
POLITECNICO DI TORINO

MASTER’s Degree in COMPUTER ENGINEERING

MASTER’s Degree Thesis

ETL Connectors

Supervisors

Prof. ANDREA BOTTINO

Mr. DAVIDE DAL FARRA

Candidate

SEYEDALI MOUSAVI

December 2023

Summary

The data ingestion and transformation is an essential element of the data processing
pipeline. It mainly involves the Client which has to provide a way to communi-
cate the information back to Evo, usually using some data exchange format and,
eventually, uploading those resources to Evo premises. The inefficiency of this
method sees both the Client and Evo in dealing with a number of operations: 1.
data exchange protocol agreement 2.Client data extraction and transformation
(according to the above DEP) 3. Evo data transformation and ingestion
These steps highlights on a first sight the presence of two ETL processes, one
on Client premises and the other at Evo, leading to a huge waste of resources
(development man/hours) and, most important, opening a number of issues and
critical elements like the need to maintain multiple data ingestion pipelines, usu-
ally one per each client. The project aims to reduce the effort required at client
onboarding, leveraging the Client from developing a custom ETL solution only to
speak with our systems and Evo from implementing and maintaining a custom
data pipeline for every client. In order to achieve such goal the idea is to retrieve
data from client premises and ship the information to Evo either in real-time or
on a batch. The tool used to retrieve the data is called connector and could be
either a developed standalone application, deployed on client premises or a remote
service interfacing with the client ERP through, for example, ODBC protocol and
acting as a middle-layer.
The SAP R/3 system (now S/4HANA) operates differently compared to SQL-based
systems like Oracle E-Business Suite and Oracle’s PeopleSoft systems. The major
differences include: The native data manipulation language is ABAP, which is a pro-
prietary SAP language. Table names are cryptic compared to those in SQL-based
ERP systems. In addition to database tables, SAP contains logical tables called
pool tables and cluster tables. These tables contain multiple physical tables and
must be managed differently from SQL-based tables. The SAP connector assists
you in managing all these issues. Furthermore, the SAP connector enables you to
comply with the administrative and security processes of the SAP environment.

ii

Acknowledgements

From the start, I feel compelled to articulate my heartfelt appreciation for
Professor Andrea Bottino. His guidance, like a torch in a dense forest, illuminated
the path of my research. Similarly, Davide dal Fara, not just my boss but a
mentor in the truest sense, has stood by my side, relentlessly shaping the contours
of this thesis. Their combined wisdom, insights, and tireless support form the very
bedrock of this work. It’s not just about the knowledge they imparted but the
challenges they threw my way, urging me to think deeper, reach higher, and tap
into reservoirs of potential I didn’t even know I had. To them, I owe an
immeasurable debt of gratitude.

Diving into personal realms, Fariba, my anchor and now my wife, deserves more
than just a thank you. Through thick and thin, her unwavering love and support
have been constants. In moments of doubt, her encouraging whispers; in triumphs,
her shared joy—both fueled my spirit. This thesis, while a culmination of
academic pursuits, mirrors the love we share and the dreams we’ve woven together.
Her reminders that there’s passion, heart, and soul behind the words I etch have
been invaluable. Fariba, thank you for being my beacon, my reminder of what
truly matters in the grand tapestry of life.

Lastly, a nod to the friends I’ve made at the Polytechnic of Turin University.
Their camaraderie, shared laughter, late-night debates, and unwavering support
have been integral to this journey. They’ve left indelible marks on my academic
voyage, and for that, I am eternally grateful.

For that reason, in the beginning, let me say thank you straight from my heart.
Professor Andrea Bottino. his direction served like a light to guide in a dark forest.
the path of my research. Likewise, Davide dal Fara, not only my boss but also
a friend of mine. the best in the sense of a mentor who has been with me all
along, fashioning them out in me. of this thesis. It is made up of their wisdoms,
thoughts, and never-ending aids. bedrock of this work. Knowledge is not the only

iii

thing we learned from them. The struggles they forced upon me; forcing me to dig
deeper, reach farther up, and touch. into stores of possible energies that I wasn’t
aware of! To them, I owe an immeasurable debt of gratitude. My anchor and wife,
who dives deep into her own private realm, deserves even more. than just a thank
you. Her steadfast love and devotion in good times and bad. have been constants.
Her inspiring words in times of doubt and her congratulatory voices in successes.
she kept on giving me the feeling she was happy about it, fueling my spirit even
more. This being a summary cummination thesis. our shared love and intertwined
dreams are reflected in academic endeavors. Her mentions that passion, heart,
and soul, not just words, go in what I etch. been invaluable. Fariba, thanks for
reminding me about what. In reality, life’s grand tapestry would be incomplete
without it. Finally, acknowledgement to my friends at the Polytechnic of Turin
University. Shared laughs, sleepless nights, intense conversations, solidarity. this
has made them an important part of this journey. I have marked indefectibly into
my academics. journey, and thank you forever.

iv

Table of Contents

List of Tables viii

List of Figures ix

Acronyms xii

1 Introduction 1
1.1 Pre-process ETL before the main ETL process 2
1.2 Thesis objective . 2
1.3 Utilized datasources . 3

1.3.1 AdventureWorks . 3
1.3.2 SalesForce RESTful API . 3

1.4 Thesis structure . 4

2 Literature Review 6

3 Technological architecture and design overview 10
3.1 Aims and objectives . 11

3.1.1 Reliability and stability . 11
3.1.2 Scheduling data ingestion 12
3.1.3 Security . 12
3.1.4 Concurrency control . 12
3.1.5 Compatibility . 12
3.1.6 Supporting various data sources 13
3.1.7 Noise detection . 13

3.2 Tools and Methodologies . 13
3.3 Expected outcomes . 14
3.4 Functional Requirements . 15
3.5 Non-Functional Requirements . 15

3.5.1 Functional Requirements Use Cases 16
3.6 Diagrams . 16

vi

4 Technological design and using and configuring the application 21
4.1 Application Environment . 21

4.1.1 Connector configuration . 25
4.2 Methods of data exporting . 28

4.2.1 Export from the results table 28
4.2.2 Export the data from the Activity tab 30
4.2.3 Tasks . 30
4.2.4 A usage of Salesforce RESTful API data source 32

4.3 An intro to the current ETL process and the Connector application
usage . 34
4.3.1 Data extraction . 34
4.3.2 Data transformation . 35
4.3.3 Data load . 38

5 Conclusions and potential future development 40

Bibliography 43

vii

List of Tables

3.1 Functional Requirements . 15
3.2 Non-Functional Requirements . 16
3.3 Use case 1, UC1 - User logins to the EVO portal 16
3.4 Use case 2, UC2 - User adds a connector 16
3.5 Use case 3, UC3 - User selects the connector and the data source . . 16
3.6 Use case 4, UC4 - User writes the query and waits for the data . . . 17
3.7 Use case 5, UC5 - User retrieves the data and exports to CSV file . 17
3.8 Use case 6, UC6 - User creates tasks for data extraction 17
3.9 Use case 7, UC7 - User monitors the ran query or the scheduled task 17
3.10 Use case 8, UC8 - User provides the connection string of the database 17
3.11 Use case 9, UC9 - User makes the connector available 17

viii

List of Figures

3.1 High level design . 14
3.2 Context Diagram . 18
3.3 Use case diagram . 18
3.4 Deployment Diagram . 19
3.5 Class Diagram . 19
3.6 Sequence Diagram . 20

