
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering -

Cybersecurity

Master’s Degree Thesis

Design and implementation of a scalable
multiprocessing crawler for Telegram.

Supervisors

Prof. Marco MELLIA

Nikhil JHA

Giordano PAOLETTI

Candidate

Simone GALOTA

December 2023

Abstract

Telegram is a well-known instant messaging service focused on providing a highly
privacy-preserving social network environment to its users.

This work aims to build a platform for automatic analysis and collection of
Telegram channel, mega-group, group, and bot data, enhancing the two scrapers
previously written in Python by Edoardo Gabrielli [1] and Armando Chimirri [2]. To
reach the goal, a multi-processing crawler has been designed and implemented using
master and workers architecture. We developed a novel approach to automatically
collect data from Telegram groups/channels, implementing a distributed and
scalable platform in Python, leveraging the Telethon API library.

The core of the implementation of our crawler consists of the separation of
operations between master and workers. With respect to the previous versions, we
are able to collect, through Snowball Sampling, not only data (messages, links, ...)
from groups or channels but also to interact with the bots present in the platform.

Each worker is a process connected to a Telegram account. Worker processes
operate concurrently, each one is responsible for fetching and processing a task
assigned by the master. Once the task is finished, the worker will wait, self-stopping
its execution, for about 2 minutes to avoid the abuse of API functions calling and
the consequent block imposed by the Telegram servers with a Flood Wait Error.
After waiting, each worker returns the result of its work and puts its ID in the free
processes queue, becoming ready for another task assignment.

The master process acts as the coordinator of the crawling procedure. Its
responsibilities include management of the Telegram URL to be crawled, keeping
track of the link states, and organizing results returned from the workers. Moreover,
the master stores in the database the data collected from the workers and updates
the statistics regarding the activity performed. The three kinds of tasks that the
master can assign to a worker are JOIN (calling API function to try to join a
channel/group), CHECK WAIT (checking if a request previously sent has been
accepted or not), LEAVE (leaving the group/channel if are in for more than 24
hours).

The software, with all the design and platform limitations, is capable of evaluating
links at the rate of 28/30 links for each worker per hour, resulting in an improvement
compared to previous versions. Also, we obtained a directed and weighted graph,
in which we analyzed the crawling progression starting from the provided seed.

ii

i

Acknowledgements

I would like to thank the supervisor Prof. Marco Mellia along with Dr. Nikhil Jha
and Dr. Giordano Paoletti for their kindness, helpfulness, and professionalism in
supporting me during the development of this work.

ii

Table of Contents

List of Figures vi

1 Introduction 1
1.1 Background and state of the art . 2

1.1.1 What is Telegram? . 2
1.1.2 State of the art . 3
1.1.3 Thesis outline . 4

2 The Crawler 5
2.1 Entities in Telegram . 5
2.2 Database . 9

2.2.1 MongoDB . 9
2.2.2 Database Collections . 9

2.3 Requirements . 10
2.3.1 Flood Wait Error . 10
2.3.2 Bot interaction . 11
2.3.3 Graph . 11
2.3.4 Data collection . 12
2.3.5 Statistics . 13

3 Crawler Design and Implementation 14
3.1 Design . 14

3.1.1 Multi-process Master-Workers Architecture 14
3.1.2 Design Considerations . 16

3.2 Implementation . 17
3.2.1 Libraries . 17
3.2.2 Authentication and Session File 17
3.2.3 Database installation and configuration 18
3.2.4 Database organization . 19
3.2.5 Workers implementation . 24
3.2.6 Master implementation . 28

iv

4 Analysis and results 33
4.1 Performance analysis . 34

4.1.1 5 Workers . 34
4.1.2 2 Workers . 34

4.2 Flood Wait Error (FWE) analysis 37
4.3 Graph Analysis . 38

5 Conclusion and future work 42

Bibliography 45

v

List of Figures

2.1 Collections view from MongoDB GUI 10

3.1 Analytics Collection . 19
3.2 Bot Entry Example . 20
3.3 Done Entry Example . 21
3.4 Edges Entry Example . 21
3.5 Gathered Entry Example . 22
3.6 Groups Entry Example . 22
3.7 Leave Entry Example . 23
3.8 TBP Entry Example . 23
3.9 Wait Entry Example . 24
3.10 Worker flow chart . 28
3.11 Master flow chart . 30

4.1 Total number of links evaluated . 35
4.2 Total number of links joined . 36
4.3 Flood Waits Error temporal distribution 37
4.4 CDF of Flood Wait Errors . 38
4.5 Crawling graph . 39
4.6 Graph degree metrics . 40
4.7 Graph community division . 41

vi

Chapter 1

Introduction

In the current digital landscape, the huge and interconnected world of online
communication and content sharing has given rise to new ways of exploration
and research of social network environments. Among the various platforms that
facilitate these interactions, Telegram stands out as a prominent force, boasting an
expansive user base and a diverse ecosystem of channels, groups, and bots. While
Telegram has transformed the way we connect and exchange information, it has
also raised important questions related to security and privacy. This master thesis
aims to uncover the significance of crawling Telegram, with a specific focus on
security and privacy implications.

The need for a scalable and efficient Telegram crawler becomes paramount as the
platform continues to grow in influence. Telegram’s unique structure and features
create a challenging environment to navigate, which is increasingly vital for the
detection and prevention of security threats. Illicit activities such as instances of
sensitive data leaks, illicit content distribution, and even the sale of confidential
information on Telegram are becoming more prevalent. This research seeks to
address these challenges, shedding light on the scope of potential security issues
and privacy breaches within the platform.

This introductory section will provide an in-depth exploration of the motivations,
goals, and significance of this research endeavor. We will also outline the structure
of the thesis and the methodology employed, setting the stage for a comprehensive
examination of the design and implementation of a versatile, scalable, and, in
the future, intelligent crawler for Telegram. This research aims to assist in the

1

Introduction

automated detection of content that poses security risks, such as data leaks and
the unauthorized distribution of sensitive data or other kinds of illegal behaviors.

Subsequent chapters will delve deeper into the complexity of this project, includ-
ing a detailed analysis of the current state of the Telegram platform and crawling,
the challenges presented by Telegram’s security and privacy concerns, and the
innovative multi-process master-workers architecture employed to make our crawler
more efficient.

It is our goal that the results and insights generated by this research will not
only contribute to academic discourse but also play a pivotal role in enhancing the
security and privacy of users within the Telegram platform.

1.1 Background and state of the art

This section delves into the description of the Telegram application and its entities,
as well as the current state of the art of Telegram crawling. As the privacy
importance has become more and more discussed, Telegram has gained immense
popularity in recent years. The goal of this section is to give an overview of both the
environment we are working on and the activities already done by other research
groups.

