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Abstract

Since their discovery, topological insulators have attracted significant research
interest due to their nontrivial topological properties. These properties give rise to
the emergence of edge states that propagate along the interface between inversed
topological invariants. These edge states assume great relevance because of their
ability to resist perturbations and so being immune to back-scattering. For these
reasons, they are referred to as topologically protected states. The discovery of this
phenomenon in quantum systems and the potential of this unidirectional transport
with negligible attenuation inspired and led to the demonstration of the equivalent
topological edge states in acoustic technologies.
The aim of this work is to investigate the existence of topologically protected
states at the interface of a Piezo-Electric MEMS device working in the RF range.
A topological edge mode is formed when a break of the symmetry of a periodic
system with a topologically non-trivial bandgap happens. To achieve this outcome,
we examined a piezoelectric metamaterial based on AlScN, which has a spatially
periodic structure that ensures a symmetric band-structure.
A detailed examination of the band structure of the device’s single unit-cell was
conducted. The presence of topologically-protected modes was initially investigated
through numerical methods, specifically the finite element method (FEM). The
Floquet boundary condition was applied to the single unit-cell during this study.
The existence of this state was then verified by calculating the Zak phase, which is
a geometric phase characterizing the topological properties of bulk bands in a 1D
periodic system. To investigate the presence of topological-protected modes in a
device with a finite number of unit cells, a numerical study was again carried out
using FEM simulations
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Chapter 1

Introduction - Topological
state in acoustic system

1.1 Acoustic Wave propagation
The study of how elastic waves propagate through materials with a periodic
structure has been a topic of interest in science since a long time ago. However,
in the early 1990s, works such as those by Sigalas et al. [1] and Kushwaha et al.
[2] on phononic crystals (PC) have reignited interest in this area of research. In
several materials being studied, certain important physical properties (like their
elastic moduli and density) exhibit periodic variation based on their position in
the material. This leads to interesting properties such as frequency band gaps
and negative refraction. The investigation of the propagation of elastic waves in
these periodic structures requires theoretical elements derived from the study of
solid-state physics, such as the direct and reciprocal lattice, the unit cell, dispersion
relations, and the irreducible Brillouin zone. Furthermore solving the equations of
elastic wave propagation will be required.

1.1.1 One dimensional Atomic Chain
Single Atom Per Unit Cell

Let’s start by examining the most basic periodic structure, which is an infinite
linear chain of atoms in one dimension. All atoms have the same mass, denoted by
m, and are aligned along the x axis. The adjacent atoms are connected by a spring
with a stiffness of β and, at equilibrium, the distance between them is a. Therefore,
the equilibrium position of the n atom is xn,eq = na. Atoms can move slightly
around their equilibrium position. Thus, at time t, the position of an atom can be

1



Introduction - Topological state in acoustic system

expressed as xn(t) = na+ un(t), where un = xn − xn,eq represents the displacement
of the nth atom from its equilibrium position and |un(t)| << |xn(t)|.

Figure 1.1: Illustration of the 1D atom chain with a single atom as unit cell

As seen in Fig. 1.1, the structure being considered consists of a single atom, the
unit cell, that is repeated along the x direction with a periodicity of a. Due to this,
we can apply Newton’s second law to the nth atom to understand its interaction
with its closest neighbors:

m
∂2un

∂t2
= −β(un − un−1) + β(un+1 − un) = β(un+1 + un−1 − 2un) (1.1)

Searching for solutions in the form of sinusoidal propagating waves of amplitude
U0 such as un(t) = U0e

i(kna−ωt) where k is the wave number and ω the circular
frequency, Eq(1.1) becomes:

−mω2 = β(eika + e−ika − 2) = 2β(cos(ka) − 1) = −4βsin2
A
ka

2

B
(1.2)

From this equation is possible to obtain the relation between the circular
frequency ω and the wave number k, which is defined as the dispersion relation:

ω(k) =
ó

4β
m

-----sin
A
ka

2

B----- (1.3)

but being |sin(ka/2| a π − periodic function-----sin
A
ka

2

B----- =
-----sin

A
ka

2 + π

B----- =
----sin3a2

5
k + 2π

a

64---- (1.4)

also ω(k) is a periodic function of k with periodicity G = 2π/a and ω(k+nG) =
ω(k) where n is an integer number. Therefore, it is possible to say that the
propagation mode with a wave number of (k +G) is equivalent to the one with a
wave number of k. The lattice parameter a is linked to the direct lattice, while the
periodicity G = 2π/a is linked to the reciprocal lattice.

2



1.1 – Acoustic Wave propagation

Because of the periodic nature of the dispersion relation in reciprocal space,
essential information about the vibration modes that can travel in the chain can
be found in within the wave numbers in the range between −π/a and π/a. This
specific range, centered in k = 0 is commonly referred to as the first Brillouin zone
of the reciprocal lattice. As a result, the dispersion relation also exhibits symmetry
with respect to the k = 0 plane, enabling us to focus our study on the irreducible
Brillouin zone (BZ), which is the domain where the wave numbers ranging from 0
to π/a.

Two Atoms Per Unit Cell

Let’s take a closer look at a complex structure, which is an infinite one-dimensional
linear chain made up of unit cells, each of them containing two atoms with different
masses, as shown in Fig.(1.2). In this new setup, the lattice parameter is 2a, and
all the springs are assumed to possess the same stiffness represented by β. It is
possible to categorize the atoms as even atoms, the ones with mass equal to m1,
and odd atoms with mass m2 and labeling them with 2n and 2n+ 1 respectively,
where n is an integer number.

Figure 1.2: Illustration of the 1D atom chain with two atoms of different masses
as unit cell

Following the same assumption made for the case of the single-atom unit cell,
we can formulate the equation of motion for both the even and odd atoms:

m1
∂2u2n

∂t2
= −β(u2n − u2n−1) + β(u2n+1 − u2n)

= β(u2n+1 + u2n−1 − 2u2n)

m2
∂2u2n+1

∂t2
= −β(u2n+1 − u2n) + β(u2n+2 − u2n+1)

= β(u2n+2 + u2n − 2u2n+1)

(1.5)

and searching for solutions of Eq.(1.6) in the form:I
u2n(t) = A exp i(k(2n)a− ωt)

u2n+1(t) = B exp i(k(2n+ 1)a− ωt)
(1.6)

3



Introduction - Topological state in acoustic system

where A and B represent amplitude terms. These equations can be rewritten in
matrix form as:

C
(2β −m1ω

2) −2βcos(ka)
2βcos(ka) −(2β −m2ω

2)

D C
A
B

D
=
C
0
0

D
(1.7)

Equations (1.7) admit non-trivial when the determinant of the matrix is equal
to 0:

ω4 − 2β
3
m1 +m2

m1m2

4
+ 4β2sin2(ka)

m1m2
= 0 (1.8)

from which we can obtain the circular frequency as:

ω(k) =

öõõõôβm1 +m2

m1m2

1 ±

öõõô1 − 4m1m2sin2(ka)
(m1 +m2)2

 (1.9)

Eq.(1.9) has two real solutions: ω−(k) and ω+(k), both with periodicity π/a in
k. The first Brillouin zone ranges from −π/2a to π/2a. It is worth noting that the
first Brillouin zone is halved in size due to the chain’s direct lattice having twice
the unit cell size of a monoatomic chain.
In Figure 1.3 it is shown the dispersion relation within the irreducible Brillouin
zone (with k values moving from 0 and π/2a) as a function of the ratio m2/m1
when it is greater than or equal to 1.

Figure 1.3: Dispersion relation in the irreducible BZ of the investigated structure.
Three cases are represented: a) m2 = m1, b) m2 = 2m1 and c) m2 = 10m1

It can be observed that when m2 = m1, the dispersion relation aligns with
that of an infinite monoatomic chain but is confined within a smaller irreducible

4



1.1 – Acoustic Wave propagation

Brillouin zone. Additionally, as the mass ratio increases, a band gap appears at
the boundary of the Brillouin zone, and the size of the gap increases proportionally
with the mass ratio.

1.1.2 Crystallography elements
Knowledge of crystallography is essential to understanding how acoustic waves
interact with periodic structures. The first fundamental concept in solid state
physics is the Bravais lattice, also referred to as direct lattice, which is defined in
Ref[3] as: all points with position vectors R of the form

R = n1a1 + n2a2 + n3a3 (1.10)

where a1, a2 and a3, are any three vectors not all in the same plane, and n1,
n2 and n3 range through all integral values. Thus the point qniai is reached by
moving ni steps of length ai in the direction ai for i = 1,2 and 3. Where the vectors
ai are called primitive vectors and they represent the shortest linearly independent
vectors that can be used to recreate the entire lattice structure by translation.
As a consequence, it is possible to define the primitive cell. This is the smallest
repeating unit found within a crystal lattice that can be used to recreate the whole
lattice structure through translations. The primitive cell contains only one lattice
point and is the fundamental building block of the crystal’s structure.
The primitive cells are selected in such a way that they possess the same translational
symmetry as that of the entire crystal lattice. However, the selection of primitive
vectors to describe the unit cell is not unique, which in turn makes the primitive cell
selection not unique too. Therefore, the most commonly used solution for selecting
the primitive cell is the Wigner-Seitz cell. This particular volume is defined around
a single lattice point and contains all the closest points to it. It is possible to define
this volume around a single lattice point by connecting it to all other points in
the lattice and drawing lines between them (in blue in Fig.1.4), then taking the
smallest polyhedron bounded by the planes bisecting those lines (in red).

