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Abstract

Neuromorphic computing is one of the most promising computing paradigms to
build the next generation of energy-efficient computing systems. Many materials
and devices are being investigated to develop these new architectures. Organic elec-
trochemical transistors (OECTs) have emerged as candidate devices for the design
of artificial synapses. Their ability to emulate a variety of neurological mechanisms,
such as short-term and long-term plasticity, their operation relying on ionic trans-
port and the possibility for global connectivity make them intrinsically similar to
neurobiological membranes. Moreover, they present low switching energies and a
wide range of tunability. Other neuromorphic components must be created with
a similar technology to build an entirely organic neuromorphic system for spik-
ing neural networks. Indeed, organic circuits that emulate biological neurons are
crucial. Few examples of artificial neurons fabricated with OECT technology ex-
ist in literature. They emulate some spiking features of biological neurons with
neurotransmitter or ion-based modulation. However, they all spike at a constant
frequency for a constant applied stimulus and fixed operating conditions, thereby
having limited neural encoding capability. Spike-frequency adaptation (SFA) is a
fundamental neuronal mechanism that encodes information by modulating firing ac-
tivities: adaptive neurons show an initial high frequency spiking activity at the onset
of a constant stimulus, that gradually reduces with time to a steady-state response.
In this thesis, a new circuit architecture to emulate spike-frequency adaptation in
an all-organic artificial neuron is proposed. This circuit relies on the short-term
plasticity property of OECTs and the possibility to fabricate OECTs with a sec-
ondary tuning gate, that acts on its transcharacteristic. The circuit is demonstrated
first in a hybrid version, with combined OECT and standard CMOS technologies.
Subsequently, an all-organic version of the circuit is proposed. The circuit operates
at a supply voltage < 1V and shows tunable spike-frequency adaptation. All the
device modelling and circuit simulations have been carried out on LTSpice.
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Chapter 1

Introduction to neuromorphic
engineering

Neuromorphic engineering aims to develop computing hardware that mimics biolog-
ical nervous systems.

In this Chapter, we give a brief overview on the field of neuromorphic engineering.
In Sec. 1.1, we retrace the motivations that led to its creation in the 1980s. We
describe the current scenario, where neuromorphic engineering has emerged as an
interdisciplinary research field that includes a much broader scientific community.
We point out how that can be attributed recently to simultaneous developments
in materials and devices for ICs, the need for low power, sustainable AI and the
approaching end of Moore’s law.

In Sec. 1.2, we focus on a specific block of spiking neural networks (SNNs) circuits:
artifical neurons. The discussion is aimed at introducing a biological, mathematical
and technological context to the objective of this thesis, which is the development
of an adaptive spiking architecture based on organic materials. We introduce the
mechanism of spike-frequency adaptation (SFA) and discuss its computational sig-
nificance in biological neural networks. We describe a series of available models from
computational neuroscience that are able to reproduce spike-frequency adaptation
and their level of complexity. We conclude by identifying some adaptive artificial
neurons present in literature that have been built with different technologies.

With this introduction, we hope to impart the reasons why the development of
adaptive spiking circuits is a defining step for emerging technologies towards the
realization of more bio-realistic neuromorphic hardware. The introduction of an
adaptive organic artificial neuron addresses this need for the field of organic elec-
tronics.

1.1 Origin and evolution of neuromorphic systems

The origin of neuromorphic engineering dates from the 1980s, by Carver Mead and
his students at Caltech: the Physics of Computation group [1].
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Chapter 1 – Introduction to neuromorphic engineering

The field was created at a time when digital synchronous circuits were just begin-
ning to dominate silicon production. Very large-scale integration (VLSI) technology
enabled the growth of integrated circuits at a fast pace. Coherently with Moore’s
law, the number of transistors per integrated circuit was doubling every two years,
as new technological nodes were developed to be smaller and smaller. The increasing
demand for computational power was addressed by new product generations with
smaller feature sizes, that did not require new conceptualization at the architecture
level.

However, limits of technological scaling were already well understood. As transis-
tors’ sizes were being pushed down (to single digit µm scale at the time), silicon
technology was getting closer to the fundamental physical limits. Much range was
still to be exploited at that time, but it is now an issue more relevant than ever.

This was the premise to start rethinking the principles of computation, leading Mead
and his group to look at the brain as source of inspiration.

The crucial consideration to start investigating neural computation was that biolog-
ical information-processing systems are several orders of magnitude more efficient
than any digital system ever built, at solving many classes of problems. Especially
for those problems that require to process poorly conditioned input data, the differ-
ence in power consumption can be a factor of 107− 109. The origin of this efficiency
gap is not to be searched at the device level. The energy per operation of a state-
of-the-art (SoA) minimum-size MOSFET1 is around 10−15 − 10−16J nowadays, and
between 10−13 − 10−16J for a biological synapse or cell [2]. Rather, it is to be at-
tributed at a more fundamental level: to the level of interconnection and even more
to the representation of information [3].

The first point is addressed by making algorithms more local and designing hardware
with memory function embedded inside the processing unit. This solution can be
implemented either in analog or digital technology and is the main focus of In-
memory computing2 (IMC) [4, 5].

The representation of information is where the greater portion of efficiency is lost.
In a conventional digital system information is confined into a binary representation
of absolute values. Bits are computed through the elementary functions of Boolean
algebra, which are digital gates. These elementary blocks are then combined to-
gether to create a great set of operations which are the ones used by algorithms.

1The energy per operation of a MOSFET is the energy it takes to fully charge or discharge its
gate.

2In-memory computing is a broad field that includes all computational paradigms and archi-
tectures where data is processed inside the memory. Unlike conventional computer architectures,
these systems avoid the throughput limitation and energy consumption caused by transferring data
back and forth between memory and CPU. This limitation is known as ”von Neumann bottleneck”
or ”memory wall”. Neuromorphic engineering is a possible paradigm for in-memory computing.
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Chapter 1 – Introduction to neuromorphic engineering

This process is functioning but inefficient. First, because it forces a mathematical
representation which is not the one of the device used: the entire operational capa-
bility of a transistor is reduced to a single bit value. Second, because the elementary
operations that arise from this representation are not necessarily the ones used in the
computation, which are then built artificially starting from these initial blocks. To
overcome this limitation, new architectures have to be invented that exploit directly
the set of computational primitives that arise naturally from the substrate.

The invention of neuromorphic engineering emerges from the analogy between the
computational primitives of biological neural networks and the ones of analog (mixed-
signal) VLSI [6,7]. Both systems use state variables that are analog, represented by
an electrical charge. Some neural primitives are also intrinsic to analog VLSI cir-
cuits: conservation of charge is naturally defined by Kirchoff’s first law at zero cost,
which implements a distributed addition; integration through time is the equation
of a capacitor; thresholding, amplification, compression, all are distinctive both of
neural systems and of the physics of silicon circuits. Above all, exponentiation of a
current depending on a voltage is the physical result of populations of ion channels
in the nerve membrane and of a transistor operated in weak inversion. Indeed, the
main goal of the original neuromorphic engineering approach was to emulate neural
computation by exploiting a medium whose physical behavior is analogous to that
of biological nervous systems.

The development of neuromorphic systems was focused (and still is) to have both a
scientific and a practical impact.

Neuromorphic circuits can be used as an emulation platform to study broad neural
networks and understand the significance of their computational mechanisms. The
choice over digital simulation (on a conventional computer architecture) is based
on a number of factors. In general, digital simulation is precise, provides complete
data that can be easily displayed, and is very flexible, as the network properties
can be changed by just modifying and recompiling a code. Emulation is much
more effective for very large networks, when simulation time, computational weight
and energy consumption cannot be sustained by a digital computer. However, it
is less accessible than simulation to the general research environment and requires
specialized skills on the part of the designer.

The second objective was to build spatially dense, low power and highly parallel
sensory processing and computing units. These systems are structurally predisposed
to interface with the environment, being built on the same organizing principles of
the brain. They eliminate noise at the single unit level by feedback from a collective
signal at the next step of computation. They rely on adaptation and long-term
learning mechanisms to extract information from noisy input data, that is unreliable
in specific but meaningful overall. These same mechanisms enable them to perform
computation in the presence of unit-to-unit variability and component failure.
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Chapter 1 – Introduction to neuromorphic engineering

This last property is what caused a renewed interest in neuromorphic engineer-
ing in more recent times, with the development of new memory technologies. These
emerging memory devices exploit a broad range of materials and phenomena to store
information as a relative resistance value (thus named resistive memories or memris-
tors), instead of conventional charge-based memories [5]. They can be programmed
in multiple resistance levels through the application of electrical SET and RESET
pulses. However, they suffer from significant inter-device variability and variability
across an array. This supports the integration in neuromorphic architectures, where
these variations could be mitigated by adaptive collective processing.

At the same time, the rise of increasingly data-intensive applications, such as AI,
demands for higher computational power and energy-efficiency hardware technol-
ogy. It is foreseen that this demand will not be met by conventional von Neumann
architectures [8].

In this social and technological context, neuromorphic engineering and computing
is growing as a broad and diverse community aiming to build the next generation
computer technology. The roadmap for its development is an interdisciplinary effort
investigating new materials, devices, circuit architectures, algorithms supported by
new advancements in the field of neuroscience [9, 10].

1.2 Artificial neurons

In spiking neural networks (SNNs), artificial neurons are hardware implementations
that emulate the electro-physiological behavior of biological neurons [11]. They are
usually designed to reproduce or take inspiration from the mathematical models of
spiking neurons developed by computational neuroscience.

Spiking neuron circuits and models share the same classification criteria: they
are divided between conductance-based circuits/models and phenomenological cir-
cuits/models. These two classes both emulate the evolution of the voltage across the
cell membrane and the generation and transmission of action potentials. However,
they differ in their level of detail, their ability to describe different populations of
neurons and spiking behaviors, and the biological mechanisms they emphasize.

Conductance-based models/circuits are detailed biophysical representations that at-
tempt to capture biophysical details of the neuron’s membrane dynamics. They are
based on the equivalent circuit representation of a cell membrane introduced by
Hodgkin and Huxley in 1952 [12–16] (Fig. 1.1). In their simpler version, these
models represent a neuron as a membrane capacitance in parallel to several con-
ductances each with a series driving force (DC voltage generator): the membrane
capacitance is the one of the lipid bilayer; the two nodes of the circuit are equivalent
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Chapter 1 – Introduction to neuromorphic engineering

to the intracellular and extracellular environments; the set of conductance-generator
branches models the variety of ionic channels across the membrane (or the leakage
conductance through the membrane); the driving potential for each branch is the
Nernst potential3 of that ion specie across the cell membrane. Each conductance is
defined by a system of differential equations in mathematical models, and by a spe-
cific electronic block in spiking circuits. These representations are considered more
physiologically realistic than their phenomenological counterparts because they in-
corporate the known biophysical properties of neurons. However, conductance-based
models are usually more computationally expensive, more and more for an increas-
ing degree of complexity. This complexity is usually transmitted from the model
to the hardware as well, since more and more sophisticated differential equations
usually require the design of a larger number of electronic blocks.

Figure 1.1: Equivalent circuit diagram of the Hodgkin-Huxley model.

Phenomenological models/circuits are simplified abstractions of neurons’ behavior.
They focus on capturing the overall transfer function of neuronal activity with-
out explicitly representing the underlying biophysical mechanisms. Compared to
conductance-based equivalents, phenomenological models involve fewer equations
and parameters, making them suitable for large-scale networks simulation. For cir-
cuits, their size and power consumption is related to the specific design.

The choice between these models/circuits depends on the specific goals of the study
and the computational/design-fabrication resources available.

In the next subsections we will focus on a specific spiking behavior, which is spike-
frequency adaptation (SFA). We will introduce a series of phenomenological models
that are able to reproduce it. We will then report examples of adaptive spiking
circuits developed with different technologies.

3The Nernst potential is the electric potential that balances the movement of a specific ion
across a biological membrane due to the concentration gradient of that ion.
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Chapter 1 – Introduction to neuromorphic engineering

1.2.1 Spike-frequency adaptation

Spike-frequency adaptation (SFA) is a biological mechanism where a neuron’s re-
sponse to a constant or repetitive input decays over time: the neuron’s spiking
frequency is maximum at the onset of the constant stimulus and then decreases at
each spiking event towards a steady-state value.

SFA is a fundamental aspect of neural processing because it has important impli-
cations for how the nervous system encodes information: SFA enhances the ability
of the nervous system to detect and prioritize novel and dynamic stimuli, that will
cause higher firing rates, while filtering out redundant or static information. This
mechanism is equivalent to a high-pass filter operation on the neuron’s input [17,18].
This selectivity is essential for emphasizing dynamic sensory features in the envi-
ronment. For example, it improves the ability of projection neurons in insects to
encode the rate of change (gradient) of olfactory information [19]. Also, it was
demonstrated how networks of simple Leaky integrate-and-fire (LIF) neurons with
adaptation can be trained to process temporally-dispersed information and perform
complex operations of sequence recognition [20]. Spike-frequency adaptation is also
involved in maintaining stability in the firing rates across a neural network and
contributes to energy efficiency of neural processing (by reducing the firing rate in
response to sustained stimuli, neurons can conserve energy).

SFA is a property occurring with a slower dynamic compared to spike generation.
A series of biophysical mechanisms can cause spike-frequency adaptation [21] and
they all include a form of slow negative feedback to the excitability of the cell. In
general, they can be due either to inactivation and slow recovery of Na channels
after depolarization4 (inactivation of depolarizing currents), or to activation of slow
spike-dependent or voltage-dependent hyperpolarizing and shunting currents5.

