
POLITECNICO DI TORINO
Master’s Degree in Physics of Complex Systems

Master’s Degree Thesis

Sparsification of deep neural network via
ternary quantization

Supervisors

Prof. Enrico MAGLI

Prof. Giulia FRACASTORO

Prof. Sophie FOSSON

Prof. Andrea MIGLIORATI

Prof. Tiziano BIANCHI

Candidate

Luca DORDONI

December 2023

Abstract

In recent years, deep neural networks (DNNs) have achieved remarkable results in
several machine learning tasks, especially in computer vision applications where
they can often outperform human performance. Typically, deep models consist of
tens of layers and millions of parameters, resulting in high memory consumption
and computational overload. Conversely, the demand for smaller models is growing
fast with the desire to deploy DNNs in environments with limited resources such as
mobile devices. Methods to tackle this crucial challenge and obtain more compact
networks while preserving performance rely on quantization or sparsification of
the parameters. This thesis explores a combination of the two techniques, i.e.
a sparsification method based on the ternarization of network parameters. Our
approach is an extension of plain binarization of the parameters by adding a
quantization interval centered around zero and of amplitude ∆ such that parameters
falling inside it are set to zero and removed from the network topology. Specifically,
we use a ResNet-20 architecture to tackle the image recognition problem on the
CIFAR 10 dataset. We show that increasing ∆ as the training proceeds allows
for sparsification rates over 90% while also ensuring improvement in classification
accuracy over the binary framework. Despite the increased complexity required
for implementing the ternarization scheme compared to a binary quantizer, we
demonstrate that the remarkable sparsity rates translate to parameter distributions
with significantly smaller average entropy (around 0.6bits/symbol) and therefore
highly compressible sources. Our findings show substantial improvements and have
significant implications for the development of more efficient deep neural networks.

Table of Contents

List of Tables iv

List of Figures v

Acronyms viii

1 Introduction 1

2 Background on neural networks and model compression 4
2.1 Neural networks . 4

2.1.1 An overview . 4
2.1.2 The origins . 5
2.1.3 The structure . 7
2.1.4 The most common layers . 9
2.1.5 CNN architectures . 14
2.1.6 Training feedforward neural networks 18

2.2 Model compression . 20
2.2.1 Pruning . 20
2.2.2 Quantization . 22
2.2.3 Other compression techniques 24

3 Methodology 27
3.1 The ternarization . 27
3.2 Proposed method . 28

4 Experimental evidence 34
4.1 Experimental design . 34
4.2 Performance metrics . 36
4.3 Results and analysis . 37

4.3.1 Examining ternarization conditions 37
4.3.2 ∆0 impact on model learning 39

ii

4.3.3 Unbounded ∆ growth . 41
4.3.4 Constraining the linear increase of ∆ 47
4.3.5 Finding the optimal growth regime 49
4.3.6 Comparative analysis of growth regimes 52

5 Conclusions and future studies 58

Bibliography 61

iii

List of Tables

2.1 Analysis of PTQ and QAT. 23

4.1 Comparison between ternarization conditions. 38
4.2 Accuracy and sparsity of five simulations with ∆0 = 0.1. 42

iv

List of Figures

2.1 Neural network structure with one fully connected hidden layer. . . 5
2.2 Schematic view of Rosenblatt’s perceptron. 6
2.3 LeNet-5 architecture. 7
2.4 Hidden fully-connected layer structure. 10
2.5 Visual representation of a convolutional layer. 11
2.6 Kernel in action. 12
2.7 Max pooling and average pooling. 13
2.8 AlexNet architecture. 15
2.9 Inception modules in GoogleNet. 16
2.10 Residual block in ResNet architectures. 17
2.11 Pruned feedforward neural network. 20
2.12 The effect of pruning on the top-5 accuracy loss. 21
2.13 Weights distribution, before pruning and after. 22
2.14 Visual comparison of quantization methods. 23

3.1 Schematic representation of TTQ. 28
3.2 A comparison between the distributions of fixed and linear ∆ ternar-

ization regimes. 32

4.1 CIFAR-10 dataset . 35
4.2 Comparing the ternarization conditions. 38
4.3 Accuracy of various fixed-∆ simulations. 39
4.4 Sparsity trends for fixed-∆ simulations. 40
4.5 Failed simulations with large initial thresholds. 41
4.6 Distribution of full-precision parameters at the beginning of training

in ∆0 = 0.2 models. 42
4.7 Average binary accuracy compared to the best fixed-∆ simulation. . 43
4.8 Accuracy of unbounded simulations with ∆0 = 0.1. 44
4.9 Performance evaluation for unbounded simulations with ∆0 value of

0.01. 44
4.10 Analyzing the accuracy in unbounded simulations with ∆0 = 0.001. 45

v

4.11 Accuracy of small M experiments with ∆0 = 0.1. 46
4.12 Sparsity of small M experiments with ∆0 = 0.1. 46
4.13 ∆ increase of small M experiments with ∆0 = 0.1. 47
4.14 Comparison of simulation accuracy varying ∆f 48
4.15 Analysis of sparsity levels varying ∆f 49
4.16 Various metrics to evaluate the performance of models with different

growth regimes (∆f = 0.8). 50
4.17 Metrics utilized to evaluate the performance of models characterized

by different growth regimes (∆f = 0.9). 51
4.18 Scatter plot of accuracy vs. sparsity in multiple regime configurations. 53
4.19 Accuracy point cloud for each model against entropy. 54
4.20 Sparsity in relation to velocity for various growth regimes. 55
4.21 Relationship between accuracy and training velocity in various models. 56

