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Abstract

Autonomous navigation is one of the most interesting and complicated challenges
of recent years. It is important to consider and evaluate the technical and appli-
cation complexity involved in the autonomous flight of a drone within an indoor
environment, where fixed and moving obstacles are encountered. Nowadays, there
is a continuous attempt to automate and optimize any kind of process, to support
humans work, and where possible, make machines do the most repetitive, alienating,
time-consuming, error pruning and dangerous jobs. In this way humans can focus
on activities that enhance their intellectual value and business can grow faster and
faster, by investing more and more in autonomous technology solutions.

Thanks to today’s cutting-edge technologies, drones can therefore be used to
facilitate inventory and logistics operations in traditional warehouses, to carry out
these operations in a safer, more efficient, and completely autonomous way.

The state of the art regarding these issues is studied, and the main techniques
and technologies that can be used to locate and navigate autonomously within an
indoor environment are briefly explained. Solutions in which a standalone drone is
used will be compared with others where the drone is supported by an AMR. After
a study of the main indoor localization techniques such as UWB, wheel odometry,
Lidar odometry etc; the main vision-based techniques are discussed more in-depth:
VIO and fiducial marker-based relocalization, which often work in a complementary
way with each other.

Finally, the results of an extensive study of 2 families of fiducial markers are
presented: Aruco vs April-Tag. The main differences in accuracy and performance
using different metrics. This is done by comparing measurements obtained from
4 different cameras: two with a standard aperture, one wide-angle camera, and
a fisheye camera. The AprilTags camera demonstrated better performance than
ArUco markers, with a broader working range and higher pose stream frequency.
The D435i camera was found most suitable for reliable and precise relocalization,
maintaining high data stream frequency. Its balance between a webcam with a
limited field of view and a camera with a wide FOV makes it ideal for autonomous
drone navigation. The D435i camera is lightweight, compact, energy-efficient, and
equipped with a CPU for obstacle avoidance. Relocalization based on fiducial
markers can be implemented if supported by proper sensor fusion algorithms and
filters.





Summary

This master’s thesis explores the topic of autonomous inventory management con-
ducted by drones. It delves into its various aspects: social, technical/technological,
and economic impact on businesses that choose to adopt these technologies.

Chapter 1: In this chapter, a general introduction to inventory management is
provided, explaining the traditional procedure for inventory operations conducted
by businesses, while analyzing the associated issues, challenges, and limitations.
Furthermore, an economic perspective is discussed, emphasizing the critical impor-
tance of accurate inventory management for businesses and the substantial financial
losses resulting from minor daily inventory errors: there are current news examples
of major companies incurring million-dollar losses for these reasons. Following
this, an overview of drones topic globally, in Europe, and particularly in Italy is
given, analyzing the main sectors where these devices are utilized, the types of
solutions offered, and the scale of investments related to this topic. The analysis
suggests these are exciting years for the drone industry, with promising applications
emerging in various sectors. It is reported that “A total of €980 million has been
allocated to the development or use of drones for cutting-edge applications”, “The
drone services market size is expected to grow to $63.6 billion by 2025” and finally
“Start-ups received capital of $7 billion in recent years, of which $17 million was
allocated to logistics”. The use of drones in the next 5-10 years seems particularly
innovative and promising, namely in logistics, where the main use case would be
the autonomous drone inventory. Then are present the key benefits in terms of
efficiency, autonomy, quality, safety, and costs, as well as the significant challenges
posed by these technologies, such as indoor drone localization in a warehouse.
These challenges will be further examined throughout the thesis, with possible
solutions presented and proposed.

Chapter 2: Following an introduction to automation in logistics, including other
use cases, a detailed examination of inventory typology is conducted, providing
the reader with a deeper understanding of this operational process. After a brief
explanation of the levels of automation, are presented some production-ready
solutions for autonomous inventory already available on the market today. First,
there are very basic semi-autonomous solutions in which the drone is manually
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piloted to capture photos at each location, progressing gradually to solutions
with minimal autonomous logic in which drones can navigate autonomously using
QR codes. However, these solutions may require operator intervention due to
limited sensor capabilities. The chapter then explores more advanced autonomous
solutions featuring drones equipped with the necessary sensors for safe independent
and autonomous navigation. Stand-alone drone solutions are scalable, allowing a
swarm of drones to work simultaneously in different parts of a warehouse. Other
solutions include drones being supported by ground-based Autonomous Mobile
Robots (AMRs) for improved localization. AMRs excel at localization compared to
drones, making the drone follow the AMR’s commands and rely on the ground robot
for localization. There are variations of these AMR-assisted solutions, including
those providing power to the drone (through a cable), enabling longer system
autonomy. Some solutions also incorporate telescopic poles mounted on AMRs for
capturing images at higher locations. The pros and cons of each of these solutions
are analyzed in detail.

Chapter 3: This chapter provides an overview of indoor localization techniques,
explaining the concept of SLAM (Simultaneous Localization and Mapping). It
delves into camera-based SLAM and Lidar-based SLAM in more detail. Within
camera-based SLAM, Visual Odometry (VO) and Visual Inertial Odometry (VIO)
are discussed. These techniques use environmental features to enable localization
and navigation by calculating the camera’s movement in space. Wheel odometry,
which estimates the pose of a ground-based robot using wheel encoders, is also
explained, albeit this technique is not applicable to drones. The chapter highlights
the main challenge with these odometric techniques: drift error accumulates over
time during navigation, but it can be reset using techniques like fiducial marker
relocation. Additionally, alternative localization techniques based on pre-installed
antenna constellations are examined, such as Ultra Wide Band (UWB). UWB
triangulates the signal from a receiver antenna on the object to provide a real-
time, highly precise (cm-accuracy) position estimation. However, UWB systems
face complications during antenna installation and are susceptible to interference
in environments like warehouses, particularly due to metal shelving that led to
complications. With fiducial markers is not possible real-time localization, but this
technique is important for relocalizing objects based on specific markers identified
during navigation, it is used in conjunction with odometric techniques (like VIO)
to reset drift errors. Finally, it offered an overview of various Kalman filter models
and their specific characteristics. Kalman filters enable sensor fusion, combining
data streams from different sensors or cameras while assigning varying weights to
each sensor based on data accuracy and reliability. In essence, if multiple systems
provide real-time position data for a robot, such as VIO, wheel odometry, and
UWB, the Kalman filter calculates a weighted average to produce a single (fused)
position estimate that takes all three data sources into account. Then if one sensor,
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such as VIO, fails to work properly, the Kalman filter “understands” this failure
and excludes its data from the final fused position estimate.

Chapter 4: This chapter, a comprehensive study of the techniques introduced
in the previous chapter, is structured in two phases. The first phase involves
implementing ROS (Robot Operating System) nodes to test and measure position
data obtained from VIO (with the T265 camera) and a basic webcam. During this
phase, a node is developed to estimate the position based on identified markers
(ArUco) in the image frame. The idea is to combine these two position data sets
from VIO and marker-based relocalization in a straightforward manner, without
applying additional logic or specific filters (e.g., EKF) to enhance the final position.
Based on initial results that showed imprecise position estimation using fiducial
markers, a more in-depth study of this technique is conducted in the second phase.
In the second phase, measurements are taken with two families of fiducial markers
(AprilTag and ArUco) and four different types of cameras (Logitech C270 webcam,
RasPi Cam IMX219-160 IR, Intel Realsense T265, and Intel Realsense D 435i).
The aim is to understand how the position estimate varies with changes in distance,
camera type, marker type, and marker size (two sets of measurements with markers
of 13.8 cm and 28 cm sides). The analysis is performed separately for the X, Y,
and Z axes, with the results analyzed to draw conclusions in the final chapter.

Chapter 5: The final chapter of the master thesis presents a comprehensive
analysis of measurement sets for the X, Y, and Z axes, comparing the performance of
AprilTags and ArUco markers across various cameras. The D435i camera emerges as
the most suitable choice for reliable and precise relocalization, offering a balanced
performance in terms of stability, accuracy, and pose stream frequency. The
usage of AprilTags with the D435i camera is identified as a promising approach for
implementing relocalization based on fiducial markers for drone navigation in indoor
environments. It explains the importance of marker design, specifically addressing
marker size considerations for optimal performance. Furthermore, it is proposed
the implementation of a dedicated logic to filter out poses near specific thresholds,
addressing challenges such as Z-flipping and reduced accuracy near range margins
or close to the perpendicular axis of the maker. The conclusion also outlines future
research directions, including a multi-variable comparative study, experiments with
different markers and infrared cameras, and exploration of event-based cameras.
Additionally, suggestions for improving markers themselves are presented, ranging
from enhancements to existing marker families to the development of entirely new
marker families based on color information. These potential advancements aim to
further enhance the accuracy and reliability of pose estimation in relocalization
applications.
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Chapter 1

Drone and Logistics

1.1 Introduction
In recent years, more and more efforts are being made to automate as much as
possible all processes that are repetitive or in some way wearisome and dangerous
for human beings. Thinking about the whole logistics process within a warehouse,
we want to focus on one activity in particular that is frequently performed within
all warehouses: stocktaking. This activity consists of scanning in a very repetitive
way, all the locations within a warehouse: the operator normally equipped with a
barcode or QR-code reader must go in front of every specific location and scan the
codes he finds attached to the pallet or boxes.

The main objective of the inventory is to ensure that the logical and physical
match, meaning that the information on the WMS (Warehouse Management
System) describing the quantity and the location of products inside the warehouse
are correct. In case inconsistencies are found at the end of the inventory, the WMS
automatically aligns "the logical to the physical" i.e., corrects and updates the new
and actual physical situation with the info on the WMS.

1.1.1 Importance of inventory for companies and businesses
The inventory operation in itself is very simple to perform: once the warehouse
manager schedules an inventory using a WMS, tasks/missions are automatically
generated for an operator to scan a certain set of locations. When he starts doing
the inventory, the operator already knows which locations the inventory he is
performing will insist on: it can be all the locations in a small warehouse, all the
locations in a specific area, or only a set of locations that meet certain criteria.
The user will just need to go to the locations on the list (paper or digital) that his
mission specifies, scan the item’s code, and enter this information into the WMS.
The operator will be guided from one location to another if the system is not paper
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but digital (app or other), and once he reaches the location, the system will aid
him through the steps he needs to conduct step by step.

Code scanning is the "basic" inventory, but it is also possible that during this
operation the operator will be asked to enter the quantities of the items, some
additional details like the lot or expiration date of the goods or other info, and
finally can be asked to take photos and thus perform quality control of the goods
contextually with the inventory, optimizing in the same time other processes.

The verb “inventory” refers to the act of counting or listing items, but as
an accounting term, inventory is a current asset and refers to all stock in the
various production stages. This second meaning of the term inventory describes the
variety of goods, products, or materials a company has on hand for consumption,
production, or distribution. The stock comprises all sellable goods while inventory
includes all of the items needed to produce, stock, and distribute the goods, as well.
It functions as a sizable asset and typically consists of components, finished goods,
raw materials, works-in-progress, maintenance, repair and operations (MRO) goods.
Maintaining the ideal balance between supply and demand, ensuring that sufficient
stock levels are maintained to meet customer orders and production requirements,
and avoiding overstock that ties up capital and results in additional costs are all
part of effective inventory management.

In general, inventory allows the business to replenish low-level stock, determine
which is the correct number of items in the event of differences, and eventually
open a new count. In these situations, it is crucial to investigate the potential
causes of the discrepancies, examine the stocktake’s results, and identify areas that
could be improved.

Inventory is the most important asset many organizations hold, representing as
much as half of the company’s expenses, or even half of the total capital investment.
In addition, according to Science Direct, the past two decades have seen an increase
in inventory management research interest. As shown in Figure 1.1, the publication
of articles on inventory management has seen an increase of over 525 percent, with
the number of published articles increasing from 2544 in 1998 to 13381 in 2020 [1].

Consider Ted Baker, which estimated in January 2019 that it had lost £25
million due to overstated stock [2]; after a review by a third-party firm, it later
emerged that the initial estimates of a stock miscalculation had more than doubled,
stating it had overestimated the numbers by at least £58 million. “Ironically,
the inventory mountain at Ted Baker is referred to as a £58m hole,” said Ian
Smith, finance director, and general manager at automated accounts payable and
document management, “I would suggest it is not such a surprise that they have an
inventory management issue. Due to Ted Baker’s misrepresentation of stock, the
company’s profitability would have been overestimated, which would have had an
impact on the share price on the London Stock Exchange. This example illustrates
the importance of inventory and how small errors in stock valuation can have far
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Figure 1.1: Science Direct publications on inventory management, 1998—2020

more serious consequences.

1.1.2 Problems and dangers of inventory
These locations, however, in very large warehouses can be as much as tens of meters
high above the ground, and therefore, the operator must use scissor-lifters or other
equipment that allows him to reach the highest shelves and thus scan the locations
at height. The use of these scissor-elevators, however, has inherent problems: it is
an inefficient task in terms of movement because in any case, the time required
to lift the machine is not negligible, the operator who finds himself performing
this task is still exposed to an intrinsic risk due to the fact that he has to take
himself to heights (up to even 20 m) to perform the scan, and finally, it is a very
repetitive and error-prone task that in the long term leads to alienation and thus
committing distracting errors and thus reducing the effectiveness and accuracy of
the task. Figure 1.2 shows the error occurrence rate in processing activities using
inventory management applications.

The results show that the less daily human handling of stocks there is, the fewer
the errors [1].

The operations mentioned above are extremely risky; in fact, several accidents
(some more serious than others) take place in warehouses every year. As a result,
it is a good idea for businesses to push for the automation of these operations
using robots and autonomous systems in a completely safe manner. For example in
Sidney in May 2016, a man lost his right leg following an accident at a warehouse in
Sydney in May 2016 [3]. The victim said he had gone out to ’look for some material’
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Figure 1.2: Rates of error occurrence in activities

before a ’split second lack of concentration’ cost him a limb. His testimony was:
’During that process, I took a step back to look upwards and the guy on the big
side-loader forklift collided with me and dragged my right foot underneath the
forklift’. Or even worse in January 2023 "a 29-year-old man was attempting to
recoup shifted inventory on a pallet inside a trailer. He was trying to move the
pallet so that a forklift could move it, but it tipped over and crushed him".

These are only a few of the numerous accidents that occur every day in ware-
houses all over the world. Forklifts, whose forks are literally weapons, must be
utilized whenever goods need to be handled; as a result, the fewer people moving
about the warehouse and the less frequently these vehicles are employed, the lower
the inherent risk there will be within a warehouse. The risk presented by operators
who must scan locations tens of meters high is in addition to the danger caused by
using these vehicles and inventorying very high locations. In order to cut expenses
and, more importantly, ensure that occurrences like the ones just stated happen
less frequently, the trend is to strive to automate operations whenever possible.

In recent years, therefore, new technologies have been considered to carry out
this task, in a fully automated way (not involving a human resource) that would
be more effective, efficient, and qualitatively superior to carrying out a stock take
in a traditional, hand-operated way.
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1.1.3 Report on drone usages and business
According to the report [4], start-ups received capital of $7 billion in recent years,
of which $17 million was allocated to logistics, $30 million to public administration,
and $27.5 million to the healthcare sector. These 3 industries collectively account
for 41% of the startups surveyed 1.3. There are also other startups that focus
on inspection-related operations, including monitoring of buildings, infrastructure,
surveillance, and plants.

Figure 1.3: Examination sample of 396 startups: the main customer industries of
the analyzed startups and their average funding

The year 2021 was a year of recovery for the Italian professional drone market,
which reached €94 million with a growth of +29% compared to 2020, in the
pre-COVID period investments in this area amounted to €117 million. Indeed,
the pandemic situation has highlighted the potential of the technology, which, in
the presence of stable regulatory environments, can undoubtedly benefit business
and public administration operations. The emergence of numerous start-ups, 317
in 2021 alone, whose value proposition focuses primarily on the development of
cutting-edge products, has caused significant ferment on the international front.
In terms of applications, 2021 saw a significant increase in projects. In fact, the
"Osservatorio.net" [4] examined 228 cases that were implemented in Italy from 2019
to 2021 (30% of the total), 102 of which were implemented in the last year.

The funding made available through the "Horizon 2020" (€80 billion, 2014 - 2020)
and "Horizon Europe" (€100 billion, 2021 - 2027) programs, which are among the
largest transactional research and innovation programs to fund practical projects
in many areas (from healthcare to climate change, etc.), demonstrates Europe’s
efforts to accelerate the transition to an increasingly digital and sustainable society.
A total of €980 million has been allocated to the development or use of drones for
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Figure 1.4: examination sample of 320 notices: the category and nation of
coordinators of EU drone-related notices

cutting-edge applications across these projects, which include 320 drone-related
projects. One of the major participants in "Horizon 2020", Italy, for instance,
demonstrates the global interest in drone technology. With 12% of the projects
surveyed, it ranks second, as can be observed in the following graph 1.4.

“The drone services market size is expected to grow to $63.6 billion by 2025” [5]
In particular, if we examine the census cases broken down by sector 1.5, we see

that there are 97 use cases in logistics, which, when compared to other sectors,
emerges as the second largest sector, right after public administration.

Figure 1.5: Examination sample of 755 cases: distribution of international use
cases per sector

Analyzing the logistics industry (see Fig. 1.6), can be observed that the main
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applications are for the transportation of goods, while there are still few usages for
inventory. It is evident that some projects are still in the experimental phase while
others are completed and operative.

Figure 1.6: Examination sample of 97 use cases: main application domains of
drones in the logistics industry worldwide, 2019-2021

1.1.4 Inventory by drone: benefit and challenges
The construction of scalable drone applications is made possible by the onboard
processing capability and effective algorithms [6]. Drones due to their ability to fly
stably even in narrow environments, their agility, and the capability to hover seem
to be very appropriate for this purpose. The main advantage and justification for
using drones for warehouse inventory is that they can fly indoors, maneuver deftly
through warehouse aisles, and reach great heights with no issues. Drones can be
moved considerably more quickly and effectively than operators can, especially
when moving them at heights. In this way, it is possible to navigate and "visit" all
the locations within a warehouse very effectively and quickly. Once the drone is
in front of a specific location (we will see later the different techniques to retrieve
this data) the drone takes a photo and analyzing it through AI model and image
processing algorithm it is possible to understand what products are there, their
status, scan the present barcodes, etc. By matching the information extracted from
the photo with the location data where the photo was taken, the actual inventory is
taken. At this point the location is considered "closed," and the results of this scan
process can be sent to the WMS. This process replaces an operator scanning and
visually analyzing the status of the goods and then manually entering the data on
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the WMS, so as you can imagine the advantage is tangible. Of course, the benefit
of using such a method is enormous for very big, vertically constructed warehouses.

There are limitations imposed by the implementation of a drone program due to
the variety and complexity of warehouse structures. Physical location, the typology
of items stored, the layout (such as shelves, pallets, and boxes), size, and technology
are all different. Furthermore diversified is the purpose of warehouses. For instance,
a distribution warehouse functions differently from a cross-docking warehouse and
a production warehouse for raw materials and finished goods. [6]

Only a few warehouse scenarios make sense and justify using drone-based
inventory since it may not be realistic to consider this type of solution in every
warehouse, for instance, the warehouse must have the following features:

• High racks (> 5 meters) - Dangerous tasks for operators to be exposed to high
altitude. For shelves lower than 5 m thus solution doesn’t make sense

• Relatively large size > 10000 square meters

• Single deep pallet rack - Barcode scanning not possible for double-deep storage
principle

• Long corridors (> 50 meters) - Long walking distances increase the time
needed to accomplish tasks

The most challenging aspect of using these objects inside a warehouse, however,
is the difficulty to localize and to position (the drone pr system) within an indoor
environment; as it is not possible to use GPS, which is today the primary method
of localization.

One of the crucial elements of this kind of application is localization, which
needs to be extremely precise, on the order of cm. While mistakes can actually
be tolerated in outdoor applications up to a few meters, this is not true for inside
applications, where errors of even a few centimeters could result in collisions with
obstacles or system failure, such as the system getting stuck and unable to move.
This feature is therefore turned worse in the industrial scenario: suffice it to say
that a drone error of even 10 cm could result in a mistake in the location-reading
code association. Because the drone believes it is facing a specific location while it
is actually above or below it, it would result in an entirely inaccurate inventory.
Luckily to date, one of the most advanced visual SLAM algorithms achieves an
accuracy of 5cm [6].

As we saw in the previous example, when the inventory findings are submitted
to the WMS, they will be completely wrong and result in errors that, when they
occur on a large scale, will be catastrophic and cause millions of dollars in economic
damage.
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Therefore, it is necessary to use other indoor localization and tracking systems
that use different technologies to be able to orient, localize, and then navigate
properly. We will delve deeper into these aspects throughout this thesis.

Drones can be used for a variety of inventory management functions, including
auditing and managing inventories, cycle counting, finding specific items, maintain-
ing buffer stocks, and taking stock. "Inventory management applications appear to
have the highest potential for use in warehousing operations: 7 of the 12 use cases
fall into this category"[6]

1.1.5 IKEA use case
Today there are already companies, including very important and famous ones,
that have adopted cutting-edge technologies to improve, automate and optimize
operations within the warehouse. A good example is IKEA, which "is investing
in technology across the board so that our stores can better support customer
fulfillment and become true centers for omnichannel retailing. Introducing drones
and other advanced tools — such as, for example, robots for picking up goods —
is a genuine win-win for everybody. It improves our co-workers’ well-being, lowers
operational costs and allows us to become more affordable and convenient for our
customers”[7].

Like any other warehouse, they have problems with discrepancies between the
digital data and the actual inventory.

A typical IKEA shop has about 7000 shelf placements, whereas distribution hubs
have ten times more. The accuracy was not adequate despite efforts to improve
data quality. Ten full-time employees of a distribution center spent their entire
workday looking for misplaced pallets.

IKEA has historically taken manual running inventories, primarily before and
after opening and closing. Employees must lift a pallet down, count its contents,
and then lift it back up again. This is a very monotonous and tiresome task.
Imagine repeating this 7000 times for a store, and 70000 times for a warehouse.

Eight drones are required to scan every site in a store with 7000 pallets in a
single day (Sunday, when the store is closed). On other days, the drones only fly
at night and after hours, and they only inspect places where the data indicated a
material movement. Any data mismatch is fixed either manually or digitally after
the flights. It seems that algorithms can be very helpful in finding deltas. As a
result, IKEA sites using Verity [8] drones have daily data accuracy that is close to
100%. [9]

Since 2021, IKEA’s Swiss division has also started adopting drone-inventory
technology. According to the furniture company, 100 Verity drones are currently in
use across 16 sites in Belgium, Croatia, Slovakia, Germany, Italy, the Netherlands,
and Switzerland performing more than 300000 inventory checks per month.
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1.1.6 Other drone application in logistics
As it is reported in [6] "Drones have shown high potential in the logistics industry.
It has been speculated that this market will grow by $29 billion by 2027 with an
annual growth rate of almost 20%"

Drones can also be used in intralogistics. They can, for instance, transport
components from locations of storage to manufacturing operations. There is a lot
of promise for indoor use for drones that can carry payloads and follow specified
flight paths, such as for on-site quick delivery of tools and replacement parts. For
tasks requiring monitoring and inspection at great heights or in hazardous areas,
indoor drone use is suitable. Drones can be used for regular surveillance tasks to
stop stealing and other illicit conduct.

1.2 Thesis organization
1. Insight into the use case of autonomous inventory and logistics

applications
In-depth exploration of stocktaking and other operations that can be carried
out autonomously in a warehouse based on drones or robots. Specifically
for warehouse inventory, there are manual, semi-autonomous, and completely
autonomous solutions, and in this case, we will focus on different solutions
with different approaches.

• Manual or semi-automatic drones: These are usually consumer drones
(with limited sensor and computational capabilities), such as DJI drones,
for which ad hoc software is developed. In the manual version, the
drone is piloted by an operator who moves it around the warehouse to
take pictures, etc. Then in the semi-automatic solutions, the drone can
move semi-autonomously within a warehouse, but only after it has been
manually positioned at a specific location in the aisle. At this point it is
able to perform some operations "autonomously"; however, in these cases,
the operator must always be ready to take control in case of problems as
the drone is not able to make decisions autonomously

• Standalone drone and swarm of drones: They are customized drones with
specific and dedicated hardware (cameras and sensors) on board that
enable them to navigate autonomously in indoor environments. They can
work stand-alone or be organized into fleets to parallelize operations

• Drone supported by AMR: The system consists of a drone that is supported
by an AMR to localize itself: the AMR on the ground locates and navigates
itself, while the drone tracks and follows it. In some cases, the AMR
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can also provide power to the drone, so the overall battery life is greatly
increased.

• AMR with multiple cameras mounted on a pole: Other systems, however,
involve the use of an AMR with a pole (fixed or telescopic) installed.
Cameras are mounted on this pole, which similarly to what the drone
does, take pictures of the highest locations

2. State of the art for indoor navigation
A brief overview of indoor navigation techniques such as SLAM (Simultaneous
Localization and Mapping) and indoor localization technologies such as UWB
(Ultra-Wideband), wheel odometry, VIO (Visual-Inertial Odometry), fiducial
marker relocation, and the significance of obstacle identification and avoidance.
Furthermore, sensor fusion and the use of the Extended Kalman Filter are
explored as essential components for achieving accurate and robust navigation
in indoor environments.

3. Empirical studies and measurements for sensor fusion optimization
This chapter focuses on a variety of project-related topics, beginning with the
hardware and software setup. Different ROS (Robot Operating System) nodes
are implemented to facilitate communication between data from VIO, camera
streaming images, and fiducial marker data: all together to compute the
sensor fusion. Briefly, some "publisher" nodes produce data (from cameras or
sensors) while other nodes "subscribe" to the publisher to get and process these
data in order to apply some logic and make some decisions. Although sensor
fusion techniques(multiple nodes take data from different producers and work
together to produce a unique final result) are being investigated to increase
localization accuracy, preliminary measurements show that there is a problem
with fiducial marker relocation. In order to undertake a full investigation of the
fiducial marker relocation, four different cameras were employed while AruCo
Marker and AprilTag Marker were used in the comparison of fiducial marker
families. To achieve precise measurements, camera calibration techniques
are used; this is a highly crucial and significant phase. Finally, the results
obtained from the experiments are presented, highlighting some differences
between cameras and fiducial marker families.