A universal model to analyze SFA was introduced in [21]. Adaptation is measured as
the change in the instantaneous spiking frequency f(t) of the neuron. As long as the
stimulus is supplied, the instantaneous spiking frequency is defined as the reciprocal
of the difference between the spiking times of the last two occurring spikes:

f(t) =
1

tispk − ti−1
spk

, tispk ≤ t < ti+1
spk , i > 1 (1.1)

The difference between two consecutive spiking times is called an interspike interval

4Na channels in the cell membrane are responsible for the depolarization of the cell and the
generation of action potentials. Slowly recovering Na channels after a spike event cause a delayed
generation of the following spike.

5Spike-dependence refers to the activation of a population of ion channels based on the spiking
activity of the cell. Voltage-dependence is a dependence on the cell membrane voltage. Hyperpolar-
izing currents are current contributions that tend to bring the membrane potential at a lower value
than its resting potential. They have a subtractive effect on the excitatory potential. Shunting
currents also reduce the excitatory potential but they work by division.
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Chapter 1 – Introduction to neuromorphic engineering

(ISI).

Figure 1.2: (left): Spike train (top) of an adapting neuron evoked by the onset of a
constant stimulus (bottom, I = 15nA). The spike frequency drops from an initially
high onset rate f0 to a lower steady-state value f∞ at an approximately exponen-
tial rate. (right): Onset frequency-current curve f0(I) and steady-state frequency-
current curve f∞(I) for the same neuron. The two plots report simulations of a
single-compartment conductance-based model: the Ermentrout model [22]. Repro-
duced with permission from Springer Nature [23].

Fig. 1.2 (left) shows the increased interspike intervals of an adaptive spike train
(top) and the variation of the instantaneous spiking frequency over time (bottom)
for a simulated adaptive neuron with a constant current stimulus (shown in green).
It is fundamental to highlight that the spiking response of a neuron depends on the
intensity of the incoming stimulus. Therefore any plot of the instantaneous spiking
frequency over time must be reported with the specific amplitude and time evolution
of the applied stimulus.

The two spiking frequency values f0 and f∞ are of main importance. f0 is the
Onset spiking frequency, which is the instantaneous frequency measured between
the first two spiking events, after the onset of the constant stimulus. The onset
frequency is the maximum spiking frequency measurable for a specific amplitude of
the input current. f∞ is the Steady-state spiking frequency, which is the value the
spiking frequency tends towards with time if the input is kept constant. To a first
approximation, the decay of the firing rate from f0 to f∞ in response to a constant
stimulus is exponential and can be described by an adaptation time constant.

Many measurements of exponential decay in the firing frequency can be summarized
in a single plot, as the one in Fig. 1.2 (right). This diagram shows the values of
the onset and steady-state frequencies of a neuron as a function of the constant
input current’s amplitude: f0(I) and f∞(I). Frequency-current curves are valuable
graphical representations used consistently in neuroscience to report the excitability
and response properties of neurons [24,25].

A series of quantities are of particular importance in this type of measurements.
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Chapter 1 – Introduction to neuromorphic engineering

First of all, the vertical distance between the two curves is a quantitative indicator
of the maximum adaptation strength at a given stimulus intensity. Neurons can also
have f(I) curves that are shifted on the right compared to the one in Fig. 1.2. In
these cases the neuron remains quiescent up to a minimum input current level and
starts firing only with a stimulus above this threshold. This threshold value is the
threshold current of the neuron. Finally, the firing activity of a neuron may reach
a saturation point at high input currents. This occurs because the neuron’s ability
to generate action potentials is limited by factors such as its refractory period.

1.2.2 Adaptive spiking neuron models

Spike-frequency adaptation has been modeled in many extended and simplified mod-
els. In this subsection we report a few examples of these models. Some equations
introduced here will be useful in later Chapters for the development of the organic
adaptive spiking circuit.

The Adaptive exponential integrate-and-fire model (AdEx) [26] is one of the most
used spiking neuron models in (computational) neuroscience. It is a phenomeno-
logical model capable of reproducing many neuronal firing patterns (e.g. adapting,
bursting, delayed spike initiation, initial bursting, fast spiking, and regular spik-
ing) with a simple system of two coupled ordinary differential equations (ODEs).
The model defines the evolution of the membrane potential V for an injected post-
synaptic (or external, or both) current I.

The two equations of the AdEx model are:

Cmem
dV

dt
= gL(EL − V ) + gL∆T e

(V−VT )/∆T − w + I (1.2)

τw
dw

dt
= a(V − EL)− w + bτw

X
t=tspk

δ(t− tspk) (1.3)

with the reset condition:
lim

δt→0+
V (tspk + δt) = Vr (1.4)

and the spiking times tspk that are defined by crossing the spiking threshold voltage
Vcut (or ”cut” voltage because it cuts the increasing exponential):

tspk : V (tspk) = Vcut (1.5)

In order: Cmem is the membrane capacitance; gL is the total leak conductance; EL is
leak reverse potential, or effective rest potential; VT is the threshold potential; ∆T is
the slope factor; w is the adaptation current; τw is the adaptation time constant; a
is the adaptation coupling parameter; b is the spike-triggered adaptation parameter.
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A complete description of the model is present in the original manuscript by Brette
and Gerstner [26]. Also, its phase diagram describing the transition from one firing
type to another by parameter tuning has been presented in [27].

The first equation describes the dynamics of the membrane potential as a conser-
vation of currents across the membrane. The integration of the external current
by the membrane capacitance occurs in presence of a leakage conductance and of
an activation term with an exponential voltage dependence. The leak conductance
is equivalent to the one of a Leaky integrate-and-fire (LIF) model. The exponen-
tial term is introduced to describe the upswing of the action potential in the spike
generation process due to the voltage dependent activation of sodium channels.
The upswing is stopped when the membrane potential reaches Vcut (e.g. 0mV or
+30mV ). V is reset at the value Vr at the next time instant. The adaptation current
w, that is subtracted to the external current, is governed by the second equation.

The second equation is coupled to the evolution of V by the conductance parameter
a. The adaptation current increases of a value b at every spiking event.

An example of spike-frequency adapting response of an AdEx model is reported in
Fig. 1.3. The two plots show the evolution of the membrane voltage V and of the
adaptation current w in response to a constant external current stimulus I.

Figure 1.3: Dynamics of the membrane voltage V and of the adaptation current w of
a simulated AdEx model showing spike-frequency adaptation in response to a step
stimulus I. The neuron’s parameters are: Cmem ≈ 28.27pF , gL ≈ 2.83nS, EL =
−70.6mV , ∆T = 2mV , VT = −50.4mV , τw = 144ms, a = 0.05nS, b = 50.5pA,
Vr = −70.6mV , Vcut = −38.4mV . The spikes are extended graphically up to 30mV .
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The AdEx model is a very versatile and compact model that can describe a variety
of spiking patterns. For the case of spike-frequency adaptation, this behavior is
reproducible by even simpler set of equations as well.

The Adaptive integrate-and-fire model (or Leaky integrate-and-fire with adaptation
model) is a simplified version of the AdEx model that misses the exponential volt-
age dependent term for spike generation, in the first equation. It can be obtained
from the AdEx by taking the limit ∆T → 0. The second equation, governing the
adaptation current, in unchanged. This simplified model can also reproduce SFA.
In Fig. 1.4 we show the simulation of an Adaptive integrate-and-fire model with the
same exact parameters as the AdEx reported previously (Fig. 1.3) and the same
input stimulus.

Figure 1.4: Dynamics of the membrane voltage V and of the adaptation current w of
a simulated Adaptive integrate-and-fire model showing spike-frequency adaptation
in response to a step stimulus I. The neuron’s parameters are equivalent to the
ones reported in Fig. 1.3 (except for the condition ∆T → 0). As in the previous
simulation, spikes are still generated when the membrane voltage reaches Vcut =
38.4mV . However, the equation defining the membrane voltage now misses the
voltage-dependent exponential term. This causes a delay in the spiking times. More
similar spiking times can be obtained by lowering the value of Vcut.

An even simpler (and also historically preceding) model is the one proposed by
Treves in [28]. This was the first model to introduce a linear mechanism of adapta-
tion in a spiking neuron model. It is obtained from the Adaptive integrate-and-fire
model by setting the adaptation coupling parameter a = 0. The conductance a
incorporates the fact that some adaptation currents are already activated by sub-
threshold membrane voltages: with a = 0 the adaptation has pure spike-triggered
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Chapter 1 – Introduction to neuromorphic engineering

coupling (only depends on the spiking events and not explicitly on the membrane
voltage). Indeed, the model is a Leaky integrate-and-fire with spike-triggered adap-
tation.

For clarity, we write the equations of the model by Treves, that we obtained start-
ing from the AdEx model and imposing the two restricting conditions expressed
previously. The model by Treves writes:

Cmem
dV

dt
= gL(EL − V )− w + I (1.6)

τw
dw

dt
= −w + bτw

X
t=tspk

δ(t− tspk) (1.7)

with the reset condition:
lim

δt→0+
V (tspk + δt) = Vr (1.8)

and the spiking times defined by crossing the spiking threshold Vcut:

tspk : V (tspk) = Vcut (1.9)

A simulation of this model is shown in Fig. 1.5, with the same neuron’s parameters
and input stimulus as the AdEx reported in Fig. 1.3.

Figure 1.5: Dynamics of the membrane voltage V and of the adaptation current
w of a simulated Leaky integrate-and-fire with spike-triggered adaptation model in
response to a step stimulus I. The neuron’s parameters are equivalent to the ones
reported in Fig. 1.3 (except for conditions ∆T → 0 and a = 0).
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Chapter 1 – Introduction to neuromorphic engineering

Integrate-and-fire neurons with adaptation variables are compact and efficient mod-
els that can reproduce a variety of neuronal firing patterns [29]. They are inadequate
to describe complex neuronal behaviours (e.g. those related to the cell geometric
structure or to dendritic compartments), but they are sufficient to reproduce the
basic features of neuronal transduction. For example they can be used to predict
the spiking times of cortical neurons under current injection [30, 31]. Emulation of
these models on neuromorphic hardware enables large-scale neural network investi-
gation, facilitating the exploration of network dynamics and the study of emergent
properties.

1.2.3 Adaptive spiking neuron circuits

In the last thirty years, many examples of adaptive artificial neurons have been
proposed in CMOS technology. These include circuits that reproduce with good ac-
curacy the equations of biological spiking models, and circuits that are more loosely
bound to mathematical models, but still emulate the characteristic firing patterns
and are usually more compact.

Two main techniques are used to implement spike-frequency adaptation in spiking
circuits.

The first one is to integrate the voltage spikes generated by the neuron itself and
subtract the resulting slow dynamics current to the membrane potential. This can
be achieved with different low-pass filtering (LPF) strategies and architectures that
are well documented in [32,33]. These adaptive blocks usually present tuning nodes
(usually the gate of specific transistors in the circuit) that introduce degrees of
freedom in the parameters of the adaptation current, e.g. tuning of the adaptation
time constant τw or of the spike-triggered adaptation parameter b. For example,
the ”Tau-Cell” circuit, first reported in [34] as a BiCMOS6 log-domain filter, was
used to develop hardware representations of well-know spiking models, such as the
Izhikevich model [35, 36].

A second mechanism to implent SFA is to introduce a dynamic spiking threshold.
In this case the spiking threshold value is updated depending on the spiking activity
of the neuron: it increases if spiking events occur too frequently, thereby increasing
the next interspike intervals for a constant input, and viceversa. An example is
given by the the Generalized linear integrate-and-fire model proposed by Mihalas
and Niebur [37] and its hardware implementation [38].

This last strategy is frequently used also in artificial neurons developed with emerg-
ing resistive memory technologies. In these circuits, the output spikes of the neuron
are used as SET or RESET pulses applied across a volatile or non-volatile memristive

6Bipolar Complementary Metal-Oxide-Semiconductor (BiCMOS) is a mixed technology that
integrates CMOS and BJT on the same chip.
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device, causing a resistance change, which is then converted into a spiking threshold
variation by the circuit architecture. Artificial neurons with adaptive thresholds
have been developed with different emerging technologies, including phase-change
materials [39] and valence change memories [40,41].

Memristive devices are also extremely versatile to build spiking neurons with ar-
chitectures that closely resemble the circuit diagrams of conductance-based spiking
models, such as the one for the Hodgkin-Huxley model reported in Fig. 1.1. For
example, a variety of neuronal dynamics were emulated in [42] using similar cir-
cuit topologies and nanoscale vanadium dioxide (V O2) active memristors, including
spike-frequency adaptation. The main drawback to these type of circuits is that
they integrate a significant number of passive elements, which may condition their
scalability into large networks and also set many neuron properties at the time of
fabrication.

In recent years, spiking neurons built with organic materials have also been de-
veloped. Organic electronics is a less mature technology than the ones previously
mentioned, but it is promising for extended functionalities, such as biocompatibil-
ity [43] and for flexible electronics [44]: these two properties combined are crucial
to develop a technology that can interface with biological tissue.

Organic electrochemical transitors (OECTs), in particular, are an emerging tech-
nology that intrinsically operates similarly to nerve membranes, as they use an elec-
trolytic solution with ionic currents to charge and discharge an organic (polymeric)
capacitance.

