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AI-based Visual Pose Estimation for Space Applications

by Federico MOSCATO

As the number of in-orbit satellites increases, the need for a way to service them be-
comes increasingly critical.
Recently the EU funded EROSS, a project with the purpose of providing a new range
of services for in orbit satellites with consequent analysis for satellite design and life-
cycle management. This initiative aims to enhance the availability of cost-effective
and secure orbital services by assessing and validating the essential technological
components of the Servicer spacecraft. The incorporation of robotic space technolo-
gies working on this project will lead to greater autonomy and safety in executing
these services in space, requiring reduced ground-based supervision.

This master’s thesis presents an innovative approach to pose estimation using deep
learning and computer vision techniques. The research explores the development
and implementation of a system for in-orbit satellites pose estimation. Delving into
the complexities of rendezvous maneuvers, the system devised herein addresses the
challenges associated with achieving and maintaining accurate pose estimations in
the ever-changing and demanding conditions of space. Through a comprehensive
exploration, this thesis contributes valuable insights and practical solutions to en-
hance the reliability and efficiency of satellite rendezvous processes.

A mono camera system is employed, reducing the hardware complexity and costs
while maintaining performance. The camera captures pictures of the target satellite
during the whole approach phase. A deep learning framework, based on a Convo-
lutional Neural Network (CNN), is used to identify and track landmark features on
the target satellite from captured images. This CNN-based approach provides high
accuracy in feature recognition and tracking precision. A neural network-based re-
gression model is introduced to map the 2D image coordinates or identified land-
marks to their corresponding 3D coordinates with respect to the camera frame. This
implementation permits to have a mono-camera instead of a stereo-camera system.
Finally, incorporating the CPD algorithm, the system aligns the predicted 3D point
clouds to the reference model, enabling accurate pose estimation and tracking.

The proposed system is tested through simulations. The results demonstrate the sys-
tem’s capability to estimate the pose of in-orbit satellites. This research contributes to
the advancement of autonomous satellite operations, space debris management, and
space exploration. Furthermore, it has the potential to enhance satellite rendezvous
and capture capabilities.
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Chapter 1

Introduction

1.1 Thesis objective

In the expanse of space, satellite missions and on-orbit services have become critical
assets, serving a myriad of applications including Earth observation, global commu-
nication, and scientific research.

The progressive introduction of AI algorithms into various environments, including
space applications, represents a significant leap forward in technological advance-
ment. In the context of pose estimation in space, the incorporation of AI brings a
multitude of benefits that enhance the autonomy of satellite operations.

In recent years, we’ve witnessed a rapid proliferation of on-orbit satellites, driven
by advancements in technology and the need for enhanced space services. As the
number of these satellites continues to rise, the complexities associated with their
safe and effective navigation, rendezvous, and scientific missions have grown in
tandem. This is where AI shines, as it steps in to revolutionize the field of satellite
pose estimation.

In the 2019 the EU funded EROSS [4], a project, with the goal of showcasing key
European solutions for "Servicer" and "Client" vehicles, designed to be used in both
low Earth orbit (LEO) and geostationary equatorial orbit (GEO). This initiative aims
to enhance the availability of cost-effective and secure orbital services by assess-
ing and validating the essential technological components of the Servicer spacecraft.
These components are crucial for executing various tasks during satellite servicing
operations, such as rendezvous, capture, grasping, berthing, and manipulation of
a non-collaborative Client satellites. As a result, the incorporation of robotic space
technologies will lead to greater autonomy and safety in executing these services in
space, requiring reduced ground-based supervision.

AI algorithms, equipped with their machine learning capabilities, enable satellites
to process vast amounts of data from onboard sensors with remarkable precision
and efficiency. This means an elevated level of accuracy in determining a satellite’s
position, orientation, and trajectory. But the benefits go beyond mere precision.

AI algorithms, equipped with their machine learning capabilities, enable satellites
to process vast amounts of data from onboard sensors with remarkable precision
and efficiency. One remarkable development is the ability to estimate a satellite’s
position and orientation using just a single camera, eliminating the need for a stere-
ocamera setup. This innovation not only enhances accuracy but also reduces hard-
ware complexity, making satellite design more cost-effective. AI-driven monocular
camera-based pose estimation empowers satellites to autonomously process visual
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data, adjust to dynamic orbital environments, and make informed decisions, even in
the midst of complex maneuvers, ensuring the mission’s success and safety.

Moreover, the increased autonomy provided by AI minimizes the need for constant
human intervention and ground control. This not only reduces operational costs but
also allows human operators to focus on more strategic aspects of the mission, en-
hancing productivity and mission efficiency. As we look to the future, AI algorithms
promise to usher in a new era of space exploration and satellite operations.

In summary, the progressive introduction of AI algorithms in space applications,
particularly in pose estimation, opens the door to enhanced accuracy, real-time adapt-
ability, autonomy, and overall mission efficiency. This transformative technology
propels us closer to unlocking the full potential of space exploration and satellite
services.

The objective of this thesis is to implement the rendezvous of a collaborative satel-
lite using AI algorithms, with a particular emphasis on their applications in mono
camera-based visual pose estimation. The focus is specifically directed towards a
detailed analysis of rendezvous operations within the 200-20cm distance range from
a non-cooperative satellite. This project delves into the critical aspects of pose esti-
mation throughout the entire trajectory of the rendezvous process, extending from
the initial approach to the final berthing phase.

1.2 Dataset

The algorithm is designed around TASI EROSS IOD Simulated Dataset N°2, which
consists of grayscale images of the satellite; see figure 1.1.
The training dataset is composed of sixteen trajectories each of 900 images. Each
trajectory covers the distance range from 200 to 20 cm to the target and the difference
between each subsequent frame captured by each camera is 0.2 cm. Each image is
of size 512x512 pixels and it’s paired with ground truth 6DOF poses (position and
orientation).

FIGURE 1.1: Sample images from the TASI EROSS IOD Simulated
Dataset N°2
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The data acquisition has been performed as follow:

• Non Prepared scenario: LAR view.

• Natural Illumination: Full illumination (sun @45°, 130k lux).

• Illumination system: ON (150lm x6 LEDs).

• Simulated Camera Settings:

– Shutter speed: 20

– ISO: 5

– Aperture: 4

– FOV: 67.8°

• Reference System:

– Left-handed XYZ reference.

– Origin [0,0,0]:

* XY: zeroes on the vertical symmetry axis of the Target.

* Z: Positive towards contact, zeroed on the lowest contact point of the
LAR.

– All units are in centimeters (cm).

• Trajectories:

– all trajectories follow the same XYZ coordinates.

– the rotation is considered with Euler angles as Pitch (around axis x), Yaw
(around axis y) and Roll (around axis z), all positive counterclockwise.
Trajectories’ specifics are reported in table 1.1.

– Camera pointing XY in [-46, +20].

FIGURE 1.2: Model’s UPS
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TABLE 1.1: Specifics of the simulated training trajectories.

Trajectory Roll(°) Pitch(°) Yaw(°)

TRAY_1 0 0 0
TRAY_2 0 0 -1
TRAY_3 0 0 -2
TRAY_4 0 0 -3
TRAY_5 0 0 -4
TRAY_6 0 0 -5
TRAY_7 0 1 0
TRAY_8 0 2 0
TRAY_9 0 3 0
TRAY_10 0 4 0
TRAY_11 0 5 0
TRAY_12 -1 0 0
TRAY_13 -2 0 0
TRAY_14 -3 0 0
TRAY_15 -4 0 0
TRAY_16 -5 0 0

The TASI EROSS IOD Simulated Dataset N°3 along with the Less_Difficult_Trajectory
and Difficult_Trajectory are used as the test dataset. The TASI EROSS N°3 is com-
posed of two trajectories, each of which was captured with two different camera
positions. Each trajectory has 900 images.
The TRAY_A starts with +15° on Yaw and linearly converge toward 0 on contact,
while TRAY_B, Less_Difficult Trajectory and Difficult_Trajectory present multiple er-
rors on RPY converging toward 0 on contact as well.

1.3 Thesis structure

The thesis is structured in further five chapters:

Chapter 2 - Background:
This chapter provides a comprehensive overview of key concepts necessary
for the correct understanding of this work, with a focus on monocular camera
models, perspective projection, pose estimation, and a general introduction to
deep learning models.

Chapter 3 - State-of-art:
This chapter delves into monocular pose estimation methods, covering classic
approaches like RANSAC and SfM, and exploring modern techniques such
as end-to-end learning with networks like PoseNet and Mask R-CNN. The
chapter also introduces feature learning, emphasizing CNN-based methods
like HRNet for predicting 2D landmark locations. Moreover, some studies
about spacecraft pose estimation and their use of deep learning architectures
are presented. The chapter also delves into point set alignments, highlight-
ing the widely used and advanced algorithms like Coherent Point Drift (CPD)
technique employed in the method for final pose estimation.

Chapter 4 - Algorithms and Methods:
This chapter delves into the methodology’s core algorithms and techniques. It
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outlines the offline architecture, detailing the 2D-3D correspondence process,
landmark regression, and the neural network-based landmark mapping. The
chapter then presents the online architecture, covering real-time processing
and the Coherent Point Drift technique for pose estimation. Implementation
challenges and dataset considerations are also discussed, providing a compre-
hensive overview of the applied methods.

Chapter 5 - Implementation and Experiments:
This chapter presents the tools and technologies employed for the project im-
plementation and the evaluation metrics for pose estimation, Landmark Re-
gression, Landmark Mapping are described. The chapter culminates in the
assessment of both training and test datasets, showcasing the method’s ro-
bustness and generalization across diverse scenarios. Overall, it provides com-
prehensive exploration of the research’s implementation and experimentation
phases.

Chapter 6 - Discussions and Conclusions:
The Chapter delves into challenges faced by on-board AI systems in space
missions, focusing on verifiability and computational load. It emphasizes the
significance of minimizing translation errors for accurate maneuvering in the
proposed multi-model configuration. The section explores potential improve-
ments, including enhanced landmark selection and strategies to fortify system
robustness.
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Chapter 2

Background

2.1 Camera Model

The monocular camera model, a foundational concept in computer vision and imag-
ing, mimics the behavior of a pinhole camera to represent the process of capturing
and projecting images. This model simplifies the intricate workings of an optical
system to enable a comprehensive understanding of the relationship between the
three-dimensional (3D) world and the resulting two-dimensional (2D) image.

In this model, we envision light passing through a minute aperture, analogous to a
pinhole, projecting an inverted image onto a photosensitive surface, often a digital
or analog image sensor. Key intrinsic parameters, including the focal length and
principal point, characterize the camera’s optical properties. The focal length dic-
tates the scale of the captured scene, while the principal point marks the location
where the optical axis intersects the image plane.

Coordinate systems play a pivotal role in this model, with the camera coordinate
system centered at the optical center and the image coordinate system representing
points on the image plane. The intrinsic parameters, encompassing the focal length
and principal point, along with extrinsic parameters like rotation and translation,
define the camera’s pose in space.

A fundamental mathematical concept, perspective projection (described in depth in
section 2.2), captures the transformation from 3D points in the camera coordinate
system to their 2D projections on the image plane. This equation involves the intrin-
sic matrix, encapsulating the focal lengths and principal points, and the coordinates
of the 3D points.

While the monocular camera model serves as a fundamental abstraction, it often
considers ideal conditions, neglecting real-world imperfections such as lens distor-
tion. Distortion correction parameters may be introduced to refine the model, en-
hancing its accuracy.

Monocular cameras find extensive applications in various domains, from smart-
phones to surveillance cameras. They are integral to computer vision tasks, such
as object recognition, pose estimation and structure-from-motion. The simplicity
and versatility of the monocular camera model make it a cornerstone for compre-
hending the principles of image formation and interpretation in the broader field of
computer vision.
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The camera model displacement and orientation with respect to the world’s refer-
ence system can be expressed as follow:

FIGURE 2.1: Camera Model

1. displacement w0 of the origin of the camera reference system.

2. Pan of x axis (rotation around x axis).

3. Tilt of z axis (rotation around z axis).

4. Displacement r of the image plane with respect to the center of the joint, on
which the camera is mounted and around which can be rotated.