4. Conclusion In this last chapter, all the obtained results are presented, starting
with the preliminary outcomes of phase 1 and then delving into the comparative
analysis of camera and marker performance in phase 2. It becomes evident that,
overall, AprilTags have superior performance compared to ArUco markers.
For our specific use case, the D435i camera appears to be the most suitable
for fiducial marker relocalization. It boasts good resolution, maintains a high

11



Drone and Logistics

frequency in the data output stream, and is stable in marker identification,
making it a well-balanced choice. Additionally, its lightweight and low power
consumption make it suitable for installation on a drone in this kind of
application. However, for effective relocalization, it is crucial to design marker
dimensions having in mind the effective work range of distances for marker
reading. In any case and precision is maintained when the distance between the
camera and the marker is not excessive. In any case, regardless of the marker’s
size, the accuracy and stability of the estimated pose are strongly dependent
on the distance between the camera and the marker. While a larger marker
can partially compensate for a greater reading distance, relocalization for
precise results still needs to be performed within a certain threshold distance.
Finally, a concluding section provides insights and ideas for possible future
work.
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Chapter 2

Insight into the use case of
autonomous inventory and
logistics applications

2.1 Operation inside a warehouse: companies
wants automation!

"100,000 Automated Guided Vehicles (AGV) and Autonomous Mobile Robots
(AMR) were shipped globally in 2021 alone. In terms of revenue, AMRs generated
$1.6 billion and AGVs grew to $1.3 billion" [10]. And these markets are rapidly
growing, with for AGVs and AMRs projected to grow to $20 billion by 2028 [11].

Daily operations within a warehouse ensure its proper management and op-
eration: the more optimized a warehouse is, the greater its performance and
effectiveness, and the better service customers/users will experience. The number
of orders that the entire system can fill in a given amount of time is used to
measure a warehouse’s performance; the higher this number, the more effective
the warehouse will be. Human resource effectiveness, or how many operators are
required to complete a given task or set of tasks, is another factor to take into
account. The more effective and optimized their work is, the less stuff I will need to
complete the same amount of work, as you can imagine. Extremizing this idea to
the utmost, big companies today try to optimize, make it efficient, and automate
as many warehouse processes as they can. In fact, by automating some processes,
it is possible to significantly improve performance and lower costs.

Therefore, the current trend is to try to automate and have robots perform
all those labor-intensive, alienating, time-consuming, repetitive, dangerous, and
easily error-prone operations where a human being can add zero value. Inventory
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management, massive picking operations, inbound, outbound, put-away operations,
etc. are a few examples. In many of these scenarios, highly automated systems
support or replace the human operator, optimizing these operations and allowing
him to focus on other tasks where his added value is maximized.

For massive picking and put-away, there are AMR robots with a payload mounted
that basically consists of n totes: this robot is able to autonomously navigate within
a warehouse and pick up the plastic and carton parcels and take them to the packing
area to then be packed and shipped.

Figure 2.1: Example of autonomous
picking and putaway robot

It is also able to perform the opposite
operation i.e. once it receives all the
goods, the robot is able to sort them
and place them in proper storage on
the shelves. The telescopic model of this
system is also able to reach considerable
heights of about 12 m.

An indirect consequence of adopting
these systems is that in addition to im-
proving the performance and effective-
ness of processes, they are also able to
optimize space, increasing density and
thus making the best use of space and
footprint in the warehouse, further re-
ducing costs. Since there are no more
constraints on the "ergonomics" of the
spaces, to allow humans and forklifts to
move within the aisles of the warehouse,
it is possible to reduce the width of the
aisles to the minimum necessary to al-
low the robots to operate, thus making
the best use of the space available.

Taking the concept of automation to
the extreme, we advance from partially automating specific operations and processes
within a warehouse to completely automating the entire warehouse. Fabric [12]
and Autostore [13] are just two examples of these kinds of solutions. Autostore
is an automated storage and retrieval system (ASRS), it harnesses the power of
warehouse robots for 24/7 order fulfillment within a cubic layout so dense it can
actually quadruple storage capacity and unlock the true potential of storage floor
space. It can increase the storage capacity 4 times, 99.7% Uptime 24/7 access to
inventory (given for free, transparently way as the system is totally autonomous).
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Figure 2.2: Fabric: retail fulfillment
automation company

Figure 2.3: Autostore: an automated
storage and retrieval system

2.2 What role does inventory play in a company’s
success?

Warehouse and supply chain efficiency are directly related to inventory management.
It entails managing the movement and storage of goods within a warehouse, making
sure that stock is available when needed, reducing costs, and maximizing overall
productivity.

Inventory management is a critical component of warehouse operations, offering
numerous benefits to businesses. First off, it gives warehouses the ability to quickly
satisfy client needs, ensuring timely order fulfillment and enhancing customer
satisfaction.

By minimizing understock1, stockouts2, overstock3 and deadstock4, using specific
strategies based on consuming first seasonal and expiring products, businesses can

1Underswtock: to stock with less than the usual or desirable number or quantity
2Stockout: also know out-of-stock (OOS) is an event that causes inventory to be exhausted.

There are no goods of a particular kind available for sale.
3Overstock: also called “surplus stock,” happens when stores purchase more products than

they sell, this leads to having too much stock in a warehouse that has not sold which increases
storage costs and reduces working capital.

4DeadStock: an amount of a product that a company has bought or made but that is no
longer sellable and will likely never sell in the future, oftentimes because it’s expired, obsolete, low
quality, or out of season. Storing dead stock costs money and so reduces the amount of profit a
company can make. Dead stock only refers to inventory that has never been sold, which excludes
returns.
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lower costs and maximize their capital efficiency. Businesses can strike a balance
between maintaining adequate stock levels and preventing needless holding costs
by implementing inventory control strategies, optimizing replenishment processes
using precise consumption forecasts, and choosing which product to promote or
discount.

Inventory management’s effect on supply chain effectiveness is another essential
factor. An efficient warehouse inventory management system enables more seam-
less coordination of the activities of production, distribution, and procurement.
Businesses can reorganize their processes, reduce disruptions, and enhance the
performance of their supply chains by having accurate and timely visibility into
inventory levels. In some circumstances, it is also possible to take advantage of the
inventory phase in order to assess the quality of the stocked goods.

2.2.1 Different typology of inventory counting
It takes a lot of time and manpower to conduct a thorough inventory of every item
in a business, including the sales floor and backroom.

This is the obvious option if the warehouse is closed once a week. Larger
businesses, however, can frequently run seven days a week. Retailers are then
faced with another challenging decision: stop the warehouse or carry out the
stocktake over the course of the night? Obviously, this compromises operations,
and performances that led to upsetting consumers. While having to complete the
inventory count overnight can cause a schedule crunch. When employing a third
party, an overnight inventory count is more practical (and popular), but it is not
always possible if you are employing internal workers.

The truth is that manual inventory counts produce mediocre outcomes. There
will still be errors and discrepancies even with supporting technologies like barcode
scanners because there is a crucial margin for human error. There are several
causes of inconsistencies, including damage, theft, incorrect amount entry, incorrect
item or location scanning, shifting products between shelves without updating the
system, etc. Doing stock counts once or twice a year is no longer sufficient, which is
a significant issue. You might have 90% accuracy once every six months, but what
about the rest of the time? The average accuracy of store inventories is between 60
and 80 percent.

Cycle count Cycle counts are an alternative to annual stocktakes. When a store
conducts a cycle count, it counts only a portion of its inventory. It is possible to
carry out a cycle count many times a quarter rather than an annual stocktake once
or twice a year. In essence, you are segmenting the annual count into a number of
mini-stocktakes based on product categories, product groups, or warehouse/store
zones.
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This has many advantages over the annual stocktake, including fewer disruptions
to the store, less labor-intensive work, and lower costs (because retail staff may
complete it instead of employing third-party manpower). Additionally, it may
reduce the noticeable variance that occurs when there is a longer interval between
takes. Instead of concentrating all of your efforts on that one weekend, you may
spread out the labor across the entire year. Planning cycle counts is simpler, and
your ERP (Enterprise Resource Planning) can even generate counting orders for
you based on your rules and stock changes.

Planning is essential in this situation because there is always a chance of missing
items when constructing the counting orders when not counting everything. Another
drawback is that counting becomes ingrained in your employees’ daily routines,
making it simple for them to become sidetracked (for example, when a customer
approaches them) and either forget to count anything or count it twice. As cycle
counting could be happening on a daily basis, it may force you to do it during open
hours, but in this scenario, there is always the possibility that items included in
the counting orders could be sold or shipped before being actually counted.

ABC Analysis Cycle Counting ABC analysis cycle counting relies on a class
system. In order to differentiate between Class A, Class B, and Class C items, the
inventory manager or inventory control system performs a statistical analysis based
on a number of different criteria. The A items are counted more frequently than
the B items which are counted more frequently than the C items. Depending on
what’s crucial to the warehouse, several factors are employed to categorize goods.
Generally speaking, there are three different types of ABC analysis cycle counting:

• Pareto Principle-Based ABC Analysis: The Pareto Principle approach, also
known as ABC cycle counting, makes the assumption that 20% of a warehouse’s
inventory corresponds to 80% of its sales. These are the "A" items (the "B"
and "C" products account for 30% and 15% of the inventory, respectively, and
so on). Your most valuable assets or fastest-moving SKUs might be "A" goods.
The counted as A, B, or C items can be distinguished by inventory control
software. Consider counting your "A" things more frequently while counting
your "B" and "C" goods less frequently.

• Usage-Based ABC Analysis: Items are more likely to get lost the more
inventory is moved around. As a result, several warehouses prefer to employ
a usage-based method for their ABC analysis. They rate their inventory
according to how frequently it moves, rather than keeping expensive things in
Class A exclusively. Therefore, even if a product isn’t very expensive, it will
be counted more often if customers buy it regularly.
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• Hybrid ABC Analysis: This strategy combines automated statistical analysis
and experiential modifications, the best of both worlds. The hybrid method
uses the Pareto Principle as a starting point to identify the supply chain
components that are producing the most value. This division of the available
goods is not fixed. Instead, based on their observations, the supply chain
management team can change the classifications.

Control Group Typically, the procedure focuses on a small subset of items that
are counted repeatedly in a brief period of time, revealing any faults in the counting
approach (which can subsequently be rectified).

Random Sample Just as it sounds, a certain number of things are randomly
chosen to be counted. Daily counts allow you to quickly account for a significant
portion of the warehouse’s inventory.

Process Control Cycle Counting With this approach, counters can select
which portions to count. Counters undertake a count if there are any concerns
after reviewing the existing inventory record for any discrepancies. Process control
counting is "controversial in theory, [but] effective in practice," according to academic
research on the subject. This is due to the fact that, at first look, employees can
simply choose the easiest inventory to count and skip difficult inventory by relying
on the existing record, if they wish. In practice, a review of the method found
that while statistically the process control method is biased, in practice it’s biased
towards inventory items with the highest chance of inventory inaccuracy, and these
are the sections a warehouse wants to focus its attention on anyway.

Ad-hoc/Opportunity-based Cycle Counting Ad-hoc counting is frequently
started by the user and is not planned, making it useful in unusual circumstances.
Let’s say someone counted a zone, and a few days later the system malfunctioned
because of someone or some process. An opportunity-based cycle count may be
performed in the following situations: when an item is reordered; when an item is
stowed; and when an item’s balance falls below a predefined threshold. Instead of
waiting for the next cycle count, you can just construct a new, empty order and
begin adding counted items to it. Of course, your system must be able to compare
the quantity that was tallied to the data stored in the software. Ad-hoc counting
is sometimes referred to as spot or blind counting because it typically takes place
in unscheduled, tiny store/warehouse zones. You have more flexibility with ad-hoc
counting to handle emergencies and get around the problems caused by bad cycle
count planning. Ad-hoc counting analysis and results may enable you to precisely
modify your cycle count plan. The difficulty in this situation is the same as the
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benefit, which is the human element. Even when they recognize a need for it, if
your staff are not cautious enough, they might not initiate ad-hoc counting.

Tag counting In preparation for tag counting, the store/warehouse employees
should place a physical tag on each item. The operator must complete the required
slots on the tag with the item ID, counted quantity, and other pertinent information
during counting. Some tags have two sides, allowing a second worker to check
the data and, if necessary, fill in the adjustment on the other side. These tags
are gathered and added to the system as journals after the counting procedure is
complete.

The primary distinction between tag counting and all other counting methods is
that tag counting does not involve a direct comparison to system data. As opposed
to just generating a counting order and comparing it to the tag counting list, it is
more like creating a rough draft list of your goods and quantities, polishing it (e.g.,
updating with sales that have occurred during the counting), and then comparing
it to the final list. Tag counting is a great option for bulk warehouse zones or
retailers, which frequently lack spaces suited for a true warehouse. When there
are numerous objects and no places, keeping track of the counting procedure is
challenging. In this case, tags provide visual information about what is counted
and what is not, resolving the problem.

Utilizing scanners while counting is an even more effective option. The item can
then just have the physical tag attached so that it can be recalled after it has been
counted after the tag ID, item, and quantity have been scanned. There will be no
need to manually enter the journals; they will be created right away.

RFID Using product tags that emit a small radio frequency, shops may quickly
count their inventory by exploiting a technology called radiofrequency identification
(RFID). A single employee with an RFID reader can count thousands of products,
enabling stores that have adopted RFID to conduct weekly or even daily stocktakes
in a few minutes. As a result, RFID stores typically have 99 percent accuracy in
their inventory and no longer require annual stocktakes.

RFID installation in businesses is a large endeavor that costs money upfront.
The expense of doing annual third-party stocktakes, on the other hand, could be
utilized to pay for the RFID project since it offers a better return on investment
than traditional physical inventories.

Conclusion Finally, warehouse inventory management is essential for satisfying
customer needs, minimizing expenses, and improving supply chain efficiency. By
maintaining ideal inventory levels, businesses can guarantee timely order fulfill-
ment, save costs associated with overstock, and streamline their entire operations.
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Implementing efficient inventory management procedures increases profitability,
boosts customer satisfaction, and gives businesses an advantage in the marketplace.

2.3 Automation levels
First, let’s clarify the difference between automatic flight and autonomous flight.

Automatic flying: operations in which the remote pilot must be present and
ready to intervene at any time if needed. This is allowed only for the C4 class
(under 25 Kg, subcategory A3 - fly far from people), while it is not explicitly
prohibited for all other classes in the Open category (C0 to C3, the ‘open’ category
section is the main reference for the majority of leisure drone activities and low-risk
commercial activities).

Autonomous flight: operations in which an unmanned aircraft operates
without the remote pilot being able to intervene. This is not permitted in the Open
category, while it is permitted in the Specific and Certified categories subject to
authorization by the appropriate national authority.

Figure 2.4: The 5 levels of drone autonomy

Autonomous flight is necessary when there are communication difficulties, when
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decisions are time-critical, or when they can be made in a better way using data
available on board the drone. It is also attractive for reducing remote pilot work-
load and system-level complexity, with the aim of improving the robustness and
performance of the system itself. Building on this, JARUS (Joint Authorities for
Rulemaking on Unmanned Systems) together with ENAC (Ente Nazionale per
l’Aviazione Civile) is developing performance-based requirements for the certifica-
tion of UAS that include functions implemented through highly complex systems
equipped with Artificial Intelligence, Machine Learning, Deep Learning and neural
networks. These requirements will make it possible to certify certain autonomous
functions of drones.

A document from JARUS has been released to provide a common framework
for tackling the implementation and effects of progressive automation of functions.
The benefits of automation have long been recognized by the aviation industry,
which has long used it. In addition to optimizing ground operations to cut costs
and increase efficiency, automating some tasks frees up pilots to concentrate on
more crucial aspects of the flight. The term "autonomy," however, has become
more frequently used in relation to UAS, which led to misunderstandings.

Before analyzing each automation’s level, it is necessary to understand the
following concepts as defined by JARUS [14]:

The Human-in-the-Loop (HITL): Is a method for managing system
parameters that directly involves humans in providing inputs and assessing
outputs. With this method, people can actively participate in system operation
and be a crucial part of the feedback loop.

Human-on-the-Loop (HOTL): is a method for system control where a
human supervises a device that generates inputs and assesses outputs to
control system parameters. Contrast this with the Human-in-the-Loop (HITL)
approach, in which a human directly provides inputs and assesses outputs to
control system parameters. In the HOTL method, the human monitors the
system’s operation rather than directly controlling it. The human is in charge
of ensuring that the system operates properly and safely, while the machine
is in charge of making decisions and performing tasks. As the human can
intervene and assume control if necessary, the HOTL method adds an extra
layer of safety and reliability to the system. This makes it possible to create
systems that are more complex and autonomous while still guaranteeing that
a human is involved in the decision-making process.

Human-off-the-Loop: Refers to a method for system control where system
parameters are not monitored or managed by humans. Instead, a machine is
in charge of supplying inputs and assessing outputs to ensure sure the system
operates properly. In highly automated systems, where the machine is capable
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of operating independently without requiring human intervention, this type of
control is frequently used.

Operational Design Domain (ODD): is a mechanism that helps define
the operational boundary within which a particular system or function has
been designed to operate.

Knowing this vocabulary it is possible to understand the automation levels
defined by Jarus [14]:

• Level 0 – Manual Operation: The human manually executes the function,
receiving no support from the machine.

• Level 1 – Assisted Operation: Functions at this level of automation are
designed to assist the human in performing tasks. The machine operates in
a supporting role outside the loop of human actions. Although the human
is still in control of executing the function, the machine can provide limited
assistance within the designated ODD, such as providing relevant information.

• Level 2 – Task Reduction: This level of automation involves shared control
and monitoring between the human and machine, where the machine takes on
an in-the-loop management role to help reduce the human workload and/or
skill level required to complete the task. Although the human still leads the
function’s execution, the machine now provides a more substantial level of
support within a clearly defined ODD.

• Level 3 – Supervised Automation: At this level of automation, the
machine performs the function while the human supervises and can intervene
if necessary. The human is not aware of the machine’s internal states but
supervises the outcomes for safety. The machine leads the execution within
a defined ODD, but the human continuously monitors and must have the
necessary information to intervene if needed. Careful human factors system
design is required to ensure that the human has all the required information
to transition from “on-the-loop” to “in-the-loop” when necessary.

• Level 4 – Manage by Exception: At this level of automation, the machine
performs the function independently and alerts the human only when an issue
arises. Unlike lower levels, the human is not required to monitor the function
in real-time, but must be available and able to intervene if needed. Once the
machine has proven its ability to perform the entire function effectively and
respond to the environment, the crew may trust it to operate without human
supervision within a specified ODD. Building trust requires ensuring the
system’s trustworthiness, including meeting safety expectations for reliability,
integrity, and assurance.
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• Level 5 – Full Automation: In a fully automated function, the machine
assumes full responsibility for executing the task, while the human’s under-
standing of operational parameters is minimal or non-existent. The human’s
interaction with the machine is usually limited to providing strategic direc-
tives, such as pre-flight planning, and observing the outcomes. Additionally,
without special authorization, humans cannot intervene in real time due to
practical limitations or deliberate exclusion within the ODD. Such operations
are expected to require advanced technologies, such as Artificial Intelligence, or
strict limitations on the ODD to restrict the autonomous function’s operation.

In figure 2.4, you can find a scheme of the presented levels.

2.4 Manual-traditional inventory
Traditional stocktaking methods, which rely on manual or paper-based processes
for tracking and managing inventory, have both advantages and disadvantages that
warrant consideration.

On the positive side, these methods benefit from familiarity. Having been used
for many years, warehouse personnel are often well-acquainted with these processes.
This familiarity reduces the learning curve and minimizes the need for extensive
training, allowing for easier adoption and implementation.

However, traditional stocktaking methods also have their drawbacks. One
notable disadvantage is the time-consuming and time-intensive nature of manual
processes, particularly in larger warehouses. Physical counting of inventory items
and repetitive manual data recording can be labor-intensive and prone to errors.
These errors can result in delays and necessitate additional efforts to reconcile
discrepancies, consuming valuable time and resources. In addition, expensive
equipment, like scissor elevators, is needed for vertically developed warehouses.
Personnel must also be trained and specialized to operate this parcel at such high
altitudes (up to 20 m). In addition to the expense of the equipment, this method
of inventory at heights is also very risky because, despite the operators’ training
and specialization, they still run the inherent risk of falling because of their height.

If we consider that during a traditional inventory we frequently do not have
real-time visibility into what is happening and inventory levels, if not only after
inventory is completed, perhaps hours or days later, it is also necessary in some
circumstances to stop other operations in the warehouse areas where the stock take
is being performed. This lack of real-time information poses challenges when it
comes to responding promptly to changes in demand or unexpected events. The
absence of immediate visibility hampers decision-making and reduces the agility of
supply chain operations, potentially resulting in missed opportunities or suboptimal
outcomes.
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Considering these pros and cons, businesses need to carefully assess their specific
needs, resources, and goals when deciding which stocktaking methods to employ.
While traditional methods offer familiarity and affordability, they also present
challenges related to time consumption, accuracy, and real-time visibility. Exploring
alternative inventory management solutions, such as technology-driven systems or
automation, may offer potential improvements in efficiency, accuracy, and decision-
making capabilities.

2.5 Semi-autonomous inventory
Between the traditional manual and fully autonomous solutions, there are interme-
diate solutions: the semi-autonomous ones. These solutions, as can be deduced
from the name are characterized by having a partial level of autonomy; the contri-
bution or supervision of an operator is also required. For example, some solutions
consist of a drone manually piloted by a trained operator or a drone capable of
autonomously conducting an inventory of only one shelf at a time.

To conduct a fully autonomous inventory, the warehouse must meet several
requirements, often very restrictive, and therefore a fully automated solution cannot
always be deployed either because of technical infeasibility or due to costs that
are too excessive. This scenario provides a suitable balance because in certain
situations the financial commitment could be lower than in a completely automated
system, where the initial expenditure is sometimes very high. However, some
semi-autonomous systems require the warehouse to be particularly prepared, set
up, and compliant with a number of requirements (less stringent than a completely
autonomous warehouse) in order for them to work.

Finally, it should be noted that due to certain warehouse characteristics, it is
not always possible to have fully autonomous solutions. For example, in cases
where the layout of the racks is dynamic and can change on a weekly basis, it is
impossible to map the work area and enable autonomous navigation. In these
situations, a semi-autonomous solution that includes manual guidance may be the
best option.

2.5.1 Possible solutions to semi-autonomous inventory
Let’s see now in detail how the solutions mentioned in the previous chapter work.
In both solutions, the association between location and pallet is made when the
QR code of the location and the label of the pallet in that location are displayed in
the same frame. The biggest drawback of this approach is that it requires advance
preparation of the entire warehouse because each site needs to have a unique QR
attached to it that univocally identifies it. The WMS then receives the photographs
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the drone took, allowing for the viewing of the product’s quality condition as well
as a history of the locations.

The operator of the drone (a commercial DJI) in the first solution is able to scan
and inventory even the highest floors without putting himself at risk and, more
importantly, doing it fast and efficiently without using any additional equipment.

The second approach uses a drone that can fly by itself, but only in a single aisle;
in this case, operator supervision is still necessary to ensure the drone is flying
correctly: the operator positions the drone at the takeoff point before inventorying
a single shelf. As a commercial drone (DJI) without specific sensors for autonomous
navigation is being employed, computer vision is the main technique of navigation.
The proximity sensors that it is equipped with are disabled and unable to be used
due to the narrow aisles.

Once the drone is positioned at the take-off point, the operator initiates the
inventory mission: the drone takes off and searches for the QR code reference of
the first known location in its map (grid).

The drone uses computer vision to track the QR code of the location as a
reference and centers itself before taking the first picture. The drone then receives
movement commands on the horizontal and vertical axes (pulses of acceleration
of a given time interval), allowing it to move horizontally and vertically from
one location to another. The only way the drone can orient itself and correct its
position after moving is to trace the QR of the location it should be in front of after
moving, then center itself again if the inaccuracy is larger than a specified tolerance
threshold. The drone’s movement has no feedback; in fact, it moves "blindly".

Similar to this, if the QR’s dimensions reveal that it is too close or far from
the shelf, it will automatically adjust its position by moving closer or farther. The
drone returns to the takeoff point once all the desired locations have been scanned.
The operator then picks up the drone and places it on the new takeoff point of
the new shelf to be scanned, or changes the battery if it is running low. Since the
drone’s proximity sensors are disabled, it won’t be able to detect any obstacle in its
trajectory. As previously noted, proximity sensors are deactivated, so any objects
in the drone’s trajectory won’t be detected. As a result, operator supervision is
still necessary to examine the area, remove any obstacles from the drone’s path,
and ensure a safe landing.

2.6 Autonomous inventory
Fully autonomous inventories provide the highest level of inventory optimization
and effectiveness. In this scenario, the operator only needs to schedule and plan
an inventory, start it, periodically check its progress, and read the final results
after the inventory is finished. There are requirements that must be satisfied for
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automation to function correctly, including the warehouse’s shelves, aisles, floor,
lighting, etc. In the next section, we are going to investigate a few examples of
systems that conduct inventories independently as well as the technology employed
in these systems.

2.6.1 Possible solutions to autonomous inventory
In this section, we are going to discover different types of approaches and solutions
to perform inventory operations within a warehouse autonomously. We will see the
main features advantages and disadvantages of each solution. The 3 approaches
we will focus on are standalone drone, AMR-supported drone, and AMR with a
telescopic pole with cameras mounted on it.

Let’s analyze different solutions involving the use of a standalone drone: as can
be easily imagined, the main limitation of this solution compared to a solution
supported by an AMR is the flight autonomy, which hardly goes beyond 20 minutes,
compared to the other solution that can have autonomy of even several hours.
Without the ability to use GPS to locate and orient itself, a drone attempting to
navigate autonomously within an indoor environment (such as a warehouse) must
rely on other techniques and technologies. These methods and technologies are
frequently combined for the sake of robustness and redundancy and are then fused
together by a Kalman filter that assigns the appropriate weight to each input data
sensor, based on situation and circumstance.

2.6.2 The used technologies
The technologies and techniques that can be used to enable a drone to autonomously
navigate an indoor environment are: Lidar, UWB (Ultra Wide Band) antennas,
depth and sensor chambers such as to enable Visual Odometry, and finally, the use
of tags and markers (e.g. Fiducial marker) that ensure a reliable relative reference
in space.