Both conductance-based and phenomenological circuits have been proposed with
OECT technology. These artificial neurons introduce many interesting features for
bio-realistic and possibly interfaceable neuromorphic systems. In many cases, they
show modulation of the neuron’s activity based on the concentration of ion species,
neurotransmitters or aminoacids present in the electrolytic solution [45–48]. This
modulation can occur as a modification of the frequency-current curve or as a vari-
ation in the response time after the application of a stimulus. The circuits can
be tuned at the device level to be sensitive to common physiological ionic and
biomolecular concentration variations of the surrounding environment. They can
also present signal transduction from light stimulus to spiking frequency, addition-
ally to ionic/biomolecular sensing [48]. Moreover, device engineering and organic
chemistry can be exploited to fabricate devices that emulate individually the tempo-
ral dynamics of ionic channels in biological nerve membranes, for the development
of compact Hodgkin-Huxley based circuits [47].

As we discussed in Sec. 1.1, the main goal of the original neuromorphic engineer-
ing approach was to emulate neural computation by exploiting a medium whose
physical behavior is analogous to that of biological nervous systems. At its deepest
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Chapter 1 – Introduction to neuromorphic engineering

level, OECT-based neuromorphic engineering rests not on phenomenological anal-
ogy between media, but on the use of the media itself. The price to pay, within
the current technological context, is limited scalability and stability compared to
many solid-state technologies, even if progress is being made [44]. The development
of compact circuits with an increasing number of functionalities is therefore funda-
mental at present for the development of the field, and will also be fruitful in the
long run. As we hope to have justified with this introductory Chapter, the devel-
opment of adaptive spiking circuits is an important step for emerging technologies
towards the realization of more bio-realistic neuromorphic hardware. To the best of
our knowledge, an organic artificial neuron that emulates spike-frequency adaptation
has not been developed yet. In this thesis, we present a compact spiking architecture
that exploits the synaptic plasticity property of OECTs and device engineering to
implement tunable spike-frequency adaptation in an all-organic artificial neuron.
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Chapter 2

OECTs

Organic electrochemical transistors (OECTs) are thin-film three-terminal transis-
tors that exploit reversible ionic doping/de-doping of the semiconducting channel to
actively modulate its conductivity. Since their first development by Wrighton et al.
in the mid-1980s [49], they gained increasing interest due to their broad tunability,
low-voltage operation, low-cost fabrication and biocompatibility.

More recently, they emerged as a promising technology for the design of artificial
synapses and neurons. Their ability to emulate a variety of neurological mechanisms,
such as short-term and long-term plasticity [50, 51], and their operation relying on
ionic transport, make them intrinsically similar to neurobiological membranes.

In this Chapter, we discuss the architecture, the physics and the mechanisms of
operation of OECTs. We also address some available models to describe their steady-
state and transient response, depending on the applied voltages and their structural
and electrochemical parameters. These models will be used to simulate the behavior
of larger organic electrochemical circuits in the following Chapters.

All equations in this Chapter refer to hole transporting polymers. Indeed, p-type
OECTs are the ones most frequently found in literature.

2.1 Physics and operation

An OECT consists of an organic semiconducting film connected to a source and a
drain terminal and coupled to a gate electrode via an electrolytic solution (Fig. 2.1).

The semiconducting polymer has an initial conductivity σ = qµp0, where q is the el-
ementary charge, µ is the hole mobility; and p0 is the initial hole density. Effectively,
the conductivity of the OECT’s channel is defined once the semiconducting polymer
is immersed in the electrolyte and is permeated by water and ions (both anions and
cations). By applying a voltage to the gate electrode, a voltage difference forms
between the electrolyte and the semiconducting channel, and further ions can be
injected into (subtracted from) the polymeric film. The sign and amplitude of this
voltage difference determine the verse of ionic transport and the number of trans-
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Chapter 2 – OECTs

Figure 2.1: Architecture of an organic electrochemical transistor (OECT), showing
source (S), drain (D) and gate (G) terminals. Current and voltages are consistent
with the convention for a p-type transistor (more common type of OECT).

ported ions, therefore the conductivity variation. Two mechanisms are possible and
they induce opposite modulation. In depletion-mode p-type OECTs, an increas-
ing voltage applied to the gate causes injection of cations into the channel, which
replace holes as positive charges to compensate for the anions present in the poly-
mer: depletion-mode OECTs turn off with an increasing gate voltage, analogously
to p-type MOSFETs. In accumulation-mode n-type OECTs, the cations injected
by the increasing gate voltage induce accumulation of electrons inside the polymer:
accumulation-mode OECTs turn on with an increasing gate voltage, analogously to
n-type MOSFETs. Finally, the applied source-drain voltage induces a drain current
proportional to the channel’s conductivity.

OECTs rely on a completely different doping mechanism than field-effect transistors
(FETs). A gate voltage in a MOSFET causes a 2D inversion layer to form at the
interface with the oxide. The same voltage in an OECT causes a 3D bulk charge
accumulation inside the channel (Fig. 2.2). This difference entails that the thickness
d of the deposited polymer is an active parameter that influences the value of the
gate-channel capacitance. This intrinsic property is responsible for the exceptionally
large transconductance values of OECTs (on the order of millisiemens for micro-scale
devices [52]) and the possibility to tune it without modifying the footprint (W\L).
OECTs also have only three terminals and miss a bulk terminal. However, they can
still be described effectively by models analogous to the ones used for MOSFETs.
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Figure 2.2: Different operating physics between MOSFETs and OECTs (p-type). A
2D inversion layer is formed at the insulator-semiconductor interface in a MOSFET
due to the gate voltage. 3D bulk doping occurs inside the semiconducting channel
of an OECT when a gate voltage is applied.

2.2 Steady-state response and scaling

The Bernards model, first reported by Daniel Bernards and George Malliaras [53],
describes the electronic charge in an OECT’s channel with the same set of equa-
tions used for long-channel MOSFETs, with a single modeling change: the oxide
capacitance Cox of MOSFETs is replaced by the product dC∗ (thickness times volu-
metric capacitance), which considers for the modulation of conductivity in the entire
volume of the semiconducting channel.

The Bernards model for a p-type OECT reads:

ID =


0 VSG ≤ VT

µC∗Wd
L
[(VSG − VT )VSD − 1

2
V 2
SD] VSG > VT , VSD ≤ VSG − VT

1
2
µC∗Wd

L
(VSG − VT )

2 VSG > VT , VSD > VSG − VT

(2.1)

where ID is the drain current; µ is the hole mobility; C∗ is the volumetric capacitance
of the channel’s polymer; W , d and L are the channel width, thickness and length,
respectively; VSG and VSD are the applied source-gate and source-drain voltages;
and VT is the threshold voltage.

The set of equations for the transconductance gm can be derived from Eq. 2.1 and
writes:

gm =

(
µC∗Wd

L
VSD VSG > VT , VSD ≤ VSG − VT

µC∗Wd
L
(VSG − VT ) VSG > VT , VSD > VSG − VT

(2.2)

The Bernards model does not report the OECT’s behavior in weak inversion (here
we reported a null current in the subthreshold region). However, it is important to
clarify that OECTs can be operated in weak inversion and can be optimized to reach
subthreshold swings close to the thermodynamic limit [54]. The OECT’s model in
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weak inversion is analogous to the equations written before and writes:

ID =
n
2nµC∗Wd

L
U2
T e

VSG−VT
nUT (1− e

−VSD
UT ) VSG < VT (2.3)

where n is the slope factor; and UT = KbT
q

is the thermal voltage.

The Bernards model also considers ionic transport inside the electrolyte, which cor-
relates to the OECT’s transient response and switching speed. The complete model
combines an equivalent electronic circuit and an equivalent ionic circuit (Fig. 2.3):
the former relies on the quasi-static approximation1 for the charge distribution in the
OECT’s channel, defines the steady-state behavior of the device and is described by
Eq.s 2.1 and 2.3; the latter models the drift-diffusion of ions in the gate-electrolyte-
channel system and introduces temporal dependence to the model. This second
component consists of two capacitors CG and CCH , that model the gate-electrolyte
and channel-electrolyte interfaces, respectively, and a series resistor RE, that corre-
sponds to the ionic resistance of the electrolyte. For ease, the B-M model assumes
that the permeation of negative ions has no effect on the organic semiconductor
and that all charge densities are uniform across the channel’s thickness (the model
is limited to thin-film transistors). Moreover, it assumes that no electrochemical
reactions occur at the gate electrode.

Fig. 2.3b also shows the potential distribution across the OECT. In a well-designed
OECT, the gate capacitance CG is much larger than the channel capacitance CCH ,
so most of the applied gate voltage drops at the channel-electrolyte interface. This
is equivalent in a well-designed MOSFET, where the poly-silicon gate is heavily
doped in order to limit depletion inside of it. To achieve this result, two solutions
are possible in OECTs. The first one is to deposit the same polymer used for the
channel on a gate contact with a much larger footprint than the channel itself. This
implementation exploits the volumetric ion intake of organic polymers: by increasing
the footprint of the gate, more ions can be injected into the gate’s polymer with
respect to the channel, and the gate capacitance will be larger than the channel’s
one. Equivalently, one could increase the thickness of the gate’s polymer. However,
keeping a constant thickness for all polymers allows to deposit the channel and the
gate in a single fabrication step. The second possibility is to use non-polarizable
gate electrodes, such as Ag/AgCl pellets. Generally, a 10:1 ratio between CG and
CCH is required for efficient gating.

The Bernards model predicts that the OECT’s response is linked to the ionic RC
time constant τi = RECCH . The two quantities RE and CCH depend on the dimen-
sions of the channel, other than the type of semiconducting polymer and electrolytic
medium. The channel capacitance is uniquely defined as CCH = C∗WdL. On the
other hand, the electrolyte resistance shows different proportionalities depending on

1The quasi-static approximation assumes that the drain current only depends on the instanta-
neous values of VSG and VSD and neglects the effect of their time-dependent variations.
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(a) Electronic circuit. (b) Ionic circuit.

Figure 2.3: The complete Bernards model. Electronic conduction inside the OECT’s
channel is modeled as a tunable resistor. The ionic system, made of gate electrode,
electrolyte and polymeric channel, is modeled as a series of two capacitors (inter-
faces) and a resistor (ionic conduction through the electrolyte).

the OECT’s architecture. Researchers demonstrated via electrochemical impedance
spectroscopy that the electrolyte resistance for gold electrodes coated with PE-
DOT:PSS2 surrounded by a much broader electrolyte volume scales as RE = r∗ 1√

WL
,

where r∗ has the unit of resistivity [55, 56]. In this case, the two scaling laws com-
bined imply that the ionic time constant scales with the dimensions of the polymeric
channel as τi ∝ d

√
WL. In the different case of a planar OECT fabricated with the

electrolyte confined in a microfluidic path between gate and channel, with defined
length h and cross-sectional area A, the resistance is given by RE = r∗ h

A
. For this

second architecture, the ionic time constant scales as τi ∝ WdLh
A

, where the specific
definition of A depends on the relative dimensions of the electrolyte path and the
channel. In both cases r∗ = 1

σ
, where σ is the electrolyte conductivity (or specific

conductance). For sufficiently low ionic concentrations, σ = q(c+z+u+ + c−z−u−),
where c, z and u are the concentrations, ion charge and mobility, respectively, of the
dissociated positive or negative ions.

In reality, the contribution of the gate capacitance CG should also be considered
when calculating the ionic time constant. The response speed is limited by the equiv-
alent capacitance given by the two capacitors CG and CCH in series: Ceq ≡ 1

1\CG+1\CCH
.

However, this quantity can be approximated to Ceq ≈ CCH if the condition defined
earlier for efficient gating is valid.

As a note, OECTs can also be fabricated as all solid-state devices, by substituting the

2Poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate), abbreviated PEDOT:PSS, is the
most common polymer used in OECTs. In PEDOT:PSS, the holes in the conductive backbones of
PEDOT are compensated by the sulfonate ions (SO−

3 ) of PSS, which acts as a stabilizing agent.
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liquid electrolyte with an ion gel3. The tradeoff of not needing device encapsulation
is that this type of ionic conductors have higher resistivities and slow down the
operation of the OECT.

Bernards and Malliaras further develop their model and manage to obtain an ex-
pression for the time-dependent currents. As we will see in the next section, source
and drain currents do not match in the transient response of an OECT. For a more
intuitive explanation, we will introduce the OECT’s transient response with a circuit
schematic first proposed by Friedlein et al. [57] some years after the calculations of
Bernards and Malliaras.

2.3 Transient response

The circuit diagram proposed by Friedlein et al. is depicted in Fig. 2.4. The
schematic is equivalent to the electronic and ionic circuits in Fig. 2.3. However,
the channel capacitance CCH is now split into two components CCHD

and CCHS

that couple the gate to the drain and to the source, respectively. This expedient
allows to draw a single equivalent circuit for the entire OECT.

We suppose to operate the OECT with a fixed source-drain voltage and a source-
gate voltage that varies with time. The source and drain currents are now composed
of two contributions: the channel current and the gate current.

The channel current iCH is equivalent to the steady-state case. It represents the
instantaneous value of the electronic conductance of the channel and it is described
by Eq. 2.1 (and Eq. 2.3), except that VSG must be substituted with vSE:

iCH =


0 vSE ≤ VT

µC∗Wd
L
[(vSE − VT )VSD − 1

2
V 2
SD] vSE > VT , VSD ≤ vSE − VT

1
2
µC∗Wd

L
(vSE − VT )

2 vSE > VT , VSD > vSE − VT

(2.4)

This new voltage vSE represents the source-gate voltage after the propagation through
the electrolyte and is the effective voltage difference that is sensed by the channel.