1.1.1 What is Telegram?

Telegram [3] is an instant messaging service that has as its main focus the privacy of
the users interacting on the platform. It was created in 2013 by the Durov brothers.
Its founders envisioned a platform that prioritizes individual confidentiality and
data protection above all else.

It is a cloud-based service able to guarantee seamless synchronization across
multiple devices. Its data centers are strategically located in five countries: North
America, the United Kingdom, the Netherlands, Singapore, and the United Arab
Emirates. This global presence not only optimizes data access and distribution but
also strengthens the platform’s resilience against potential disruptions, ensuring
users can stay connected without interruption.

The application is available for all the major platforms such as Android, iOS,

2

Introduction

iPadOS, Windows, Linux, and macOS. It presents also a web version accessible
from the main browsers. In 2023, it reached 700 million active users and a market
value of 30 billion dollars [4], underlying its prominent role in the social network
industry.

The service is mainly free, but, since 2022, it does exist a premium version that
lets the user overcome some limitations of the free version.

1.1.2 State of the art

The state of the art in Telegram crawling reflects a dynamic landscape where
researchers and developers strive to unlock the vast potential of this popular
messaging platform in collecting huge amounts of data useful for further analysis.
Telegram, with its emphasis on user privacy and security, presents a unique challenge
and opportunity for crawling initiatives. Indeed many research groups have focused
their work on social network analysis and data mining. After a careful literature
reading, we found interesting papers related to our work. However, while the
majority of publications contain a consistent part of data analysis even using
machine learning techniques, our work aims almost exclusively at the creation of
an advanced and more sophisticated crawling tool.

Nobari et al. [5] developed a crawler to gather data and made a structural
and topical analysis of messages on a dataset of more than 2000 groups and
channels. Hashemi et al. [6] have performed for the first time a detailed analysis
of Iranian users’ behavior; they measured group qualities in more than 900.000
Persian channels and more than 300.000 Persian supergroups.

Khaund et al. [7] conducted both text and network analysis on the data collected
in channels to gain insights into political discourse and public opinion; their results
show that those channels are active in divulging information about political affairs.

In their work, La Morgia et al. [8] identified and analyzed fake channels on
Telegram. They built a dataset made of over 120.000 channels and 247 million
messages, proposing a machine-learning model for the detection phase, capable of
achieving an accuracy of 85.49%.

3

Introduction

1.1.3 Thesis outline

The topics are organized as follows:

• Chapter 2 deals with the description of the crawler.

• Chapter 3 deals with the crawler design and implementation.

• Chapter 4 shows some analysis and results.

• Chapter 5 contains conclusion and future work.

4

Chapter 2

The Crawler

The core of this work consisted of developing a crawler able to deal with the
different entities present in the Telegram scenario. This work is to be considered
as an improvement of the code already developed by Armando Chimirri [2] and
previously by Edoardo Gabrielli [1].

A crawler, or scraper, is a software whose goal is to automatically browse web
pages and collect information from them. Moreover, a crucial task of this kind of
program or script is to follow links inside a web page. Hence, they are essential
components of search engines, helping to index and update content for search
results.

In a context like Telegram, a crawler takes on the same function with a little
difference. Instead of browsing web pages, it tries to join groups/channels given a
link and collects messages, metadata, and links inside them.

2.1 Entities in Telegram

Telethon API
Since we decided to continue and improve the work already done to make the

crawling software more efficient, the choice of using Python as a language has been
quite natural, as well as continuing to use the Telethon API [9].

Telethon is not an official Telegram API; rather, it is a third-party Python
library that provides an easy-to-use interface for interacting with the Telegram API.

5

The Crawler

Telethon simplifies the process of working with the Telegram API by providing
a high-level, asynchronous Python API. It allows developers to create, send, and
receive messages, work with chats and channels, and perform various other actions
within the Telegram ecosystem. It’s essential to note that it’s not officially developed
or endorsed by Telegram. Telethon API is an open-source library aimed to provide
functions to programmers for easily writing code able to interact with the Telegram
service. To date, this API contains:

• 562 methods.

• 452 types.

• 1214 constructors.

Let’s see now which entities we can interact with and which use cases we can
find on the platform. In Telethon, an "entity" is a representation of a user, a chat,
or a channel on the Telegram messaging platform

User
The entity User is associated with each account. The user inserts their phone

number into the application to create an account. After receiving a six-digit OTP
via SMS, the user logs into the application.

Chat between Users
This is the standard use case. Similar to numerous other instant messaging

apps, when a user initiates contact with another user, they engage in one-on-
one communication. Opting for the "secret chat" feature results in end-to-end
encryption, ensuring that all exchanged information (text, pictures, videos, audio,
GPS positions, and more) remains visible and understandable exclusively to the
parties involved. Telegram offers the opportunity to communicate with other peers
in complete privacy, depending on the configuration we choose. Unlike the main
competitors, it also offers the opportunity to chat with anyone without sharing our
phone number. It is needed to highlight that this use case is not useful for crawling
data on the platform.

6

The Crawler

Group
Another kind of element present on Telegram is the entity Group. It is a many-

to-many communication. A user can create a Group (becoming the admin) for
sending messages to a large number of users. All of them can write answers in the
group. A group can be:

• Private: an invite is needed through a link to access the group. There could
be a request to be approved.

• Public: no link needed, it is sufficient to look for the name of the group in the
search bar of the application.

Moreover, there are 3 different kinds of groups, based on the number of users
participating:

• Basic: groups in which can participate 200 members at most. The users can
access up to 100 messages previously written in the group.

• Super: groups in which between 200 and 200,000 users can participate. They
can access either all messages previously written or none depending on the
group settings the admin has chosen.

• Giga: groups in which are participating more than 200.000 users. In this case,
only the admins can write in the group.

Channel
This entity implements the one-to-many communication. A user can create a

channel (becoming the admin) to write messages in broadcast to a large number
of subscribers. There is no limit of users number in a channel. However, the
subscribers cannot answer the messages posted by the admins in the channel, but
they can either react or comment on the message written. Also, there can be groups
associated with the channel for discussion between users about channel content. A
channel can be:

• Private: an invite is needed through a link to access the channel, and when
we are in, we have access to all contents shared previously from the channel
creation onward. Even in this case, there could be a request to be approved.

7

The Crawler

In addition, from the application or web interface, a user not participating
in the channel with more than 200 subscriptions, has access to the channel
contents for 5 minutes. After that time it is asked to join to keep access to
vision.

• Public: no link needed, it is sufficient to look for the name of the group in the
search bar of the application. We have access to the channel without joining
it.