vi

Acronyms

DNN
Deep Neural Network

NN
Neural Network

CNN
Convolutional Neural Network

RNN
Recurrent Neural Network

FFNN
Feedforward Neural Network

ReLU
Rectified Linear Unit

BN
Batch Normalization

ViT
Vision Transformer

SGD
Stochastic Gradient Descent

ADAM
Adaptive Moment Estimation

viii

STE
Straight Through Estimator

BNN
Binarized Neural Network

TWN
Ternary Weight Network

TTQ
Trained Ternary Quantization

FP
Full-Precision

ix

Chapter 1

Introduction

In recent years, significant technological improvements have been developed in
machine learning and computer vision especially, where human abilities are being
outperformed, and the demand for more sophisticated frameworks keeps rising.
These advancements are progressively finding their way into embedded systems and
lightweight devices, requiring high efficiency without losing performance. Within
the landscape of machine learning, deep neural networks (DNNs) have emerged as
a dominant force. Applications ranging from speech and facial recognition heavily
lean on these frameworks. As an instance, significant progress has been made in
the field of generative architectures, employing advanced neural networks like GPT
models for text generation and Stable Diffusion for text-to-image tasks.

Deep neural network models typically have millions of parameters and tens of
layers, which leads to high memory usage and computational overload. On the
other hand, with the need to use DNNs in settings with constrained resources, like
mobile devices, the need for smaller models is increasing quickly. Approaches to
this problem rely on parameter quantization or sparsification, several techniques
have been explored, with two of the most significant ones being pruning and
quantization.

In this context, this thesis aims to deal with this challenge, proposing an approach
that relies on a combination of those techniques. We employ the ternarization of
the network’s parameters during the training, to achieve both quantization and
sparsification of the structure. Our approach is an extension of plain binarization
of the parameters by adding a sparsification interval centered around zero and of
amplitude ∆ such that the network topology excludes parameters that fall within
it. Tuning ∆, we aim to maximize sparsity without losing accuracy.

We employ a ResNet-20 architecture, to specifically address the image recognition
problem on the CIFAR-10 dataset. As the training proceeds the ∆ interval is
increased, allowing to obtain greater sparsification rates. Our work has focused
on finding the best growth regime for ∆, we show that a framework with a steep

1

Introduction

increase in the first iterations of the learning process, followed by a rapid decrease
yields an accuracy of over 90%. The research shows these results come with
classification accuracies that exceed the accuracy of the binary framework.

Implementing a ternary quantizer is more complex than a binary one, but we
prove that the significant sparsity results translate into smaller entropy values (up to
0.4 bits/symbol) and thus highly compressible models. Our research demonstrates
marked improvements, denoting significant implications for the advancement of
more efficient deep neural networks.

Throughout this research work, we’ll go over the background of neural networks
in chapter 2, starting from the origins of these frameworks and moving to their
mathematical structure and the training procedures implemented to tune the pa-
rameters. Furthermore, in chapter 2, we discuss model compression, the challenge
to reduce the size of neural network architectures, introducing the aforementioned
pruning and quantization approaches, and introducing the binarization operation
that forms the foundation upon which thesis work is built. In chapter 3 we will
focus on the proposed method to address the challenge, reporting the ternariza-
tion operation and the implementation of an increasing ∆ sparsification interval.
Experimental findings are reported in chapter 4, along with the discussion on the
results and graphs. Finally, chapter 5 reports the conclusions on the research we
carried out and a discussion of possible further directions for our investigations on
the topic.

2

3

Chapter 2

Background on neural
networks and model
compression

2.1 Neural networks
This section introduces neural networks with an overview followed by a brief sub-
section on their origins. It subsequently examines the neural network structure and
the most common layers, focusing on the convolutional neural network architectures
used in computer vision. In conclusion, NN training is explored.

2.1.1 An overview
Neural networks (NNs) represent a versatile machine learning technique with a
multitude of applications. These networks are instrumental in addressing numerous
tasks, demonstrating their efficacy in fields such as pattern recognition, including
speech, and image recognition. Beyond this, they find utility in an array of domains,
including natural language processing and predictive analytics, to name a few.

The adaptability of neural networks extends to various learning paradigms, with
their utility spanning supervised learning, unsupervised learning, and reinforcement
learning. This thesis focuses primarily on their applications in supervised learning.
In the domain of supervised learning, neural networks undergo a training process
using labeled datasets, which enables them to create mappings between provided
inputs and the corresponding desired outputs. This approach allows neural net-
works to make accurate predictions or classifications. One of the most important
applications of supervised learning is image recognition, a field that forms the

4

Background on neural networks and model compression

...
... ...

x1

x2

x3

xn

z1

zn

h1

hn

Input
layer

Hidden
layer

Output
layer

Figure 2.1: Neural network structure with one fully connected hidden layer.

central focus of this thesis. Neural networks have significantly advanced image
recognition tasks, innovating the field of computer vision.

Unsupervised learning, on the other hand, focuses on the identification of
latent patterns within data. Neural networks designed for unsupervised learning
aim to reveal inherent structures or associations in datasets, even without the
need for predefined labels. This category of machine learning is employed in
data exploration, anomaly detection, and the extraction of information from
complex and unstructured data. Furthermore, neural networks operate in the
field of reinforcement learning, where autonomous agents seek to improve their
performance by interpreting how to take specific actions within an environment
governed by a system of cumulative rewards. Reinforcement learning operates on
a “trial and error” principle, where the agent iteratively refines its strategies to
maximize cumulative rewards over time. Neural networks have a crucial role in this
process by enabling the agent to comprehend and respond to various environmental
signals, thereby improving its decision-making abilities.