The gate current iG is a transient current and is given by the sum of two contri-
butions. The first one is the electronic leakage through the electrolyte ileak, which
is usually negligible and that will be neglected from now on. The second one is
the ionic displacement current iION . The ionic displacement current represents the
transient of majority carriers that leave/repopulate the channel due to the ionic
doping/de-doping, caused by the time-varying gate voltage.

3An ion gel is a composite material consisting of an ionic liquid immobilized by an inorganic or
a polymer matrix.
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Figure 2.4: Circuit schematic of the Friedlein model. Compared to the Bernards
model, the channel capacitance is split into two contributions CCHD

and CCHS
. The

model assumes CG >> CCH , so the gate capacitance is neglected.

As an example, we take as a reference the p-type OECT in Fig. 2.1: the OECT has
some initial applied voltages VSG > 0 and VSD > 0 with a defined value of channel
conductance. If the gate voltage is increased, the gate electrode repels cations
present in the electrolyte. The cations drift towards the polymeric channel and dope
it. This motion occurs with the ionic time constant τi = RECCH defined in Sec. 2.2.
Accordingly, holes that were previously present in the channel, will be repelled by
the newly absorbed cations and leave the polymer. At this point, the majority
carrier concentration inside the polymer decreases, therefore its conductance, and
this variation is considered by the channel current. Also, holes that leave the channel
flow either towards the source, or the drain, with a certain ratio. This second effect
is provided for by the ionic displacement current. Intuitively, holes will tend to move
towards the lower voltage terminal, in this case the drain, and this is modeled by
having CCHD

> CCHS
.

Finally, the drain current will be equal to the sum of the channel current and the
portion of ionic displacement current which flows towards the drain; by contrast,
the source current is given by the difference of the channel current and the portion
of ionic displacement current which flows towards the source.

This phenomenology is described by the following set of equations, which can be
directly derived from the circuit diagram in Fig. 2.4.

The total source and drain currents are:

iD = iCH + iIOND
(2.5)

iS = iCH − iIONS
(2.6)
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where iIOND
and iIONS

are the portions of ionic displacement current that flow
towards the drain and the source, respectively. These two contributions are given
by:

iIOND
= CCHD

d

dt
(vE − VD) (2.7)

iIONS
= CCHS

d

dt
(vE − VS) (2.8)

where CCH = CCHD
+ CCHS

. Finally, we can write the ohm law through the elec-
trolyte:

vG − vE = REiG (2.9)

where iG ≈ iION = iIOND
+ iIONS

since the electronic leakage in the electrolyte is
negligible.

Eqs. 2.7 and 2.8 can be substituted into Eq. 2.9 to obtain the differential equation
for the voltage vE. Since VD and VS are constant in time, we obtain:

d

dt
vE =

1

RECCH

(vG − vE) (2.10)

RE, CCHD
and CCHS

form a RC integrator (τi = RECCH) of the input gate voltage
with transfer function

H(s) =
1

1 + τis
(2.11)

This property of OECTs enables them to have plasticity behavior.

We can start by analyzing the OECT’s response to a single pulse applied to the
gate and then extend the discussion to a train of input pulses (these could represent
incoming action potentials from an artificial neuron).

First, the RC integrator’s impulse response, which is its response to a unit impulse
input signal vG(t) = δ(t), is:

vE(t) =
1

τi
e
− t

τi · u(t) (2.12)

where the step function u(t) =

(
1 t ≥ 0

0 otherwise
; this is obtained by calculating the

inverse Laplace transform of the transfer function (vG(s) = 1). To know the impulse
response of the system is an extremely important result. In fact, the response of
a linear time-invariant system to any arbitrary signal x(t) can be computed by
performing the convolution of its impulse response with the signal itself [32].
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In the practical case of a pulse input, we can derive the circuit’s solution analytically
by considering the pulse as the difference of two step functions. For a pulse vG(t),
with amplitude vG0 , that starts at t = t0 and ends at t = t1 (t1 ≥ t0), we can write:

vG(t) = vG0 · (u(t− t0)− u(t− t1)) =

(
vG0 t0 ≤ t < t1

0 otherwise
(2.13)

The integrator’s step response (its response to a unit step input signal vG(t) = u(t))
can be calculated analogously to the impulse response and yields:

vE(t) = (1− e
− t

τi ) · u(t) (2.14)

Therefore, the total solution for the voltage vE(t) is:

vE(t) =


0 t < t0

vG0(1− e
− t−t0

τi ) t0 ≤ t < t1

vG0(1− e
− t1−t0

τi )e
− t−t1

τi t ≥ t1

(2.15)

where we imposed continuity.

Fig. 2.5b shows the evolution of the voltage vE(t) on a simulated OECT (Fig. 2.5a),
when a single upward pulse or a train of pulses are applied to the gate. The two
cases also differ in the duration of the applied pulses (to give a complete overview
on the possible behaviors of an OECT). The simulated circuit is matched to the
p-type PEDOT:PSS4 OECT reported in [57].

In the first case of Fig. 2.5b, the single pulse has a duration that is much longer
than the ionic constant of the OECT: t1 − t0 > 10τi. This allows the voltage vE(t)
to reach steady-state (20mV) before decaying exponentially when the pulse ends.
In this regime the OECT does not show plasticity but just a delayed response.

In the second case, the OECT is operated with very short gate pulses, that are
also close in time: ti1 − ti0 ≈ τi, t

i+1
0 − ti1 ≈ τi (index i specifies the pulse number

in the pulse train). In this second condition, the RC rise of the voltage vE(t) is
interrupted before it can reach steady-state (20mV), due to the short-duration of
the input pulse. Also, the RC decay is stopped by a new incoming pulse, before vE(t)
can reach 0mV. This entails that the new RC rise of vE(t) now starts with initial
condition vE(t

i+1
0 ) ̸= 0. The result is that the maximum voltage vMAX

E touched by
the OECT keeps increasing with each pulse and saturates for a number of pulses
i → ∞, if the properties of the train of pulses do not change. vMAX

E depends on
vG0 , τi, t

i
1 − ti0 and ti+1

0 − ti1, as can be deduced from Eq. 2.15.

4The polymer PEDOT:PSS is conductive in its natural state. PEDOT:PSS OECTs can be
operated effectively with an applied voltage difference vSG < 0, as in the simulation of Fig. 2.5a.
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(a) Simulated Friedlein schematic.

(b) Effective voltage vE sensed by the OECT’s channel for different pulsed inputs (vG).

Figure 2.5: SPICE simulation of a p-type PEDOT:PSS OECT reported in [57]. The
voltage vE sensed by the channel is the output of a RC integrator with input the
gate voltage vG. The OECTs shows plasticity if the input pulses have duration
and delay that are comparable to the OECT’s ionic time constant τi or shorter.
For the simulated OECT τi ≈ 0.3ms. Rise and fall times of the gate voltage are
100ns << τi, so the signals are rectangular pulses with good approximation.

We can write the generalized version of Eq. 2.15 for any pulse i in the pulse train,
depending on the previous pulse (i− 1) and the time gap between the two ti0 − ti−1

1 :

vE(t) =


vE(t

i−1
1 )e

−
t−ti−1

1
τi ti−1

1 ≤ t ≤ ti0

vE(t
i
0) + (vG0 − vE(t

i
0))(1− e

− t−ti0
τi ) ti0 ≤ t ≤ ti1

vE(t
i
1)e

− t−ti1
τi ti1 ≤ t ≤ ti+1

0

(2.16)

where the values of vE(t
i
0) and vE(t

i
1) can be found by imposing continuity.

These are the fundamental formulas that describes OECT’s short-term plasticity
(STP) property, that is much used in literature [58–60].
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At this point, we shall calculate the complete source and drain currents in the
transient regime. To do that, we have to define how the channel capacitance CCH

splits between CCHD
and CCHD

, or equivalently how the displacement current splits
between drain and source.

To account for this effect, Bernards and Malliaras first introduced a proportionality
factor f that defines the fraction of displacement current that contributes to the
drain current (symmetrically, 1 − f is the fraction that contributes to the source
current). This factor considers for the spatial non-uniformity of the doping/de-
doping process along the channel’s length. Indeed, more cations will tend to dope
the channel close to the lower voltage terminal, the drain, than close to the source.
Therefore, the f-factor assumes values in the range [1

2
; 1]: for instance, it reaches

values close to 1
2
when VG >> VS > VD, while it approaches 1 when VS >> VG > VD.

The treatment of this weighting factor distinguishes several models that are varia-
tions of the Bernards model [57,61,62].

As a first approximation, the Friedlein model [57] does not consider for non-homogeneous
doping/de-doping of the channel and sets CCHD

= CCHS
= CCH/2. Therefore,

the ionic displacement current is equally distributed between source and drain:
iIOND

= iIONS
= iION/2.

Fig. 2.6 (left) shows the channel and ionic current contributions for the OECT
modelled with the Friedlein approximation of Fig. 2.5, for different values of VSD.

The splitted ionic currents iIOND
and iIONS

are capacitive currents. They only
depend on the time derivative of vG(t), since VD and VS are fixed in time (Eq.s 2.7
and 2.8). Therefore, they do not change between the three cases. The channel
current iCH depends on VSD instead, as well as on vG(t) (Eq.s 2.4).

The sum/difference of these contributions gives the drain/source currents of the
OECT, according to Eq.s 2.5 and 2.6. These are shown in Fig. 2.6 (right).

In particular, iD is given by the sum of these two. In a p-type OECT, the variations
of iCH and iIOND

due to a stepped or pulsed gate voltage are always opposite in sign.
Therefore the drain current always shows a ”spike and recovery” behavior, where
the spike is the capacitive spike of the drain ionic displacement current iIOND

. Note
that this is equivalent for the drain current in a n-type OECT, where iD is given by
the difference of iCH and iIOND

, but these two now have same sign variations.

The source current shows different behaviors, instead. It evolves either in a ”spike
and recovery” way, or a ”fast switching” way, or a ”monotonic decay” way, depending
on the ratio between the maximum variations of iCH and iIONS

.

We can better understand these three regimes by analyzing analytically these two
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current variations. The former we define it as:

∆ICH = ICH(vSE(t0), VSD)− ICH(vSE(t1), VSD) (2.17)

which is the difference between the initial and final channel currents (right at
the start and at the end of the applied gate voltage step); the latter is given by
iIONS

(t0+). From Eq. 2.8 with vE(t) given by Eq. 2.15, this can be calculated to be:

iIONS
(t0+) =

CCHS
vG0

τi
=

(1− f)C∗WdLvG0

τi
(2.18)

If we consider an OECT operated in triode and that reaches steady-state, as the
one in Fig. 2.6, we can write the variation of iCH due to the first step of vG(t) as:

∆ICH = µC∗Wd

L
vG0VSD (2.19)

We can finally calculate the ratio between the two to be:

iIONS
(t0+)

∆ICH

=
(1− f)L2

µVSDτi
(2.20)

Eq. 2.20 clarifies the behaviors in Fig. 2.6. First of all, this ratio decreases as ∝ 1
VSD

.
This entails that an increasing VSD contributes to make the OECT’s transition from
the ”spike and recovery” behavior to the ”monotonic decay”. The intermediate case

of ”fast switching” is obtained for a ratio close to 1, therefore for VSD ≈ (1−f)L2

µτi
.

Also:
L2

µVSD

= τe (2.21)

which is the electronic transit time across the channel.

The three behaviors are related to different ratios between the time scales of ionic
and electronic transport. In the ”spike and recovery” case, the OECT’s switching
time is limited by hole conduction through the channel and (1 − f)τe > τi. In
the ”monotonic decay”, it is limited by ionic conduction through the electrolyte,
(1 − f)τe < τi and iS evolves with an abrupt variation followed by an exponential
relaxation. In the intermediate ”fast switching” case, the two transport mechanisms
have comparable time constants, (1 − f)τe ≈ τi and the OECT’s response is close
to a square current step.

The model we presented up to now allows to engineer OECTs to behave in either
of these regimes, for some specified operating conditions (VSG, VSD). This could be
useful for some applications, such as ionic- or bio-sensing. For example, the capaci-
tive spike signal could be maximized over the channel current by a series of design
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choices, such as setting the OECT to the correct operating point, increasing the
channel dimensions with a fixed W/L ratio or shortening the gap between channel
and gate. Small variations of electrolyte resistance due to changes in the ionic con-
centration could be sensed by applying a know AC signal to the gate and measuring
the drain current (or source current). From Sec. 2.2 we know that R ∝ 1

cI
. In this

section we also calculated the maximum change in the source ionic displacement
current (Eq. 2.18). Similarly, the maximum change in the drain ionic displacement
current can be written as:

IIOND
(t0+) =

CCHD
vG0

τi
=

fC∗WdLvG0

τi
(2.22)

Combining these two formulas we obtain:

IIOND
(t0+) ∝ vG0cIf (2.23)

This proportionality is independent from the channel capacitance. However, to
increase the channel capacitance entails an increase in the ionic time constant. If
the ratio W/L is unchanged, the channel current variation ∆ICH of Eq. 2.17 is
minimized because the cutoff frequency of the RC integrator (low-pass filter) is
reduced. Also, IIOND

(t0+) can be maximized by having a f-factor close to 1 and
by increasing the amplitude vG0 of the input gate voltage. These two conditions
correspond to setting proper operating conditions of the OECT sensor.