Lidar - light detection and ranging:

It is a laser that rotates at a very high frequency and allows scanning and mapping
of the entire surroundings, building a 360° point cloud with respect to the object
it is mounted on (in our case the drone). This sensor is very expensive and has a
non-negligible weight for a drone of this size (having in mind to reduce the weight
as much as possible, this could be a problem), moreover it is very sensitive to
vibrations, so it is very difficult and not very worthwhile to mount it on a drone that
during the flight will never be perfectly steady therefore the resulting measurements
would be not very precise and with a non-negligible error.

26



Insight into the use case of autonomous inventory and logistics applications

UWB - Ultra Wide Band:

This solution consists of a constellation of n emitter antennas (satellites), of which
the absolute position is known (with high accuracy), and a receiver antenna mounted
on the drone (which moves in space), thanks to which it is possible to compute
the relative distance with respect to the n fixed antennas. Consequently, knowing
the relative distances of the receiver antenna (drone) with respect to the n fixed
antennas, using various techniques similar to phone cell triangulation, it is possible
to calculate the position in space of the receiver antenna (and thus of the drone)
with reasonably high accuracy. The antennas should be mounted at the edge of
the working area, as the accuracy is much higher when the object to be located
is within the area enclosed by the antennas, otherwise, albeit with low accuracy,
they are able to locate the receiving antenna even if it is located outside the area
delimited by them.

To get information about the 2D location (X and Y) of the drone you need n+1
antennas: where n is the number of dimensions to be identified. So if we want to
have a 3D location in space (X, Y and Z) we need at least 4 antennas, it should be
noted that to have a location in space, the antennas must be mounted on different
planes, otherwise if they were on a single plane it would not be possible to get
the location in space because the intersection of the spheres would be such that it
would not give the information of the 3 dimensions but only 2. From the studies
carried out, it has been noted that the more the number of antennas, the lower the
error will be, thus the higher the accuracy of drone localization.

For some applications, it is also possible to think of using the UWB localization
system for localization in the X-Y plane (with the number of antennas correctly
sized according to the typology and extension of the area in which the drone will
have to operate) and an infrared (or ultrasonic) sensor for the Z position, so as to
calculate the height above the ground independently and very precisely. In this
way, by making the localization in the X-Y plane independent of the localization
in the Z height plane, a very high accuracy in spatial localization can be achieved.

It must be said, however, that the application of UWB technology in a real
warehouse environment requires careful consideration of physical obstacles and
the need for antenna power. These factors could limit the effectiveness, in fact,
obstacles drastically reduce the accuracy of this system. While at the level of
feasibility, it must be considered that these antennas must still be installed inside
the warehouse: this operation, besides being very costly and impacting warehouse
operations, is not definitive anyway, as the antennas must still be periodically
inspected and maintained, to make sure they are working properly.

Implication of UWB in a real warehouse environment: Thinking about
the real environment of a warehouse, however, other considerations have to be
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taken into account regarding the interference and/or reflections of the signals with
the physical structures that stand between the emitter and the receiver (non-LOS
reading - non Line Of Sight). In the open area, an accuracy of the order of about
10 cm is reported with 4 antennas at a distance of approximately a hundred meters;
while it has been verified through empirical studies that the error grows much
larger as soon as an obstacle is placed between the emitting and receiving antennas.
In addition, we have to consider the fact that in a real warehouse context, these
antennas would have to be powered anyway, and it is unfeasible to wire an entire
warehouse to power such a system or to have a monthly or weekly replacement
of batteries. For this reason, therefore, a localization solution based on UWB
antennas, in a warehouse context in which there are the metal structures of the
racks together with the pallets and goods that create a physical obstacle to signal
propagation, in addition to the power supply problem, is probably not the most
suitable technology for this scope.

VIO - Visual Inertial Odometry:

Is a technique, that using cameras and sensors of different types, through image
processing, gyroscopes, accelerometers, and inertia sensors, thanks to complicated
algorithms, is actually able to build a virtual map of the environment around it
and thus calculate the relative position (with respect to an origin) and attitude
of the drone (on which they are mounted). In particular, a relatively small drone
that is supposed to navigate with agility within the aisle of a warehouse can be
equipped with the following sensors:

• Intel T265: is a stereoscopic camera that uses data from optical, acceleration
and inertia sensors, through a Visual Processing Unit is then capable of
providing output of its position and attitude, along with all the data needed
to locate the drone in space. This data will then be used by the Jetson Xavier
Nano to decide what to do to proceed with the mission.

• Intel D455 o in alternativa D435: is another optical sensor equipped with
stereoscopic, infrared and depth camera; with this data, it is possible to use
a point cloud to map information about the surrounding environment such
as obstacles, etc. in this way, it is possible to real-time map the environment
and avoid any unexpected obstacles.

Thanks to this equipment, the drone is able to navigate autonomously within
an environment such as a warehouse. It is also important to mention that these
visual systems, work on recognizing some specific features like edges, boxes square
rectangles, etc., in order to extract as much information from the environment,
hence an environment like a warehouse is very suitable as it is rich in features and
details (unlike for example a white room or an outdoor environment) that can be
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Figure 2.5: VIO (Visual Inertial Odometry) example

detected and extracted by the visual systems described above. Obviously, these
systems in order to work need the environment to be properly illuminated, with no
reflections or strange shadows that could undermine this system. it should also be
noted that installing a light source on board the drone, besides being very energy
consuming, could create serious problems in computing the position of the drone as
the shadows that would be generated would not be solid with the space reference
system, but would change in shape and position based on the light source (the
drone) which, however, is moving. These shadows are in fact features that could
be used by the VIO algorithm to determine position.

Fiducial marker

QR codes or other types of markers (easier to recognize like fiducial markers)
can be used to provide relative referencing of an object’s location in space. The
environment in which the drone should move is prepared in advance by placing the
markers equispaced (on the floor and/or rack), in order to build a kind of "map" of
the working area based on the markers. The drone has a simple RGB camera that
it uses to identify markers.

Because it is aware of the mapping that relates each marker to a specific location
in space, it can determine its location in space by analyzing the marker it is reading
and how it is reading it (at what angle and at what distance). This allows it to
determine how to move in order to continue with its navigation. As it moves, the
drone will recognize new markers and correct its trajectory accordingly. The use of
QR codes can thus provide a relative frame of reference for an object’s position in
space. However, this system requires preliminary preparation of the environment,
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Figure 2.6: Fiducial Marker example

with the markers positioned equidistantly. While this could be a low-cost and
relatively simple solution, it could also require significant time-effort to prepare
the environment, and thus an economic loss from the warehouse performance.

2.6.3 Standalone drone and swarm of drones
As we can imagine a standalone drone’s battery life will be limited, thus in order to
do an inventory, it will need to go back to the base to recharge and pick up where
it left off. However, carrying out things this way wastes a lot of time and notably
consumes a lot of charge when moving from the charging base to the aisles that need
to be inventoried. There are ways to spread out the recharging bases across the
warehouse rather than having them all in one location. By doing this, the battery
may be fully utilized for the inventory rather than being misused traveling hundreds
of meters from the recharging base to the aisle. Finally, by expanding on this idea
even further, it is possible to imagine approaching inventory in a different way, so
that instead of one drone performing the inventory of a warehouse in sections, many
drones (properly sized) would be in charge of performing simultaneously different
parts of the warehouse (for example, only two or three aisles per drone). The benefit
of this approach is definitely that by parallelizing the work, it is no longer necessary
to wait for all of the drone charging cycles to finish the inventory and receive
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back the results, but more importantly, the system’s complexity remains relatively
constant. In fact, if the drones are autonomous, they will simply communicate data
and their status to a central system; however, since all the complexity of navigation,
etc. is onboard the drone, this approach would be very scalable. Since there is
no interaction between the drones because they operate in separate and distinct
areas, the complexity of the onboard system would remain unchanged. Therefore a
central control and coordination system would be added that assigns the various
missions to the different drones. With this strategy, the battery issue is slightly
mitigated because we can quickly complete the inventory by using many drones.

Final consideration on standalone Drone solution

In order to have a robust and stable solution usually it is used a redundant system,
i.e. you do the same thing but in different ways: in our case, you might think of
having a navigation system that uses Visual Inertial Odometry at the same time
alongside marker-based localization so that if one of the 2 systems fails, the other
is still able to land the drone safely or alternatively get it back to its base. The
solution that could be experimented with in the lab could be set up with 2 Intel
cameras: T265 and D455 mounted on the face of the drone to allow navigation
and obstacle avoidance. A simple little camera pointing downward for navigation
based on markers placed on the floor, as well to help stabilize the hovering flight
(possibly complemented by an infrared or ultrasonic sensor to measure height), and
finally another simple camera that will read either any additional markers on the
rack useful for navigation (and correction of drift errors, etc.), as well as codes on
pallets to do inventory. In all of these cases, the battery life that can be achieved is
about 20 minutes of flight time since all of the sensors and processor on board are
energy consuming and drain quite a lot of power (in addition to the drone flight).

2.6.4 Drone supported by an AMR
For the sake of clarity, let us briefly explain the difference between AMR and AGV.

• AGV (Automated Guided Vehicle): A robot that follows fixed paths, typically
requiring infrastructure changes like magnetic tapes, wires and sensors. These
routes are predefined and require extensive installation, which can be costly
and disruptive to production. AGVs have minimal onboard intelligence and
can only follow simple programming instructions. They can detect obstacles
but cannot navigate around them, so they stop until the obstacle is removed.

• AMR (Autonomous Mobile Robot): A robot that operates autonomously
and can navigate in an uncontrolled environment without the need for fixed
paths or tracks. AMRs are known for their flexibility, they are equipped with
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intelligent navigation capabilities thanks to the usage of advanced cameras,
sensors, and laser scanners along with sophisticated software to construct maps
and navigate autonomously. Unlike AGVs, AMRs do not rely on fixed routes.
They can detect obstacles and safely maneuver around them by choosing the
best alternative route.

Introduction

Other solutions include the usage of a drone supported by an AMR, again there can
be different set-ups: the main difference between the possible set-ups is to have the
drone connected to the AMR by means of a cable, from which it receives power or
a free drone that uses the AMR only as a support to locate itself. For both setups,
the basic idea is that the drone, while flying, has a lower localization accuracy
than an AMR that is on the ground; therefore, the advantage of this solution is to
exploit the ground robot’s positioning accuracy to correct the positioning of the
drone and keep it perfectly centered on the AMR’s perpendicular (we will see later
how).

In this case, the computation of positioning and the movements to be made
are done on board the AMR, and the drone will simply follow its movements and
commands (the intelligence is on the robot). In this type of system, localization
of the system is simplified: basically, it is like reducing the complexity of the
localization problem from 3 dimensions to 2 dimensions: X and Y. The third
dimension (the Z) is independent since the AMR is a ground system and can be
computed separately with other sensors, thus simplifying the navigation in X and
Y of the AMR.

Since this use case requires a very high level of accuracy, we would employ the
ground robot’s localization capabilities to enhance localization. Additionally, by
utilizing a system in which the AMR also powers the drone, we would be able
to solve the battery issue and acquire a highly autonomous system that is also
energy-efficient and has a long operating range. Last but not least, there would
be certain benefits even at the level of safety: in fact, an AMR in this type of
environment is undoubtedly visible and would prevent operators from passing
underneath any drone that is flying overhead.

The used technologies

Wheel odometry, visual odometry, and Lidar are some of the various techniques
that the AMR can use to identify its location and determine its orientation in space.
In this case, since it is a ground system, the surrounding environment in which
the AMR will have to operate can be easily mapped: for example, by manually
moving it within the area, it is possible to create a relationship between the physical
space and the values read by the wheel encoders, this information later will be
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useful together with the vision-based systems for orientation, localization, obstacle
detection and navigation.

Visual Inertial Odometry Similarly to how it is done on the drone, through
optical sensors such as the Intel T265, visual odometry can be exploited to get
information about the surrounding space and thus track the movement in space of
the AMR system. Again, here the more feature-rich the surrounding environment,
the better the algorithms for feature extraction will work.

Lidar Since it is aboard a terrestrial robot, it is also possible to mount additional
sensors such as a 3D lidar (e.g. the Intel L515 sensor): indeed, in this case, you
do not have the problem of minimizing the weight (as on the drone) and you have
significantly fewer vibrations, so it is conceivable to also use this technology to map
the surrounding environment and thus also have an additional and very reliable
obstacle avoidance system.

Wheel Odometry Using encoders mounted on the wheels of the AMR, it is
possible to calculate how many revolutions the wheels completed, so by knowing the
radius of the wheel and considering the wheel slippage on the floor negligible, it is
possible to calculate the path taken by the robot and thus its relative position with
respect to the starting point. Obviously, this relative position is subject to drift
and therefore needs to be reset periodically, for example, using fiducial markers

Drone - AMR: mutual tracking Mutual tracking between drone and AMR is
the main aspect of this solution; this can be done in 2 ways. The first one is to
mount a camera on the drone that points downward, and by tracking a marker
positioned above the AMR, based on how it is "seen" by the camera mounted on
the drone (how it is distorted and its size), it can easily determine the relative
position of the drone with respect to the AMR and correct accordingly, see figure
2.7. Alternatively, the camera can be mounted on the ground robot pointing
upwards to track the drone by means of colored LEDs mounted on the booms of
the drone, in this way the AMR that knows where it is in space "pilots" the drone
sending commands to keep it centered on its perpendicular. In figure 2.9 you can
see an example of this tracking light system.

Additional computing capacity A compute unit like the NUC, which offers
more computing power and better flexibility in installing development packages,
can be mounted on board the robot because space and weight constraints, which are
no longer relevant in this case, make it possible. This unit can then be flanked by
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Figure 2.7: The drone tracks the fiducial marker on the AMR, to correct its
position and trajectory

a Coral, which is essentially an external GPU from Google, allowing for expanding
computation to support neural networks and other technologies.

Omnidirectional wheel The cost of the AMR that can be used can range from
a few hundred euros to several tens of thousands of euros, so this must also be
taken into account when analyzing the solution’s viability.

AMRs with omnidirectional wheels maintain the reference system’s orientation
because there is no rotation of the YAW angle, as opposed to AMRs with standard
wheels that move in space and change the YAW angle (i.e., rotation around the
Z axis). With these special omnidirectional wheels (2.8), in fact, an AMR is able
to move along X and Y but keeping its YAW angle fixed, this greatly facilitates
and eases the computation and algorithms for navigation as in fact one degree of
freedom is eliminated; on the other hand, the complexity falls on controlling the
drivers of these particular wheels which will also be somewhat more expensive than

34



Insight into the use case of autonomous inventory and logistics applications

Figure 2.8: Example of an omnidirectional wheel on an AMR

traditional ones (and probably more fragile on a floor like a warehouse one). It’s
crucial to remember that the price of an AMR can vary widely, from a few thousand
euros to several tens of thousands. Of course, the payload, sensors, and other
components mounted on board, as well as the typology and construction of the
robot (i.e. if has industrial standards or not), have a significant impact on the price.
For instance, AMRs with these specific wheels fall into a different pricing band,
and the cost quickly soars. Omnidirectional wheels are actually highly expensive
due to their sophisticated design and the development of their complex drivers.
Additionally, because of their unique design and functionality, they can only be
used on surfaces that are extremely uniform and free from flaws.

Cable power supply Finally, a key difference, as anticipated, is having the
drone powered by means of a cable, or completely free. With no weight restrictions
(unlike on a drone) in the first scenario, it is possible to have a large battery
on board the AMR, which allows for a battery life of several hours (up to six).
However, this solution has the drawback of adding a cable tensioner (winch) as a
new part of the system (2.9). The cable will need to automatically roll and unroll
every time the drone changes altitude, and while this operation may appear to
be very straightforward, there are many factors that could go wrong and cause
a crash. For instance, if the wire is not rolled correctly for some reason and gets
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caught in the drone’s propellers, or if it is not unrolled quickly enough, it could
cause instability in the drone’s flight and crash. The wire needs to be slightly loose
so that the drone can fly freely and correct its position, but not excessively tight
so that it runs the risk of getting tangled in the propellers during the drop phase.

Figure 2.9: AMR that supplies power to a drone with a cable

LED light system With such a large battery, another option for this kind of
solution is to mount a lighting system on the drone and AMR. This is actually a
great advantage as it is possible to take pictures and carry out inventory in reduced
brightness or even no light conditions. This means being able to carry out inventory
at night with total autonomy and the absence of personnel saving a lot of money
on lighting, which can then be turned off.

Standard (battery-powered) cordless drone power supply The alternative
solution, on the other hand, loses the major benefit of having a longer autonomy
because the system’s autonomy would be constrained by the drone’s autonomy,
which is approximately 20 minutes. This alternative solution is simpler from a
technical point of view. In this case, therefore, the advantage of having an AMR
helping the drone to position itself would not be compensated by the additional
cost and complexity of having a drone and an AMR.
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2.6.5 AMR with multiple cameras mounted on a pole
The third option is an AMR that has a pole mounted on it with multiple cameras
installed upon it. Again, there are two versions, one that uses a rigid and fixed
pole and the other that uses a telescoping pole. The AMR uses the exact same
technologies for navigation, but in this case, there is a pole with a camera that
takes pictures of the higher locations instead of a drone. Since the AMR can be
set up the same way as in the previous case, the navigation of the AMR is carried
out using the same methods and techniques.

AMR with fixed pole

Figure 2.10: Example of AMR
with a telescopic pole and a cam-
era

The version with the fixed pole is really basic
since, in addition to the AMR, it only has a
simple pole mounted on top as a payload that
has a camera for each shelf so that it can take
pictures and perform inventory. In fact, if the
pole were very high, the system might have is-
sues moving between shelves or from one area
of a warehouse to another because of the sig-
nificant fixed encumbrances that prevent this
solution from reaching very high shelves. This
is a very constraining and limiting requirement
that would also require the warehouse to be
free of overhead impediments, even outside the
aisles.

AMR with telescopic pole

The version with a telescopic pole partially
solves the space problem in that the pole once
it is retracted takes up very little space and the
system can also fit under a very low gate, how-
ever, the complexity of the solution increases
considerably, because engineering a telescopic
pole with a camera on top that needs to be
mounted on an AMR is not simple. It must be
added that in this case as the pole rises, it is
subject to a lot of vibration because, given the
height of the pole, there would be oscillations
due to the movement of the AMR.
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Consideration on AMR with pole

To conclude although this solution seems apparently simpler than the previous
ones, it is not widely used because of the various problems we have mentioned,
which limit its effectiveness and functionality in real inventory operations.

2.6.6 Final consideration on these solutions: pro and cons
Taking into consideration what has been said therefore, the 2 most prospective
solutions and the ones that can actually be used are the stand-alone drone and the
drone supported by AMR, the one with the pole is to be excluded because of the
numerous issues mentioned.

Standalone drone

The stand-alone drone uses markers and visual odometry to orient and navigate, and
it can take inventory using one or two cameras mounted on the sides to read the QR
codes on the pallets stored in the rack. The primary drawback of this solution is the
flight time autonomy, which is definitely time-limited, in fact, it is around half an
hour of flight time. However, this solution has the advantage of being very scalable
because each individual drone is inexpensive (compared to the other solution), so
it can be designed to scale up the solution based on the size of the warehouse in
which the system will have to operate. In this case, in fact, by expanding the
operational fleet of drones, the complexity of the system does not increase because
each individual drone (having all the navigation logic and "intelligence" on board),
is able to navigate and carry out its intended function. Possible developments
could lead to the development of an autonomous charging system, such that when
the drone returns and lands on its charging base, it automatically recharges its
batteries, thus solving the problem of manually changing batteries.

Drone supported by an AMR

Usage of the drone supported by the AMR in a configuration where it is powered
by a large battery mounted on the AMR would constitute a workable alternative.
In this way, it is true that the winch and the mechanism that rolls and unrolls the
cable increase the complexity of the system, but this increase in complexity would
be countered by the system’s considerable amount of autonomy, allowing it to run
for several hours (up to 6 hours) without stopping or requiring recharging. The
cable-less version, on the other hand, would not justify the additional complexity
and cost, and would also be less scalable as the cost per unit of AMR plus drones
would still be higher and costly for this scenario, making it impossible to have a
fleet.
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Chapter 3

State of the art for indoor
navigation

3.1 What is SLAM?
Even though there are many standalone mapping and localization methods available,
SLAM’s complexity arises from combining mapping and localization at the same
time. For a long time, it seemed that having a robot creating a map while also
keeping track of its own location amounted to a classic "chicken or the egg" dilemma
with no obvious answer. However, a variety of approximations have come close to
resolving this challenging algorithmic problem after decades of mathematical and
computing effort. The main challenge in the fields of mobile robotics and artificial
intelligence is simultaneous localization and mapping (SLAM), which deals with
the issue of localization and mapping when a previous map of the workspace is not
available.

Localization An autonomous robot’s initial action after being turned on is to
locate itself. A robot is typically equipped with sensors to scan its surroundings
and keep track of its motions in a localization scenario. The robot can locate its
location on a given map by using the sensor inputs. A tracking device, such as a
GPS, may occasionally be utilized to support in localization

Mapping Even though it might seem straightforward, creating a map is a difficult
task, especially for a robot. To start with, a visual sensor of some kind, such as a
camera or a lidar sensor, is used to capture the surroundings. As the robot goes,
it collects more visual data, tries to connect the dots, and extracts features to
indicate certain distinguishable landmarks, like a corner. However, some of the
traits could be very similar, making it challenging for a robot to distinguish one
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from another. At this point, localization can be used with SLAM to produce more
precise maps.

Landmarks Landmarks are features that are simple to re-observe and differenti-
ate from their surroundings. The robot uses these to locate itself and determine its
location. Imagine yourself with your eyes covered to get a sense of how it works
for the robot. In order to avoid becoming lost while moving around in a house
while wearing blinders, you might reach out and touch things or bump into walls.
You can get an idea of where you are by noticing distinctive details, such as the
surface of a doorframe. Robots can feel touch thanks to sonar and laser scanning
technology. Landmarks should be re-observable by, for instance, being able to be
seen (detected) from different points of view and angles.

Landmarks need to be unique to be recognized from one time-step to the
next without being confused. In other words, if you subsequently re-observe two
landmarks it should be simple to identify which one is which of the landmarks we
have already observed. This could be challenging if two landmarks are similar to
each other. The number of landmarks present in the environment and that the
robot is able to recognize and select must not be too low, otherwise too much time
would elapse between the observation of one landmark and the next, which could
lead to non-negligible errors in SLAM and cause the robot to lose

To summarize the key points about suitable landmarks are:

• Landmarks should be easily re-observable

• Each landmark should be unique and recognizable from the others

• There should be several landmarks around in the working environment

• Landmarks should be stationary

Figure 3.1: Categorization of the localization techniques proposed in literature
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Odometry Data The purpose of the odometry data is to give an approximation
of the robot’s position as determined by the movement of its wheels, which can then
be used to make a first guess as to where the robot might be in the EKF. Getting
the synchronization correct with the laser and odometry data is challenging. If the
odometry data is retrieved later, the laser data at time t will be out of date. It is
possible to extrapolate the data to ensure that they are valid simultaneously. Since
the controls are known, extrapolating the odometry data is easier. The results of
the laser scanner measurements can be quite difficult to predict. It is simplest to
request both the laser scanner values and the odometry data at the same time if
there is control over when the measurements are returned.

3.1.1 Challenges with SLAM
Sequential movement is estimated by SLAM and has some error tolerance. Over
time, the error accumulates leading to in an important deviation from the true
values. Additionally, it may result in map data collapsing or distortion, making
following searches tricky. Consider for example navigating a square-shaped path,
robot’s starting and final points get mismatched as the errors accumulate: this
is the loop closure problem. Another scenario would be when the environment
where SLAM is performed is dynamic, so it would needs to updates. Imagine a
robot strolling down a warehouse corridor that is empty, then on the way back it
finds pallets on his path. Would it be able to complete the loop and realize that
it is still in the same location but with new things added? These kind of pose
estimate errors are inevitable. It is important to detect loop closures and determine
how to correct or reset the accumulated error. A possible countermeasure is to
use landmarks from previously visited places to reduce the localization inaccuracy.
To aid with error correction, pose graphs are created. Error minimization can be
solved as an optimization problem to produce more precise map data; this type of
optimization is known as bundle adjustment.

Image and point-cloud mapping does not take a robot’s movement characteristics
into account. This method may occasionally result in discontinuous position
estimates. An analysis report, for instance, showed that a robot moving at 1 m/s
suddenly leaped forward by 10 meters. This type of localization failure can be
avoided by combining the motion model with multiple sensors in order to perform
calculations based on the sensor data, or by utilizing a recovery algorithm.

The use of a motion model with sensor fusion can be done in different ways.
Kalman filtering is a prevalent technique for localization. Extended Kalman
filters and particle filters (Monte Carlo localization) are frequently utilized because
nonlinear motion models are typically used by differential drive robots and four-
wheeled vehicles. In some circumstances, flexible Bayes filters, like unscented
Kalman filters, can also be used. Inertial measurement units (IMU), Attitude and
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Heading Reference Systems (AHRS), accelerometer sensors, gyro sensors, odometry
(using enconders attached to the wheels), and magnetic sensors are some examples
of most commonly used sensors. When localization is unsuccessful, a recovery
strategy is to recall a landmark as a key-frame from a previous location. A feature
extraction method is used when looking for a landmark so that it can scan quickly.
Some techniques based on image features like bag of features (BoF) and bag of
visual words (BoVW) can be used. Also deep learning has been used for comparing
distances from features.

Implementing SLAM on a vehicle’s hardware presents a difficulty with computing
costs. Embedded microprocessors that are small and low-energy typically have a
limited processing power. It is crucial to process image and do the point cloud
matching with high frequency in order to get accurate localization. All optimization
computation as for example loop closure are very high computation processes: the
challenge is to carry out such computationally complex computations on embedded
microcomputers.

For this reason, depending on the final application it would be necessary to
create just the relative position of obstacles (topological method) or the exact
distances between them (metric method). Furthermore, it is possible to choose if
recreate a digital copy of the park (volumetric method) or just enough information
to distinguish objects (feature-based method). Depending on these parameters the
computational effort vary a lot.

One countermeasure could be to run different processes in parallel. The paral-
lelization of processes like feature extraction, which is a preprocessing step in the
matching process, is often feasible. Speeds can be increased in some circumstances
by using embedded GPUs, SIMD (single instruction multiple data) calculations,
and multicore CPUs for processing. Additionally, as pose graph optimization can
be executed over a long cycle, lowering its priority and carrying out this process at
regular intervals can also improve performance.