Bot
Since 2015 Telegram has been letting users create software for automating tasks

and interacting with other users based on predefined rules (i.e. bot). They can
execute filtering operations in a group or a channel, acting as a barrier. When a
normal user tries to join those entities, it could be necessary to interact with a bot.
Usually, the interaction starts with the user sending a message with the command
"/start" (they do exist other commands like "/menu" or "/help", ...). It can ask to
perform some operations before giving access or the invite link. These can include:

• Forwarding one or more links to a certain number of users.

• Joining other groups and/or channels sponsored by the entity we are trying
to access.

A bot can ask a user to perform operations even after having joined a group, in
order to keep the user inside the group or check that it is not a bot in its turn and
gain the right to write in the group. Some of the controls may include:

• Solving an arithmetic operation.

• Answering a simple question.

• Solving a CAPTCHA by clicking on a link.

Usually, we have a few minutes to complete the task. If the checks fail, we are
removed from the group.

8

The Crawler

2.2 Database

In this section, we will discuss the solution to permanently store the data, metadata,
and statistics collected by our crawler.

2.2.1 MongoDB

MongoDB is a NoSQL, document-oriented database providing high performance,
high availability, and easy scalability. It stores data in flexible, JSON-like BSON
(Binary JSON) documents, allowing for dynamic and nested schemas. This nature
makes it well-suited for scenarios with evolving data structures and dynamic data,
like the one we have been facing. The importance of using a database is essentially
given by two reasons:

1. The amount of data we are dealing with could be huge and growing exponen-
tially, so keeping the data we are interested in memory would be impossible.

2. Besides, keeping data in memory is not a good practice because the run of
the program could crash unexpectedly due to an unsolved bug or a simply
voluntary interruption. Hence, all data collected would be lost.

2.2.2 Database Collections

Our database, called MyCrawler, is composed of 9 different collections, the contents
of which are discussed in more detail in the section 2.2.

• Analytics: to compute analytics about crawling activity;

• Bot-collection: to store messages exchanged with bots;

• Done: to store links already processed and keep track of their states;

• Edges: to store the data for creating edges and vertexes of the graph;

• Gathered: to store metadata about the link crawled;

• groups: it contains the actual data collected inside the groups/channels;

• Leave: to keep track of the group to leave;

9

The Crawler

• TBP: it is the "to be processed" collection. Namely a list of links collected
that have to be processed;

• Wait: to keep track of the groups you have requested to join;

Figure 2.1: Collections view from MongoDB GUI

2.3 Requirements

The goal of this work is to overcome the limitations of previous versions of the
crawler. Although they are well programmed, some of the challenges to make the
crawling better have been left open. For this reason, we carried out this project:
to reach a more stable, scalable, efficient, and performing version.

In this section, we discuss the requirements needed for reaching our target, for
implementation details look at the next section 3.2.

2.3.1 Flood Wait Error

The main challenge to face when developing a crawler using Telethon API is the
limitation of function calling, to avoid an abuse of the API and a misbehaviour inside
the platform. So, Telegram puts limitations on the number of groups/channels you

10

The Crawler

can join in a specific time interval. To force respect for these limitations, an error is
raised when API functions are called many times in a short time. In particular, it
is called "Flood Wait Error". Hence, when we are "flooding" the platform with our
requests, we will be stopped for an arbitrary amount of time expressed in seconds
indicated by the exception raised. The waiting time range can be short (from 70
seconds) or long (even tens of thousands of seconds).

Unfortunately, Telegram does not explain the criteria behind this protection
mechanism, so it is impossible to avoid or circumvent. The previous version
dealt passively with the generation of these flooding errors, repeatedly calling API
functions and stopping only when the platform dictated. However, this strategy
is not that efficient because we can get several flood wait errors of thousands of
seconds, making the performance of the program unpredictable, as well as keeping
the program inactive (consuming resources in vain) for an arbitrary amount of
time.

One of the tasks of our version is to avoid long waits imposed by the Flood Wait
Error, by controlling the workflow stopping temporarily the code execution after
an API functions call.

2.3.2 Bot interaction

In the section 2.1, among the descriptions of Telegram entities, we have seen what
is a bot. Interacting with a bot from the Telegram application is quite simple. We
can say the same for the automatic interaction using the Telethon API, due to
the many different natures of existing bots. Notwithstanding, we decided to add
this feature to our crawler, at least for the first and simplest level of interaction,
because it is not rare to find links to bots. For the first level, we mean just sending
the starting message and waiting for an answer.

2.3.3 Graph

Another modification with respect to the last version is the data used for creating
the graph of visited groups. One way to proceed with tracking the graph is to keep
track of the connection between links, i.e. visiting a link is a node and all the new
links found in that visit are the edges outgoing from that node. Instead of using

11

The Crawler

links, we decided to use the unique ID of groups/channels/bots. This choice is
justified by the fact that using links could lead to useless edges present in the graph
since every entity could be pointed by one or more links. Using ID this problem is
got over since the id is unique for each entity.

2.3.4 Data collection

Additionally, we determined to collect data of different natures and not only text
messages. First, we keep track of the time of each insertion on the database, which
can help when we approach data analysis. Then, we store the last 500 messages
found in groups and channels in which we joined and messages exchanged with
a bot. But, instead of saving just the text, we decided to save the metadata
associated too. Examples of metadata are:

• ID

• Timestamp

• Number of views

• Replies

• Edit date

• Post author

In general, the data we gather for each group/channel we join are:

• The group id

• Timestamp of the collection

• Username

• Name

• Link

• Scam flag

• Members list if available

• Messages if any

12

The Crawler

2.3.5 Statistics

Last but not least, we collect statistics on the activities performed by the crawler.
In the "analytics" collections, we keep track of the following parameters:

• The total number of links evaluated.

• The number of bots the crawler has interacted with.

• The number of groups/channels we managed to gather data.

• The amount of the requests sent.

• The amount of the requests accepted.

13

Chapter 3

Crawler Design and
Implementation

3.1 Design

The software design of the crawler plays a determining role in its effectiveness,
efficiency, and performance improvement. In this section, we delve into the ar-
chitecture and design choices behind the development of our crawler. Like in
the previous version, a key feature of our implementation is the utilization of a
multi-process program, but differently, we decided to employ a master-workers
architecture. These two design choices are motivated by the following reasons:

1. The need to enhance scalability and overall performance in terms of links
evaluated and groups/channels joined in the time unit.

2. The need to keep the tasks of the master and workers separated and indepen-
dent from each other, in order to be more resistant to a potential fault.

3.1.1 Multi-process Master-Workers Architecture

The master-workers architecture is a distributed computing paradigm where a
single process, called the Master, manages and coordinates the activities of multiple
processes, called Workers. This design is suitable for scenarios where tasks can

14

Crawler Design and Implementation

be divided into independent sub-tasks that can be executed concurrently. In
the context of our crawler, the master-workers architecture enables the efficient
exploration of the Telegram network by distributing the workload across multiple
processes. It is possible to implement it, thanks to the creation of several accounts.
Each of them has two credentials parameters for managing applications using
Telegram API:

• API ID: it is a unique identifier assigned to your application when you register
it on the Telegram API platform. It helps Telegram identify your application
and associate it with the correct set of permissions.

