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Abstract

This thesis represents a practical work, concentrating on the application of a dynamic
programming algorithm to enable correction and multi-language support of audio
transcriptions on the web platform, Ti Racconto Una Storia, or Tell Your Story in
English.

Ti Racconto Una Storia is a digital platform that incorporates an interview
system that automatically records stories via voice messages. Users can record
their stories as brief or detailed voice messages, either in response to a series of
questions or in an unrestricted format. The arriving story is set as private by default,
but it’s possible for the story-teller to allow the audio being broadcasted to public
on the website, and concurrently, an audio transcription is displayed to enhance
comprehension and sharing. Each word in the transcription is timestamped, linking
it to the corresponding segment in the audio.

In this thesis, we have developed a series of methodologies using Django to
facilitate two functionalities. The first objective of this thesis is to empower the
owner of story to rectify the machine-generated audio transcription, while automati-
cally recalculating or preserving the timestamp of each word to the corresponding
audio segment. The second objective is to enable the story-teller or the platform
administrator to generate a translated rendition of the audio transcription, while
striving to retain the alignment of each translated term as closely as possible to its
original position in the audio.

The core algorithm employed in this thesis is known as the Levenshtein Distance.
This dynamic programming algorithm is frequently utilized to gauge the similarity
between two strings or even broader sequences such as time series and DNA, and to
ascertain the optimal alignment between two sequences. It finds extensive application
in fields such as computational biology, machine translation, speech recognition, and
named entity extraction.

https://tiraccontounastoria.org/
https://tiraccontounastoria.org/
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Chapter 1

Introduction

This thesis embodies a practical undertaking, mainly focusing on the extensibility,
portability and incorporation of Levenshtein Distance to enhance correction and
multi language support of audio transcriptions on the web platform Ti Racconto Una
Storia, or Tell Your Story in English.

In this chapter, we present a comprehensive overview of the thesis, detailing
the scope and objectives of our research. The focus of this study is to enhance Ti
Racconto Una Storia by developing and integrating new functionalities. Ti Racconto
Una Storia, central to our research, serves as a platform for users to engage with
audio content. Our initial step involves a thorough introduction to this website,
including its primary purpose, user interface, and current features.

We then delve into identifying and discussing the existing limitations and chal-
lenges faced by the website. The limitations may encompass a range of issues,
from technical constraints, such as inadequate audio transcription accuracy, to user
experience problems, like limited accessibility for non-native speakers or those with
hearing impairments. By pinpointing these issues, we can more effectively tailor our
development efforts to address these specific challenges.

Following the identification of these limitations, we outline the primary objectives
of the thesis. These objectives are formulated with the aim of not only overcoming the
current challenges but also enhancing the overall functionality and user experience
of the website. The goals are set to be both realistic and impactful, ensuring that the
outcomes of this thesis will provide improvements to the website.

https://tiraccontounastoria.org/
https://tiraccontounastoria.org/
https://tiraccontounastoria.org/


2 Introduction

1.1 Ti Racconto Una Storia

Fig. 1.1 Home page 1[1]

1.1.1 Brief introduction on the platform

Ti Racconto Una Storia is a unique web platform, conceived by a diverse team of
professionals, that serves a crucial societal function by preserving, sharing, and
listening to individuals’ lifetime memories. The platform features an interview
system that records stories automatically via voice messages, making the process
quick and intuitive. The platform’s main features include:

1. Recording Stories: Users have the flexibility to record their narratives as
either short or extensive voice messages, either responding to a set of questions
or in a free-flowing format. All that’s required is a smartphone and an enabled
Telegram account.

2. Listening and Remembering: Beyond just listening to the live voice of the
narrator, the platform also offers automatic transcription of story audios, and
extracts keywords to assist in pinpointing intriguing aspects. The transcriptions
retain the genuine essence of the spoken language, capturing the raw emotions
and freshness of the storyteller’s words, similar to podcasts to some extent.
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3. Sharing: The narratives are made accessible on individual web pages, avail-
able exclusively to the ones who recorded them, to family members or friends
with whom they choose to share, or, if they so wish, to the global community.
The ownership of the stories always remains with the user.

Fig. 1.2 Home page 2[1]

The platform is crafted to restore the importance of personal experiences, with a
special emphasis on the elderly, by reducing their feelings of isolation and assisting in
the recollection of memories. Furthermore, it provides a mechanism for relatives and
friends to delve into and discover specific information within these oral narratives.

Contrary to other social platforms such as Facebook or Twitter that prioritize
fleeting moments, concise texts, and images, Ti Racconto Una Storia places emphasis
on enduring narratives, the human voice, and the unfolding of stories. This makes it
an invaluable resource for the creation of family archives and for contributing to a
shared historical record.

1.1.2 Usage

Narratives are initially captured and documented through Telegram voice messages
by users. Subsequently, these recordings are aggregated and organized on a website.
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This digital platform transforms them into a combination of audio tracks, written
transcripts, and key terms. To commence this process, it is essential for users to
download and install Telegram on their smartphones. Once installed, users initiate a
conversation with a Telegram bot, known as @tiraccontobot, which is searchable
among the Telegram user base. Ensuring the accuracy of the bot’s name during this
search is crucial.

Upon the first interaction, the bot prompts users to register on the website Ti
Racconto Una Storia. This is facilitated through a direct link, presented as a button
within the chat interface. By following this link, users can create a personal account,
agree to the terms of informed consent, and submit their personal information.
Notably, providing an email address is critical for password recovery purposes in the
future.

After registration, users may resume their interaction with the bot on Telegram.
If there is a delay in the bot’s response, sending a /start message can reactivate the
conversation.

When initiating a recording, the bot offers users a selection of interviews. These
interviews consist of a set of questions to be posed to the interviewee. Options include
a standard interview format, focusing on family history, a free-form interview with
a single open-ended question, or the opportunity to design a custom interview. For
the custom option, users are required to send both the text of their question and the
corresponding voice response to the bot. Conversely, for pre-structured interviews,
only the voice responses need to be recorded and sent.

https://tiraccontounastoria.org/
https://tiraccontounastoria.org/
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Fig. 1.3 A free-form interview
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Fig. 1.4 A standard interview
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It is important to note that after completing an interview or if users leave the
questionnaire incomplete, they must select the ’End interview’ button. This action
ensures that all data is transmitted to the website for transcription and subsequent
playback.

Upon processing their story, the bot provides users with a link for them to access
and listen to it on the website. This link also enables them to share the story with
others. Interviews can be conducted either in person, by recording voice messages
directly on Telegram, or remotely, by forwarding voice messages to @tiraccontobot.

After recording a story, it is initially set to private, accessible only to the individual
user. To share it with others, users log in to Ti Racconto Una Storia and navigate to
Stories or My Stories in their profile. Each story is cataloged by the interviewee’s
identity and the questions posed. Through the Sharing option, users can choose to
make a story public or share it privately via email, Telegram, WhatsApp, or other
preferred methods. However, users should be mindful that anyone with access to the
shared link can further distribute it.

1.2 Current limitations

In the current state, the website Ti Racconto Una Storia hosts a collection of stories
and responses, with the original audio recordings preserved. To enhance the user
experience, previous efforts have utilized the Google Speech-to-Text (STT) service
to transcribe these audio files. Each word in these transcriptions is meticulously
linked to a corresponding timestamp within the audio file. This link between text and
time creates an interactive and user-friendly interface, allowing users to navigate the
narrative with ease. By simply clicking on a word in the transcription or searching
for a specific term, users can initiate audio playback from the exact point of interest,
thus providing a seamless and focused listening experience.

However, this system is not without its limitations. A common issue arises during
the recording of interviews, where often, superfluous words are captured. These
can include verbal fillers, colloquial phrases, or even inappropriate language. When
such automated transcriptions are displayed on the website or shared with family,
friends, or the public, there is a high likelihood that users will want to edit or refine
the subtitles to remove these unnecessary elements. This need for revision highlights

https://tiraccontounastoria.org/
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a gap in the current system’s ability to revise irrelevant or undesirable content from
the final transcription.

