
particular emphasis must be given to the detection of the position of the hips and
the knees. In our case these two joints were the ones that gave the smallest error,
while the biggest ones, right and left wrist and hand, are way less significant.
This improvement in accuracy will be advantageous in the next phase of the study.

The results of the comparison of each one of the six exercises introduced in Chapter
4 are shown in Figure 7.4 - 7.9.

64

Experimental setup and results

Figure 7.4: Dumbbell shoulder press comparison

Figure 7.5: Hip adduction left comparison

65

Experimental setup and results

Figure 7.6: Hip adduction right comparison

Figure 7.7: Lunge step up left comparison

66

Experimental setup and results

Figure 7.8: Lunge step up right comparison

Figure 7.9: Squat comparison

67

Experimental setup and results

7.2 Human activity recognition
7.2.1 Data set: exercises
The data set used to train, validate and test the human activity classifier were
built collecting videos of 24 exercises, performed by 4 subjects. We used 2 subjects
to train the model, 1 subject to validate, and 1 subject to test it, using a nested
K-fold cross-validation in order to train the models with different partecipant and
test them with completely unknown data.

In each video the subject performed 10 repetition of each exercise. The videos have
been cut to extract each one of the 10 repetition and re-sampled to 50 frames per
rep, resulting in a total of 960 elements composing the data set. We considered the
single repetition as feature for our data set and not the whole video: in this way
it was possible to eliminate unwanted variability in the features such as different
rest time between repetitions and biases due to the characteristics of the different
subjects and instead we were able to capture variabilities on the single rep, allowing
to make the classifier more efficient. Moreover we overcome possible issues like
excessively long signals and the bound of testing the model with a signal that had
to be the same length of the training data (10 reps).

The exercises performed by the subjects were the following:

• Calf raise

• Dumbbell bend over raise

• Dumbbell bend over row

• Dumbbell biceps curl

• Dumbbell front raise

• Dumbbell lateral raise

• Dumbbell shoulder press

• Front kick left

• Front kick right

• Hip adduction left

• Hip adduction right

• Lunge left

68

Experimental setup and results

• Lunge right

• Lunge side left

• Lunge side right

• Lunge step-up left

• Lunge step-up right

• Plank jump-in

• Push-up knee

• Shoulder tap left

• Shoulder tap right

• Squat

• Thigh tap left

• Thigh tap right

7.2.2 Data set: joint angles
The key part of the method is the selection of features to create feature vectors.
Using the sensor fusion algorithm introduced in Chapter 4, it was possible to extract
from each video the position in the 3D space of 33 joints of the human body (e.g.
the MediaPipe landmarks).
The work of Uddin and his team demonstrates that the measurement of angles
between body parts, such as shoulders, elbows, knees, and the pelvic region,
furnishes valuable data for the recognition of 3D human activities [30]. For this
reason we did not consider the raw 3D position of the joints to build our data
set, but we computed the joint angles, as shown in Figure 7.10, only for the most
representative joints of the human body out of the 33 detected in the previous
chapters. We in fact computed the joint angles of:

• Wrists

• Elbows

• Shoulders

• Hips

• Knees

69

Experimental setup and results

• Ankles

Moreover, when considering the shoulders and the hips, a particular focus must be
given to the fact the these joints, rather then elbows and knees, are spherical joints.
For this reason the computation of the joint angles has been performed considering
three different planes of motion.

Figure 7.10: Knee angle computation

The value of the angle between two different joints j1 and j2 can be computed as
done by [37] by estimating the locations of the two joints with respect to a reference
joint r in the 3D space, as follows

aj1,j2 = cos−1(rj⃗1ṙj⃗2

(||rj1||)(̇||rj2||)
) (7.5)

In this equation, rj⃗1 represents the distance between joint j1 and the reference
joint r in 3D space. Similarly, rj⃗2 represents the distance between joint j1 and the
reference joint r in 3D space. Lastly,||rj1||and ||rj2|| represent the lengths of these
vectors, respectively.

The behaviour of the left knee during 10 reps of squats is shown in Figure 7.11
clearly shows the behaviour of the left knee angle of the subject performing 10 reps
of squats, computed using the above described method. The variation of the angles
of each joint during the exercises will be used as feature vectors.