• API hash: it is a secret hash key that is paired with your API ID. It serves
as a form of authentication, ensuring that only authorized applications can
access Telegram’s API on behalf of users.

In the next section, we are going to see how to use them for connecting an
account to the Telegram servers.

Workers
Worker processes operate concurrently, each one is responsible for fetching and

processing a task assigned by the master, waiting once finished, and, then, putting
itself in the free processes queue. By parallelizing the crawling tasks, we exploit the
computational resources more efficiently, significantly reducing the time required
to explore the vast Telegram network. Each worker process is designed to be
independent and stateless, allowing for straightforward scalability by adding or
removing worker processes dynamically.

Master
The master process acts as the coordinator of the crawling procedure. The main

responsibilities include:

• The task assignment.

• The deployment of Telegram URLs to be crawled.

• The managing of results from workers.

15

Crawler Design and Implementation

• The managing of the links states.

• The interaction with MongoDB in both directions.

• The creation of data structures needed.

• The creation of the workers.

Specifically, there are three kinds of tasks to assign:

1. JOIN: the worker has to try to join the link the master has passed as a task
parameter.

2. LEAVE: the worker should leave the previously-joined entities, and do it if it
is the case

3. WAIT: the worker has to check if the requests previously sent have been
accepted, if yes we are inside and we can start to collect the data and the new
links.

The master process assigns each task to an available worker and keeps track
of the free processes. It also monitors the progress of the crawling operation and
ensures the overall coherence of the data retrieval from the MongoDB.

3.1.2 Design Considerations

The design incorporates fault-tolerance measures to handle potential failures during
the crawling activity. If a worker process encounters an error or fails or the account
associated is banned, the master process redistributes the failed task to an available
worker, ensuring the continuity of the crawling process.

In the next section, we deepen the implementation details of our crawler, showing
how the design principles outlined in this chapter are translated into a functional
and effective Python program.

16

Crawler Design and Implementation

3.2 Implementation

3.2.1 Libraries

The crawler implementation relies on the following libraries providing essential
services and components:

• Multiprocessing library: it is used for implementing the master-workers
architecture. One of the most important aspects of our crawler is the im-
provement given by a well-structured parallelization. Moreover, it provides
the fundamental queue data structure for communication between the master
and workers.

• PyMongo: it is needed for the integration of MongoDB. PyMongo allows for
interaction with our database, making the storage and retrieval of gathered
data efficient.

• Telethon library: used for the interaction with Telegram API, namely for
the communication with Telegram servers.

3.2.2 Authentication and Session File

In this context, a session file acts as a continuous identifier for a user’s session and
it contains the two previously mentioned parameters that must be kept confidential
because they uniquely identify an account: API ID and API hash. Thanks to these
an account authenticates itself with Telegram API.

Thanks to this file, a user keeps its connection with Telegram servers, hence
even though the crawler is stopped, it can resume its activity without manual
re-authentication.

Each account creates its session file in a single process run initializing a Telethon
client with the provided API parameters:

client = TelegramClient(’SessionFile_name’, api_id, api_hash)

After the execution of this line of code, the program will request to digitize
our phone number and then the OTP code we received in our account (so, we need

17

Crawler Design and Implementation

to be already logged in to another device). Then the session file will appear in the
development environment.

Since it is impossible to create a session file in a multi-processing run, we need
to do the above-described operation for every account we are going to use. Once
we generate correctly all the session files, we can use them in concurrent execution.

3.2.3 Database installation and configuration

To do this work, we created a virtual machine running Ubuntu Linux 22.04.2 on
the server of the University accessible via SSH or remote desktop where we could
install the database and run our crawler.

Installation
After the download of the necessary package, we installed the MongoDB instance

with the following command:
sudo apt install mongodb
Then, after the completion of the installation, we started the instance of the

MongoDB with this command:
sudo systemctl start mongodb

Configuration
Once correctly installed and running, we modified the configuration file for:

1. Adjusting the ’bindIp’ to specify which IP addresses MongoDB will listen on.
In our case, we made it reachable from anywhere, so we modified the value to
’0.0.0.0’ and ’port’ to run MongoDB on port 27015 and eventually restarted
the instance.

2. Adding the security section on the file to enable authentication with username
and password (default is not the best solution but for our work, it is enough).

Then, creating the user and downloading the MongoDB Compass (the graphical
user interface) were the last steps to start using our database, which we connect
with the following string:

mongodb://myUserAdmin:mypassword@myip:27015/?authMechanism=DEFAULT

18

Crawler Design and Implementation

3.2.4 Database organization

In the section 2.2 we illustrated MongoDB, its installation, and configuration. Now
we are going to give details on the data collected and the schema of each collection,
as well as some examples of PyMongo commands to insert, update, or delete an
entry in our database collections.

• Analytics collection, 3.1: It includes some statistics computed during the
execution of the crawler, each entry is made of two fields: id and counter.
Both of them are Int32. See subsection 2.3.5 for details.

Figure 3.1: Analytics Collection

• Bot collection. 3.2: It includes the messages exchanged with the bots, each
element is made of:

– "process_id": It is the id of the process or account that has interacted
with the bot.

– "id": it is a string containing the entity unique identifier on Telegram.

– "link_hash": it is a string containing the link processed.

19

Crawler Design and Implementation

– "messages": it is an Array of message object, containing the conversation
the account had with the bot. Each message contains the text and all the
metadata available mentioned at 2.3.4

– "time": it is the time of the insertion in the database.

Figure 3.2: Bot Entry Example

• Done collection, 3.3: it keeps track of the links state, each element consists
of:

– "process_id": it is the id of the process or account that has processed the
link.

– "state": it is a string containing the processing state of the link. We have
defined the following states:

1. "to be processed": when a link has still to be processed and it is in the
TBP list;

2. "processing": when an account is processing the link and, maybe,
collecting data from that group/channel;

3. "inside": when an account managed to join the link and is inside
waiting to leave;

4. "join failed": when the attempt to join the link has gone wrong;
5. "done": when an account completes correctly the processing of the link

(with successful leave);
6. "waiting": when an account has sent a request for accessing that link;
7. "leave failed": when an account did not manage to leave the link.

– "link_hash": it is a string containing the link processed.

– "time": it is the time of the last state change.

20

Crawler Design and Implementation

Figure 3.3: Done Entry Example

• Edges collection, 3.4: it keeps the information for drawing the crawling
graph, each entry is made of:

– "dest": it is an Int32 containing the ID of the entity joined.

– "sources": it is an array of Int32 containing the IDs of all groups/channels
where we found the link of the destination entity.