Additionally, while Google’s STT technology is advanced and generally reliable,
it is not infallible. Errors in transcription can occur, stemming either from the
user’s speech patterns, such as accents or diction, or from limitations within the
STT technology itself, such as its ability to handle diverse languages and dialects
accurately. These inaccuracies can lead to misunderstandings or misrepresentations
of the original audio, necessitating further review and correction by the user.

Furthermore, there is an ambition to expand the website’s capabilities by introduc-
ing a feature for translating transcriptions into various languages. This feature aims
to maintain the original audio while providing translated subtitles that are as closely
aligned with the audio as possible. The goal is to achieve word-level alignment,
which is more precise than the common sentence-level alignment found in platforms
like YouTube. This finer level of synchronization between translated text and audio
is crucial for preserving the context and nuance of the original narrative, especially
in a multilingual setting. Achieving this would not only enhance the accessibility
of the content to a global audience but also set a new standard in the field of audio
transcription and translation, moving beyond the limitations of current technologies.

1.3 Goal of the thesis

In this thesis, a comprehensive series of methodologies has been meticulously devel-
oped, utilizing the Django framework, to introduce and refine two key functionalities.
The primary focus of Ti Racconto Una Storia is to uphold the genuine nature and
emotional depth of spoken language. This focus underscores the importance of
preserving the original character and nuances of the narrative, rather than merely
correcting linguistic anomalies or idiosyncrasies. However, recognizing the diverse
needs of our users, we have implemented an automatic transcription feature to en-
hance the readability of the content for various audiences, including the storyteller,
their family, friends, and the general public.

In this project, based on previous work, we have incorporated a significant
feature that enables users to actively engage in editing and refining the automated
transcriptions of their voice messages. This functionality not only supports user
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autonomy but also underscores the critical role of accuracy and personalization in the
art of storytelling. The primary objective of this research is to empower storytellers
– those who are the creators and owners of the narratives – to rectify any inaccuracies
present in the machine-generated transcription. This capability is crucial in ensuring
that the essence and authenticity of their stories are preserved.

The enhancement of this process is achieved through the implementation of
the dynamic programming algorithm known as the Levenshtein Distance. This
algorithm plays a pivotal role in maintaining the integrity of the transcription process.
It operates by either recalculating or preserving the timestamps associated with
each word in the transcription. This technical aspect is of paramount importance,
as it ensures that any modifications made to the text are accurately reflected in the
corresponding segments of the audio. In other words, when a storyteller alters a
word or a phrase in the transcription, the Levenshtein Distance algorithm adjusts
the timestamps so that these changes are perfectly aligned with the audio timeline.
This alignment is essential for maintaining the coherence between the spoken word
and its written representation, thereby enhancing the overall listening and reading
experience.

The second objective of this research is to enhance linguistic inclusivity and
accessibility by enabling the translation of audio transcriptions into a variety of
languages. This functionality is particularly beneficial for storytellers or platform
administrators who are keen to engage a broader audience. A significant challenge in
this endeavor is the development of a translation mechanism that not only achieves
accurate linguistic conversion but also ensures that each translated word is aligned as
closely as possible with its corresponding segment in the original audio stream. This
precise alignment is vital for maintaining the narrative’s rhythm and ensuring that
the translated text reflects the timing and context of the spoken words accurately.

Unlike current video or podcast platforms, which typically provide only sentence-
level alignment between source paragraphs and their translations, this research strives
to align corresponding words with each other. This word-level alignment is more
granular and sophisticated than the conventional sentence-level alignment, offering
a more nuanced and contextually accurate translation. It allows listeners to follow
along more closely with the original narrative flow, enhancing their understanding
and engagement with the content. In this thesis, by offering multiple methods for
word alignment, from rapid local mechanics to advanced BERT-based techniques, we
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provide a range of solutions to meet diverse needs and scenarios, thereby significantly
enhancing the reach and impact of audio narratives across different languages and
cultures.



Chapter 2

Methodologies

This chapter delves into the methodologies employed in this thesis, focusing on
the specific algorithms and their theoretical foundations that are pivotal to our
research. At the heart of our project are two key algorithms: the Levenshtein
Distance algorithm and multilingual BERT. These were selected due to their proven
effectiveness in processing and understanding language-based data, a core component
of our study. The Levenshtein Distance algorithm is renowned for its ability to
measure the difference between two sequences of text, which is crucial in our task of
refining audio transcriptions. On the other hand, multilingual BERT stands out for
its advanced capabilities in understanding and interpreting multiple languages, an
essential feature for our project’s aim to support diverse languages. The subsequent
sections will provide a comprehensive explanation of these algorithms, shedding
light on their functionalities, and why they are particularly suited for the objectives
of this research.

2.1 Django - the back-end framework of our project

In our project, Django, a high-level Python web framework, plays a crucial role
in the development of our web application. Django is celebrated for its pragmatic
design and its ability to facilitate rapid development. A key feature of Django is
its adoption of the Model-Template-View (MTV) architectural pattern, which is
a variant of the widely known Model-View-Controller (MVC) architecture. This
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pattern is instrumental in structuring and organizing code in a clean and manageable
way.

Fig. 2.1 Django dataflow[2]
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The MTV architecture divides the web application into three interconnected
components. The Model, the focus of our work, is responsible for handling the
data and the business logic of the application. It is the layer that manages the
database, defining the data structure and providing the essential mechanisms for
storing, retrieving, and manipulating the data. The Template refers to the presentation
layer, which handles the user interface part of the application. Lastly, the View is
concerned with the logic that controls what data is displayed in the Template.

In this thesis, the emphasis is placed predominantly on the Model component of
Django’s MTV architecture. This decision aligns with our research objectives that
are centered around data handling and processing. By leveraging Django’s robust
and efficient Model framework, we can focus on designing and implementing the
data structures and algorithms necessary for our application, without the need to
delve deeply into the other components of the MTV pattern. This approach allows
for a more concentrated effort on the backend logic and data management, which are
critical to the success of our project.

A pivotal aspect of Django’s Model framework is its QuerySet API, which en-
capsulates the intricacies of database operations, including the creation, retrieval,
updating, and deletion of data (commonly known as CRUD operations). This encap-
sulation is particularly advantageous for our project as it simplifies the development
of data structures. The QuerySet API provides a high-level, Pythonic way to interact
with the database, allowing us to focus on the logic of our application rather than
the underlying database queries. Furthermore, this abstraction layer means that our
application can interact with various types of databases seamlessly. Whether we
choose to use SQLite, PostgreSQL, MySQL, or another database system, Django’s
Model framework ensures that the majority of our database interactions remain
consistent, thus minimizing the need for code modifications when changing database
systems.

2.2 Choice of minimum edit distance algorithm

In this section, we delve into the rationale behind selecting the minimum edit distance
algorithm, specifically the Levenshtein Distance, for our project, which focuses on
enhancing the accuracy and efficiency of user-corrected audio transcriptions. Our
primary goal is to adeptly modify existing text transcriptions, stored as strings in



14 Methodologies

our server database, in response to user corrections submitted through the network.
This task involves transforming the original text into the new, user-requested version
while minimizing the database operations required, such as insertions, deletions, or
substitutions. This requirement is perfectly aligned with the essence of the minimum
edit distance algorithm, which is designed to determine the smallest number of edits
needed to change one string into another.

In the landscape of string comparison algorithms, there are several notable ones,
including Hamming Distance, Longest Common Subsequence, N-Gram and Cosine
similarity[4]. Each of these algorithms has its unique strengths and applications.
For instance, Cosine similarity are effective in measuring string similarity in terms
of character composition and arrangement, while the N-Gram approach focus on
the similarity between sets of characters or sequences. However, for our specific
application, these algorithms do not precisely address our need to minimize database
operations with each transcription correction.