70

Experimental setup and results

Figure 7.11: Knee angle variation during squat

7.2.3 Experimental results
The two models have been built using the Scikit Learn library in Python. The
accuracy of the classification has been evaluated using different hyperparameters for
the two models, in order to pick the one that could achieve the best performances.
In particular, the random forest model has been trained keeping n_estimators =
100 and looping for max_depth = [1, 2, 3, 4, 5, 10, 15, 20, 30]. Selecting the best
hyperparameter, which was 10, we then trained keeping max_depth = 10 and
looping for n_estimators = [10, 20, 30, 50, 100, 150, 200, 300, 500], finding the
best results for n_estimators = 200. Regarding the MLP model, we trained and
validated the model combining the following parameters:

• hidden_layer_sizes: [(64, 64, 64), (64, 128, 256), (256, 128, 64)]

• activation: [’relu’, ’tanh’, ’logistic’]

• learning_rate: [0.0005, 0.001, 0.01]

Therefore, tuning the parameters of the classifiers we achieved the best performances
using:

• Random Forest:

71

Experimental setup and results

– max_depth = 10
– n_estimators = 200

• Multi-layer Perceptron:

– hidden_layer_sizes = (64, 128, 256)
– activation = hyperbolic tangent
– learning_rate = 0.0005

The data set used to train, validate and test the human activity classifier were
built using 24 exercises, performed by 4 subjects. We used 2 subjects to train
the model, 1 subject to validate, and 1 subject to test it, using a nested K-fold
cross-validation in order to train the models with different participant and test
them with completely unknown data.

Testing the models on each of the four participant, we obtained the results shown
in Table 7.1.

Classifier Participant Accuracy Mean value Standard deviation

Random forest

1 82.08%

90.29% 5.1%2 94.54%
3 94.58%
4 89.96%

Multi-layer perceptron

1 79.58%

87.89% 9.87%2 97.48%
3 97.92%
4 76.57%

Table 7.1: Classification results

Although the MLP could achieve higher levels of accuracy with some partecipants,
the results show how for our data set the Random Forest classifier achieves generally
better results, with a mean value within the four participants 2.4 % higher than
the MLP, presenting also a smaller standard deviation.

The confusion matrices regarding the classification of each one of the four partici-
pants used as test data for both the classifier, shown in Figure 7.12 and Figure 7.13,
show how almost all the exercises can be well classified within the four participants
in an homogeneous way.
The only exception are made for "Lunge Side Left" and "Lunge Side Right" of
participant 1 for which both classifiers showed some difficulties, and "Lunge Step

72

Experimental setup and results

Up Left" and "Lunge Step Up Right" of participant 4, which the MLP classifier
could not correctly classify.

Figure 7.12: Random forest confusion matrices

73

Experimental setup and results

Figure 7.13: Multi-layer perceptron confusion matrices

7.3 Discussion and improvements
Human activity recognition based on 3D joint positions has to face challenges when
dealing with different viewpoints, since the complexity arises from the ambiguity
introduced by varying perspectives, making it challenging to consistently and
accurately estimate the true 3D pose of individuals.
MediaPipe primarily relies on 2D images, which may not capture the full depth
information accurately. This limitation can result in inaccuracies, especially in
complex poses or when the subject is partially occluded. Even after the camera
reference system rotation in fact, we can notice that even a simple T pose there
is still some misalignment, especially when dealing with back side views. More-
over, dependencies on camera calibration parameters further contribute to such
misalignment.
To address these challenges, the incorporation of a multi-view camera setup is
required. Additionally, the integration of Inertial Measurement Units (IMUs) offers

74

Experimental setup and results

a promising enhancement. IMUs capture accelerations and angular velocities,
providing information less susceptible to visual occlusions. Moreover, IMU data
can help in real-time adaptation to dynamic movements, improving the system’s
responsiveness to different human activities. By fusing IMU data with camera-based
information, the system gains increased robustness and becomes less sensitive to
changes in viewpoint, as inertial sensors capture motion independently of camera
perspective, enhancing the overall accuracy of 3D joint position estimation.
A hybrid approach that combines 2D and 3D pose estimation techniques emerges
as another viable strategy. Leveraging the strengths of both methods, this hybrid
model can compensate for individual limitations, providing a more comprehensive
understanding of human poses.