Figure 3.4: Edges Entry Example

• Gathered collection, 3.5: it keeps track of each message in which we found
a link, each entry encompasses:

– "link_hash": it is a String indicating the link found and gathered.

– "message": it is the object message, its text field is where we found the
link.

– "group_id": it is a Int32 indicating the id of the group or channel where
we found the link. This information helps us to build the crawling graph.

– "group_name": it is a String indicating the name of the group or channel
where we found the link.

– "date": it is indicate when we found this link.

21

Crawler Design and Implementation

Figure 3.5: Gathered Entry Example

• Groups collection, 3.6 the heaviest collection of our db. It contains the
data actually collected once we are inside a group. The fields of this kind of
entry have been specified in subsection 2.3.4

Figure 3.6: Groups Entry Example

• Leave collection, 3.7: It contains as many queues as the number of accounts
configured to crawl. It keeps track of the groups or channels joined that we
have to leave after a certain amount of time. We set a threshold of 24 hours.
It means that we stay 24 hours inside a group or channel unless the code raises
an error during a leave task. Each element of the queue contains:

– "link_hash": it is the link of the group to leave.

– "id": it is the id of the group to leave

– "time joined": it is the join time.

• TBP collection, 3.8: It is the list of links that have to be processed by
the crawler. When a link is assigned to a worker, we update the time, the

22

Crawler Design and Implementation

Figure 3.7: Leave Entry Example

process_id with the id of the worker, and we remove the entry from this
collection and insert it in the done collection updating its state.

Figure 3.8: TBP Entry Example

• Wait collection, 3.9: It contains as many queues as the number of accounts
configured to crawl. It keeps track of the groups or channels we sent requests
to join. We set a threshold of 24 hours. It means that we wait 24 hours to
check if the account involved has been accepted or not. Each element of the
queue includes:

– "link_hash": it is the link of the group/channel we sent the request.

– "time request": it is the request time.

Examples of PyMongo command
groups_collection.insert_one(result[’data’])
done_coll.update_one({"link_hash": result[’link’]}, {"$set": {"state": "inside"}})
tbp_collection.insert_many(result[’new_links’])
analytics_collection.update_one({"_id": 0}, {"$inc": {"collect_counter": 1}})

23

Crawler Design and Implementation

Figure 3.9: Wait Entry Example

3.2.5 Workers implementation

A worker is a process acting in a passing way. Its only responsibility is waiting for
an assignment from the master. It never interacts with the database, it only uses
the Telethon API functions for executing tasks assigned and returning the results
obtained. The core of our worker implementation is the function crawler_worker.
After the creation of the workers, the master passes to each process all the data
structures it created: Telegram client instance, "task_queue", "result_queue",
"process_queue", and the process identifier.

The crawler_worker, which is in charge of building the result data structure,
consists of an infinite while loop: after the initial operation of getting a task from
the specific "task_queue" (each worker has its own task queue passed from the
master) the function logic can be divided into three branches (LEAVE, CHECK
WAIT, JOIN), as shown in the figure 3.10. The task element extracted is composed
of two fields:

• "name": it contains one of the three task to perform;

• "data": it is an array containing the data (links or IDs) needed for the execution,
whose content and length depend on the assignment to carry out.

JOIN
The data structure of this case contains just one link to evaluate. In this task,

the core function is evaluate_link(client, link, result) which wraps many other
functions needed for satisfying the requirements we defined in the section 2.3.
Let’s deep dive into this function.
In turn, the evaluate_link is logically divided into three branches; the first two

24

Crawler Design and Implementation

aim to recognize if the link belongs to a bot, and the third is the one used for the
actual evaluation of a generic link.
Therefore, there are two ways to understand is a bot or not:

1. Looking for a parameter in the link (preceded by the symbol "?").
If there is no parameter in the link, move on to step 2. If yes, to be sure
we are dealing with a bot, we can leverage the call to the API function
client.get_entity(link), which lets us have some meta-information about the
link before joining it. If the type of the entity returned by this function is User
and its bot flag is TRUE, then we can set the result code to "BOT_RESULT".
If one of the last two conditions is not true, we can return a result with
"JOIN_FAILED" code.

2. Check if the link terminates with "bot", "BOT", "Bot", ...
If yes, set the result code to "BOT_RESULT". Otherwise, jump to the last
branch of the function.

If one of these two methods tells us the link under evaluation is a bot, we call
the bot_interaction function. We implemented it to interact with a bot, just for
the first level of conversation. We send a simple message "/start" plus a possible
parameter and wait for the answer. When we receive it, we look for the presence
of new links and save them and the entire conversation in the result structure.

The third branch of the function includes an attempt to join the link under
evaluation without knowing anything about that. We try to join the link using
the function join_group_by_hash. It calls the API function ImportChatIn-
viteRequest(link), which is used to import a chat from an invite link. If we are
not dealing with an invite link or it is no longer valid, the function raises an Invite-
HashExpiredError , so we try with another function join_group_public_by_link,
which in turn calls the already known API function JoinChannelRequest. If
neither of the two functions manages to access a group/channel or send a request
("REQUEST_SENT result"), an error is raised and the result code for this task is
set to "JOIN_FAILED". These functions can generate FloodWaitError, so we set
again a waiting for about 2 minutes to prevent a huge stop by the API server.

Instead, if one of the two functions has successfully joined the entity it starts

25

Crawler Design and Implementation

the actual phase of data crawling and the result of this task is "JOIN_SUCCESS".
We delegated this assignment to the process_link function, which in turn calls
the gather_links and the collect_data. The goal of the gather_links is to look for
new links to crawl in all the messages present in that group/channel. It uses a
regular expression to filter only the link pointing to Telegram. While the goal of
the collect_data is to collect all the information we can about that entity: id, name,
username, members, messages...

LEAVE
When this task is assigned, a worker will find in the data field one or more

elements coming from its leave_queue containing the IDs to leave. We pass this
value to the function leave_group which in turn wraps the call to the API function
client.delete_dialog(id).

The operation could be successful or not, due to different motivations, e.g.:

• We could have been expelled from the group/channel, so we are no longer
inside.

• The group or channel could have been already deleted.

So, the result code will be "LEAVE_SUCCESS", otherwise "LEAVE_FAILED".
We inserted a short wait (5-10 s) between two consecutive leaves API calls, just
because if the groups are managed by the same admins we do not raise suspects of
being an automated application and not a human.

CHECK WAIT
Like the previous task, in the data field will be one or more elements coming

from the specific wait_queue containing the link whose request status we need to
check. The execution of this task harnesses the call to the API function for each
link:
client(JoinChannelRequest("link_hash")). This one needs the link passed as
a parameter and if it raises the error UserAlreadyParticipantError, it means that the
group/channel admin accepted our request (result code: REQUEST_ACCEPTED).
Hence, we are ready to collect links and data, but the process of this step will be

26

Crawler Design and Implementation

described in the next paragraph, being equivalent to a successful join. If another
error is raised the result code is STILL_WAITING. We have to underline that
after each call to that function, we set waiting for about 2 minutes, to avoid a huge
stop imposed by the FloodWaitError.