4.1 Connector configuration 1 . 22
4.2 Connector configuration 2 . 23
4.3 Application startup page . 25
4.4 List of connectors . 25
4.5 Add a connector . 26
4.6 Add a connector - Generated key 26
4.7 Prepare the connector . 27
4.8 List of tables . 28
4.9 Query execution . 28
4.10 Query timer . 29
4.11 Small query result . 29
4.12 Big query result . 30
4.13 Big query result - CSV . 31
4.14 Big query elapsed time . 31
4.15 Activity queries . 32
4.16 New task definition . 33
4.17 Tasks list . 33
4.18 Salesforce configuration . 34
4.19 Salesforce API query . 34
4.20 Raw data . 35
4.21 Normal select example . 36
4.22 Transformed data extraction . 36
4.23 Transform pipeline 1 . 37
4.24 Transform pipeline 2 . 38

ix

4.25 Main ETL pipeline . 39

5.1 Time (hour) used for EVO pre-process 41

x

Acronyms

EVO
EVO Development s.r.l

CustomerAI
One of EVO’s products

ETL
Extract-Transform-Load

SAP
Systems, Applications Products in Data Processing

CSV
Comma Separated Values

FTP
File Transfer Protocol

YML
YAML Ain’t Markup Language

FR
Functional Requirements

NFR
Non-Functional Requirements

BPMN
Business Process Modeling Notation

xii

MDD
Model-driven development

RESTful
REpresentational State Transfer

API
Application Programming Interface

DW
Data Warehouse

OASIS
Organization for the Advancement of Structured Information Standards

ISO
International Organization for Standardization

IEC
International Electrotechnical Commission

SQL
SQL query language

FaaS
Function as a Service

ORM
Object Relational Mapping

CRM
Customer Relationship Management

XLSX
Microsoft Excel Spreadsheet

DTSX
Data Transformation Services Package XML File Format

SSIS
SQL Server Integration Services

xiii

Chapter 1

Introduction

The ETL process includes three steps, Extract, Transform, and Load. The ex-
traction of data from external data sources usually changes over time because of
their schema needs. This causes a lot of requests to change the extraction method
and the scripts demanding a lot of back and forth between the data consumer and
the data provider. Specially, in an already deployed workflow, a minor change
can cause the whole process to fail. These changes will affect the extraction flow
because the consumers of the data have their own data model which cannot be
changed on a daily routine. Thus, they need to reconfigure the process in order to
pass their validation rules and transform the data correctly. Arture Wojciechowski
has worked on a framework [1] to manage this process and make it automatic in a
way that an erroneous execution of an ETL workflow leads to the reparation of
the activities and starts interacting with the external data source. The reparation
of the ETL activities is handled by some algorithms that are accessed from the
API. Although the reparation process is semi-automatic this has been an approach
close to what we are going to do in this thesis. As mentioned earlier, the raw
data is usually provided by the data providers, here referring to EVO’s clients,
and those data should then be used in ETL of the client and then the extracted
data will be sent to EVO premises for the next ETL process. The flow then goes
through the pre-processing step in EVO premises the starts data ingestion. The
data ingestion then is done with SSIS scripts and at the end the data is loaded
into the data warehouses of EVO. Due to the frequent changes in the data before
the pre-processing step, a need for a tool that can improve this process arises.
Whether to make it fully automatic with a framework specially designed for that
flow or a semi-automatic framework, can reduce a lot of effort in the whole process.
Zineb El Akkaoui, Esteban Zimànyi in a paper about a Model-Driven Framework
for ETL Process Development [2] have introduced a framework for model-driven
development of Extract-Transform-Load (ETL) processes. The main focus is on
overcoming the challenge of ETL process development being time-consuming and

1

Introduction

complex, often due to the reliance on specific technologies from the outset. This
dependence limits the sharing and reuse of methodologies and best practices across
projects using different technologies. The paper proposes using vendor-independent
models for a unified design of ETL processes. The Business Process Modeling
Notation (BPMN) is utilized for this purpose, allowing for expressive and well-
known standard modeling. The proposed framework employs an MDD approach,
covering the entire development process, including the automatic generation of
vendor-specific code for various platforms.

1.1 Pre-process ETL before the main ETL pro-
cess

The problem related to continuous changes in the data flow can be partially handled
in a way that the flow is pre-processed and then passed to the main ETL process.
This phase is preconditioning the data for future ETL stages. Different types of data
are collected and go through a series of operations like cleaning and normalizing so
that they are consistent and correct before being processed. Removing duplicates,
data validation, and fixing non-aligned data are the operations that go under this
step. In addition filtering and separations using given criteria are performed at
the pre-processing step to make certain that appropriate data is only delivered to
the ETL main procedure. This step is important since it helps to drastically lower
the complications involved in the core ETL jobs by identifying the data issues as
well as format matters at the beginning. Through such pre-processing, the overall
efficiency and trustworthiness of the data integration process are improved such
that data put in the target system are of high quality and ready for analysis or
reporting.

1.2 Thesis objective
This thesis is meant to considerably reduce the effort associated with data exchange
between EVO and its customers. This thesis suggests that an ETL connector should
be put to the client’s premises to improve information effectiveness and reliability.
This approach addresses the existing issues involving intricate coordination and
lengthy tries at the time of changing data’s form. ETL connector plays a critical role
in automating most of the tasks related to manual processing and the subsequent
communications with respect to these tasks.

This includes a major saving in time for running the ETL connector from the
client premises, which is one of the biggest components of the solution. The

2

Introduction

automatic adaptation of the data format change in the connector minimizes the un-
necessary and time-consuming collaboration with the EVO customers. Automated
data flow guarantees quickness and reduces the chances of error or non-aligned data.
It eases the pre-processing and validation of data before the transformation that is
necessary to allow the data to reach EVO, therefore, making the data integration
process easier and effective.

ETL connector also boosts data security and integrity. In addition, the connector
provides another layer of security by concealing EVO’s data access credentials
and sharing minimal data with the system. Proper handling of such confidential
information should be consistent with good data management and compliance
principles. In general, the thesis is about making alterations in the existing data
exchange environment so that time gains and operational efficiency prevail at EVO
for their customers whereby all the data processing becomes very smooth.

1.3 Utilized datasources

1.3.1 AdventureWorks
AdventureWorks [3] is a widely known and complete sample database provided
by Microsoft, which we will used as the main data source in this thesis. We have
made AdventureWorks to be used with MySQL database environment to suit well
with the technical framework and research objectives that we have. This makes
the database suitable for our analysis because it has many business entities that
encompass the data of the customers, products, sales, and employees. Since it is
for real business and deep on that manner it makes it a good choice for us, and
that is what we need to show what happens in the real business and see the aim
of the provided tool in our research. The AdventureWorks in a MySQL setting is
also beneficial in terms of assessing the flexibility and efficiency of this dataset on
diverse database management systems.

1.3.2 SalesForce RESTful API
Salesforce’s REST API is a crucial tool for developers and businesses to interact
with Salesforce’s platform and access its data and functionality. The REST API
allows for the integration of Salesforce with other systems and the development of
custom applications that can interact with Salesforce. This is supported by, who
highlight that web APIs, including RESTful services like Salesforce’s REST API, are
widely used by major websites to provide access to their data and functionality (Li
et al., 2011) [4]. Additionally, ’s comparative analysis of data reading performance
from the Salesforce platform using different interfaces emphasizes the significance

3

Introduction

of the REST API in enabling efficient data retrieval from Salesforce (Rogalski,
2023) [5].

Furthermore, the REST API provided by Salesforce offers a versatile and flexible
means of interacting with the platform. It allows for the manipulation of Salesforce
data, such as creating, updating, and deleting records, as well as performing
various other operations. This flexibility is essential for developers seeking to build
applications that seamlessly integrate with Salesforce. The use of Salesforce’s Social
Studio social listening platform to download tweets from known IRA accounts, as
mentioned, demonstrates the practical application of the REST API in accessing
and utilizing data from Salesforce for research and analysis purposes (Melykh &
Korbut, 2020) [6].

Salesforce’s REST API plays a pivotal role in enabling seamless integration
with the Salesforce platform, facilitating data retrieval and manipulation, and
empowering developers to build custom applications that interact with Salesforce.
Its significance is underscored by its widespread use and practical applications in
diverse domains, ranging from data analysis to custom application development.

1.4 Thesis structure
This thesis demonstrates its topic objectives and reason for needing it in the
beginning. This section provides an overall review of the main needs and the
proposed solution.

So far, we discussed the existing problem of the frequent changes of data sources
and its inconsistency with EVO’s ETL. Also, the role of the ETL connector is
described.

In chapter two, we talk about the literature review. This section will review
relevant articles and other studies that have been written by other researchers
who have dealt with similar issues of the ETL process. It can help us understand
the context and see what solutions other researchers have proposed and what
frameworks they have introduced. Although, they do not completely share the
same problem the whole idea is common, making the ETL process maintenance
easier and more controllable.

Chapter three will focus on the technical structure and design perspective of
the thesis’ ETL connector. We will see how the application should be configured
on both EVO’s client’s side and EVO’s side. Meaning, how the connector should
be configured to give access to the data sources that EVO needs and also the
interface that enables EVO to extract data from those data sources. Moreover,
the technology used for this purpose will be described completely. We will see two
scenarios and compare the results when the process is done normally without the
provided tool and another once with the provided tool. These results are useful

4

Introduction

for understanding how the ETL connector can help to reduce the consumed time
between these two scenarios and also the effort for the whole process.

Finally, there will be some other possible ways to improve and extend the
functionality of the introduced tool for further improvement in future research that
will be discussed in chapter five. The idea is to demonstrate the potential abilities
that can be added to the ETL connector tool.