It is important to note that among the various string similarity measures, some
are metric distances, meaning they satisfy the triangle inequality d(x,y)≤ d(x,z)+
d(z,y). The Levenshtein distance, for instance, is a metric distance, whereas the
Normalized Levenshtein distance is not. This distinction is crucial as many nearest-
neighbor search algorithms and indexing structures depend on the triangle inequality
for efficiency and accuracy. Non-metric similarity measures, therefore, might not be
compatible with these algorithms and structures.

The concept of the triangle inequality in the context of string distances is quite
intuitive and particularly relevant to our situation, where we calculate the distance
between two strings. Consider a scenario where we have an original string in state
X and a new string in state Y. According to the triangle inequality, if d(x,y) >
d(x,z)+ d(z,y), it implies that it would be more cost-efficient to first modify the
string from state X to an intermediate string, state Z, and then from state Z to state Y.
This scenario, however, is counterintuitive in the realm of string manipulation and
violates the basic principles of dynamic programming, which seeks to optimize the
process by breaking it down into simpler, more direct steps.

Dynamic programming, a method often employed in computing the Levenshtein
distance, relies on the principle of optimally solving smaller sub-problems to ef-
ficiently solve larger problems. In the context of string manipulation, it means
directly transforming string X into string Y in the most efficient manner, without
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detouring through an intermediate state Z. If the triangle inequality were violated,
as in the case of d(x,y)> d(x,z)+d(z,y), it would suggest that a less direct route
(via state Z) is more efficient, which contradicts the optimization strategy inherent in
dynamic programming. This contradiction highlights why metric distances, like the
Levenshtein distance, are preferred in scenarios where efficiency and directness of
transformation are key, as they adhere to the triangle inequality and thus align with
the principles of dynamic programming.

There are also several advanced options, such as Smith-Waterman, Bowtie, and
the Burrows-Wheeler Transform (BWT), commonly employed in bioinformatics for
complex sequence alignment tasks. Some advanced data structures like Trie and Suf-
fix Tree is leveraged for speeding up computation. However, these algorithms, while
powerful, may not be ideally suited for our project’s scope due to their complexity
and specific optimization for biological data.

The structure of our data further informs our choice. Each word in the original
transcription is encapsulated in a model named AnswerByWord, which includes keys
for the answer (as a foreign key), the word itself, and its start and end timestamps
within the current answer. When insertions, deletions, or substitutions are applied,
they affect not only the entire text but also any influenced word and its corresponding
AnswerByWord record. Therefore, minimizing these operations is crucial to maintain
database efficiency and integrity.

Therefore the Levenshtein Distance algorithm emerges as the most suitable for
our goal due to its direct approach to measuring the difference between two strings.
It precisely quantifies the minimum number of single-character edits (insertions,
deletions, substitutions) required to change one word into another. This aligns
seamlessly with our need to efficiently update the AnswerByWord records with
minimal database operations, ensuring that each user correction leads to the least
amount of change necessary in both the text and the associated data structures.

2.2.1 Brief introduction on Levenshtein Distance

The pivotal computational tool employed is the Levenshtein Distance algorithm. This
algorithm, rooted in the principles of dynamic programming, serves as a fundamental
technique for measuring the degree of similarity between two sequences, which can
be strings of text, time series data, or even complex biological sequences like DNA.
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Its versatility extends to determining the most efficient way to align these sequences,
a process that involves identifying the minimum number of operations required to
transform one sequence into the other.

The Levenshtein Distance algorithm calculates this similarity by considering
three primary types of edit operations: insertions, deletions, and substitutions. For
instance, when comparing two text strings, the algorithm assesses how many inser-
tions, deletions, or substitutions are necessary to convert one string into the other.
The fewer the required operations, the more similar the two strings are considered to
be.

This algorithm finds widespread application across various domains. In com-
putational biology, it is instrumental in comparing genetic sequences, aiding in the
identification of genetic variations and evolutionary relationships. The algorithm’s
ability to handle DNA sequences makes it a valuable tool for genetic research and
diagnostics.

In the realm of machine translation and natural language processing, the Leven-
shtein Distance is used to evaluate and enhance the accuracy of translations between
languages. By comparing translated text with a reference standard, it helps in refining
translation models, thereby improving the quality of machine translation outputs.

Furthermore, in speech recognition technology, this algorithm plays a critical role
in improving the accuracy of transcribed text. It helps in comparing the spoken word
(converted into text) with a database of known words or phrases, thereby enabling
the system to correct errors and understand context better.

Additionally, the Levenshtein Distance algorithm is often employed in named
entity extraction, a process crucial in information retrieval and data mining. It aids
in accurately identifying and classifying key information from unstructured text data,
such as names of people, organizations, locations, and more.

2.3 Efforts on multi-lingual word-align

Addressing the multifaceted challenge of multi-lingual word-level alignments in user
audio transcriptions and their translations requires a nuanced approach, considering
the semantic complexities inherent in different languages. A simplistic approach
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based on string matching or regular expressions is inadequate for this task due to the
intricate nature of language semantics and structure.

To tackle this challenge, we have explored various methods, ultimately narrowing
down to three feasible approaches, each with its own set of advantages and limitations.
The first approach is the simplest, ensuring alignment only at the beginning and
end of each sentence. This method, akin to sentence-level alignment, demands the
least computational resources. However, its simplicity also means that the alignment
accuracy is relatively low, as it does not consider the intricacies of the content within
the sentences.

The second approach involves the use of Natural Language Processing (NLP)
techniques, particularly focusing on Part-of-Speech (POS) tagging. Initial experi-
ments indicated that POS tagging outperforms Named Entity Recognition (NER) in
this context. By aligning words with the same lexical properties in both the original
text and its translation, this method offers a more nuanced alignment than the first
approach, though it still has limitations in capturing the full semantic context.

The third and most sophisticated approach employs multi-lingual BERT, a state-
of-the-art NLP model. This method leverages the advanced capabilities of BERT in
understanding and interpreting multiple languages, offering a more comprehensive
and context-aware alignment. While this approach is computationally more intensive,
it holds the potential for significantly higher accuracy in aligning words across
different languages by understanding their contextual meanings.

Each of these approaches represents a different point in the trade-off spectrum
between computational resource requirements and alignment accuracy. The choice of
method depends on the specific requirements and constraints of the project, including
the desired level of accuracy and available computational resources.

2.3.1 POS

Part-of-Speech (POS) tagging is a fundamental technique in the field of Natural
Language Processing (NLP) that involves the classification of words in a text (corpus)
into their respective parts of speech, such as nouns, verbs, adjectives, and adverbs.
This classification is based on both the definition of the word and its context within
the sentence. POS tagging is essential for understanding the grammatical structure
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of sentences and is a precursor to more complex NLP tasks like syntactic parsing
and semantic analysis.

The process of POS tagging typically involves assigning tags to words from
a predefined set of parts of speech. This set can vary depending on the tagging
system used but generally includes the major word classes and sub-classes like
singular/plural nouns, past/present verbs, comparative/superlative adjectives, and so
on. The accuracy and complexity of POS tagging can vary significantly based on the
language’s grammatical rules and the context in which words are used.

Common methods for POS tagging include rule-based, stochastic, and machine
learning approaches. Rule-based systems rely on a set of handcrafted rules and
dictionaries to assign the correct tags. These systems are often limited by the
completeness and complexity of their rule sets. Stochastic methods, such as Hidden
Markov Models (HMMs), use probabilistic models trained on annotated corpora
to predict the most likely tag for each word based on its context. More recently,
machine learning approaches, particularly those using deep learning, have become
prevalent. These methods, which include using neural networks, can learn complex
patterns from large datasets, leading to more accurate and contextually nuanced
tagging.