2.1.2 The origins
Neural networks represent a computational framework using interconnected elemen-
tary units known as neurons. This concept was originally introduced in 1943 by
McCulloch and Pitts [1]. The foundational neuron model outlined by McCulloch

5

Background on neural networks and model compression

and Pitts featured a set of identical weights, a fixed threshold, binary inputs and
outputs, and an inhibitory signal. According to their definition, a neuron would
yield an output of “1” only if the inhibitory signal remained inactive and the
weighted sum of the inputs exceeded the chosen threshold. Failure to meet either
of these conditions would result in the neuron producing an output of “0”.

In 1958, Rosenblatt’s perceptron [2] refined this model by eliminating the concept
of an inhibitory signal. This enhancement allowed for the assignment of different
real values to the weights and bias for each distinct input. The advancement
lies in providing an algorithm for learning these parameters. The influence of
this discovery remains relevant in contemporary neuron design, with the primary
distinction being that the activation function, as elaborated in subsequent sections,
no longer necessitates a binary threshold.

I1

I2

I3

H1
O1

Figure 2.2: Schematic view of Rosenblatt’s perceptron.

Nowadays, neural networks can be distinguished in recurrent or feedforward
frameworks. Recurrent Neural Networks (RNNs), are employed for sequential data
processing and are commonly used in tasks like natural language understanding
and speech recognition. They are characterized by cycles in the structure. On the
other hand, feedforward NNs (FFNNs) don’t exhibit cycles and are utilized with
independent input data.

This thesis will primarily concentrate on FFNNs, precisely on Convolutional
Neural Networks (CNNs), an architecture that is mainly used in image and video
analysis due to its ability to capture spatial hierarchies and patterns.

CNNs were first introduced in 1980 with the neocognitron by Fukushima and
Miyake [4], and popularized by Yann LeCun [3] with LeNet-5. The network uses
two sets of convolutional and pooling layers, followed by three fully-connected
layers. This architecture was primarily applied to the task of classifying hand-
written digits. LeNet-5 holds a crucial role in the advancement of deep learning
for two main reasons. Firstly, Lecun proved that convolutional neural networks
could be effectively trained using the backpropagation algorithm, a significant
breakthrough in the field. Secondly, LeNet-5 laid the foundation for most CNN

6

Background on neural networks and model compression

Figure 2.3: LeNet-5 architecture, featured in [3].

architectures, establishing the concept of network depth as the count of these
alternating non-linear layers within the structure.

2.1.3 The structure
Artificial neural networks draw inspiration from their biological counterparts [5].
Indeed, the structure of artificial neural networks closely mirrors the interconnected
neurons in the human brain. In both cases, information is passed from one neuron to
another through a network of connections. Neural networks exhibit an architecture
composed of interconnected layers (specifically feedforward architectures), see
Figure 2.1 for reference. These layers include the input layer, one or more hidden
layers, and the output layer. Each one is made of artificial neurons that process
information. Neurons within one layer are connected to those in adjacent layers
through weighted connections, and these connections enable the flow of information
during the network’s computations. The input layer receives data, which is then
processed and transformed as it propagates through the hidden layers, ultimately
leading to the network’s output. The connections between neurons are associated
with specific weights, which are adjusted during the training process to enable the
network to make accurate predictions or classifications.

Therefore, the working unit in a neural network is the neuron, each one can
take multiple inputs and output a single value according to Equation 2.1:

y = f
1
b + w⊤x

2
= f

A
b +

nØ
i=1

wixi

B
(2.1)

where y is the output of that single neuron, b and w are parameters of the
NN, precisely, b is a bias introducing an intercept term and w represents the
weighted connections between the input layer and the neuron, x ∈ Rn is the input
itself. f is the activation function. In the deep learning landscape, the activation
function is generally non-linear. This choice gives the neural network the ability to
represent intricate and non-linear functions, it plays a crucial role in determining

7

Background on neural networks and model compression

the overall performance of the network. In the subsequent section, we present the
most prevalent activation functions commonly employed in the literature:

• Logistic function (sigmoid): f(z) = 1
1+exp−z ,

• Hyperbolic tangent (tanh): f(z) = tanh(z),

• Rectified Linear Unit (ReLU): f(z) = max(0, z),

• Softmax: f(z)i = eziqK

j=1 ezj
, i = 1, . . . , K.

The sigmoid activation function produces output values within the range of
[0, 1], it had a prevalent position as the primary activation function in the early
days of deep learning. Sigmoid is a strictly increasing and differentiable function,
displaying nearly linear behavior around zero and saturation toward the extremes.
It asymptotically approaches 0 and 1, which often correspond to the target values
used in various classification tasks. One issue with this function is the vanishing
gradient problem, particularly during backpropagation, which can block the learning
process in deep networks.

The hyperbolic tangent [6] maps its input to a range between -1 and 1, providing
a symmetric output centered around zero. The tanh function is advantageous
because it avoids the saturation issues experienced with the sigmoid function,
particularly for extremely deep architectures. One of the main benefits of the
tanh function is that it has stronger gradients compared to the sigmoid. This
characteristic allows the network to learn faster. However, similar to the sigmoid,
the tanh function can still encounter vanishing gradients when used in very deep
networks.

The ReLU [7] is widely used and has several advantages:
1. Simplicity: The ReLU function is simple to implement and computationally

efficient. It is just a thresholding operation that doesn’t involve complex
mathematical computations.