Last but not least is the multi-robot case. When there are multiple autonomous
robots navigating inside a warehouse, might occur different challenges. One chal-
lenge is the ability to create a clean map without other robots. How can you be
sure that every robot is aware of the locations of the others so that you can exclude
them from mapping? Can each robot construct a smaller map locally and share it
with a central system to create a whole map if they can interact with each other?

3.2 Camera-based SLAM
The employment of simple, low-cost cameras (wide angle, fish-eye, and spherical
cameras), compound eye cameras (stereo and multi cameras), and RGB-D cameras
(depth and ToF cameras) enables the recording of high-resolution images with
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rich details. In general, there are two types of visual SLAM algorithms. Sparse
methods use algorithms like PTAM (Parallel Tracking and Mapping - for augmented
reality), ORB (Oriented FAST and Rotated BRIEF), and SIFT (scale-invariant
feature transform) to match feature points in images. Dense approaches make
use of algorithms like DTAM (Dense Tracking and Mapping), LSD (Large-Scale
Direct Monocular), DSO (Direct Sparse Odometry), and SVO (Semi Direct Visual
Odometry) as well as the overall brightness of the images.

Figure 3.2: Example of a Visual SLAM

For instance, the images that are captured when a robot uses a camera to map
a warehouse may include pallets, shelves, and doors. The robot can determine that
there are several items in the scene by comparing the color differences between
adjacent pixels 3.2. Additionally, because cameras produce a lot of information,
they can be utilized to find landmarks (already determined positions). Additionally,
landmark detection and graph-based optimization can be used to achieve flexibility
in SLAM implementation. It is difficult to quantify depth with monocular SLAM,
which uses just one single camera. This limitation can be resolved in one of two
ways: either by locating AR and fiducial markers, checkerboards, or other well-
known items in the image for localization, or by fusing camera data with data
from other sensors like inertial measurement units (IMUs), which can measure
velocity and orientation. Structure from motion (SfM), visual odometry, and bundle
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adjustment are examples of vSLAM-related technology.

3.2.1 VO
Visual odometry (VO) is a technique that estimates the position and orientation of
a platform by analyzing variations in camera motion on a sequence of images. It is
part of Structure from Motion (SfM), a technique for reconstructing a 3D scene
and camera pose using images. SfM can be performed based on camera number,
calibration status, and image order. A 3D scene is reconstructed by computing
the OF (optical flow) from key information extracted from two consecutive image
frames. The key information (e.g. corners) is extracted using an image feature
detector, such as Moravec [15] and Harris [16] corner detectors. The reconstructed
scene can be improved through bundle adjustment or offline optimization methods.
Three standard techniques are used to calculate the transformation matrix between
sequential images based on point correspondence specifications in two or three
dimensions.

• 3D-3D correspondences: Camera motion can be computed using two sets of
three-dimensional correspondences. First, two stereo image pairs are captured,
feature points are extracted and matched, then the 3D matched points are
triangulated. The transformation is computed with an absolute scale by
minimizing the L2 distance between the two points.

• 2D-2D correspondences: The transformation matrix is calculated using the es-
sential matrix, which defines the geometric relationship between two sequential
images. It is computed from 2D feature correspondences using the epipolar
constraint. The Nister five-point algorithm is a common approach, using
five corresponding points to determine the relative scale between consecutive
frames.

• 3D-2D correspondences: The main concept of this method is to compute the
transformation matrix by minimizing the 2D reprojection error from 2D and
3D correspondences [17]:

T k
t = arg min

T k
t

Ø
i

|pi
k − P i

t−1|
2

where T t
t−1 is the transformation matrix from t−1 to t, the image measurements

are denoted as pt, and P i
t−1 is the reprojection of the 3D features X i

t−1into
image I t. The perspective-n-points (PnP) problem estimates camera pose
using N 3D points. [17]

The minimal solution requires three 3D-2D correspondences, known as the perspective-
3-point (P3P). 3D-2D motion estimation offers better accuracy than 3D-3D due to
minimizing image reprojection error instead of 3D-3D feature position error.
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Figure 3.3: General classification of studies in the field of visual odometry.

VO techniques are categorized based on key information, camera position, and
camera type/number. Key information can be direct raw measurements like pixels
or indirect image features like corners and edges. Camera type/number can be
monocular, stereo, RGB-D, omnidirectional, fisheye, or event-based. Camera pose
can be forward-facing, downward-facing, or hybrid. More details on these VO
techniques are provided in the following section.

VO-Approaches

1. Direct approaches: Direct approaches estimate vehicle position using raw
visual measurements in pixels. The intensity of image pixels is analyzed to
estimate the pose. The algorithm uses consecutive images from cameras to
determine changes among frames using an optical flow (OF) algorithm. OF
algorithms are classified into dense and sparse schemes. Dense OF optimizes
all pixels based on global smoothness, while sparse OFs process some pixels
from the whole image by solving the brightness constancy equation using a
template matching technique. Both approaches use pixel intensity to compute
the 2D displacement vector.

2. Feature-based approaches: Feature-based or indirect approaches are used
to extract points of interest in images using feature detectors like corner or
edge detectors. Corners are unique keypoints due to their two-dimensional
intensity change, while edges are areas with strong intensity contrasts. Most
edge detectors are based on gradient or Laplacian methods: the Laplacian
detector uses one kernel to search for zero crossings in the second derivative
of the image, while the Canny edge detector uses two kernels to identify
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maximum and minimum in the first derivative that represent an edge. The
feature-based or indirect approaches are used to extract points of interest
in images using feature detectors like corner or edge detectors. Corners are
unique key points due to their two-dimensional intensity change, while edges
are areas with strong intensity contrasts.

3. Hybrid approaches: Feature-based approaches are less robust in low-texture
environments due to their limited detection and tracking capabilities. Direct
methods, on the other hand, exploit all key information in images, including
weak intensity variations, leading to more robust and efficient results. However,
direct methods are computationally more demanding. A hybrid approach
combines direct and feature-based methods, mitigating issues and exploiting
the benefit of the two methods. For instance, a semi-direct visual odometry
(SVO) method has been proposed to eliminate the need for costly feature
extraction at every frame, using subpixel feature correspondence to increase
accuracy.

Camera type and number

• Stereo: Stereo camera setups use multiple cameras to reconstruct 3D infor-
mation from stereo image pairs, allowing for accurate pose estimation. This
is done by extracting and tracking key information between two pairs of
images and applying a motion estimation algorithm. Epipolar geometry, is
a technique that narrows the feature search domain from 2D images to 1D
epipolar lines, reducing search time. However, stereo cameras require precise
extrinsic calibration, which can degrade over time due to varying conditions
like shocks and vibrations. Additionally, they typically have a fixed baseline
distance, which affects depth estimation accuracy. Large baseline distances
are needed for outdoor environments, but due to platform size limitations, it’s
difficult to have two cameras with a large baseline distance.

Figure 3.4: Example of a stereo camera with 2 optics distanced from each other

• Monocular (standard camera): Monocular setups estimate position and
orientation by analyzing consecutive images from a single camera, which
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does not suffer from baseline issues like stereo cameras. Monocular visual
orientation (VO) has gained attention in recent years but requires at least
three different frames to reconstruct 3D information. One disadvantage is that
the translation vector is computed up to a relative scale, as the transformation
between the first two frames is not fully known. Solutions include obtaining
additional information about the initial transformation using other sensors or
relying solely on the visual information captured by the camera. An algorithm
has been proposed to tackle the scale problem in translation using vision data,
camera mounting point, and road surface planarity, in this way is possible
to resolve ambiguity in scale and reduce scale drift. However, this method is
infeasible for real applications due to the heavy computational needs of CNN
(deep convolutional neural network).[17]

• RGB-D: RGB-D cameras offer a more efficient solution for obtaining real-
depth information compared to stereo and monocular setups. Stereo cameras
require costly epipolar line searches and additional warping processes, while
monocular setups cannot provide depth information about surroundings on a
real scale. Most RGB-D visual odometry approaches use feature-based methods
for more robustness and direct-based RGB-D VO approaches are presented for
accurate pose acquisition in low-texture environments and avoiding computing
resource consumption in feature detection and matching processes.

Figure 3.5: Example of an RGB-D camera and its output. Here we have the
D435i which is the one used in our tests

• Omnidirectional: An omnidirectional camera (see fig 3.6), also known as
a 360-camera, has a 360° field of view (FOV) in azimuth and 90° to 140° in
elevation, and can include a fisheye lens or a catadioptric optical system (see
fig 3.7). It can achieve more accurate pose estimation than traditional cameras
with a small FOV and overcomes the rotation-translation ambiguity of small
FOV cameras. An example of a VO system using a single omnidirectional
camera is a vehicle orientation (VO) system, consisting of two modules: a
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homography-based module for detecting and tracking features from the ground
plane and a direct module for estimating vehicle rotation.

Figure 3.6: Example of an omnidirectional, 360° camera

Figure 3.7: Example of a catadioptric camera and its working scheme.

• Fisheye: Fisheye cameras produce wide panoramic images with nearly 180°
from side-to-side, allowing for more detailed observations of environments
compared to pinhole cameras. However, they can produce distortions, neces-
sitating a special distortion model and calibrations. Pixel correspondences
in fisheye-stereo cameras are on epipolar curves, making traditional disparity
search algorithms unsuitable. Additionally, these algorithms require more
computational power due to the high cost of computing epipolar curves.
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Figure 3.8: Example of a camera with fisheye lenses: T65, also used in our tests.
The second picture is an example of type of picture it can take.

• Event-based: DVS, or dynamic vision sensors, are bio-inspired event cameras
that capture changes in intensity asynchronously across all pixels on the camera.
These cameras offer low latency, high temporal resolution, and high dynamic
range (140 dB), compared to conventional cameras’ 60 dB. They also do
not suffer from motion blur, making them an improvement for vision-based
localization algorithms like VO. For example, there is an algorithm to compute
optical flow from the event stream that uses a feature-based method, building a
polarization map for each pixel in the image. This map enables easy detection
of motion by counting the number of incoming events with expected polarity.

Figure 3.9: Event-based camera working scheme
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Figure 3.10: Event-based camera output example

Camera-pose

Visual odometry (VO) localization systems can be categorized into forward-facing,
downward-facing, and hybrid setups. Forward-facing systems provide more infor-
mation but are suboptimal for detecting small movements and can be obscured
by shadows and surround changes. Downward-facing systems have been successful
for positioning in pre-explored environments but are inaccurate when vehicles are
moving fast. A hybrid approach combines both setups to solve these limitations.

Despite the success of visual odometry in indoor environments, there are some
challenges to using VO as a precise localization method. Major challenges include
computational complexity, scale ambiguity, and image conditions like lighting,
low-textured regions, and blurriness. Additionally, VO suffers from drifting issues
due to its incremental computation of the camera path, leading to the gradual
accumulation of errors over time. To address these challenges, methods for sensor
fusion, such as visual-laser and visual-inertial odometry, have been proposed. [17]

3.2.2 VIO
Localization methods based on vision are influenced by environmental conditions like
lighting and shadows, while IMU-based methods deteriorate over time. Integrating
these methods results in visual-inertial odometry (VIO), which offers greater
accuracy and robustness. VIO can be categorized in different ways, considering how
the visual and inertial data are fused there two categories: filter-based [3.2.2] and
optimization-based [3.2.2]. Basing the categorization on when the measurements
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are fused there are three types of approaches: loosely-coupled [3.2.2], semi-tightly
coupled [3.2.2] and tightly-coupled [3.2.2].

Loosely coupled approach Loosely-coupled techniques involve blending pose
estimation from two standalone subsystems, a visual odometry module and an
IMU module, to refine the pose of a robot. This approach limits computational
complexity by using a fixed dimension for the state space. Common methods
for fusing sensor data include the conventional Kalman filter (KF) and nonlinear
optimization techniques, which offer better accuracy and robustness but require
more computational power. Loosely-coupled approaches can be categorized into
two main branches:

1. using pose data from the VO subsystem as the update step for IMU measure-
ments

2. integrating data from the IMU sensor as independent measurements into a
vision optimizer

The VO subsystem consists of two main units: the extraction and tracking
unit and the VO estimator unit. Features are extracted and tracked from two
consecutive images, and an ego-motion algorithm is applied to obtain position and
orientation. The IMU subsystem estimates position and orientation by integrating
measurements from the IMU sensor. The fusion is applied at the last stage of the
pipeline to refine the position and orientation estimated by the two subsystems.

In [18], a loosely-coupled filtering framework is proposed to integrate noisy
measurements from stereo cameras and an IMU sensor for more accurate and efficient
real-time pose estimation for indoor-outdoor drones applications. The framework
is based on an Unscented Kalman filter (UKF) instead of the popular Extended
Kalman filter (EKF)-based framework, avoiding computational complexity and
temporal drifting.[17]

Figure 3.11: Block diagram of loosely coupled framework

Semi-tightly coupled approach Semi-tightly coupled approaches combine the
estimated pose from the VO subsystem with raw measurements from the IMU sensor
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to achieve balanced accuracy and computational complexity. One example could be
to use an optimization-based framework to fuse preintegrated IMU measurements
with pose measurements from the VO module based on edge alignment. IMU
pre-integration avoids determining global rotation between the world frame and
body frame, which is challenging in many applications. Additionally, incremental
rotation is initialized using the gyroscope reading to improve convergence during
aggressive motion.

Figure 3.12: Block diagram of semi-tight coupling of inertial-optical flow.

Tightly-coupled approach Tightly-coupled approaches combine key informa-
tion from captured images with raw measurements of the IMU sensor at early stages
to achieve better accuracy. Key information are obtained using image detector
techniques or pixel intensity with OF algorithms. This direct and systematic
fusion of visual and IMU measurements leads to better results compared to loosely
coupled approaches. Features extracted from captured images are fused with
raw measurements from the IMU sensor to obtain more accurate pose estimation.
Tightly-coupled approaches can be classified into filter-based and optimization-
based.

Figure 3.13: Block diagram of tightly coupled framework.
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Filter-based approach Filter-based approaches are early methods used to
solve VIO and SLAM problems. They consist of a prediction and update step,
using measurements from internal state sensors like IMU sensors to compute the
prior distribution of the platform pose and exteroceptive sensors like cameras to
build the likelihood distribution. In filter-based visual-inertial odometry, the prior
distribution of a vehicle is computed using linear and angular velocities from the
IMU sensor. This dynamic model is used in the prediction step to predict the robot’s
motion. Key information from captured images is used as a likelihood distribution
to update predictions in the update step. Filter-based visual-inertial odometry can
be classified into three categories: extended Kalman filter (EKF) [3.4.1], multi-state
constraint Kalman filter (MSCKF) [3.4.3], and unscented Kalman filter (UKF)
[3.4.3]. The Kalman filter will be investigated in detail later in another section.
[3.4]

Optimization-based approach Optimization-based approaches, to estimate
the pose, use nonlinear optimization to minimize errors between integrated motion
from inertial measurements from an IMU sensor and camera motion estimated
through classic reprojection error minimization. These techniques outperform filter-
based approaches in terms of accuracy, but require more computational resources.
They can be divided into three main categories: fixed-lag, full-smoothing and
incremental-smoothing algorithms.

• Fixed-lag smoothing estimates all states within a given time window
and marginalizes old states to reduce computational complexity. However,
marginalizing states outside the estimation window leads to some issues like
sparsity, inconsistency, and linearization errors.

• Full smoothing (batch-optimization) estimates the entire history of states
by solving linear algebraic equations. This framework has the highest accuracy
but become infeasible for real-time applications due to trajectory growth over
time. However, it includes heavy processing and is not therefore well-suited
for resource-constrained systems. Computational costs can be reduced, e.g,
by using keyframes, sliding window, or incremental smoothing.

• Incremental smoothing takes advantage of the benefits of factor graphs
to maintain the level of sparsity, while tackling the full-smoothing and fixed-
lag issues. if only a small subset of variables are updated, computational
complexity is reduced. Thus identifying and updating variables impacted by
new measurements, it is possible to optimize computational cost.
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3.3 Lidar-based SLAM
A Lidar sensor naturally captures the depth and geometry of the items in the scene,
and using Lidar odometry is possible to estimate the orientation and position of
the robot. To identify objects in the environment it would use the distances and
shapes returned to the lidar sensor: it tracks laser speckle patterns reflected from
surrounding objects. In fact, a lidar-based SLAM combines the visual data and
creates a map using edges and planes recorded by the device as features rather
than computing adjacent pixels. LiDARs are insensitive to ambient lighting and
low-texture environments. The LiDAR-based sensing process involves two main
parts: laser emission and optical observation. Laser emission emits coherent and
spatial light to the environment, while optical observation reflects laser speckles on
the 2D observation plane. Laser reflections are monitored using optical detectors,
and a 3D image is reconstructed by contrasting different 2D images.

Lasers are employed in applications with high-speed moving vehicles like self-
driving cars and drones because they are substantially more precise than cameras,
ToF, and other sensors. Laser sensors often provide point clouds in 2D (x, y) or
3D (x, y, z) dimensions. For the purpose of creating maps using SLAM, the laser
sensor point cloud offers highly accurate distance measurements. This method, as
compared to cameras, is better for producing accurate 3D digital twin copy of the
map. In general, movement is calculated by matching the point clouds in a sequential
manner. The vehicle is localized using the determined movement (distance traveled).
Iterative closest point (ICP) and normal distributions transform (NDT) methods
are two examples of registration algorithms that are used for matching lidar point
clouds. Grid maps and voxel maps can be used to visualize 2D or 3D point cloud
maps.

The iterative closest point (ICP) method is commonly employed when LiDAR
scanning rate exceeds extrinsic motion to calculate a moving object’s velocity,
addressing motion distortion from single-axis 3D LiDAR. ICP is a standard 3D
reconstruction algorithm that iteratively computes correspondences between cloud
points of two scans, minimizing the distance between corresponding points. The
point-to-plane variant of ICP is a method for reconstructing 3D surfaces by mini-
mizing the squared distance between a point and its tangent plane. This improves
performance and accuracy. The GICP (generalized ICP) assumes all measured
points are drawn from the Gaussian center at the true point, and maximum like-
lihood estimation is used for alignment. LiDAR scanning can be slow, so other
sensors like cameras and IMUs are often used for velocity measurements. Another
approach is 2-axis LiDAR scanning without additional sensors, using laser intensity
returns to create visual images and recover motion.

LiDAR odometry is a challenging method due to its resource-constrained nature
and the difficulty in accurately detecting motion distortion from objects like glass.
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Iterative optical matching and complex computations are required for accurate
scans, resulting in poor overall performances.

Moreover, point clouds do not always offer enough information for matching
because they are not as highly detailed as photos. For instance, aligning the point
clouds in areas with few obstacles might be challenging, which increases the risk of
losing track of the vehicle’s location.

There are still issues to be resolved, as localization for autonomous vehicles may
need to combine data from the global navigation satellite system (GNSS), IMU,
and wheel odometry. While 2D lidar SLAM is frequently used for applications
like warehouse robotics, 3-D lidar point cloud SLAM can be used for UAVs and
automated driving.

3.4 EKF-SLAM

3.4.1 Inroduction to EKF
An EKF is a nonlinear version of the general Kalman filter, which performs first-
order linearization around the transition function at each time step. An approximate
nonlinear filtering, such as an EKF or particle filter (PF), is used for fusion in
nonlinear systems. EKFs provide accurate estimates for Gaussian models with
limited linearity, while PFs are suitable for non-Gaussian and nonlinear systems.
EKFs are used in robotics due to their computational efficiency.

The core of the SLAM procedure EKF-based VIO computes a robot’s position
and orientation by determining state propagation from noisy IMU measurements,
odometry data, landmarks observations, and correlation from key information
extracted from images captured by a single camera or multiple cameras mounted
on the robot.

The EKF framework consists of three main steps: state representation, building
a measurement model, and an update step.

1. State representation: the EKF keeps track of an estimate of the degree of
uncertainty in both the position of the robot and the degree of uncertainty in
the landmarks it has observed in the environment.

2. Build a measurement model: given the robot’s new position, landmarks
are extracted again. The robot therefore tries to associate observations of
these landmarks with observations of previous landmarks it has already seen.

3. Update position: The robot’s position in the EKF is then updated using
re-observed landmarks. New landmarks that have not yet been observed are
added to the EKF so they can be re-observed later.
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Although EKF framework is one of the most popular filtering strategies, it has
some disadvantages: it is difficult to implement in practice and it is not a very
reliable method for highly nonlinear systems.

3.4.2 EKF model

Figure 3.14: The essential SLAM problem. A simultaneous estimate of both
robot and landmark locations is required. The true locations are never known
or measured directly. Observations are made between true robot and landmark
locations.

As explained [19] consider a mobile robot moving through an environment taking
relative observations of a number of unknown landmarks using a sensor located on
the robot as shown in Figure 3.14. At a time instant k, the following quantities are
defined:

• xk: The state vector describing the location and orientation of the vehicle.

• uk: The control vector, applied at time k − 1 to drive the vehicle to a state xk

at time k.

• mi: A vector describing the location of the ith landmark whose true location
is assumed time-invariant.
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• zik: An observation taken from the vehicle of the location of the ith landmark
at time k. When there are multiple landmark observations at any one time or
when the specific landmark is not relevant to the discussion, the observation
will be written simply as zk.

In addition, the following sets are also defined:

• X0:k = {x0, x1, . . . , xk} = {X0:k−1, xk} : The history of vehicle locations.

• U0:k = {u1, u2, . . . , uk} = {U0:k−1, uk} : The history of control inputs.

• m = {m1, m2, . . . , mn} : The set of all landmarks.

• Z0:k = {z1, z2, . . . , zk} = {Z0:k−1, zk} : The set of all landmark observations.

The basis for the EKF-SLAM method is to describe the vehicle motion in the
form

P (xk|xk−1, uk) ⇐⇒ xk = f(xk−1, uk) + wk (3.1)
where f(·) models vehicle kinematics and where wk are additive, zero mean uncor-
related Gaussian motion disturbances with covariance Qk. The observation model
is described in the form

P (zk|xk, m) ⇐⇒ z(k) = h(xk, m) + vk (3.2)

where h(·) describes the geometry of the observation and where vk are additive,
zero mean uncorrelated Gaussian observation errors with covariance Rk.

The SLAM procedure consists of three steps once landmark extraction and data
association are complete:

1. Utilizing the odometry data, update the current state estimation:
The initial step is extremely simple. Just the robot’s controls have been
included in the previous state estimation. For instance, the robot might be
at point (x, y) with rotation theta, controls (dx, dy), and rotational change θ.
The new state of the robot (x + dx, y + dy) with rotation θ + dθ is the result
of the first step.

2. Updating the predicted state based on new landmark observations:
The second phase takes the previously observed landmarks are considered.
You can determine where the landmark should be by estimating its current
location. The innovation is basically the discrepancy between the robot’s
expected position and its actual position as determined by what the robot
can see. The second stage additionally updates each landmark’s uncertainty
to take into consideration recent changes. The landmark certainty, or the
variance of the landmark with respect to the current position of the robot, will
increase if the landmark is re-observed from this position with low uncertainty.
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3. Add new landmarks to the current state: The robot map of the environ-
ment is updated with new landmarks in the third step. This is accomplished
by taking data on the current location and complementing it with data on
the relation between the new landmark and the old landmarks.

Computational Effort Every time an observation is made, the joint covariance
matrix and all landmarks must be updated as part of the observation stage. This
erroneously implies that computation increases with the number of landmarks in
a quadratic way. The EKF-SLAM method has undergone extensive research and
development, and real-time implementations with thousands of landmarks have
been demonstrated.

Data Association The EKF-SLAM solution’s typical formulation is particularly
vulnerable to improper landmark association. The ’loop-closure’ problem, which
arises when a robot returns to re-observe landmarks after an extensive traverse, is
particularly challenging. In areas where landmarks are not just simple points and
really seem different from various viewpoints, the association problem is aggravated.
In actuality, the following issues with data association may occur:

• You might not re-observe landmarks every time step

• An object may be a landmark when you first see it, but you may never again
see it

• You can mistakenly link a landmark to one you’ve already seen

Non-linearity Since EKF-SLAM uses linearized nonlinear motion and obser-
vation models, it inherits some constraints. In EKF-SLAM, non-linearity can
be a serious issue that inevitably results in solutions dramatically inconsistent.
Convergence and consistency can only be guaranteed in the linear case.

3.4.3 Other Kalman Filter type
Multi-state constraint Kalman Filter

EKFs are problematic due to their high computational power, making them un-
suitable for resource-constrained systems like drones. They have a computational
complexity of O(N3) for an N number of features. Structureless methods like
MSCKF offer better precision and consistency due to their less strict probabilistic
assumption and delayed linearization. MSCKFs also have a linear complexity
due to marginalizing 3D feature positions from the state vector. However, the
conventional MSCKF algorithm has incorrect observability properties, leading to
inconsistency in performance and large estimation errors. [17]
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Unscented Kalman Filter

The UKF is a nonlinear Bayesian filter that updates system states using a set of
weighted sigma points derived from the prior distribution. UKFs perform statistical
local linearization, leading to higher accuracy and third-order linearization, making
them superior to EKF-based frameworks. They avoid computing the Jacobian
matrix, making them derivative-free. However, the main drawback of the UKF
framework is its increased computational power, making its implementation in
resource-constrained systems difficult. The main source of nonlinearity is the
kinematics of rotation, which is typically modeled using Euler angles or Quaternions.

3.5 UWB
An ultrawide-band transmitter is any transmitter that has a fractional (relative)
bandwidth Br of larger than 20% or a UWB bandwidth B greater than 500MHz,
regardless of the fractional bandwidth, according to the IEEE 802.15.4a standard
and FCC guidelines.

Figure 3.15: Example of a UWB antennas

The frequency range in which the signal has a power spectral density of 10dB
below its maximum is known as the UWB bandwidth. It is defined as the range
between the lower frequency fL and the upper-frequency fH .

B > 500Mhz
or

Br = 2fH−fL

fH+fL
> 20%

(3.3)

As we can observe in figure 3.16 cit The UWB technology uses a larger frequency
range (from 3.1 to 10.6GHz) at a lower power density than other technologies,
which uses narrow bandwidths and high power densities.