5

Chapter 2

Literature Review

Numerous publications have worked on the enhancement of ETL process to manage
the steps of extracting the data from a data warehouse with various tools, They aim
to simplify and streamline the maintenance process by providing algorithms and
software to make the process more controllable and easy to maintain. These efforts
focus on using advanced software solutions and methodologies to automate tasks
within the ETL pipeline, reduce manual manipulation of the data, and increase
efficiency. By integrating these enhancements, the ETL process becomes more agile
and adaptable, significantly reducing the complexities and overhead associated
with its maintenance. Consequently, these advancements represent a notable step
in optimizing data warehousing and data integration practices.

The maintenance of ETL processes is challenging due to the complexity of data
workflows and the evolving business requirements, which demand efficiency and
automation (Theodorou et al., 2014) [7]. ETL processes involve dealing with a large
amount of data extraction, transformation, and cleaning tasks, making their design,
development, and implementation non-trivial (Belo et al., 2014) [8]. Additionally,
the diversity of ETL users and developers, using different models and technologies,
contributes to the complexity of ETL frameworks and processes, making them hard
to analyze and harness (Theodorou et al., 2017) [9]. Furthermore, the traditional
ETL process is time-consuming, and faulty implementations in any of the ETL
steps can result in incorrect information in the target data warehouse, necessitating
thorough validation (Talib et al., 2016) [10].

To address the difficulties in maintaining ETL processes, various frameworks
for the automation of ETL processes have been proposed. For instance, a model-
driven framework for the development of ETL processes has been introduced to
overcome the drawbacks of traditional ETL processes (Akkaoui et al., 2011) [2]. This
framework focuses on model-driven development, which can enhance the automation
and efficiency of ETL processes. Moreover, a script-based automation ETL tool
has been proposed, which combines scripting and database tools to implement the

6

Literature Review

ETL processes, proving to be faster than traditional methods (Li et al., 2016) [11].
Additionally, a framework for the design of the Data Warehouse (DW) back-stage
and ETL processes has been presented, emphasizing the importance of dealing with
the specificities of information at low levels of granularity, including transformation
rules at the attribute level (Luján-Mora et al., 2004) [12].

Furthermore, some frameworks focus on testing and optimizing ETL processes.
For example, a testing framework has been proposed to automate the testing of data
quality at the ETL stage, ensuring the reliability of the ETL processes (Dakrory
et al., 2015) [13]. Additionally, some frameworks aim to optimize ETL processes
in data warehouses, providing algorithms to minimize the execution cost of ETL
workflows (Skoutas et al., 2009). These frameworks contribute to the automation
and optimization of ETL processes, addressing the challenges associated with their
maintenance.

Overall, the maintenance of ETL processes is difficult due to the complexity
of data workflows, evolving business requirements, and the diversity of users and
developers. However, various frameworks have been proposed to automate and
optimize ETL processes, aiming to enhance their efficiency and reliability.

Vijayendra, Nithin, Meiliu Lu in this article [14] have focused on the develop-
ment and implementation of a web-based Extract, Transform, and Load (ETL)
tool. The main aim of their project is to create a simple, web-based ETL tool
accessible to anyone with internet access, supplemented by an online tutorial on the
ETL process. This combination is designed to be an ideal self-paced, interactive
learning tool for beginners in ETL, allowing for the extraction of data from text
files or MySQL tables, integration, and loading into target MySQL tables with the
application of various transformations.

The motivation behind this project stems from the challenges faced by learners
interested in ETL tools, particularly the high cost and technical complexity of com-
mercial ETL tools, which are often not open-source or web-based. These challenges
make it difficult for small or medium-sized project developers, and students learning
data warehousing fundamentals, to access and use these tools. The developed
web-based ETL tool addresses these issues by being freely accessible, user-friendly,
and specifically designed for beginning ETL developers. This tool allows learners
to gain practical experience with ETL processes before delving into more complex
commercial tools, contributing to the ETL learning community by enhancing the
teaching and learning experience at a lower cost.

Another study by Fivien Nur Savitri [15], titled "Study of Localized Data Cleansing
Process for ETL Performance Improvement in Independent Datamart" focuses on
enhancing the efficiency of Extract-Transform-Load (ETL) processes in data ware-
housing through localized data cleansing. The article highlights that a significant

7

Literature Review

challenge in building data warehouses is the ETL process, which is complex due to
varied and heterogeneous data sources. The author proposes a concept of localized
data source cleansing. This approach involves identifying and addressing incon-
sistencies, non-formal expected existing data and duplicates in each data source’s
profile at the local level. The Localized data cleansing is expected to reduce and
streamline the ETL process, thereby improving its performance. The study includes
an investigation into the impact of localized versus non-localized heterogeneous data
cleansing. Based on this investigation, an automatic localized data cleansing and
integration system is defined. The proposed system involves cleansing processing
for each data source profile, executed at the transactional data source site, before
the data warehouse development stages. It is found that sequential execution
of the Automatic Data Cleansing process and the Data Integrator process can
significantly reduce the ETL processing workload in data warehouse development
stages. This reduction is especially notable for data lacking integrity constraints
and format-checking procedures. The research employs a bottom-up approach and
focuses on independent datamarts. It considers that automatic data cleansing is
highly required for unintegrated data and that data warehouse development is not
a prerequisite condition. he study concludes that separating the automatic data
cleansing system from the data warehouse development and performing it at the
source location can improve ETL performance. This is achieved by dividing the
ETL process workload among separate resources.

In a paper [16] from Alexander Albrecht, Best Practices and Strategies on best
practices for managing ETL processes efficiently have been introduced. This might
include strategies for data extraction, transformation techniques, and tips for effec-
tive data loading. The document likely addresses common challenges encountered in
ETL processes and proposes solutions or workarounds. This could cover issues like
data quality, integration of disparate data sources, and performance optimization.
Although they have not introduced any tools in that paper they have delved into
more advanced topics related to ETL, such as automation, scaling ETL processes,
dealing with complex data types, and integrating ETL processes with other data
management and analytics tools. The steps taken for the management of the
ETL process in this paper, in summary, are Match which identifies similar ETL
processes within a repository, aiding in managing large numbers of ETL processes.
Similarity could be based on functionality or data sources/targets. Determining a
suitable similarity measure is challenging due to the variety and heterogeneity of
ETL features. Also, Merging was another operator that combined multiple ETL
processes into one. It identifies common sub-processes and merges them, poten-
tially improving resource utilization, reducing data transmission, and enhancing
performance. Merged processes offer a unified view of information and reduce
overhead and maintenance. And then in Rewrite step is to restructure an ETL

8

Literature Review

process, optimizing it and fixing design flaws. This could include reordering stages
for consistency or efficiency.

Vangipuram Radhakrishna, in the paper "Automating ETL Process with Scripting"
[17] discusses improving ETL process data flows for better business investment
returns. It emphasizes the need for an enterprise-level scheduling solution that is
user-friendly and can handle heterogeneous environments, focusing on automating
the ETL process to optimize or enhance it. The paper proposes the use of scripting
technologies for automating ETL processes, reducing manual effort, and potentially
leading to the development of ETL tools with command-based interfaces.

The primary focus is on automating ETL processes using scripting technologies.
This approach aims to reduce the manual effort required in running ETL processes
and to handle them more efficiently. The paper suggests using scripting technologies
to enable end-to-end processing automation of ETL tools. This could lead to the
creation of more effective ETL tools that support command-based or script-based
automation. It discusses the challenges in data warehouse operations, which
involve handling large volumes of data and numerous data sources with unique
access methods, content, and quality. The proposed automation aims to improve
the functionality of ETL tools beyond just scheduling ETL processing. This
includes better error handling, mapping issues, maintaining audit tables, and
logging statistics. The paper anticipates a future need for ETL tools that support
automated processing and a command-based user interface for faster and more
efficient data processing.

9

Chapter 3

Technological architecture
and design overview

10

Technological architecture and design overview

3.1 Aims and objectives
This thesis is based on the development and showcasing of an infrastructure allowing
EVO to log into customers’ DBs before its ETL process. Consequently, it results
in many new functions all through. We strive to enhance our goal of narrowing
this communication barrier. operations, raise the accuracy of their data, as well
as forge alliances among them. EVO and its clientele. This makes the process of
data conversion more precise. this also paves the way for innovations that will be
game-changing in the future.

1. The thesis aim is a new approach for this paper [1] That visualizes and manages
the ETL pre-process in a web-based application.