2. Mitigation of vanishing gradient: ReLU helps alleviate the vanishing gradient
problem. The reason is that ReLU provides a gradient of 1 for all positive input
values, ensuring that gradients don’t vanish as quickly during backpropagation.

3. Sparsity: ReLU introduces sparsity in the network, as it sets negative values
to zero. Sparsity can improve network capacity, as only a subset of neurons
is activated at any given time, leading to more efficient memory usage and
faster computations.

Conversely, a drawback of employing ReLU activation functions is the potential
for suppressing neurons. Additionally, ReLU, as the sigmoid function, is not zero-
centered. Various ReLU variants have been developed to address these issues, the
most notable are:

8

Background on neural networks and model compression

• Leaky ReLU:

f(z) =
z if z > 0

αz otherwise,
(2.2)

• Exponential Linear Unit(ELU):

f(z) =
z if z > 0

α (ez − 1) otherwise.
(2.3)

The final function to be mentioned is the Softmax. It is commonly used as the last
activation function, just before the network’s output. Softmax is particularly crucial
for classification tasks because it serves as a probability distribution, normalizing
the network’s outputs.

2.1.4 The most common layers

Fully-connected layer

Neurons in NNs are organized in layers, the most basic one is the fully-connected,
as the hidden layer is in Figure 2.1. It consists of neurons that are linked through
weighted connections to all units in the previous layer. Consequently, the amount
of parameters is Nl−1 × Nl, where Nl is the number of neurons in the l-th layer.
The fully-connected layers use unique learnable weights for each connection, this
means that it analyzes the input as a whole, without spatial awareness of the input
structure. Most architectures position the fully-connected segment of the network
at the network’s end, specifically in CNNs. This arrangement makes sense because
spatial correlation information becomes less crucial at the final classification stage,
which is located at the network’s output. Technically, any number of fully-connected
layers could be attached, but the more there are, the more complex the network
will be, leading to the learning process being difficult with a high risk of running
into overfitting.

9

Background on neural networks and model compression

x1

x2

x3

+1

a
(2)
1

a
(2)
2

a
(2)
3

+1

h(W,b)(x)

Input
layer (1)

Hidden
layer (2)

Output
layer (3)

Figure 2.4: Hidden fully-connected layer structure.

Analyzing the structure of a fully-connected layer, following Figure 2.4, every
hidden neuron receives signals from all inputs and a bias (always sending “+1”).
Then, these are scaled by the network’s parameters (W, b) = (W (1), b(1), W (2), b(2)),
where W

(l)
ij is the weight on the connection between unit j (in the layer l) and

unit i (in layer l + 1), and b
(l)
i is the bias bound to neuron i in layer l. Biases

don’t have any inward connection, as a matter of fact, they always signal “+1”
which is multiplied by b values. The output of the hidden layer units are a

(2)
i , they

represent the activations of the neurons, i.e. what the activation function outputs
(input values x are also represented by a

(1)
i). The weighted sum of inputs going in

unit i of layer 2 (the hidden layer in Figure 2.4), z
(2)
i , is given by Equation 2.4:

z
(2)
i =

nØ
j=1

W
(1)
ij + b

(1)
1 , (2.4)

z
(2)
i is the input to the activation function f (arbitrary choice), obtaining the

activation of the neurons, following Equation 2.5:

a
(2)
1 = f

1
W

(1)
11 x1 + W

(1)
12 x2 + W

(1)
13 x3 + b

(1)
1

2
,

a
(2)
2 = f

1
W

(1)
21 x1 + W

(1)
22 x2 + W

(1)
23 x3 + b

(1)
2

2
,

a
(2)
3 = f

1
W

(1)
31 x1 + W

(1)
32 x2 + W

(1)
33 x3 + b

(1)
3

2
.

(2.5)

In conclusion, the full Figure 2.4 output h(W,b)(x) is computed with these activations,
according to Equation 2.6:

h(W,b)(x) = f
1
W

(2)
11 a

(2)
1 + W

(2)
12 a

(2)
2 + W

(2)
13 a

(2)
3 + b

(2)
1

2
. (2.6)

10

Background on neural networks and model compression

input image
or input feature map output feature maps

Figure 2.5: Visual represen-
tation of a convolutional layer.
When layer l takes on the role
of a convolutional layer, it pro-
cesses either the input image
(in the case of l = 1) or a fea-
ture map from the preceding
layer by employing diverse fil-
ters. This process generates the
output feature maps specific to
layer l.

Convolutional layer
Convolutional layers are responsible for feature extraction using shared weights
and locality principles. In a convolutional layer, inputs and outputs are organized
as sequences of 2D maps. Each neuron associated with an output is connected only
to a small spatial neighborhood of input maps. These local connections capture
spatial information, as often, features meaningful in one part of the image are also
meaningful in other parts.

Each output map is linked to a feature map, representing the spatial position
where the feature was detected, thus the term “feature map”. The number of maps
in each sequence is known as channels, much like the channels in a color image.
For example, in image recognition, the first convolutional layer connected to input
images (known as the first layer) will have three input channels for RGB images
and one for grayscale images.