Figure 1.4: Wigner-Seitz cell

5



Introduction - Topological state in acoustic system

1.1.3 Reciprocal lattice and Irreducible Brillouin Zone
As we saw in the previous section, the direct lattice is defined in real space, but an
equally important definition is the reciprocal lattice. In the direct lattice a periodic
function f(r⃗) follow the condition f(r⃗) = f(r⃗ + R⃗) where R = la⃗1 + ma⃗2 + na⃗3.
This periodic function, which is R⃗− periodic, can be expressed using Fourier series:

f(r⃗) =
Ø
G⃗

f(G⃗)eiG⃗·r⃗ (1.11)

where G⃗ are the reciprocal lattice vector and f(G⃗) are the Fourier coefficients of
f(r⃗). This allows us to write:

f(r⃗ + R⃗) =
Ø
G⃗

f(G⃗)eiG⃗·(r⃗+R⃗) =
Ø
G⃗

f(G⃗)eiG⃗·r⃗ (1.12)

From Eq.1.12 we can conclude that eiG⃗·R⃗ = 1, which is true when:

G⃗ · R⃗ = 2π ·N ; N ∈ Z (1.13)

Therefore, the reciprocal lattice can be defined as the points whose positions are
given by a set of vectors G⃗ satisfying the condition in Eq.1.13 for R⃗ in the Bravais
lattice. Being R⃗ a linear combination of primitive vectors a⃗i with i = 1,2,3, we can
describe also G⃗ as linear combination of basis vector b⃗i, i = 1,2,3. and so we could
write:

G⃗ = l′b⃗1 +m′b⃗2 + n′b⃗3 (1.14)

where l′, m′ and n′ and b⃗i are not defined yet.
By explicating R⃗ and G⃗ inside Eq.(1.13) and imposing the basis {b⃗i} orthonormal
to the basis {a⃗i} and writing b⃗i · a⃗j = 2πδij where δij is the Kronecker’s delta. We
obtain:

l′l +m′m+ n′n = N (1.15)
Being N ∈ Z means that the left-hand side of Eq.(1.15) need to be an integer,
therefore l′,m′, n′ ∈ Z too. As a consequence, a reciprocal lattice is also a Bravais
lattice.
We can then start from b⃗1 to define b⃗i. Considering that b⃗1 ⊥ a⃗2 and b⃗1 ⊥
a⃗3, we can write b⃗1 = λ · a⃗2 × a⃗3 where λ is an unknown constant. Moreover,
a⃗1 · b⃗1 = 2π = λa⃗1 · (a⃗2 × a⃗3) from which we can obtain λ = 2π

a⃗1·(a⃗2×a⃗3) . A
similar deduction can be proved for vector b⃗2 and b⃗3. Considering also that
a⃗1 · (⃗a2 × a⃗3) = a⃗2 · (⃗a3 × a⃗1) = a⃗3 · (⃗a1 × a⃗2), the basis vectors of the reciprocal
lattice can be written as function as the basis vectors of the direct lattice as:

b⃗1 = 2π a⃗2 × a⃗3

a⃗1 · (⃗a2 × a⃗3)
(1.16a)
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1.1 – Acoustic Wave propagation

b⃗2 = 2π a⃗3 × a⃗1

a⃗1 · (⃗a2 × a⃗3)
(1.16b)

b⃗3 = 2π a⃗1 × a⃗2

a⃗1 · (⃗a2 × a⃗3)
(1.16c)

The scalar value a⃗1 · (⃗a2 × a⃗3) in Eq.(1.16) represents the volume of the unit cell
because is the volume of the parallelepiped formed by the three primitive vectors
{a⃗i} of the original direct lattice. It’s worth noting that the magnitude of the
reciprocal lattice vectors is inversely proportional to the magnitude of the direct
lattice vectors. This relationship is the reason why it’s called the reciprocal lattice.

Figure 1.5: On the left side, a cubic lattice, while on the right side, its reciprocal
lattice [4]

Since the reciprocal lattice is a Bravais lattice, one can determine its Wigner-Seitz
cell, which, in the reciprocal space, is commonly referred to as First Brillouin Zone.
Moreover, in the reciprocal lattice, the planes that intersect the lines connecting a
specific point to all the other points are referred to as Bragg planes. Consequently,
the First Brillouin Zone can be thought of as the set of all points in reciprocal
space that you can reach from the origin without encountering any Bragg planes.
The smallest possible Brillouin zone is called the irreducible Brillouin zone.
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1.2 Topological States
The quantum Hall effect (QHE) was discovered by Von Klitzing in 1980 [5] when
he proved the existence of an electron gas sample showing a quantized conduc-
tivity independently from its size and from impurities. This discovery created a
breakthrough in the description that condensed-matter physics had always used
regarding the distinctive phase of matter. A few years later, it was demonstrated
[6][7] that this phenomenon is characterized by a unique classification model based
on the concept of topological order. This means that the phase of matter goes
beyond symmetry breaking, implying that two distinct phases can possess the same
symmetry.
This description of matter’s phase topology has significant implications for its
fundamental properties. These properties remain unchanged under continuous
material perturbations and only alter during quantum phase transitions, like the
Hall conductance in the study of Klitzing. The quantization we observe is a result
of non-trivial topological properties in the energy bands. These properties are
distinguished by the Chern number, as outlined in the TKNN theory [7]. The
Chern number is a non-zero topological invariant that describes the geometric
phase, also known as the Berry phase, accumulation throughout the Brillouin zone.
This means that the Chern number is strongly connected to the energy bands in
the momentum space.

In classical insulators, the Chern number is equal to zero. However, in topological
non-trivial systems, a Chern number different from zero is produced. This results
in the generation of an electronic property where the bulk is insulating, while
conduction is present on the edge. This can be observed through the appearance of
a gapless edge state in the bulk energy gap. The discovery of certain properties was
made possible through the application of magnetic fields. It was later discovered
that non-trivial topological phases could be generated through the spin-orbit
coupling of a material. These phenomena are known as the quantum spin Hall
effect (QSHE) and one of the first examples was observed by Kane et al. with
graphene [8]. In a system featuring spin-orbital coupling, a pair of gapless edge
states emerge within the insulating band gap. These edge states carry conjugate
electronic spins and display spin-dependent propagation behaviors. Furthermore,
the total Hall conductance and the Chern number are equal to zero, indicating that
the time-reversal symmetry is preserved. It is precisely the time-reversal symmetry
that safeguards the spin-dependent edge states.

The quantum valley Hall effect (QVHE) proposes a new way for a topological
state to manifest itself by introducing a discrete degree of freedom, known as the
"valley" [9]. This term refers to the two energy extrema in the band structures in
momentum space. At these two points, the Berry curvature has an opposite sign,
which means that the value of its integral over the entire Brillouin zone is zero,
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1.2 – Topological States

while within each valley it is non-zero. This creates a valley-selective topologically
non-trivial property in the system. What’s interesting is that, in this case, the
time-reversal symmetry is preserved. Although these topological phases differ in
nature, they all share a common characteristic: the edge states span the bulk band
gap and separate domains with different Chern numbers.

1.2.1 Acoustic valley Hall effect
The discrete-valley degree of freedom, which characterizes quantum states associated
with energy extrema in the k-space, has garnered considerable attention due to
its possibility of being a novel information carrier, not too dissimilar to spin in
spintronics. The idea of bringing the valley concept to classical wave system
brought scientists to demonstrate the creation of valley-like frequency dispersions
in artificial crystals, both with photonic crystals[10] and sonic crystals[11]. Shortly
thereafter, the theoretical prediction and experimental observation of the quantum
valley Hall effect (QVHE) and the corresponding valley-protected edge state were
achieved in two-dimensional acoustic systems [12].

The quantum valley Hall effect is different from the quantum Hall effect and the
quantum-spin Hall effect. Unlike the latter two, the QVHE does not rely on intricate
mechanisms to achieve TRS breaking but instead relies on the breaking of space
inversion symmetry (SIS) while preserving time-reversal symmetry (TRS). This
makes QVHE more feasible for practical applications. However, this also means that
QVHE is a less robust phenomenon, sometimes called a "weak" topological effect.
It is worth noting that despite sharing similar lattice structure design principles,
these phenomena, which do not involve quantum mechanical effects, are named
the "acoustic valley Hall effect" (AVHE).

1.2.2 Topological materials for Valley Hall Effect
As mentioned above, the valley Hall effect in acoustic systems exhibits an analogous
effect to QVHE whiteout involving actual quantum mechanical behavior. In order to
obtain topological properties based on the valley Hall mechanism some prerequisites
are necessary [13].

To design a material with topological properties, the first step is to determine a
lattice structure with specific dispersion characteristics. In particular, the band
structure should feature linear, i.e. isotropic, dispersions originating from a degen-
erate point, named Dirac Point (DP), while the linear branches forming a conical
structure in the 3D space of wavevector and frequency [kx, ky, ω] are referred to
as the Dirac Cone (DC). In order to have topological properties based on the
valley Hall mechanism, this Dirac cone should be positioned at the boundary of
the Brillouin zone, as shown in Fig.1.6.

9
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Figure 1.6: Dirac dispersion at the boundary of the Brillouin zone in momentum
space. Picture from [13]

It is worth noting that different classes of topological properties could also
be derived from Dirac cones located at the center of the Brillouin zone [14].
Importantly, the presence of such dispersion properties is guaranteed for specific
lattice configurations with particular symmetries, making these dispersion properties
symmetry-protected.