(a) Reliability and stability
(b) Scheduling data ingestion
(c) Security
(d) Concurrency control
(e) Compatibility
(f) Supporting various data sources
(g) Noise detection

2. This thesis proposes a complete ETL framework that supports SAP connectors
for integrating SAP’s many different data structures and business processes into
the data warehouse. The compatibility makes it possible to extract durable,
credible information from the ETL pipeline, hence an orderly pathway for
delivery.

3. Finally, in the third phase, we will assess whether the benefits achieved are more
than the input required in processing information before its implementation.
It will be significant during the data life-cycle and will measure its effect on
the operations’ efficiency.

3.1.1 Reliability and stability
Reliability and stability:‌ Throughout ETL operations, it has been observed that
internet disruptions can halt the entire process, necessitating a restart after con-
siderable delays. To mitigate this challenge, the web application described in
this thesis has been developed. This application methodically extracts data in
manageable CSV segments, ensuring a more resilient preparation phase. Thereafter,
this segmented data is seamlessly incorporated into EVO’s principal ETL process.

11

Technological architecture and design overview

3.1.2 Scheduling data ingestion
Scheduling data ingestion: Another feature of the developed web application in
this thesis is that we can define scheduling for data ingestion. This can be a simple
query for the database, or it can be running a stored procedure on an interval. The
result can be saved as a file in the FTP server that we define. The way to create
the schedules is simple and easy. The scheduling is defined in YML format and
can include all the needed parameters for data ingestion.

3.1.3 Security
Security: An aspect of the ETL process on the EVO’s client side is that the
data format changes occasionally. These changes of format are not propagated
automatically and someone from the client’s team should change the exported data
for EVO’s data model. As far as EVO does not have direct access to their client’s
data sources, EVO cannot apply these changes directly and they have to ask their
clients to apply the change to the exported file. By the standalone application
provided as a complimentary for this web application, the client can define the
data sources and keep the credentials inside that application. This application
provides a secure connection between EVO and their clients. In this way, EVO
can directly connect to client’s premises and query whatever they need without
wasting time. Obviously, the database users that are created for this purpose are
defined by their client so the permission is controlled.

3.1.4 Concurrency control
Concurrency control: The probable issues regarding concurrency are also addressed
here. It has happened that the scheduling of data ingestion pipelines for one
customer of EVO has encountered a problem. Because of this failure, all the other
pipelines have failed. The relation between these pipelines is causing the problem
and there is no recovery plan to avoid this data ingestion interruption. By using
the scheduling feature of the web application introduced in this thesis, the control
over the schedules will be done by EVO, and the recovery plan in case of probable
failures can be defined.

3.1.5 Compatibility
Compatibility: Additionally, there is an expectation that some of the data will
not follow up with the EVO data model. Therefore, a substantial part of this
thesis is geared towards data compatibility. Checking for the right data format
and where need be, transforming the ingested data to conform to a set and agreed
upon data model. The compliance check supports the homogenous handling, and

12

Technological architecture and design overview

usage and increases the validity of such empirical results. Overcoming this issue in
compatibility will also enhance data integration and improve operational flow in
the EVO model.

3.1.6 Supporting various data sources
Supporting various data sources: The application that is the interface of the
connector in this thesis has also made it easy to connect to various data sources.
Its versatility can be seen through its compatibility with SAP systems that are
prevalent in the corporate world as an all-in-one solution set for various business
needs, Moreover, it supports various data sources including SQL server and MySql,
etc. Firstly, this is important to SAP as it forms bases for essential business
operations, coupled with complicated information structures. Moreover, it can also
handle the unique customizations and special protocols associated with the typical
configured enterprise systems of SAP, making it even more flexible and adaptable.
This helps the ETL framework fit into the normal SAP modules thus, extending
its functionality even further to suit custom needs that may be required by any
organization wishing to centralize its internal processes as well as data assets.

3.1.7 Noise detection
Noise detection: The integration of the EVO querying system has provided a
crucial improvement within the refined paradigm of the ETL connector posed
within this thesis in the domain of noise detection. However, traditional techniques
of transformation very rarely were able to see ’noise’ - discrepancies that include
erroneous data formats, unrealistic value ranges, wrong information entries, etc.
which evade routine detection instruments while transformations are on the go. The
innovation of this framework has been in its capacity for pre-extraction querying
that queries the datasets on their structural and interrelational compatibility
before extraction. Through deep analysis of data patterns, EVO flags the deviant
anomalies that do not correlate with the established data models. The system
performs query-based inspection before the extraction phase, thus blocking any
unwanted signals (noise) and allowing only the clean, validated data to enter the
transformation phase. Such preemptive scrutiny lowers considerably the probability
of corrupting data and makes the whole ETL process consistent with a modern
concept of data quality.

3.2 Tools and Methodologies
This thesis tried to use an approach that is combined with automatic and manual
control of the data flow. Considering the needs of both EVO and their client we

13

Technological architecture and design overview

have two applications, one standalone that is on the client side which is called
"connector" and the other one is the web application that uses those connectors to
extract data. At a first stage we will focus on the first part "connector", then we
will switch to the web application and describe all the features of it.

3.3 Expected outcomes

The project’s outcome will be about measures and reduction of previous failures and
prevention of data extraction interruption. The stability of the extraction process
managing schedules of data extractions and also modification of the extracted
data and prepare them for the expected data model should be guaranteed. The
connector will make sure that the client’s data source is reachable and ready to be
queried and the web application should show how many connectors and of which
type are available and start extracting the data from those connectors. Both apps
are written in Python using open-faas and also vuejs for the frontend part. The
requests both from the web application and the connector go through the API
server. And then the result can either be saved on a File-server or returned directly
to the front-end app.

Figure 3.1: High level design

There are two kinds of users in the application, the first group can use the
web application therefore, should be authenticated through the EVO’s portal, in
order to extract data from the client premises and the second group is the one who
configures the connectors. The connectors application does not have a graphic user
interface so all the connectors will be configured by a configuration file.

14

Technological architecture and design overview

3.4 Functional Requirements

Functional requirements or FR dictate what a system should do. They are explicit
descriptions detailing what kinds of services a system must offer, how it ought
to respond to specified conditions, and how it needs to act in specific cases. In
most cases, the details about different features needed in the software are usually
included in the use cases, user stories, or system specifications where they explain
what the software should be capable of doing, and how it interacts with the users
and other systems. The connector as already mentioned, does not have a graphic
user interface, hence, the configuration file needs to be set. These requirements are
listed in table 3.1.

ID Description
FR1 User logins to the EVO portal
FR2 User Adds a connector
FR3 User selects the connector and the data source
FR4 User writes the query and waits for the data
FR5 User retrieves the data and exports to CSV file
FR6 User creates schedules/tasks for data extraction
FR7 User monitors the ran query or the scheduled task
FR8 User provides the connection string of the database
FR9 User makes the connector available

Table 3.1: Functional Requirements

3.5 Non-Functional Requirements

Non-functional Requirements: NFRs represent the quality attributes, conditions of
operation in its environment as well as standards of a system. They are specified for
use for measuring how well the system should work in terms of usability, reliability,
performance, maintainability, scalability, and security. As an example, an NFR
for a web app would require the UI to be user-friendly, the service level should
be guaranteed to a maximum uptime of 99.9%, the number of concurrent users
to a minimum of 10k, and any personal NFRs be vital in that they delineate
situations under which the system’s functionalities take place, and hence influence
user satisfaction, the lifespan of the system, and their ability to respond to dynamic
needs. It can be difficult to verify non-functional requirements as opposed to
functional requirements, but they determine the ultimate quality level of the
system in operation. The main non-functional requirements are listed in table 3.2.

15

Technological architecture and design overview

ID Description
NFR1 The application should give the response in a reasonable time
NFR2 Anonymous users cannot and should not have access to either application
NFR3 Support the scalability for various data sources
NFR4 Guarantee the concurrent requests of the users

Table 3.2: Non-Functional Requirements

3.5.1 Functional Requirements Use Cases
Next, we will have the list of all use cases that are implemented in the web
application with all the details of the actors that are involved. We will discuss the
pre-conditions and post-conditions. Also, the scenarios are described for all the
possible actions.