A more detailed examination of shared weights and locality reveals that the
convolutional layer’s output can be computed by convolving the input with the set
of shared weights, which is why it’s called a convolutional layer. In this context,
each group of local weights is referred to as a kernel. It’s worth noting that each
kernel must have the same number of channels as the input signal. The kernel
acts as in Figure 2.6, moving across the input image or feature map. As the filter
moves the input, it performs element-wise multiplications and sums to produce a
feature map, which highlights areas where certain patterns are detected. Generally,
multiple kernels are employed in a single convolutional layer, each one yielding a
different output map that will be fed to the next layer. The ongoing mathematical
operation for a single-channel image is expressed in Equation 2.7:

a(x, y) = f

AØ
m

Ø
n

I(x + m− 1, y + n− 1)W (m, n) + b

B
, (2.7)

where (W, b) are the parameters, W being the weights of the kernel and b the bias,

11

Background on neural networks and model compression

I(x,y) represents the value of the pixel in x and y.

Figure 2.6: Kernel in action. (Left) In 2D grids, a single kernel crosses over the
image or input signal. (Right) A volume containing multiple kernels traverses the
input volume, producing output volumes.

The convolutional layers can be stacked on top of each other, to some extent,
the primary function of the first one is identifying basic patterns, whether the more
intricate patterns are analyzed by deeper layers within the network.

Pooling layer
Pooling layers are used to downscale the input data by performing a sample-
based discretization. This downsizing reduces the dimensionality of the input.
Additionally, pooling offers benefits such as preventing overfitting and reducing
computational complexity by decreasing the number of learnable parameters. Pool-
ing is typically performed using a filter, which slides over the input feature map
with a predefined stride. As it crosses over the input, this filter groups a set of
neighboring values and applies a specific operation, such as maximum or average
pooling, to generate a single output value. By controlling the size of the filter and
the stride, the degree of downsampling can be adjusted. Importantly, the choice of
filter size and stride directly impacts the output size of the pooled feature map.
Pooling is an essential component in various CNN architectures. As previously
mentioned, two primary approaches can be considered, as depicted in Figure 2.7:

• Max Pooling

12

Background on neural networks and model compression

• Average Pooling

Figure 2.7: Max pooling and average pooling visualization [8, © Muhamad Yani
et al.].

Max pooling is implemented as a layer positioned between the stacked convo-
lutional layers, and it outputs the maximum value obtained from a small kernel
window applied to non-overlapping subregions across the entire input. If the final
classification doesn’t require spatial information, a final max pooling filter can
be employed to achieve complete translation invariance. Indeed, by applying this
layer at the end, the focus is placed on the most important features without being
concerned about their precise spatial positions. Max pooling only works on the
spatial dimensions (x, y), not on the depth of its inputs (i.e. the number of features
maps), its action is shown on the left in Figure 2.7.

Average pooling, similarly to max pooling, serves as a layer within the sequence of
convolutional layers and functions to downsample the input, consequently reducing
its dimensionality. While max pooling emphasizes the most prominent feature
within a small kernel window, average pooling, on the other hand, calculates the
mean value of the elements in that window. Analogously to max pooling, average
pooling operates solely on the spatial dimensions (x, y) of the input, preserving
the depth of its inputs. Its functionality can be observed on the right side of
Figure 2.7, in which the focus is placed on the average values within the kernel

13

Background on neural networks and model compression

window, allowing for a less pronounced selection of dominant features.

Batch Normalization
Batch normalization (BN) is a technique for normalizing the inputs to a neural
network layer, applied to either the activations of a prior layer or inputs directly.
The batch normalization layer normalizes its input data within each mini-batch
during training. It was proposed by Sergey Ioffe and Christian Szegedy in 2015 [9].
They discovered that BN significantly accelerated training, in some cases by halving
the epochs or better, and provided some regularization, reducing generalization
error. From a mathematical point of view, BN acts as follows (Equation 2.8):

âx(l) = γ(l)

x(l) − E
è
x(l)

é
ñ

Var [x(l)]

+ β(l), (2.8)

where x(l) is the input to the layer, while âx(l) is the normalized output, E(·) and
Var(·) respectively perform expected value and variance. The parameters γ(l) and
β(l) are learnable values that let the output deviate from a unit Gaussian bell. For
example, the network during the learning process could find optimal the values of
γ(l) =

ñ
Var [x(l)] and β(l) = E

è
x(l)

é
, effectively recovering the initial inputs and

reversing the batch normalization application.
Batch Normalization yields significant advantages:

• Stability: Deep neural networks can be unstable during training, BN addresses
this issue by normalizing the input activations to each layer, ensuring that
the distribution of activations remains consistent throughout training. This
stabilizes the training process and allows the network to learn more effectively.

• Improves gradient flow: BN helps to improve the gradient flow through the
network, which can further enhance stability. By normalizing the activations,
BN helps to reduce the impact of outliers and noisy data, allowing the network
to focus on the more meaningful patterns in the data.

• Decreases dependence on the initialization: Batch normalization can
make the learning process less sensitive to weight initialization. This is because
BN helps to distribute the activations of each layer more evenly, which can
help to prevent the network from becoming overly dependent on the initial
values of the weights.

2.1.5 CNN architectures
Convolutional neural networks (CNNs) have become renowned machine learning
techniques in the field of computer vision, achieving remarkable performance in

14

Background on neural networks and model compression

tasks such as image classification, object detection, and image segmentation. This
subsection will explore some of the most important CNN architectures that have
been developed over the years.

AlexNet [10]
AlexNet by Alex Krizhevsky et al. won the 2012 Large Scale Vision Challenge
(ILSVRC) [11], with an architecture composed of five convolutional layers and three
fully-connected layers. It achieved a top-5 classification error of 15.3%, beating the
second-placed and the previous winner by more than ten percentage points. The
schematic framework is shown in Figure 2.8.