Several tools and libraries are available for POS tagging across different lan-
guages. Popular examples include NLTK for Python, which provides access to
over 50 corpora and lexical resources such as WordNet, along with a suite of text
processing libraries for classification, tokenization, stemming, tagging, parsing, and
semantic reasoning. Another example is the Stanford POS Tagger, a part of the
Stanford NLP suite, which is known for its high accuracy and support for multiple
languages.

The application of POS tagging in our project is centered on aligning words
with similar lexical properties from the original text and its translated version. By
identifying and matching words that share the same POS tag in both languages,
this method provides a more nuanced alignment compared to basic sentence-level
alignment. For instance, if a noun in the original text is aligned with a noun in the
translated text, there is a higher probability of these words being contextually related
or equivalent.

However, while POS tagging offers a more refined approach than aligning merely
based on sentence boundaries, it is not without limitations. One significant challenge
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is its potential inadequacy in capturing the full semantic context of words. POS
tags primarily provide syntactic information, which may not always correlate with
semantic meaning. For example, a noun in one language could be translated into a
different part of speech in another language while retaining the same meaning. This
discrepancy can lead to misalignments in cross-lingual contexts.

Moreover, the effectiveness of POS tagging in cross-lingual alignment is also
contingent on the accuracy of the POS taggers used for each language. Variations
in linguistic structures and nuances across languages can pose challenges, as POS
taggers trained on one language may not perform with the same level of accuracy
on another. This can result in errors or inconsistencies in alignment, particularly
in languages with complex morphologies or those that significantly differ from the
language the POS tagger was originally trained on.

2.3.2 BERT

Bidirectional Encoder Representations from Transformers (BERT) represents a sig-
nificant advancement in the field of Natural Language Processing (NLP), particularly
in the area of word embeddings. Developed by researchers at Google, BERT has
revolutionized how machines understand and interpret human language, setting new
standards for a range of NLP tasks.

Fig. 2.2 BERT input representation[3]

Word embeddings, a foundational element in NLP, are a form of word representa-
tion that allows words with similar meanings to have a similar representation. They
are essentially vectors in a high-dimensional space, where each dimension captures
some aspect of the word’s meaning and the relative position of a word in this space
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encodes semantic similarities with other words. This concept is a cornerstone in the
field of NLP, enabling deep learning models to process text by converting words into
numerical form.

Prior to BERT, word embeddings were typically generated using models like
Word2Vec or GloVe, which create a fixed embedding for each word. However, these
models have limitations, as they generate the same embedding for a word regardless
of its context, leading to a loss of meaning in cases where a word has multiple
meanings based on its usage.

BERT addresses this limitation through its context-aware embeddings. Unlike
previous models, BERT generates embeddings for words based on the other words
in the sentence, meaning the same word can have different embeddings based on its
context, allowing for a much richer understanding of language nuances.

The core innovation in BERT is its use of the transformer architecture, a model
that relies on attention mechanisms to process words in relation to all other words
in a sentence, rather than sequentially. This bidirectional approach is a departure
from previous models that processed words either from left to right or right to left.
The transformer consists of two parts: the encoder, which reads and processes the
input text, and the decoder, used in generating a prediction. BERT utilizes only the
encoder part of the transformer. This architecture enables the model to capture the
context of a word based on all other words in a sentence, leading to a deeper and
more accurate understanding of language.

Fig. 2.3 BERT architecture[3]
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BERT is pre-trained on a large corpus of text using two innovative strategies:
Masked Language Modeling (MLM) and Next Sentence Prediction (NSP). In MLM,
some percentage of the input tokens are masked randomly, and the model is trained
to predict these masked words based solely on their context. This training method
allows BERT to effectively understand the context of words. NSP involves training
the model to predict whether a given sentence logically follows another sentence,
which helps BERT understand the relationships between sentences.

The pre-training process involves large datasets and requires significant computa-
tional power, but the result is a model that has a profound understanding of language
structure and context. After pre-training, BERT can be fine-tuned with additional
layers to perform a wide range of language tasks, such as sentiment analysis, question
answering, and language translation.

Another significant feature of BERT, and particularly relevant to our project, is its
ability to handle cross-lingual embeddings. BERT has been extended to multilingual
models like BERT Multilingual (mBERT) and XLM, which are pre-trained on text
from multiple languages. These models can generate embeddings that capture the
semantic nuances across different languages, making them highly effective for tasks
involving multiple languages. For our project, we utilize BERT’s capability to
generate cross-lingual embeddings. By extracting word or subword embeddings
from BERT, we can compare and find the closest matches between words in different
languages.



Chapter 3

Implementation

In current chapter, we turn our focus to the practical application of the theories and
methodologies discussed earlier. This chapter is dedicated to the actual implemen-
tation of the Levenshtein Distance algorithm and multilingual BERT in enhancing
audio transcription capabilities on a website. The implementation process is not just
about writing code; it involves setting up a suitable development environment, care-
fully designing the system architecture, and meticulously integrating each component
to work seamlessly together.

First, we will explore the development environment and tools that were chosen
for this project. This includes a detailed description of the software and hardware
used, along with the programming languages, frameworks, and libraries that were
integral to the development process. The choice of these tools and technologies is
crucial, as they form the foundation upon which our application is built.

Following this, we will delve into the system architecture and design. This
section will provide a clear picture of how the various components of our system
interact and work together. Diagrams and flowcharts will be used to aid in illustrating
the structure and flow of the system, making it easier to understand the overall design.

The next part of this chapter will cover the implementation of the Levenshtein
Distance algorithm. Here, we will walk through the steps taken to integrate this
algorithm into our system, including any modifications or optimizations that were
necessary to meet our specific requirements.
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We will also discuss the implementation of multilingual BERT. This section will
detail how BERT was incorporated into our project, highlighting any challenges
faced in handling multiple languages and the solutions we employed to address these
challenges.

Lastly, we will talk about the challenges encountered during the implementation
phase and the strategies used to overcome them. This part is crucial as it not only
reflects the problem-solving skills employed but also provides insights into the
practical difficulties faced during the application of theoretical concepts.

Through this chapter, we aim to provide a comprehensive and clear account of
how the project was brought to life, from the initial setup to the final implementation
stages.

3.1 Development Environment and Tools

The development of this project was carried out using a specific set of hardware and
software tools, each chosen for its suitability to the tasks at hand. This section details
these tools and the rationale behind their selection.

3.1.1 Hardware

The project was developed on a personal computer provided by the laboratory of the
Department of Electronics and Telecommunications (DET) at Politecnico di Torino.
This hardware choice was primarily due to its availability and compatibility with the
required software tools and frameworks.

3.1.2 Software Environment

Given the nature of the project and building upon the foundation laid by previ-
ous work, a Linux-based development environment was deemed most appropriate.
Specifically, Ubuntu 20.04.5 LTS was selected. This version of Ubuntu offers a stable
and well-supported platform, crucial for development and testing. Its widespread
use in similar projects ensures compatibility and ease of troubleshooting.
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3.1.3 Deployment

The deployment of the project is planned to be on a web server at Politecnico di
Torino. This decision is based on previous work, ensuring continuity and leveraging
existing infrastructure and expertise.

3.1.4 Programming Language

Python 3.6 was chosen as the programming language. This decision aligns with
the language used in previous related work, ensuring consistency and the ability to
integrate with existing codebases. Python’s extensive support for scientific computing
and natural language processing makes it an ideal choice for this project.

3.1.5 Framework

Django, a high-level Python web framework, was used. Its selection was influenced
by its use in previous work, ensuring compatibility and a shorter learning curve.
More information about its strength and its special pattern in development is already
described in section 2.1.

3.1.6 Libraries

The libraries used in previous work were included to maintain consistency and build
upon established foundations. A complete list of these libraries is available in the
‘requirements‘ file, which will be shown in the appendix.