59



State of the art for indoor navigation

Figure 3.16: UWB frequency spectrum

3.5.1 UWB advantages
A number of benefits that UWB technology provides opens up a wide range of
options for different applications. The large spectrum that can be utilized provides
considerable design flexibility, enabling the system to be customized to specific
requirements also because of the small antenna dimensions. Wide bandwidth allows
obstacle penetration, robustness against multi-path propagation, and high data rate
transmission (up to 1Gbps) over small distances (less than 1 m). The potential for
a range of applications is the second important implication of good time resolution.
The extreme shot duration of pulses enables effortlessly obtaining high accuracy
(under 10 cm).

The quality of service, data rate, range, and other variables can be adjusted
and configured for the specific application. However, a reduced data rate could
be compensated for an extended transmission distance: similar to the way data
rate and range can be tuned to have an appropriate tradeoff between power
consumption, low spectral power increases and interference resistance. The good
temporal resolution of UWB is another advantage that makes it robust to multipath
propagation and an excellent feature for ranging applications (especially for indoor
applications with a lot of interferences and obstacles). and on the tuning of the
ranging antennas used. The cost of a single device ranges from around a few dozen
to approximately 200 euros, so depending on the application and the scenario it is
possible to choose the proper hardware.

3.5.2 How does UWB localization work?
The position of each tag must be determined using anchors, which are emitters with
known positions. Therefore, the idea is to properly position these antennas around
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the warehouse in order to maximize the accuracy minimizing interferences from
raks and the building’s structure as well as the number of used antennas. Tags are
the devices to be tracked, and are installed on the target: in our case, they should
be mounted on the drone (or the support AMR). There are two important aspects
to keep in mind during the design of a UWB localization system: the number of
anchors and their placement.

It is necessary that m ≥ d + 1 where d is the number of physical tag dimensions
to be determined and m is the number of available antennas. Therefore in order
to get the position of the tag in 2D, are needed at least three anchors while to
determine the position in 3D the minimum number of anchors required is four.
Positioning accuracy grows along with the system’s redundancy as the number of
anchors grows. It is often advised to have more anchors than the minimum in order
to reduce NLOS (non-line-of-sight) effects.

Anchors should never be positioned on the same line for 2D positioning, or on
the same plane for 3D positioning, in order to obtain accurate tracking. Firstly,
let’s define the term Geometric Dilution of Precision (GDOP). It is defined as:

∆(OutputLocation)
∆(MeasuredData

(3.4)

It describes the impact of a calculation error on the target position error: the
position’s reliability decreases as GDOP increases. When anchors are positioned on
the same line in 2D positioning or on the same plane in 3D positioning, it tends to
infinity. When the tag to track is outside the area delimited by the anchors (such
as during the chase phase), the GDOP grows with increasing distance from it.

There are different techniques to estimate the distance of two UWB antennas
and then the system position. Let’s see the main ones.

Time of arrival (TOA) The potential of UWB technology is generally best
exploited through time-based ranging approaches, as can be illustrated mathemati-
cally through the Cramer-Rao inequality.ó

V ar(d) ≥ c

2
√

2π
√

SNRβ
(3.5)

where the first member is the accuracy of the estimation of the distance d, c is
the speed of light, SNR is the signal-to-noise ratio and β is the effective signal
bandwidth.

The so-called Cramer-Rao lower bound for a single path additive white Gaussian
noise channel for time-based ranging is formulated using this equation. Given the
properties of the signal, this is the maximum localization accuracy that can be
obtained. It’s important to note that the bandwidth at the second member of
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the inequality’s denominator, confirms that time-based UWB ranging systems can
reach very high accuracy in distance measurements. Considering a line-of-sight
(LOS) condition, where the first path is the direct path of the signal, measuring the
first path delay τ0 it is possible to compute the distance d between the transmitter
and the receiver as d = c · τ0 where c is the speed of light. For a narrow band
system, given the transmitted signal s(t), the received signal is expressed as

r(t) = As(t − T ) + n(t) (3.6)

where the parameters A and T are affected by all the multipath components and
n(t) is the white noise. The matched filtering estimator can only measure the
optimal value of T which includes the effects of the reflected signals so it is different
from the first path delay.

Once the signal’s arrival time is measured at the receiver, the Time of Flight
(TOF) can be computed as the received message contains the starting time. The
sender and receiver’s clocks have to be perfectly synchronized for this method to
work. The Cramer-Rao lower bound, expressed by Equation 3.5, shows that the
achievable accuracy under ideal conditions is really high, thanks to the very high
bandwidth of the pulse signals. This means that precise clock synchronization
between nodes becomes a crucial issue in obtaining accurate distance estimation
using TOA. In order to get around the problem of clock synchronization, TOF
measurement techniques like Single-Sided Two Way Ranging (SS-TWR) and Double-
Sided TWR (DS-TWR) have been developed see Figure 3.17. In fact, these protocols
are compared only by time measurement taken on the same device, avoiding the
necessity of clock synchronization. In SS-TWR the TOF is:

Ttof = 1
2(troundA − treplyB) (3.7)

where troundA = τARx − τAT x is the actual round-trip time of a signal measured at
Device A and treplyB = τBT x − τBRx is the actual reply time of a signal measured
at Device B. In the DS-TWR, the measurements are computed on both sides,
requiring a further reply message from the device that started the TWR, so we
have:

Ttof = 1
4[(troundA − treplyB) + (troundB − treplyA)] (3.8)

TWR is still subject to problems including propagation-time delay, transmission-
time delay, receiving-time delay, and preamble accumulation-time delay even if the
clock synchronization error is prevented.

Time Difference of Arrival (TDoA) is a variant of ToA that can be used
to determine a transmitter’s location when synchronization between the mobile
unit and the anchors cannot be ensured. In this scenario, ranges are not directly
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Figure 3.17: Principles of single-sided two-way ranging (SS-TWR) and double-
sided two-way ranging (DS-TWR) protocols

measured; instead, the ToA of an emitted pulse is measured at several known-
position receivers.

Angle of Arrival (AoA) is a localization technique where it is measured the
angle of arrival of a signal instead of its distance. This type of measurement is more
complex and it requires more complicated hardware, like an antenna array. The
advantage of this method is that only two measurements are required to identify a
position in a 2D.

Received Signal Strength (RSS) As can be imagined, a signal weakens
as it propagates further from its source. Knowing the transmitted power, this
phenomenon can be used to obtain an approximation of the distance between the
transmitter and the receiver. Despite being simple to implement, the accuracy of
this method is very low, especially in enclosed spaces where free space propagation
cannot be assumed. Making a map of the surrounding environment, known as
a "fingerprint," is a way to solve this issue. The position of the mobile device is
then determined by comparing the strength of the received signal from numerous
antennas to the map that was made earlier. It is important to note that this
procedure takes a lot of time and must be repeated for each new configuration of
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the localization system.

Multilateration and pose estimation

It is feasible to determine the target’s position by computing the distances between
the target node and the anchor nodes whose location is known. For the sake of
simplicity, let’s start with the 2D case with three anchors, as the method is easily
applicable to higher dimensions and larger UWB range devices see Figure 3.18.
The intersection of the circles whose centers are the locations of the anchors and
the radius are the distances between them and the tag provides the exact position
in the ideal scenario when the distances are not impacted by errors. The system is
overdetermined and the solution remains unchanged if more anchors are provided.
In the 3D case it is sufficient to intersect at least four spheres following the same
procedure (Figure 3.19. The unknown coordinates are calculated mathematically

Figure 3.18: UWB 2D positioning: geometrical interpretation of multilateration
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as a solution to the circle-or-sphere system of equations, which is overdetermined
whenever the number of anchor nodes is greater than the minimum. Furthermore,
due to the presence of intrinsic mistakes in ranging measurements, it is quite
normal scenario that the circles do not all intersect at the same point. Therefore,
using numerical algorithms like Linear Least Squares (LLS) and the Gauss-Newton
(G-N) that minimize the error function between the real and estimated position
is possible to estimate the position and reduce the error. The first is easier to
develop and more appropriate in the 2D scenario, whereas the second was chosen
because it offers a very good trade-off between computation time and accuracy
and is simple to use. Therefore, in addition to range issues, the spatial deployment

Figure 3.19: UWB 3D positioning: spheres intersection

of the anchors is another important element that affects the localization accuracy.
While certain positioning algorithms are more sensitive than others, poor sensor
placement can always result in singularities and inaccurate position estimation.
For example, heuristic search approaches, acute triangular-based deployment,
adaptive beacon placement, and optimal placement solutions using the maxL-minE
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algorithm have all been suggested as ways to reduce localization errors in the
working area. When there are several anchor nodes accessible, it has been found
that selecting a subset of the sensors appropriately, produces better results than
using them altogether. Convex hull selection, entropy-based information gain, and
joint clustering methodology are some of the methods to carry out such selection.
Nevertheless, these methods work well when the anchors are considered to be fixed,
which is the case for almost all UWB localization systems.

3.5.3 Main sources of error
The theoretical ranging accuracy achievable with time-based ranging algorithms is
quite high, but only in a single user, LOS, and single path scenario. In real-world
scenarios, there are a number of difficulties that affect the localization system’s
accuracy: here are presented the most significant UWB positioning causes of error.

Multipath propagation: The time shift of the template signal that creates
the highest correlation with the received signal is often used to estimate TOA.
Traditional correlation-based algorithms can be employed when dealing with single-
path channels, and the transmitted signal is used as the best template signal.
However, in actual use, the channel is impacted by multipath propagation, and
the template signal is produced by convolutioning the transmitted signal with the
impulse response of the channel. Thus, the correlation between the received signal
and the transmit-waveform template is sub-optimal and, if applied to narrow-band
signals, it often gives wrong TOA estimates because of the overlapping of the
transmitted signal and the reflected ones. [20]

Multiple access interference: Signals from several nodes can interfere when
multiple users are operating in the same space. This results in poorer TOA
estimation and, thus, less accurate positioning. Different methods, such as pulse-
based polarity randomization and time-hopping codes with low cross-correlation
features, can be used to solve this problem. [20]

NLOS propagation: Non-line of sight conditions occur when an obstacle be-
tween the transmitter and receiver prevents the reflected signal from reaching the
receiving node, causing a positive bias in distance measurement. To achieve optimal
localization accuracy, the typical approach excludes NLOS measurements, requiring
differentiation between LOS and NLOS components. Techniques in literature often
use range statistics (LOS estimated range is Gaussian distributed with zero mean
whereas NLOS are biased and non-Gaussian) or channel characteristics, such as
received signal power and features extracted from the power delay profile. In some
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cases, LOS measurements are insufficient, and environmental information can com-
pensate for NLOS errors. A combination of LOS and environmental information
can be used in such cases.

High time resolution: UWB signals have a large bandwidth, allowing for high
time resolution and accurate TOA estimation. However, practical systems face
challenges such as clock jitter, which affects TOA estimates due to clock accuracy
and drifts in target and reference nodes. Additionally, sampling the received
signal above the Nyquist rate is impractical, making TOA estimation schemes use
frame-rate or symbol-rate samples for low-power designs.

3.6 Wheel odometry
Wheel odometry is a technique used to estimate motion and position in wheeled
robots and autonomous vehicles. It is done by using rotary encoders, sensors
attached to the motors of the wheels, to measure rotation. Differential drive robots
have separate motors controlling each wheel, which can spin the wheels at different
speeds and directions, allowing in this way, the robot to move easily in all directions.
The data for the odometry model will come from rotary encoders, which attach to
the motors and collect rotation data. Two rotary encoders, one attached to the left
wheel’s motor and another to the right wheel’s motor, will be used to measure the
distance traveled by the wheel.

The rotation data, along with information on the encoder, such as the radius
or circumference, can be used to compute and estimate the distance traveled by
the wheel. Knowing the number of slits passed can help determine the amount
of rotation between time steps. For an optical encoder, where all slits are equally
spaced, the total angle of rotation between time steps can be obtained by multiplying
the number of slits passed by the amount of rotation represented by a single slit.
The angle of rotation can then be multiplied by the encoder’s circumference to get
the distance traveled by the wheel.

3.6.1 Incremental encoders vs absolute encoders
Absolute encoder An absolute encoder is a device that maintains position
information even when power is removed from it, ensuring the accuracy of the
system. The encoder’s position is available immediately upon applying power,
and the relationship between the encoder value and the physical position of the
controlled machinery is established at assembly: the system does not need to return
to a calibration point to maintain position accuracy. The optical encoder’s disc
is made of glass or plastic with transparent and opaque areas, it is read by a
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light source and photodetector array, often using the Gray code. The absolute
analog type produces a unique dual analog code that can be translated into the
absolute shaft angle. A parallel absolute encoder has multiple code rings with
binary weightings, while a multi-turn absolute rotary encoder includes additional
code wheels and toothed wheels. High-resolution wheels measure fractional rotation,
while lower-resolution geared code wheels record the number of whole revolutions
of the shaft.

Figure 3.20: Absolute rotary encoder

Incremental encoder An incremental encoder is a device that reports changes
in position, which is crucial in some applications but does not track absolute
position. This means that the mechanical system monitored by an incremental
encoder may need to be homed to initialize absolute position measurements. The
rotary incremental encoder is the most widely used of all rotary encoders due to
its ability to provide real-time position information. Its measurement resolution is
not limited by its internal movement sensors, and it can have up to 10,000 counts
per revolution. Its output signals, A and B, issue a periodic digital waveform
in quadrature when the encoder shaft rotates, combining the characteristics of
an encoder and a resolver. The waveform frequency indicates the speed of shaft
rotation, the number of pulses indicates the distance moved, and the A-B phase
relationship indicates the direction of rotation. Incremental encoders report position
changes without prompting and convey this information at faster data rates than
most absolute shaft encoders.

A rotary incremental encoder uses mechanical, optical, or magnetic sensors to
detect rotational position changes. Encoders with mechanical sensors require switch
debouncing and consequently are limited in the rotational speeds they can handle,
for this reason are commonly used as digital potentiometer control on electronic
equipment, while optical encoders are used for higher speeds or precision.
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Incremental optical encoders use a light-emitting diode (LED), a disk with slits,
and a circuit with a photo sensor. The disk separates the LED and circuit with a
photo sensor and as the motor spins, the disk rotates, allowing light from the LED
to pass through the slits to the photosensor, changing the circuit’s voltage. The
number of times the voltage changes corresponds to the number of slits passed,
providing information on the angle of rotation. This incremental encoder allows for
the measurement of rotational position changes, unlike absolute encoders, which
determine the motor’s exact orientation at each measurement.

Figure 3.21: Comparison between incremental and absolute encoder

3.6.2 A simple model of wheel odometry
This model aims to estimate the position and orientation of a robot using data
from rotary encoders, robot dimensions, and geometry[21]. The encoder provides
information on wheel distances at each time step. The robot’s dimensions are
represented as a point, and the distance from the left and right wheels is the only
dimension needed. The reference point is located equidistant between the two
wheels, requiring only one number to be tracked.

Let’s define some variables to keep track of these ideas:

dL,t = distance traveled by the left wheel at time t (encoder)
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dR,t = distance traveled by the right wheel at time t (encoder)

dw = distance between the reference point and the wheels (dimension)

dL = distance traveled by the left wheel

dR = distance traveled by the right wheel

d = distance traveled by the reference point

∆θ = change in the angle of rotation

R = radius of the curve containing the reference point

The first two variables correspond to the distance traveled by the wheel at a
certain time step. This information will come from our rotary encoder. The third
variable dw can be derived by measuring the distance between the two wheels and
dividing it in half since the point is equidistant from the two wheels, or measured
with a ruler. The last three variables are not directly measurable but we need to
use geometry to relate these variables to the measurable quantities.

The robot’s motion is modeled as a curve along a circle, which allows for the
calculation of distance traveled and orientation angle. This model encapsulates
straight motion, that corresponds to a curve with a small angle and/or large radius,
with the curvature decreasing as the angle or radius increases.

To encapsulate rightward motion in the model the idea is to flip the diagram
horizontally, revealing symmetry. The variables associated with the left wheel
and right wheel would flip in sign, resulting in a positive to negative, negative to
positive orientation estimate. However, the distance estimation remains the same.

Backward motion, which involves distances going in the negative direction, is
captured through negative distance values. The key variables of interest are the
distance traveled by the reference point and the change in the angle of rotation.
The radius of the curve containing the reference point is not needed anymore, as it
is no longer useful for derivation.

In summary, the robot’s motion is modeled as a curve along a circle, with the
key variables being the distance traveled by the reference point and the change in
the angle of rotation. Thus, the key results from our model so far are:

d = dL + dR

2

∆θ = dR − dL

2dw

The results indicate that the distance traveled by the reference point and the
change in orientation between time steps are relative, but the direction and new
orientation of the robot are not known.
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To simplify the model, the distance traveled by the reference point is represented
as a line instead of a curve. This is because, in wheel odometry with encoders, the
data sampling is high, resulting in a small time window between measurements
and minimal motion captured by each time step. This results in a small curvature
of the arc, resembling a straight line. The distance is now represented as a straight
line, thus is a safe assumption and simplification. The addition of the previous
time step’s orientation doesn’t change the distance traveled by the reference point
or the change in angle of rotation, as the formulas derived from earlier don’t rely
on the orientation angle. Instead, the robot’s orientation changes from relative to
absolute on the coordinate plane. Thus, the absolute orientation angle at any time
step can be defined by:

θt = θt−1 + ∆θt

When working with absolute motion, our robot will have a coordinate point at
each time step. The robot’s coordinate position is updated using trigonometric
properties, where cosine and sine of an angle are adjacent and opposite. The
distance traveled by the reference point, the angle of orientation from the previous
time step, and the angle resulting from motion can be calculated. Adding the
x and y distance to the previous time step’s coordinate, we can determine the
new coordinate position of the robot. We can describe the dynamics with these
equations:

xt = xt−1 + dcos(θt−1 + ∆θt

2 )

yt = yt−1 + dsin(θt−1 + ∆θt

2 )

For absolute motion, we have the coordinate position, comprised of an x and y
component, and the absolute orientation angle (in radians). The three equations
to define the odometry model for absolute motion are expressed in vector form:xt

yt

θt

 =

xt−1
yt−1
θt−1

 +

dtcos(θt−1 + ∆θt

2 )
dtsin(θt−1 + ∆θt

2 )
∆θt


3.6.3 Wheel odometry issue
The wheel odometry approach has some limitations. For instance, it cannot be
used with aerial or aquatic vehicles but only with ground vehicles. Additionally,
it experiences a position drift phenomenon, in which measurement errors increase
over time. Wheel slippage also causes wheel odometry systems to perform poorly
on complicated uneven terrains and slippery surfaces. Wheel odometry is a straight-
forward and affordable localization method, but it is inadequate for controlling
platforms that need a precise and durable localization system. [17] For these
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reasons, wheel odometry is often associated with fiducial markers and anchors that
reset the drift error from time to time.

3.7 Fiducial Marker relocation
As reported in [22] a fiducial marker is an important tool when using a single
camera for position estimation in industrial systems, augmented reality, robot
navigation, or human-robot interaction. These markers are used for identifying a
specific object. Normally, this can be difficult because some objects have incredibly
complex shapes or, under certain conditions, don’t have enough contrast to be
visible for single-camera pose estimation. When an object has a fiducial marker
attached to it, it is much simpler to identify the object. In general, these objects
are used to relocate the robot’s pose, in fact, once a marker is identified by a
camera, the camera’s relative position with respect to the marker can be estimated
based on how the camera perceives the specific marker thanks to particular PnP
(Perspective-n-Point) algorithm that are explored in the following paragraph.

Figure 3.22: Example of fiducial marker: (a) ARTag, (b) AprilTag, (c) ArUco,
and (d) STag

There are many different types of markers; the majority of them are square
and estimate pose using the marker’s corner points. Additionally, there are round
or other shaped markers like INTERSENSE and REACTIVISION that work
differently and can be used in other contexts. The most suitable marker for object
localization and tracking are the square and planar markers as ARToolKit, ARTag,
ARToolKit+, AprilTag, STag CALTag and ArUco, in fact for this project will be
used ArUco and AprilTag.

AprilTag Similar to ARToolkit+, AprilTag was released under an Open Source
license, resulting in particularly well-documented algorithms and implementations.
With AprilTag, tags can be detected quickly and accurately because only 4 bits
(black or white squares) of data are encoded by the smallest markers. The system
is characterized by an increased number of different codes and an increased number
of bit errors that could be detected, despite having 36 bits for the largest markers.
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Figure 3.23: Example of different AprilTag

ArUco At first glance, the AprilTag and ARToolkit+ are very similar to the
ArUco marker. The main difference between these two is that the intention is
to create a dictionary with the greatest inter-marker distance. This inter-marker
distance is used to identify and fix false-positive results. However, this AruCo
marker’s computation time is faster than that of AprilTag and ARToolkit+.

Figure 3.24: Example of different ArUco

How to estimate the pose?

Perspective-n-Point Perspective-n-Point is a problem that estimates the pose
of a calibrated camera given n 3D points in the world and their corresponding
2D projections in the image. The camera pose consists of 6 degrees of freedom
(DOF) which are made up of the rotation (roll, pitch, and yaw) and 3D translation
of the camera with respect to the world. This problem originates from camera
calibration and has applications in computer vision, robotics, and augmented reality.
A commonly used solution is P3P for n = 3, and many solutions are available
for n ≥ 3. In our case as reported in [23] the rotation matrix and translation
matrix can be used to describe the pose of an object in relation to the camera
coordinate system for an image of that object that was captured by the camera.
The translating matrix T can be used to determine the separation between the
object in the image and the camera lens.

s ∗ pi = A[RG|TG]qi (3.9)

Where s is the required scale factor, pi is a point in the image, and qi is the 3D
coordinate of the point p on the image corresponding to the camera coordinate
system.

The relationship between the camera coordinates and the ideal coordinate system
without image distortion is expressed by matrix A, which represents the internal
parameters of the camera. [RG|TG] is the external parameter, which indicates the
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position and orientation of the camera in the GLOBAL coordinate system; R is
the rotation matrix, and T is the translation matrix.
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"The internal parameter A in formula 3.9 can be obtained through the calculation
of the camera calibration process. fx and fy in A are the focal lengths at the pixel
scale of the camera. As long as the coordinates of four known points on the same
plane are obtained, the rotation matrix R and translation matrix T can be obtained,
and then the distance between the marker and the camera can be calculated." [23]

Rodrigues formula Once the fiducial marker’s coordinates are obtained is
possible to estimate the position. As explained in [24] fiducial markers are placed
on known locations for localization, allowing for global pose estimation and position
relocation. In this way, every marker ID has its own known position; thus, it
is possible to estimate the pose globally once the camera identifies it in the
environment. For example ArUco library provides two vectors: rotation and
translation, that represent relative rotation and translation between the camera
and marker. The Rodrigues formula converts the rotation vector to a rotation
matrix. Each marker has a transformation matrix, transforming the relative position
between camera and marker to the global coordinate system. This system allows
for accurate localization and accurate pose estimation.

RCT = Rodrigues(rvec)

Once get RCT - rotation matrix of the camera relative to the tag, it is applied a
transposition to find the tag’s rotation relative to the camera.

RT C = RT
CT

where RT C is the rotation matrix Tag relative to the camera. From this, to find
the translation vector of the camera (in ArUco coordinate system) tar

cam we have:

tar
cam = −RT C ∗ tvec

where tvec is the translation vector acquired from ArUco library. At this point, other
transformations are needed to get the final NEU (North East Up) conventional
coordinate system. In the following formulas, we will have t for the translation
vector and q for quaternion.

qar
cam = qT C ∗ qXπ (3.10)
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where qar
cam is the rotation quaternion of a camera in the AR coordinate system,

qT C is the rotation matrix of Tag relative to the camera and qXπ the rotation
quaternion of X axis + 180°.

qneu
cam = qar

cam ∗ qY π/2 ∗ qX−π/2 (3.11)

where qneu
cam is rotation quaternion of camera in NEU coordinate system, qY π/2

rotation quaternion of Y axis + 90° and qX−π/2 is the rotation quaternion of X axis
- 90°.

tneu
cam = tar

cam ∗ RY π/2 ∗ RX−π/2 (3.12)

where tneu
cam is the translation vector of camera position in NEU coordinate system,

RY π/2 rotation matrix of Y axis + 90° and RX−π/2 is the rotation matrix of X axis
- 90°.

tglob
cam = T init

marker ∗ tneu
cam (3.13)

where tglob
cam is the translation vector of camera position in GLOBAL coordinate

system and T init
marker is the initial translation of ArUco marker. And finally, we

can obtain qglob
cam that is the rotation quaternion of the camera in the GLOBAL

coordinate system.

qglob
cam = qinit

marker ∗ qneu
cam (3.14)

where qinit
marker is the initial rotation of ArUco marker and qneu

cam is the rotation
quaternion of the camera in NEU coordinate system.
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Figure 3.25: Transform of ArUco coordinate system

After equation 3.10 the coordinate system rotates from fig. 3.25 A to fig. 3.25
B. In the same way is transformed also the translation vector 3.12 and finally with
3.13 and 3.14 local coordinate system are transformed in global system coordinate,
giving as a result the camera pose estimation relative to a warehouse or indoor
environment. Having these coordinates is now possible to relocate the position of
the robot based on this new "trust and known" pose, resetting in this way the drift
error.

3.8 Conclusion
In this chapter, we have therefore covered the main indoor navigation techniques
that are used for autonomous systems today. Most of them can be used on stand-
alone drones, while others such as Lidar for example, are not really suitable for use
on a stand-alone drone as the sensors may be too heavy, energy-intensive, or may
not work properly due to the vibrations of the drone. Finally, other techniques
such as wheel odometry by design cannot be used on a standalone drone but only
in combination with an AMR.
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Some of them are simpler and more production-ready, such as VIO, VO, Lidar-
SLAM, and wheel odometry, in fact once these sensors are mounted on the drone
or AMR, they are ready to work without needing to prepare the environment or
make onerous configurations. This is possible because of the extremely advanced
algorithms and technologies available nowadays, just a few years ago it was unimag-
inable that an object weighing just a few grams could give its position in real-time
with very high levels of accuracy and low power consumption.