Finally, at the end of each of the three tasks (including any waiting), each worker
puts the result it built during the execution in the results queue and its identifier
in the queue of free workers, becoming ready for receiving the next task.

27

Crawler Design and Implementation

Figure 3.10: Worker flow chart

3.2.6 Master implementation

The Master has the duty of coordinating and ensuring the correctness of the crawling
activity. It has to prepare the environment for the crawler by creating the worker

28

Crawler Design and Implementation

processes and the data structures (task queues, processes queue, leave queues, wait
queues, results queue) needed for communication between itself and the workers.
As the figure 3.11 shows, the master consists of a while cycle that keeps going
until there is an element in the "to be processed" collection. It comprehends two
macro functions:

• Tasks assignments: the part of the chart with the three different colors.

• Results retrieval: it is the block of the code downstream of the three branches.

Tasks Assignments
As mentioned in the section 3.1.1, the master can assign 3 kinds of tasks, with the

following priority: LEAVE, CHECK WAIT, JOIN. For each task, the master
passes to the worker the name of the task and the necessary data for executing it.

First of all, the master checks if there are free workers available. If not, it is in
charge of emptying the results queue out, saving the data obtained in the database.
The free processes are stored in a queue: a shared data structure in which the
master gets the last element added (an integer representing the process id) and the
workers put its id when it has completed a task assigned.
Once the master has found an element in the free process queue, it proceeds with
the task assignment:

• If the selected worker has groups to leave, then the master checks if the worker
stayed inside those groups for a time that exceeds the threshold we set. If
there is at least one entity for which the limit has been exceeded, then the
master assigns the LEAVE task to that worker.

• Instead, if there are no groups ready to leave, then the master checks whether
there are requests to monitor sent previously by that worker, following the
same criteria described above. If it has elapsed enough time for one or more
requests, the master assigns the CHECK WAIT task to the worker.

• Finally, if the master can not assign the two previous tasks, then it assigns
the JOIN task to the worker. After the assignment the master takes care of
keeping updated the "to_be_processed" list on the database, deleting all the

29

Crawler Design and Implementation

Figure 3.11: Master flow chart

30

Crawler Design and Implementation

possible occurrences of the link passed as a task data parameter to the worker.
Once we assign this task, we update the "total_counter".

Results retrieval
The master carries out this function when there are no free workers available

and at the end of each task assigned. The "result_queue" contains all the results
produced by the workers as they proceed with their tasks. We implemented inside
the master a "get_result" function, whose purpose is:

• Cycling on the "result_queue" getting one result at a time until the queue is
empty.

• Read the code of the extracted element and figure out what actions to perform.

• Update the appropriate database collections if needed.

We can read from the code field of the result data structure 8 different self-
explanatory String returned from the workers:

1. JOIN SUCCESS : in this case, the link state goes from processing to inside.
The result contains to insert in the database: the list of new links found and
the actual data collected inside the entity joined. Moreover, we update the
"collect_counter" and the "leave_queue" belonging to the specific worker.

2. JOIN FAILED: this is the case in which the tried join failed, so the only thing
to do is to change the link state to "join_failed".

3. BOT RESULT : this is the result coming from a bot conversation. We insert
in the database the same elements of case 1 and the link state changing is
the same too. In this case, the data collected are the bot conversation, so we
update the "bot_counter" too.

4. REQUEST SENT : in this case, the link state changes to waiting. We update
the "request_counter" and the wait queue belonging to the specific worker.

5. LEAVE SUCCESS : when we leave an entity previously joined, we have to
change the link state to done and remove the element from the "leave_queue".

31

Crawler Design and Implementation

6. LEAVE FAILED: in this case the state changes to "leave_failed". We need
to update the "time_joined" field in the queue element to let a new attempt
leave after the threshold has expired.

7. REQUEST ACCEPTED: this case is totally equivalent to case 1 unless we
need to update the "request_accepted" counter too.

8. STILL WAITING: this last case requires just to update the "time_request"
field in the element of the "wait_queue" involved.

In addition to the above-listed database updates, in cases 1, 3, and 7 (namely,
when we are managed to access an entity) we update also the "edges_collection".

32

Chapter 4

Analysis and results

In this chapter, we are going to discuss the results obtained during the crawling
activity. We are going to analyze the performance of our software under different
circumstances. In particular, we tried our crawler with 5, 2, and 1 processes.

Before to start, it is due to make some clarification on terminology:

• Link evaluated: it is a group, channel, or bot link we tried to join.

• Link joined (or collected): it is a link, in which we joined successfully because
the link is valid and we are able to collect the data inside it.

The crawling test, using the latest version of the software, started at the end
of October 2023. We used the seed [10] just the first time. In the following days,
we restarted the crawling from the point where it left, after an interruption due
to several possible reasons (banning, fatal crash, database fault). As we said, our
crawler can be manually interrupted at any time, and then re-start from where it
is left.

Overall, the crawling lasted about 25 days. Here are some statistics about it:

• 24,083 links evaluated from all processes.

• 8,209 links from which data have been collected (including 566 bots).

• 1,291 requests sent, 902 accepted.

• 646,846 links gathered, started from a seed of about 380 links.

33

Analysis and results

4.1 Performance analysis

4.1.1 5 Workers

Since we designed our crawler to be used with a high number of workers (Telegram
clients), we created 4 brand new accounts for this purpose and used another one
created years ago. At the full rate, the overall work made by the different processes
can reach more than 140 links evaluated in an hour (about 28 links/worker per
hour). We managed to collect to join and collect data in about 20 links/worker per
hour.

With respect to the previous versions, it’s a meaningful improvement, but
unfortunately, this is the maximum rate achievable by our solution, because the
crawling performance is slowed due to platform limitations such as unpredictable
Flood Wait Error or ban. Furthermore, the rate is even slowed down by two design
choices:

• Self-stop after API call to avoid too long Flood Wait Error

• Other two tasks to perform (LEAVE and CHECK WAIT)

In particular, during this test, we noticed that the new accounts suffered several
Flood Wait Errors of order of magnitude until 40,000 seconds, despite the self-stop
mechanism we implemented. Then, the performance dramatically dropped due to
the progressive ban of the 4 new clients.

So, in order to do crawling that is not heavily hindered by the platform, it is
necessary to use accounts that have not just been created but have already done
some activity in the previous months or years within Telegram.