In mixed-signal ICs however, having drain and source currents that do not match can
be problematic in most situations. Therefore, the ionic displacement spikes should
be minimized. Opposite considerations to the ones made for the OECT sensor hold
in this case. Morevoer, the electrolyte resistance can be increased to reduce the
amplitude of these spikes, at the expense of a slower OECT.
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Figure 2.6: Channel current iCH (yellow), split ionic displacement currents iIOND,S

(green), drain current iD (orange) and source current iS (purple) simulated for three
different values of VSD applied to the Friedlein modelled OECT. The applied gate
voltage pulse vG(t) is the one reported previously. iD always shows a ”spike-and-
recovery” behavior. iS shows three possible behaviors: ”spike and recovery” (upper
case), ”fast switching” (middle case), ”monotonic decay” (lower case).
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2.4 Double-gate architecture

As we saw in Sec. 2.2, OECTs can be fabricated either with a Ag/AgCl pellet gate
electrode cantilevered on top of the channel, or with a lateral planar gate covered
by organic polymer. The latter architecture in particular has been exploited in
literature for the fabrication of OECTs with multiple gates.

These can be several and placed at different distances to the channel, to encode
different spatiotemporal information [63,64]. In this case, the distance to the channel
is related to the ionic resistance between each gate and the channel. A gate pulse
exhibits then different ionic time constants depending on which gate it is applied
to, and is sensed differently by the channel.

Another possibility is to have two gates, where the second one is used as a tuning
gate [65]. A planar double-gate OECT architecture is shown in Fig. 2.7. In a double-
gate device, the first gate is operated as the standard main gate (sweep gate). The
second gate can be used as a control gate with an applied DC bias, to shape the
OECT’s transfer and output characteristics. This feature allows tunability of a
single-device in situ, after this has been fabricated with a specific design.

The tuning of the double-gate characteristics by the voltage at the second gate can
be expressed as a dependence of the threshold voltage, as reported in [65]. The
threshold voltage VT for a p-type double-gate OECT follows the formula:

VT = V 0
T

(Agate1 + Agate2 + Achannel)

Agate1

− VSG2

Agate2

Agate1 + Agate2

(2.24)

where V 0
T represents the threshold voltage without the presence of gate 2; VSG2 is

the voltage applied to the second gate (with respect to the source); Agate1 , Agate2

and Achannel are the areas of gate 1, gate 2 and channel, respectively.

This dependence on VSG2 allows to both decrease and increase VT : if VG2 < VS

(VSG2 > 0), then the threshold voltage decreases; conversely, if VG2 > VS (VSG2 <
0), the threshold voltage increases. This second case allows potentially to tune
the OECT to always operate in weak inversion, for any biasing condition under a
specified circuit voltage supply. For example, we can think of a circuit with a 0.6V
supply, and standard OECTs spincoated with a polymer with threshold voltage of
around 0.2V . Clearly, any signal produced by the circuit is limited by the voltage
supply, i.e. it has amplitude < 0.6V . Any standard OECT is biased either in weak,
moderate or strong inversion depending on its biasing conditions. A double-gate
OECT with a sufficiently increased threshold (> 0.6V ) however, always works in
weak (or moderate) inversion independently of its source to gate voltage VSG1 , as
long as this is limited to the voltage supply.

This feature allows simplification of circuit biasing by only changing the voltage at
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an independent node. It is therefore of great significance.

Figure 2.7: Schematic of a planar double-gate OECT with a drop of electrolyte
connecting the two gates and the channel. The two gates have the same geometry,
dimensions and distance to the channel, therefore they are equivalent.
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Hybrid organic-inorganic adaptive neuron

In Chapter 2 we described the operation of organic electrochemical transistors: we
analyzed their steady-state and transient responses, their scaling properties and the
possible device architectures. Above all, we introduced a mathematical model that
predicts all these behaviors and features.

We gave a mathematical definition of two fundamental OECT’s properties. We
explained why and in which conditions OECTs show short-term plasticity (STP) by
solving the Friedlein model for multiple pulses applied to the gate. We described
in situ threshold voltage tuning in an OECT with a double-gate architecture, and
we introduced a formula that could predict the VT shift based on the source-gate
voltage applied to the second gate.

In this Chapter, we make use of this complete mathematical model to develop a
circuit architecture that emulates spike-frequency adaptation and that can be tuned
in situ. We start by defining the analogy between the drain current of a short-term
plastic OECT and the adaptation current equations that we introduced in Chapter 1.
We describe how the OECT should be optimized to resemble as closely as possible
the behavior of these equations. Also, we propose to tune the magnitude of this
adaptation current by exploiting the double-gate architecture introduced previously.
We then described the adaptive spiking circuit, its two blocks, its operation and
biasing conditions. This first implementation of the artificial neuron is a hybrid
version that combines OECT and CMOS technologies. To validate this design, we
fabricated, characterized and then modelled on LTSpice the adaptive double-gate
OECT and introduced it in a simulated circuit built with TSMC 0.18µm node. The
results of this hybrid Spice simulated circuit are discussed in the last section.

3.1 Adaptive double-gate OECT optimization

In Sec. 1.2 we introduced a series of spiking neuron models from computational
neuroscience that can be used to reproduce spike-frequency adaptation. In Sec. 2.3
we described the transient response of OECTs and the conditions in which they show
short-term plasticity. Here we develop a brief mathematical discussion to show the
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analogy between the adaptive current of spiking models and the plasticity of an
OECT device. We start from Eq 1.7, defining the linear mechanism of adaptation
introduced by Treves, and Eq 2.10, governing the effective voltage vE sensed by the
channel of an OECT with constant source and drain voltages. We report the two
equations again here for clarity:

τw
d

dt
w = −w + bτw

X
t=tspk

δ(t− tspk)

τi
d

dt
vE = −vE + vG

The analogy between the two equations is evident: if the gate voltage signal vG
applied to the OECT is a series of Dirac delta functions, they are in fact the same
equation.

This supports the thesis that the emulation of a bio-realistic adaptation current can
be achieved in an artificial neuron circuit with a single OECT device. There are
however a series of practical limitations and non-idealities that hinder this objective.
These can be minimized with appropriate design choices.

Clearly, the first conclusion to the previous analogy is that the gate terminal of the
OECT must be connected to the spiking output of the circuit. The circuit spikes
must resemble Dirac deltas for the two equations to match. A Dirac delta can be
approximated by a pulse (rectangular function) of duration ϵ and height 1/ϵ with
ϵ → 0+, so that its integral over time is still equal to 1. In practice, this approx-
imation holds if the circuit spikes have duration ∆tspk << τi. Considering that
bio-plausible adaptation time constants are > 10ms, this is not an issue for silicon
circuits. However, it is a limitation for technologies that cannot reach high operat-
ing frequencies, such as electronics with OECTs. This point will be readdressed in
Chapter 4 when dealing with the design of an all-organic adaptive spiking circuit. In
any case, the tradeoff with decreasing the spike duration ∆tspk is that the response
is attenuated of the same factor, since the amplitude of the input signal is fixed at
vG0 and does not increase as 1/∆tspk. The product bτw of the Treves adaptation
equation is vG0∆tspk in the real case of the OECT equation. The spike duration has
to be chosen carefully to have an adaptation that increases approximately linearly
(with no saturation) for a sufficient number of spikes and a product vG0∆tspk that
is sufficiently high to see the effect of spike-frequency adaptation on an appropriate
time scale.

The second important note is that Eq 2.10 was derived imposing the conditions
VS = const and VD = const. This entails that the OECT must be introduced in
a circuit architecture where the nodes corresponding to its source and drain are
(approximately) constant over time. Oscillations in these two voltages would cause
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variations of the ionic displacement currents iIOND
and iIONS

, according to Eq.s 2.7
and 2.8, that distort the short-term plasticity of the OECT. Looking at the circuit
design, the source terminal can be simply connected to the voltage supply (Vdd for
a p-type OECT and GND for a n-type). The connection to the drain terminal has
to be chosen to allow extraction of the adaptive drain current without affecting the
voltage of the node. This point is the main constraint behind the design of the
Adaptation block, that will be described in the next section. As a preview, this
block exploits the subthreshold swing of a current mirror in weak inversion to have
the maximum range of current mirroring with the minimum change in gate voltage.
If the gate voltage of the diode-connected transistor in the simple mirror does not
change significantly, then this voltage is also the drain voltage of the adaptive OECT
and the condition is respected.

Finally, the OECT transduces the voltage vE connected to the spiking output of the
circuit into the adaptive current. This introduces an additional equation Iadapt(vE),
where vE has the correct time evolution described by the adaptation equation. De-
pending on the region of operation of the OECT this relation can be linear (strong
inversion, triode), quadratic (strong inversion, saturation), exponential (weak inver-
sion). In our model of the OECT, this transduction produces the channel current
iCH , which follows the time evolution of vE instantaneously. However, the total
drain current of the OECT is composed by the sum of iCH and iIOND

, the portion of
capacitive current flowing towards the drain. This additional contribution must be
minimized to have a drain current that reproduces the dynamics of the adaptation
current.

At the end of Sec. 2.3 we calculated the formula for the maximum amplitude of this
capacitive spike. This was Eq 2.22, that we rewrite here:

IIOND
(t0+) =

CCHD
vG0

τi
=

fC∗WdLvG0

τi
=

fvG0

RE

where f is the f-factor defining the portion of capacitive current flowing towards
the drain; vG0 is the amplitude of the incoming gate pulse; RE is the resistance
of the electrolytic solution. We concluded that the electrolyte resistance has to be
increased to reduce the amplitude of these spikes, at the expense of a slower OECT.

For our application the OECT has to be slow, in order to show plasticity. Its time
constant τi (which is the adaptation time constant τw of the circuit) has to be in
the order of 10ms to 100ms, depending on the adaptation mechanism and the type
of neuron that is emulated. For example it can range from 6ms to 2s for different
types of cortical neurons [66–68]. The value set for the adaptation time constant
must be obtained with a RC product with R that is maximized.

A first possibility is to decrease the electrolyte concentration, to linearly decrease
the electrolyte resistivity and therefore the resistance. A decrease in the electrolyte
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concentration can be also associated to a change in the conductivity of the channel
and of the characteristics of the OECT though [69,70]. Another option is to confine
the electrolyte into a microfluidic channel or pattern a solid electrolyte so that the
electrolyte is shaped into a long path with a small cross-sectional area, which is
morphologically resistive. The effective resistance can also be increased by adding
a series resistance to the electrolyte. We opted for this last option to have a degree
of freedom after fabrication by which tuning the adaptation time constant. Also, if
this series resistance is much larger than the electrolyte resistance, then the variation
of RE does not affect the dynamics of the OECT, with good approximation for a
wide range of ionic concentrations. In this condition, only the dependence of the
steady-state response remains.

This univocal dependence can be exploited to introduce a sensing property to the
adaptive OECT: the transfer characteristic of the OECT changes depending on
the electrolyte concentration, thereby causing a change in the magnitude of the
adaptation current. This variation is then encoded by the neuron circuit into a
different spiking frequency response, for the same input current stimulus.

To allow in situ tuning of the adaptation current we also introduce a second-gate to
the adaptive OECT. Eq 2.24 showed that the effect of the voltage applied to this
second gate is a shift in the threshold voltage of the OECT. The adaptation current
then becomes a function of VSG2 . Given the linear proportionality VT ∝ −kVSG2 ,
we can write:

iadapt(t) ≈ iCH(t) ∝


e

vSE+kVSG2
nUT vSE < VT (VSG2)

vSE + kVSG2 vSE > VT (VSG2), VSD ≤ vSE − VT (VSG2)

(vSE + kVSG2)
2 vSE > VT (VSG2), VSD > vSE − VT (VSG2)

(3.1)
where the first approximation neglects the capacitive ionic displacement current
iIOND

. These equations state the voltage VSG2 can be used to shift horizontally
(along the VG axis) the transfer characteristic of the adaptive OECT. On a circuit
perspective, as long as this shift does not cause the OECT to operate in a different
region, then it can be viewed as a vertical shift (along the ID axis) of the adaptation
current Iadapt.

To conclude, this dependence can be also be used to balance a change in the transfer
characteristic due to a change in the electrolyte concentration. For example, it can
be used to tune the the adaptation current to be in a relevant range of magnitude
for a chosen range of electrolyte concentration. This is equivalent to tuning of the
ionic sensing properties of the OECT.
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3.2 Circuit architecture

The circuit architecture for the hybrid adaptive neuron is reported in Fig. 3.1. It is
made of two blocks.

Figure 3.1: Schematic diagram of the hybrid adaptive artificial neuron. The circuit
comprises an Axon-Hillock circuit (red, M1−6,r) and an Adaptation block (blue,
M7−10, Padapt).

The former is the Axon-Hillock circuit (red). This architecture was proposed by
Mead in 1989 as one of the original circuits for generating discrete events, in the
early-stages of VLSI silicon neuromorphic engineering [6]. Recently, it has been
adopted by organic neuromorphics as a reference circuit for the fabrication of organic
neurons, due to its simple design and excellent matching properties [45,71,72].

The latter is the proposed Adaptation block (blue). The Adaptation block is an
analog current subtractor, which subtracts the tunable adaptation current Iadapt,
obtained through the double-gate short-term plastic OECT, to the neuron’s input
Iin. The adaptation current increases at each spike event, therefore the effective
current input to the Axon-Hillock decreases over time. This current variation results
in a gradual reduction of the spiking frequency.