Actors Involved Anonymous user
Pre-condition The EVO portal is up and accessible
Post-condition User is logged in and can see the app

Nominal Scenario User logins to the portal

Table 3.3: Use case 1, UC1 - User logins to the EVO portal

Actors Involved logged-in user
Pre-condition User is logged in
Post-condition The new connector is added

Nominal Scenario The system generates a key for the created connector

Table 3.4: Use case 2, UC2 - User adds a connector

Actors Involved logged-in user
Pre-condition At least one connector is alive (accessible)
Post-condition The data source is selected and is ready to be queried

Nominal Scenario Selecting the exact connector and the data source

Table 3.5: Use case 3, UC3 - User selects the connector and the data source

3.6 Diagrams
Context diagram, use case diagram, and class diagram will be discussed in the
next section. Followed by a sequence diagram. The level zero data flow diagram is
another name for the context diagram. Structure of hardware/ software components,

16

Technological architecture and design overview

Actors Involved logged-in user
Pre-condition The data source of the connector is selected
Post-condition The query is written and sent

Nominal Scenario Query is sent, refreshing until the data is ready

Table 3.6: Use case 4, UC4 - User writes the query and waits for the data

Actors Involved logged-in user
Pre-condition The query is sent and the loading is shown
Post-condition The result of the query is ready

Nominal Scenario The application automatically refreshes until data is ready

Table 3.7: Use case 5, UC5 - User retrieves the data and exports to CSV file

Actors Involved logged-in user
Pre-condition There is one live scenario
Post-condition The task is defined and saved

Nominal Scenario Depending on the configuration, the task can be run after definition

Table 3.8: Use case 6, UC6 - User creates tasks for data extraction

Actors Involved logged-in user
Pre-condition There is at least one query/task running
Post-condition the result file is downloadable

Nominal Scenario The application can show the list of queries and tasks that are running

Table 3.9: Use case 7, UC7 - User monitors the ran query or the scheduled task

Actors Involved connector standalone app
Pre-condition The database credential is available and configured
Post-condition The connector has access to the database

Nominal Scenario The configuration of the connector and its data sources are done

Table 3.10: Use case 8, UC8 - User provides the connection string of the database

Actors Involved connector standalone app
Pre-condition The connector is configured correctly
Post-condition The connector is live and can be seen from the web app

Nominal Scenario The configuration of the connector and its data sources are done

Table 3.11: Use case 9, UC9 - User makes the connector available

input/output resources, and databases. It is used to show how a system responds
or interacts with its environment and to specify. The system’s boundaries. The
present context diagram is illustrated in 3.2. application.

17

Technological architecture and design overview

Figure 3.2: Context Diagram

Figure 3.3: Use case diagram

18

Technological architecture and design overview

Figure 3.4: Deployment Diagram

Figure 3.5: Class Diagram

19

Technological architecture and design overview

Figure 3.6: Sequence Diagram

20

Chapter 4

Technological design and
using and configuring the
application

4.1 Application Environment

In this chapter, the focus is on the application’s environment. How to define connec-
tors, make them available for the web application users, and manage the extraction
of the data through the web application. Moreover, we will have a comparison
between two scenarios of the flow in terms of efficiency and the problems that are
addressed.

The application implemented for this thesis is divided into two parts. One is
the standalone connector and the other is the web application. The client must
configure the standalone app through a .yml file, providing the connector’s URL
and defining the data sources. The .yml file has a structure like below:

The name of the connector is what is shown in the web app, so a meaningful
name identifies the data source. The URL as the default value shows, can even
be localhost if it is available locally but usually, it is configured on a server. The
tasks can also be defined in the format of a .yml file so that they are usable by the
connector directly. Then, we have the data providers section. Depending on the
diversity of the data sources, we should have a separate configuration section for
any of them. Here, for example, we have provided an odbc data source that is a
SQL database with the connection string and an OData [18] which is an open data
protocol, recognized as a standard by ISO/IEC and governed by OASIS, establishes

21

Technological design and using and configuring the application

Figure 4.1: Connector configuration 1

essential guidelines for crafting and utilizing RESTful APIs effectively. It allows
developers to concentrate on core business functionality while streamlining the
creation of RESTful APIs by standardizing headers, status codes, HTTP methods,
URL conventions, media types, and payload structures. Additionally, OData
advises on monitoring modifications, formulating reusable functions/actions, and
managing asynchronous or batch requests. The protocol simplifies API consumption
through its metadata, which provides a detailed model of the API’s data structure,
facilitating the development of versatile client tools and proxies.

In the end, the output providers should be defined. This will be used to store
the results of queries or tasks. As the example refers, the credentials for the FTP
server should be provided here.

The technology used for this standalone application is pure Python. This
application uses the Open FaaS serverless functions to send the data in a queue
that is implemented with RabbitMQ. The Open FaaS [19] is a framework that
allows you to run stand-alone serverless functions independent of any particular
cloud vendor. This is constructed on a platform based on container technologies
that enable developers to bundle code with its dependencies in small and agile
parts. Designed to be easy to use and efficient, OpenFaaS functions seamlessly
by delivering all the intricate infrastructure services including scaling, networking,
and health checks. A user can call on the same system for executing a function
programmed in a language such as node.js, python or go, amongst others by
simply issuing an HTTP request, subscription to a certain event, or through

22

Technological design and using and configuring the application

Figure 4.2: Connector configuration 2

direct invocation. Therefore, open faas is ideal in the construction of Microservice,
execution of asynchronous tasks, and generating workflow automation enabling
the transition towards a modular and scalable approach to App development and
provisioning.

The API’s are written using the Flask framework [20]. It is a simple and powerful
micro-framework in Python meant for rapidly creating web apps. However, it is
easy to expand because of its simple structure of central core which does not
involve any database abstraction. Rather than that, Flask enables extension with
functions similar to those of Flask itself as an additional feature to applications.
Unlike ORM built-in others, Flask allows developers free choice and straightforward
development of services or any complicated applications. Developers find Django
straightforward, flexible, and provides granular control, hence favoring the creation
of lean maintainable Web apps with very little headache.

We have also used MongoDB [21] the leader among the non-relational databases
is definitely MongoDB which has adopted cutting edge methods of storing and
retrieving data. Unlike the classical relational databases using tables and rows,
MongoDB employs the document-oriented model for data storage, which allows
one to operate with the documents with the JSON layout. With reference to some
categories of apps handling vast amounts of varying, loose and quickly evolving
information, this makes the process of data integration easier and user-friendly. The
ability of mongodb to adjust to the ever changing need for the data makes it the
most valued aspect in the dynamic world today. Scalability in horizontal direction,
strong indexing features, and strong aggregativeness increase its popularity among
software engineers and enterprises looking for suitable options of effective processing
of big amounts of information in one place. MongoDB’s support system has been

23

Technological design and using and configuring the application

built around its active community as well as its flourishing ecosystem containing vast
number support tools and integrates that make it more than just a mere database,
instead it becomes an essential building block of modern software applications
development.

About the RabbitMQ [22] it is a more secure, scalable, maintainable messaging
queue software than the existing ones. To be good at developing messaging
programs, one should know well the efficiency of using RabbitMQ. With this
guide for messaging using RabbitMQ, you can head straight towards building your
messaging solutions. In this article, you follow the story of a hypothetical company
named Clever Coney Media as they progress from the standard, synchronous
approach to complex message routing and application monitoring methods using
RabbitMQ. With RabbitMQ you get a feature to manage message queuing software
and create distributive and scalable apps. With time you will move on to create
custom messages inbox using special queues as well as different exchange types.

The technology used for the front-end is VueJS. After running the app based on
the configuration of the project you will have the app running on localhost:port.
Here is the first page of the application:

The tools and frameworks that are used in this project are all open-source.
Open-source software has gained significant attention due to its collaborative and
transparent nature, allowing for the sharing of source code and encouraging commu-
nity involvement in software development (Kavanagh, 2004) [23]. The concept of
open source is rooted in the "The Cathedral and the Bazaar" philosophy, which em-
phasizes the benefits of decentralized and community-driven software development
("The cathedral and the bazaar", 2000) [24]. This approach has been particularly
valuable in fields such as computer science, where open-source software like Open-
MEEG has been instrumental in advancing quasistatic bioelectromagnetics research
(Gramfort et al., 2010) [25]. Additionally, open-source development has proven
to produce reliable and innovative computer code at lower costs than proprietary
software through sharing development responsibility with a large community of
invested individuals (Buitenhuis & Pearce, 2012) [26].

Furthermore, the use of open-source software extends beyond computer science,
with its application in fields such as renewable energy, where open-source devel-
opment of solar photovoltaic technology has been explored (Buitenhuis & Pearce,
2012) [26]. The benefits of open source are not limited to technical domains, as
it has also been adopted as a global sourcing strategy termed "open-sourcing,"
allowing commercial companies and open source communities to collaborate on
software development of commercial interest (Ågerfalk & Fitzgerald, 2008) [27].
Moreover, the ethical and philosophical benefits associated with the use of open-
source software have been recognized, further highlighting its significance in various
domains (Omopupa et al., 2020) [28].