Opening a frequency bandgap is the second crucial step toward in constructing
VHE-based materials. To achieve this, it is necessary to lift the degeneracy at
the Dirac Point, which can be done by breaking the space inversion symmetry
of the original lattice. This solution results in gapped band structures around
the valleys, along with the separation of the originally degenerate modes forming
the Dirac Cones. Space inversion symmetry breaking is proved to be possible
through either permanent changes [15] or temporarily induced deformation [16].
The application of anti-symmetric perturbations (positive and negative deformation
with the same type and amplitude, for example) results in band structures having
a topological charge around valleys with opposing signs. This topological charge,
an invariant characterizing the lattice’s nature concerning the topology of its
band structure, implies that the two lattices are topologically distinct after space
inversion symmetry breaking. These distinct lattices can be referred to as the
material’s two separate (topological) phases.

The third and last element necessary to achieve topological properties involves
assembling a lattice structure where the two phases contrast to form a physical
interface, known also as domain wall. Therefore, the valley topological charge
undergoes a transition across this physical interface, progressing from positive to
zero and then to negative (or vice-versa). Considering the meaning of the topological
charge, this behavior implies that the topological band-gap will close and reopen
when crossing the interface, developing distinct topological significance. Considering
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the revealed connection of the edge states to bulk topological properties[17], when
the discrepancy in topological invariants between the material phases constituting
the domain walls is different from zero, the wall will sustain edge states localized
at the interface and topologically protected against disturbance.
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Chapter 2

Counter mode resonator for
purely longitudinal modes

2.1 CMR - Contour Mode Resonators
AlN FBAR resonators have been the leading choice for a long time due to their
high-quality factor, Q, and electromechanical coupling coefficient k2

t . However, the
main limitation of these resonators is that their resonant frequency is fixed once
the film thickness has been chosen since:

fres = 1
2h

ó
C33

ρ
(2.1)

where C33 comes from the piezoelectric coefficient, h is the thickness of the piezo-
electric layer and ρ its density.

In spite of the availability of some solutions such as trimming or mass loading
for tuning the frequency of an FBAR device, a new type of resonator called the
Counter Mode Resonator (CMR) has been developed to overcome this issue. These
resonators utilize the vertical field to create displacement in the lateral direction
via the S0 Lamb-Wave mode. They also offer the ability to tune the resonance
frequency by adjusting the width of the piezoelectric plate.

Fig.2.1 shows a typical configuration of this laterally vibrating piezoelectric
resonator, which is formed by a thin piezoelectric film in between two metallic
electrodes. These two metallic layers allow the application of a potential across
the thickness of the film in between which results in a lateral strain through the
device’s plane. When the frequency of the signal that causes excitation aligns with
the mechanical resonance of the piezoelectric body, the amplitude of vibration
increases significantly. This amplified vibration is then converted into an electrical
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Counter mode resonator for purely longitudinal modes

Figure 2.1: Schematic illustration of CMR [18]

signal via the direct piezoelectric effect. Consequently, a change in the magnitude
of displacement is produced.

To define the modes and the resonant frequency of the CMR, one can employ
the a solution to the wave equation with appropriate boundary conditions. For
a longitudinal resonator oscillating along its width, the wave equation in one
dimension of the space can be expressed as:

ρ
∂2u

∂t2
= Ep

∂2u

∂x2 (2.2)

Here, Ep is the equivalent Young’s modulus and ρ the equivalent density of the
material stack defining the device. u is the displacement, x the single dimension of
the space corresponding to the direction of the vibration, and t is the time. One
general solution to this equation can be written as:

u(x, t) = [a sin (βx) + b cos (βx)]ejω0t (2.3)

We assume, as boundary conditions, no stress and stress gradient at x = ±W/2.
Therefore we obtain from 2.3:

u(x, t) = U(x)X(t) = sin (βnx)ejω0t (2.4)

βn = (2n− 1) π
W

(2.5)

Finally, the resonance frequency can be found by substituting Eq.2.4 in Eq.2.2.
The vibrational frequency of the fundamental mode can be found by setting n = 1
in the solution computation:
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2.1 – CMR - Contour Mode Resonators

f0 = 1
2W

ó
Eq

ρ
(2.6)

As previously mentioned, the expression of f0 clearly shows that the main
characteristic of CMRs is the resonance frequency of the resonator being defined
by its lateral geometric dimension. This is an important quality because it allows
for the lithographic definition of multiple frequency devices on a single substrate,
unlike the FBAR. Hence, components can be produced that can function across
a wide spectrum, independent of the piezoelectric structure’s thickness or length.
This provides greater freedom in the resonator design as the thickness and length
can be adjusted to define its electrical static capacitance C0 and, consequently, its
impedance.

2.1.1 BVD model
The resonance that a piezoelectric resonator generates when one of its acoustic
modes is excited can be detected as a variation in its input admittance. A very
useful and simple circuital model often used to describe and characterize one port
acoustic resonator is the so-called Butterworth-Van Dyke (BVD) model.

Figure 2.2: (a) The physical model of a BAW resonator. (b) The
electromechanical equivalent circuit

To define this model, it is possible to start from a simple BAW resonator as
the one depicted in Fig.2.2(a). Here, when a sinusoidal voltage ν is applied at
the electrodes with frequency f , due to the piezoelectric effect, a mechanical force
νm is generated and, as a consequence, the piezoelectric layer is subjected to a
displacement u. The relation that undergoes between these phenomena can be
written as:

ν ∝ νm = M
d2u

dt2
+ ν

du

dt
+Ku (2.7)
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where ν is the effective viscosity characterizing the plate, M its effective mass
and K the effective spring constant. From the dumped oscillating system point of
view, the right-hand side of equation 2.7, the three terms can correspond to inertia,
friction, and elasticity, respectively.

Considering the reciprocity of the piezoelectric effect, the electrical charges qm

induced on the electrodes will be proportional to u. Therefore, we can design the
equivalent electromechanical circuit shown in Fig.2.2(b) where im = du/dt is a
mechanical current, and clamped capacitance C0 is used to express the electrostatic
coupling between the electrodes. [18]

Figure 2.3: Butterworth-Van Dyke (BVD) model

When only the electrical characteristics are taken into account, the equivalent
circuit from before can be reduced to the Butterworth-Van Dyke (BVD) model
shown in Fig.2.3, where the motion resistance, capacitance, and inductance are
denoted with Rm, Cm and Lm, respectively.

Figure 2.4: An example of BVD model fitting of a resonator’s FEM simulation

Fig.2.4 shows the example of the electrical parameters obtained from the BVD
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fitting of an admittance response extracted from a FEM simulation of a resonator.
From the BVD model one can express the admittance Y as:

Y = 2πjfC0
1 − (f/fa)2 + j (f/fa)Q−1

a

1 − (f/fr)2 + j (f/fr)Q−1
r

(2.8)

where fr is defined as the resonance frequency where the series resonance occurs
and, from the equivalent circuit, it results equal to:

fr = 1
2π

√
LmCm

(2.9)

while when the parallel resonance occurs at the anti-resonance frequency fa:

fa = 1
2π
ò

Lm

C−1
m +C−1

0

(2.10)

Also in Eq.2.8 the resonance and anti-resonant quality factor appears and they
are, respectively:

Qr = 2πfrLm

Rm

(2.11)

and

Qa = 2πfaLm

Rm

(2.12)

Moreover, with the definition of the electromechanical coupling coefficient k2
t is

possible to rewrite the the parameters as:

Cm = 8C0k
2
t

π2 (2.13)

Lm = 1
ω2Cm

(2.14)

Rm = ωresLm

Qr

(2.15)

2.1.2 Figure of Merit of a Resonator
A resonator based on piezoelectric principles functions as an electromechanical
device wherein electrical and mechanical energies undergo reciprocal conversion at
a resonance frequency. This coupling stems from the interaction between stress
and electric field within a piezoelectric material. Furthermore, on each vibrational
half cycle, both the mechanical and the applied electrical energy undergo from a
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potential to a kinetic conversion and back. Consequently, the overall effectiveness of
a resonant system is strictly connected to the efficiency of these two mechanism. Two
specific parameters are defined to assess the efficiency of these energy conversions
within a resonator: the electromechanical coupling factor (k2

t ) and the quality
factor (Q).

Quality Factor - Q

The quality factor is a measure of energy lost in a resonator. It is specifically con-
nected to the energy that directly escapes or cannot be stored after a transformation,
such as heat. Therefore, a general definition of Q is [19]:

Q = 2π Peak energy stored

Energy dissipated per cycle
(2.16)

Where the overall quality factor Qtot of the resonator can be found considering
all the different dissipation mechanisms inside it:

Qtot = 2π Estoredq
i Edissipatedi

/cycle
=
AØ

i

1
Qi

B−1

(2.17)

A comparable description of Q can also be given considering a damped mass-
spring system governed by the differential equation Mẍ+ Cẋ+Kx = 0:

Q = 1
2ζ (2.18)

From Eq.2.18 it is possible to notice that Q is inversely proportional to the dumping
ratio ζ, which is defined as C divided by the value of the critical damping Cc [20].
Nevertheless, a more convenient definition to write Q is the one based on the
parameters present on the frequency response plot, which is more used for the
characterization of resonators:

Q = f0

BW3dB

(2.19)

where f0 is the resonance frequency and BW3dB bandwidth is the width of the
range of positive frequencies where the admittance peak is attenuated by 3dB. A
resonator that has a higher quality factor (Q) will exhibit a more sharp resonance.