75

Chapter 8

Conclusion

Human Activity Recognition (HAR) uses pattern recognition and machine learn-
ing to classify human movements by linking physical actions to their 2D image
representations. Affordable mobile sensors, such as Microsoft Kinect, which tracks
skeletal joints, have become popular recently. This has resulted in new algo-
rithms for activity recognition and tools for sports analysis and home-based motion
rehabilitation.
In this work we exploited a sensor fusion algorithm to build a data set that has
been used to classify exercises based on joint angles.
After calibrating multiple RGB cameras (four, in our case), we computed their
relative position with respect to a fixed reference system, composed by ArUco
markers. The fact that the only sensors one needs to use the developed algorithms
are just RGB cameras was a key point, in order to build a system that could be
cheap and easily usable, specially when it comes to motion rehabilitation at home
without the help of a clinician.
To collect the data coming from the cameras, the MediaPipe framework was used
to extract the 3D positions of the fundamental joints to describe the motion of the
body.
Having the body pose with respect to the cameras reference system, we needed
to rotate the data coordinates into the same reference, so that we could fuse all
the data collected by the cameras. This was the key aspect of the research: the
primary goal of sensor fusion is to improve the accuracy and ensure redundancy and
robustness by combining data from multiple sensors. In case a sensor malfunctions
or gives incorrect data in fact, the system can continue operating by relying on the
other sensors. This enhances the system’s resilience in difficult conditions like low
visibility or bad weather, where a single sensor might not be dependable.

76

Conclusion

We exploited four different fusion techniques:

• Mean

• Kalman filter

• Mean + DBSCAN

• Kalman filter + DBSCAN

After that, in order to evaluate the precision of the different fusion techniques and
also the advantage of fusing the data instead of considering single sensor, we used
as groundtruth a motion capture system.
We tested our method collecting videos of a subject performing the 6 exercises
described in Chapter 4.
The results showed how it has been possible to reduce errors and inaccuracies
associated with the single sensor, leading to more reliable and precise measurements:
the error between the Mocap system and the detected joint position was between
10 cm and 20 cm using the cameras singularly. Instead, when using the fused joint
position, the errors decreased reaching a maximum of 10 cm. Moreover it can be
noted that the average error was generally smaller (around 5 cm) when considering
joints like elbows, shoulders, hips and knees and higher when considering the joints
related to wrists, hands, ankles and feet. This will be an advantage within the next
phase of the study, since when it comes to human activity recognition the joint
angles of the elbows, shoulders, hips and knees are the most representative of the
human motion, specially in sport science.
Regarding the comparison of the four fusion methods, there is a slight advantage
using the Kalman filter over the simple mean value, empowered by the fact that
the first can be more reliable in terms of robustness and noise rejection. When
adding the DBSCAN to preprocess the data, we can notice a slight degradation of
the performances within certain joints (more often wrists, hands, ankles, feet) and
exercises. More often instead the DBSCAN results in a great improvement of the
detection precision. We can conclude that with the use of the DBSCAN in this
work it is likely to have improvements, even though it cannot ensure the increasing
of the precision of the joint position.
We recorded videos of 4 subjects performing 10 repetitions of each one of the 24
exercises introduced in Chapter 7.
Each video has been divided into these 10 repetitions and then resampled to 50
frames per repetition, resulting in a data set of 960 elements. Rather than using the
entire video as a feature, only individual repetitions were considered. This approach
helps eliminate unwanted variations such as differing rest times and subject-specific
biases. It allows for more efficient classifier training and overcomes potential issues

77

Conclusion

like dealing with excessively long signals or requiring test signals to match the
training data length of 10 repetitions.
Using the Kalman filter + DBSCAN method, which was the one that generally
gave the best performance, we extracted the 3D joint position and computed the
joint angles corresponding to shoulders, elbows, hips and knees to build the data
set for the two classifiers exploited: a random forest and a multi-layer perceptron.
The classification results indicate that while the Multi-layer Perceptron (MLP)
achieved higher accuracy for certain participants, overall, the Random Forest
classifier performed better for this data set. On average, the Random Forest
classifier had a 2.4% higher accuracy than the MLP across four participants, and it
also exhibited less variability (smaller standard deviation) in its performance.

78

Bibliography

[1] Mediapipe documentation. Available at
https://developers.google.com/mediapipe/solutions/vision/poselandmarker.

[2] Opencv: Camera calibration documentation. Available at
https://docs.opencv.org/4.x/dc/dbb/tutorialpycalibration.html.

[3] Opencv: Detection of aruco markers. Available at
https://docs.opencv.org/4.x/d5/dae/tutorialarucodetection.html.

[4] Optitrack cameras. Available at https://optitrack.com/cameras/primex-13/.

[5] Optitrack motive software. Available at https://optitrack.com/software/.

[6] J.T. Andersen, A.M. McCarthy, J.A. Wills, J.T. Fuller, G.K. Lenton, and T.L.A.
Doyle. A markerless motion capture system can reliably determine peak trunk
flexion while squatting with and without a weighted vest. 2023.