For the two linear displacements, their respective translation matrices are obtained
as follow:

G =

[
1 −w0
0 1

]
C =

[
1 −r
0 1

]
(2.1)

The resultant rotation matrix, given the above rotations about x and z axis is:

R = RαRθ =


cos(θ) sin(θ) 0 0

−sin(θ)cos(α) cos(θ)cos(α) sin(α) 0
sin(θ)sin(α) −cos(θ)sin(α) cos(α) 0

0 0 0 1

 (2.2)

To compute the total transformation of a point from the 3D world to the image plane
a perspective projection matrix P is needed. The next section is dedicated to the deep
description of this concept.
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The total transformation is computed as follows:

ch = PCRGwh (2.3)

2.2 Perspective Projection

Perspective projection is a fundamental concept in computer graphics and computer
vision. It’s a mathematical technique used to simulate how 3D scene or object ap-
pears when projected onto a 2D surface, such as a computer scene or image plane.
The goal of perspective projection is to create a realistic representation of how ob-
jects in the 3D world would look from a particular viewpoint, taking into account
the effects of distance and perspective. Some fundamental principles of perspective
projections are:

• Vanishing Point: objects that are far away from the camera appear smaller and
converge to a single point in the distance, called vanishing point. This effect
creates a sense of depth and realism in the projected image.

• Depth Perception: Perspective projection accurately portrays the relative depth
of objects, making objects closer to the camera larger and objects father smaller.
This mimics the way human eye and camera lens perceive depth in the real
world.

• Foreshortening: Perspective Projection results in foreshortening, where ob-
jects viewed from an angle are distorted in their shape and dimensions. This
distortion is crucial for creating realistic images.

• Depth Cues: Perspective Projection includes depth cues, such as the overlap
of objects, changes in size, and relative position of objects in the field of view.,
which help the viewer understand the spacial relationships between objects.

FIGURE 2.2: Perspective projection.

In computer graphics, the perspective matrix (or projection matrix) is used to trans-
form 3D points in 2D coordinates on the screen. This projection is a crucial step in
rendering 3D scenes in 2D images.[10]
The perspective matrix has several configurations depending on the specific conven-
tions, camera parameters or coordinate systems used. The mono camera used in this
project is considered ideal, with negligible distortion coefficient and squared field of
view.



Chapter 2. Background 9

The field of view (FOV) is a fundamental concept in optics, computer graphics and
computer vision. It refers to the extent of the observable world that can be seen
through a particular device, such as camera, human eye or computer screen. The
FOV determines the angle within which object or scenes are visible and it’s usually
specified as an angular quantity. In this setup, a squared field of view (FOV) implies
that the vertical viewing angle is the same as the horizontal viewing angle.
The image below present a visual representation of the FOV:

FIGURE 2.3: Visual FOV representation.

As discussed above, a simple implementation of the perspective matrix is enough
for our purposes. The matrix is defined as follows:

P =


f

ar
0 0 0

0 f 0 0

0 0 (z f ar+znear)

(znear−z f ar)

2∗z f ar∗znear

(znear−z f ar)

0 0 −1 0

 (2.4)

The f is the focal length of the camera and it’s computed as f = 1/tan( FOV
2 ) with

FOV expressed in radians. The ar is the aspect ratio coefficient needed if the hori-
zontal field of view is different from the vertical one, in this configuration it’s 1. The
znear and z f ar represent the distances to the near and far clipping planes, respectively.
They define the range of distances of objects in the scene when projected from 3D
space to 2D space.

FIGURE 2.4: Object’s perspective projection
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2.3 Pose Estimation

Object pose estimation is a fundamental task in computer vision that involves deter-
mining the spatial orientation and position of an object in a given environment. The
"pose" refers to the object’s six degrees of freedom (6DOF), which include its trans-
lation (movement) along the x, y, and z axes and its rotation around these axes (roll,
pitch, and yaw). The goal is to accurately understand how an object is positioned
and oriented with respect of a reference coordinate system.

FIGURE 2.5: Roll, Pitch and Yaw rotations (RPY) of an object.

Key aspects of object pose estimation include:

• Object Representation: Objects are often represented by 3D geometric models
or point clouds. These models describe the shape and structure of the object in
a coordinate system.

• Sensors: Pose estimation relies on data acquired from sensors, such as cam-
eras or depth sensors. Each sensor type has its strengths and limitations in
capturing the necessary information for pose estimation.

• Feature Extraction: Features or keypoints (landmarks) are identifiable points
on the object’s surface that can be matched between the 3D model and the
sensor data. These features serve as reference points for determining pose.

• Matching and Correspondence: The process involves finding correspondences
between the features in the 3D model and those detected in the sensor data.
Techniques such as feature matching and point cloud registration are employed
for this purpose.

• Pose Computation: Once correspondences are established, algorithms calcu-
late the pose parameters. This step involves identifying translation and rota-
tion that best align the 3D model with the observed features in the sensor data.

• Optimization: Iterative optimization methods are used to refine the initial
pose estimation. These methods aim to minimize the difference between pre-
dicted and observed feature locations.
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• Applications: Object pose estimation is crucial in various applications, such as
robotic manipulation, augmented reality, autonomous navigation, and quality
control in manufacturing. It enables machines to interact with the environment
and make informed decisions based on the perceived spatial relationships of
objects.

FIGURE 2.6: Example of applications of pose estimation.

Accurate object pose estimation is essential for tasks where knowing an object’s pre-
cise location and orientation is critical for effective and safe interaction with the envi-
ronment. Advances in computer vision, machine learning, and sensor technologies
contribute to the ongoing improvement of object pose estimation methods.
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2.4 From Machine Learning to Deep Learning
1 In the vast realm of artificial intelligence, a crucial discipline emerges: machine
learning (ML), a transformative approach to programming that defies conventional
code-based paradigms. At its essence, machine learning empowers systems to evolve
and improve through experiences, learning patterns from data rather than relying on
explicit instructions. This paradigm shift opens the door to a new era of problem-
solving, where algorithms become adept at making decisions, predictions, and in-
ferences based on the information they ingest.

FIGURE 2.7: Timeline of AI toward Deep Learning.

At the core of machine learning lies the intricate paradigm between algorithms and
data. The learning process begins with a robust dataset, a collection of input fea-
tures paired with corresponding outcomes. This data serves as the fodder for ML
algorithms, mathematical constructs that decode patterns and relationships within
the information. As the algorithm processes the data, it continually adjusts its inter-
nal parameters to better align its predictions with the ground truth.

Machine learning encompasses various learning paradigms, each tailored to specific
challenges. In supervised learning, algorithms learn from labeled data, associating
inputs with desired outputs. Unsupervised learning tackles unlabeled data, seeking
inherent structures and relationships. Reinforcement learning introduces the ele-
ment of interaction, where algorithms learn through trial and error, navigating an
environment and adapting based on feedback.

As the capabilities of machine learning burgeoned, a more specialized branch emerged:
deep learning. This paradigm shift brought about the rise of deep neural networks,
inspired by the complexity of the human brain. Deep learning algorithms, struc-
tured as multi-layered neural networks, exhibit an unparalleled ability to automati-
cally learn hierarchical representations from data.

1The "T81-558: Applications of Deep Neural Networks" course of the Washington University [9] and
the "CS231n: Deep Learning for Computer Vision"[17] one are used as reference for the presentation of
the topic.
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Within the deep learning framework, neural networks delve into the intricacies of
feature learning. These models, often identified as deep neural networks, boast mul-
tiple layers that autonomously extract increasingly complex features. The depth of
these networks empowers them to uncover intricate patterns, making them particu-
larly effective in tasks such as image and speech recognition.

The training process in machine learning and deep learning involves an iterative
refinement of models. Algorithms, armed with backpropagation mechanisms, fine-
tune their internal parameters to minimize the discrepancy between predicted and
actual outcomes. This continual optimization results in models that not only per-
form well on training data but also generalize effectively to new, unseen data.

The applications of machine learning and deep learning span a multitude of do-
mains, reshaping the landscape of technology and problem-solving. From image
and speech recognition to natural language processing and autonomous systems,
these methodologies have demonstrated unprecedented success. As we delve into
the intricacies of machine learning and explore the depths of deep learning, we un-
cover the transformative power of algorithms that learn, adapt, and redefine the
boundaries of artificial intelligence.

2.4.1 Neural Network (NN)

The neural network is one of the first deep learning model. It emulates how neurons
function in the human brain using connected circuits to simulate the intelligent be-
haviour.
Neural networks accept as input a feature vector with fixed length and produces as
output a vector of predicted values with fixed length as well. Usually changing the
input or output vector length means redesigning the entire structure.
The term "vector" is usually referred to 1D arrays but with modern neural network
it is increasingly common to find multiple dimensions arrays (as I will discuss later
with the CNN).
The term "dimension" can be misleading in neural networks, since, used in sense of
the dimension of a vector, it refers to the number of elements present in that vector
(for instance, a neural network with ten input neurons has ten dimensions). How-
ever, in the case of CNN the input has multiple dimensions, so 2D input to a neural
network with 128x128 pixels leads to a configuration of 16,368 input neurons. In
the first example the neural network will be defined as 2D NN, in the second one
16,368D.

Regression and Classification

The neural network can functions in regression or classification. In the first case the
output is a number predicted on the base of the input data, in the second one the
identification of a specific class o category. It is important to note that the output of a
regression or two-class classification model is a number (binary for the classification
1 for true value 0 or -1 for false value), but in case of multi-class classification the
neural network has an output neuron for each category.

Neurons and Layers

The artificial neuron receives as input one or more sources from input data or pre-
vious layer neurons. It multiplies each of those inputs by a respective weight and
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FIGURE 2.8: Neural Network’s layer representation.

sums these multiplications together (sometimes also a bias factor is added). The re-
sult is passed to an activation function that determines the output of the neuron.

f (x, w) = ϕ(∑
i
(wixi)) (2.5)

In the above equation the variables x and w represent the input and the weights of
the neuron respectively, the ϕ(·) the activation function and f(x,w) the output of the
neuron.

FIGURE 2.9: Artificial Neuron representation.

The neurons can be classified in four categories, depending on their position in the
architecture:

• Input Neurons: each input neuron is mapped to an element in the feature
vector.

• Hidden Neurons: intermediate neurons responsible of the abstraction of the
neural networks to process the input into the output.

• Output Neurons: each output neuron calculates one part of the output.
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• Bias Neurons: introduces an additional learnable parameter that improves
the prediction’s accuracy by shifting the activation threshold on the activation
function.

Activation Functions

Activation functions, or transfer functions, have the role of computing the output of
each layer of a neural network. Historically the more common are hyperbolic tan-
gent, sigmoid, or linear activation functions. However, with modern deep learning
models, specialized activation functions have been introduced to suit specific appli-
cations and tasks:

• Rectified Linear Unit (ReLU): use for the output hidden layers.

• Softmax: used for the output of classification neural networks.

• Linear: used for the output of regression neural networks.

In particular ReLU has gained rapid popularity in deep learning due to its ability
to yield superior training results. Before the era of deep learning, the sigmoid func-
tion was the most prevalent activation function. However, as modern frameworks
like PyTorch frequently train neural network using gradient descent optimization,
computing partial derivatives of the sigmoid became a computationally challenging
operation. The introduction of the Rectified Linear Unit significantly simplified this
computation leading to improved performance and faster training.

FIGURE 2.10: Sigmoid and ReLU activation functions graphic repre-
sentation.

2.4.2 Convolutional Neural Network (CNN)

The Convolutional Neural Network (CNN) is a neural network technology that has
deeply impacted the area of computer vision. The original concept of a CNN was
introduced by Fukushima in 1980[7] and subsequent significant advancements were
made by LeCun et al.[15].

The CNN, in contrast with most neural networks, has a specific order of the input
elements and it is crucial to the training. The inputs are arranged into a grid which
represents the input image, the highest-level unit. On the other hand each pixel is the
smallest unit within the image and represents a scalar value denoting the intensity or
color at a specific location. The images can be colored (expressed on three channels
RGB) or grayscale with a single channel. Due to the amount of data, additional
layers are needed to lighten the computation load. The layers works together to
extract features from the input data and predict the output. The additional layers
are:
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FIGURE 2.11: Convolutional Neural Network visual representation.

• Convolutional Layers: apply filters or kernels to perform convolution opera-
tions, extracting local features like edges and shapes.

• Pooling Layers: reduce the spacial dimensions of feature maps, making the
network more robust to scale and orientation variation.

• Dense Layers: these layers connect all neurons to every neuron in the previous
and subsequent layers, performing high-level feature extraction and decision-
making.

• Flattening Layer: reshape the output from convolutional layers to 1D vector,
allowing it to connect to fully connected (dense) layers.