Electromechanical coupling coefficient - k2
t

The coupling factor serves as a metric for assessing the effectiveness of the conversion
between the electrical and mechanical domains and vice versa. An essential
consideration in its analysis is distinguishing between the electromechanical coupling
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factor characteristic of the resonator and the coupling factor intrinsic to the material
itself. The latter remains independent of the resonator design, while the former
can be enhanced or diminished based on the implementation of electrodes. The
piezoelectric coupling factor, denoted as K2, can be defined in a lossless scenario
as:

K2 = WM

WM +WE

(2.20)

where WM is the work delivered by a piezoelectric actuator to a mechanical load
when the former is preloaded with a potential energy of WM +WE [18]. This means
that K2 is the upper limit for the efficiency of energy conversion in a resonator
made by a certain piezoelectric material.

For a piezoelectric resonator with a given geometry, the effective electromechani-
cal factor is used to quantify its conversion efficiency, and it is commonly expressed
as:

k2
eff =

f 2
p − f 2

s

f 2
p

(2.21)

with fs and fp, the resonance and anti-resonance frequencies, respectively.
However, another slightly different but common definition of the electromechanical
coupling factor is also used [21]:

k2
eff = k2

t = π2

8
f 2

p − f 2
s

f 2
s

= π2

8
Cm

C0
(2.22)

Finally, a standard definition of the Figure of Merit (FoM) of a piezoelectric
resonator is then defined as:

FoM = k2
t ·Q

1 − k2
t

(2.23)

which can be simplified for small values of k2
eff as:

FoM = k2
t ·Q (2.24)

The significance of this FoM in assessing a resonator’s performance becomes
clear when one considers that a higher coupling factor implies an efficient conversion
of electrical to mechanical energy. Simultaneously, a larger Q value indicates a
weaker coupling between the system’s energy and undesired forms of fluctuating
energy. Consequently, greater coupling and Q directly contribute to an improved
SNR.
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2.2 Acoustic Metamaterials
In recent years, there has been a surge of interest and research focus on designing and
developing acoustic metamaterials aimed at tailoring the propagation of acoustic
waves[22][23][24]. These engineered materials, known as phononic or acoustic
metamaterials, exhibit unique properties that go beyond those found in conventional
materials. One of the key objectives in this field is the creation of structures that
can effectively control the transmission, reflection, and manipulation of acoustic
waves across a broad frequency range.

Of particular interest is the exploration of acoustic metamaterials that feature
stopbands and passbands—frequency ranges where the transmission of acoustic
waves is selectively inhibited or permitted. These distinct acoustic band structures
are engineered through careful design of the unit cell geometry, arrangement of
constituent elements, and material properties. The ability to create stopbands,
where certain frequencies are forbidden, and passbands, where others are allowed,
opens up new possibilities for unprecedented control over acoustic wave propagation.

2.2.1 Two dimensional resonant rods - 2DRR
A solution to exploiting the possibility of acoustic metamaterial is the 2D-resonant-
rods (2DRR) proposed by Zhao [25][26], where a layer of AlN is partially etched in
order to obtain a series of resonant piezoelectric rods. While the top electrodes
separately cover each rod, the uniform bottom electrode allows the Aluminum
Nitride layer to have an optimal crystal orientation.

Figure 2.5: Schematic of a 2DRR device made by 6 unit cells

This particular design allows the confinement of the resonant vibration within
the rods, as shown in Fig.2.6a, by minimizing the coupling between adjacent rods
because the steep trenches display an evanescent lateral wavevector component at
fres. Additionally, the design of the trenches prevents the formation of any electrical
field lines that may be generated between the top electrode grating, resulting in an
increment of k2

t with respect to similar devices such as 2DMRs and CLMRs.
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(a) FEM simulated resonant total
displacement of a 2DRR.

(b) Frequency response of the 2DRR for
different rod width

Figure 2.6:

A parameter of particular importance in the 2DRR’s performance is the width
of the rod. The rod width plays a crucial role in determining various aspects of
the device’s functionality and overall efficiency, such as the resonance frequency,
fres, and the electromechanical coupling coefficient k2

t . Figure 2.6b illustrates
the frequency response, as determined through finite element method (FEM)
simulations, of a two-dimensional resonator array (2DRR) formed by 20 unit cells.
The lower platinum electrode has a thickness of 250nm, and the upper aluminum
electrode is 330nm. The rods are elevated by 6nm above the "first" AlN layer,
which itself has a thickness of 400nm.

(a) Resonance frequency vs rod width (b) k2
t vs rod width

Figure 2.7: Variation of the resonance frequency and the k2
t at different values of

the rod width
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It is understandable that as the width of the rod deviates significantly from 2µm,
achieving well-separated resonant modes becomes increasingly challenging. Also, as
illustrated in Figure 2.7b, it is evident that the k2

t value diminishes noticeably when
the rod width deviates significantly from that value. Nevertheless, the adjustment
of the rod width enables a reasonably efficient control over the resonance frequency,
which decreases with the incremental widening of the rod, as depicted in Figure
2.7a.

Another noteworthy outcome of the investigation of the two-dimensional resonant
rods device is the identification of distinct stopband and passband phenomena
occurring at varying frequencies. The analytical analysis of these phenomena is
illustrated in Figure 2.8. The resulting transmission coefficient T clearly indicates
the emergence of a stopband in mode propagation, attributed to the impact of
a large and evanescent wavevector that restricts the exchange of acoustic energy
between adjacent unit cells [25].

Figure 2.8: Analytical trend of the Trasmission T, in blue, and reflection R, in
red, vs frequency from [25]
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Chapter 3

Unit Cell Bloch Diagram

3.1 Unit cell simulation
In this study, we examine a one-dimensional topological system based on the
well-known Su-Schrieffer-Heeger (SSH) model [27]. This model is widely considered
the most straightforward configuration that sustains a topologically nontrivial
bandgap. The idea behind this model is to alternate pairs of elements with higher
or lower coupling strength in order to create a discontinuity where we can observe
the generation of a topological-protected edge state. We achieve this by using a
piezoelectric metamaterial derived from the 2DRR, composed of a substrate of
AlScN with periodically spaced rods placed above it.

3.1.1 Definition of the simulation model
To achieve our goal, we thoroughly analyzed the band structure of the unit cell of
our metamaterial. The idea was to achieve a symmetric band structure, that was
possible by designing a symmetric unit cell. In order to do so the rods componing
the device are placed in symmetrically respect the middle point of the unit, so
given a cell of length U and the rods of equal thickness R, their distance to respect
to the edges of the unit cell T was defined as T0 = (U/2 −R)/2. The result is the
perfectly symmetric unit cell named A0, shown in Fig.3.1.

In order to numerically compute the dispersion relation of the unit cell, the
finite element method (FEM) was used by the application of the Floquet boundary
conditions. These boundary conditions are frequently used to extract the dispersion
relation of metamaterials or other periodic architectures. Usually, the Floquet
boundary condition can be expressed as:

pt,dst = pt,srce
−ikF (rdst−rsrc) (3.1)
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Figure 3.1: Unit cell

Here, the sweep of the wavevector kF is defined by the user, and the coordinates
where the BC are applied are defined by rsrc and rdst: the source and the destination
edges of the cell respectively [28].

In this work, we used the Pressure Acoustic module of COMSOL Multiphysics
to build our unit cell and applied the Floquet boundary conditions to its parallel
lateral edges. Through the FEM method, we solve in the frequency domain the
inhomogeneous Helmholtz equation:

∇ ·
A

− 1
ρc

(∇pt − qd)
B

−
k2

eqpt

ρc

= Qm (3.2)

where pt = pb + ps is the total pressure, which is the sum of the scattered field ps,
and the background pressure pb, which was set to be equal to 0. keq is the wave
number and can be written as:

k2
eq =

3
ω

cc

42
− k2

z (3.3)

where kz is the out-of-plane wave-number and it is set to be equal to 0, while the
speed of sound in the material is defined as:

cc =
ó
K

ρc

(3.4)

where K and ρc are the bulk modulus and the density of the material, respectively.
In order to solve the eigenvalue problem, Eq.3.2 is written in its eigenfrequency
formulation, where the source terms are absent, as:

∇ ·
A

− 1
ρc

B
+ λ2p

ρcc2
c

= 0 (3.5)
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λ is the eigenvalue and it is related to the frequency f , as well as to the angular
frequency ω, being λ = i2πf = iω. Therefore, the eigenvalues are evaluated by
sweeping the wavenumber k. The dispersion curves are then obtained by plotting
the frequency versus the wavenumber or vice-versa.

3.1.2 Unit Cell Analysis

In order to attain the Dirac cones, we design the unit cell to be the symmetric
repetition of a starting mono-rod cell as the one depicted in Fig.3.2. The result
is the unit cell with a lattice constant, U , which is two times the one, u, of the
mono-rod cell, while all other geometric parameters remain the same [29].

Figure 3.2: Structure of the mono-rod cell

As mentioned in chapter 1, the first Brillouin zone is strongly dependent on the
lattice constant. This is because the value of kx is periodic within the range of
−π/U and π/U . Therefore, the dimension of the first Brillouin zone of the unit
cell will be exactly half of the Brillouin zone of the half-cell since U = 2u, as it is
possible to see from Fig.3.3:

Based on the observation in Fig.3.3b, it is apparent that the reduced dimension
of the Brillouin zone leads to a phenomenon known as band folding. This results
in the bending of the dispersion curves of the original half-cell, as displayed by
the red dots in the figure. In fact, when these curves reach the edge of the "new"
Brillouin zone, they fold on themselves and create a Dirac point.