We will now analyse the single blocks independently in more detail.
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3.2.1 Axon-Hillock circuit

The Axon-Hillock circuit (Fig. 3.2a) is a simple architecture that emulates the be-
havior of the Axon Hillock of a biological neuron1. It is a hardware implementation
of an Integrate-and-fire (IF) neuron2. In this specific version of the circuit, a third
inverter is added in series to the two that usually compose the non-inverting am-
plifying stage. The functionality of this third inverter is related to the integration
with the Adaptation block and will be explained later in this section.

The evolution of voltages Vout and Vmem of a simulated Axon-Hillock circuit, for a
constant current stimulus Iin, is reported in Fig. 3.2b.

The circuit integrates the current(s) Iin across its membrane capacitor Cmem. The
actual capacitance value that integrates Iin is Cint = Cmem + Cfb, since the output
node is initially shorted to GND and the two capacitors are therefore in parallel.
The analog voltage Vmem increases linearly3 until it reaches the inverter switching
threshold. At this point, the two inverting stages cause the voltage Vout to quickly
change from GND to Vdd. This sudden change has two effects: first, it activates
a positive feedback through the capacitor divider implemented by Cmem and Cfb,
which further increases the voltage Vmem very steeply; moreover, it switches on
the reset transistor Mr. If the reset current Ireset is larger than the input Iin, the
membrane capacitor is discharged, until it reaches the inverter’s switching threshold
again. Vout swings back to GND and the cycle repeats. The Axon-Hillock circuit,
stimulated by a constant input, produces Vout voltage spikes (digital events) equally
spaced in time, i.e. at a constant spiking frequency. The interspike interval (ISI) is
inversely proportional to the neuron’s input:

tlow =
CfbVdd

Iin
(3.2)

The duration of a single spike depends on the reset current Ireset, as well as on Iin:

thi =
CfbVdd

Ireset − Iin
(3.3)

From this last equation, we notice that the pulse duration is nearly independent of
Iin if Iin << Ireset.

1The Axon Hillock is the portion of the neuron where action potentials (nerve pulses) are
generated. It is located at the intersection between the first segment of an axon and the cell body.
The Axon Hillock accumulates and stores inputs up to when the voltage across its membrane
reaches a certain threshold value. At this point, nerve channels in the membrane engage in a cycle
consisting of a positive feedback followed by delayed negative feedback, that generates a firing
event and then causes the neuron to reset. A broad description of this mechanism is reported
in [12–16] by Hodgkin, Huxley, and Katz, which represent the first quantitative model to describe
the initiation of an action potentials, and their restoration as they propagate down the axon.

2In practice, it emulates a Leaky integrate-and-fire (LIF) neuron, since a non-infinite resistance
is present in parallel to its membrane capacitor due to transistor leakage.

3Vmem increases with an RC time constant in the case of a LIF neuron.
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(a) Schematic diagram of the Axon-Hillock cir-
cuit.

(b) Vout and Vmem traces over
time in the simulated CMOS Axon-
Hillock circuit for a constant input
current stimulus.

Figure 3.2: Simulation of a CMOS Axon-Hillock circuit in TSMC 0.18µm node.
Vdd = 0.7V , Cmem = Cfb = 50nF . A leakage parasitic resistor of 2MΩ was added
in parallel to the membrane capacitor for the purpose of the simulation.

The main advantage of the Axon-Hillock architecture is that mismatch in the cir-
cuit mostly depends on the matching properties of the two capacitors, rather than
any of its transistors. This feature is beneficial for CMOS implementation, but
even more for other technologies that are affected by greater PVT (process voltage
temperature) variations, such as organic electronics.

The tradeoff with this excellent matching is that the circuit dissipates significant
power for slowly varying input signals: as the voltage Vmem gradually increases to
cross the switching threshold, the first inverter stays in its fully conductive state
(with both nFET and pFET conducting) for a considerable amount of time.

Finally, many spiking characteristics, e.g. the neuron’s threshold voltage, are set
at circuit design, depend on the technological process, and cannot be tuned after
fabrication. However, the simple design and low number of transistors enable many
emerging technologies to start testing neuromorphic circuitry.

3.2.2 Adaptation block and integration

The Adaptation block is the newly proposed architecture to implement tunable
spike-frequency adaptation (Fig. 3.3a). It uses two current mirrors, one p-type
and one n-type, to perform analog current subtraction between the neuron’s input
Iin and the adaptation contribution Iadapt, which is the drain current of the short-
term plastic double-gate OECT (Fig. 3.3b). In this first version, the circuit is an
organic-inorganic hybrid, since the current mirroring operation is performed with
MOSFETs.
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(a) Schematic diagram of the Adaptation block.

(b) Schematic symbol of
the double-gate OECT.

Figure 3.3: Architecture of the proposed Adaptation block in its hybrid organic-
inorganic version.

The connection to the Axon-Hillock circuit is as follows.

Gate1 of the double-gate OECT is connected to the output of the third inverting
stage of the Axon-Hillock. This node provides voltage spikes that are inverted with
respect to the spiking output Vout: Gate1 is at voltage Vdd whenever the neuron in
not spiking and at GND during a spike, so that the drain current of the plastic
OECT increases at each pulse.

The Axon-Hillock is usually designed with two inverters. The third stage is not
necessary to produce the output spike. However, it is necessary in our case to
provide a sufficiently high gain on the pulses that are sent to Gate1. If the output
of the first stage were to be used instead of this additional node, the incoming gate
pulses would have a non-negligible rise time. This is especially true because the
input of the first stage is Vmem, which is a slow varying signal. This can cause
the circuit to get stuck in an intermediate state where the first inverter’s output is
not low enough to make Vout spike and reset the circuit, but makes Iadapt increase
sufficiently to have a net zero integrated current on the membrane capacitor. As
a result Vmem remains stuck in between GND and Vdd until the neuron’s input
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changes.

The output of the Adaptation block is connected directly to Vmem. This allows
the adaptation current to discharge the membrane capacitor to the rest potential
even when there is no input external current Iin. Otherwise, the Axon-Hillock alone
would discharge just by passive parasitic leakage.

The output swing of the current subtractor is given by the saturation conditions
of the two current mirrors. For the two mirrors in weak inversion this is Vmem ∈
[Vup−4UT ;Vrest+4UT ], where 4UT ≈ 100mV . Since Vmem is limited byGND and Vdd,
then the block has to be biased with Vup ≥ Vdd+100mV and Vrest ≤ GND−100mV .
In reality, Vmem does not ever reach Vdd during the capacitive feedback of the Axon-
Hillock and we can choose to have Vup = Vdd.

In the single Axon-Hillock, the resting potential of the membrane voltage is GND
and the reset potential is also GND. This is caused by the reset transistor, that
resets Vmem to GND to end a spike and is a leak conductance to GND in its off state.
When adding the Adaptation block, the properties of the membrane node change.
This is because the transistor M8 of the p-type mirror is effectively a resistance in
parallel to the reset transistor. The two channel resistances share the voltage at their
drain, but not the one at their source (Vrest < GND). The membrane voltage can
rest between these two values, depending on the ratio between the two resistances.

We first think about the case where Vmem rests at GND. This is possible when
the off current of the reset transistor at VGS = 0, VDS = 0 is >> than the off
current of the double-gate OECT at VSG = 0, VSD > VSD,sat (the n-type mirror
is still in saturation so the OECT’s current is mirrored exactly). During spiking
activity, the adaptation current can increase above the reset off current. If this
occurs, the adaptation current can effectively hyperpolarize the membrane voltage
when the external stimulus ends, i.e. bring the membrane voltage below its resting
potential (which is GND, in this case). The OECT drain current starts decaying
exponentially at the end of the stimulus. Also, as Vmem decreases below GND, the
mirror leaves the saturation condition and does not effectively copy the adaptive
current. At this point the channel resistance of the reset transistor becomes smaller
than the one transistor M8 once again and the membrane voltage returns to GND.

The opposite condition is to have Vmem that rests at Vrest. In this case, the n-type
mirror starts off of saturation but meets it as soon as the membrane voltage starts
increasing. Also, saturation is met throughout the spiking activity because the reset
transistor resets towards GND.

As we discussed in Sec. 3.1, the source and drain terminals of the adaptive OECT
have to be approximately constant in voltage over time, to have the correct evolution
of the adaptation current. The Adaptation block has to mirror the adaptation cur-
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rent while meeting this constraint. A simple weak inversion current mirror provides
effectively these operating conditions.

To understand why the double-gate OECT’s drain voltage is approximately constant
over time in this architecture, we can think at the two transduction steps between
the generation of the adaptation current and its mirroring. Iadapt is caused by a
spiking event at Gate1 of the OECT. This gate voltage pulse is attenuated by the
RC integrator that describes the device, so that only a small portion of its am-
plitude is effectively sensed by the channel: this is voltage vE. This small change
causes an increase in Iadapt with a proportionality defined by the operating region
of the OECT. The n-type diode-connected transistor matches this current increase
by increasing its gate voltage (which is also its drain voltage), thereby increasing the
voltage at the drain of the OECT. We suppose that this occurs instantaneously, i.e.
the delay of the matching is negligible compared to the time constant of the OECT.
If the OECT and the diode-connected transistors are perfectly balanced, both in
saturation and weak inversion, then ∆vD = −∆vE and the condition is not met.
However, if the OECT is operated in a different region, then the diode-connected
transistor has a much greater amplification and the variation of vD occurring to
match the adaptation current is minimized. This also holds if the OECT and the
mirror are both in weak inversion but the mirror has a much lower subthreshold
swing. In this case, the total variation of vD is attenuated by a factor nOECT

nMIR
com-

pared to the variation of vE, where nOECT and nMIR are the slope factors of the
OECT and the diode-connected transistor, respectively. Subthreshold engineering
can be exploited to fabricate an adaptive OECT with a small slope factor, to be
used in the Adaptation block.

The Adaptation block provides a compact architecture to generate and mirror the
adaptation current to the membrane node. If we do not consider the upper p-type
mirror, which mirrors the external input, the block is made of just three transistors.
The Adaptation block is also very versatile, since it can be integrated with any spik-
ing circuit that has a downward spiking node and an integrating node that swings
while preserving the saturation conditions of the two mirrors. Finally, the opera-
tion of the two mirrors in weak inversion is also an effective choice to limit power
consumption, which is a necessary requirement of spiking circuit architectures.

3.3 OECT fabrication

At this point of the project, we want to validate the adaptive spiking architecture
that we proposed. The first step is to fabricate the double-gate adaptive OECT,
following the considerations and design rules discussed in Sec. 3.1 and 3.2. We report
here the process flow used for the fabrication of the device, known as double-Parylene
process. A schematic overview of the process steps is reported in Fig. 3.4.
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The first part of the process concerns the deposition of the device metallic contacts
and traces. The starting substrate is a silicon wafer with an upper thermal oxide
layer of 300nm, that ensures sufficient isolation. The wafer is cleaned of the organic
residues with organic solvents and then undergoes a dehydration bake. A lift-off
layer (LOL) (Microposit LOL-2000) is spin-coated on the substrate to achieve a
thickness of around 200nm and is then baked for 30 minutes at 190◦C. It is crucial
that this baking time is respected to ensure high resolution of the lift-off process.
Photoresist SPR3612 is spin-coated on top of the LOL layer with a thickness of
1um and no primer4. The photoresist is then exposed with the design for the device
contacts and traces and undergoes a post-exposure bake and a developing step. A
8nm layer of Titanium followed by a 55nm layer of Gold are evaporated with an
e-beam evaporator. The wafer is soaked overnight in the lift-off remover bath to
gently remove the photoresist and LOL layer5. At this point of the process, the
wafer shows the patterned metallization layer (step 5 of Fig. 3.4).

The second part of the process is about the deposition and patterning of the double
Parylene layer, that is used to spin-coat the polymer only on the active regions of
the device. The wafer with the metallic contacts is coated with 1.5um of Parylene-
C as the insulating layer. This layer has the same purpose of the field oxide in
CMOS process flow, i.e. isolate the single devices. The Parylene-C layer is cross-
linked with the adhesion promoter Silane A 174, to ensure good adhesion to the
wafer. A dilute soap solution (3 % Micro-90 in water) is spin-cast on top. This
intermediate layer prevents the second Parylene-C layer, deposited now with the
same thickness, to adhere strongly to the surface underneath. The purpose of the
double-Parylene layer with the soap solution in between is to peel-off the upper layer
at the end of the process. The wafers are then coated with a hard mask layer made
of 75nm of e-beam evaporated Titanium. Another lithography step is performed to
define the active regions where the conductive polymer will be deposited, i.e. the
channel and the gates of the OECT, and the contact pads. This step is composed
once again of a SPR3612 photoresist spin-coating, an exposure step, that is now
an aligned exposure, a post-bake and a developing step. To recapitulate, the wafer
now presents the gold contacts and traces, a field-oxide layer that covers the entire
wafer, a soap solution and another Parylene-C layer on top, the upper photoresist
with the pattern for the conductive polymer. This is summarized by step 11 in
Fig. 3.4. Finally, the Titanium hard mask is dry-etched with a reactive ion etching
(RIE) step with the pattern of the upper photoresist layer. The same pattern is dug
into the two Parylene layers by another RIE step, selective for oxides. The wafer is
diced into the single chips that are spin-coated with the conductive polymer.

4A primer is a passivating layer that is spin-coated before a photoresist to promote its adhesion
to the substrate. It works by preventing humidity absorption on the surface.