Training and Testing Processes

The training process begins with the initialization of the network’s weight and bi-
ases; usually these parameters are set to small random values.
The input is then fed through the network, the data propagates through each layer
and predictions are produced. A loss function is used to quantify the error between
the predicted and the ground truth values. The choice of the loss function depends
on the specific task, the most common are MSE for regression and cross-entropy for
classification. The backpropagation algorithm is employed to compute the gradients
of the loss with respect to the network’s parameters (weights and biases).
This process is essentially the chain rule from calculus, which calculates how small
changes in each parameter affect the loss. Using the gradients computed during
backpropagation, the network’s weights and biases are updated through an opti-
mization algorithm.

The goal is to adjust the parameters in a way that minimizes the loss function. The
process is then iterated over the entire training dataset with a process called epoch.
Multiple epochs are typically performed to improve the model’s performance.

Periodically, the model’s performance is evaluated on a separated validation dataset
that the network has not seen during training. This method helps monitor the
model’s generalization capabilities.

After training and validation, the model is tested on a completely unseen test dataset
to evaluate its performance on new, independent data.
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Chapter 3

State of art

3.1 Monocular pose estimation

3.1.1 Classic Methods

Traditional pose estimation techniques usually use hand-crafted landmarks detec-
tors and descriptors e.g. SIFT, SURF, MSER and BRIEF. These features serve as an-
chor points for establishing correspondences between 2D and 3D space, then es-
timate the pose using non-linear optimisation from the correspondence set. The
landmarks are detected automatically and described using heuristic measures of ge-
ometric and photometric invariance.

Random Sample Consensus (RANSAC)

Robust algorithms like Random Sample Consensus (RANSAC) [6] play a pivotal
role in filtering out outliers and estimating pose accurately. It is a robust algorithm
widely used in computer vision and geometry computations for model fitting. As
presented in [18], its primary objective is to estimate parameters of mathematical
model from a set of observed data contaminated with outliers. RANSAC achieves
this by iteratively selecting random subsets of data points, fitting a model to each
subset, and identifying the consensus set of inliers that agree the model.

After the random selection of a minimal subset of data points, the model is fitted to
the randomly selected subset. The type of model depends on the specific application,
such as lines, planes or more complex structures. The model is then used to classify
the remaining data points as inliers or outliers based on a predefined threshold. Data
points that fit the model within the threshold are considered inliers.
The process is repeated from a fixed number of iterations, and the model with the
largest consensus set (the set of inliers) is retained. With the consensus set, the model
is refined using all inliers, and the final model parameters are obtained.

However, this method is susceptible to changes in lighting conditions and large vari-
ations in pose and texture. Nonetheless, the earlier research has given birth to effec-
tive and well-understood geometric algorithms (e.g. PnP solvers) that are able to
estimate the pose accurately and robustly, given a reasonable correspondence set.

Structure from Motion (SfM)

SfM [32] represents a powerful paradigm for reconstructing the three-dimensional
structure of a scene from a sequence of two-dimensional images. It assumes that
the scene consists of static objects, and the motion is captured by the movement of
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the camera. SfM simultaneously estimates the camera poses and the 3D structure of
the scene. Bundle Adjustment is a fundamental optimization technique within SfM,
iteratively refining camera poses and the associated 3D structure. This approach is
particularly effective in scenarios with sequential image captures, as seen in appli-
cations like photogrammetry.

Firstly distinctive features, such as keypoints, are extracted from each image in the
sequence and matched together, establishing 2D-2D or 2D-3D correspondences. The
camera poses for each image are estimated using techniques like Perspective-n-Point
(PnP) algorithms [16]. The 3D coordinates of the scene points are mapped with a
triangulation technique using the established correspondences and camera poses.
Lastly the camera poses and 3D points are jointly refined to minimize the reprojec-
tion error across all images.

SfM is widely applied in applications such as creating 3D models of structures, ob-
jects, or scenes from a collection of images. It contributes to the alignment of virtual
and real-world elements in augmented reality applications.

3.1.2 End-to-End Learning

Motivated by the success of deep learning in image classification and object detec-
tion, end-to-end learning methods for pose estimation have emerged ([30], [2], [11]).
The advent of convolution neural networks (CNN) has revolutionized pose estima-
tion by enabling the automatic learning of hierarchical features from images. These
networks can be applied for end-to-end pose regression or integrated into larger
systems. Their adaptability makes them suitable for real-time systems and object
tracking.
These approaches utilize CNN architectures to learn complex non-linear mappings
from input images to output poses. However, despite these end-to-end methods
have demonstrated some success, they not achieved similar accuracy as geometry-
based solutions.

PoseNet

PoseNet [12] is a pioneering deep learning architecture designed for estimating the
camera pose directly from images. It reframes the pose estimation problem as a re-
gression task, predicting both translation and rotation parameters.
The network architecture typically includes convolutional layers for feature extrac-
tion followed by fully connected layers for regression.

This approach is valuable in applications where real-time translation and rotation
information are critical. However, the training process becomes more complex as
diverse datasets are required for effective model generalization.

Mask R-CNN

Mask R-CNN [8] represents a fusion of object detection and instance segmentation,
providing detailed pose information for each detected object. In additional to identi-
fying objects in image, it provides detailed information about the shape and location
of each instance, making it suitable for accurate pose estimation.

The model extends the Faster R-CNN architecture by incorporating an additional
branch for predicting masks. This enables precise delineation of object boundaries,
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contributing to improved pose estimation, especially in scenario with complex object
shapes.

This architecture is particularly effective in scenarios where precise delineation of
object boundaries is essential. However, its computational demands are higher com-
pared to simpler architectures.

Hand-Eye Coordination Networks

Networks designed for hand-eye coordination focus on tasks where precise pose es-
timation is critical for robotic manipulation. These networks contribute to the seam-
less interaction between robotic arms and surrounding environment.

These networks often involve architectures tailored for the specific requirements of
robotic systems, combining vision-based pose estimation with control algorithms.
They play a crucial role in applications such as robotic grasping and object manipu-
lation.

Challenges often arise due to limited data availability for specific tasks, requiring
careful consideration during model development.

3.1.3 Feature Learning

Even though the above described methods have demonstrated some success, they
have not achieved similar accuracy as geometry-based solutions. Indeed, recent
work [25] suggests that "absolute pose regression approaches are more closely related to
approximate pose estimation via image retrieval", thus they may not generalise well in
practise.

While the keypoint matching problem can be solved with machine learning, feature
learning methods based on deep convolutional neural networks (CNNs) typically
fix 2D-3D keypoints associations and learn to predict the image locations of each
corresponding 3D landmark. Examples include studies such as [23], [22] and [31],
which mainly differ in model architecture and the choice of keypoints. For instance,
[22] employs semantic keypoints, while [31] opts for vertices of the 3D bounding
box.

In this spaceborne scenario, objects are typically not occluded and have relatively
rich texture. As a result, it was opted for object surface landmarks in order to better
relate them to strong visual features.

A notable commonality among these CNN-based methods is their shared character-
istic of gradually transforming feature maps from high-resolution representations to
low-resolution ones, then recovering them to high-resolution representations later
in the process. Recent research emphasizes the significance of maintaining a high-
resolution representation throughout tasks like object detection and human pose es-
timation [28][29]. Specifically, the High-Resolution Net (HRNet) [28], illustrated in
figure 3.1, upholds a high-resolution representation while exchanging information
across parallel multi-resolution subnetworks, yielding superior spatial precision in
landmark heatmaps. In the implemented satellite pose estimation framework, HR-
Net is leveraged to predict the locations of 2D landmarks in each image, contributing
to achieving state-of-the-art accuracy.
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HRNet

HRNet is a CNN with parallel high-to-low resolution subnetworks with repeated in-
formation exchange across multi-resolution subnetworks (multi-scale function) im-
plemented for human pose estimation, aiming to detect the locations of K keypoints
or parts of the human body from an image.

FIGURE 3.1: HRNet Architecture. The horizontal and vertical direc-
tions correspond to the depth of the network and the scale of the fea-

ture maps, respectively.

The architecture consists in two strided convolutions decreasing the resolution, a
main body outputting the feature maps with the same resolution as its input feature
maps, and a regressor estimating the heatmaps where the keypoints are chosen and
transformed to the full resolution, see figure 3.1.

Existing pose estimation networks are typically constructed by connecting subnet-
works of varying resolutions in a sequential manner. Each subnetwork, represent-
ing a stage, comprises a series of convolutional layers, and there is a down-sampling
layer between adjacent subnetworks to reduce the resolution by half. Let’s denote
Nsr as the subnetwork in the sth stage, with r indicating the resolution index (where
its resolution is 1

2(r−1) times lower than that of the first subnetwork). In a high-to-low
network with S stages, such as 4 stages, it can be represented as:

N11 → N22 → N33 → N44. (3.1)

HRNet proposes a parallel multi-resolution subnetwork approach, starting with a
high-resolution subnetwork as the initial stage. Subsequently, high-to-low resolu-
tion subnetworks are gradually added one by one, creating new stages, and con-
necting these multi-resolution subnetworks in parallel. As a result, the resolutions
for the parallel subnetworks in a later stage consist of the resolutions from the pre-
vious stage, along with an extra lower one.
An example network structure (with 4 parallel subnetworks) is gibven as follows:

N11 → N21 → N31 → N41

↘ N22 → N32 → N42

↘ N33 → N43

↘ N44

(3.2)
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Exchange units are introduced across parallel subnetworks, enabling each subnet-
work to repeatedly receive information from other parallel subnetworks. An exam-
ple illustrates this information exchange scheme. In this example, the third stage is
divided into several (e.g., 3) exchange blocks, with each block composed of three par-
allel convolution units. These parallel units are connected through exchange units,
as shown below:

C131 ↘ ↗ C231 ↘ ↗ C331 ↘
C132 → E13 → C232 → E23 → C332 → E33

C133 ↗ ↘ C233 ↗ ↘ C333 ↗
(3.3)

Here, Cbsr represents the convolution unit in the r-th resolution of the b-th block in
the s-th stage, and Ebs is the corresponding exchange unit.

The exchange unit aggregates the inputs, which are s response maps: {X1, X2, ..., Xs},
to produce s response maps as outputs: {Y1, Y2, ..., Ys}, where the resolutions and
widths remain consistent with the inputs. Additionally, an extra output map Ys+1 is
generated by the exchange unit across stages: Ys+1 = a(Ys, s + 1).

The function a(Xi, k) in this context includes upsampling or downsampling oper-
ations on Xi from resolution i to resolution k. Downsampling is achieved through
strided 3 × 3 convolutions, such as a single 3×3 convolution with a stride of 2 for 2×
downsampling, or two consecutive strided 3 × 3 convolutions with a stride of 2 for
4× downsampling. For upsampling, nearest neighbor sampling is followed by a 1
× 1 convolution to align the number of channels. When i = k, a(·, ·) represents an
identity connection, and a(Xi, k) is equivalent to Xi.

In the implemented method, the original architecture has been slightly modified in
order to match the specifics of the analyzed case (grayscale 512x512 images).

FIGURE 3.2: Exchange unit. Right legend: strided 3 × 3 = strided 3 × 3
convolution, up samp. 1×1= nearest neighbor up-sampling following

a 1×1 convolution.

3.1.4 Spacecraft pose estimation

Monocular spacecraft pose estimation techniques typically embrace a model-based
strategy. For instance, in studies like [5] and [27], the initial step involves image pre-
processing and the utilization of feature detectors to identify salient features like line
segments and basic geometric shapes. Subsequently, search algorithms are deployed
to establish appropriate matches between the detected features and the 3D structure.
Poses are then computed using Perspective-n-Point (PnP) solvers such as EPnP [16],
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and refinement is carried out through optimization techniques.
As outlined in section 4, the implemented approach also generates 2D-3D correspon-
dences; however, along with the coordinates of 2D landmarks, they are regressed
using a trained deep network.

The Spacecraft Pose Network (SPN) [26] represents a crucial contribution to the
spacecraft project estimation problem using deep learning methods. SPN employs
a hybrid of classification and regression neural networks for solving the pose esti-
mation problem. Initially, it predicts the bounding box of the satellite in the image
using an object detection sub-network. Subsequently, a classification sub-network
retrieves the n most relevant base rotations from the feature map of the detected ob-
ject. The regression sub-network learns a set of weights and produces the predicted
rotation as a weighted average of the n base rotations. Finally, SPN determines the
relative translation of the satellite by leveraging constraints derived from the pre-
dicted bounding box and rotation (for more comprehensive overview of spacecraft
pose estimation, please read [3]).