The variation in the total length of the unit cell can serve as an important
tuning parameter for the cell. As shown in Fig.3.4, the frequency distribution of the
cell’s bands is strongly dependent on the value of U . When the first Brillouin zone
expands, i.e. for smaller U , the distances between band gaps increase, resulting in
higher frequency dispersion bands.
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(a) Dispersion curve of the mono-rod cell (b) dispersion curve of the unit cell, the
red dots point out the Dirac point

Figure 3.3: Comparison between the dispersion curve of a unit cell with
U = 24µm and the corresponding single rod cell

Figure 3.4: Comparison of the dispersion relation of unit cells of different lengths.
The cell with a length of 20µm is shown in blue, while in cyan and magenta, the

cells with lengths of 24µm and 20µm are shown, respectively.

To establish a topologically protected state following band folding, the introduc-
tion of perturbation to the unit cell becomes imperative. Various methods can be
employed for this purpose, including modifying material properties or introducing
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defects. In the specific case under consideration, perturbation is accomplished
through a modulation of the unit cell geometry.

A strategic adjustment is made to the spatial arrangement of rods to disrupt
the symmetry of the half-cell of origin while preserving unit-cell symmetry. This
adjustment results in the definition of two new unit cells, denoted as A1 and A2,
both visually represented in Figure 3.5a. Within the A1 unit cell, the distance of
the rod from the lateral edge, denoted as T1, is reduced compared to the original
distance, T0. Additionally, the distance between the rod and the symmetric center
of the cell is defined as T2 = U/2 − R − T1. In contrast, the A2 cell exhibits the
opposite configuration.

Notably, the sum of these two parameters is consistently maintained, equating
to T1 + T2 = 2T0. This strict preservation is essential to ensure that the band
structure generated by these two distinct unit cells remains identical—a condition
corroborated by FEM simulation. Figure 3.5 visually reinforces this equivalence,
depicting dispersion curves of the A2 cell (depicted by black dashed lines) perfectly
overlapping with those of the A1 cell (depicted in red). This congruous overlap
validates the integrity of the band structures generated by both A1 and A2 unit
cells, affirming the success of the geometric perturbation strategy.

(a) Geometry modulation of the Unit
Cell. A1 is on top, and A2 is on the

bottom.

(b) Comparison of the dispersion curves of the
original unit cell and the new geometries

Figure 3.5:

The introduction of geometric perturbations in the system plays a pivotal role,
leading to the emergence of a band gap precisely at the location where topological
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non-trivial features manifest. This occurrence holds significant importance in the
dynamics of the system, serving as a prerequisite, though not an exclusive one, for
the generation of a topologically protected edge state.

Essentially, the crucial aspect lies in the necessity of creating a sizable band
gap, a task achieved through the influence of geometric perturbations. This band
gap formation is particularly critical as it contains the Dirac Point originating
in the A0 cell. The opening of a sufficiently large band gap not only enhances
the system’s stability but also facilitates the conditions conducive to establishing
a topologically protected edge state. In essence, this intricate interplay between
geometric perturbations and band gap formation becomes a key factor in shaping
the unique topological characteristics of the system, ultimately leading to the
emergence of protected edge states.

The case shown in picture 3.5 is the simulation of a unit cell of lateral length
equal to U = 24µm. The rods are made of Aluminum-Scandium-Nitride, their
width is R = 4µm, and they are Hrod = 400nm thick. The bottom layer is made
by a Hm = 80nm thick platinum layer, covered by a Htr = 100nm AlScN layer.
Therefore, T0 result equal to 4µm in the A0 configuration while, in this case, T1 have
been chosen to be equal to 2µm, thus T2 = U/2 −R − T1 = 6µm. As mentioned
above, here we have the confirmation that T1 + T2 = 2T0 = 8µm.

Figure 3.6: Dispersion curve of the unit cell of lateral length U = 24µm and rods
width R = 4µm. The yellow bars highlight the band gaps for potential topological

protected states.

We can clearly see five band gaps that form around the Dirac points. These
frequency gaps are pointed out in Fig.3.6. Two out of the five bandgaps appear
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more intriguing due to their broader nature, allowing potential edge states to be
more isolated and resistant to interference from other states. G2 opens around
the Dirac Point at 373MHz, creating a gap of about 126MHz and G5, is slightly
smaller (158MHz) but around a higher frequency, 1.12GHz.

Starting from the same structure, an analysis of possible tuning of different
parameters has been made. First of all, a comparison of the dispersion curves
obtained as the thickness of the rods is shown in Fig.3.7. As before, the dispersion
curves generated from the A1 cell, in red, and A2, the black dashed line, remain in
perfect alignment, and this will not change across all the simulated configurations.
It is worth noting that the second band-gap, G2, is sustained in both configurations
with R = 6µm and R = 2µm. However, a significant reduction in the bandwidth
dimension, about 50MHz, is observed for the latter. This decrease poses a potential
challenge for achieving a well-isolated topological edge state. When the rod width
is equivalent to 6µm, G2 experiences a slight reduction to 161MHz; however,
the Dirac Points are in closer proximity to the higher band. This proximity may
similarly present challenges in isolating the edge state effectively.

On the contrary, it is evident that the fifth band gap G5 in the original con-
figuration is almost closed in both of the revised configurations. Nevertheless, in
both new designs, a novel gap emerges at the fourth band of the A0 cell. This
underscores the necessity for a thorough investigation into cell design to discern
feasible locations for gap opening.

Figure 3.7: Dispersion curve of the same unit cell as the rod width assume values
equal to R = 2µm, R = 4µm and R = 6µm, from left to right respectively

Meanwhile, Fig.3.8 visually demonstrates that variations in the rod thickness
exhibit minimal influence on the delineation of the band structure. The observed
insensitivity of the band structure to changes in rod thickness suggests a robustness
in the system’s behavior concerning this specific parameter.

An additional analysis was undertaken to explore potential symmetries within
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Figure 3.8: Dispersion curve of the same unit cell as the rod thickness change

the configurations of A1 and A2 cells. This investigation involved varying the
parameter T , representing the rod distance from the edge of the cell. Figure 3.9
illustrates the outcomes for TA1 = 1µm (and TA2 = 7µm) on the left, TA1 = 2µm
(TA2 = 6µm) in the center, and the A1 configuration with TA1 = 3µm (TA2 = 5µm)
on the right. The blue lines, consistent with the A0 cell, represent TA0 = 4µm.

As T increases and approaches TA0, there is a discernible decrease in the
frequencies within the formed bands. This is exemplified by the first two bands
when T = 3µm, which nearly coincide with those of the A0 configuration. Notably,
when T = 2µm, precisely half of TA0, the Dirac points align with the midpoint of
the generated band gaps.

Figure 3.9: Dispersion curve of the same unit cell as the distance T change

In conclusion, an investigation into the variation in the width of the unit cell has
been conducted and showed in Fig.3.10. As previously mentioned, the increment in
the U parameter results in the narrowing of the frequency distribution within the
band, providing a potential avenue for frequency tuning. Furthermore, alterations
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in the U parameter impact the characteristics of the opened band gaps. While the
first gap G1 remains consistently open in each design, it is noteworthy that G2
contracts for both U = 20µm and U = 28µm, thereby diminishing the likelihood
of encountering a topologically protected state.

Simultaneously, with U = 20µm, a new gap emerges at the fourth band, and
for U = 28µm, one opens at the third band. However, it is crucial to observe
that in both instances, the Dirac points are in close proximity to one of the bands
of the A1 or A2 structure. This proximity raises considerations regarding the
potential challenges associated with isolating a topologically protected state in
these configurations.

Figure 3.10: Dispersion curve of the unit cell as its lateral dimension U changes
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3.2 Zak Phase computation
As mentioned in Chapter 1 and supported by the TKNN theory [7], the primary
distinction between a quantum Hall state and a regular insulator is a topological
one. This contrast is also applicable to topologically protected surface states in
topological insulators. In a 2D bandstructure there exists a mapping from k, the
crystal momentum, to the Bloch Hamiltonian, H(k). The topological classification
of gapped band structures involves band structures considering equivalence classes
of H(k) that can be continuously deformed into one another without closing the
energy gap[30]. These classes are identified by a topological integer invariant defined
as Chern number: n ∈ Z.

To have a physical perspective of the Chern number, it is necessary to look at
that in terms of the Berry phase[31] associated with Bloch wave-functions |um(k)⟩.
Assuming the absence of accidental degeneracies, as k undergoes transport around
a closed loop, |um(k)⟩ accumulates a well-defined Berry phase determined by the
line integral of:

Am = i ⟨um| ∇k |um⟩ (3.6)

Defining the Berry flux as Fm = ∇ × Am, the Chern number results as the
cumulative Berry flux at the Brillouin Zone:

nm = 1
2π

Ú
d2kFm (3.7)

As noted before, nm is an integer whose quantization is analogous to the Dirac
magnetic monopole. The total Chern invariance is then denoted with n and
obtained by summing all the nm for all the occupied bands:

n =
NØ

m=1
nm (3.8)

This total Chern number remains unchanged even in the presence of degeneracies
between occupied bands as long as a finite gap persists between occupied bands
and empty bands.

3.2.1 Zak phase
When we move to one-dimensional solids, their topological properties are no longer
described by the Chern number but by the Zak phase. The Zak phase is the Berry’s
phase acquired by a particle as it moves across the Brillouin Zone.[32].

Being ψk(x) a Bloch wave characterized by the quasi-momentum k, the Zak
phase φzak can be conveniently expressed using the cell periodic Bloch function
uk(x) = e−ikxψk(x):
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φzak = i
Ú G/2

−G/2
⟨uk| ∂k |uk⟩ dk (3.9)

Here, G = 2π/d represents the reciprocal lattice vector, where d is the lattice
period and ∂k is the partial derivative with respect to k. A non-trivial Zak phase
underlines the presence of protected edge states.