• numpy was used for matrix calculations, a necessity when implementing the
Levenshtein Distance algorithm.

• NLTK, a fundamental library for natural language processing tasks such as
tokenization, stopword filtering, and POS tagging, was integral to the project.

• spaCy was chosen for more advanced natural language processing tasks, par-
ticularly for multi-language support in POS tagging.
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• transformers library was included to facilitate the use of BERT (Bidirectional
Encoder Representations from Transformers) in the project.

3.1.7 Other Tools

• pyenv was used for Python version management. This tool allows for easy
switching between different Python versions, ensuring compatibility and ease
of testing across various environments. pyenv is widely recognized for its
effectiveness in managing multiple Python versions. More information about
this tool can be found at Simple Python Version Management: pyenv[5].

• Microsoft Azure Translator AI Service was utilized for translation and word
alignment tasks. This service was chosen for its advanced capabilities and
reliability. However, the project’s design is such that it can accommodate other
services, whether local or web-based, for similar purposes. More information
about this service can be found at Translator Languages Method - Azure AI
services[6].

• Pyreverse is a tool contained in Pylint to analyze the source code and generates
package and class diagrams. More information can be found at Pyreverse -
Pylint 3.1.0-dev0 documentation[7].

• code2flow is a tool for generating call graphs for the source code. More
information can be found at code2flow: Pretty good call graphs for dynamic
languages[8].

3.2 System Architecture and Design

The system architecture of Ti Racconto Una Storia is both intricate and multifaceted.
This complexity arises from the website’s long-standing usage and the continuous
evolution of its features and functionalities over the years. The system’s overall
architecture can be visualized through the following two diagrams: the schema
of the system architecture 3.1 and the database 3.2. These diagrams serve as a
visual representation, offering a bird’s-eye view of the system’s structure and the
interrelationships between different components. However, due to the comprehensive

https://github.com/pyenv/pyenv
https://learn.microsoft.com/en-us/azure/ai-services/translator/reference/v3-0-languages
https://learn.microsoft.com/en-us/azure/ai-services/translator/reference/v3-0-languages
https://pylint.readthedocs.io/en/latest/pyreverse.html
https://pylint.readthedocs.io/en/latest/pyreverse.html
https://github.com/scottrogowski/code2flow
https://github.com/scottrogowski/code2flow
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nature of the existing system, these figures might not fully capture the intricate details
and nuances of the architecture. Therefore, To provide a clear understanding of our
project’s place within this architecture, we will focus specifically on the components
and interactions that are directly relevant to our implementation.

As we mentioned before, our work is designed for the processing, alignment
and translations of audio recording transcriptions. This architecture encompasses
a variety of data types, including text and audio, and integrates advanced language
processing and translation services. The system’s design can be broadly categorized
into several key components: system workflow, data models, transcription correction
and alignment, translation and word-level alignment, and integration with external
services.

3.2.1 System workflow

The system’s workflow is a sequence of processes, beginning with the user’s finishing
an interview, as mentioned in 1.1.2. Upon audio upload, the system initiates an
automatic transcription process, leveraging advanced speech recognition technology
to convert the spoken content into text. This initial transcription is a fundamental
step, which includes previous people’s effort.

Once the automatic transcription is complete, the user is granted access to the
transcribed text. At this stage, the user can review and edit the transcription to
ensure accuracy and coherence, a step that underscores the system’s recognition of
the nuanced nature of human language and the potential limitations of automated
transcription.

Following the user’s review and editing, if the user requires translation of the
transcribed content, the system then engages its translation module. This module
is designed to translate the edited transcription into the desired target language,
maintaining the fidelity of the original content while adapting it to the linguistic and
cultural nuances of the target language.
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3.2.2 Data models

The data models, in our work primarily the Answer and AnswerByWord models,
are foundational to the system’s functionality. They are intricately designed struc-
tures that facilitate the nuanced handling of transcriptions and translations of audio
recordings. Both transcription correction and translation tasks work around these
two models.

The Answer model is central to the system’s architecture. It is designed to
encapsulate the transcription or translation of an audio recording. This model
includes fields for the text, which represents the transcribed or translated content,
and edited text, which allows for the accommodation of revisions or modifications
to the original transcription. Additionally, the model includes fields for associated
media files, thereby establishing a direct link between the textual content and the
corresponding audio or image files. This linkage is crucial for applications that
require synchronization between text and media, such as subtitle generation or
interactive language learning tools.

Complementing the Answer model is the AnswerByWord model, which represents
a more granular approach to language processing. This model is designed to store
individual words from an Answer, along with their corresponding start and end
times in the recording. This level of detail is critical for precise alignment and
synchronization with the audio content. By breaking down the transcription or
translation into individual words, the system can accurately align text with specific
segments of the audio, a feature that is invaluable in applications such as automated
subtitle generation or detailed linguistic analysis.

The AnswerByWord model also facilitates advanced processing techniques, such
as word-level alignment and edit distance calculation. By having access to the timing
of each word, the system is able to perform sophisticated operations like aligning the
edited transcription with the original at a word level.
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Fig. 3.4 Data structure and methods - Answer
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Fig. 3.5 Data structure and methods - AnswerByWord

3.3 Transcription correction

3.3.1 Implementation of Levenshtein Distance

As mentioned before again and again, the Levenshtein Distance is an algorithm that
quantifies the minimum number of single-character edits required, i.e. insertions,
deletions, or substitutions (sometimes the operations of insertion and deletion are
also collectively referred to as a gap), to change one sequence (usually string) into
the other and indicates how we can achieve it, intuitively aligning with our goal of
minimizing the operations needed for enabling user to correct the transcription.

An extremely common example is the minimum edit distance between kitten and
sitting should be 3. Levenshtein Distance will tell us both the minimum edit distance
and how we are able to reach it:

1. kitten → sitten (substitution from k to s)

2. sitten → sittin (substitution from e to i)

3. sittin → sitting (insertion of g)

To solve the problem of calculating edit distance, brute force enumeration is
impractical, because the number of possible alignments becomes astronomically
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large for even fairly short sequences, with a time complexity of O(3min(m,n)) where
m and n are lengths of the compared sequences, which can be considered as O(en).
The Levenshtein Distance algorithm provides an efficient solution using dynamic
programming, with a time complexity of O(m ·n).

Dynamic programming is a method by which a larger problem may be solved by
first solving smaller, partial versions of the problem. We demonstrate here how it
may be applied to global sequence alignment, where at first we are interested only in
the similarity of two sequences, and not the alignment that yields this score.

How to find the minimum edit distance

Let us first agree on some definitions:

Symbol Definition

X one sequence to be compared with length m, X = x1x2...xm

Y other sequence to be compared with length n, Y = y1y2...yn

Xi the partial sequence consisting of the first i letters of X
Y j the partial sequence consisting of the first j letters of Y

D(i, j) the Levenshtein Distance of Xi and Y j

g the gap cost for aligning any letter to a null
s(a,b) the substitution cost for aligning letters a and b

Table 3.1 Definitions in our implementation of Levenshtein Distance

Consider the last item (it may be the last word or character based on the sequence
is a sentence or a general string) of an optimal alignment of Xi and Yj. This column
either aligns xi to y j, or xi to a null, or y j to a null. Because we only consider
insertion, deletion or substitution, there are no other possibilities. This observation
yields the following recurrence:

The Levenshtein Distance between two strings, a and b (of length i and j respec-
tively), is given by D(i, j). The distance is calculated using the following recursive
formula:
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D(i, j) = min


D(i−1, j)+g xi aligned with a null
D(i, j−1)+g y j aligned with a null

D(i−1, j−1)+ s(xi,yi) xi and y j aligned
(3.1)

where

s(xi,y j) =

0 if xi = y j

s if xi ̸= y j
(3.2)

and generally g= s= 1. In our case where the cost of either a gap or a substitution
is a single editing operation on AnswerByWord, g = s = 1 makes sense.