3.1.5 Point Set Alignments

Iterative Closest Point (ICP)

Iterative Closest Point (ICP) [1] is a popular algorithm used for aligning two sets of
3D points through an iterative optimization process. It is commonly employed in
scenarios where a reference 3D model needs to be aligned with a partially observed
or reconstructed 3D scene. ICP iteratively refines the transformation between the
two point sets to minimize the distance between corresponding points.

An initial transformation (translation and rotation) between the two point sets is
estimated. the correspondences between the points in the reference and observed
sets are established based on proximity, a weighted least-squares approach is used
to minimize the distance between corresponding points, giving higher importance to
reliable matches and the transformation is updated based on the registration results.
The process is repeated iteratively until convergence, with a check for the change in
transformation parameters.

Coherent Point Drift (CPD)

Coherent Point Drift (CPD) [20] is a sophisticated mathematical technique used in
the field of point cloud registration. The primary goal of CPD is to align one point
cloud with another, ensuring that they match as closely as possible. This alignment
is particularly useful when working with objects or scenes that undergo only rigid
transformations, meaning that they can be translated and rotated without deforma-
tion.

CPD takes a unique approach by treating the point clouds as probability distribu-
tions. Each point in the source and target clouds is associated with a probability
density. In essence, the source points represent samples from one distribution, and
the target points represent samples from another. This probabilistic perspective al-
lows CPD to find optimal correspondences between points in the source and target
clouds.

Given two point sets X = {x1, x2, . . . , xN} and Y = {y1, y2, . . . , yM} and initial point
correspondences unknown, the estimation of the transformation is achieved through
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an optimization process with the objective of finding the optimal rigid transforma-
tion parameters to align X with Y.

Mathematical Steps:

• Initialization: the transformation parameters: R (rotation matrix) and t (trans-
lation vector) are initialized.

• Expectation-Maximization (EM) Iterations:

– E-step (Expectation Step): computes the soft correspondences between
points in X and Y using a Gaussian Mixture Model (GMM) with only
rigid transformations. The probability of correspondence Pij between xi
and yj is calculated based on the distance between transformed xi and yj
using the current R and t.

Pij =
exp

(
− 1

2σ2 ∥R · xi + t − yj∥2)
∑M

k=1 exp
(
− 1

2σ2 ∥R · xi + t − yk∥2
) (3.4)

– M-step (Maximization Step): Updates the rotation matrix R and trans-
lation vector t based on the soft correspondences. It uses a closed-form
solution to compute the optimal rotation and translation.

R, t = arg min
R,t

N

∑
i=1

M

∑
j=1

Pij∥R · xi + t − yj∥2 (3.5)

• Convergence Check: It checks for convergence by examining the change in
the transformation parameters between consecutive iterations. If the param-
eters converge or a maximum number of iterations is reached, the algorithm
terminates.

• Output: The final rotation matrix R and translation vector t represent the rigid
transformation aligning X with Y.

The Gaussian Mixture Model (GMM) is used to assign soft correspondences, allow-
ing the algorithm to handle cases where points in one set do not have clear one-to-
one correspondences with points in the other set. The algorithm iteratively refines
the transformation parameters until convergence.

As outlined in section 4.2.2, this approach is used in the implemented method to
refine the final pose by the predicted 3D landmarks position.
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Chapter 4

Algorithms and methods

4.1 Offline Architecture

Figure 4.1 describes the overall offline pipeline of the implemented methodology,
which consists of several main modules.
From the satellite CAD model nine landmarks have been manually selected (details
about the selection criteria explained in section 4.3.1). The 2D-3D correspondence
of each landmark is used for training the Landmark regression module to predict the
nine landmarks image position and the Landmark Mapping module to reconstruct the
3D position of each landmark from their image position. The implemented code can
be accessed in [19].

FIGURE 4.1: Offline pipeline of the implemented pose estimator.
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4.1.1 2D-3D Correspondence

The computation of the 3D position of landmarks in the training images involves
a transformation process that leverages the relative positions of the selected land-
marks with respect to the satellite’s reference system, as well as the position and
orientation of the camera.

FIGURE 4.2: Selected Landmarks on the CAD Model.

The 3D landmarks are defined in the context of the satellite’s reference system. These
landmarks represent specific features on the satellite’s structure. Their 3D coordi-
nates are known relative to the satellite’s own coordinate system thanks to the CAD
model.

The camera that captures the training images is mounted on the wrist of a robotic
arm on the servicer satellite and its position and orientation with respect to the satel-
lite’s reference system is paired with images in the training dataset.

To determine the 3D position of the landmarks in the camera’s coordinate system,
a simple operation is performed, transforming the landmarks’ positions from the
satellite’s frame to the camera’s frame by means of the systems’ transformation ma-
trix.

xcam,i =

[
RT tc,s
0 1

]
xsat,i i = 1, ..., N N : number of landmarks (4.1)

Furthermore, perspective projection transformation (described in section 2.2) is per-
formed, relating 3D world coordinates {xi} to 2D image coordinates {zi} by means of
the perspective matrix {P}.

zi = P ∗ xcam,i i = 1, ..., N (4.2)
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4.1.2 Landmark Regression

Each training image is first pre-processed (description of the pre-processing process
in section 4.2.1) and then coupled with a set of ground truth 2D landmarks {zi}, as
described in section 4.1.1. Those labels are used to supervise the training of the re-
gression model to predict the 2D position of landmarks in the testing images. An
additional label is introduced to handle images that capture only partially the satel-
lite, the visibility coefficient {vi}.

vi =

{
1, if zi is inside image frame.
0, otherwise.

(4.3)

The output of the model is a tensor of 9 heatmaps, one for each landmark h(zp
i ). The

ground truth heatmaps h(zi) are generated as 2D normal distributions with mean
equal to the ground truth location of each landmark, and standard deviation of 1-
pixel (code in appendix A.1).

The model is trained from scratch by minimizing the following customized loss:

l =
1
N

N

∑
i=1

vi(h(z
p
i )− h(zi))

2 (4.4)

The loss function l is defined on a single image and in a mini batch l is simply aver-
aged. The model is trained in 100 epochs with the Adam optimizer[13].

In order to select the landmark location in the predicted heatmap, an additional
selection algorithm is introduced.
Each predicted heatmap is normalized over [-1,+1] range, where −1 represents a
totally black pixel and +1 totally white. After an accurate study on the heatmaps
that presents an accurately predicted landmark, the main result is that most of those
images presented maximum value > −0.5, so a first threshold t1 is introduced and
set to that value. In only few cases the prediction of the landmark is more imprecise,
due, for instance, to similarities with other features in the image. For those cases a
second lower threshold is included t2 = −0.6.

Firstly pixels in the images with value lower than t2 are by default set to black (−1)
to clear the image from impurities, then, for those heatmaps with maximum value
over t1, the position of their maximum value is taken as landmark position. On
the other hand, for those who present a maximum value within the thresholds t1
and t2 an additional check on the heatmap variance is performed: only for those
with a variance value over 2e−6 the landmark is considered within the image and its
location is registered as above. For all the other heatmaps that do not follow these
conditions, the landmark is considered out of the image frame (2D location set to
default value [-1,-1]) and the visibility coefficient vi is set to zero.

In case of visually similar landmarks, an additional check is introduced. The po-
sition of a landmark registered after recognition is compared with the previously
registered landmarks. In case it has a position within a certain pixel range near to
another landmark, the one with higher maximum value and variance is registered
and the other is considered out of frame (code in appendix A.2). Figure 4.3 shows
the algorithm’s identification process.
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FIGURE 4.3: Landmark Identification Algorithm.

FIGURE 4.4: Landmarks identified by the Landmark Regression mod-
ule.
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4.1.3 Landmark Mapping

The Landmark Mapping is a neural network designed to estimate the 3D positions
of landmarks using their 2D positions, mapping the 2D-3D relation.
The network takes as input the 2D positions of landmarks obtained from the Land-
mark Regression module (4.1.2) and predicts as output the respective 3D position.

The network has two hidden layers:

• The first hidden layer consists of 128 units. It processes the input data and
learns complex patterns and relationships between the 2D and 3D coordinates.

• The second hidden layer has 64 units and further refines the features learned
in the previous layer.

ReLU activation functions are applied after the first and second hidden layers. ReLU
introduces non-linearity and helps the network capture complex relationships in the
data.
The output layer is responsible for regressing the 3D positions of the landmarks.
Each landmark is represented by a 3D coordinate (x, y, z). The output layer produces
these 3D coordinates for all the landmarks.
The output of the network is reshaped to organize the predicted 3D coordinates for
each landmark. This reshaping ensures that the output is in a format suitable for
further processing.
The model is trained with the 2D-3D correspondences described in section 4.1.1, but,
before training, the 3D ground truth of landmarks out of image frame (vi = 0) is set
to default value [0, 0, 0].
The model is trained from scratch by minimizing the following loss:

l =
1
N

N

∑
i=1

vi(x
p
i − xi)

2 (4.5)

In the above equation the xp
i represents the 3D position of the i-th landmark pre-

dicted by the model, while xi is its ground truth position.
As in the previous model, the loss function l is defined on a single group of land-
marks and in a mini batch it is simply averaged. The model is trained in a maximum
of 150 batches with a Adam optimizer[13].

In order to improve the accuracy of the algorithm, three models are created, each of
them specialized in a specific range of distance from the target. The training dataset
is so split in three subdatasets depending on the distance on the z axis from the
satellite with a 100 images superposition per model from each trajectory. The table
below shows the specifications of each model.

Model Name Covered Range (m)

M1 2.00-1.20
M2 1.40-0.50
M3 0.70-0.40

TABLE 4.1: Specifics of three models M1, M2 and M3.



Chapter 4. Algorithms and methods 29

In order to prevent overfitting, an Early Stopping algorithm [9] has been introduced.
Overfitting occurs when a neural network becomes too specialized in its under-
standing of the training data, to the point that it struggles to generalize to new,
unseen data. The idea behind early stopping is to maintain under control the net-
work’s performance, particularly on a separate dataset called validation set, as it
undergoes training. During the training process, the neural network works on refin-
ing its parameters using the training dataset. But instead of letting it train tirelessly
until convergence, the training process is periodically paused and its performance
are evaluated on the validation set. If, over a certain number of consecutive evalua-
tions (determined by a parameter known as "patience"), the network’s performance
starts to worsen, it’s an early warning sign. It suggest that the model is becoming too
specialized. Once the point where the validation performance is consistently declin-
ing, the training phase is stopped. At this moment, the neural network is considered
to have reached its optimal performance on unseen data. Its parameters are taken as
the final model, capable to generalize to new unseen data.

4.2 Online Architecture

The online architecture operates in real-time. It processes the input data from the
camera and produces as output the satellite pose estimation.

After being pre-processed, the image captured from the camera is passed to the Land-
mark regression module. The latter predicts the 2D location {zi} of the 9 landmarks
along with the visibility coefficient {vi} for each of them. The Landmark Mapping
module then uses these data to compute the 3D position of each landmark with re-
spect to the camera frame. The final 6DOF pose of the satellite is then computed
from the CPD module. Figure 4.5 shows the online pipeline of the implemented
methodology.

FIGURE 4.5: Online pipeline of the implemented pose estimator.
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4.2.1 Pre-Processing

The image captured from the camera is pre-processed in the Pre-Processing module.
It consists in a bilateral filter, which is a non-linear, edge-preserving smoothing filter
that reduces noise while preserving the edges in an image.
The mathematical steps behind the bilateral filter involve computing weighted av-
erages of pixel values within a local neighborhood.

FIGURE 4.6: Bilateral Filter mathematical steps.

The formula for the bilateral filter operation can be described as follows:

Given an input image I(x, y) and the filter parameters:

• d (diameter of each pixel’s neighborhood)

• σc (standard deviation of the color space)

• σs (standard deviation of the spatial space)

The filtered output image B(x, y) can be computed using the following equation for
each pixel (x, y):

B(x, y) =
1

W(x, y) ∑
(i,j)∈S

I(i, j) · Gc(I(x, y), I(i, j), σc) · Gs(x, y, i, j, σs) (4.6)

Where:

• S is the neighborhood of pixel (x, y), defined by a window of diameter d.

• Gc is the color similarity term, which measures the similarity in color between
pixels (x, y) and (i, j) in the color space.

• Gs is the spatial similarity term, which measures the spatial proximity between
pixels (x, y) and (i, j).

• W(x, y) is a normalization factor.