After the definition of the Zak phase for electronic periodic systems, the concept
was extended to acoustic ones[33]. In this case, the geometric phase of the nth

isolated band is given by:

θzak
n =

Ú π/a

−π/a

C
i
Ú

uc

1
2ρν2drdxu

∗
n,k(x, r)∂kun,k(x, r)

D
dk (3.10)

where x denotes the axial coordinate, r the position in a cross-sectional plane,
uc is the unit cell, ν is the speed of sound, and un,k(x, r) is the periodic in-cell
component of the normalized Bloch pressure eigenfunction for a state of wavevector
k in the nth band:

Pn,k(x, r) = un,k(x, r)eikx (3.11)
The 1/(2ρν2) factor serves as the weight function for the acoustic wave equation.

When a quasi-1D system is considered, like when the pressure field in the lateral
dimension is uniform, the Zak phase of an isolated band can be derived from the
symmetry properties of the band-edge states. When the unit cell exhibits mirror
symmetry concerning its central cross-sectional plane, the Zak phase assumes only
two possible values: 0 and π. More specifically, if two states at the center and edge
of the Brillouin zone within the same band possess the same symmetry, therefore
either both even or odd concerning the central plane, then the Zak phase for
that band will be equal to 0. On the other hand, if the two states have opposite
symmetry, the Zak phase will equal π [34].

A theoretical rationale indicating that the Zak phase of an acoustic system
possessing inversion symmetry must be either 0 or π can be provided. Drawing
parallels with electronic systems, an analogous Hermitian formulation can be
applied to describe an acoustic system. Here, the pressure field corresponds to the
electron wave function, while the pressure energy density reflects the probability
density of electrons. Consequently, Wannier functions in an acoustic system can
be defined, mirroring their electronic counterparts[35]. Assuming a selected origin
at x = 0, positioned at the middle plane of the system, the center of the Wannier
function for the nth band can be linked to the Zak phase of the band through the
relation[32]:

qn = a

2π

Ú π/a

π/a

C
i
Ú

uc

1
2ρν2drdxu

∗
n,k(x, r)∂kun,k(x, r)

D
dk (3.12)

33



Unit Cell Bloch Diagram

From which it is possible to obtain:

qn = a

2πθ
zak
n (3.13)

When the acoustic system has periodicity and inversion symmetry, the center of
the Wannier function remains invariant under an inversion operation and can be
expressed as:

qn = −qn +ma (3.14)
where a is equivalent to the length of the unit cell while m is an integer number.

Therefore, as a consequence of Eq.3.14:

qn = 0 or a2 (3.15)

Combining Eqs.3.12 and 3.15, it is possible to affirm that, for an acoustic system
that has inversion symmetry, its Zak phase can only assume values equal to 0 or to
π

3.2.2 Estrapolation of the Zak phase
To deduce the Zak phase of our device, we employed the discretized form of Equation
3.10 [33] [34]:

θZak
n = −Im

NØ
i=1

ln

C
1

2ρν2

Ú
UC

drdx u∗
n,ki

(x, r)un,ki+1(x, r)
D

(3.16)

The eigenfunctions of the unit cell were numerically extracted through a COM-
SOL simulation of the unit cell. We selected N different points within the Brillouin
Zone interval for each distinct band, ranging from k = −π/U to k = π/U . Utilizing
Equation 3.16, we obtained the Zak phase in the limit as ∆ki = ki+1 − ki → 0.
Subsequently, for each wavevector k value, the eigenpressure was determined for a
specific set of points, as illustrated in Fig.3.11:

Figure 3.11: Cell point selected to compute the eigenpressure
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After obtaining the eigenpressures un,ki
(x, r), a MATLAB code, reported in

Appendix A, was implemented to compute the Zak phase for each isolated band.

Numerical results

In this section, we present the results from computing the Zak phase based on the
band diagram derived for various unit cell configurations. This computation is of
significant importance because when the Zak phase values of the two bands consti-
tuting the band gap are inverted between the "symmetry-breaking" configurations,
denoted as A1 and A2, a topologically protected edge state can exist within the
gap.

Our initial investigation focused on a scenario involving a symmetric unit cell
with a large U of 24µm, featuring AlScN rods with a height (Hrod) of 400nm and
a thickness (R) of 4µm. The choice of U and R results in the symmetric unit cell,
denoted as A0, characterized by T0 = (U/2 −R)/2 = 4µm. The configurations A1
and A2 are distinguished by T values of 2µm and 6µm, respectively, maintaining
their sum at 2T0 = 8µm.

A1 A2 Gap
θZak

1 π 0 G1
θZak

2 0 π

θZak
3 0 π G2
θZak

4 0 π

θZak
5 0 π G3
θZak

6 0 π

θZak
7 π 0 G4
θZak

8 π 0
θZak

9 0 π G5
θZak

10 0 π

Table 3.1: Zak phase value for each band

Table 3.1 presents the computed Zak phase, denoted as θZak
n , for each nth band.

The bands are categorized to emphasize the generated gap, as illustrated in Figure
3.6. A detailed examination of the results reveals that, except for the G1 gap, none
of the formed gaps exhibits an inversion in the geometric phase. Consequently,
none of these gaps can support a topologically protected edge state.
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This observation is further supported by examining the symmetry of the mode
shape with respect to the central cross-section plane of the unit cell. Specifically,
when the mode shape at the center and at the edge of the Brillouin Zone for the
same band demonstrates identical symmetry, the Zak phase result is θZak

n = 0;
otherwise, it is equal to π. [36] [37] [34]

Fig.3.12 shows the representation of modes on kx = 0 and kx = π/U for the
first two bands of the A1 design, on the left and on the right respectively. For the
first band, it is possible to notice how the mode in k0, Fig 3.12(a), is symmetric
while the one at the edge of the band is anti-symmetric. Therefore, the geometric
phase θZak

1 is equal to π because the two symmetries are different. Moreover, this
result confirms the result reported in 3.1. In the opposite way, the two modes for
the second band, shown in 3.12 (c) and (d), are both symmetric. Therefore, the
Zak phase for the second band is equal to θZak

2 = 0
The diagram in Fig.3.12 illustrates the representation for the initial two bands

of the A1 design of modes at kx = 0 and kx = π/U , depicted on the left and
right sides, respectively. For the first band, it is observed that the mode at k0,
as shown in Fig.3.12(a), exhibits symmetry, while the mode at the band edge is
anti-symmetric. Consequently, the geometric phase θZak

1 attains a value of π due to
the dissimilarity in symmetries. This finding corroborates the results presented in
3.1. Conversely, both modes for the second band, illustrated in Fig.3.12(c) and (d),
display symmetry. As a result, the Zak phase for the second band is determined to
be θZak

2 = 0.

Figure 3.12: Mode shape of the first two A1 unit cell configuration bands.
Figures (a) and (b) are the first bad modes at k = 0 and k = π/U , respectively.

(c) and (d) are the second band modes at k = 0 and k = π/U , respectively

The equivalent analysis is depicted in Fig. 3.13 for the unit cell design A2. In
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contrast, the modes on the first band are both symmetric, while those on the second
band possess opposite symmetries. Consequently, in line with our calculations, the
Zak phases for the two bands are determined as follows: θZak

1 = 0 and θZak
2 = π.

Ultimately, the Zak phase for the initial two bands of the A1 design undergoes a
transition from π to 0, while the opposite trend is observed for the A2 configuration.
This inversion of symmetry indicates the presence of a topologically protected edge
state.

Figure 3.13: Mode shape of the first two A2 unit cell configuration bands.
Figures (a) and (b) are the first bad modes at k = 0 and k = π/U , respectively.

(c) and (d) are the second band modes at k = 0 and k = π/U , respectively

Similarly, an analogous analysis is conducted for the third and fourth bands and
it is shown in Fig.3.14 and 3.15. In contrast to the previous observation, both bands
for the A1 configuration exhibit values of θZak

3 = θZak
4 = 0, while for the A2 design,

both values are θZak
3 = θZak

4 = π. This outcome aligns with the data presented in
Table 3.1, indicating the absence of topological inversion and, consequently, the
lack of sustained topological protected edge states.

The Zak Phase and mode analysis were conducted for various unit cell configura-
tions. The mode analysis for the additional edge states found in the various studied
configurations and the tables containing the computed Zak phases are detailed in
Appendix B.
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Figure 3.14: Mode shape of the third and fourth A1 unit cell configuration bands.
Figures (a) and (b) are the third bad modes at k = 0 and k = π/U , respectively.

(c) and (d) are the fourth band modes at k = 0 and k = π/U , respectively

Figure 3.15: Mode shape of the third and fourth A2 unit cell configuration bands.
Figures (a) and (b) are the third bad modes at k = 0 and k = π/U , respectively.

(c) and (d) are the fourth band modes at k = 0 and k = π/U , respectively
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Chapter 4

Finite Device Acoustic
Simulation

4.1 Finite Device Model
In the course of examining the unit cell, the application of Floquet boundary
conditions has allowed the system under investigation to be effectively treated as
one comprising an infinite number of unit cells. This strategic approach enables a
comprehensive understanding of the system’s behavior and properties.

This section delves into the investigation of a finite device through Finite Element
Method (FEM) simulations conducted using COMSOL Multiphysics. The primary
objective of this analysis is to validate the existence of the topologically protected
edge state within a finite device.