What formula 3.1 means is that if the last characters of both strings are the same,
the distance is the same as that for both strings without their last character. Otherwise,
the distance is 1 plus the minimum of:

• The distance between Xi without its last item and Yj (insertion)

• The distance between Xi and Yj without its last item (deletion)

• The distance between Xi and Yj, both without their last items (substitution)

Formula 3.1 acts as the recursive formula for dynamic programming. This
is the idea of decomposing the problem into optimal sub-problems in dynamic
programming.

Besides the recursive case, another basic element of dynamic programming is
the base case. In the Levenshtein Distance algorithm, if either sequence is empty,
the distance should be the length of the other sequence. This is intuitive in the sense
that if the user decides to delete all the transcription, the operations should all be
deletions and the number of operations is the length of original transcription, and
vice versa. Formally,

D(i, j) =

i ·g if j = 0

j ·g if i = 0
(3.3)
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How to reach the minimum edit distance

The recursive approach can be highly inefficient due to the repeated calculation of the
same sub-problems. A more efficient approach is to use a memorization technique,
where results of sub-problems are stored in a traceback route matrix and reused.
This common method changes dynamic programming from a top-down recursive
pattern to a bottom-up iterative pattern. It uses the idea of trading space for time. It
sacrifices a small amount of space used to store matrices in order to reduce the time
spent on recursion and repeated calculations.

In the realm of computational linguistics and string processing, the Levenshtein
Distance algorithm, particularly its implementation in our project, employs a two-
dimensional memorization matrix d p. The dimensions of the matrix are chosen to
accommodate the lengths of the two input strings X and Y . Specifically, the matrix
is constructed with dimensions (m+1)× (n+1). This configuration ensures that
d p[i][ j] represents the minimum edit distance between the first i items of X and the
first j items of Y .

The first row and column of the matrix are populated with indices. This step
represents the base cases of the algorithm. The first row is initialized with indices
ranging from 0 to n, that is the length of Y , and the first column is similarly initialized
from 0 to m. These values signify the edit distance from an empty string to the
respective sub-strings of X and Y .
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Fig. 3.6 Schema on the Levenshtein Distance algorithm

The core of the method lies in iteratively filling up the matrix. The process of
populating the matrix is a systematic exploration of all possible transformations from
one sub-string to another, culminating in the transformation of the entire string X
into Y . This process involves iterating over each cell of the matrix and determining
the minimum number of edit operations required to reach that state.

Iterative Computation: For each cell d p(i, j) in the matrix, the algorithm com-
putes the cost of three potential edit operations: insertion, deletion, and substitution.
These operations are evaluated based on their respective neighboring cells:

• Deletion: The cell immediately above d p(i− 1, j) represents the scenario
where a character from string X is deleted. The cost of this operation is derived
from the value of this cell, incremented by one.

• Insertion: The cell immediately to the left d p(i, j−1) symbolizes the insertion
of a character into string X . Similar to deletion, the cost is the value of this
cell plus one.

• Substitution: The cell diagonally above and to the left d p(i− 1, j− 1) cor-
responds to the substitution of an item in string X with an item in string Y .
The cost is the value of this cell incremented by one, only if the characters in
strings X and Y at positions i−1 and j−1, respectively, are different.
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Minimum Edit Distance Calculation: The algorithm then selects the minimum
value among these three computed costs, based on formula 3.1: insertion (d p[i][ j−
1]+1), deletion (d p[i−1][ j]+1), and substitution (d p[i−1][ j−1]+ s(Xi,Yj)). This
value represents the minimum number of edit operations required to transform the
sub-string Xi into Yj. The calculated minimum cost is then assigned to d p[i][ j]. It
records the minimum number of edits required for the specific subproblem, thereby
facilitating the solution of larger problems building on these results.

Upon completion of filling in all the cells, the method returns the value stored in
d p[m][n]. This value, located at the bottom-right corner of the matrix, represents the
minimum edit distance between the entire strings X and Y . It is the culmination of the
method’s systematic exploration of all possible edit operations and their cumulative
costs.

In addition to the d p matrix, a traceback matrix is used. This matrix stores
information about which operation (insertion, deletion, substitution) was performed
in each step. It helps in tracing back the exact operations (insert, delete, substitute)
that were performed to transform string X into string Y . By backtracking from the
bottom-right corner of the matrix to the top-left, one can reconstruct the sequence of
edits.

The traceback matrix is also constructed of size (m+ 1)× (n+ 1). The first
column and row are filled with indicators of deletions and insertions, based on the
base case of the Levenshtein Distance, representing transforming a string into an
empty string or vice versa.

While filling the DP matrix, the method also populates the traceback matrix. Each
cell in this matrix stores the operation (insert, delete, substitute) that resulted in the
minimum cost for that cell. Once the matrices are filled, the method backtracks from
d p[m][n]. This backtracking follows the pointers in the traceback matrix, moving
in the opposite direction of the edits (from target string back to source string). This
process reconstructs the sequence of edits. As the method backtracks, it can record
the specific edits made. This can be used to provide a detailed description of how to
transform string X into string Y .

Let’s use kitten and sitting as an example again. Running our implementation, the
calculated minimum edit distance, trackback route and the dynamic programming
matrix is as follows:
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(a) Levenshtein distance and trackback

(b) DP matrix

Fig. 3.7 kitten and sitting as an example

3.3.2 Workflow

Fig. 3.8 Call function graph of performing alignment

Figure 3.8 is the call function graph of this part of work, i.e. enabling transcription
correction. As shown in the image, the Answer class is our model that encapsulates
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the concept of an answer within Ti Racconto Una Storia. It is not merely a data
container; it embodies a suite of methods that are pivotal for processing and aligning
transcriptions of audio recordings.

The perform_alignment method is a cornerstone of the transcription correction
functionality. It aligns the edited transcription, stored in the texth field, with the
original transcription. This method begins by ensuring that the edited transcription
is not empty. It then proceeds to preprocess the edited transcription by removing
punctuation and converting it to lowercase, a step that normalizes the data for
further processing. The method employs NLTK for tokenization, which splits the
transcription into a list of words. This method is trigged when an Answer object is
saved with the help of answer_post_save_alignment signal.

Subsequently, the method retrieves the original words associated with the answer,
represented as AnswerByWord objects, and orders them by their start time. This
ordered list of words forms the basis for the alignment process. The core of this
method is the invocation of calculate_edit_distance, which implements our methods
described in 3.3.1. The method concludes by updating the AnswerByWord objects to
reflect this alignment, using the update_ABWs_for_alignment method.

The remove_punc method is a utility function used to preprocess transcriptions.
It replaces punctuation with spaces and trims leading and trailing spaces. This pre-
processing is crucial for normalizing the text, ensuring that the alignment algorithm
focuses on the words themselves rather than punctuation.

The find_word_object method also serves a utility function, facilitating the
retrieval or creation of Word objects. Given a word as a string, it searches for an
existing Word object in the database that matches the string. If such an object does
not exist, it creates a new one. This method is instrumental in handling words that
are newly introduced into the transcription during the editing process, ensuring that
every unique word is accounted for in the database.

The calculate_edit_distance method, as mentioned before, implements our meth-
ods described in 3.3.1. It is worth mentioning that our method optionally accepts
a comparator function, allowing for customized comparison logic between words.
This flexibility is particularly useful in handling different languages or specific
comparison rules. We will see this later again and again.
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The update_ABWs_for_alignment method processes the trackback route obtained
from the calculate_edit_distance method. It iterates through the route, handling
each operation (same, replace, delete, insert) accordingly to transform the original
transcription into the edited version. For each operation, the method invokes specific
handling procedures. In cases of "replace" operations, it updates the corresponding
AnswerByWord object with the new word. For "delete" and "insert" operations, it
delegates to the handle_deletion_for_alignment and handle_insertion_for_alignment
methods, respectively. This method ensures that each word in the transcription is
accurately represented post-editing, maintaining the integrity of the data.