[7] Valentin Bazarevsky, Ivan Grishchenko, Karthik Raveendran, Tyler Zhu, Fan Zhang,
and Matthias Grundmann. Blazepose: On-device real-time body pose tracking.
CoRR, abs/2006.10204, 2020.

[8] Houtao Deng, George Runger, Eugene Tuv, and Martyanov Vladimir. A time series
forest for classification and feature extraction. 2013.

[9] Giulia Fracastoro. Slides of the course of "optimization for machine learning",
politecnico di torino, 2022/2023.

[10] Q. Gan and C.J. Harris. Comparison of two measurement fusion methods for
kalman-filter-based multisensor data fusion. IEEE Transactions on Aerospace and
Electronic Systems, 37(1):273–279, 2001.

79

Bibliography

[11] Shubham Garg, Aman Saxena, and Richa Gupta. Yoga pose classification: a cnn
and mediapipe inspired deep learning approach for real-world application. Journal
of Ambient Intelligence and Humanized Computing, 06 2022.

[12] Shu Ting Goh, Ossama Abdelkhalik, and Seyed A. (Reza) Zekavat. A weighted
measurement fusion kalman filter implementation for uav navigation. Aerospace
Science and Technology, pages 315–323, 2012.

[13] Sumit Hazra, Acharya Aditya Pratap, Dattatreya Tripathy, and Anup Nandy.
Novel data fusion strategy for human gait analysis using multiple kinect sensors.
Biomedical Signal Processing and Control, 67, 2021.

[14] Vincent Hernandez, Davood Dadkhah, Vahid Babakeshizadeh, and Dana Kulić.
Lower body kinematics estimation from wearable sensors for walking and running:
A deep learning approach. Gait Posture, 83:185–193, 01 2021.

[15] Vincent Hernandez, Kulić Dana, and Gentiane Venture. Adversarial autoencoder
for visualization and classification of human activity: Application to a low-cost
commercial force plate. Journal of Biomechanics, 103:109684, 02 2020.

[16] Hustinawaty, Tavipia Rumambi, and Matrissya Hermita. Motion detection ap-
plication to measure straight leg raise rom using mediapipe pose. In 2022 4th
International Conference on Cybernetics and Intelligent System (ICORIS), pages
1–5. 2022.

[17] Sang hyub Lee, Deok-Won Lee, Kooksung Jun, Wonjun Lee, and Mun Sang Kim.
Markerless 3d skeleton tracking algorithm by merging multiple inaccurate skeleton
data from multiple rgb-d sensors. Sensors, 22, 2022.

[18] Mohamed Laaraiedh. Implementation of kalman filter with python language. 2009.

[19] Camillo Lugaresi, Jiuqiang Tang, Hadon Nash, Chris McClanahan, Esha Uboweja,
Michael Hays, Fan Zhang, Chuo-Ling Chang, Ming Yong, Juhyun Lee, Wan-Teh
Chang, Wei Hua, Manfred Georg, and Matthias Grundmann. Mediapipe: A
framework for perceiving and processing reality. In Third Workshop on Computer
Vision for AR/VR at IEEE Computer Vision and Pattern Recognition (CVPR)
2019, 2019.

[20] Tom M Mitchell. Machine learning, volume 1. McGraw-hill New York, 1997.

[21] Gergely Nagymáté and Rita Mária Kiss. Application of optitrack motion capture

80

Bibliography

systems in human movement analysis: A systematic literature review. 1970.

[22] Farhad Nazari, Darius Nahavandi, Navid Mohajer, and Abbas Khosravi. Human
activity recognition from knee angle using machine learning techniques. In 2021
IEEE International Conference on Systems, Man, and Cybernetics (SMC), pages
295–300. 2021.

[23] Byung-Seo Park, Woosuk Kim, Jin-Kyum Kim, Eui Seok Hwang, Dong-Wook
Kim, and Young-Ho Seo. 3d static point cloud registration by estimating temporal
human pose at multiview. Sensors, 22, 2022.

[24] Chenjian Ran and Zili Deng. Two correlated measurement fusion kalman filtering
algorithms based on orthogonal transformation and their functional equivalence.
In Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held
jointly with 2009 28th Chinese Control Conference, pages 2351–2356. 2009.

[25] J.A. Roecker and C.D. McGillem. Comparison of two-sensor tracking methods
based on state vector fusion and measurement fusion. IEEE Transactions on
Aerospace and Electronic Systems, 24(4):447–449, 1988.