The Gc term is defined as a Gaussian function in the color space:

Gc(I(x, y), I(i, j), σc) = exp
(
−∥I(x, y)− I(i, j)∥2

2σ2
c

)
(4.7)

The Gs term is a Gaussian function in the spatial space:

Gs(x, y, i, j, σs) = exp
(
−∥(x, y)− (i, j)∥2

2σ2
s

)
(4.8)
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FIGURE 4.7: On the left the original sample image from the training
dataset, on the right the resultant image after the application of the

bilaterial filter (d = 40, σc = 40, σs = 200).

The bilateral filter operates by applying these Gaussian weighting functions to com-
pute the weighted average of pixel values within the defined neighborhood, both
in color and spatial spaces, resulting in a smoothed image that preserves edges and
details. The filter helps reduce noise while keeping the important structures in the
image intact.

4.2.2 Coherent Point Drift (CPD)

As the Landmark Mapping module predicts the position of each landmark indepen-
dently one from the other and so each landmark has its own error over the three
axis, the resultant cloud of points is misaligned with respect to the rigid reference
position given by the CAD model.
In order to estimate the 6DOF pose of the satellite and in the meantime overcome
this misalignment problem a mathematical technique is used: Coherent Point Drift.

Two sets of 3D points are present: one is the "target", which represents the 3D posi-
tion of the landmarks in the camera frame supposing no translation and no rotation,
and the other is "source", which is the 3D position of the predicted landmarks. The
"source" point set is only composed by landmarks identified in the image frame
(vi = 1). It is important to know that the algorithm’s performances strongly de-
pend on the number of points in the set so, with the camera approaching the target,
some landmarks are cut from the image frame and consequently the pose estimation
accuracy reduces.
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FIGURE 4.8: Iterations of the CPD optimization process.
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4.3 Implementation problems and Technical choices

4.3.1 Landmarks Selection

The main problem in the implementation of the Landmark regression module (4.1.2)
is the selection of the landmarks. Selecting meaningful landmarks is a critical first
step, requiring a accurate understanding of the satellite’s structure. These landmarks
must possess distinct characteristics that remain invariant under varying conditions,
such as changes in lighting, orientation, or potential occlusions.

The first performed attempt in the selection of the landmarks was composed of 11
landmarks with relevant features in the satellite’s structure. Most of those visual fea-
tures were similar to each others and the resultant heatmap predicted by the CNN
for a single landmark was ambiguous among multiple ones. This led to a compli-
cated recognition of the landmark location in the image with complex and heavier
algorithms for the 2D position identification.

In both cases the set of landmarks has been selected near the approach target to limit
the number of out of frame landmark in closer positions.

4.3.2 Dataset availability

Another notable challenge stems from the limited size of available datasets. A smaller
dataset poses a risk of overfitting, potentially hindering the model’s ability to gener-
alize across diverse scenarios. Addressing this issue requires careful consideration
of data augmentation techniques, introducing various transformations to enhance
the model’s adaptability.

The dataset used for training present five different orientations on each axis of the
satellite during the whole approaching range. The main limitation given by the used
dataset is the lack of combined rotations over multiple axis and a wider range of
rotation on single axis.

Even though the Landmark regression module training is strictly related to the avail-
ability of the images, the Landmarks Mapping one is totally independent. The 2D-3D
correspondence of landmarks used to train the model requires the only relative po-
sition of the landmarks from the CAD Model and the perspective matrix to be per-
formed. This means that a possible further step to expand the dataset is to perform
several simulations with rotations over multiple axis to create new wider datasets
and improve the model performances.
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Chapter 5

Implementation and Experiments

5.1 Tools and Technologies

In conducting this research, careful consideration was given to the selection of tools
and technologies that would best support the implementation, experimentation, and
analysis processes. This section provides an overview of the programming lan-
guages, machine learning frameworks, data processing tools, and other technologies
employed throughout the research.

5.1.1 Programming Language

The primary programming language for this research was Python, chosen for its
versatility, rich ecosystem, and widespread use in machine learning. Python’s read-
ability and extensive libraries facilitated efficient coding and experimentation.

5.1.2 Machine Learning Frameworks

PyTorch

PyTorch [21] was selected as the primary deep learning framework due to its flexi-
bility which aligned well with the nature of the tasks involving customized model
architectures and strong community support which contributed to a fluid develop-
ment experience.

PyTorch is an open-source machine learning framework developed by Facebook’s
AI Research lab (FAIR). Its design philosophy emphasizes flexibility, enabling re-
searchers and practitioners to tailor datasets and training procedures to specific re-
quirements. The flexibility offered by PyTorch manifests in two key areas: custom
datasets and custom training/validation phases. PyTorch supports automatic dif-
ferentiation, making it easier to implement and experiment with complex neural
network architectures. Its community, extensive documentation, and seamless in-
tegration with hardware accelerators like GPUs contribute to its popularity in both
research and production.

PyTorch facilitates the creation of the custom dataset through the torch.utils.data.
Dataset class.
By inheriting from this class and implementing the __len__ and __getitem__ meth-
ods, it’s been possible to define datasets tailored to data structure and format used.
This capability is invaluable when working with diverse data types, such as images
or time-series, allowing seamless integration into PyTorch’s data loading utilities.
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PyTorch’s flexibility extends to the training and validation phases, enabling users to
define custom training loops, loss functions, and evaluation metrics. This is crucial
for experimenting with novel architectures, incorporating domain-specific metrics,
or implementing advanced training techniques. The ability to seamlessly integrate
custom logic into the training process empowers researchers to push the boundaries
of model development.

The deep understanding of this framework and its functionalities has been of pri-
mary importance for using third-party models like HRNet[28] integrating with a
customized dataset and ad hoc training and validation phase.

5.1.3 Data Processing and Analysis Tools

Pandas

Pandas is a powerful data manipulation and analysis library for Python. It provides
data structures like DataFrames that facilitate the handling of structured data. Pan-
das excels in data cleaning, manipulation, and exploration tasks, offering a plurality
of functions for indexing, merging, grouping, and aggregating data. Its integration
with other libraries, such as NumPy, makes it a go-to choice for working with labeled
data and time series.

Pandas DataFrames offer a convenient and versatile way to handle tabular data,
making them an excellent choice for storing and preprocessing data before creating
datasets in PyTorch. The integration between Pandas and PyTorch simplifies the
transition from data exploration to model training.

NumPy

NumPy is a fundamental library for numerical operations in Python. It provides
support for large, multi-dimensional arrays and matrices, along with an assortment
of high-level mathematical functions to operate on these arrays.

Moreover, NumPy arrays and PyTorch tensors share several similarities, making
them interchangeable in many contexts. These similarities contribute to a smooth
integration between the two libraries, facilitating data manipulation and interoper-
ability.
The compatibility between NumPy and PyTorch simplifies data exchange and pro-
motes a cohesive workflow in mixed-library environments.

5.1.4 Visualization Libraries

Matplotlib and Seaborn

Matplotlib is a versatile 2D plotting library for Python. Seaborn is a statistical data
visualization library built on top of Matplotlib. It provides a high-level interface
for creating attractive and informative statistical graphics. Seaborn simplifies the
process of generating complex visualizations with concise syntax. It is particularly
useful for exploring relationships in datasets through specialized plots for categori-
cal data, distribution plots, and regression plots.
All the plots presented in the Evaluation of Training Dataset (5.2.2) and in the Evalua-
tion of Test Datasets (5.2.3) sections are created using this library.
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5.2 Experimentation and Evaluation

5.2.1 Metrics

The final pose estimation scores are defined according to [14] score definition, which
consists in the identification of translation and rotational errors and their respective
scores.
The estimated pose of each image is evaluated using a rotation error ER and a trans-
lation error ET. Lets consider q∗ the rotation quaternion ground truth of an image
and q its estimation and, analogously, t∗ the ground truth translation of an image
and t the respective estimation.
The orientation error ER is calculated as the angular distance between the predicted,
q∗ and ground truth true q unit quaternions, i.e., the magnitude of the rotation that
aligns the target body frame with the camera reference frame.

ER = 2cos−1(|z|) (5.1)

where z is the real part of the Hamilton product between q∗ and the conjugate of q,
i.e.: z + c = q∗ · q̄, and c is the vector part of the Hamilton product. The translation
errors is defined as the magnitude (2-norm) of difference between the ground-truth
(t*) and estimated (t) position vectors from the origin of the camera reference frame
to that of the target body frame:

ET = ∥t∗ − t∥2 (5.2)

The rotation score SR is the same as ER, but in radians, while the translation score ST
is defined as the translation error ET normalized by the ground truth translation:

ST =
∥t∗ − t∥2

∥t∗∥2
(5.3)

which penalizes the position errors more heavily when the target satellite is closer.
The final score is the sum of contributions of both scores.

S = SR + ST (5.4)

Additionally, the implemented method is subjected to iterative assessments after the
execution of each module. This approach allows to discern and analyze the specific
impact and weight that each individual module exerts on the final error. By dissect-
ing the performance at each stage, we gain valuable insights into the contributions
of each module, facilitating a comprehensive understanding of the overall system
dynamics and optimization potential.

Landmark Regression Evaluation Metric
The Landmark Regression module is assessed computing the mean error values, among
the set of landmarks identified in the image. The predicted pixel coordinates are
compared with the ground truth ones.

E2D =
∑N

i=1(z
∗
i − zi)

N
with i = 1, . . . , N landmarks with v = 1 (5.5)

where z∗i is the i-th landmark’s ground truth position, zi is the respective prediction
and v it is the visibility coefficient.
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The overall module error is defined as the L2 norm of the computed mean error:

ECNN = ∥E2D∥2 (5.6)

Landmark Mapping Evaluation Metric
The Landmark Mapping module is assessed similarly to the previous one, computing
the L2 norm on the mean 3D position error of landmarks marked with visibility co-
efficient v = 1. The predicted 3D coordinates are compared with the ground truth
ones.

E3D =
∑N

i=1(x
∗
i − xi)

N
with i = 1, . . . , N landmarks with v = 1 (5.7)

where x∗i is the ground truth position of the i-th landmark, xi, is the respective pre-
diction and v it is the visibility coefficient.
The overall module error is defined as the L2 norm of the computed mean error:

ENN = ∥E3D∥2 (5.8)

5.2.2 Evaluation on Training Dataset

Two distinct experiments are conducted to comprehensively evaluate the perfor-
mance of the implemented method. In the first experiment, the method underwent
rigorous testing on the training dataset, where it is exposed to known data. This ini-
tial experiment serves as a crucial phase for fine-tuning and optimizing the model’s
parameters.

Landmark Regression

As predictable, as far as the camera gets closer to the target region, the landmark
location prediction becomes more granular and accurate.

It is important to notice that the performed experiment takes into account 40 cm as
minimum distance from the target. This is due to an accurate results analysis which
reports that in closer positions the number of landmarks in the camera frame is not
sufficient to predict correctly the pose.

The Landmark Regression module reports an average 2D error ECNN = 1.38 ± 0.06
pixels over the sixteen training trajectories, corresponding to the 0.0027% consider-
ing 512x512 images.
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FIGURE 5.1: 2D error over the training dataset.

As it’s possible to notice in figure 5.2, the performances are quite the same for each
training trajectory, due to the fact that the Landmark Regression module predictions
are not affected by the orientation of the satellite if this not introduces occlusion.
On the other hand the module’s performances are strictly affected by the quality and
light of the captured image.

FIGURE 5.2: Landmark Regression error over the trajectory range (z
axis) in pixels.
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The following table report the mean 2D error and its variance for each trajectory in
the train dataset. It’s important to notice that the error grows along with the RPY
rotations in the respective trajectories (see the trajectories specifics at 1.1).

Trajectory ECNN [pixels]

TRAY_1 1.37 ± 0.05
TRAY_2 1.39 ± 0.05
TRAY_3 1.35 ± 0.06
TRAY_4 1.34 ± 0.06
TRAY_5 1.37 ± 0.07
TRAY_6 1.38 ± 0.07
TRAY_7 1.37 ± 0.06
TRAY_8 1.43 ± 0.06
TRAY_9 1.33 ± 0.06
TRAY_10 1.34 ± 0.06
TRAY_11 1.42 ± 0.07
TRAY_12 1.41 ± 0.05
TRAY_13 1.38 ± 0.05
TRAY_14 1.38 ± 0.05
TRAY_15 1.38 ± 0.05
TRAY_16 1.37 ± 0.05

Overall 1.38 ± 0.06

TABLE 5.1: Landmark Regression module results.

Landmark Mapping

The evaluation of the performances of Landmark Mapping module is performed on
both multi-models configuration and single model configuration.

In the first case, each model is trained to cover a specific range of distances from the
target. This strategic division aimed to capitalize on the unique strengths of each
model within its designated proximity band. The switch between one model to the
following one is performed as the predicted distance from the target overcome a
threshold for five times.