4.1.2 2 Workers

We decided to continue the crawling with 2 accounts existing for different years to
avoid other blocks from the platform. The last crawling campaign lasted 18 days,
without interruptions.

As shown in Figure 4.1, the total number of links evaluated per hour can reach
a total of 60 units for the two workers. This metric, with all the mentioned

34

Analysis and results

considerations related to performance limitations, is compatible with the previous
scenario, with 28/30 links per worker per hour evaluated.

We can recognize a pattern in the distribution link evaluation. Every 24 hours
more or less, there is a regular drop in the performance. Because we have set the
temporal threshold for the other two tasks at 24 hours. It means that if there are
groups to leave or requests to check for at least 24 hours, the worker will execute
that task.

Figure 4.1: Overall representation of the total number of links evaluated during
crawling with 2 workers. Each color represents a day. Each point in the chart
represents a value in an hour interval. 24 points for each day, unless the first and
the last one because the crawler started and ended with the day in progress.

Another interesting metric to show is the total number of entities joined in the
hour and day intervals. We recognize the same kind of pattern as before. From
Figure 4.2, we can see a peak at 40 entities globally joined per hour (we can reach
20 entities joined per hour for each worker). Of course, this metric strongly depends
on the number of links valid among the ones evaluated, which is unpredictable.

Moreover, the graph can be divided into two parts. The first one is from the
starting day to 2023-11-11, and the second one is from 2023-11-12 to the end of
the activity.

After 6 days, one of the two workers disconnected for unknown reasons (probably
because of a problem with the session file), but we decided to leave the crawler

35

Analysis and results

running to see the behavior of our software and to make the right decision in bug
fixing. Surely it was not banned, because we still had access to the account. The
only problem is that a link under evaluation from a worker not connected can
not be joined, because it is impossible to call the API function. Hence, the task
to evaluate the link is assigned correctly (see Figure4.1), but at the moment of
trying to access it, the bug comes up. The main issue to fix is that if a worker is
disconnected for any reason, it should not receive a link to evaluate. So, we can see
how after 2023-11-11 the overall performance of groups joined gets halved, since
only one worker kept executing correctly.

Figure 4.2: Overall representation of the total number of links joined during
crawling with 2 workers. Each color represents a day. Each point in the chart
represents a value in an hour interval. 24 points for each day, unless the first
and the last one because the crawler started and ended with the day in progress.
Since 12-11-2023, the crawling kept working with just 1 worker due to a connection
problem with the other one. So performance gets halved.

36

Analysis and results

4.2 Flood Wait Error (FWE) analysis

In this section, we are going to make some considerations about Flood Wait Error
imposed by the platform due to the abuse of API functions calling.

To the best of our knowledge, a Flood Wait Error is something impossible to
avoid and to predict, due to the restrictions Telegram puts in place to avoid abuse
of API calling in its platform. Indeed, there is no public information on which
criteria are behind the decision of the time to wait after a FWE. In our crawler, we
dealt with this problem, by setting a waiting time of inactivity after an API call,
usually the JoinChannelRequest or ImportChatInviteRequest, the two functions
used in the JOIN and CHECK WAIT tasks.

For example, in Figure 4.3, we can see that after 6 days of crawling a worker
received 165 FWEs, between 50 and 700 seconds. We can notice also that on the
first day of crawling the number of FWE is sensibly smaller than the other days.
In this way, it is possible to achieve some kind of predictability on the performance
of our crawler, since we expect that we will surely receive Flood Wait Errors, but
these are expected to be in the range represented.

Figure 4.3: Representation of Flood Waits Error received each day by the worker
0. Each color represents a day. This error becomes more frequent as the crawling
continues. The positive note is that in 6 days we have always received a waiting
time between 50-700 seconds, which is acceptable. The darker the color becomes,
the closer in time the errors reported are.

37

Analysis and results

However, it is not guaranteed that self-stopping after an API call is enough to
have an (almost) predictable waiting time range. Indeed, we plotted the Cumulative
Distribution Function for the waiting values of the overall 1,262 FWEs received in
18 days of crawling. As shown in the figure 4.4, despite the self-stop mechanism
enacted there are three FWEs two orders of magnitude larger than usual. It’s not
common, because the vast majority of FWEs are within the range we expect (50-700
seconds), but it happened 3 times to have 10,000, 20,000, and 30,000 seconds of
wait. The positive side is that these FWEs have not been followed by a Telegram
ban, like in the previous case (when we used 4 new accounts).

Figure 4.4: Representation of Cumulative Distribution Function of all the Flood
Wait Errors received by all the workers. Log scale on the x-axis.

4.3 Graph Analysis

In this section, we are going to make some considerations about the graph created
through the exploration of the Telegram environment. The graph created by
the crawling activity illustrates the web of connections and relationships within
a network of interconnected information, in our case Telegram. We decided to
generate a directed and weighted graph in which the nodes are groups/channels/bots

38

Analysis and results

and the weight of each directed edge from "i" to "j" represents how many different
links collected in the entity "i" point to entity "j".

The graph provides a visual representation of the structure and complexity of
the crawled data, it can reveal patterns, clusters, and central nodes, facilitating
the understanding of the relationships within that digital ecosystem.

Our graph consists of 8,479 nodes and 66,935 edges. In Figure 4.5, looking at the
coloring gradient, which indicates the temporal exploration ranking, we can assume
that snowball sampling that started from the white-colored seeds was concentrated
in the exploration of a very interconnected part of the network, of which many
seeds were part. The dark coloring of some nodes in the peripheral areas suggests
to us that, though slowly, exploration is finally coming out of this bubble. Future
analysis of the graph, after a larger data collection, may then reveal other separate
substructures.

Figure 4.5: Crawling graph. A darker color means that the node has been visited
later, while the size of the node indicates the in-degree.

39

Analysis and results

In graph theory, the term "degree" refers to the number of edges incident to a
node. In a directed graph, the in-degree represents the number of incoming edges.
The out-degree represents the number of outgoing edges. The degree of a node is a
fundamental concept in graph theory and is often used to analyze and characterize
the structure of graphs. Vertices with higher degrees may be considered more
central or important in certain contexts, and the distribution of degrees across all
vertices provides insights into the connectivity and complexity of the graph. So,
the graph we created with crawling has an average degree equal to 15.79. As in
Figure 4.6, these degree distributions turn out to be very heterogeneous, a property
that distinguishes most of the real graphs.

Figure 4.6: Graph degree metrics

40

Analysis and results

Another example of an investigation done is the identification of the substructures
present in the graph, called community. Community division is a term often used
in the context of community detection in networks. A community in a graph
represents a group of vertices that are densely connected to each other but less
connected to vertices in other parts of the graph. Community detection algorithms
aim to identify these groups or communities within a network. To search for
community, we made the graph undirected and used the Leiden algorithm [11].
Figure 4.7 is an example of community division in our case.