Naturally, their performance and accuracy are high if the environment conditions
they have to work in are adequate: in a dark environment, as we have said, the
visual-SLAM can never work properly viceversa if the illumination is too high,
reflections and shadows could as well affect the results of the algortims. Similarly
also for wheel odometry, is unaffected by lighting conditions, but if the floor has
irregularities, steps or unevenness, this technique would also fail. These odometric
techniques moreover, as we have seen several times in this chapter, are subject to
drift error, which increases more and more with time, so it is necessary to make
sure that from time to time the error is reset to zero. It is, therefore, necessary
to have an independent, parallel localization system with which to compare the 2
estimated poses, and use sophisticated and complex filters and logic to estimate
the final pose.

At this point 2 other techniques that are not subject to drift error, and which are
not based on odometric algorithms, come into the equation: the UWB positioning
and fiducial marker relocation.

UWB allows very precise continuous real-time localization, with a cm-accuracy,
however for indoor environments such as a warehouse it has severe limitations
both due to electromagnetic interference but also because it is not a production-
ready solution. In fact, it is necessary to install dozens or even hundreds of
transmitter antennas inside the warehouse, placing them strategically so that the
entire warehouse is well covered. In addition, since this is an active system, it
must be powered and maintained, which means that wiring must also be done or
alternatively using battery-powered antennas assuming they are sized properly but
for sure maintenance will be more frequent and expensive.

Fiducial markers from this point of view appear much more promising since each
fiducial marker has basically zero cost, but more importantly, it is a passive system,
unlike the antenna, so it does not have to be maintained and installation is much
easier and faster. It might be considered that the drawback is the fact that they
need proper lighting conditions, it is true, but actually, there are markers made
with fluorescent materials that can be seen in the dark, or with materials that can
be seen very well in the infrared or others even can be seen very well under direct
illumination (light beam spot-on fiducial marker) without generating disturbing
and strange reflections. In any case, it must be considered that unless using only
Lidar or wheel odometry (which also works at night) as odometric localization, if

77



State of the art for indoor navigation

VO is to be used, even in this case the light conditions must be good.
Fiducial markers are not a continuous real-time localization system, but a

relocation system that is used to reset the drift error to zero. Therefore, in our
research, we wanted to focus mainly on VO and fiducial marker relocation in a
well-illuminated environment because these 2 techniques compensate each other
perfectly. VO is used for navigation within corridors and from time to time the
error is reset with fiducial markers strategically placed within the warehouse/lab.

In the following chapter, is presented the work done divided into two phases. In
phase 1 it is implemented ROS nodes for the management of VO odometry and
relocations based on fiducial markers. Then based on the preliminary obtained
results, for phase 2 of this study, it has been decided to focus on a comparison
between 2 families of fiducial markers (AprilTag and ArUco) and 4 different types
of cameras (stereo/fisheye, wide-angle camera, and two different standard camera
with different performances.
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Chapter 4

Empirical studies and
measurements for sensor
fusion optimization

4.1 Introduction and research presentation
The initial idea of the research was to implement a sensor fusion algorithm that
by receiving odometry data from different sensors (via ROS nodes), after having
processed and filtered them, would produce as output real-time coordinates that
would take into account the contribution of the different sources: thus providing a
"theoretically" more accurate drone pose (in our case of the testbed) with lower
drift error.

Phase 1: IntelRealsense T265 tracking camera was chosen to be used as the
source of VIO odometry data and a simple webcam, to perform fiducial marker
relocation. The testbed (which simulated the drone) used for testing consists of
a wheeled bench (see photo 4.1) and a 3D printer-printed holder on which the 2
cameras were mounted (see photo 4.3). The T265 was mounted so that it pointed
forward, with a slight downward tilt (so as not to point exactly to the horizon),
so that VIO could also extract even features from the floor and estimate the pose
better. The webcam, instead, was installed perpendicular to the floor level in order
to identify all fiducial markers specially placed on the floor of the test area (see
photo 4.2).

The two cameras were installed at a height of about 158 cm from the floor; this
height was chosen considering navigation within warehouse corridors. Excessive
height would make it difficult to read markers on the floor, or in any case, inaccurate
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Figure 4.1: A photo of the wheeled
bench used to perform all tests

Figure 4.2: Photo of the lab where tests
were performed

Figure 4.3: Photo of the T265 and Logitech webcam holder

pose estimation, and vice versa if the drone is flying very close to the ground it
would have a very limited field of view and the vortices generated by the propellers
would interfere with the flight dynamics by generating vibrations that would affect
VIO accuracy.

The first test consisted of taking the odometry data from the VIO and comparing
them with the pose data obtained from the fiducial markers (when present). From
the comparison, it was noticed that the VIO worked very well: the localization was
very precise and the drift error very low, while the relocation done with the fiducial
markers had a very high error, so it was completely useless if not counterproductive
for the purposes of sensor fusion and relocation. Indeed, as we will see later, the
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generated point cloud was very large surroundings making it impossible to perform
an accurate relocation.

Phase 2: At this point it was therefore considered to investigate further the
fiducial marker-based relocation theme, in order to try to understand why the
accuracy was so low. Hence, it was decided to make a comparison between 2
families of fiducial markers (ArUco and AprilTag) and 4 different types of cameras.

After that, given all the measurements and tests, data were collected to be
analyzed and draw some conclusions.

4.2 Software and hardware set up
Various libraries and software (where possible open source) along with sensors,
cameras, and mini processors/computers were used in the implementation of this
study. The hardware and software used and their setup are presented below. Below
is the list of used hardware:

• PC ASUS Vivobook X580GD

• Nvidia Jetson Nano

• Intel Realsense T265

• Intel Realsense D435i

• Webcam Logitech HD C270

• RasPi Cam IMX219-160 IR

• Camera holding support

Ubuntu 18.04 is installed on the PC since, from previous experience, it is the
version with more compatible with the libraries and software used in this project.
For the purposes of this research, it is chosen to use ROS2 which enables real-time,
therefore is installed the Dashing Diademata version, compatible with this version
of Ubuntu. Then several Python libraries are installed on the PC to allow OpenCV
4 (computer vision library) to work properly, which among other things is used for
fiducial marker recognition. Finally, programs for managing and visualizing the
Intel Realsense data are installed.

On the Jetson Nano, some compatibility problems occurred both during the
installation of ROS2 and during the installation of OpenCV4 library. There are
compatibility problems with Ubuntu 18.04 due to the different processor from the
Asus PC; so after many unsuccessful attempts of troubleshooting in the end the
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solution was to change Ubuntu version and install Ubuntu 20.04.5 LTS. With this
operating system, it was also necessary to change the version of ROS2 and upgrade
to Foxy Fitzroy. No Intel programs were installed on the Jetson as Intel cameras
would be used via PC. The Jetson Nano was required to do testing with the Raspi
Cam, because it does not have the possibility to be connected via standard USB,
and moreover to simulate nodes’ performance on a realistic embedded computer.
In fact, a standalone drone, cannot be designed to be controlled remotely via a PC
(which would introduce huge latencies and other problems) but the intelligence
must be on board the drone, and the only way to do this is to equip the drone
itself with an on-board computer that is light enough to allow it to fly (without
oversizing the drone), is performant (so that it can compute even complicated
algorithms such as EKF or pose estimation), and is power efficient (in order to
have an acceptable flight range without the need for very large batteries, which
would raise cost and overall weight)

Once ROS2 and OpenCV4 were installed on both machines, namespace configu-
ration was done and the environment was prepared for development and testing of
the various nodes. For the purpose of their use, the 2 versions of ROS2 Dashing
and Foxy were interchangeable and perfectly compatible.

4.2.1 What is ROS?
ROS (Robot Operating System), serves as an open-source middleware platform,
facilitating the development, control, and coordination of a wide range of robotic
applications. Contrary to its name, ROS is not a traditional operating system;
instead, it operates as a flexible and modular framework that functions on top of
the existing OS. It offers a comprehensive suite of tools, libraries, and conventions
that empower engineers, researchers, and developers to efficiently design, control,
and orchestrate robotic systems. It acts as a communication and coordination focal
point, facilitating the seamless exchange of data, the control of hardware, and the
execution of intricate tasks in a modular and extraordinarily adaptable manner.

A key feature of ROS is its node-based architecture. In this architecture, a
"node" represents a fundamental computational unit, akin to a software module or
component. Nodes can be created in a variety of programming languages and can
be executed on different computational platforms. These nodes are self-contained
programs that execute specific tasks or functions and communicate with each
other using a publish-subscribe mechanism, which is crucial for enabling real-time
communication among nodes. This model fosters loose coupling, allowing nodes to
work independently and ensuring that changes to one node do not adversely affect
the operation of other nodes. Moreover, the publish-subscribe model supports both
one-to-many and many-to-one communication, which enables distributed, modular,
reusable, and scalable robotic system design.
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Publisher Node Publisher nodes are responsible for transmitting data, often
referred to as messages, to the ROS network. These nodes typically collect and pub-
lish data related to specific sensor readings, camera images, sensor measurements,
or the current state of a robot. The publish-subscribe mechanism disseminates
data to the ROS network, where multiple subscriber nodes can access and use this
data. For instance, a laser scanner driver node is a common example of a publisher
node, which publishes laser scan data to the ROS network for further processing.

Subscriber Node Subscriber nodes, in contrast, are designed to receive data
published by publisher nodes. These nodes subscribe to specific topics, which
represent particular types of data, to obtain the information they require. Upon
receiving data, subscriber nodes process this information and carry out various
tasks based on the data’s content. For instance, a navigation planning node might
subscribe to laser scan data to detect obstacles and plan a robot’s path accordingly.

ROS vs ROS2 In 2014, the development of ROS2 began as a significant evolution
of the original ROS. Although ROS was largely used for research and development
in robotics for industrial applications that were gradually becoming widespread,
it had some limitations that led to the creation of ROS2. The main distinctions
between the two are:

• Communication: ROS relies on the use of a middleware called the Robot
Operating System Framework (ROS-Framework) to facilitate communication
between various components (nodes). ROS2, on the other hand, leverages
the Data Distribution Service (DDS) standard for communication, which
provides improved support for real-time and distributed systems, making it
more suitable for commercial and industrial applications.

• Real-time Support: ROS2 incorporates native real-time support, which allows
it to better handle time-sensitive tasks, a critical requirement in many robotic
applications.

• Platform Independence: ROS2 is designed to be platform-independent, making
it more versatile and capable of running on a broader range of hardware and
operating systems, including real-time and embedded platforms.

• Improved Security: ROS2 places a stronger emphasis on security, offering
features like authentication and encryption for communication between nodes.

• Language Support: ROS2 extends its support to additional programming
languages, including C++, Python, and Java, making it more accessible to a
wider audience.
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4.3 Phase 1: Sensor fusion, VIO and fiducial
marker relocation

4.3.1 First nodes implementation
With ROS it is possible to implement, as we have seen, in addition to several
constructs, publisher, and subscriber nodes. With publisher nodes is possible to
publish streams of sensor data: in our case, the odometry data of the VIO pose
computed by the IntelRealsense T265 camera, and the pose data estimated as
a result of fiducial marker identification. As a first step, thus, was developed a
publisher node for the webcam ("webcam_image_publisher" that would publish
image streams. The corresponding publisher node for the T265 camera was not
developed because the camera itself, in addition to publishing VIO odometry data
(see an example in fig [4.4]), it publishes also video streams of the 2 optics plus
other information/topics.

Figure 4.4: VIO odometry from Intel Realsense T265 and the same data plotted
on Matlab.

Therefore, a listener node was developed that subscribes to the publisher node
of the respective image stream and enables image saving. To ensure that the pose
estimation obtained from the fiducial markers is accurate and reliable, it is indeed
necessary to calibrate every single camera, and then use the obtained distortion
matrix to make the pose estimation computation. This tricky but likewise important
issue will be discussed in a forthcoming section (see section 4.4.3). After having
calibrated the webcam, therefore, it was developed the "ArUco_publisher" node,
which is both a listener and a publisher at the same time. This node subscribes
to the image stream publisher node, receives the images, identifies all the markers
(ArUco markers were used in this first phase) present in the single frame, returns
the coordinates of the ArUco, and then the pose is computed using the Rodriguez
formula. Finally, the obtained pose estimation data are published.

During the development of "ArUco_publisher" node, it was noticed that the
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frequency at which this data was being published was very low, around 7.5 Hz,
which is not a sufficient frequency for a real-time application in this domain. Since
this node was developed in Python, which doesn’t make performance its strong
point, therefore, it was decided to try to increase the performance of the algorithm
by remaking the node in C++. Despite this, however, the frequency at which
the node was publishing pose data was almost unchanged, which meant that the
bottleneck was not the performance of the algorithm written in Python but of
the camera itself. Seeing that the performance of the 2 nodes written in Python
and C++, for this specific algorithm, were roughly identical, since for this type
of computer vision application, which leverages OpenCV and other libraries that
are very easy to integrate and use in Python, it was decided to develop all further
nodes in Python. A specific mapping between ArUco IDs and offset coordinates
was done: in fact, 4 different ArUco were placed, in 4 different locations, each time
the webcam identified a specific ArUco, the corresponding X and Y offset were
applied to the estimated coordinates to effectively translate.

4.3.2 Base sensor fusion node
The last step was to implement a listener and publisher node ("fuse_sensor")
that would do the sensor fusion operation. The goal of this first phase is not to
implement complicated logic, advanced Kalman filters, etc., but only to get all
the data to stream properly and do a preliminary test. So this sensor fusion node
basically subscribes to the VIO publisher node that publishes the pose odometry
data, and to the "ArUco_publisher" that publishes the pose estimation, when these
are present and visible from the webcam.

The first implementation with the basic logic was structured as follows:

1. Odometry data received from VIO

2. A translation is performed with respect to the coordinates of the true starting
point: the VIO when turned on starts from [0,0,0], but in our test environment
the initial coordinates are different from [0,0,0].

3. These new resulting coordinates, which are published, will exactly match the
coordinates received from the VIO, except for the initial translation, as long
as no ArUco is detected and thus no relocation is performed.

4. When an ArUco marker is detected, the coordinates received from the camera
pose estimate with respect to that specific ArUco are summed and effectively
merged with the original VIO coordinates. Complex filters and logic should
be applied at this stage, but that was not the purpose of this phase of the
project. With this fusion operation, a relocation was effectively performed,
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and "theoretically" the accumulated drift error from the VIO odometry should
be reset.

4.3.3 Preliminary results: fiducial marker relocation issue

Below, in 4.5, 4.6 and 4.7 you can find a plot with the 3 coordinates plotted. The
red line represents the original VIO, as you can see it is actually very accurate in
our environment, thanks also to the fact that the environment in which the tests
were carried out was well-illuminated and rich in features to be extracted. The blue
line, on the other hand, represents the "fused" coordinates, i.e., those published
as output from the "fuse-sensor" node, which was translated when the tracking
camera was turned on and then relocated whenever an ArUco was detected. As
can be seen, following the relocation, these coordinates become very imprecise and
lose their meaning. This is certainly due to the used logic to do the relocation (no
filters but bare sum); but beyond this factor, we can still observe that the point
cloud in green, which represents the pose estimate calculated through the ArUco
(blue square on the ground), is very noisy and wide and therefore inaccurate, thus
making very difficult to apply any filter or relocation logic. Based on these results,
it was decided to proceed with phase 2: to analyze the pose estimation by fiducial
marker in more detail, and then make an ad hoc comparison.

Figure 4.5: Plot of fused odometry data: in red VIO, in green ArUco pose
estimation and in blue fused data
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Figure 4.6: Plot of fused odometry data: in red VIO, in green ArUco pose
estimation and in blue fused data

Figure 4.7: Plot of fused odometry data: in red VIO, in green ArUco pose
estimation and in blue fused data

4.4 Phase 2: comparison ArUco vs AprilTag
As mentioned in the previous section, given the results obtained from sensor fusion
it was decided to do a more extensive study on fiducial markers. Therefore, it was
chosen to compare 2 of the most commonly used fiducial marker types for this type
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of systems: ArUco (used for example by Doks) and AprilTag (used for example
by Boston Dynamic’s Spot or Yape). Whereas, regarding cameras, preliminary
research was done to understand which cameras are used today by systems of this
type.

4.4.1 Type of used camera
Objective: identify which cameras are used (for fiducial marker recognition) by the
main autonomous robots on the market so as to do tests on the same or similar
cameras. After some research, the results were not very detailed and not very
helpful since because they are commercial products, manufacturers tend not to
provide details of the used hardware, but only some features (not too specific) and
what kind of operations or algorithms they are able to perform with them. Below
are some features of the main cameras.

• Boston Dynamic – Spot

– 5 stereo pairs cameras (front-left, front-right, left, right, back) for a 360
degrees field of view

– Black-and-white or color fisheye, range (depth), infrared
– Used for robot perception (also using Aruco marker) and obstacle avoid-

ance
– Depth camera range ≈ 2 m

• Xiaomi – Cyberdog

– Intel RealSense D450 depth camera

• General Laser – Unitree Go1

– 360 degrees field of view
– 5 Sets Fish-eye Stereo Depth Cameras (Ai Post-processing)
– Lens Angle ≈ 150° x 170°

• General Laser – Unitree Go1

– Active infrared stereo depth technology
– 1080P camera resolution
– Depth distance 0,3 - 10m
– Error accuracy within 2 meters is less than 2%

• Anybotics – Anymal
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– 5 stereo pairs cameras for a 360 degrees field of view
– No information. It seems to be an Intel RealSense fisheye stereo depth

camera (like the others)

• Taurob

– 360° degrees camera, not specified how. Not sure uses Aruco

As mentioned above the models of the specific cameras used were not found then (I
think some of these robots in fact even use custom, home-built hardware es Boston
Dynamics). However, it can be seen that most of these systems use a set of stereo
depth cameras with features similar to the Intel RealSense D-series (if not even a
specifically stated model).

Based on this research and the availability we had in the laboratory, the following
cameras were chosen:

• Intel RealSense - T265

– Stereo Tracking camera, already used for VO, with IMU
– Two OV9282 Fisheye Camera, a monochrome image sensor with a wide

field of view
– Fisheye FOV with Cover Window: 170°
– The distance between the images, which is referred to as the baseline or

intraocular spacing: 64 mm
– Focus: fixed

• Intel RealSense - D435i

– Stereoscopic RGB- Depth camera with inertial motion unit
– Working range 0,3 m to 4/5 m
– Depth Field of View (FOV): 87°(H) x 58°(V) x 95°(D)
– Depth output resolution: Up to 1280 x 720
– Depth frame rate: Up to 90 fps
– RGB max frame resolution: 1920 × 1080 (it is possible, eventually to use

a reduced resolution set)
– RGB sensor FOV (H × V x D): 69° x 42° x 77°
– RGB sensor resolution: 2 MP
– RGB frame rate: 30 fps
– IR-pass filter
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– Wide Infrared Projector: H:90 / V:63 / D:99
– Baseline: 50mm

• Logitech webcam HD C270

– Frame resolution 1280 x 720
– Resolution 0.9 Megapixels
– Fixed Focus
– Sensor FOV 55°
– Frame rate 30 fps

• RasPi Cam IMX219-160 IR

– Frame resolution: 3280 × 2464
– Resolution: 8 Megapixels
– Sensor: Sony IMX219
– Supports night vision when working with infrared LEDs
– Sensor FOV: 160°
– Lens specifications: CMOS size: 1/4inch
– Aperture (F): 2.35
– Focal Length: 3.15mm
– Distortion: < 14.3%
– Frame rate 30 fps
– Focusing Adjustable Range: 20cm - infinity (Depth of field)

Since the purpose of this research is on drones and systems capable of autonomous
navigation, particular attention was paid to certain characteristics and features in
choosing the cameras. Indeed, all these cameras have in common the fact that they
are extremely light, small, and have low power consumption. In addition, they are
generally quite high-performance, apart from the Logitech, which was purposely
chosen low-end to have a well-rounded overview.

4.4.2 Fiducial Marker families: why ArUco Original and
AprilTag 36h11?

Generally speaking, depending on the fiducial marker’s bit size, there are different
levels of precision and unique identification in image processing. More bits in
a marker’s code dictionary reduce the likelihood of confusion but require higher
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resolution for accurate detection. Conversely, smaller bit sizes aid marker identifi-
cation with small or distant images but limit the total unique markers available.
Additionally having a lower amount of markers decreases the inter marker distance,
thus the chance of faulty marker ID classification.

AprilTag AprilTags are two-dimensional bar codes (similar to QR codes) designed
to encode smaller data payloads (between 4 and 12 bits), allowing them to be
detected more robustly and from longer ranges. They are also designed for high
localization accuracy, allowing for precise 3D position computation with respect
to the camera. There are two generations of AprilTag families: Apriltag 2 and
AprilTag 3. Apriltag 2 is the classic Apriltag, compatible with more software and
offering a better out-of-the-box experience. Apriltag 3 is the newest generation,
offering new features like circle tags, recursive tags, faster detections, and higher
recall rates but less software support.

AprilTag libraries families are characterized by two numbers: the first number
(before h) represents data bits (changeable blocks) in the tag design, and the second
(after h) is the Hamming distance, the minimum number of bits that must be
changed in one tag’s code to reach another tag’s code. More bits mean more tag IDs
are available in that family, and a larger hamming distance allows for more error
correction while decoding tag IDs. However, a larger hamming distance reduces
the number of available tag IDs, such as 36h11 having more available IDs than
36h15 but a higher false positive rate.

The 36H11 family is a reasonable generic choice due to its even size and high
fill factor, but its larger width may limit the range. The more bits a tag has, the
more pixels are required to decode it, allowing lower-bit tags to be detected further
away. In conclusion, AprilTag gen 2, specifically the family 36h11, is recommended
for most applications due to its robustness and the availability of most tag IDs.

ArUco An ArUco (Augmented Reality University of Cordoba) is an open-source
library designed for generating, detecting and recognizing squared fiducial markers
in images. These markers are generated based on specific criteria to maximize inter-
marker distance and the number of bit transitions, ensuring their distinctiveness
and thus reducing the likelihood of confusion during detection. ArUco offers the
unique advantage of allowing users to create configurable libraries, tailored to their
specific needs, rather than relying on a standard library with a fixed set of markers.
These libraries will contain only the specified number of markers with the greatest
Hamming distance. This customization reduces computing time and enhances
detection accuracy [25].

The ArUco library provides 25 predefined dictionaries of markers, each containing
markers with a fixed number of blocks (or bits) and a specific number of unique
IDs. It is chosen to use the ArUco "original" dictionary because it strikes a balance

91



Empirical studies and measurements for sensor fusion optimization

between marker size and detection accuracy, making it suitable for a wide range
of applications such as augmented reality, computer vision applications, and pose
estimation. Moreover, many autonomous solutions on the market already use this
specific dictionary, such as Doks, so even for this reason it is decided to this specific
dictionary. Finally, Aruco is compatible with OpenCV: in fact, it is possible to
generate custom markers and estimate their position (as will be presented in a
further section) using specific OpenCV functions.

4.4.3 Camera calibration

Camera calibration is an extremely important operation and should therefore be
done with extreme care and precision. Each camera and in particular each individual
lens (even for the same camera model) has specific and unique characteristics, so
although to the human eye, 2 captured images from the same camera model can
appear to be exactly the same, in reality, there is a slight difference due to the
distortion that each individual lens brings (that as we will see characterize the
camera matrix). Let’s examine this phenomenon more in detail. As explained
in [26] it uses a pinhole camera model to project a scene’s 3D point Pw into the
image plane, forming the corresponding pixel p. Both Pw and p are represented
in homogeneous coordinates, 3D and 2D homogeneous vectors respectively. The
distortion-free projective transformation given by a pinhole camera model is shown
below:

s p = a[R|t]Pw

where Pw is a 3D point expressed to the world coordinate system, p is a 2D pixel
in the image plane, A is the camera intrinsic matrix, R and t are the rotation and
translation and s is the projective transformation’s arbitrary scaling and not part of
the camera model. The camera intrinsic matrix A is composed of the focal lengths
fx and fy, which are expressed in pixel units, and the principal point (cx,cy), that
is usually close to the image center:
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The intrinsic parameters of a camera, such as the focal length of a zoom lens,
can be re-used once estimated, provided the focal length remains fixed. However,
if an image is scaled by a factor, all parameters must be multiplied or divided
by the same factor. From the projective transformation that maps 3D points in
world coordinates into 2D points in the image plane and in normalized camera
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coordinates we obtain:
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Figure 4.8: Pinhole camera model

Pinhole cameras can cause significant distortion in images, primarily radial and
tangential distortion. The pinhole model is extended as:C

u
v

D
=

C
fxx′′ + cx

fyy′′ + cy

D

Radial distortion makes straight lines appear curved, and its size increases as points
move away from the image center. Radial distortion is represented as: [27]:

xRadial distorted = x(1 + k1r
2 + k2r

4 + k3r
6)

yRadial distorted = y(1 + k1r
2 + k2r

4 + k3r
6)

93



Empirical studies and measurements for sensor fusion optimization

Tangential distortion occurs when the image-taking lens is not perfectly aligned
with the imaging plane, causing some areas in the image to appear closer than
expected. Tangential distortion is represented as:

xT angetial distorted = x + [2p1xy + p2(r2 + 2x2)]
yT angetial distorted = y[p1(r2 + 2y2) + 2p2xy]

with
r2 = x2 + y2

So the distortion coefficients are k1, k2, p1, p2 and k3,
Finally, other information, like the intrinsic and extrinsic parameters of the

camera is also very important to complete the calibration. Intrinsic parameters,
such as focal length (fx, fy) and optical centers (cx, cy), are crucial for analyzing
camera performance. Extrinsic parameters are rotation and translation vectors
that convert 3D point coordinates into a coordinate system. These parameters,
unique to a camera, can be used to create a camera matrix that removes distortion
caused by the lenses. The focal length and optical centers can be expressed as a
3x3 matrix, making it a useful tool for analyzing images taken by the same camera.fx 0 cx

0 fy cy

0 0 1



Figure 4.9: Example of distortion, image from [26]

Applied procedure to calibrate cameras

To calibrate cameras, it was used a 9x6 chessboard and a Python algorithm
exploiting some specific functions of the OpenCV library provide as output the
camera matrix and the camera distortion: the 2 matrices that characterize the
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Figure 4.10: Example of tangential and radial distortion, image from [28]

specific camera lens. These matrices are then loaded at node startup to correct the
distortion of the specific camera, and thus obtain an undistorted image resulting
in better pose estimation results. The procedure itself is very simple: it consists
of taking multiple photos of the chessboard at different orientations, angles, and
distances (see Fig. 4.11. The more different photos you can take, the better the

Figure 4.11: Example of calibration chessboard image acquisition

resulting calibration will be. Once all the photos have been collected, the algorithm
that calculates the 2 matrices is launched: the algorithm analyzes one photo at a
time and tries to extract and recognize the corners of the chessboard squares; this
is the used function:

1 ret , c o rne r s = cv2 . f indChessboardCorners ( gray , ( nCols , nRows) ,
None )

and this is the visual obtained output (fig. 4.12).
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Figure 4.12: Example of corner recognition on a calibration chessboard

Once all the corners of the squares in the chessboard have been collected, they
are saved in a data structure and used after having analyzed all the images, to
compute and generate the matrices.