The impact of open source extends to academia, where it has facilitated research

24

Technological design and using and configuring the application

and development by providing publicly accessible software and tools. For instance,
in the field of deep learning, the use of open-source software such as Python, Ten-
sorFlow, and pyGDM has been crucial in pushing the limits of optical information
storage (Wiecha et al., 2019) [29]. Additionally, the availability of open-source
datasets and tools has been instrumental in advancing research in areas such as
computer vision and artificial intelligence, enabling reproducible workflows and
fostering collaboration within the scientific community (Neupane & Seok, 2020;
Kitlasten et al., 2022) [30] [31]. Overall, the widespread adoption of open-source
software has not only transformed software development but has also significantly
contributed to advancements across various scientific and technological disciplines.

Figure 4.3: Application startup page

4.1.1 Connector configuration
As soon as the connector is configured correctly on EVO’s client side we can see
the status of all available connectors through the dropdown list in the first tab, or
we can see them in the Connector’s tab.

Figure 4.4: List of connectors

As you can see the first connector, the one that we have prepared for example,
is alive and the other connectors which can be any data source for any clients of
EVO are listed and their status can be tracked.

The way connectors are added is through the "ADD NEW CONNECTOR"
button. First, a name should be given to the connector, better to be a name close

25

Technological design and using and configuring the application

to the EVO’s client data source. Then a key will be generated that will be used
inside the connector app that is running in EVO’s client’s machine. Below you can
see the steps to create a new connector, figures 4.5 and 4.6.

Figure 4.5: Add a connector

Figure 4.6: Add a connector - Generated key

26

Technological design and using and configuring the application

The generated key will be used inside the connector.yml file on this line:
connectionKey: vSqrCl0IM1B28MLtuzGiuE71_SVVOfjgyztNqGnJvAE

Now going back to the first tab which is the main tab of our application. In
the first tab, we can select an alive connector only and the data provider and the
data sources that are provided for that connector. The type of operation for now
is just running a query but as said earlier, this application can be extended to do
other operations on the data sources.

Figure 4.7: Prepare the connector

After selecting the data source we can start querying it. Starting from this
query to see all available tables. See figure 4.8.

Show Tables;

We will see the list of tables that we have access to, we can easily write queries
on any of them. For example, let’s try querying the Person_Person table. After
writing the query and pressing the "RUN QUERY" button, the polling will start
and will continuously call an endpoint to see if the data from the client’s machine
is available or not. The user will see loading in the middle of the screen and as
soon as the data is ready, it can be seen in the provided table. See figure 4.9

Also, the elapsed time will be shown on the title of the page in the browser
and the operation can be stopped at any moment with the X button that appears
next to the "RUN QUERY" button. This is useful when a query takes longer than
expected. Below you can see the timer of the operation in figure 4.10

27

Technological design and using and configuring the application

Figure 4.8: List of tables

Figure 4.9: Query execution

4.2 Methods of data exporting
4.2.1 Export from the results table
When the result of the query is small enough that can be transmitted through
the browser, by using the export button, we can download the content of query
result. Otherwise, if the query is big enough that the size of the returned data
is bigger than the size a browser can handle, it will be downloaded as a CSV file

28

Technological design and using and configuring the application

Figure 4.10: Query timer

automatically. For example, let’s see these two queries again:
SELECT * FROM Person_Person limit 100;
SELECT * FROM Person_Person;
The first one selects the top 100 rows of the Person_Person table that can

be seen inside the browser, see figure 4.11. On the other hand, the second query
returns around 20K rows. Hence, it is downloaded automatically as a CSV file, see
figure 4.12 and 4.13.

Figure 4.11: Small query result

29

Technological design and using and configuring the application

Figure 4.12: Big query result

We can also see the time elapsed for the bigger query to understand how much
time is needed to retrieve around 20K rows. Please see figure 4.14. As you can see
the elapsed time for the whole operation is less than 10 seconds. So for 13,42MB
file size we need around 10 seconds.

4.2.2 Export the data from the Activity tab
The result of the executed query can also be seen in the "ACTIVITY" -> "QUERIES"
tab. If there are errors the messages are always there in case it is missed from the
first tab. Also, there is information about the date and time of the execution and
the content of the query itself. This information is useful when we want to see the
logs of previous queries and monitor the data access. See figure 4.15. The data can
be downloaded directly from this tab.

4.2.3 Tasks
Tasks are also useful for the continuous fetch of data. We can define tasks to
automate the process of data extraction. The result of its execution is also
accessible from the "ACTIVITY" -> "TASKS". Here, you will see the way to create
tasks and download their execution result. For example, we will create a task
to extract the top 1000 rows of the Person_Person table every 10 seconds. The

30

Technological design and using and configuring the application

Figure 4.13: Big query result - CSV

Figure 4.14: Big query elapsed time

31

Technological design and using and configuring the application

Figure 4.15: Activity queries

structure of the tasks is defined in YML format. In figure 4.16 we can see the
connector of the task first needs to be defined, then we give our task a name and
set its interval that is based on seconds. We can later set the "enable" status to
true or false and finally in the "tasks" section we will give the details of the task,
the data provider, the function, and the query are defined in this section. In the
end, the output provider can be defined, it can be either the local file system or
the FTP server. Then after saving the task, the connector can find it and execute
it every 10 seconds and store the data in the "ACTIVITY"->"Tasks" tab. This is
useful when a portion of data is updated frequently, so this is to make sure EVO
always has the latest data. In figure 4.17 we can see the list of previously defined
tasks and possibly manage them to set them enabled or disabled, change their data
source or their output provider.

4.2.4 A usage of Salesforce RESTful API data source
Next, we are going to take a look at Salesforce APIs. EVO uses these APIs for
their CustomerAI tool. As explained in the first chapter, Salesforce is a cloud-based
software company that provides businesses with tools that help them find more
prospects, close more deals, and provide a higher level of service to their customers.

Salesforce, Inc. is a famous American cloud-based software company that
provides CRM services. Salesforce is a popular CRM tool for support, sales, and
marketing teams worldwide.

The connector to use this data provider should be configured like below in figure
4.18. Then inside the application, we use this data provider to query the salesforce
API. We can also use a SQL syntax to use their data. The following lines are some

32

Technological design and using and configuring the application

Figure 4.16: New task definition

Figure 4.17: Tasks list

examples of how to write queries for the salesforce RESTful API [32].
"SELECT Id, Email, ParentAccount.Name FROM Contact WHERE LastName =

’Jones’"

"SELECT Id, Email FROM Contact WHERE LastName = ’Jones’"

"SELECT Id, Email FROM Contact WHERE Income > USD100"

33

Technological design and using and configuring the application

Figure 4.18: Salesforce configuration

Figure 4.19: Salesforce API query

4.3 An intro to the current ETL process and the
Connector application usage

4.3.1 Data extraction
Data extraction ETL: Based on the agreement between EVO and its clients, the
raw data is usually uploaded to an FTP server daily or weekly. This data can
have various formats including XLSX, CSV, TXT, etc. The data at first might be
numerous rows in a raw format of CSV. See figure 4.20. Based on the agreement,
the separator of the columns is defined, in here, the semicolon is considered as the

34

Technological design and using and configuring the application

separator. Also, the number of columns MUST be agreed upon. For example, if
the number of columns is agreed for the quantity of 10, the file cannot have only
9 columns. I emphasize that any tiny misalignment can lead the transformation
process to failure. In the end, the line separator comes so that the scripts to process
this file can use it, again as confirmed in the agreement, for data extraction. As
you may have noticed, this data comes directly from EVO’s clients so any change
on them requires communication between EVO and its clients. Any misalignment
of the row’s content and expected value can again lead to failures during extraction.
Usually, if there are any errors or misalignment, the back and forth between EVO
and the client can take hours as it is not done automatically and the modification
should be done by the client, hence, wasting a lot of time and resources in this
process. So, by using the connector application, this wasted time can be omitted
because EVO will have direct access to the data and can do the modification on
them directly.