Throughout these simulations, emphasis has been placed on exploring two dis-
tinct configurations of the device: the A0A0 and the A1A2. The former constitutes
a device composed of N finite A0 unit cells, resembling a forest of rods separated
by a constant distance—similar in structure to the 2DRR configuration. On the
other hand, while sharing similarities, the A1A2 configuration can be characterized
as a composite phononic system. This designation arises from its composition,
featuring two distinct phononic crystals—one comprising N/2 A1 unit cells and
the other N/2 A2 unit cells. The incorporation of a topological phase inversion at
the interface between these two phononic crystals introduces the potential for the
formation of the topologically protected edge state.

Figure 4.1: Fine A0A0 device with Ncell = 10
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Figure 4.2: Fine A1A2 device with Ncell = 10

By exploring these configurations in finite devices, this investigation aims to
discern the robustness and practical applicability of the topologically protected
edge state in realistic, non-infinite systems.

The device under simulation is made by a bottom platinum plate 80nm thick
on which a 100nm AlScN layer has been deposited and from which the forest of
AlScN rods elevate for 400nm. In order to perform the FEM simulation with the
Pressure Acoustic package of COMSOL Multiphysics, the Bulk Modulus K and
the density of the material ρ are needed. The ones used in this study are reported
in Table 4.1

AlScN Pt
K 1.377e11 Pa 2.333e11 Pa

ρ 3700 kg/m3 21450 kg/m3

Table 4.1: Material parameters

In this preliminary study, the input to the system has been inducted by the
application of a Background pressure field of 1Pa to an extension of the stack of
Platinum and Aluminum-Scandium-Nitride, as shown in Fig.4.3.

Figure 4.3: Element of a A1A2 device formed by Ncell = 4 cells where it is
applied the background pressure field

In COMSOL Multiphysics, the application of a background pressure field is a
fundamental aspect of pressure simulations that plays a crucial role in replicating

40



4.1 – Finite Device Model

real-world conditions. The background pressure field serves as a reference or
baseline pressure within the simulation domain, allowing modeling scenarios where
the pressure is not uniformly zero. By incorporating a background pressure field, it
is possible to accurately simulate and analyze complex systems, providing a more
comprehensive representation of real-world phenomena.

Figure 4.4: PMLs of a A1A2 device

Moreover, a Perfectly Matching Layer is defined in the device. The PML layer
acts as an absorbing boundary condition, effectively dampening outgoing waves and
preventing reflections that could distort the accuracy of the simulation results. In
acoustic pressure simulations, the PML layer is strategically employed to mitigate
artificial reflections at the simulation domain’s boundaries, thereby enhancing
the precision and reliability of the results. This crucial element ensures that
the simulated acoustic field closely mirrors real-world conditions by minimizing
boundary artifacts and improving the overall fidelity of the acoustic pressure
simulation in COMSOL.
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4.2 Transmission Analysis
The main feature that has been studied in our devices is their transmission spectrum.
The transmission analysis of a phononic crystal can provide valuable insights into
the existence, position, and properties of topologically protected edge states.

To obtain the transfer spectrum of the device, we first define two boundary
sources at the beginning (S1) and at the end (S2) of our phononic crystal, as shown
in Fig.4.5. These two boundaries are necessary to compute the input acoustic power
that will be the reference, Pref , and output power, Pout. The first is computed by
performing the integral of the input pressure p0 over the density ρ and the speed
of sound in the material cm:

Pin = 2
Ú

S1

p2
0

2ρc (4.1)

while the output power can be obtained by just integrating the x component of
the acoustic intensity on the surface S2:

Pout =
Ú

S2
Ix (4.2)

The final transmission is then computed as the ratio between the output power
and the reference one: T = Pout/Pref .

Figure 4.5: S1 and S2 integration surfaces, in yellow and blue respectively

First of all, a comparison between the dispersion curves was obtained in Chapter.3
and the transfer plot obtained is made to validate the obtained results’ coherence.
The comparison is illustrated in Fig.4.6, wherein a finite device comprising a
total of 8 unit cells of width equal to U = 24µm is examined. The lower metal
component consists of an 80nm thick Pt layer, while the trench layer is composed
of a Hth = 100nm AlScN layer, and the rods exhibit a thickness denoted as
Hrod = 400nm. In both graphs, the blue lines represent the A0A0 configuration,
denoting the fully symmetric configuration with a unit cell characteristic equal
to T = (U/2 − R)/2 = 4µm. Conversely, the red lines pertain to the A1A2
configuration characterized by TA1 = 6µm and TA2 = 2µm. A discernible alignment
is observed between the dispersion curve and the transmission spectrum. Notably,
there exists a transmission within the finite device that corresponds to the bands
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depicted in the initial graph. Nevertheless, it is evident that an exact correspondence
between the frequency of the band and the passbands in the transmission spectrum
is lacking. This discrepancy is attributed to a detectable downward shift in
frequencies within the finite device, and this shift becomes more pronounced with
an escalation in frequency.

Figure 4.6: Dispersion curve, on top, and Transmission of a device made by 8
unit cells

Figure 4.7 depicts the outcomes of the device constructed with N = 10 unit
cells, maintaining a consistent configuration. Similar to the observations in the
preceding analysis, a noticeable coherence with the bands derived from the unit-cell
analysis is evident here. The presence of a frequency shift, observed with respect
to the band diagram, is discernibly comparable to the shift illustrated in Figure
4.6 for the 8 unit cell device. This consistency in the frequency shift prompts
considerations that the observed alteration in frequency may be attributed to the
additional lateral component employed to impart input pressure to the system.

Both of these illustrations further validate the emergence of band-gaps surround-
ing the Dirac points upon the disruption of unit-cell symmetry. In Figure 4.8, the
depiction illustrates the appearance of these gaps both in devices formed exclusively
by symmetry-breaking unit cells of the same type (specifically, the A1A1, in orange,
and the A2A2, in yellow, configurations), and when half of the device comprises
unit-cells of one type while the other half comprises the specular unit-cell type.
Remarkably, these arrangements yield identical outcomes when the two sides are
inverted, exemplified in both the A1A2 and A2A1 configurations in magenta and
cyan, respectively.
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Figure 4.7: Dispersion curve, on top, and Transmission of a device made by 10
unit cells

Figure 4.8: Transmission graph of the five combinations of unit cells: A0A0,
A1A1, A2A2, A1A2, and A2A1. The yellow star highlights the topologically

protected edge state.

These visual representations already confirm the presence of a topologically
protected edge state at approximately 90MHz. Notably, this state exclusively
manifests in the A1A2 or A2A1 configurations, affirming that the topological phase
inversion is specifically inherent in these configurations.

Figure 4.9 illustrates the transmission spectrum of a device configured as A1A2
within the frequency range of 0 to 160MHz specifically focusing on the edge state.
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An anticipated trend is observed wherein the transmission diminishes with an
increasing number of unit cells. Notably, the edge state mirrors this attenuation,
remaining perceptible in a device composed of 8 unit cells but exhibiting a gradual
decline in visibility with a continued rise in the number of unit cells until its
complete disappearance in a device comprised of 16 unit cells.

Conversely, in instances involving a lower quantity of unit cells, the edge state
manifests a more pronounced peak. However, the associated band gap is less
well-defined, resulting in a state that is not effectively isolated.

Figure 4.9: Focus on the topologically protected edge state for devices made by a
different number of unit cells

Shifting the focus to the behavior of the edge state with variations in the
parameter T , it becomes apparent that the intensity of this state is influenced
by the symmetry of the unit cell. Specifically, as the separation between the two
rods converges toward that of the A0 configuration (T0 = 4µm), the transmission
associated with the edge state escalates. However, approaching the A0 configuration
results in a less distinct band gap, consequently diminishing the clarity of the edge
state.

For T = 2µm, while the peak exhibits a value comparable to the preceding
scenario, the open gap is well-defined, thereby ensuring the robust delineation of
the topological state.
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Figure 4.10: Transmission graph of the A1A2 device made with a different
number of unit cells. At 90MHz the presence, or not, of the topologically

protected edge state

The topologically protected mode at 90,MHz is depicted in Figure 4.11a. As
anticipated, the transmission is observed throughout the entire device, with the
field concentration evident at the interface between the two sides of the A1A2
configuration. Conversely, in Figure 4.11b, a complete absence of transmission is
observed, indicating the absence of the edge state.

(a) Presence of the topological protected state
at frequency f = 90MHz in the A1A2 device

(b) Absence of the topological protected state
at frequency f = 90MHz in the A1A1 device

Figure 4.11: Presence and absence of the topologically protected state in A1A2
configuration and A1A1, respectively

Conducting an analysis of the device while varying the width of the unit cells
U , it is evident that for smaller U values, such as U = 20µm in Figure 4.12,
the peak associated with the topological state diminishes considerably. However,
as U is increased, the edge state at 90MHz becomes more pronounced, and
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notably, a second edge state emerges around 500MHz, as depicted in figure 4.13
for U = 28µm.

Figure 4.12: Transmission graph of the A1A2 device made with unit cells of
lateral length U = 20µm

Figure 4.13: Transmission graph of the A1A2 device made with unit cells of
lateral length U = 28µm

Also, when the thickness of the rod is increased to R = 6µm, another topological
state is confirmed around 696MHz other than the one that is present in the first
bandgap that is not present when the R decreases.
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Figure 4.14: Transmission graph of the A1A2 device made with rod of thickness
R = 6µm

Figure 4.15: Transmission graph of the A1A2 device made with rod of thickness
R = 2µm

Ultimately, the transmission spectrum of the device is scrutinized with rods
of varying heights. Notably, the persistence of the topologically protected edge
state within the first band gap is sustained, both when the rod height is reduced to
Hrod = 300, nm (as depicted in Fig.4.16) and when increased to Hrod = 500nm (as
illustrated in Fig.4.17). In the former case, another topologically protected edge
state is also discerned at 591,MHz; however, its intensity is notably diminutive,
suggesting potential absence in practical device implementations.
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Figure 4.16: Transmission graph of the A1A2 device made with rod of height
Hrod = 300nm

Figure 4.17: Transmission graph of the A1A2 device made with rod of height
Hrod = 500nm
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Chapter 5

Conclusions

The growing interest in topologically non-trivial systems, coupled with advance-
ments in Micro-Electro-Mechanical Systems (MEMS) that enable the development
of acoustic metamaterials with tailored acoustic properties, has stimulated this
work: the creation of a micro-electro-mechanical device designed to sustain a
topologically protected edge state.