Figure 2.8: A breakdown of AlexNet’s structure, originally published in [10]. Two
different GPUs work on parallel paths to decrease the computational time.

VGG [12]
In 2014 the ILSVRC competition was won by a new CNN architecture, the VGG
Net, introduced by Karen Simonyan and Andrew Zisserman. One of the remarkable
differences between VGG Net and its predecessor, AlexNet, is its depth, while
the latter introduced the idea of using deep CNNs for image classification, the
former took this concept further by employing an even deeper network. The VGG
network, particularly the VGG-16 and VGG-19 variants, consists of a significantly
larger number of layers compared to its precursor. VGG’s deep architecture is
characterized by its use of 3x3 convolutional filters and 2x2 max-pooling layers,
making it more uniform and easier to understand and implement. This characteristic
contributed to the interest in VGG Nets, as it enabled the construction of very deep
networks while keeping the architecture straightforward. Despite the increased
complexity, VGG Net proved superior performance in various image classification
tasks.

15

Background on neural networks and model compression

GoogleNet [13]
Researchers at Google in 2015 introduced a new fundamental concept, the Inception
module (Figure 2.9), that was employed in their architecture, GoogleNet, a 22-layer
deep CNN.

Figure 2.9: Inception modules found in GoogleNet, on the left a so-called naïve
unit, on the right a more complex module that includes dimensionality reduction
with specific convolutional and pooling layers. Originally appeared in [13].

The inception module was introduced to address the challenge of designing deep
neural networks while managing computational complexity. These modules consist
of a local network embedded in the whole NN, they are then stacked on top of each
other. The main idea behind the module is to perform parallel convolution opera-
tions with different filter sizes and a max-pooling operation, and then concatenate
the results along the depth dimension. This parallel processing enables the network
to capture features at different levels of abstraction. Additionally, as shown on the
right in Figure 2.9, 1x1 convolutions are used to reduce the dimensionality before
applying larger filter sizes, which helps reduce the computational cost. GoogleNet
managed to achieve state-of-the-art performance on a variety of image classification
tasks while still keeping computation efficient.

ResNet [14]
ResNet was developed in 2016 by He et al. [14], at present time, it still is one
of the most used architectures in the computer vision field, frequently serving as
a benchmark. ResNet, short for Residual Networks, instead of trying to directly
map inputs to outputs, focuses on learning residual functions, quantifying the
difference between the output and the input. This approach has great performance
with deep models, reaching up to 152 layers, for instance, it achieved a 3.57%
top-5 error on the ImageNet dataset. This architecture employs residual blocks,
Figure 2.10, consisting of skip connections, that let the gradients flow easily during
backpropagation, facilitating the process, and enabling deep networks to learn

16

Background on neural networks and model compression

accurately.

Figure 2.10: Residual block in ResNet architectures.

This research employs a ResNet-20 architecture, used to address the image
classification of the CIFAR-10 dataset.

GANs [15]
The previously cited architectures are employed in computer vision networks mainly
for their classification capabilities. On the other hand, GANs popularized in 2014 by
Goodfellow et al. [15], are employed in other fields, notably in the image generation
one. Their ability to generate realistic pictures is necessary for tasks like image
creation, data augmentation, and super-resolution imaging. These networks consist
of a generator and a discriminator (neural networks themselves) engaged in an
adversarial training process. The generator produces data, while the discriminator
has to distinguish real from generated data. They keep improving their performance
to the point of equilibrium, where the generator is able to produce a high-quality
output.

Transformers [16]
“Attention is all you need” by Vaswani et al. (2017)[16] introduced a new concept
in the deep learning landscape, attention. The authors implemented a new archi-
tecture, called the transformer, they were initially popularized in natural language
processing, but more recently have made an impact on computer vision tasks as
well. The key innovation lies indeed in their attention mechanism, which assigns
varying weights to different parts of the input sequence, allowing the model to
focus on certain elements while considering the whole context of the input.

17

Background on neural networks and model compression

Applied to computer vision, transformers differ from the conventional convo-
lutional neural network approach by using attention mechanisms. This enables
the model to capture contextual information across the entire image, providing a
global understanding of the data. Vision Transformer (ViT) [17] is an example of
such architectures. The ability to consider global relationships has proven to be
effective in tasks such as image classification and object detection, confirming the
importance of transformers in computer vision.

2.1.6 Training feedforward neural networks
Training is the process by which the network learns from input data. Through the
use of a learning algorithm, the network is exposed to labeled training data in this
process, which enables it to modify its internal parameters (in this section, only
supervised learning will be treated).

Backpropagation is an essential technique in neural network training, which
allows the network’s parameters to be optimized iteratively depending on the error
or loss between the expected and actual outputs. Backpropagation is essential for
adjusting the internal weights and biases of the neural network. We will discuss
this fundamental algorithm in the next section.

Backpropagation
The backpropagation algorithm is a tool that’s used in teaching the network. It
tells how much the network’s weights (and biases) should be modified to adapt to
the labeled input data, to classify them correctly. Specifically, the parameters of the
architecture are randomly initialized (this work used the so-called He initialization),
which means that the classification in the first stages of the learning process will
be more or less casual. The NN output will produce a certain loss (or cost)
which is computed using the architecture’s hypothesis and the correct labeled
data. Backpropagation aims to reduce it and does so by looking for minima in
the loss landscape, from a mathematical point of view it searches for the values
of the parameters that minimize the cost. Most commonly, cross-entropy is the
employed loss function in classification tasks, its mathematical formula is displayed
in Equation 2.9.