The following table shows the used thresholds for the models switching:

Models transition Threshold (m)

M1 → M2 1.30
M2 → M3 0.60

TABLE 5.2: Thresholds of the multi-model configuration.

The Landmark Mapping module takes the predicted 2D positions of landmarks as
input, and as a result, its output is influenced by any residual errors propagated
from the preceding module. Notably, the errors in predicting the 3D positions tend
to be more pronounced for target locations that are farther from the camera. This
happens because a pixel error in the 2D positions at greater distances corresponds
to a relatively larger 3D error compared to positions that are closer to the camera.
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FIGURE 5.3: Models Distribution over thez axis

FIGURE 5.4: Landmark Mapping error for the different models of the
multi-model configuration.
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FIGURE 5.5: 3D error over the training dataset in the multi-model
configuration.

FIGURE 5.6: 3D error over the training dataset in the single-model
configuration.
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As it’s evident in figures 5.7 and 5.8, the single-model configuration is more con-
sistent than the multi-model one. This is due to the fact that the training phase
is performed with a wider dataset than the other configuration, but of diversified
data.
The multi-model configuration presents drastic jumps in the transition from one
model to another, giving to the switching model algorithm too weight in 3D position
evaluation.

FIGURE 5.7: Landmark Mapping error over the trajectory range (z
axis) in the multi-model configuration.

FIGURE 5.8: Landmark Mapping error over the trajectory range (z
axis) in the single-model configuration.
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Overall the single model configuration presents better performances in the 3D land-
marks position prediction. The main problem of the multi-model configuration is
the amount of data used to train the three models. With a wider training dataset
and a more accurate decision algorithm in the transition from a model to another,
this configuration could introduce more robustness in the landmarks position pre-
diction.

In the following table are compared the performances of the two analyzed configu-
ration for each training trajectory.

Trajectory ENN multi-model ENN single model

TRAY_1 (1.02 ± 0.22) cm (0.76 ± 0.22) cm
TRAY_2 (1.06 ± 0.22) cm (0.74 ± 0.22) cm
TRAY_3 (1.02 ± 0.23) cm (0.73 ± 0.23) cm
TRAY_4 (1.05 ± 0.23) cm (0.69 ± 0.23) cm
TRAY_5 (1.16 ± 0.24) cm (0.74 ± 0.24) cm
TRAY_6 (1.30 ± 0.32) cm (0.90 ± 0.30) cm
TRAY_7 (0.87 ± 0.18) cm (0.72 ± 0.18) cm
TRAY_8 (0.82 ± 0.13) cm (0.72 ± 0.13) cm
TRAY_9 (0.86 ± 0.19) cm (0.76 ± 0.19) cm
TRAY_10 (0.91 ± 0.15) cm (0.84 ± 0.15) cm
TRAY_11 (1.03 ± 0.07) cm (0.95 ± 0.07) cm
TRAY_12 (0.94 ± 0.16) cm (0.66 ± 0.17) cm
TRAY_13 (1.03 ± 0.17) cm (0.70 ± 0.17) cm
TRAY_14 (1.31 ± 0.27) cm (0.92 ± 0.27) cm
TRAY_15 (1.59 ± 0.28) cm (1.20 ± 0.28) cm
TRAY_16 (1.90 ± 0.42) cm (1.52 ± 0.42) cm

Overall (1.12 ± 0.48) cm (0.85 ± 0.35) cm

TABLE 5.3: Landmark Mapping module results with single and
multi-model configurations.
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Final Pose Evaluation

The CPD module introduces an ulterior error due to the alignment of the reference
points set with the predicted one.

It’s important to notice that the two errors ER and ET are deeply affected by the
number of points in the predicted point set.

In cases of a sparse point set, CPD struggles to discern a coherent structure, leading
to decreased accuracy in the alignment process. The algorithm’s ability to effectively
capture the global patterns and deformations decreases, resulting in sub-optimal
alignments. Therefore, maintaining an adequate number of points in the input sets
is crucial for CPD to deliver robust and reliable performance, ensuring the successful
alignment of point clouds in various applications.

FIGURE 5.9: Translation error over the trajectory range (z axis) in
multi-model configuration.

FIGURE 5.10: Translation error over the trajectory range (z axis) in
single-model configuration.
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FIGURE 5.11: Rotation error over the trajectory range (z axis) in multi-
model configuration.

FIGURE 5.12: Rotation error over the trajectory range (z axis) in
single-model configuration.
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As shown in figures 5.9 and 5.10, the algorithm performances vary drastically as the
number of predicted landmarks becomes six or less.

Trajectory ECNN (pxls) ENN (cm) ET (cm) ER (°) ST SR S

TRAY_1 1.37 ± 0.05 1.02 ± 0.22 2.41 ± 2.09 0 0.0228 0 0.0228

TRAY_2 1.39 ± 0.05 1.06 ± 0.22 2.17 ± 1.67 0.010 0.0200 0.0001 0.0201
TRAY_3 1.35 ± 0.06 1.02 ± 0.23 1.92 ± 0.98 0.030 0.0180 0.0005 0.0185
TRAY_4 1.34 ± 0.06 1.05 ± 0.23 1.89 ± 0.67 0.058 0.0170 0.0010 0.0180
TRAY_5 1.37 ± 0.07 1.16 ± 0.24 2.08 ± 0.86 0.095 0.0196 0.0016 0.0212
TRAY_6 1.38 ± 0.07 1.30 ± 0.32 2.50 ± 4.91 0.137 0.0245 0.0024 0.0269

TRAY_7 1.37 ± 0.06 0.87 ± 0.18 1.96 ± 1.50 0.006 0.0185 0.0001 0.0186
TRAY_8 1.43 ± 0.06 0.82 ± 0.13 1.65 ± 1.33 0.022 0.0160 0.0004 0.0164
TRAY_9 1.33 ± 0.06 0.86 ± 0.19 1.64 ± 1.48 0.048 0.0158 0.0008 0.0166
TRAY_10 1.34 ± 0.06 0.91 ± 0.15 1.71 ± 1.94 0.083 0.0167 0.0014 0.0181
TRAY_11 1.42 ± 0.07 1.03 ± 0.07 1.91 ± 3.00 0.127 0.0190 0.0022 0.0212

TRAY_12 1.41 ± 0.05 0.94 ± 0.16 1.67 ± 1.88 0.006 0.0158 0.0001 0.0159
TRAY_13 1.38 ± 0.05 1.03 ± 0.17 1.55 ± 1.60 0.014 0.0138 0.0002 0.0140
TRAY_14 1.38 ± 0.05 1.31 ± 0.27 2.30 ± 1.06 0.023 0.0195 0.0004 0.0199
TRAY_15 1.38 ± 0.05 1.59 ± 0.28 3.21 ± 0.70 0.032 0.0271 0.0005 0.0276
TRAY_16 1.37 ± 0.05 1.90 ± 0.42 4.23 ± 0.60 0.042 0.0357 0.0007 0.0364

Overall 1.38 ± 0.06 1.12 ± 0.48 2.18 ± 2.09 0.046 0.0200 0.0008 0.0208

TABLE 5.4: Results on training set with multi-model configuration.

Trajectory ECNN (pxls) ENN (cm) ET (cm) ER (°) ST SR S

TRAY_1 1.37 ± 0.05 0.76 ± 0.22 2.14 ± 2.09 0 0.0196 0 0.0196

TRAY_2 1.39 ± 0.05 0.74 ± 0.22 1.89 ± 1.67 0.010 0.0168 0.0001 0.0169
TRAY_3 1.35 ± 0.06 0.73 ± 0.23 1.72 ± 0.98 0.032 0.0152 0.0005 0.0157
TRAY_4 1.34 ± 0.06 0.69 ± 0.23 1.66 ± 0.67 0.065 0.0152 0.0011 0.0163
TRAY_5 1.37 ± 0.07 0.74 ± 0.24 1.72 ± 0.86 0.110 0.0164 0.0019 0.0183
TRAY_6 1.38 ± 0.07 0.90 ± 0.30 1.98 ± 4.91 0.166 0.0197 0.0029 0.0226

TRAY_7 1.37 ± 0.06 0.72 ± 0.18 1.93 ± 1.50 0.007 0.0174 0.0001 0.0175
TRAY_8 1.43 ± 0.06 0.72 ± 0.13 1.79 ± 1.33 0.028 0.0159 0.0005 0.0164
TRAY_9 1.33 ± 0.06 0.76 ± 0.19 1.64 ± 1.48 0.062 0.0145 0.0011 0.0155
TRAY_10 1.34 ± 0.06 0.84 ± 0.15 1.55 ± 1.94 0.109 0.0131 0.0019 0.0150
TRAY_11 1.42 ± 0.07 0.95 ± 0.07 1.54 ± 3.00 0.168 0.0126 0.0029 0.0155

TRAY_12 1.41 ± 0.05 0.66 ± 0.17 1.17 ± 1.88 0.011 0.0112 0.0002 0.0114
TRAY_13 1.38 ± 0.05 0.70 ± 0.17 0.85 ± 1.60 0.023 0.0083 0.0004 0.0087
TRAY_14 1.38 ± 0.05 0.92 ± 0.27 1.65 ± 1.06 0.036 0.0152 0.0006 0.0158
TRAY_15 1.38 ± 0.05 1.20 ± 0.28 2.67 ± 0.70 0.049 0.0240 0.0009 0.0249
TRAY_16 1.37 ± 0.05 1.52 ± 0.42 3.75 ± 0.60 0.064 0.0335 0.0011 0.0346

Overall 1.38 ± 0.06 0.85 ± 0.35 1.85 ± 1.19 0.058 0.0168 0.0010 0.0178

TABLE 5.5: Results on training set with single-model configuration.



Chapter 5. Implementation and Experiments 47

Tables 5.4 and 5.5 highlight that the single-model configuration demonstrates supe-
rior overall performance (S = 0.0178) compared to the multi-model configuration (S
= 0.0208). However, it’s noteworthy that the multi-model configuration has slightly
better performance in the rotation aspect despite the overall advantage of the single-
model setup.

5.2.3 Evaluation on Test Datasets

The second experiment is carried out on a separate test dataset composed of four
new and unseen trajectories. This test dataset is intentionally kept independent from
the training data, simulating real-world scenarios and ensuring the model’s gener-
alization capabilities. The performance on the test dataset provides insights into the
method’s ability to extrapolate learned patterns and accurately handle novel data
instances. Together, these two experiments facilitate a comprehensive assessment of
the method’s robustness, effectiveness, and generalization across different datasets.

The first two trajectories (A and B) present an image quality and light conditions
similar to the training images, while the other two (Less_Di f f icult_Trajectory and
Di f f icult_Trajectory) present light condition too far from the training images and so
the system struggles to predict the correct position of each landmarks in the image
due to the fact that the Landmark Mapping module is quite sensitive to the output
of the Landmark Regression one. Indeed, if the landmarks that are supposed to be
present in the image frame are not all recognised, the 3D landmark position is pre-
dicted with high error.
So the system highly relies on the correct identification of each landmark in the im-
age by the Landmark Regression (a deepened analysis of the problem and possible
improvements is discussed at section 6.3).

Due to this, with the ladder dataset the evaluation is performed only on the Landmark
Mapping and CPD modules, assuming exact the prediction of the landmarks position
in the image (2D Error = 0).



Chapter 5. Implementation and Experiments 48

As shown is figures 5.13 and 5.14 the 2D landmarks location is predicted with a
good accuracy also on the test set, with an average 2D error ECNN = 1.35 ± 0.04
pixels (corresponding to the 0.0026% for 512x512 images) and a error variation on
the z axis coherent with the training results.

FIGURE 5.13: 2D error over the test dataset.

FIGURE 5.14: Landmark Regression error over the trajectory range (z
axis) on the test dataset.
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In contrast with the training results, the multi-model configuration of the Landmark
Mapping module express better performances on the test set than the single-model
configuration on each test trajectory.

FIGURE 5.15: Landmark Mapping error in multi-model configuration
on test dataset.

FIGURE 5.16: Landmark Mapping error in single-model configura-
tion on test dataset.
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In both configurations the Difficult Trajectory is predicted with noticeable error in
particular in its first part where its RPY rotations are considerable, even beyond the
range of rotations known by the models (see figure 5.17 and 5.18).