1 ret , mtx , d i s t , rvecs , tv ec s = cv2 . ca l ibrateCamera ( ob jpo int s ,
imgpoints , gray . shape [ : : − 1 ] , None , None )

where mtx e dist are respectively the calibration matrix and distortion matrix. All
photo acquisitions were made under the same illumination conditions that were
good and uniform so that the calibrations were not affected by bad illumination
conditions. Once the calibration matrices were obtained, an error was calculated
by considering the calibration values just obtained. Not having a robotic arm with
which to set all the points from which to take pictures of the chessboard, this
operation (movement of the chessboard in 3D space) was carried out manually:
therefore 2 calibrations of the same camera, performed with different sets of pictures
gives slightly different results. To obtain the best possible calibration, the whole
procedure was repeated several times, taking different photos, and then selecting the
best calibration. It was noted that more photos do not necessarily imply a better
calibration, and vice versa after a certain number of photos, the error increases
instead of decreasing. Therefore, several calibrations were made considering more
or fewer photos, to obtain the result with the lower error, this calibration then
was selected as the default one for subsequent measurements. It should be noted
that at this stage extreme care was taken as a small error at the calibration level
would have resulted in biases in the measurements that would have been difficult
to interpret and correct. Data from the calibrations and their errors are collected

96



Empirical studies and measurements for sensor fusion optimization

in the following table.

Calibration data
Camera Pictures number Error

Intel D435i 31 0,087
Raspi Cam 22 0,052

Logitech Webcam 26 0,040
Intel T256 Lens 1 24 0,134
Intel T256 Lens 2 20 0,168

As can be seen, the 2 fisheye optics of the T265 camera have a very high error,
because as seen, the images that are obtained from this type of optics are very
distorted and therefore it is very difficult to calibrate them properly and correct a
relevant distortion. While regarding the number of used pictures there is no specific
number, but from the tests conducted some calibrations gave better results with
fewer pictures and others with more pictures, in any case, an average of 20 to 30
pictures were used per calibration.

4.4.4 ROS node implementation and adaption
Starting with the "ArUco_Publisher" node previously developed, the other nodes
were implemented to recognize ArUco and AprilTag using different selected cameras.
The core of the nodes basically remains the same: only some parts were modified
allowing subscription to the different video streams published by each camera. In
some cases, it was also necessary to adapt the frame management, for example for
the 2 fisheye optics of the T265, which because they are monochrome (grayscale)
require different frame processing. For this camera tests and measurements were
made on both optics, in order to verify that the results between the 2 optics were
consistent and coherent with each other.

On the other hand, regarding the fiducial marker recognition component, the
effort was directed to keep the algorithm as similar as possible (between the version
that recognizes ArUco and the other one that recognizes AprilTags), in order to
limit the variables involved for the subsequent measurement and testing phase
and thus to facilitate analysis. Hence, only the library used to recognize fiducial
markers was modified: in both cases, the resulting output upon recognition is
an array containing the ID and the 4 coordinates of the 4 vertices of the marker
together with other information. The pose estimation is done following these steps:

1. Four marker vertex are recognized and their coordinates are saved: to do this,
specific functions of the libraries ArUco and AprilTag were used

2. By using the function
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1 aruco . es t imatePoseS ing leMarkers ( corners , marker_size ,
camera_matrix , camera_distort ion )

of the ArUco library, which is used for both fiducials in order to reduce
variability, the rotation and translation vectors are obtained. It is seen that
in the used function both the marker size and the camera characteristics are
taken into account: the camera matrix and the camera distortion matrix,
which were obtained during calibration

3. Having obtained the rotation and translation vectors, it is possible to calculate
the pose using Rodriguez’s formula with the computations seen in the previous
chapter

4. Finally, the data stream, in addition to being published by the node, is also
saved in a file, so that when all the measurements are finished, they can be
processed through a Matlab script in order to compute the mean on X, Y and
Z, the standard deviation on X,Y and Z, and the absolute and percentage
deviance (error) of the reference axis (X, Y or Z)

Once all the nodes were developed and the first tests were performed for the
selected cameras, it was confirmed again that the "bottleneck" and the low ratio in
publishing the poses for the Logitech webcam was due to the poor performance
of the webcam itself; in fact, with the 2 Intel cameras, equipped with an internal
processor, the data flow had a frequency around 25 HZ, that it is speedy and
performing. This enabled the exclusion of possible inaccuracies in pose estimation
which can be attributed to too high computation problems and/or limited processor
performance.

Note 1: it is important to specify that for the Intel D435i camera, only the RGB
sensor was used for this type of measurement; the depth sensor was not used.

Note 2: the webcam and the 2 Intel cameras were plugged into the PC, and
the tests were done by running the ROS nodes on the PC, while for the Raspi
cam, not having the USB connection was used the Nvidia Jetson Nano board.
This choice was made for 2 reasons: the first one was due to the installation of
the Intel Realsense packages that gave some problems on the Jetson and being a
very demanding process already done on the PC, we did not want to waste time
reinstalling everything also on the board, the second one instead was the intention
to parallelize and speed up all the measurements done since many measurements
had to be done that would have taken a lot of time ( even doing so they still took
a lot of time). However, this choice was validated as several runs of measurements
were made with the webcam, with the same lighting conditions and distance from
the fiducial markers to verify that the results obtained by running ROS on the
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PC and on the Jetson were repeatable and comparable. Having obtained almost
identical results, it was possible to validate the aforementioned choice and utilize
this setup for measurements.

4.4.5 General consideration for fiducial marker sizing and
test approach

For the first set of measurements, I decided to consider an Aruco marker with
a size of 13.8 cm per side assuming that the reading distance between the room
and the fiducial marker would be just a few cm, up to one meter. I made this
assumption based on the fact that the width of warehouse aisles is 180 cm on
average. Considering that the drone flies in the middle of the shelf, the distance
between the camera and the rack facade is about 60/70 cm, assuming that the drone
is about 40/50 cm wide and the cameras are installed on the drone’s sides. This is
the distance that has been assumed with respect to the markers installed on the
rack facade that help the system relocation within the aisle (even at considerable
heights). So considering standard aisle dimensions, the reading distance will always
be about 70 cm, as the aisle width remains constant. It should be noted that
these considerations were made because the drone’s side camera, in addition to
performing relocation by fiducial marker, is also the camera that would scan the
barcodes or QR codes of the goods to be inventoried within the warehouse during
the stock take operation. By fixing the markers on the shelf and then doing the
relocation in a perpendicular plane to the floor, there is the great advantage of
keeping high accuracy in the Z axis even though the drone is at very high altitudes.
In this case, the accuracy on X-Z or Y-Z plane (depending on the coordinate of
reference system orientation with respect to warehouse corridors direction) would
be very high. We will come back to this because this is a very important aspect

Regarding relocation outside the corridors, in moving from one corridor to
another instead, it was considered that the drone could fly at a low altitude
between 80/100 cm to 150/200 cm. In this way, the markers could be placed on
the floor so that they could be easily detected by a camera pointing downward,
even without walls or shelves to attach the markers to. It was designed to fly the
drone at "human height" to avoid flying it too high in order to minimize damages in
case of a crash during these displacements; on the other hand, the drone cannot be
flown too close to the ground for 2 reasons: firstly, the camera’s view field pointing
downward would be extremely limited, and secondly while flying drone propellers
generate turbulence that affects the drone’s flight dynamics, and thus creating a
lot of vibrations prevent the T265 (VIO) to work properly.

The limitation of having markers of about 14 cm is that relocalization on the
X-Y plane might be done only at low altitudes (about 1/2 m) while with the drone
at high altitudes, it would be possible to rely just on the markers placed on the
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shelf face. In fact, by the time it moves even a few meters away (>200cm), the
calculated position becomes very inaccurate and the error very large, therefore
the measurement is basically ineffable: this is because the camera has difficulty
in recognizing the marker, as the marker is very small and the resolution of the
camera is not optimal (especially for the webcam).

To relocate the drone on the X-Y plane even at more considerable altitudes, it
is necessary to increase the dimensions of the marker to make it detectable and
clearly visible even at larger distances. Thus, it was decided to make a set of
measurements by doubling the side dimensions of the marker, i.e., to use a marker
of 28 cm side. By doing so, the range of working distance is expected to increase:
the distance at which the estimated pose measurements are still reliable and with
limited and acceptable error.

Taking these measurements and analyzing them will provide a basis for un-
derstanding whether there is any relationship between the marker size and the
accuracy of the calculated poses in relation to the distance. It will also be possible
to benchmark the measurements by comparing the rate of resolution between the
camera and the size of the marker. In order to have a more complete picture it was
thought to replicate the same measurements also with another type of marker used
very often in the field of automatic robotics: after several researches, it was thus
chosen to use AprilTag type as a comparison to ArUco because of its characteristics.

Summarizing the set of measurements under study is:

• ArUco of 13.8 cm side

• ArUco of 28 cm side

• AprilTag of 13.8 cm side

• AprilTag of 28 cm side

4.4.6 Measurements setup and execution
A dedicated area in the laboratory was set up to do all these tests and measurements.
The 2 fiducial markers were placed on the wall at the same height and at a known
and fixed distance between them. This allowed the 2 marker measurements to
be made in parallel (to speed up the process), thereafter this offset among the
2 markers was subtracted during data saving. To make the measurements then,
the procedure is straightforward. The test-bench with the cameras is placed at
a specific known position in space, and the nodes are launched for a few seconds
to start the measurements, so that the pose estimates are saved for later analysis.
For each pose, about 400 measurements i.e., 400 coordinates (X,Y and Z) were
recorded. Obviously, for the 2 Intel cameras, it took a few seconds to acquire all
this data, while for the webcam and Picam, it took a little longer. It was decided to
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take several measurements to be sure to minimize and make negligible any spurious
reading, as there was no data filter. Once the measurement at a given position is
finished, the test bench is shifted by a known delta, the new position is noted, and
the next measurement is performed.

To maintain order and methodology in the measurements, only one dimension
is varied at a time. For both small fiducial markers, for each camera, five sets
of measurements were made: one set of measurements on the Z axis, two sets of
measurements on the X and Y axes respectively at a closer Z distance (between
camera and marker), and two more sets of measurements at a more distant Z
distance. For the bigger fiducials, on the other hand, only one Z distance was
chosen at which to make measurements for the X and Y axes.

Figure 4.13: Example of a measurement session

Z-axis measurements: The first step is the measurements on this axis, in order
afterward to choose the 2 distances for the subsequent sets of measurements based
also on the results obtained in this first set. Regarding the Z-axis measurements, it
was avoided to position the camera exactly in (X: 0; Y:0) in order to prevent the
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data from being subject to Z-flipping ( that will be analyzed later in Chapter 5),
and thus to obtain the most accurate and cleanest data possible. So the procedure
involves starting the measurements by placing the test bench in an initial position,
and taking the measurements with all the cameras and then moving the test bench
further from the markers, moving it along the Z-axis by a known and fixed interval.

With this set of measurements, the purpose was to test whether and how much
the accuracy of the measurements would change with varying the distance between
the fiducial marker and the camera. Once the Z-axis measurements were finished
for both fiducial markers, for all cameras, an initial analysis was done to decide at
which distances, one closer and one farther, to make the measurements for the X
and Y axis. The two distances were chosen by examining at which distance the
best results had been obtained but also in combination with the considerations
made in the initial phase of this fiducial marker study: i.e., based on the working
range in of the small markers (approximately 60 to 200 cm). Considering both of
these aspects, the distance of 70 cm was chosen as the closest distance because
the results were good and it is a realistic distance at which the drone could be in
the process of identifying markers applied on the shelving overhead. In contrast,
160 cm was chosen as the farther distance (for the navigation scenario outside the
corridors) because at this distance the results were still good for all the cameras:
beyond this distance, as discussed later in the conclusions, some cameras were
starting to give inaccurate pose estimates with an increasing error, making the
estimated pose completely unreliable.

However, for the larger fiducial markers, a single Z distance was selected to
perform measures: 450 cm. Since the idea of having a larger fiducial marker is to be
able to do relocation even at higher elevations and longer distances, having obtained
and analyzed the first results on the Z axis, the largest feasible distance is chosen
where all the cameras had pose estimates are still acceptable in terms of accuracy.
This distance is significantly less than half of the working range for cameras such
as the D435i and the webcam, while for cameras such as the wide-angle Picam or
the T265, it is about 1

3 and 2
3 of the maximum working range, respectively. So, the

final chapter will be analyzed also how these wide-angle and fish-eye lenses suffer
distances, making it very difficult to recognize markers even at short distances.

Having chosen the Z distances for which to make X and Y axis measurements,
the remaining measurements are carried out for all markers (type and size) and for
all cameras.

X-axis measurements: To carry out the X-axis measurements, the procedure
is similar to that on the Z-axis, but in this case instead of moving the stall away
by a fixed delta, we proceed by moving and translating the stall laterally on the
X-axis parallel to the plane of the markers. For the small markers, it was decided to
take measurements in both directions of the X-axis: positive and negative. In this
way it was possible to verify that the obtained results were mutually coherent and

102



Empirical studies and measurements for sensor fusion optimization

mirrored with respect to the Z axis, assuming that the calibration was accurate.
This aspect will be analyzed in the results. Regarding the large markers, however,
since the required test area was larger and space was limited, having verified from
the previous measurements (on the small markers) that there is symmetry between
the two axis directions (positive and negative), measurements were carried out only
on one side, knowing that these measurements could have been flipped to the other
direction as well.

Y-axis measurements: the measurements on the Y-axis were made in the
exact same way as the measurements on the X-axis, except that the camera was
mounted on the test bench rotated by 90°: this was done to avoid the need to make
measurements considering an axis perpendicular to the floor and thus having to
move vertically (which would have been complicated and inaccurate). As expected,
the measurements made on this axis were fewer in number, since, especially for
non-widely angled lenses, the vertical resolution (on the Y-axis - height) of the
sensor is less than the horizontal resolution (X-axis - width).

The last consideration is the chosen interval for the shifts on the various axes
for different marker sizes. For the 13.8 cm sided markers, it was decided to make
the measurements at 10 cm intervals, based on the expected working range. For
the larger markers instead, desiring to push as far as possible, and considering the
much larger working range, it was decided to use a larger interval of 50 cm.
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Chapter 5

Results and Conclusion

5.1 Results

5.1.1 Phase 1
Let’s analyze the obtained results in Phase 1 and delve into the details to understand
why it was decided to further investigate the measurements in Phase 2. In the
following figure, the red line represents the output of the pose calculated by the
VIO, while the green line represents the pose estimated through the ArUco marker.
The measurements were conducted for approximately 74 seconds, and the data were

Figure 5.1: Plot of pose data of VIO - red and ArUco - green

published at a frequency of around 11 Hz. The starting point where the fiducial
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marker is located is at x = 50 and y = 300. As observed, the VIO measurements
are highly precise over time, capturing even the slightest movement (as evident
from the slight shift, due to the test bench being moved of few centimeters).

On the other hand, examining the green points, instead of being clustered around
the red points near the perpendicular of the ArUco marker, they are grouped around
two points, specifically at x = 50, y = 230, and x = 50, y = 370. These two clusters
of points are symmetric with respect to the marker. This is not a coincidence
but rather the result of a phenomenon known as z-flipping, which affects pose
estimation with fiducial markers, especially within the ArUco family. This is a
well-documented issue [29] [30], and while there are methods to limit and mitigate
its effects, there is no definitive solution.

When the orientation suddenly changes from one image frame to the next,
it should be possible to detect this and discard the spurious pose, since the
problem must originate from an inaccuracy about the corner locations (also due to
uncertainties about camera intrinsic parameters and distortion). Although filtering
the poses is not a simple solution, one idea would be to apply an extended Kalman
filter on quaternions, such as the Quaternion-based Extended Kalman Filter in
order to mitigate spurious pose. It is also noted that this phenomenon occurs when
the camera is exactly perpendicular to the marker or at the extremities of the
camera’s FOV. An alternative solution could involve implementing a threshold-
based selection criterion for fiducial marker poses. Only poses falling within
predefined ranges of distances and angles would be retained. This process would
exclude fiducial marker poses if the distance exceeds a specified threshold or if the
angle is close to 0° or significantly exceeds wide angles (about 100°), as poses in
these conditions are highly inaccurate.

Given that the purpose of this research was not to delve into the details of the
Z-flipping phenomenon and develop specific algorithms for its mitigation, therefore
a comparative analysis was conducted to assess the precision of relocation using
another fiducial marker and different cameras.

5.1.2 Phase 2

Frequency analysis

Let’s analyze the frequencies at which the different nodes publish pose data streams.
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Frequency of the stream pose data - Small Marker
Camera Distance [cm] ArUco [fps] AprilTag [fps]

Logitech Webcam 50 7,4 10,6
100 7,5 8,8
250 7,4 7,4
700 5,8 8,6

Raspi Cam 50 11,6 13,9
100 12,5 12,5
250 9,7 12,8
300 9,9 11,2

Intel D435i 50 25,0 25,0
250 24,9 25,0
300 23,5 25,1
700 22,6 25,0

Intel T265 Lens 1 50 24,5 24,8
200 23,1 24,7
250 15,5 24,4
280 18,2 14,8
300 10,4 20,6

Intel T265 Lens 2 50 24,7 24,5
200 24,7 24,2
250 7,7 24,5
280 - 17,6
300 21,9 7,63

106



Results and Conclusion

Frequency of the stream pose data - Large Marker
Camera Distance [cm] ArUco [fps] AprilTag [fps]

Logitech Webcam 100 14,1 25,1
200 14,7 25,1
300 10,6 25,0
600 7,5 23,0
1000 5,6 9,1

Raspi Cam 100 12,6 12,2
200 11,3 12,2
300 10,9 10,3
600 9,1 12,1
800 7,2 10,0
1000 - 9,3

Intel D435i 100 25,0 25,1
500 15,6 25,1
700 23,6 25,0
900 22,5 25,1
1150 12,1 15,9
1500 - 14,6
2000 - 13,3

Intel T265 Lens 1 100 24,4 25,1
300 23,4 24,9
500 16,5 24,2
600 2,17 23,8

Intel T265 Lens 2 100 24,5 25,1
300 23,8 24,8
500 16,8 23,8
600 - 13,4

Firstly, it’s important to note that the nodes were written to publish the data stream
at the maximum possible frequency. Therefore, the different frequencies collected
at various distances are indicative of the image quality captured by the sensor,
considering the resolution, robustness, and reliability of the specific marker family.
Another important point is that, for the two Intel RealSense cameras, the nodes
publishing the image stream, to which the subscriber node subscribes to estimate
the pose upon marker recognition, are generated by the cameras themselves. This
means that the PC/board resources are not used in the image stream generation,
therefore all resources are dedicated to the subscriber node for pose estimation. In
contrast, for the other two cameras (Logitech and PiCam), computational resources
are also responsible for generating the stream of images in the publishing node.

With these considerations, the performance in terms of frequency is significantly
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better for the AprilTag family. Using AprilTag markers, the publication frequency
of poses is higher at the same distance. Furthermore, the maximum distance
achieved with still acceptable publication frequencies favors AprilTags, which can
be recognized quite well even at greater distances compared to ArUco markers. In
some cases, the frequency of ArUco marker recognition is much lower than that
of AprilTags, or for certain distances, ArUco markers were not recognized at all
(e.g., 15m and 20m for D435i and 10m for PiCam). Nevertheless, in these cases,
the frequency of pose estimation for AprilTags is quite high (approximately 14 Hz
for D435i).

Comparing the two tables, it is observed that for Logitech and PiCam cameras,
the frequency can reach up to 25 fps with larger markers at closer distances.
Therefore, even these less performant cameras, when conditions allow for good
marker recognition, can maintain an adequate frequency for real-time applications.
However, as distances increase, the low image quality resulting from low resolution
highlights the limited performance of these cameras. Indeed, as the distance
increases, the frequency decreases drastically. The camera with the widest working
range for both marker families is the D435i, maintaining 25 fps even at distances of
9m. Nevertheless, significantly better performance is observed for AprilTag markers
in this case as well.

As expected, the performance of the T265 does not excel in terms of working
range (max distance). Despite its high resolution, the optics of this camera, being
fisheye, are greatly affected by distance. It has lower performance and a smaller
working range along the Z-axis compared to all the other cameras analyzed. On the
other hand, it has the widest field of view (FOV). Interestingly, the performance
varies slightly between the two lenses, while one would expect them to be practically
identical. For some distances, such as 280 cm, Lens 1 achieves a reasonably good
frequency of 18,2 fps, while Lens 2 was unable to recognize the ArUco marker.
This variation in behavior may be attributed to the difficulty in calibrating lenses
that introduce significant distortion, such as fisheye lenses. A small difference in
calibration can lead to significantly different behaviors in such use cases (for which
the camera was not originally designed). It’s worth noting that these two lenses
reported a higher calibration error compared to all other cameras, and particularly
Lens 2 had a higher error than Lens 1: Intel T265 Lens 1 error = 0,134 and Intel
T265 Lens 2 = 0,168. This difference is also influenced by the fact that hardware
may have defects, and thus, two theoretically identical sensors may have slightly
different performances due to deformations or inaccuracies; they are not identical
copies of software.
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Pose estimation accuracy: Z-Axis

Let’s now analyze how the accuracy of the estimated pose varies with changes in
distance and deviation from the perpendicular. Not all measurements and graphs
will be reported, but only the most significant ones that summarize and generalize
the behavior of the two families of fiducial markers and different cameras.

We start by examining the absolute error and standard deviation of the mea-
surements as the distance along the Z-axis varies. It’s important to note that the
absolute error was calculated by taking the difference between the mean value of all
Z-coordinate measurements for a specific camera at a given distance and the actual
distance measured with a meter (reference distance). The standard deviation, on
the other hand, was calculated by simply applying the formula to all measurements
of the specific coordinate under analysis (in this case, Z).

In some graphs, at certain distances, specific cameras have a red dot at zero.
In these cases, it doesn’t mean that the standard deviation and absolute error are
zero, but rather that the measurement at that distance with that camera was not
possible because the marker was not recognized.

Figure 5.2: AprilTag small size: absolute error of estimated Z distance with
respect to the effective one.

AprilTag small size For example, concerning the small AprilTag (fig 5.2 and
5.3), for Lens 2 of the T265, at a distance of 100 cm, the marker was not recognized.
However, the peculiar aspect is that this "anomaly" occurred under almost optimal
conditions for reading the marker, as the distance of 100 cm is quite close to the
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Figure 5.3: AprilTag small size: standard deviation of all the estimated Z
coordinates.

marker and significantly below the maximum distance measurable with this camera.
The standard deviation and absolute error for the T265 remain fairly low,

constant, and acceptable up to 170 cm; beyond this distance, the measurements
indeed start to become imprecise, and both the absolute error and standard
deviation assume higher values. The two lenses of the T265, aside from this anomaly
at 100 cm, have similar behavior, and the error increases after approximately 170
cm distance.

Regarding the webcam and the D435i, the trend of the absolute error is quite
similar: at some distances, one camera has a higher error, while at other distances,
the other camera performs worse. After 2 m, the absolute error of the D435i
increases slightly compared to that of the webcam Logitech. Concerning the
standard deviation, except for some specific distances like 190 cm or 220 cm, the
values are quite aligned. In terms of standard deviation, these two cameras yield
good results, acceptable compared to the T265 and the Picam, ensuring a certain
level of reliability. It is observed that the standard deviation starts to increase
around 150 cm but remains well below the average values of the other cameras.

The Picam exhibits a peculiar behavior regarding the small AprilTag. It is, in
fact, the camera with the highest absolute error compared to all other cameras,
even higher than the T265. The absolute value for the Picam from 70 cm to 120 cm
appears to have a decreasing trend, contrary to all other cameras. However, upon
observing the standard deviation graph for this camera, we immediately notice
that these values are much higher when compared to those of the D435i and the
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webcam, and slightly lower than the T265. Then, the absolute error seems to vary
a bit but is still quite contained, just below the webcam. However, the standard
deviation remains very high. This implies that the significantly different values
partly compensate each other, yielding an average close to the real distance value,
but individual measurements are highly imprecise.

Figure 5.4: Aruco small size: absolute error of estimated Z distance respect to
the effective one.

ArUco small size From the graphs 5.4 and 5.5, we observe that, for the small
ArUco marker, there are two distances at which Lens 2 of the T265 fails to recognize
the marker: specifically at 270 cm and 280 cm. In this case, however, unlike the
previous scenario, we are at the limit of the working range of this camera, which
extends up to 300 cm. The immediately preceding and subsequent measurements
are in fact affected by very high errors, and thus it is expected that the camera
may not recognize the marker.

As observed, the performance of this marker is markedly inferior for all cameras.
Similar to the previous case, up to 100 cm, almost all cameras show comparable
absolute error values. However, from 100 cm onward, the absolute error starts to
increase. While for AprilTags, the webcam, and the D435i had absolute errors
slightly above 3 cm, in this case, the average absolute error is much higher.

Once again, the Picam stands out for having an absolute error above 3 cm
already at 50 cm, demonstrating that it is not very precise and suitable for this
use.

However, the key indicator highlighting that the performance and accuracy of
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Figure 5.5: Aruco small size: standard deviation of all the estimated Z coordinates.

ArUco compared to AprilTag are much lower is given by the standard deviation.
For AprilTags, the standard deviation values were around 0,8 for all cameras, even
at approximately 180 cm, reaching a maximum for the T265 of about 3,5 at 290 cm.
Conversely, for ArUco markers, the situation is quite different. Standard deviation
values are already very high at 150 cm for almost all cameras, reaching peaks above
20 (approaching values of 30) for all cameras (excluding the Picam with a peak of
10).