5To speed up the process it is possible to sonicate the bath but this may remove or damage
portions of the metal design, especially finer features
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Figure 3.4: Schematic overview of the double-Parylene process used for the fabrica-
tion of the double-gate OECT.
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For the double-gate OECT we used p(g2T-TT)6, a hole conducting polymer with
a high ION/IOFF range and fast switching [73]. The dimensions of the channel are
150um x 50um (W x L) plus a 10um long contact to the source or drain trace at
each side of the channel. The two gates are symmetric with respect to the channel
and have dimensions 320um x 320um, to respect the condition for efficient gating
(Agate ≥ 10Ach). p(g2T-TT) was dissolved in chloroform at a concentration of
2.5mg/mL and the solution was stirred at 100rpm for 2 hours. The polymer was
spin-coated from hot (50◦C) at 3000rpm with 1000rpm/s acceleration for 60s. The
chip was then baked at 65◦C for 20 min to let the solvent evaporate. The top
Parylene-C layer was then peeled off to confine the organic semiconductor only in
the lithographically defined channel and gate regions. The electrolytic solution was
then drop-cast on top of the finished double-gate OECT.

3.4 Double-gate OECT characterization

We proceeded with the characterization of the fabricated device. Fig. 3.5 shows the
transfer and output characteristics of the double-gate OECT for different values of
VSG2 applied between the source and the tuning Gate2. The transfer characteristics
were obtained by sweeping the voltage difference VSG1 from 0.0V to 0.7V and back.
It is evident how the double-gate OECT presents hysteresis in the transfer curve.
This phenomenon is characteristic of many OECTs and is reported often times in
literature [54,74,75].

6poly(2-(3,3-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-[2,2-bithiophen]-5-yl)thieno[3,2-
b]thiophene)
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Figure 3.5: Steady-state characterization of the fabricated double-gate OECT for
different values of VSG2 . The transfer characteristics show an hysteretic loop, which
is common in OECTs. The presence of the second gate reduces the modulation of
ID with VSG1 . However, it allows to tune the OECT’s threshold voltage in-situ.

In Sec. 2.4 we discussed that the effect of the voltage applied to Gate2 of the OECT is
to shift its threshold voltage. According to Eq. 2.24, the threshold decreases linearly
with an increasing VSG2 , with a proportionality factor given by the ratio between the
area of Gate2 and the sum of the areas of Gate1 and Gate2. Our double-gate OECT
has symmetric and equally dimensioned gates so we expect a proportionality factor
of 1

2
. We extracted the threshold voltages values VT from the transfer curves of

Fig. 3.5 using the Extrapolation in the linear region method (ELR), which is one of
the most commonly used approaches to extract this quantity in MOSFETs [76,77].
The ELR method consists in finding the gate-voltage (VSG1) axis intercept (ID = 0)
of the linear extrapolation of the transfer curve at its maximum first derivative
(slope) point (i.e. the point of maximum transconductance). The value of VT

is calculated by adding VSD

2
to this intercept. In Fig. 3.6 we report graphically

this extraction procedure and show the measured variation of VT as a function of
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VSG2 . The threshold changes linearly with good approximation between VSG2 = 0V
and VSG2 = 0.5V . The shift in threshold is about -0.31V over the entire range.
The proportionality factor for threshold modulation is therefore approximately 0.62,
similar to the theoretical value that we expected. In Fig. 3.6 we also display the
variation of the ION and IOFF currents, taken at VSD = 0.7V, VSG1 = 0.7V and
VSD = 0.7V, VSG1 = 0.0V , respectively.

Figure 3.6: Extraction of the double-gate OECT threshold voltage using the ELR
method, for different values of VSG2 . Threshold modulation and the variation of the
ION and IOFF currents with VSG2 are summarized in the last two plots.

The transient response characterization was aimed at measuring the time constant of
the OECT and verifying that its drain current behaves as an adapting current when
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a train of pulses is applied to Gate1. To be able to tune the time constant of the
OECT we introduced a limit resistor of 470kΩ in series to the gate. This additional
resistor is much larger than the resistance of the electrolytic solution and allowed us
to achieve time constants in the order of 10-100ms, which is in the range discussed
in Sec. 3.1 for biological adaptation mechanisms. Moreover, it limits the OECT’s
dependence on the electrolyte concentration just to its steady-state characteristics.
As we mentioned, this univocal dependence could be exploited to develop a sensory
neuron that encodes variations in the electrolyte concentration into different onset
and steady-state spiking frequencies.

The response of the OECT to a single long (0.5s) gate pulse is reported in Fig. 3.7a.
The current signal was measured as a voltage signal on a shunt probe resistor and
then filtered using a moving average window on each data point. We extracted
the OECT’s time constants from this signal by applying a negative exponential fit,
coherently with the model described, that is shown in Fig. 3.7a. The OECT shows
two different rise and fall time constants, with τr ≈ 2τf . This mismatch is common
in semiconducting polymers, both p-type and n-type [78,79].

(a) Drain current response of the double-
gate OECT to a prolonged single gate
pulse of duration 0.5s (red). The plot
shows the meaasured current signal (or-
ange) and its filtered version (blue) ob-
tained by applying a moving average
window on each point of the dataset.

(b) Negative exponential fit on the fil-
tered drain current signal. The OECTs
shows different rise and fall time con-
stants: τr > τf .

Figure 3.7: Extraction of the characteristic time constants of the OECT with a
negative exponential fit.

To conclude our characterization, we tested the OECT’s response to a series of Gate1
voltage pulses, to verify the presence of short-term plasticity. The OECT was tested
with voltage spikes of duration ∆tspk = 10ms at two constant spiking frequencies,
20Hz and 40Hz. The measured drain currents are shown in Fig. 3.8. An adapting
current is evident in both cases. The increase is higher in the second case due to
the higher frequency of the applied spikes. The amplitude of the gate pulses is kept
constant between the two tests.
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(a) Double-gate OECT response to a 20Hz gate spiking signal.

(b) Double-gate OECT response to a 40Hz gate spiking signal.

Figure 3.8: Adapting drain current of the double-gate OECT stimulated with a
20Hz and 40Hz spiking gate signal. The pulse duration as well as its amplitude are
kept constant between the two cases: ∆tspk = 10ms, VSG1max = 0.7V .

3.5 Double-gate OECT modeling

The next step was to build a spice model for the double-gate short-term plastic
OECT that we just tested.

The transient response of the OECT and its plasticity can be reproduced via the
Friedlein model, thaw we studied in Sec. 2.3. To be able to simulate the steady-
state response of the OECT we have to develop an additional model that can show
the threshold voltage modulation given by Gate2. For this purpose, we created an
equivalent model that uses a non-inverting summing amplifier to sum the voltages
at two terminals and apply the sum to the gate of a simple transistor model. The
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two terminals are equivalent to Gate1 and Gate2 of the double-gate OECT.

The complete equivalent circuit to simulate the behavior of the double-gate OECT
is shown in Fig. 3.9. The voltages at Gate1 and Gate2 are summed at the gate node
of the Friedlein model, which then provides the low-pass filtering and the capacitive
current contributions characteristic of the OECT. An important point about the
design of the equivalent circuit is that the resistor R1 must be connected to the
source in order for the two gates two provide a sum that is relative to the source,
i.e. an equivalent VSG to the gate of the Friedlein model.

Figure 3.9: Complete equivalent model to simulate the behavior of the double-gate
plastic OECT. The steady-state response, double-gate architecture and threshold
voltage modulation are reproduced by the non-inverting summing amplifier. The
transient response and short-term plasticity are modelled by the Friedlein equivalent
circuit.

The complete equivalent circuit was tuned to fit the behavior of the characterized
double-gate. We show here the transfer and output characteristics, the transient
response to a prolonged gate voltage pulse and to multiple fast pulses of the final
spice equivalent model. All the simulations are done with the same conditions
and signal parameters as the measurements reported in the previous section for
the fabricated double-gate OECT. The model is effective at describing with good
precision both the steady-state and the transient response of the double-gate OECT.
In particular about the transient response, it also replicates the mismatch of the rise
and fall time constants reported earlier. For the spice equivalent model these two
constants are: τr ≈ 109.6ms, τf ≈ 41.3ms.
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Figure 3.10: Steady-state modeling of the double-gate OECT at the measured values
of VSG2 .
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(a) Response of the fitted spice equivalent
model to a prolonged single gate pulse.

(b) Response of the fitted spice equivalent model to a 20Hz gate
spiking signal.

(c) Response of the fitted spice equivalent model to a 40Hz gate
spiking signal.

Figure 3.11: Transient behaviors of the fitted spice equivalent model.
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3.6 Circuit simulation

After modelling the adapting and tunable OECT, we proceeded with testing the
hybrid spiking architecture that we described in Sec. 3.2 and that is reported in
Fig. 3.1. In this first hybrid version of the circuit, all transistors except the double-
gate OECT are MOSFET models of TSMC 0.18um node. These were properly-
sized to obtain the desired spiking features. In particular, the W/L ratio of the
reset transistor Mr was chosen small in order to have sufficiently wide spikes: by
limiting the reset current of the Axon-Hillock, the reset of the membrane voltage
takes longer and the spike duration thi increases, accordingly with Eq. 3.3. For the
same purpose, Cfb and Cmem were set equal to 50nF. The tradeoff between increasing
and decreasing the spike duration is related to the considerations made in Sec. 3.1,
about the optimization of the adaptive OECT and matching it with its spiking
gate stimulus. Shorter gate spikes are closer to resemble Dirac deltas if compared
to the OECT ionic time constant, so the OECT reaches a steady-state response,
i.e. saturation of its adaptation, in a larger number of spikes. However, since the
amplitude of the gate spikes is fixed, the effective increase of drain current for each
spike is very much decreased. This is equivalent to say that the spike-triggered
adaptation factor b is much decreased. The right design sets conditions that are in
between these two extremes, providing adaptation linearity for a sufficient number
of spikes and a non-negligible spike-triggered adaptation parameter. The voltage
supply Vdd is set at 0.7V while the two weak inversion current mirrors are biased
with a Vrest of -0.1V and a Vup of 0.8V, all with respect to the ground.

In this section, we want to study the behavior of our adaptive circuit with the
same analysis tool that we introduced in Subsec. 1.2.1, that are commonly used in
neuroscience.

The membrane voltages Vmem, output spiking voltages Vout, and adaptation currents
Iadapt of the circuit simulated with an input current step of 10uA are shown in
Fig. 3.12. The graphs show the response of the circuit for three different values of
voltage VSG2 applied to the second gate of the OECT.

The effect of VSG2 on the double-gate OECT is to shift its threshold voltage. As we
can see in Fig. 3.12c, this shift produces a change in its IOFF current, which is the
adaptation current when the neuron is silent, i.e. before 50ms. This IOFF current
is subtracted at any time to the external input Iin of the circuit. The effective
adaptation contribution is therefore the difference between this constant minimum
and the signal Iadapt.
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(a) Time evolution of the membrane voltage of the hybrid neuron in response to a 10uA
constant current step.

(b) Time evolution of the output spiking voltage of the hybrid neuron in response to a
10uA constant current step.

(c) Time evolution of the adaptation current (the drain current of the double-gate adaptive
OECT) of the hybrid neuron in response to a 10uA constant current step.

Figure 3.12: Simulation of the adaptive hybrid spiking circuit at three different
values of voltage VSG2 applied to the double-gate OECT.
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A better understanding of the spiking activity of the circuit can be deduced from
Fig. 3.13. This diagram shows the value of the instantaneous spiking frequency as
a function of time. The definition of the instantaneous spiking frequency is the one
given in Eq. 1.1. This definition is valid as long as the stimulus is supplied. When
the stimulus ends and does not produce any more spikes, then the instantaneous
frequency drops to 0. To this definition we added another frequency measurement to
evaluate the instantaneous spiking frequency at the time of the first output spike7.
This additional frequency is calculated as the reciprocal of the time interval between
the first spiking time and the onset of the stimulus. From now on, we will define this
instantaneous spiking frequency value as the Onset spiking frequency of the circuit,
that will be labelled with the notation f0. The Steady-state spiking frequency is
still defined as the asymptotic frequency value the neuron tends to if the input is
kept constant, and is labelled with the notation f∞. As a general rule, we measure
the spiking time when the membrane voltage reaches is maximum value due to the
capacitive feedback.

From the diagram it is evident how the onset spiking frequencies between the three
cases of applied VSG2 are very different. This discrepancy is caused by the IOFF

current of the OECT. Intuitively, the effective current amplitude that charges the
membrane capacitor of the circuit, before the first spike, is the difference between Iin
= 10uA and the changing value of IOFF . The case VSG2=100mV is the one with the
higher OECT’s off current, therefore the one that spikes later. The spiking activity
of the three cases decays with time towards their steady-state frequency f∞.

Figure 3.13: Instantaneous spiking frequency of the hybrid neuron as a function of
time, relative to the spiking plots shown previously.

7The definition given in Eq. 1.1 defines the spiking frequency as the reciprocal of an interspike
interval (ISI), therefore it can be calculated only when at least two spikes have been generated
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A very broad understanding of the circuit’s behavior is given by analyzing its
frequency-current curves, that report the values of f0 and f∞ as a function of the
input constant current’s amplitude. These are shown in Fig. 3.14 for the three cases
of VSG2 . The first aspect that we note is that they all present a current threshold.
The current threshold is the minimum current that has to be injected into the neu-
ron to produce at least one spike. In our architecture, the current threshold is set
by the IOFF of the OECT, wihch is the input current that has to be injected just
to break even. Therefore its value changes with VSG2 . The double-gate OECT has
indeed a double effect on the neuron’s response: it shifts its threshold current and
modulates the extent of the spiking adaptation.