Figure 4.7: Graph community division. Each color represents a different commu-
nity.

41

Chapter 5

Conclusion and future work

In the pursuit of understanding and harnessing the vast landscape of Telegram,
this thesis focused on the development of a more advanced crawler than the
previous works. The objective was clear: design a tool capable of navigating the
Telegram network while upholding privacy, data collection practices, and principles
of responsible crawling. The work began with a deep dive into the significance
of Telegram as a leading instant messaging platform, setting the stage for the
challenges and opportunities that lay ahead.

The core of this thesis lies in the design and implementation of a multi-process
crawler, adopting a master-workers architecture. This architectural choice was
pivotal, as it facilitated scalability, responsiveness, and overall efficiency in the
retrieval of data from Telegram entities and interaction with MongoDB. Each
worker, operating independently, contributed to the parallel execution of tasks,
allowing the crawler to adapt dynamically to the ever-evolving Telegram ecosystem.

Implementation details, from task distribution mechanisms to fault tolerance
considerations, have been thought to ensure a seamless and robust crawling experi-
ence. Indeed, one of the peculiarities of our crawler is the possibility of interrupting
crawling and starting it again from the state of interruption.

As we conclude this phase of the Telegram crawling, several possibilities for
future research and development emerge. These avenues aim to enhance the
capabilities of our current crawler.

42

Conclusion and future work

One promising area for future development lies in expanding the crawler’s capa-
bilities to have better bot interaction. Creating software to have a full conversation
with a bot would require a huge work, especially due to the number of different
kinds of bots that exist. Enabling the crawler to engage in more nuanced conver-
sations and dynamically adapt to different bot functionalities would unlock new
dimensions of data collection and analysis.

Another task addressed in our work, but not sufficiently in-depth, is the collection
of external links found in Telegram messages. This augmentation would provide
a holistic understanding of content sharing and user interactions, extending the
reach of the crawler beyond the Telegram ecosystem.

Moreover, the integration of machine learning algorithms for data analysis stands
as a significant next step in the evolution of our crawler. By infusing intelligence
into the system, we can empower the crawler to adapt its strategies based on
observed patterns, making it not just reactive but proactive in optimizing data
extraction efficiency.

Last, but not least, the code can be enriched with improvements related to
different aspects:

• Potential bug, logic error, or inaccuracies missed by the programmer.

• Adding a control using language detection if we want to limit the exploration
of certain kinds of clusters.

• better error handling, especially when a client (worker) results disconnected
for an unknown reason.

• Better code modularity.

• Improved log file outputs. Enhancing the output of log files emerges as a
critical aspect of refining the crawler’s transparency and usability. Detailed
information about the crawling process, error handling, and task execution,
when presented in a more user-friendly format, can greatly aid in monitoring
and troubleshooting.

In conclusion, this work has laid the foundation for a powerful Telegram crawler,
ready to meet the challenges of the dynamic platform landscape. The master-
workers architectures position our crawler as a valuable tool in the realm of web

43

Conclusion and future work

data mining. Looking to the future, the possibilities are vast. The potential for our
crawler to evolve into a more intelligent and adaptive tool that comprehensively
explores Telegram and beyond is challenging. This master thesis is not just an
end point, but a springboard to continue to explore and innovate in the world of
instant messaging data mining.

44

Bibliography

[1] Edoardo Gabrielli. telegram-groups-crawler. 2022. url: https://github.
com/edogab33/telegram-groups-crawler (cit. on pp. i, 5).

[2] Armando Chimirri. «Individuazione di data breach su Telegram via crawler e
machine learning». M. Eng. thesis. Turin, Italy: Politecnico di Torino, Apr.
2023 (cit. on pp. i, 5).

[3] Telegram – a new era of messaging — telegram.org. https://telegram.org/.
[Accessed 27-11-2023] (cit. on p. 2).

[4] Daniel Ruby. 90+ Telegram Statistics In 2023. url: https://www.demandsa
ge.com/telegram-statistics/ (cit. on p. 3).

[5] Arash Dargahi Nobari, Negar Reshadatmand, and Mahmood Neshati. «Anal-
ysis of Telegram, an instant messaging service». In: Proceedings of the 2017
ACM on Conference on Information and Knowledge Management. 2017,
pp. 2035–2038 (cit. on p. 3).

[6] Ali Hashemi and Mohammad Ali Zare Chahooki. «Telegram group quality
measurement by user behavior analysis». In: Social Network Analysis and
Mining 9 (2019), pp. 1–12 (cit. on p. 3).

[7] Tuja Khaund, Muhammad Nihal Hussain, Mainuddin Shaik, and Nitin Agar-
wal. «Telegram: Data collection, opportunities and challenges». In: Annual
International Conference on Information Management and Big Data. Springer.
2020, pp. 513–526 (cit. on p. 3).

45

https://github.com/edogab33/telegram-groups-crawler
https://github.com/edogab33/telegram-groups-crawler
https://telegram.org/
https://www.demandsage.com/telegram-statistics/
https://www.demandsage.com/telegram-statistics/

BIBLIOGRAPHY

[8] Massimo La Morgia, Alessandro Mei, Alberto Maria Mongardini, and Jie Wu.
«It’s a Trap! Detection and Analysis of Fake Channels on Telegram». In:
2023 IEEE International Conference on Web Services (ICWS). IEEE. 2023,
pp. 97–104 (cit. on p. 3).

[9] Telethon. Telethon API. url: https://tl.telethon.dev/ (cit. on p. 5).

[10] fastfire. deepdarkCTI. url: https://github.com/fastfire/deepdarkCTI/
blob/main/telegram.md (cit. on p. 33).

[11] Vincent A Traag, Ludo Waltman, and Nees Jan Van Eck. «From Louvain to
Leiden: guaranteeing well-connected communities». In: Scientific reports 9.1
(2019), p. 5233 (cit. on p. 41).

46

https://tl.telethon.dev/
https://github.com/fastfire/deepdarkCTI/blob/main/telegram.md
https://github.com/fastfire/deepdarkCTI/blob/main/telegram.md

	List of Figures
	Introduction
	Background and state of the art
	What is Telegram?
	State of the art
	Thesis outline

	The Crawler
	Entities in Telegram
	Database
	MongoDB
	Database Collections

	Requirements
	Flood Wait Error
	Bot interaction
	Graph
	Data collection
	Statistics

	Crawler Design and Implementation
	Design
	Multi-process Master-Workers Architecture
	Design Considerations

	Implementation
	Libraries
	Authentication and Session File
	Database installation and configuration
	Database organization
	Workers implementation
	Master implementation

	Analysis and results
	Performance analysis
	5 Workers
	2 Workers

	Flood Wait Error (FWE) analysis
	Graph Analysis

	Conclusion and future work
	Bibliography