The handle_deletion_for_alignment method manages the deletion operations
within the transcription alignment process. It identifies continuous stretches of dele-
tions and decides whether to perform a time shift or handle each deletion individually.
If the duration of the deletion exceeds a specified threshold (time_shift_threshold),
a time shift is applied to all subsequent words, adjusting their start and end times
accordingly. This method is for maintaining temporal accuracy in the transcription,
especially when substantial portions of the original text are removed.

The time_shift_for_alignment method is invoked when a significant portion of
the transcription is deleted, necessitating a time shift in the subsequent words. It
adjusts the start and end times of all AnswerByWord objects following the deletion.
There is a switch to decide whether this method will be invoked, and usually it is set
to False by default.

In contrast to time_shift_for_alignment, the single_deletion_for_alignment method
is called when deletions in the transcription are not extensive enough to warrant a
time shift. It handles deletions on a word-by-word basis, adjusting the timing of the
words immediately preceding and following the deleted word to evenly distribute
the resultant gap. This method is essential for ensuring that minor edits in the
transcription do not disrupt the overall timing of the text.

The handle_insertion_for_alignment method manages the insertion of new words
into the transcription. It calculates the appropriate time offsets for these insertions,
ensuring that the new words are seamlessly integrated into the existing sequence of
AnswerByWord objects. This involves adjusting the timing of surrounding words to
accommodate the inserted words, thereby preserving the temporal coherence of the
transcription.
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Upon the cases of deletion and insertion, we need to consider some boundary
cases, such as deleting or inserting the first or last word. We conducted a lot of
experiments to ensure that our code would run correctly and reasonably in these
boundary conditions.

3.4 Translation and word-level alignment

This section delves into the implementation of multilingual support and word-level
alignment in the transcription service of the website Ti Racconto Una Storia. The
primary focus is on the integration of web service and multilingual BERT to fa-
cilitate the translation of audio transcriptions into multiple languages. The system
architecture is built upon two main modules: Answer and Translator.

Answer, as mentioned in the previous section 3.2.2, represents an answer in the
interview format of the answers shared on the platform. In this part of work, the
crucial method in this model is create_translation, which is responsible for gener-
ating a translated version of the answer’s transcription. This method leverages the
AzureTranslator class defined in Translator module to perform the actual translation
and alignment tasks.

The Translator module encapsulates the translation logic. It defines a base Trans-
lator class and a specific implementation AzureTranslator, which uses Microsoft
Azure’s translation services. The AzureTranslator class extends the functionality of
the base class by integrating Azure’s API for language translation and alignment.
The base Translator class also includes methods for word-level alignment, which
can use a local BERT-based alignment in case the online service is unavailable. This
ensures that we can always provide stable services to users.

The system’s operation begins with the invocation of the create_translation
method on an Answer instance. This method calls the Azure translation web service
to translate the edited transcription into the desired language. It then proceeds to align
the translated text with the original at a word level, using either the Azure service or
local BERT-based alignment, depending on the specified parameters. The aligned
words are then used to create new AnswerByWord instances, linking translated words
to their corresponding time offsets in the original answer.
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3.4.1 Workflow

In this section, we will first explain the overall workflow to ensure that the explanation
is logically coherent. Then, we will explain the use of Microsoft Azure Translator
AI Service and multilingual BERT in our project in a sequence.

Fig. 3.9 UML diagram of Translator class

Translator base class

The Translator class is designed as a generic base class, providing a template for
various translation services. It encapsulates common functionalities needed for
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language translation and processing, setting a foundation that can be extended by
specific translation service implementations.

In the constructor (__init__), the Translator class begins by calling some utility
functions, download_nltk_resources, supported_languages and supported_languages_nltk,
to prepare the necessary NLTK resources.

The download_nltk_resources method ensures that essential NLTK resources
are available. It checks for the presence of stopwords and punkt tokenizer datasets,
downloading them only if they are missing to avoid the waste on time and computing
resources. And through supported_languages and supported_languages_nltk, the
class establishes a mapping between language codes and names. This mapping
is essential for aligning the language support between the translation service and
the NLTK’s capabilities, especially for stopwords processing in various languages.
However we have to say that creating this mapping is actually an act of desperation
because some NLTK services only accept full name of languages as parameters
while most online services accept language codes following ISO 639-1[9].

The translate and align_words methods are declared as abstract, indicating that
any subclass of Translator needs to provide concrete implementations for these
methods. This design enforces a consistent interface for translation and alignment
across different translation services. align_words_local and align_word_BERT are
used as alternatives in case the network service is interrupted, or in future Azure no
longer provides word alignment services, or the translation service selected by future
developers does not come with word alignment information.

The Translator class demonstrates a well-structured approach to implementing
translation services in an object-oriented manner. It provides a generic template so
for the easy integration of additional translation services in the future.

AzureTranslator class

The AzureTranslator class extends the Translator class, providing a specific imple-
mentation that utilizes Microsoft Azure AI Translator service for translation and
alignment. By inheriting from the Translator class, AzureTranslator gains all the
generic functionalities of its parent class. This includes the initialization process,
NLTK resource management, and the basic structure for translation and alignment
methods. In its constructor, AzureTranslator adds additional steps specific to Azure’s
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translation services. It initializes variables such as the API key, endpoint, and region,
which are essential for accessing Azure’s translation API.

The supported_languages method is overridden to fetch and return a dictionary
of languages supported specifically by Azure’s translation service.

The translate method in AzureTranslator is a concrete implementation of the
abstract method from Translator. It sends a request to Azure’s translation API
and processes the response. The api_response method is the core utility function
tailored to Azure’s API specifications. It constructs and sends a request to the Azure
translation service and handles the response, including the management of headers
and query parameters. It will be explained in detail in the following section 3.4.2.

In AzureTranslator, the align_words method is specifically designed to process
the alignment information provided by Azure. If Azure’s phrase alignment is avail-
able, it is used; otherwise, the method falls back to the local alignment method
defined in the base Translator class.

Detailed workflow triggered by Answer

Fig. 3.10 Call function graph of Answer and Translator module

The workflow begins when create_translation is called on an Answer instance.
This method serves as the entry point for the translation and alignment process.
An instance of AzureTranslator is created, leveraging the capabilities of Microsoft
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Azure’s Cognitive Services. This instance is responsible for handling the translation
of the edited transcription text into the desired target language.

The translate method of the AzureTranslator instance is invoked with the text of
the Answer and the target language code. This method sends a request to Azure’s
translation API, which returns the translated text. The method also processes the re-
sponse to extract and store sentences and their translations. Along with the translated
text, the AzureTranslator also retrieves word-level alignment information.

Following the translation and alignment, the workflow proceeds to create a new
Answer instance that holds the translated text. A new instance of the Answer model
is created, copying the attributes of the original Answer but replacing the text with
the translated text. This new instance represents the translated version of the original
answer.

The align_text_alignment_pair method in the Answer model is then called. This
method processes the alignment information obtained from the AzureTranslator. It
involves a detailed comparison of each word in the original transcription with the
aligned translated words, creating a mapping between them.

The next step involves creating new AnswerByWord instances that link the trans-
lated words to their corresponding time offsets in the original answer. The cre-
ate_aligned_translated_abws method iterates over the alignment mappings obtained
from the previous step. For each pair of aligned words, this method performs several
operations. For each aligned word pair, a new AnswerByWord instance is created.
This instance links the translated word to the same time offsets as the original word
in the Answer.

Finally, the workflow concludes with additional alignment adjustments to ensure
the accuracy and synchronization of the translated content. The answer_post_save_alignment
receiver function is automatically triggered after the new Answer instance is saved.
This function is designed to perform further alignment adjustments based on time
shifts.