The impact of spike-frequency adaptation depending on the applied VSG2 can be be
deduced by visual inspection from Fig. 3.14, by seeing that for high input currents
the onset frequencies increase with the same slope, while the steady-state frequencies
saturate at different pace. However, the change in the spiking threshold that occurs
together with the adaptation modulation causes limited quantitative analysis.

To study individually the tuning of spike-frequency adaptation by the OECT’s sec-
ond gate voltage, we can plot a different type of f(I) curves, which are the curves
f(I−Ith, where Ith is the threshold current of the neuron. This description considers
the effective reduction of the input current due to adaptation, eliminating the initial
dependence on IOFF . These are shown in Fig. 3.15.

The onset frequency curves f0(I − Ith) are now matched: the effect of IOFF was
eliminated so effectively the three neurons are now integrating the same input current
on the same membrane capacitor. The f∞(I − Ith) curves do not match instead
and indicate a different SFA impact. A higher source-gate2 voltage applied to the
adaptive OECT induces higher adaptation to the circuit. This can be explained
by thinking at the threshold modulation given by Gate2. If VSG2 increases, VT

decreases and the OECT is more conductive for the same VSG1 , VSD applied. A
more conductive OECT also reaches higher currents during its plasticity and these
will be subtracted to the neuron’s input. By plotting as a function of I − Ith we get
rid of the different IOFF s for the double-gate tuned at different VSG2 , but we do not
get rid of the difference between this minimum and the maximum plastic current
that can be reached by the OECT, for the same pulsing conditions. The result is a
higher effective adaptive current contribution subtracted from the input.

With this study we demonstrated the operation of the adaptive architecture and
the adaptation tuning via the double-gate OECT. We also addressed the change in
threshold current of the neuron. Our goal is now to test the same architecture in a
circuit made entirely with organic electrochemical transistors.
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Figure 3.14: Frequency-current curves of the simulated hybrid neuron. Tuning of
VSG2 results in a shift of the threshold current and a variation of the adaptation
impact.

Figure 3.15: f(I − Ith) curves of the simulated hybrid neuron. This representation
allows to estimate quantitatively the modulation of the spike-frequency adaptation
by VSG2 because it cancels the effect of VSG2 on IOFF .
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All-organic adaptive neuron

In the previous Chapter we validated the design of the adaptive spiking circuit in a
hybrid version that combines OECT and CMOS technologies. In this last section we
want to confirm that the same architecture can be used to build an artificial neuron
that is entirely made with organic based transistors.

The use of organic transistors introduces some non-idealities and limitations com-
pared to MOSFETs. For example, the mirroring operation is distorted by the ca-
pacitive spikes of the mirroring OECT. Moreover, organic transistors are orders of
magnitude slower than silicon. To reduce the performance gap we are going to use
State of the Art complementary OECTs.

As for the hybrid version, the validation of the all-organic neuron is performed by
creating Spice models for the additional devices and simulating the complete circuit.

4.1 Complementary OECTs modeling

The initial purpose of the study is to investigate the optimal conditions for the
operation of the organic circuit and choose the right materials that can provide
those conditions.

In Sec. 3.1 we discussed how the circuit spikes must have duration ∆tspk << τi to
produce an adaptation current that resembles the one by Treves. This condition
ensures that the double-gate OECT does not reach a steady-state response for a
sufficient number of spikes applied to the gate.

In Subsec. 3.2.1 we saw that the spike duration of the Axon-Hillock is given by
Eq. 3.3, that we report again here:

thi =
CfbVdd

Ireset − Iin

This formula assumes that the delay given by the inverting stages is negligible. This
condition is valid for a silicon circuit, where the membrane and feedback capaci-
tances are much larger than any transistor’s capacitance. However, it does not hold
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for circuits made with OECTs, since they exploit bulk doping and their capacitance
is volumetric. Moreover, OECTs have mobilities that are much smaller than MOS-
FETs. Especially OECTs made with n-type semiconducting polymers struggle to
reach switching times smaller than 5ms.

State of the art for n-type organic polymers is high-molecular weight BBL, developed
recently by Fabiano et al. [79]. This polymer can reach a switching time constant
of 0.38ms and a ratio ION/IOFF > 105 for an operating voltage of just 0.7V. In
the same article, Fabiano and his group proposed a pair of balanced complementary
OECTs, made with high molecular weight BBL152 and p(g2T-TT) (which is the
same polymer we used for the double-gate OECT), that are among the best sub-
1 V complementary inverters reported to date. To validate the operation of the
adaptive organic neuron, we modelled on Spice these state of the art OECTs using
the Friedlein model.

The output and transfer characteristics and the transient response of the two OECTs
are reported in the supplementary material of [79]. The behavior of our Spice models
is shown in Fig. 4.2 (the schematic symbols for the two OECTs are shown in Fig. 4.1).

An important aspect of the modeling is the matching of the capacitive spikes in
the total drain current between the model and the measured data. These capacitive
spikes are in fact the main source of non-idealities of the OECT and introduce rapidly
changing currents that may corrupt the correct evolution of the voltage spikes or the
double-gate adaptation current in the final circuit. To truly test the feasibility of our
organic neuron and the architecture resilience to these noise factors it is mandatory
to include accurate modeling of the ionic displacement currents.

Figure 4.1: Schematic symbols of the high molecular weight BBL n-type OECT
(left) and p(g2T-TT) p-type OECT (right).
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Figure 4.2: Spice modelling of the state of the art complementary OECTs reported
in [79]. Output and transfer characteristics and transient response of the simulated
OECTs: n-type (left) and p-type (right).
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4.2 Circuit simulation

Now that we have a foundation for the optimal design of the organic circuit, and
equivalent spice models that describe the devices employed, we want to test the
performance of the organic adaptive neuron and compare it to the hybrid version.
The complete all-organic neuron circuit is shown in Fig. 4.3.

The biasing conditions are equivalent to the ones of the simulated hybrid circuit:
Vdd=0.7V, Vrest=-0.1V and Vup=0.8V. The main difference to the previous circuit is
that the two capacitors are now Cmem = (Cfb = 10nF . The reason for this design
choice is still related to the spike duration of the circuit and the optimal value to
match to the double-gate OECT. Since the organic inverters and the reset transistor
introduce longer delays compared to their CMOS equivalents, the spike duration is
reduced by acting on the capacitive feedback.

Figure 4.3: Schematic diagram of the all-organic adaptive artificial neuron. The
analog current mirroring and the spike generation are now performed entirely by
organic electronics.

In Fig. 4.4 we report the response of the membrane and spiking output nodes of the
organic neuron to the same test cases analyzed for the hybrid version: Iin = 10uA
and the same values of the voltage VSG2 . Some considerations can be done with
respect to the hybrid circuit. The first one is that the membrane signal shows a
non-negligible decay in its peak values, especially for the case VSG2 = 100mV . This
is in fact not a decay at values lower than 0.7V, which is Vdd, i.e. the voltage towards
which the membrane voltage should tend, but from values higher than 0.7 towards
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lower values that are confined in the range between the voltage supply and ground.
This effect is due to the capacitive ionic displacement currents inside the OECTs
and the spike-and-rebound behavior that they cause. This is a very important effect
that our simulation is able to reproduce thanks to the capacitive spike modeling of
the previous section. The second note is that the output spikes are longer in this
case, as we expected. The output signal still shows a proper spike shape, that is also
affected by the capacitive spike currents but that remains unchanged all throughout
the simulation.

(a) Time evolution of the membrane voltage of the organic neuron in response to a 10uA
constant current step.

(b) Time evolution of the output spiking voltage of the organic neuron in response to a
10uA constant current step.

Figure 4.4: Simulation of the adaptive all-organic spiking circuit at three different
values of voltage VSG2 applied to the double-gate OECT. All simulation’s parameters
are kept equal to the ones reported for the hybrid circuit.

The evolution of the instantaneous spiking frequency for the membrane and output
spike signals is reported in Fig. 4.5. Due to the longer delays of the inverting stages
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and of activation of the reset transistor, the onset spiking frequency is lower in
all three cases (relatively to the hybrid simulation). The neuron still presents an
exponentially decaying adaptation of its spiking frequency. The effect of VSG2 is
consistent with what we saw in the hybrid circuit.

Figure 4.5: Instantaneous spiking frequency of the organic neuron as a function of
time, relative to the spiking plots shown previously.

As for our previous SFA analysis, we proceeded by plotting the frequency-current
curves of the organic neuron, which summarize the adapting behavior of the neuron
and its properti tuning. These are plotted in Fig. 4.6. The behavior they show
is similar to the one of the hybrid. One difference is that the onset curves have
a deceleration that is much more evident than in the hybrid case. The slope they
have at low currents reduces for increasing current values up to a fixed slope. To
eliminate the shift in the threshold current we once again plot the f(I− Ith) curves,
in Fig. 4.6. By plotting the f(I − Ith) curves we are able to see other differences
with respect to the hybrid circuit. The onset curves do not increase at the same
pace between the three cases of VSG2 , while the steady-state ones still show different
rates of saturation. This is a different adaptation behavior compared to the hybrid
neuron. In the hybrid circuit, an increase in voltage VSG2 causes an increase of the
threshold current and lower steady-state spiking frequencies. The onset frequency
remains unchanged. Therefore the voltage VSG2 can be used to tune the two coupled
quantities independently of the onset frequency. In the organic neuron, the onset
frequencies also change with VSG2 and they resemble the same dependence of the
steady-state ones. In this second case, an increase in voltage VSG2 causes an increase
of the threshold current and a simultaneous decrease of the f(I) curves. The result
is a neuron which is overall less responsive: it has a higher threshold current, a
lower onset spiking frequency and a lower steady-state one. These considerations
are useful when it comes to emulation of precise adaptive mechanisms and tuning
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of thereof.

One final note is that for very low values of input currents, the general behavior of
the circuit resembles once again the one of the hybrid: the voltage VSG2 affects only
the quantities Ith and f∞, as it is shown in Fig. 4.8. This property may be taken
into consideration when defining the correct operation range for the organic circuit,
based on the wanted properties.

Figure 4.6: Frequency-current curves of the simulated organic neuron. Tuning of
VSG2 still results in a shift of the threshold current and a variation of the adaptation
impact.

With this final study we characterized the operation of the adaptive spiking archi-
tecture on a simulated all-organic circuit. The circuit still shows adaptation, that
is tunable, together with its threshold current. The additional f(I − Ith) analysis
that we proposed allowed us to unbound the modulation of the adaptation from the
shift in threshold current in the frequency-curves. With this method we were able
to see secondary spiking effects that differ between the all-organic and the hybrid
circuit, that may go unnoticed otherwise. The results we obtained promise success-
ful implementation of an organic adaptive spiking circuit with the architecture and
the design choices that we presented.
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Figure 4.7: f(I − Ith) curves of the simulated organic neuron.

Figure 4.8: Zoom on the f(I − Ith) curves of the simulated organic neuron at low
values of input current.
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Conclusion

5.1 Future perspectives

The spiking architecture we developed allows to emulate spike-frequency adaptation
with an entirely organic matrix. However different optimizations can still be made.

Even though the circuit operates at a voltage supply ¡ 1V, power consumption is still
much higher than silicon counterparts. Especially in neuromorphic applications, this
is one of the most important evaluation parameter. The discussion in this thesis did
not involve power consumption measurements. However, a few notes can be made
in that regard.

First of all, the complete circuit architecture involves the use of an Axon-Hillock cir-
cuit. Although it has some great matching properties that are very useful for organic
electronics, it consumes a fair amount of power due to its slowly changing membrane
potential. The optimization of power consumption could start by integrating the
adaptation block with a different more efficient spike generation block.

The integration with other neuromorphic blocks could also add tunability to the
adaptation block itself. The adaptation block we proposed is very compact and
versatile. It is made of just three transistors (if we do not consider the p-type
mirror that is just used to mirror the input current to the neuron) and requires only
an inverted spiking node. However it does not allow to tune the steady-state spiking
frequency and the threshold current of the neuron independently, for example. The
choice of proper integrated blocks could add degrees of freedom to the complete
circuit to uncouple these two quantities.

The second point is that in order to have a functioning circuit and a correct adap-
tation signal, the double-gate OECT were to be designed to conduct currents in the
range of 1s-100s of uA. This choice was necessary to have a channel current adaptive
signal with higher amplitude than the parasitic capacitive spikes. Decreasing the
ionic displacement currents is a difficult challenge in OECTs. These are minimized,
as we saw, mainly by having a larger electrolytic resistance. To maintain an ionic
time constant in the same order of magnitude, the OECT’s channel capacitance has
to be decreased, thereby forcing to make OECTs with a smaller design or with a
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thinner polymeric layer.

Regarding future implementations, the functionality of the adaptation block as an
ionic variation encoder may be studied. As we saw, by exploiting a limit resistor in
series to the gate we were able to reduce the dependence of the OECT on the elec-
trolyte concentration at just its steady-state response. A change in the electrolytic
concentration would therefore have a similar impact on the adaptation current as
the second-gate of the OECT. The second-gate could be used to tune the response of
the adaptive neuron to have maximum response variation on a specific range of ionic
concentration. Possibly, the double-gate OECT could be functionalized in order to
be sensitive to specific bio-molecules.
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