The investigation conducted involved an in-depth study of the unit cell, leading
to the development of a metamaterial exhibiting non-trivial topological properties.
This rigorous examination provided critical insights into the influence of design
parameters on the band structure. The identification of the topologically protected
edge state was achieved through the use of topologically invariant measures, such
as the Zak phase. Subsequent finite device analysis expanded this exploration,
uncovering the emergence and sensitivity of topologically protected edge states
across diverse device configurations.

Future developments in this research will entail a detailed examination of unit cell
design using the transmission matrix approach, aiming to obtain a robust analytical
characterization of the acoustic metamaterial. Additionally, experimental results
obtained from fabricated devices will be analyzed to comprehend their behavior in
real-case scenarios.

This comprehensive study has contributed significantly to our understanding of
topological states in Piezo-Electric MEMS devices, and it has laid the foundation
for potential applications in the RF spectrum. The study highlights how topological
states respond to different design parameters and how they can be practically applied
in real-world situations. This research opens avenues for further advancements
in integrating MEMS technology with topologically acoustic devices, which has
the potential to bring innovations in RF communication, filtering, and signal
processing.
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Appendix A

MATLAB CODE for the
Zak Phase computation

1 %Precond i t i on ing
2 c l e a r a l l
3 c l o s e a l l
4 c l c
5

6 f i l ename = u i g e t f i l e ( ’ ∗ . x l s x ’ ) ;
7 opts = detectImportOptions ( f i l ename ) ;
8 preview ( f i l ename , opts ) ;
9

10 %% Zak Phase Ca l cu l a t i on
11 f o r k = 1 :2
12 opts . Sheet=k ;
13 T1 = readtab l e ( f i l ename , opts ) ;
14 SzT = s i z e (T1) ;
15 Nvar = SzT (2) ;
16 Tkx = 2 ; %s t a r t i n g at Tkx column , i t ’ s the value o f kx
17

18 kx = tab l e2a r ray (T1 ( : , Tkx) ) ;
19 BZ=length ( kx ) −1; % how many kx−po in t s in BZ ( the l a s t one i s

the same as the f i r s t , so need to remove )
20 Ns = 10 ; % t o t a l s o l u t i o n number
21 Wu = 24e −6; % u n i t c e l l l ength
22 L= ( Nvar − Tkx) /Ns ; % how many x−po in t s in the un i t c e l l +

the other parameters ( e . g . A2 , A0 , kx , e t c )
23 P1=Tkx+1; % in the tab le , which column i s the f i r s t s o l u t i o n

f o r the f i t r s t x po int
24

25 V f i e l d = T1 ( : , P1 : Nvar ) ;
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MATLAB CODE for the Zak Phase computation

26 Vce l l = t a b l e 2 c e l l ( V f i e l d ) ;
27 Vcomp0 = st r2doub l e ( Vce l l ) ;
28 f o r n= 1 : Ns % sweep s o l u t i o n number
29 Vcomp = Vcomp0( : ,1+(n−1)∗L : L+(n−1)∗L) ;
30 f o r q = 1 :L % Unit−c e l l ( Po s i t i on )
31 f o r j = 1 :BZ−1 % BZ except f o r l a s t po int ( Bloch & kx

)
32 Prod ( j , q ) = dot ( conj (Vcomp( j , q ) ) , Vcomp( j +1,q ) ) ;
33 end
34 Prod (BZ, q ) = dot ( conj (Vcomp(BZ, q ) ) , Vcomp(1 , q ) ∗exp(− i

∗2∗ pi /Wu∗(q−1)∗Wu/(L−1) ) ) ;
35 end
36 f o r j =1:BZ
37 SumIN( j ) = sum( Prod ( j , : ) ) ;
38 LOG( j )=log (SumIN( j ) ) ;
39 PHI( j )=−imag (LOG( j ) ) ; % Berry phase
40 end
41 Zak (n , k ) = sum ( ( PHI) ) ;
42 Zak_mod = mod(Zak , (2∗ pi ) )
43

44 Zak_Table = ar ray2 tab l e (Zak_mod) ;
45 Zak_sum(n , k ) = sum( Zak ( : , k ) ) ;
46 f i g u r e ;
47 P = [220 220 235 2 2 5 ] ;
48 PHI(BZ+1)=PHI(1 ) ;
49 s e t ( gcf , ’ Po s i t i on ’ , P) ;
50 s c a t t e r ( kx∗Wu, PHI) ;
51 ylim ( [ − 3 . 2 , 3 . 2 ] ) ;
52 hold on
53 g r id on
54 end
55 end
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Appendix B

Result of Zak Phase
computation

Changing distance from the edge T

T1 = 1 θZak
1 θZak

2 θZak
3 θZak

4 θZak
5 θZak

6 θZak
7 θZak

8 θZak
9 θZak

10

A1 π 0 0 0 0 0i π π 0 0
A2 0 π π π π π 0 0 π π

Table B.1: Zak phase value for a unit cell with parameter: U = 24µm, R = 4µm,
Hrod = 400nm, TA1 = 1µm and TA2 = 7µm

T1 = 3 θZak
1 θZak

2 θZak
3 θZak

4 θZak
5 θZak

6 θZak
7 θZak

8 θZak
9 θZak

10

A1 π 0 0 0 0 0i π π 0 0
A2 0 π π π π π 0 0 π π

Table B.2: Zak phase value for a unit cell with parameter: U = 24µm, R = 4µm,
Hrod = 400nm, TA1 = 3µm and TA2 = 5µm
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Result of Zak Phase computation

Changing unit cell width U

U = 20 θZak
1 θZak

2 θZak
3 θZak

4 θZak
5 θZak

6 θZak
7 θZak

8 θZak
9 θZak

10

A1 π 0 0 0 π π 0 0 π π

A2 0 π π π 0 0 π π 0 0

Table B.3: Zak phase value for a unit cell with parameter: U = 20µm, R = 4µm,
Hrod = 400nm, TA1 = 1.5µm and TA2 = 4.5µm

U = 28 θZak
1 θZak

2 θZak
3 θZak

4 θZak
5 θZak

6 θZak
7 θZak

8 θZak
9 θZak

10

A1 π 0 0 0 π 0 0 0 π π

A2 0 π π π 0 π π π 0 0

Table B.4: Zak phase value for a unit cell with parameter: U = 28µm, R = 4µm,
Hrod = 400nm, TA1 = 2.5µm and TA2 = 7.5µm

Figure B.1: Mode shape of the fifth and sixth bands of the A1 unit cell
configuration with U = 28µm
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Result of Zak Phase computation

Figure B.2: Mode shape of the fifth and sixth bands of the A2 unit cell
configuration with U = 28µm

Changing rod height Hrod

Hr = 300nm θZak
1 θZak

2 θZak
3 θZak

4 θZak
5 θZak

6 θZak
7 θZak

8 θZak
9 θZak

10

A1 π 0 0 0 π 0 π π π π

A2 0 π π π 0 π 0 0 0 0

Table B.5: Zak phase value for a unit cell with parameter: U = 24µm, R = 4µm,
Hrod = 300nm, TA1 = 2µm and TA2 = 6µm

Figure B.3: Mode shape of the fifth and sixth bands of the A1 unit cell
configuration with U = 28µm
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Result of Zak Phase computation

Figure B.4: Mode shape of the fifth and sixth bands of the A2 unit cell
configuration with U = 28µm

Hr = 300nm θZak
1 θZak

2 θZak
3 θZak

4 θZak
5 θZak

6 θZak
7 θZak

8 θZak
9 θZak

10

A1 π 0 0 0 π π π π π π

A2 0 π π π 0 0 0 0 0 0

Table B.6: Zak phase value for a unit cell with parameter: U = 24µm, R = 4µm,
Hrod = 500nm, TA1 = 2µm and TA2 = 6µm

Changing rod width R

R = 6 θZak
1 θZak

2 θZak
3 θZak

4 θZak
5 θZak

6 θZak
7 θZak

8 θZak
9 θZak

10

A1 π 0 π π π π π 0 π π

A2 0 π π π π π 0 π π π

Table B.7: Zak phase value for a unit cell with parameter: U = 24µm, R = 6µm,
Hrod = 400nm, TA1 = 1.5µm and TA2 = 4.5µm
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Result of Zak Phase computation

Figure B.5: Mode shape of the seventh and eighth bands of the A1 unit cell
configuration with U = 28µm

Figure B.6: Mode shape of the seventh and eighth bands of the A2 unit cell
configuration with U = 28µm

R = 2 θZak
1 θZak

2 θZak
3 θZak

4 θZak
5 θZak

6 θZak
7 θZak

8 θZak
9 θZak

10

A1 π 0 π π π π π π π π

A2 0 π π π π π π π π π

Table B.8: Zak phase value for a unit cell with parameter: U = 24µm, R = 2µm,
Hrod = 400nm, TA1 = 2.5µm and TA2 = 7.5µm
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