The perform_alignment method within the Answer model is called by the receiver
function. This method fine-tunes the alignment, taking into account any time shifts
that might have occurred during the translation process. It ensures that the translated
text remains accurately synchronized with the original audio. What will happen after
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calling perform_alignment is totally the same with section 3.3.2. The reuse of code
shows our efforts on system schema design.

3.4.2 Usage of Microsoft Azure Translator AI Service

We choose to use Microsoft Azure Translation Service [10] because, after conduct-
ing research, we found that Azure is the only cloud provider of mainstream online
translation services that offers word alignment information between the translated
and original text, in addition to basic translation services. During our investiga-
tion, we also discovered that Yandex provides non-official word alignment services,
although in a concealed manner. However, considering the reliability, legitimacy,
and availability of services in Europe, we still choose Microsoft Azure Translation
Service as our default translation service provider. It’s worth noting that both Azure
and Yandex’s word alignment services are experimental and may be removed in the
future [11]. To address this issue and to prepare for any potential network issues that
may cause service disruptions, we have also developed a local BERT-based word
alignment strategy, which will be discussed in detail in the next section.

The tutorial about creating a Translator resource in the Azure portal can be found
on the official website Create a Translator resource - Azure AI Services[12].

We fetch Azure AI Translator service through RESTful API. Although Microsoft
provides Text Translation SDK for Python, we still think RESTful API is more
powerful and more stable to use.

In our work the method api_response is the core utility function that communi-
cates with the Azure Translator API. The method begins by constructing the URL
for the Azure Translator API endpoint. This URL is composed using the base end-
point stored in the AzureTranslator instance and appended with the specific path for
the translation service (/translate). The method then prepares the parameters and
headers required for the API request. These parameters include the target language
code, the API version, and an option to include alignment data in the response. The
headers primarily consist of the subscription key and region, which are essential for
authenticating the request with Azure’s service.

The body of the request is prepared by tokenizing the input text into sentences
using NLTK’s sentence tokenizer. Each sentence is then wrapped in a dictionary
structure, forming the payload for the POST request. This structuring is in accordance

https://learn.microsoft.com/en-us/azure/ai-services/translator/create-translator-resource
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with Azure’s API requirements, where each text segment to be translated is provided
as a separate item in the request body.

The method proceeds to send the POST request to the Azure API with the
constructed URL, parameters, headers, and body. The response from the API is then
captured and parsed. This response contains the translated text along with alignment
data.

Our method also includes robust error handling to manage scenarios where the
API request fails or returns an error. In such cases, the method ensures that the
process does not halt abruptly, instead providing graceful degradation by returning
an empty translation and alignment. In case that translation service works as expected
but alignment does not, the method falls back to the local alignment method defined
in the base Translator class.

3.4.3 Inference of Multilingual BERT

In our project, align_words_BERT is invoked as alternatives in case the network
service is not available, or in future Azure no longer provides word alignment
services, or the translation service selected by future developers does not come with
word alignment information. In this specific method, PyTorch and transformers
packages are additionally required in order to enable the capabilities of BERT.

The alignment layer and a threshold value are predetermined. The choice of the
8th layer is grounded in the hypothesis that intermediate layers of BERT models
capture a good balance between word-level and context-level representations. In the
first layers the contextualization is too weak for high-quality alignments while the
last layers are too specialized on the pretraining task (masked language modeling).
[13][14][15] In our work finetune on BERT is not needed since BERT already gain
enough generic linguistic comprehension capabilities during pretraining phase.

The model is set to evaluation mode, a standard practice in inference tasks to
ensure consistency in the model’s output by disabling layers like dropout that are only
relevant during training. During our experiments, we find that GPU is unnecessary
since CPU only is enough for the inference.

The script processes both source and target sentences through mBERT, extracting
the hidden states from the specified alignment layer. This step is crucial as it
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retrieves the contextual embeddings of each token in both languages. As mentioned
in the previous chapter 2.3.2, BERT generates context-aware embeddings instead of
traditional static embeddings as NLTK, Word2Vec or GloVe do.

A dot product is computed between the embeddings of the source and target
tokens. This mathematical operation is instrumental in quantifying the similarity
between token pairs across the two languages. Subsequently, a softmax function is
applied to these dot product values, transforming them into probabilities. This step
is executed twice, each time focusing on a different direction (source-to-target and
target-to-source), thereby ensuring a bidirectional perspective in alignment.

Then we employ a threshold to filter out alignments with lower confidence
levels, ensuring that only alignments with a probability exceeding the threshold are
considered.

The final step involves mapping the identified subword alignments back to the
original words. BERT tokenizes input text into subwords, and the alignment needs
to be interpreted at the word level for practical utility.



Chapter 4

Conclusion and Future Work

4.1 Conclusion

Our project has successfully addressed and fulfilled its two primary objectives
mentioned at the beginning 1.3 of this thesis, enhancing the Ti Racconto Una Storia
platform both in terms of transcription accuracy and linguistic inclusivity. Through
meticulous development and integration of advanced methodologies within the
Django framework, this research has significantly elevated the user experience and
broadened the platform’s appeal and accessibility.

The first objective, focusing on empowering storytellers to correct inaccuracies
in machine-generated transcriptions, has been adeptly achieved. The implementation
of the Levenshtein Distance algorithm stands as a testament to this accomplishment.
By allowing storytellers to edit transcriptions while maintaining accurate alignment
with audio timestamps, the platform ensures that the essence and authenticity of each
story are preserved. This feature not only enhances the integrity of the storytelling
process but also respects the storyteller’s ownership and connection to their narrative.
The technical sophistication of this solution, particularly in maintaining coherence
between spoken words and their written representation, significantly enhances the
listening and reading experience for all users.

The second objective, aimed at transcending language barriers through the trans-
lation of audio transcriptions, has been realized with remarkable efficacy. The
development of a robust translation mechanism, capable of not just linguistic conver-
sion but also precise word-level alignment with the original audio, marks a significant
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advancement over conventional sentence-level alignment methods. This granular
approach to translation ensures that the rhythm, timing, and context of the original
narrative are faithfully maintained in multiple languages. By offering a spectrum of
word alignment methods, from local mechanics to sophisticated BERT-based tech-
niques, this thesis caters to a diverse range of needs and scenarios. This enhancement
greatly extends the reach of audio narratives, fostering greater understanding and
engagement across different languages and cultures.

4.2 Future work

While this thesis has made significant strides in enhancing the Ti Racconto Una
Storia platform, there are several avenues for future research and development that
could further augment its capabilities.

Drawing from experiences in bioinformatics, where data is often highly structured
and regular, there is potential to apply more sophisticated data structures and more
advanced algorithms to improve text processing and alignment. The regularity and
structure observed in bioinformatics can inspire new approaches to handling textual
data, potentially leading to more efficient and accurate transcription and translation
processes. Exploring these advanced methodologies could lead to breakthroughs in
how we handle complex narrative structures, making the platform more robust and
versatile.

The current implementation leverages BERT for its powerful capabilities in
language understanding and translation. However, we are now in the era of Large
Language Models, which offer even more advanced linguistic processing capabilities.
While current LLMs present challenges in terms of stability and predictability –
factors that are crucial for our service – the evolving landscape of these models
holds great promise. It is anticipated that the underlying logic and mechanisms of
LLMs will become more transparent and reliable in the future. Once this occurs,
integrating these models into our platform could significantly enhance our translation
and alignment accuracy, offering a more nuanced and context-aware approach to
multilingual storytelling.

Another area of potential development is the incorporation of adaptive learning
mechanisms. These mechanisms could enable the platform to learn from each
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transcription and translation, improving accuracy and efficiency over time. This
self-improving system could adapt to various dialects, idiomatic expressions, and
unique narrative styles, further personalizing the user experience.
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