Figure 4.20: Raw data

4.3.2 Data transformation
Data transformation ETL: Once the client’s file is prepared and uploaded, it will
become accessible on the FTP server. Then, EVO’s ETL pre-processing procedure
will be started by using the provided file in the path that is expected by the
pre-processing. This critical step includes a set of data validation processes to
ensure the integrity and accuracy of the information. It also verifies that the data
columns adhere to the specified format and confirms that each column’s data type
aligns with the agreed requirements set for the transformation procedure. This
approach ensures that the data is ready for the following processing stages. Again,

35

Technological design and using and configuring the application

here, any failure because of corrupted data can lead to failures and re-running the
process from the beginning. The connector application can also do this step before
data extraction. Let’s see an example of transforming data in the extraction phase
in the connector application.

Figure 4.21: Normal select example

Now let’s consider right here EVO needs to receive the data in the following
format:

Title; Fullname; Person;
Simply, the transformation of the data can be done right inside the connector.

See figure 4.22.

Figure 4.22: Transformed data extraction

If in real scenarios we have this kind of transformation on the raw data, the
connector application can help reduce the pre-process steps for data transformation.
This was just an example, in real cases, this step can take from thirty minutes

36

Technological design and using and configuring the application

up to two or three hours, depending on the amount of rows, and number of
transformations, and the database size. So, the more prepared the extracted data
is, the faster the pre-processing is. Also, in some scenarios, we can completely
omit this step and save a lot of time. This will also reduce the complexity of the
EVO’s ETL process. Below you can see an example of one of the existing pipelines
of data transformation of EVO on the data. Figures 5.1, 4.24. By using the
connector application wisely, we can omit this complex flow of pre-processing data.
The maintenance of these pipelines requires skilled data engineers to continuously
monitor and potentially fix the possible errors this is not an easy task and it is
very time-consuming and requires a lot of resources.

Figure 4.23: Transform pipeline 1

37

Technological design and using and configuring the application

Figure 4.24: Transform pipeline 2

4.3.3 Data load

Data load ETL: The load process is not much changed. Here, we will just show
the pipeline related to the main process of EVO’s clients just to understand the
complexity of the whole flow. See figure 4.25 The load process is not much changed.
Here, we will just show the pipeline related to the main process of EVO’s clients
just to understand the complexity of the whole flow. See Figure 4.24. To recap the
whole scenario and the way it has become more efficient, the process starts from
receiving a file from the client FTP. This file usually contains rows and columns
based on the agreement between EVO and its client. The file then goes to the SSIS
server to go through the pre-processing step. At this step the transformation is
done, the step that can also be done on the ETL connector application to reduce the
number of operations and as a result omitting validation and data check step and
this means saving the server resources. SSIS Packages that have DTSX extension
will do the pre-processing and load operation. If we have a lookup operation, it
can consume a lot of resources so this operation again can be done in the ETL
connector application. Indeed that lookup operation can be done via a script but
in that case, we should figure out a way for all the other operations as well to
make them more efficient. So the server crashes because of this kind of operation
when there are not many resources available. The potential usage of the ETL
connector application can be also doing the insert operation that is done inside the
pre-processing step. Meaning, the extracted and transformed data can be saved
into a CSV file, then another task can take these CSV files and save the rows into
the temp tables for the main ETL process of EVO making the most of the process
automatic.

38

Technological design and using and configuring the application

Figure 4.25: Main ETL pipeline

39

Chapter 5

Conclusions and potential
future development

The ETL Connector application includes two microservices, one will run on EVO’s
client’s side and the other is accessible through the WEB. As discussed in the
previous chapter, many potential data sources can be used inside this application.
The ones that were discussed so far were a normal MySQL database, a SAP
data provider, or even an online RESTful API from SalesForce. Considering the
application works perfectly with the SQL query syntax we may add as many data
sources as we want. So, it is not important if it is an Oracle database or a MongoDB
database. Even though, there are slight differences between some data sources
syntax the ETL Connector can execute and do the data extraction by a person
who is familiar with these languages. We talked about the tasks and scheduling
that can help us achieve full automation of the ETL pre-process step which for us
means the data transformation and preparing it for the EVO’s main ETL process.
Below you can see how ETL Connector has helped us to reduce the consumed
resources and time for this process. The numbers are not completely accurate since
they depend on many factors, but it is advised by the skilled data engineers who
are responsible for EVO’s ETL team.

In closing up our investigations about of the ETL connector application, it is
important to note that through ETL it has been possible to improve the effectiveness
and ease with which ETL runs are carried out. The ETL connector application has
helped change how EVO and its customers handle and make ETL operations a lot. it
has reduced EVO’s server resource consumption. The significant decrease in servers’
resource consumption is one of its outstanding accomplishments. The ETL process
before the use of an ETL connector application used a lot of resources, causing server
overload and wasted computing energy. This burden has been significantly reduced

40

Conclusions and potential future development

Figure 5.1: Time (hour) used for EVO pre-process

by using the unique design of the ETL connector application which is very efficient.
The application maximizes on data extraction and transformation phases so that
server resource use is economical. Optimization has various advantages including
low operational cost, as well prolonging life span, and improving robustness of the
server estate. The Enhanced Interactions between EVO and its customers is also
another important step towards better performance is improved communication
with EVO’s customers. Effectively, the ETL connector application has reduced
the hitherto conventional ETL process’s back-and-forth communication. The
application has made this process simple by automating most of the crucial steps
of the ETL pipeline. This has created more transparent and speedy access to
crucial data. The procedure has become faster and less prone to error than before
because of the decline in manual intervention and high-level automation that this
implementation has brought about.

It has enhanced control over ETL Processes; it has made EVO and customers
have more authority in ETL operations. Besides, a user-friendly interface combined
with strong backbone of the application permits real-time monitoring and adjust-
ment. These control measures are important, especially in competitive business
markets where agility in responding to evolving data needs is key. Enhanced control

41

Conclusions and potential future development

is also provided to handle errors effectively, map data efficiently, and integrate with
different data sets or sources without fuss.

Finally, ETL connector application has taken a big step in ETL process. Effi-
ciency and effectivity have been raised to a new level as it impacts server resources
consumption reduction, simpler interfaces, and greater control of ETL processes.
Moving forward, future enhancements in such application will be pivotal to more
adaptable, affordable, and reliable data management practices. This thesis high-
lights past achievement and offers a springboard for further innovation on the ETL
landscape.

42

Bibliography

[1] Artur Wojciechowski. «E-ETL: Framework for Managing Evolving Etl Pro-
cesses». In: Proceedings of the 4th Workshop on Workshop for Ph.D. Students
in Information & Knowledge Management. PIKM ’11. Glasgow, Scotland, UK:
Association for Computing Machinery, 2011, pp. 59–66. isbn: 9781450309530.
doi: 10 . 1145 / 2065003 . 2065016. url: https : / / doi . org / 10 . 1145 /
2065003.2065016 (cit. on pp. 1, 11).

[2] Zineb El Akkaoui, Esteban Zimànyi, Jose-Norberto Mazón, and Juan Trujillo.
«A Model-Driven Framework for ETL Process Development». In: Proceedings
of the ACM 14th International Workshop on Data Warehousing and OLAP.
DOLAP ’11. Glasgow, Scotland, UK: Association for Computing Machinery,
2011, pp. 45–52. isbn: 9781450309639. doi: 10.1145/2064676.2064685. url:
https://doi.org/10.1145/2064676.2064685 (cit. on pp. 1, 6).

[3] Microsoft. Install and Configure AdventureWorks Sample Databases. https:
//learn.microsoft.com/en-us/sql/samples/adventureworks-install-
configure?view=sql- server- ver16&tabs=ssms. Accessed: 2023-11-25.
2022 (cit. on p. 3).

[4] N. Li, C. Pedrinaci, M. Maleshkova, J. Kopecky, and J. Domingue. «Omnivoke:
a framework for automating the invocation of web apis». In: (2011). doi:
10.1109/icsc.2011.72 (cit. on p. 3).

[5] R. Rogalski. «Comparative analysis of data reading performance from the
salesforce platform using graphql, rest and soap interfaces». In: Journal of
Computer Sciences Institute 27 (2023), pp. 171–177. doi: 10.35784/jcsi.
3601 (cit. on p. 4).

[6] O. Melykh and A. Korbut. «Entertainment media in the context of hybrid
war in the post-soviet countries: the case of ukraine». In: Economic Annals-i
182 (3-4 2020), pp. 25–33. doi: 10.21003/ea.v182-03 (cit. on p. 4).

[7] V. Theodorou, A. Abelló, M. Thiele, and W. Lehner. «A framework for
user-centered declarative etl». In: (2014). doi: 10.1145/2666158.2666178
(cit. on p. 6).