L(W, b) = − 1
m

mØ
t=1

CØ
i=1

I
1
i = y(t)

2
log

1
hW,b(x(t))i

2
, (2.9)

where i runs over the possible classes and t over the labeled data samples, m is the
number of samples, y(t) is the true label and hW,b(x(t))i is the network’s prediction
for the i-th class. I is the indicator function which tells if the current i index is
pointing to the correct class.

18

Background on neural networks and model compression

The architecture of the network is composed of layers that are connected to the
previous ones. Hence, the output of each single one of them can be interpreted as a
function of the outputs of the previous layers, ultimately leading to the net’s final
prediction. By utilizing the derivative chain rule to transmit backward the error
gradient computed on the cost function, which gives rise to the technique’s name,
the backpropagation algorithm takes advantage of the network’s layered structure.

Updating parameters

Once the gradient ∇W L with respect to a specific parameter (weight or bias) has
been computed through backpropagation, the parameter needs to be updated.
Various parameter-update algorithms have been developed over the years. This
thesis explores the foundation of the most basic algorithm, Stochastic Gradient
Descent (SGD), and introduces another that has been applied in the conducted
simulations, Adaptive Moment Estimation (ADAM).

The most popular optimization method for NN training is SGD [18], notably
for CNNs. Similar to traditional gradient descent, the algorithm updates the
network parameters in the opposite direction to the gradient, it is displayed in
Equation 2.10. The only difference is that samples are chosen at random, or shuffled,
rather than according to their order in the training set. After training is completed,
this improves the network’s capacity for generalization. SGD works by taking the
current vector of parameters and subtracting the gradient vector, which is weighted
by a positive constant λ, known as learning rate.

W
(l)
ij,t+1 = W

(l)
ij,t − λ∇L (W, b) , (2.10)

where W
(l)
ij,t+1 is the transformed weight, W

(l)
ij,t is the weight prior to the SGD update,

λ the learning rate and ∇L (W, b) the gradient of the loss function with respect to
that weight.

ADAM [19] is an algorithm that actively adjusts the learning rate for every
parameter. Specifically, ADAM relies on adaptive estimates of lower-order moments
and optimizes stochastic objective functions using first-order gradients. The idea
behind ADAM is to split the learning rate for a given weight by calculating running
averages of the second moments of the gradients and the magnitudes of recent
gradients for the same weight. This leads to a method for rescaling gradients that is
both parameter and training-data invariant and computationally efficient, making
it suitable for large problems.

19

Background on neural networks and model compression

2.2 Model compression
Since their introduction, the demand for better and more memory-efficient neu-
ral networks has increased considerably. For this reason, researchers developed
techniques to reduce memory consumption and the size of the newer architectures.
This section targets model compression, involving the aforementioned techniques
and focusing on binary training, that lays the foundation for our proposed method
in chapter 3.

2.2.1 Pruning
Pruning dates back to 1989, with “Optimal brain damage” by LeCun et al. [20]. In
the last decade, it has been extensively researched and applied in various forms. It
is implemented to reduce the number of unnecessary weights in a neural network,
it typically works by identifying the parameters with the least impact on the NN
performance and removing them. Two are the main procedures: structured and
unstructured pruning.

Structured pruning is used to remove whole neurons, layers, convolutional filters,
and full blocks for more complex neural networks, resulting in the shrinking of
the number of parameters. This method is often preferred to its unstructured
counterpart because it’s more likely to result in a more systematic reduction of the
network.

I1

I2

I3

I4

H1

H2

H3

O1

O2

O3

Input
layer

Hidden
layer

Output
layer

Figure 2.11: Example of a pruned neuron neural network.

On the other hand, unstructured pruning aims to remove individual weights. It
is frequently implemented with magnitude pruning, which consists of the removal

20

Background on neural networks and model compression

of the weights whose value is below a certain threshold. It is the most basic pruning
technique. Magnitude pruning creates a sparse network, where the smallest weights
are taken away, resulting in a lighter model, and enhancing its memory efficiency.

Some regularization techniques can aid the pruning procedure. For instance, L1
and L2 regularizations add penalty terms to the loss, gearing the weight values
towards 0, encouraging an intrinsic sparsification of the parameters.

Pruning can be applied to the fully trained model, directly acting on the final
values of the parameters. Alternatively, it can follow an iterative approach, requiring
a fine-tuning stage that occurs after the removal of the unnecessary weights (neurons
and layers in the structured procedure). Specifically, the network is trained up to a
certain level, then it undergoes a pruning step, which is followed by retraining, and
so on iteratively.

Figure 2.12, reported in Han et al.’s work [21], shows that applying pruning to
the fully trained network without retraining degrades the accuracy much faster
compared to when using fine-tuning. Even better results are obtained by employing
iterative pruning. Moreover, it has the effect of depleting the number of weights with
values near 0, which is slowly repopulated by retraining, as depicted in Figure 2.13.
The results are derived from iterative pruning on AlexNet [10].

Figure 2.12: The effect of pruning on the top-5 accuracy loss.

21

Background on neural networks and model compression

Figure 2.13: Weights distribution, before pruning and after [21].

2.2.2 Quantization
Typically, weights are stored as 32-bit floating point numbers, which provide high
precision but consume a significant amount of memory and power. In the context
of neural networks, quantization techniques offer a solution to reduce this memory
usage while still preserving the model’s ability to perform tasks effectively.