[26] Moon S, Park Y, Ko DW, and Suh IH. Multiple kinect sensor fusion for human
skeleton tracking using kalman filtering. International Journal of Advanced Robotic
Systems, 2016.

[27] Kaustubh Sadekar and Satya Mallick. Available at
https://learnopencv.com/camera-calibration-using-opencv/.

[28] Antonio Carlos Sementille, Luís Escaramuzi Lourenço, José Remo Ferreira Brega,
and Ildeberto Rodello. A motion capture system using passive markers. In
Proceedings of the 2004 ACM SIGGRAPH International Conference on Virtual
Reality Continuum and Its Applications in Industry, page 440–447. Association for
Computing Machinery, 2004.

[29] Shubham Sharma, Shubhankar Verma, Mohit Kumar, and Lavanya Sharma. Use
of motion capture in 3d animation: Motion capture systems, challenges, and recent
trends. In 2019 International Conference on Machine Learning, Big Data, Cloud
and Parallel Computing (COMITCon), pages 289–294. 2019.

[30] Md. Zia Uddin, Nguyen Duc Thang, and Tae-Seong Kim. Human activity recog-
nition via 3-d joint angle features and hidden markov models. In 2010 IEEE
International Conference on Image Processing, pages 713–716. 2010.

81

Bibliography

[31] Greg Welch and Gary Bishop. An introduction to the kalman filter. The Python
Papers, 2006.

[32] Ge Wu, Sorin Siegler, Paul Allard, Chris Kirtley, Alberto Leardini, Dieter Rosen-
baum, Mike Whittle, Darryl D D’Lima, Luca Cristofolini, Hartmut Witte, Oskar
Schmid, and Ian Stokes. Isb recommendation on definitions of joint coordinate
system of various joints for the reporting of human joint motion—part i: ankle,
hip, and spine. Journal of Biomechanics, 35:543–548, 2002.

[33] Ge Wu, Frans C.T. van der Helm, H.E.J. Veeger, Mohsen Makhsous, Peter Van
Roy, Carolyn Anglin, Jochem Nagels, Andrew R. Karduna, Kevin McQuade,
Xuguang Wang, Frederick W. Werner, and Bryan Buchholz. Isb recommendation
on definitions of joint coordinate systems of various joints for the reporting of human
joint motion—part ii: shoulder, elbow, wrist and hand. Journal of Biomechanics,
38:981– 992, 2005.

[34] Santosh Kumar Yadav, Kamlesh Tiwari, Hari Mohan Pandey, and Shaik Ali Akbar.
Skeleton-based human activity recognition using convlstm and guided feature
learning. Soft computing, 26:877 – 890, 2022.

[35] Shuo Zhang, Wanmi Chen, Chen Chen, and Yang Liu. Human deep squat detection
method based on mediapipe combined with yolov5 network. In 2022 41st Chinese
Control Conference (CCC), pages 6404–6409. 2022.

[36] Zhengyou Zhang. A flexible new technique for camera calibration. Technical report,
Redmond, WA, USA, 1998.

[37] Ömer Faruk İnce, Ibrahim Furkan Ince, Mustafa Eren Yıldırım, Jang Sik Park,
Jong Kwan Song, and Byung Woo Yoon. Human activity recognition with analysis
of angles between skeletal joints using a rgb-depth sensor. ETRI journal, 42:981–
992, 2020.

82

	List of Tables
	List of Figures
	Introduction
	Motivations
	Chapters organization

	Camera calibration
	Overview
	World coordinate system
	Camera coordinate system
	Image coordinate system
	Checkerboard and OpenCV

	Body pose estimation
	Introduction
	Camera pose
	ArUco markers
	ArUco box pose estimation

	Body pose
	MediaPipe
	Landmarks rotation

	Sensor fusion
	Introduction
	Multi-sensor fusion techniques
	State-space model
	Hard fusion
	Soft fusion
	Measurements fusion
	Joint continuity method
	Kalman filter

	DBSCAN

	Motion capture system
	Introduction
	Mocap overview
	Optoelectronic systems
	OptiTrack

	Human activity recognition
	Introduction
	Random forest
	Decision tree
	ID3 algorithm
	Entropy and information gain
	Ensamble methods

	Multi-layer perceptron
	Single neuron
	Multi-layer architecture
	Training

	Evaluation metrics

	Experimental setup and results
	Sensor fusion and Mocap
	Sensor fusion setup
	Mocap setup
	Experimental results

	Human activity recognition
	Data set: exercises
	Data set: joint angles
	Experimental results

	Discussion and improvements

	Conclusion
	Bibliography