The EROSS project [24] sets a stringent guideline, aiming to a less than 2-5 centime-
ters 3D error, reflecting the project’s emphasis on precision in spaceborne applica-
tions. The achieved 3D error, measured in the experiments, consistently falls within
the specified range, showcasing the system’s capability to deliver accurate and reli-
able results, crucial for the success of rendezvous maneuvers and other space mis-
sions.

FIGURE 5.17: Landmark Mapping error over the trajectory range (z
axis) in the multi-model configuration on test dataset.

FIGURE 5.18: Landmark Mapping error over the trajectory range (z
axis) in the single-model configuration on test dataset.
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As previously discussed, the final translation and rotation errors ET and ER are af-
fected by the number of landmarks in the predicted point set. In figures 5.19 and
5.20, in positions closed to the target, it’s possible to see that the translation error
increases as far as the number of visible landmarks in the image frame decreases.

FIGURE 5.19: Translation error over the trajectory range (z axis) in
multi-model configuration on test dataset.

FIGURE 5.20: Translation error over the trajectory range (z axis) in
single-model configuration on test dataset.
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The multi-model configuration exhibits noticeable performance jumps during the
transitions between models. These abrupt shifts highlight the challenge associated
with integrating different models, suggesting the need for further refinement in the
transition logic to ensure smoother and more consistent predictions across varying
proximity bands.

FIGURE 5.21: Rotation error over the trajectory range (z axis) in multi-
model configuration on test dataset.

FIGURE 5.22: Rotation error over the trajectory range (z axis) in
single-model configuration on test dataset.
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In the following tables are reported the analysed errors and scores for each test tra-
jectory and in both analyzed configurations: multi-model and- single-model.

In contrast to the training results, the single-model configuration has lower perfor-
mance both on translation and rotation, meaning that compared to the multi-model
one demonstrates an overfitting behavior.

Overall, considering the multi-model configuration, the testing performance, both
on rotation (SR) and translation (ST), is not so far from the training one and quite en-
couraging, demonstrating the ability of this configuration to generalize when deal-
ing with unknown data.

Trajectory ECNN (pxls) ENN (cm) ET (cm) ER (°) ST SR S

TRAY_A 1.34 ± 0.05 1.08 ± 0.29 2.96 0.601 0.0238 0.0105 0.0343
TRAY_B 1.37 ± 0.05 1.89 ± 1.60 3.62 0.281 0.0287 0.0049 0.0336
Less_D_Tray 0.00 ± 0.00 1.27 ± 0.15 3.32 0.057 0.0337 0.0010 0.0347
Difficult_Tray 0.00 ± 0.00 5.58 ± 17.96 7.73 0.375 0.0697 0.0066 0.0763

Overall 1.35 ± 0.04 2.46 ± 8.38 4.41 0.328 0.0390 0.0057 0.0447

TABLE 5.6: Results on test set with multi-model configuration.

Trajectory ECNN (pxls) ENN (cm) ET (cm) ER (°) ST SR S

TRAY_A 1.34 ± 0.05 0.95 ± 0.29 2.04 0.781 0.0165 0.0136 0.0301
TRAY_B 1.37 ± 0.05 1.21 ± 1.60 3.06 0.544 0.0246 0.0095 0.0341
Less_D_Tray 0.00 ± 0.00 11.76 ± 0.15 17.19 0.045 0.1166 0.0008 0.1174
Difficult_Tray 0.00 ± 0.00 20.69 ± 17.96 29.36 0.373 0.2010 0.0065 0.2075

Overall 1.35 ± 0.04 8.67 ± 180.0 12.9 0.435 0.0897 0.0076 0.0973

TABLE 5.7: Results on test set with single-model configuration.
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Chapter 6

Discussion and conclusions

6.1 Challenges in On-Board AI Systems for Space Missions

AI algorithms in on-board space applications encounter significant challenges re-
lated to both verifiability and computational load, crucial factors for the success and
safety of space missions.

6.1.1 Verifiability Issues

AI algorithms, particularly those employing deep learning, are characterized by in-
tricate architectures and numerous parameters. The complexity of these models
makes it challenging to provide comprehensive assurance of their correctness. In
space applications, where system failures are not an option, ensuring the verifiabil-
ity of AI algorithms becomes predominant.

Many AI models, including deep neural networks, lack inherent explainability. Un-
derstanding the decision-making process within these "black box" models is essen-
tial to verify their reliability. Achieving transparency in AI decision logic is critical in
scenarios where the basis for decision-making must be interpretable, such as during
critical space maneuvers.

Space environments are dynamic and may exhibit uncertainties. AI algorithms de-
signed for adaptability and learning might introduce challenges in predicting their
behavior accurately. Verifying the robustness of adaptive AI systems in the face of
unforeseen conditions is a persistent concern.

6.1.2 Computational Issues

On-board space systems typically operate with limited computational resources due
to factors such as size, weight, and power constraints (SWaP). Implementing AI algo-
rithms with demanding computational requirements may strain available resources,
affecting the overall efficiency of the system.

Certain space applications, such as autonomous navigation or hazard avoidance,
demand real-time decision-making. AI algorithms with high computational loads
may struggle to meet these stringent timing constraints. Delays in processing could
lead to missed opportunities or, in critical situations, mission failure.

In addition to computational power, energy efficiency is a crucial consideration. Pro-
longed missions and the reliance on energy-harvesting sources necessitate AI algo-
rithms that balance computational complexity with energy consumption, ensuring
sustained and reliable operation.
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Addressing these challenges requires a multidisciplinary approach involving AI re-
searchers, space engineers, and mission planners. Techniques such as formal ver-
ification, explainable AI, and hardware optimization are essential to enhance the
verifiability and efficiency of AI algorithms in on-board space applications.

6.2 Results Analysis

In the broader context, the multi-model configuration emerges as the more robust
and adaptable option, showcasing superior performance on the test set and demon-
strating effective generalization capabilities to previously unseen data. The overall
system score on the test dataset is S = 0.0447, primarily affected by the translation
component ST = 0.0390, as opposed to the relatively lower contribution from the ro-
tation aspect, SR = 0.0057. The noteworthy aspect is the necessity of prioritize the
minimization of translation errors, since, in proximity to the target, precise transla-
tion is crucial for accurate maneuvering. Moreover, rotation pose can be more effec-
tively predicted with the incorporation of a navigation filter. This strategic integra-
tion allows for a corrective mechanism, compensating for rotational discrepancies
and enhancing the system’s overall precision in navigating close quarters.

6.3 Possible Improvements

6.3.1 Landmark Selection

As already discussed at section 4.3.1, the selection of the number and position of
landmarks in the model is crucial for the resulting performances of the system. Since
the final translation and rotation errors (ET, ER) are strictly related to the number
of landmarks identified in the image frame, which reduces in positions closer to
the target, a suitable improvement would be the increase of the initial number of
landmarks.

Another option would be using multiple models also for the Landmark Regression
module, which are able to identify a target set of landmarks in farther positions and
a second set in closer distances to the target, in order to keep the number of identified
points in the image frame as greater as possible.
This implementation would also lead to a more accurate pose estimation in positions
closer to the minimum distance analyzed in the experiments (from 40cm to 20cm). A
well-performed pose estimation in positions very close to the target would help to
minimize any errors introduced by camera distortions.

6.3.2 Landmark Mapping Sensitivity

The assessment of trajectories such as Less_Difficult_Trajectory and Difficult_Trajectory
is conducted with a noteworthy consideration: the assumption of zero prediction
error for the points’ location in the image. This assumption is made out of necessity
since the Landmark Regression module encounters difficulties in identifying all the
landmarks expected to be present in the image frames. Consequently, the input
data for the Landmark Mapping module is marked by a heightened sensitivity, as
the accuracy of its predictions is contingent upon the successful identification of
landmarks by the preceding module.
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A potential avenue for improvement involves an expansion of the training dataset to
incorporate instances where certain landmarks remain unidentified due to inherent
challenges in their recognition. This strategy aims to enhance the model’s resilience
to scenarios where specific landmarks pose persistent issues during identification.
By exposing the model to a more diverse range of challenges and including cases
of landmark ambiguity, it is anticipated that the trained model will develop a more
robust understanding, leading to improved performance, particularly in situations
mirroring real-world complexities. This adjustment aligns with the overarching goal
of fortifying the system’s adaptability and generalization capabilities, addressing
challenges posed by varying environmental conditions and unforeseen factors dur-
ing autonomous space applications.

Moreover, to fortify the robustness of the system, there is a prospect to introduce
a more sophisticated pre-processing system. This advanced system would be de-
signed to mitigate the impact of varying image light conditions on landmark iden-
tification. By incorporating techniques such as adaptive image enhancement, con-
trast normalization, or even exploring deep learning-based methods for illumina-
tion invariance, the model could become less susceptible to fluctuations in lighting.
Such enhancements would foster greater reliability in landmark identification by
the Landmark Regression module, subsequently improving the overall accuracy of
the Landmark Mapping module. This proactive approach anticipates and addresses
challenges associated with real-world scenarios where illumination conditions can
be unpredictable, ensuring the model’s effectiveness across diverse operational en-
vironments in on-board space applications.

6.4 Conclusions

This project presents a dedicated monocular pose estimation framework designed
for spaceborne objects, emphasizing its applicability to satellite rendezvous maneu-
vers. The framework capitalizes on the strengths of deep neural networks, seam-
lessly integrating feature learning and establishing robust 2D-3D correspondence
mapping. Notably, the incorporation of HRNet, known for its high-resolution image
representation, significantly contributes to the precision of pose predictions and the
subsequent refinement process. The framework further demonstrates its efficiency
by employing geometric optimization techniques, ensuring accurate alignment of
point sets and enhancing the overall robustness of the pose estimation system.
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Appendix A

Support Code

A.1 Ground Truth Heatmaps

1 import numpy as np
2

3 def createHeatmap(landmark , vp, hmap_w , hmap_h , sig=1):
4 hmap = np.zeros(( hmap_height + 3, hmap_width + 3))
5 x, y = landmark
6 if vp:
7 for i in range(y - 3*sig , y + 3*sig):
8 for j in range(x - 3*sig , x + 3*sig):
9 hmap[i,j]+=np.exp(-((i-y)** 2+(j-x)**2) /(2* sig **2))

10

11 hmap = hmap[1:-2, 1:-2]
12

13 return hmap
14

15 def coord2Heatmap(landmarks , vis , hmap_w =512, hmap_h =512, sig =1):
16 hmaps = []
17

18 for landmark , vp in zip(landmarks , vis):
19 hmaps.append(createHeatmap(landmark ,vp,hmap_w ,hmap_h ,sig))
20

21 hmaps = np.array(hmaps).squeeze ()
22

23 return hmaps

LISTING A.1: Ground Truth Heatmaps
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A.2 Landmark Location Selection
1 import numpy as np
2

3 def get_landmarks(landmarks_images , threshold1 =-0.5, threshold2 =-0.6):
4 landmarks2D = []
5 for img in landmarks_images:
6 Lnd_found = False
7 lndx = -1
8 lndy = -1
9 mask1 = img < threshold2

10 img[mask1] = -1
11

12 if np.max(img) > threshold1:
13 Lnd_found = True
14 elif np.max(img) > threshold2 and np.var(img) > 2e-6:
15 Lnd_found = True
16

17 if Lnd_found:
18 p_lndy ,p_lndx = np.where(img == np.max(img))
19 lndx = np.round(np.mean(p_lndx))
20 lndy = np.round(np.mean(p_lndy))
21 if landmarks2D is not None or len(landmarks2D) > 0:
22 for data in landmarks2D:
23 if data [2] == 1 and abs(lndx - data [0]) <= 3
24 and abs(lndy - data [1]) <= 3:
25 if np.max(img)>data [3] and np.var(img)>data [4]:
26 data [0] = -1
27 data [1] = -1
28 data [2] = 0
29 n_lnd=[lndx ,lndy ,1,np.max(img),np.var(img)]
30 else:
31 n_lnd = [-1,-1,0,np.max(img),np.var(img)]
32

33 n_lnd = [lndx ,lndy ,1,np.max(img),np.var(img)]
34 else:
35 n_lnd = [-1,-1,0,np.max(img),np.var(img)]
36

37 landmarks2D.append(n_lnd)
38

39 return np.array(landmarks2D)

LISTING A.2: Landmark Location Selection



59

Bibliography

[1] P.J. Besl and Neil D. McKay. “A method for registration of 3-D shapes”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 14.2 (1992), pp. 239–
256. DOI: 10.1109/34.121791.

[2] Samarth Brahmbhatt et al. “MapNet: Geometry-Aware Learning of Maps for
Camera Localization”. In: CoRR abs/1712.03342 (2017). arXiv: 1712 . 03342.
URL: http://arxiv.org/abs/1712.03342.