43

https://doi.org/10.1145/2065003.2065016
https://doi.org/10.1145/2065003.2065016
https://doi.org/10.1145/2065003.2065016
https://doi.org/10.1145/2064676.2064685
https://doi.org/10.1145/2064676.2064685
https://learn.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver16&tabs=ssms
https://learn.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver16&tabs=ssms
https://learn.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver16&tabs=ssms
https://doi.org/10.1109/icsc.2011.72
https://doi.org/10.35784/jcsi.3601
https://doi.org/10.35784/jcsi.3601
https://doi.org/10.21003/ea.v182-03
https://doi.org/10.1145/2666158.2666178

BIBLIOGRAPHY

[8] O. Belo, A. Cuzzocrea, and B. Oliveira. «Modeling and supporting etl pro-
cesses via a pattern-oriented, task-reusable framework». In: (2014). doi:
10.1109/ictai.2014.145 (cit. on p. 6).

[9] V. Theodorou, A. Abelló, M. Thiele, and W. Lehner. «Frequent patterns in
etl workflows: an empirical approach». In: Data Knowledge Engineering 112
(2017), pp. 1–16. doi: 10.1016/j.datak.2017.08.004 (cit. on p. 6).

[10] R. Talib, M. Hanif, F. Fatima, and S. Ayesha. «A multi-agent framework
for data extraction, transformation and loading in data warehouse». In:
International Journal of Advanced Computer Science and Applications 7 (11
2016). doi: 10.14569/ijacsa.2016.071146 (cit. on p. 6).

[11] J. Li, B. Kuang, and L. Jin-gang. «Script-based automation etl tool». In:
(2016). doi: 10.2991/meici-16.2016.201 (cit. on p. 7).

[12] S. Luján-Mora, P. Vassiliadis, and J. Trujillo. «Data mapping diagrams for
data warehouse design with uml». In: (2004), pp. 191–204. doi: 10.1007/978-
3-540-30464-7_16 (cit. on p. 7).

[13] S. Dakrory, T. Mahmoud, and A. Ali. «Automated etl testing on the data
quality of a data warehouse». In: International Journal of Computer Ap-
plications 131 (16 2015), pp. 9–16. doi: 10.5120/ijca2015907590 (cit. on
p. 7).

[14] N. Vijayendra and Meiliu Lu. «A web-based ETL tool for data integration
process». In: 2013 6th International Conference on Human System Interac-
tions (HSI). IEEE. 2013, pp. 434–438. doi: 10.1109/HSI.2013.6577861
(cit. on p. 7).

[15] F. N. Savitri and H. Laksmiwati. «Study of Localized Data Cleansing Process
for ETL Performance Improvement in Independent Datamart». In: Proceedings
of the 2011 International Conference on Electrical Engineering and Infor-
matics. IEEE. 2011, pp. 1–6. doi: 10.1109/ICEEI.2011.6021806 (cit. on
p. 7).

[16] Vasileios Theodorou, Alberto Abelló, and Wolfgang Lehner. «Quality measures
for ETL processes». In: Data Warehousing and Knowledge Discovery: 16th
International Conference, DaWaK 2014, Munich, Germany, September 2-4,
2014. Proceedings 16. Springer. 2014, pp. 9–22 (cit. on p. 8).

[17] Vangipuram Radhakrishna, Vangipuram SravanKiran, and K Ravikiran. «Au-
tomating ETL process with scripting technology». In: 2012 Nirma University
International Conference on Engineering (NUiCONE). IEEE. 2012, pp. 1–4
(cit. on p. 9).

[18] OData. https://www.odata.org/. Accessed: 2023-11-08 (cit. on p. 21).
[19] OData. https://www.openfaas.com//. Accessed: 2023-11-09 (cit. on p. 22).

44

https://doi.org/10.1109/ictai.2014.145
https://doi.org/10.1016/j.datak.2017.08.004
https://doi.org/10.14569/ijacsa.2016.071146
https://doi.org/10.2991/meici-16.2016.201
https://doi.org/10.1007/978-3-540-30464-7_16
https://doi.org/10.1007/978-3-540-30464-7_16
https://doi.org/10.5120/ijca2015907590
https://doi.org/10.1109/HSI.2013.6577861
https://doi.org/10.1109/ICEEI.2011.6021806
https://www.odata.org/
https://www.openfaas.com//

BIBLIOGRAPHY

[20] Flask. https://pythonbasics.org/what-is-flask-python//. Accessed:
2023-11-09 (cit. on p. 23).

[21] MongoDB. https://www.mongodb.com/. Accessed: 2023-11-08 (cit. on p. 23).
[22] David Dossot. RabbitMQ Essentials. Birmingham: Packt Publishing, 2014

(cit. on p. 24).
[23] P. Kavanagh. «The open source definition». In: (2004), pp. 321–322. doi:

10.1016/b978-155558320-0/50016-7 (cit. on p. 24).
[24] «The cathedral and the bazaar». In: Computers Mathematics With Applica-

tions 39 (3-4 2000), p. 263. doi: 10.1016/s0898-1221(00)90039-7 (cit. on
p. 24).

[25] A. Gramfort, T. Papadopoulo, E. Olivi, and M. Clerc. «Openmeeg: opensource
software for quasistatic bioelectromagnetics». In: Biomedical Engineering
Online 9 (1 2010), p. 45. doi: 10.1186/1475-925x-9-45 (cit. on p. 24).

[26] A. Buitenhuis and J. Pearce. «Open-source development of solar photovoltaic
technology». In: Energy for Sustainable Development 16 (3 2012), pp. 379–388.
doi: 10.1016/j.esd.2012.06.006 (cit. on p. 24).

[27] P. Ågerfalk and B. Fitzgerald. «Outsourcing to an unknown workforce: ex-
ploring opensurcing as a global sourcing strategy». In: Mis Quarterly 32 (2
2008), p. 385. doi: 10.2307/25148845 (cit. on p. 24).

[28] T. Omopupa, A. Adedeji, A. Kehinde, A. Abdulsalam, and H. Abubakar.
«Comparative study of koha usage in bowen university and university of ilorin
libraries». In: Üniversite Araştırmaları Dergisi 3 (3 2020), pp. 98–106. doi:
10.32329/uad.741713 (cit. on p. 24).

[29] P. Wiecha, A. Lecestre, N. Mallet, and G. Larrieu. «Pushing the limits of
optical information storage using deep learning». In: Nature Physics 14 (3
2019), pp. 237–244. doi: 10.1038/s41565-018-0346-1 (cit. on p. 25).

[30] D. Neupane and J. Seok. «Bearing fault detection and diagnosis using case
western reserve university dataset with deep learning approaches: a review». In:
Ieee Access 8 (2020), pp. 93155–93178. doi: 10.1109/access.2020.2990528
(cit. on p. 25).

[31] W. Kitlasten, C. Moore, and B. Hemmings. «Model structure and ensemble
size: implications for predictions of groundwater age». In: Frontiers in Earth
Science 10 (2022). doi: 10.3389/feart.2022.972305 (cit. on p. 25).

[32] Simple Salesforce. https://pypi.org/project/simple- salesforce//.
Accessed: 2023-12-05 (cit. on p. 33).

45

https://pythonbasics.org/what-is-flask-python//
https://www.mongodb.com/
https://doi.org/10.1016/b978-155558320-0/50016-7
https://doi.org/10.1016/s0898-1221(00)90039-7
https://doi.org/10.1186/1475-925x-9-45
https://doi.org/10.1016/j.esd.2012.06.006
https://doi.org/10.2307/25148845
https://doi.org/10.32329/uad.741713
https://doi.org/10.1038/s41565-018-0346-1
https://doi.org/10.1109/access.2020.2990528
https://doi.org/10.3389/feart.2022.972305
https://pypi.org/project/simple-salesforce//

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Pre-process ETL before the main ETL process
	Thesis objective
	Utilized datasources
	AdventureWorks
	SalesForce RESTful API

	Thesis structure

	Literature Review
	Technological architecture and design overview
	Aims and objectives
	Reliability and stability
	Scheduling data ingestion
	Security
	Concurrency control
	Compatibility
	Supporting various data sources
	Noise detection

	Tools and Methodologies
	Expected outcomes
	Functional Requirements
	Non-Functional Requirements
	Functional Requirements Use Cases

	Diagrams

	Technological design and using and configuring the application
	Application Environment
	Connector configuration

	Methods of data exporting
	Export from the results table
	Export the data from the Activity tab
	Tasks
	A usage of Salesforce RESTful API data source

	An intro to the current ETL process and the Connector application usage
	Data extraction
	Data transformation
	Data load

	Conclusions and potential future development
	Bibliography