Considering these peaks and the very high average value, it can be asserted
that, for small markers, AprilTags seem to have better accuracy, reliability, and
robustness compared to ArUco markers.

AprilTag large size Regarding the larger AprilTags, we have four graphs: two
complete graphs 5.6 and 5.7 and two with a limited set of measurements up to
10,5 m 5.8 and 5.9. For this set of measurements, we aimed to push it to the
maximum achievable distance to see up to what distance it was possible to recognize
the AprilTag (see 5.1.2). Obviously, after a certain distance, the pose estimation
became completely unreliable and imprecise, with very high absolute error and
standard deviation values that made the measurement graph illegible since the
axes were out of scale given the measurement range. For this reason, the graph
with measurements limited to 10,5 m is presented to allow a more precise analysis.

Analyzing the complete graph, we observe that precisely at 10,5 m, the PiCam
can no longer recognize the marker. However, in any case, the last distance at which
it can effectively recognize the marker is 11 m, so we are at the limit of its working
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Figure 5.6: AprilTag large size: absolute error of estimated Z distance with
respect to the effective one.

Figure 5.7: AprilTag large size: standard deviation of all the estimated Z
coordinates.

range. The webcam and the D435i can recognize the marker up to 17 m, which
is a very important distance. Obviously, at these distances, the errors are very
high: the absolute error, in fact, hovers around 100 cm, making the measurements
completely unreliable. Especially for the webcam, there are four peaks (at 11 m,
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11,5 m, 12,5 m, and 13 m) with very high absolute error (around 400-450 cm) and
standard deviation values, exceeding the threshold of 400.

Focusing on the two graphs 5.8 and 5.9 with the limited set of measurements,
we can analyze and describe the results more accurately.

The camera with the most limited working range and the highest errors is
undoubtedly the T265, which already has an absolute error between 10 cm and 15
cm at 300 cm. The maximum working range is around 650 cm with a peak absolute
error of 60 cm for lens 2. The standard deviation, all in all, has comparable values
to the other cameras, significantly lower than the webcam.

The D435i has a linearly increasing trend for the absolute error, which is not
observed in all other cases; there is usually some variation in the trend. Growing
consistently and linearly, in this case, makes it easy to notice that as the distance
increases, the error grows: at 500 cm, it’s around 15 cm, while at 10,5 m, it’s
around 35 cm, which is quite significant. On the other hand, the standard deviation
is quite constant, increasing slowly. This means that the measurements, beyond
an error relative to the reference distance, are quite accurate and close to each
other. At 9,50 m, the standard deviation is about 2,5, while at 550 cm, it is 0,33.
Therefore, the pose measurements of the D435i are quite good.

The webcam has a particular behavior: by examining the graph of absolute
error, fluctuating values are evident, yet they never exceed the absolute error
of the D435i. Even beyond 5 m, most measurements have an absolute error
below 10 cm, peaking at approximately 20 cm at 10 m distance. However, when
observing the graph illustrating the standard deviation, rapid growth in values is
observed, surpassing 25. This indicates significant differences among measurements.
While compensating for each other the absolute error is limited, but individual
measurements are consequently not very precise.

Finally, the PiCam has absolute error values that oscillate quite a bit, and
after 6 m, they start to grow significantly. If we associate this with the standard
deviation, which also starts to grow from 6,5 m, we can deduce that, in this case
again, the measurements are not very precise for this camera.

ArUco large size Finally, observing the graphs of the large ArUco marker 5.10
and 5.11, it is immediately noticeable that the performance is more discontinuous
compared to the AprilTag.

For this marker as well, the two lenses of the T265 have a limited working range
compared to the other cameras: lens 1 can recognize the marker at a distance
of 6 m, while lens 2 reaches 5,5 m. It is interesting to note that both lenses fail
to recognize the marker at the "penultimate" distance of the working range, then
recognize it immediately afterward with a very high absolute error: indeed, both
lenses exceed 60 cm. The standard deviation for this camera is overall similar to
other cameras, except for a peak of about 30 for lens 2 at 200 cm, but apart from
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Figure 5.8: AprilTag large size: absolute error of estimated Z distance with
respect to the effective one. The number of measures is limited to have a better
plot axis range.

Figure 5.9: AprilTag large size: standard deviation of all the estimated Z
coordinate. The number of measures is limited to have a better plot axis range.

this, there are no particularly high values.
The Picam, as in all other measurement sets, does not excel particularly. Up to

350 cm, it has an absolute error of around 5 cm, in line with other cameras. Then,
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as the distance increases, the absolute error grows significantly, and the standard
deviation also increases in the same way. The two quantities grow consistently with
each other.

Regarding the webcam and the D435i, these two cameras have similar behavior
in terms of absolute error. There is no linear trend as with the AprilTags, but the
absolute error fluctuates significantly between values around 5-10 cm, with those of
the D435i slightly higher. In this case, there was no need to select a limited set of
distances, as beyond 12 m, the cameras were no longer able to recognize the ArUco
marker, unlike the AprilTag, which was recognizable even at 17 m. The webcam,
even at distances of 11 m, has relatively acceptable absolute error values, around
2,5 cm, and standard deviation around 15, so not excellent results but the distance
is still important.

The standard deviation of the D435i suddenly increases at 6 m, reaching 95,
then gradually decreases to values very close to 0 at 8,5 m. This is a particularly
curious phenomenon: in this measurement, marker recognition was perfectly stable,
with no micro variations recorded. It is a unique condition that occurs at certain
specific distances, even 8,5 m and 11,5 m, and the reason is not explained. The
standard deviation of the webcam, on the other hand, starts to grow gradually
from 7,5 m.

In this case, as well, the two most promising cameras seem to be the D435i and
the webcam.

Figure 5.10: Aruco large size: absolute error of estimated Z distance with respect
to the effective one.
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Figure 5.11: Aruco large size: standard deviation of all the estimated Z coordi-
nates.

General consideration on Z-Axis analysis Taking an overall consideration
of different cameras and markers, we can assert that in terms of performance,
AprilTag seems to be significantly superior to ArUco. Its working range is larger,
and the absolute error and standard deviation are generally lower, with better
recognition stability for AprilTag.

Among the cameras, those that stood out for better performance in terms of
distance are the webcam and D435i, which generally recorded larger working ranges
and greater accuracy.

As observed, many cameras have reasonably good (and still acceptable) values
up to 150 cm - 170 cm. For this reason, the distance of 160 cm was chosen for
the analysis on the X and Y axes for small markers, and also because the idea is
to simulate navigation and relocation outside the corridors. The distance of 70
cm, on the other hand, considers a scenario where the drone is at the center of the
corridor at a distance of about 70 cm from the shelf.

Regarding the large markers, the distance of 450 cm was chosen because generally,
below 5 m, all cameras were able to recognize both markers, representing a good
compromise between distance and accuracy.

Example of theoretical max distance computation From [31] the theoretical
max distance to detect an Apriltag is computed as:

Maxdistance[m] = t

2 ∗ tan( b∗f∗p
2∗r

)
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where

• t is the size of the tag (in meters)

• b is the number of bits that span the width of the tag (excluding the white
border for Apriltag 2). In our case for AprilTag 36h11 = 8

• f is the horizontal FOV of the camera

• r is the horizontal resolution of the camera

• p is the number of pixels required to detect a bit. This is an adjustable
constant. It is recommended 5 (to avoid some of the detection pitfalls). The
lowest suggested number is 2 that is the Nyquist Frequency.

So considering the cameras:

• Intel RealSense - D435i

– RGB max frame resolution: 1920 × 1080 (it is possible, eventually to use
reduced resolution set)

– RGB sensor FOV (H × V x D): 69° x 42° x 77°
– RGB sensor resolution: 2 MP

• Logitech webcam HD C270

– Sensor FOV 55°
– Frame resolution 1280 x 720
– Resolution 0.9 Megapixels

Computing the max theoretical distance for D435i we obtain:

• with p = 5 → 11,15m

• with p = 4 → 13,94m

• with p = 3 → 18,60m

• with p = 2 → 27,90m

and for webcam:

• with p = 5 → 9,33m

• with p = 4 → 11,66m

• with p = 3 → 15,55m
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• with p = 2 → 23,33m

Considering the obtained result, the theoretical max distance is reasonable. In
the library that recognizes the AprilTag is not possible to define the p value, but
estimating it around 3 the obtained max distance is totally coherent and reasonable.

Pose estimation accuracy: X-Axis

Now let’s analyze the cameras’ behavior along the X-axis. It’s worth noting that
only the most significant graphs have been chosen for presentation effectiveness,
but measurements have been taken for both markers and all cameras at 70 cm and
160 cm for small markers, and 450 cm for large ones.

Figure 5.12: AprilTag small size: absolute error of estimated X at a distance of
70 cm from the marker.

Before starting the analysis, it is important to note that the camera working
ranges are not exactly symmetrical due to restrictions in the laboratory area. The
limited space prevented symmetric measurements. This asymmetry is evident in
the X and Y analyses since we installed the two markers side by side. However, it
did not impact the Z-axis analyses.

The measurements, though asymmetrical, were sufficient for understanding how
these cameras and markers behave and drawing general conclusions.

Looking at the graphs of small markers at close distances of 70 cm, the first
thing observed is the working range of different cameras. As expected, the range
width is opposite to the measurements made along the Z-axis. The webcam and
D435i, with narrower fields of view compared to T265 and wide-angle Picam, have
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Figure 5.13: AprilTag small size: standard deviation of all the estimated X
coordinates at a distance of 70 cm from the marker.

Figure 5.14: Aruco small size: absolute error of estimated X at a distance of 70
cm from the marker.

a limited working range. The webcam, for example, has a range from -20 cm to +20
cm for AprilTag and only 20 cm for ArUco. The D435i has a slightly wider range
(-30 cm to +40 cm), while the Picam spans from -80 cm to +60 cm. The T265,
with fisheye optics, operates in a range from -100 cm to +100 cm for AprilTag and
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Figure 5.15: Aruco small size: standard deviation of all the estimated X coordi-
nates at a distance of 70 cm from the marker.

Figure 5.16: Aruco small size: absolute error of estimated X at a distance of 160
cm from the marker.

from -110 cm to +90 cm for ArUco.
As mentioned at the beginning of the chapter, these asymmetries are not due to

camera anomalies but rather result from physical constraints in the laboratory area.
The limited space prevented free movements of the test bench without constraints.
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Figure 5.17: Aruco small size: standard deviation of all the estimated X coordi-
nates at a distance of 160 cm from the marker.

However, our analyses are not influenced or impacted by this asymmetry.
Interestingly, contrary to expectations, many cameras tend to have high absolute

error and standard deviation values around zero (perpendicular to the marker).
These values then decrease at intermediate distances within the working range,
only to rise again at the edges of the working range.

This phenomenon is particularly noticeable for the D435i and Picam in the
ArUco graphs at a distance of 70 cm (Figures 5.14 and 5.15) and 160 cm (Figures
5.16 and 5.17). With AprilTag at 70 cm (Figures 5.12 and 5.13), a similar trend is
observed for the two lenses of T265 and D435i.

Focusing on the absolute error graphs for AprilTag (Figure 5.12) and ArUco
(Figure 5.14) at 70 cm, a peculiar behavior regarding the absolute error of the T265
lenses is noticeable. There is an antisymmetry with respect to the origin. In 5.12
lens 1 exhibits greater accuracy for positive values (X > 0) and greater error for
negative values (X < 0) while lens 2 has exactly the opposite behavior: greater
accuracy for negative values (X < 0) and greater error for positive values (X > 0).
The maximum error occurs at approximately -30 cm (Lens 1) and +30 cm (Lens 2).
At around 10 cm (close to 0), both lenses have nearly identical values, with Lens
1 = 4,025 and Lens 2 = 3,797. The error then rises again around -60 cm (Lens
2) and +60 cm (Lens 1). As of now, there is no explanation for this phenomenon.
In the case of ArUco, the phenomenon is less precise and evident, but both lenses
exhibit opposite behavior: Lens 1 is more accurate for X < 0, and Lens 2 seems
more precise for X > 0.
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In general, absolute error and standard deviation values are reasonably contained
and acceptable. For AprilTag, at a distance of 70 cm, the average error for all
cameras is less than 5 cm, with higher peaks only at the edges of the working range.
The standard deviation for AprilTag (Figure 5.13) has the lowest values recorded
among all measurements, indicating that the measurements are very precise, stable,
and similar to each other. The maximum value is even less than 1,6, while the
average is less than 0,5.

For ArUco, the absolute error is higher, confirming the superior performance of
AprilTag. In Figure 5.15, two peaks of very high standard deviation are noticeable
for the D435i, exceeding 40. This once again confirms that measurements around
the perpendicular axis are less precise, likely due to Z-flipping. However, apart
from these two peaks, the standard deviation has very low values, less than 2,5,
confirming good performance for ArUco at 70 cm too.

As expected, performance significantly decreases for measurements at a distance
of 160 cm for both markers. However, the general behaviors observed at 70 cm are
still present at 160 cm.

Figure 5.18: AprilTag large size: absolute error of estimated X at a distance of
450 cm from the marker.

Analyzing the measurements for the larger markers at a distance of 450 cm, it
is expected that increasing the distance will expand the range of work, especially
for cameras with a wider FOV such as Picam and T265. Observing data from
measurements of the smaller markers, which exhibited a certain symmetry (and in
some cases, an unclear antisymmetry) of measurements with X > 0 and X < 0,
considering the spatial limitations of the measurement area, it was decided to move
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Figure 5.19: AprilTag large size: standard deviation of all the estimated X
coordinates at a distance of 450 cm from the marker.

Figure 5.20: Aruco large size: absolute error of estimated X at a distance of 450
cm from the marker.

the markers to one side of the area. Measurements were then taken only in one
direction, optimizing a single direction and reaching the maximum working range,
even with wide-angle and fisheye lenses.

Firstly, let’s observe the working range. Distances for measurements are not
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Figure 5.21: Aruco large size: standard deviation of all the estimated X coordi-
nates at a distance of 450 cm from the marker.

exactly the same, this is due to space limitations. Having the two markers positioned
side by side, there is an initial translation of 40 cm for one marker, while the other
is centered in 0. Despite this, the working ranges of the cameras are almost the
same, with the only difference being that, due to this initial translation, the D435i
has one less measurement for AprilTags, reaching -290 cm, while for ArUco, starting
from 0 cm, it reaches -300 cm. This is because, in the next measurement (at -340
cm for AprilTags and -350 cm for ArUco), the marker went out of the camera’s
FOV.

Despite these small differences in the measurement ranges, it is observed that,
unlike the previous case where the only limit to the working range was determined
solely by the FOV of the cameras for smaller markers at close distances, favoring the
Picam and especially the T265 with fisheye optics, in this case, with an increased
distance between the camera and the marker, resolution also plays a role in the
working range. Cameras like the webcam and D435i, as we move away from the
marker, also increase their working range. In fact, the D435i has almost the same
range as the T235 (which has "only" 50 cm more range), whereas in the previous
case, there was much more difference between the D435i and the T265 in proportion.
In this case, the camera with the maximum range is no longer the T265 but the
Picam because it combines a wide-angle lens with a high FOV with a resolution
and image quality superior to the T265. Due to the distortion of the lens, the T265
significantly impacts image quality at greater distances, affecting the maximum
horizontal deviation at which the camera recognizes the markers.
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The Picam, therefore, has a wider working range of up to 4,4 m for AprilTags
and 4 m for ArUco (the difference is always due to the position of the markers).
However, at the limits of the range, the absolute error is very high, reaching a
peak of 680 cm for AprilTags. Before 3,4 m, for AprilTags, very constant and low
absolute error values are recorded, around 2 cm 5.18. Regarding ArUco, the range
of acceptable values is reduced to 2,5 m. In this case, the absolute error has more
irregular values, around 10 cm on average 5.20. Also, for the standard deviation,
the AprilTag 5.19 has, on average, slightly lower values than ArUco 5.21. In both
cases, once the two thresholds of 3,4 m (for AprilTag) and 2,5 m (for ArUco) are
exceeded, the standard deviation also increases significantly, concurrently with the
absolute error.

The T265 with the AprilTag marker exhibits a very high absolute error, already
exceeding 100 cm at -40 cm, as shown in 5.18, for both optics. The corresponding
standard deviation 5.19 mirrors the values of the absolute error, especially for optic
1, while optic 2 has a relatively contained standard deviation. There is a noticeable
decrease in both absolute error and standard deviation at -190 cm. Regarding
ArUco, the situation is similar; absolute error and standard deviation have low
values only for the first measurement at 0 cm offset from the Z-axis, and then the
graphs steeply rise as we move laterally 5.20 5.21.

The webcam and D435i also show generally lower and more regular absolute
error and standard deviation measurements with AprilTags. It is worth noting
that the D435i with AprilTags has a very regular and low absolute error up to
-240 cm, increasing only for the last measurement within its working range. The
standard deviation remains consistently low for the entire range of measurements,
with values always below 2.

In this scenario, the cameras that demonstrated the best performance in terms
of accuracy, stability, and working range were the Picam with the largest range
and good precision, followed closely by the D435i, with a slightly smaller range
(with less difference for range measurements at 450 cm distance) and very precise
measurements.

Pose estimation accuracy: Y-Axis

For the analysis of measurements on the Y-axis, as in the previous case, the most
representative measurement sets were chosen to provide a comprehensive view of
the behavior of various cameras and markers in this comparison. However, for the
analysis, all measurement data at distances of 70 cm and 160 cm for small markers
and 450 cm for large markers were considered.

In this final scenario of the comparison, it is expected that by rotating the
cameras by 90° to conduct measurements laterally, on the horizontal plane parallel
to the floor, the resolution and FOV of the cameras are reduced. Consequently, the
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working range and accuracy are expected to be lower than those along the X-axis.

Figure 5.22: AprilTag small size: absolute error of estimated Y at a distance of
70 cm from the marker.

Figure 5.23: AprilTag small size: standard deviation of all the estimated Y
coordinates at a distance of 70 cm from the marker.

From the graph 5.22, a peculiar antisymmetry can be observed in the behavior
of the absolute error of lenses 1 and 2 of the T265 between Y > 0 and Y < 0.
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Figure 5.24: Aruco small size: absolute error of estimated Y at a distance of 160
cm from the marker.

Figure 5.25: Aruco small size: standard deviation of all the estimated Y coordi-
nates at a distance of 160 cm from the marker.

Unlike the X-axis, in this case, the absolute error behaves in the same way for both
lenses (due to the 90° rotation of the camera), and it is interesting to note that
the absolute error of the two lenses, although they are at the same Y, seems to be
offset by 1-2 cm.
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Regarding the standard deviation, it is interesting to note from 5.23 the same
phenomenon found for the X-axis, i.e., the error and standard deviation increase at
the perpendicular, i.e., the closer one is to 0. This behavior is also found in the
two ArUco graphs at a distance of 160 cm 5.24 and 5.25.

In general, the performances are confirmed to be better for all cameras at both
distances of 70 cm and 160 cm in favor of AprilTags, which ensures more accurate
and stable measurements.

It is noteworthy that all cameras, especially at 70 cm, have a very limited
working range, given the lower FOV and resolution along the Y-axis (vertical).
However, for the T265, which has a fisheye lens and a very wide FOV, the working
range remains practically unchanged, being from -90 cm to +90 cm. The working
range of the Picam, despite having a wide-angle lens, is very close to that of the
webcam and D435i, it is around -30 cm to +20 cm.

Figure 5.26: AprilTag large size: absolute error of estimated Y at a distance of
450 cm from the marker.

Regarding the measurements with the large markers at a distance of 450 cm,
there is not much to say: the measurements are very noisy, the error is very high,
and, as with the measurements on the X-axis, they are generally unreliable and
imprecise. Therefore, it is probably not suitable for relocation.

Furthermore, as can be seen from 5.28 and 5.29, for lens 1 of the T265, the
camera apparently cannot recognize the marker in any position of this set of
measurements. This is an unexpected result because the same lens on the X-axis at
the same distance was able to recognize the ArUco, and lens 2 was able to recognize
it. However, this certainly supports the thesis that marker identification with this
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Figure 5.27: AprilTag large size: standard deviation of all the estimated Y
coordinates at a distance of 450 cm from the marker.

Figure 5.28: Aruco large size: absolute error of estimated Y at a distance of 450
cm from the marker.

camera at this distance is quite unreliable.
As with the small markers, in this case, as well, the working range of the Picam

has been drastically reduced, being more similar to the one of the webcam and
D435i. However, even in this case, the measurements are still very imprecise.

130



Results and Conclusion

Figure 5.29: Aruco large size: standard deviation of all the estimated Y coordi-
nates at a distance of 450 cm from the marker.

5.2 Conclusion & future works
Having analyzed all the measurement sets for the X, Y, and Z axes, conclusions
can now be drawn from this comparison.

In general, AprilTags demonstrates better performance across all cameras. Specif-
ically, they have a broader working range on the Z-axis, facilitating marker identifi-
cation even at greater distances. Moreover, stability and accuracy generally surpass
those of ArUco markers. As noted initially, AprilTags also exhibit a higher pose
stream frequency under similar conditions, indicative of robustness and reliability.

Considering the results for individual cameras, it can be concluded that the
camera that appears most suitable for reliable and precise relocalization, while
consistently maintaining a high data stream frequency, is the D435i. This camera,
distinguished by its balanced performance across various metrics, boasts the highest
frequency alongside the T265. Within its working range, measurements prove
reliable and precise. Striking a balance between the webcam with a very limited
field of view (FOV) and the T265 or Picam with an unnecessarily (for this specific
use case) wide FOV, the D435i’s extensive working range sets it apart. While
cameras with wide-angle lenses offer a wide FOV, they are susceptible to significant
distortion, impacting marker identification accuracy even if it is placed in the
camera’s FOV. A limited FOV, such as that of the webcam, may have troubles
when is very close to the marker plane (as at 70 cm distance) because limited
visibility affects marker detection likelihood.
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In our scenario, this camera is likely one of the most suitable options. To enable a
drone to navigate autonomously within an indoor environment, various techniques,
as discussed in Chapter 3, can be employed. However, these techniques require
sensors that provide necessary data to Kallman filters and algorithms for pose
estimation, trajectory calculation, and obstacle detection. In this application field,
a comprehensive and robust solution should not only be capable of self-localization
and navigation but also recognize potential obstacles.

Onboard a drone, the use of Lidar or similar systems is discouraged due to
vibrations that would affect data quality and pose challenges in terms of weight
and energy consumption. Hence, a camera like the D435i, lightweight, compact,
energy-efficient, and equipped with a CPU, becomes ideal for this use case. With a
single sensor, obstacle avoidance can be enabled through the Depth module (which
gives the "D" to the Intel RealSense camera family). Additionally, using the RGB
module (utilized in this experiment), relocalization with markers becomes possible.

In conclusion, with AprilTags and the D435i camera, it can be considered to
implement relocalization based on fiducial markers, provided the algorithm is
structured appropriately. As observed for all three analyzed axes, there exists a
working range. Regarding the Z-axis (distance from the marker), the general rule is
that the farther the camera is (with respect to the marker), the worse the estimated
poses become. Marker dimensions must be carefully designed, anticipating and
considering the conditions and distance at which the camera is expected to be
during the relocalization phase. While a marker with a side length of 28 cm was
used for this test, in a real-use scenario, it’s impractical to use markers of such
size. Despite the increased size, the estimated poses beyond a certain distance
remain unreliable, as seen. Once the marker size is designed properly, based on the
expected working range and desired performance, an appropriate Kallman filter
must be developed.

Given the oscillations observed, it is impractical to develop a relocalization
algorithm that does not incorporate smoothing and mitigation of measurement
variations. To address Z-flipping and reduced accuracy near the range margins, it
can be considered to construct a dedicated logic, on top of the Kallman filter, that
essentially considers poses and measures only within a specific range/threshold.
This would filter out poses near X = 0, Y = 0, and those near the FOV limit.

Future work Future analysis could involve a multi-variable comparative study,
simultaneously evaluating multiple variables. In the current analysis, we focused
on individual coordinates (X, Y, and Z). An evolution of this approach might entail
analyzing these variables concurrently and exploring multiple axes to observe how
different variables change from one respect to the other. However, a more suitable
test bench would be necessary for such an investigation. One option could be
mounting the camera on a robotic arm that moves in space at specific points, with
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known inclinations (roll, pitch, and yaw). This setup would allow estimation of
both position and orientation (pose) coordinates, enabling comparison across 6
coordinates simultaneously.

Alternatively, experiments with fluorescent or reflective markers could be con-
ducted to analyze their behavior in low or absent lighting conditions. Another
approach would be to use traditional markers but with infrared cameras, such
as the Picam with a wide-angle lens equipped with an IR sensor. Comparing
performance across different infrared camera models and lighting conditions could
yield valuable insights.

Further tests could be conducted using cameras more similar to the D435i in
terms of hardware and optics/sensors. The wide-angle Picam used in this study
had limitations due to the wide-angle lens and the fact that the infrared sensor is
sensitive to visible light wavelengths, resulting in lower image quality compared to
a standard RGB sensor with the same resolution. A potentially interesting camera
for this comparison could be the Picam RGB with a 77° FOV (not like the used one
that has a FOV of 160°), as it has a high-resolution sensor, lacks distortion from a
wide-angle lens, and is designed to work with visible light wavelengths, potentially
would have good results. From an engineering standpoint for drone integration,
this camera could be particularly suitable. Despite being an additional camera
compared to the D435i, it is compact and energy-efficient. This characteristic
would enable placement in a different location on the drone, providing two distinct
Points of View (POV).

Exploring the use of event-based cameras, which have been evolving in recent
years, could be another interesting research idea. These cameras could employ
different techniques to recognize fiducial markers, as proposed in the article [32].

Finally, a different approach could involve improving the markers themselves:

• Enhancing existing markers like Aruco by adding circles at the vertices to
improve vertex estimation [33].

• Customizing a marker family based on specific needs, generating and based
upon existing families [34].

• Developing an entirely new marker family based on color information rather
than black and white [35].

• Creating libraries that combine information from multiple markers strategically
positioned on different planes, compensating for errors and enhancing the
accuracy of the estimated pose [36]. The idea is to use 5 Aruco markers: one
central and four attached to each side of the central, with a specific inclination.
This approach allows for diverse information from different markers on different
planes. Any potential errors are then compensated, thereby enhancing the
overall accuracy of the estimated pose.
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