[3] Pasqualetto Cassinis. “Delft University of Technology Review of the robust-
ness and applicability of monocular pose estimation systems for relative nav-
igation with an uncooperative spacecraft”. In: 2019.

[4] cordis.europa.eu CORDIS. European Robotic Orbital Support Services: Eross project:
Fact sheet: H2020: Cordis: European Commission. Nov. 2018. URL: https://cordis.
europa.eu/project/id/821904.

[5] Simone D’Amico, Mathias Benn, and John Leif Jørgensen. “Pose estimation of
an uncooperative spacecraft from actual space imagery”. In: 2014. URL: https:
//api.semanticscholar.org/CorpusID:1537971.

[6] Martin A. Fischler and Robert C. Bolles. “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated cartogra-
phy”. In: Commun. ACM 24 (1981). URL: https://api.semanticscholar.org/
CorpusID:972888.

[7] Kunihiko Fukushima. “Neocognition: A self-organizing Neural Network Model
for a Mechanism of Pattern Recognition Unaffected by Shift in Position”. In:
(1980).

[8] Kaiming He et al. “Mask R-CNN”. In: (2017), pp. 2980–2988. DOI: 10.1109/
ICCV.2017.322.

[9] Jeff Heaton. T81-558:Applications of Deep Neural Networks. 2023. URL: https:
//sites.wustl.edu/jeffheaton/t81-558/ (visited on 11/27/2023).

[10] John F. Hughes et al. Computer Graphics: Principles and Practice. 3rd ed. Upper
Saddle River, NJ: Addison-Wesley, 2013.

[11] Alex Kendall and Roberto Cipolla. “Modelling Uncertainty in Deep Learn-
ing for Camera Relocalization”. In: CoRR abs/1509.05909 (2015). arXiv: 1509.
05909. URL: http://arxiv.org/abs/1509.05909.

[12] Alex Kendall, Matthew Grimes, and Roberto Cipolla. “Convolutional networks
for real-time 6-DOF camera relocalization”. In: CoRR abs/1505.07427 (2015).
arXiv: 1505.07427. URL: http://arxiv.org/abs/1505.07427.

[13] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
2017. arXiv: 1412.6980 [cs.LG].

[14] Mate Kisantal et al. “Satellite Pose Estimation Challenge: Dataset, Competition
Design and Results”. In: CoRR abs/1911.02050 (2019). arXiv: 1911.02050. URL:
http://arxiv.org/abs/1911.02050.

[15] Yann Lecun and Y. Bengio. “Convolutional Networks for Images, Speech, and
Time-Series”. In: The Handbook of Brain Theory and Neural Networks (Jan. 1995).

https://doi.org/10.1109/34.121791
https://arxiv.org/abs/1712.03342
http://arxiv.org/abs/1712.03342
https://cordis.europa.eu/project/id/821904
https://cordis.europa.eu/project/id/821904
https://api.semanticscholar.org/CorpusID:1537971
https://api.semanticscholar.org/CorpusID:1537971
https://api.semanticscholar.org/CorpusID:972888
https://api.semanticscholar.org/CorpusID:972888
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/ICCV.2017.322
https://sites.wustl.edu/jeffheaton/t81-558/
https://sites.wustl.edu/jeffheaton/t81-558/
https://arxiv.org/abs/1509.05909
https://arxiv.org/abs/1509.05909
http://arxiv.org/abs/1509.05909
https://arxiv.org/abs/1505.07427
http://arxiv.org/abs/1505.07427
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1911.02050
http://arxiv.org/abs/1911.02050


Bibliography 60

[16] Vincent Lepetit, Francesc Moreno-Noguer, and P. Fua. “EPnP: An Accurate
O(n) Solution to the PnP Problem”. In: International Journal of Computer Vision
81 (2009), pp. 155–166. URL: https://api.semanticscholar.org/CorpusID:
207252029.

[17] Fei-Fei Li. CS231n: Deep Learning for Computer Vision. 2023. URL: http : / /
cs231n.stanford.edu (visited on 11/27/2023).

[18] David G. Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”.
In: International Journal of Computer Vision 60 (2004), pp. 91–110. URL: https:
//api.semanticscholar.org/CorpusID:174065.

[19] Federico Moscato. satellite-visual-pose-estimator. https://github.com/JMFede/
satellite-visual-pose-estimator. 2023.

[20] Andriy Myronenko and Xubo B. Song. “Point-Set Registration: Coherent Point
Drift”. In: CoRR abs/0905.2635 (2009). arXiv: 0905.2635. URL: http://arxiv.
org/abs/0905.2635.

[21] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep
Learning Library”. In: CoRR abs/1912.01703 (2019). arXiv: 1912.01703. URL:
http://arxiv.org/abs/1912.01703.

[22] Georgios Pavlakos et al. “6-DoF Object Pose from Semantic Keypoints”. In:
CoRR abs/1703.04670 (2017). arXiv: 1703.04670. URL: http://arxiv.org/
abs/1703.04670.

[23] Sida Peng et al. “PVNet: Pixel-wise Voting Network for 6DoF Pose Estima-
tion”. In: CoRR abs/1812.11788 (2018). arXiv: 1812.11788. URL: http://arxiv.
org/abs/1812.11788.

[24] Maximo A. Roa et al. “EROSS: In-Orbit Demonstration of European Robotic
Orbital Support Services”. In: (2023).

[25] Torsten Sattler et al. “Understanding the Limitations of CNN-based Absolute
Camera Pose Regression”. In: CoRR abs/1903.07504 (2019). arXiv: 1903.07504.
URL: http://arxiv.org/abs/1903.07504.

[26] Sumant Sharma and Simone D’Amico. “Pose Estimation for Non-Cooperative
Rendezvous Using Neural Networks”. In: CoRR abs/1906.09868 (2019). arXiv:
1906.09868. URL: http://arxiv.org/abs/1906.09868.

[27] Sumant Sharma, Jacopo Ventura, and Simone D’Amico. “Robust Model-Based
Monocular Pose Initialization for Noncooperative Spacecraft Rendezvous”. In:
Journal of Spacecraft and Rockets (2018). URL: https://api.semanticscholar.
org/CorpusID:125936812.

[28] Ke Sun et al. Deep High-Resolution Representation Learning for Human Pose Esti-
mation. 2019. arXiv: 1902.09212 [cs.CV].

[29] Ke Sun et al. “High-Resolution Representations for Labeling Pixels and Re-
gions”. In: CoRR abs/1904.04514 (2019). arXiv: 1904 . 04514. URL: http : / /
arxiv.org/abs/1904.04514.

[30] Martin Sundermeyer et al. “Implicit 3D Orientation Learning for 6D Object
Detection from RGB Images”. In: CoRR abs/1902.01275 (2019). arXiv: 1902.
01275. URL: http://arxiv.org/abs/1902.01275.

[31] Bugra Tekin, Sudipta N. Sinha, and Pascal Fua. “Real-Time Seamless Single
Shot 6D Object Pose Prediction”. In: CoRR abs/1711.08848 (2017). arXiv: 1711.
08848. URL: http://arxiv.org/abs/1711.08848.

[32] Bill Triggs et al. “Bundle Adjustment - A Modern Synthesis”. In: Proceedings
of the International Workshop on Vision Algorithms: Theory and Practice. ICCV ’99.
Springer-Verlag, 2000, pp. 298–372. ISBN: 3-540-67973-1. URL: http://dl.acm.
org/citation.cfm?id=646271.685629.

https://api.semanticscholar.org/CorpusID:207252029
https://api.semanticscholar.org/CorpusID:207252029
http://cs231n.stanford.edu
http://cs231n.stanford.edu
https://api.semanticscholar.org/CorpusID:174065
https://api.semanticscholar.org/CorpusID:174065
https://github.com/JMFede/satellite-visual-pose-estimator
https://github.com/JMFede/satellite-visual-pose-estimator
https://arxiv.org/abs/0905.2635
http://arxiv.org/abs/0905.2635
http://arxiv.org/abs/0905.2635
https://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1703.04670
http://arxiv.org/abs/1703.04670
http://arxiv.org/abs/1703.04670
https://arxiv.org/abs/1812.11788
http://arxiv.org/abs/1812.11788
http://arxiv.org/abs/1812.11788
https://arxiv.org/abs/1903.07504
http://arxiv.org/abs/1903.07504
https://arxiv.org/abs/1906.09868
http://arxiv.org/abs/1906.09868
https://api.semanticscholar.org/CorpusID:125936812
https://api.semanticscholar.org/CorpusID:125936812
https://arxiv.org/abs/1902.09212
https://arxiv.org/abs/1904.04514
http://arxiv.org/abs/1904.04514
http://arxiv.org/abs/1904.04514
https://arxiv.org/abs/1902.01275
https://arxiv.org/abs/1902.01275
http://arxiv.org/abs/1902.01275
https://arxiv.org/abs/1711.08848
https://arxiv.org/abs/1711.08848
http://arxiv.org/abs/1711.08848
http://dl.acm.org/citation.cfm?id=646271.685629
http://dl.acm.org/citation.cfm?id=646271.685629


61

Acknowledgements
Desidero esprimere i miei più sentiti ringraziamenti a tutte le persone che hanno
contribuito al completamento di questa tesi.

Innanzitutto, desidero ringraziare il mio relatore, il prof. Marcello Chiaberge, e co-
relatore, l’ing. Andrea Merlo, per avermi dato la possibilità di intraprendere questo
progetto. Ringrazio l’ing. Marco Lapolla per la sua guida, disponibilità e dedizione
nell’aiutarmi a sviluppare e perfezionare il mio lavoro.

Un ringraziamento speciale va alla mia famiglia che ha sempre sostenuto e incor-
aggiato il mio percorso accademico. Il loro sostegno e supporto sono stati la spinta
necessaria per superare le sfide e raggiungere questo traguardo.

Ringrazio i compagni dell’università: Vale, Ali, Morgan, Matte, Nicoli, Franco, Luca
e Nicco, che hanno alleviato le mie giornate e contro cui ho perso innumerevoli par-
tite a bodriga.

Un ringraziamento agli amici di FORO, mia casa nell’ultimo periodo, con cui ho
condiviso molte pause caffè.

Agli amici di una vita e compagni di mille avventure: Gian, Pier, Ale, Stol, Lollo e
Chiara che, nonostante le nostre strade stiano prendendo direzioni diverse, sono e
saranno sempre presenti al mio fianco.

Infine, il ringraziamento più importante va a Nau, mia compagna di viaggio, che mi
ha sostenuto in questo percorso, credendo in me anche quando io non l’ho fatto.

Grazie mille a tutti.

Fede


	Abstract
	Introduction
	Thesis objective
	Dataset
	Thesis structure

	Background
	Camera Model
	Perspective Projection
	Pose Estimation
	From Machine Learning to Deep Learning
	Neural Network (NN)
	Regression and Classification
	Neurons and Layers
	Activation Functions

	Convolutional Neural Network (CNN)
	Training and Testing Processes



	State of art
	Monocular pose estimation
	Classic Methods
	Random Sample Consensus (RANSAC)
	Structure from Motion (SfM)

	End-to-End Learning
	PoseNet
	Mask R-CNN
	Hand-Eye Coordination Networks

	Feature Learning
	HRNet

	Spacecraft pose estimation
	Point Set Alignments
	Iterative Closest Point (ICP)
	Coherent Point Drift (CPD)



	Algorithms and methods
	Offline Architecture
	2D-3D Correspondence
	Landmark Regression
	Landmark Mapping

	Online Architecture
	Pre-Processing
	Coherent Point Drift (CPD)

	Implementation problems and Technical choices 
	Landmarks Selection
	Dataset availability


	Implementation and Experiments
	Tools and Technologies
	Programming Language
	Machine Learning Frameworks
	PyTorch

	Data Processing and Analysis Tools
	Pandas
	NumPy

	Visualization Libraries
	Matplotlib and Seaborn


	Experimentation and Evaluation
	Metrics
	Evaluation on Training Dataset
	Landmark Regression
	Landmark Mapping
	Final Pose Evaluation

	Evaluation on Test Datasets


	Discussion and conclusions
	Challenges in On-Board AI Systems for Space Missions
	Verifiability Issues
	Computational Issues

	Results Analysis
	Possible Improvements
	Landmark Selection
	Landmark Mapping Sensitivity

	Conclusions

	Support Code
	Ground Truth Heatmaps
	Landmark Location Selection

	Bibliography
	Acknowledgements