Quantization is the process of decreasing the precision of the weights of a neural
network (and/or the activations). It converts 32-bit floating point numbers to lower
precision types, considerably reducing their memory uptake. Furthermore, it allows
for faster computation, indeed, lower-precision parameters require less computa-
tional power. However, keeping minimal precision can lead to the degradation of
the neural network’s performance. A common quantization approach utilizes the
following expression [22]:

Q(r) = Int(r/S)− Z (2.11)

r is the weight or parameter that needs to be quantized (frequently neuron activa-
tions are quantized as well), S is the scaling factor, Z is an integer representing the
origin point, and Int(·) is generally a rounding function.The scaling factor deserves
special attention, it’s a parameter that defines the step between quantized levels,
and it’s usually computed with Equation 2.12:

S = β − α

2b − 1 (2.12)

[α, β] represents the clipping range, a predefined interval used to restrict real values,
whereas b signifies the bit precision. The clipping range choice (calibration) can
lead to symmetric quantization when |α| = |β|, to asymmetric quantization if
|α| /= |β|.

Two methods are common for quantizing neural networks:

• Post-Training Quantization (PTQ)

22

Background on neural networks and model compression

Figure 2.14: Visual comparison of quantization methods. Figure by Olivia Weng
[23], licensed under CC BY 4.0.

• Quantization-Aware Training (QAT)

The first involves applying quantization after the whole network has been trained,
doing so may lead to losses in the network’s performance, which was built around
32-bit numbers and consequently loses information when dropped to lower precision
numbers. Calibration is performed on a small dataset to fix the quantization
parameters. Occasionally, clustering is utilized to find centroids around which the
quantization is performed, Deep Compression [24] introduced by Han et al. in 2015
is a renowned example of such a procedure. PTQ is often used when training data
is not sufficient to perform QAT.

On the other hand, Quantization-Aware Training is a process that entails
retraining a model with quantized parameters. This allows the model to learn and
compensate for any quantization bias that may arise due to rounding errors. The
standard forward and backward passes are executed on the quantized model in
floating point, but the model parameters are quantized following each gradient
update. Backpropagation in these cases involves a complex aspect, dealing with
the non-differentiable quantization operator. A popular way to tackle this is by
using the Straight Through Estimator (STE) [25], which avoids the quantization
operation and treats it like an identity function.

Table 2.1: A comparative analysis of the two quantization procedures (reproduced
from [23]).

Accuracy loss Training time Minimum achievable precision

Post-Training Quantization Moderate Low ≥ 4 bits

Quantization-Aware Training Negligible High ≥ 1 bit

23

Background on neural networks and model compression

The research we present employs a combination of both pruning and quantization
procedures.

Binary quantization

Quantization techniques can be extended to minimal precision reduction, even
leading to weights being binary, occupying just 1bit. In 2015 Courbariaux et al.
applied binarization to the weights of the networks with BinaryConnect [26]. They
intended to reduce the memory occupation of the weights and decrease the number
of multiplications performed by the model, employing bitwise operations. Therefore,
the weights are constrained to +1 or −1 values, employing one of two possible
binarization techniques, deterministic and stochastic binarization (represented in
Equation 2.13 and Equation 2.14, reproduced from [26]).

• Deterministic binarization: involves binarizing the weight according to a simple
sign function:

Wq =
+1 if W >= 0
−1 if W < 0,

(2.13)

where W is the full-precision weight and Wq is quantized.

• Stochastic binarization: binarizes weights using a probabilistic approach:

Wq =
+1 with probability p = σ(W)
−1 with probability 1− p,

(2.14)

where σ(W) is a probability distribution computed with:

σ(W) = max
3

0, min
3

1,
W + 1

2

44
(2.15)

In 2016 “Binarized Neural Networks” (BNN) [27] popularized binary frameworks.
Their major contribution was being able to binarize both weights and neuron
activations with their architecture. This thesis expands BNN to ternary parameters,
the proposed method is outlined in chapter 3.

2.2.3 Other compression techniques
One of the numerous compression techniques involves knowledge distillation, intro-
duced in the paper “Distilling the Knowledge in a Neural Network” [28]. It offers
a solution to the memory consumption challenge by transferring knowledge from
large NN models to smaller “distilled models” without sacrificing performance. The
increasing trend in Deep Learning of training larger models for superior results has

24

Background on neural networks and model compression

led to practical deployment issues due to their size. Rather than solely focusing on
trained parameters, the authors propose a novel perspective, suggesting that neural
network knowledge is represented as a learned mapping between input and output.
This approach leverages class probabilities, known as “soft targets”, predicted by
the more complex model to train simpler networks, while still maintaining accuracy.
The introduction of a “softmax with temperature” parameter allows for the creation
of a softer probability distribution over classes, which enhances the learning pro-
cess. Experimental results on the MNIST dataset and in speech recognition tasks
demonstrate that training smaller models with soft targets outperforms models
trained with actual targets.

25

26

Chapter 3

Methodology

In this chapter, we present a brief section on the background of neural network
ternarization and follow it with a section on the method we adopted. It focuses on
addressing the memory-usage challenge outlined in chapter 1, primarily through the
development of a comprehensive approach that centers on both the sparsification
and quantization of the neural network architecture.

3.1 The ternarization
In 2016 Liu et al. [29] exploited ternarization in their work “Ternary weight
networks” (TWNs), trying to achieve a compromise between full-precision (FP)
architectures and binary counterparts. In TWNs every parameter is quantized to
either +1, 0, or −1, therefore occupying 2bit, highly reducing memory usage. It is
compressed around 16 times more than a 32bit floating point number.

Weights are quantized via a thresholding operation, according to Equation 3.1:

Wq =


+1 if W > ∆
0 if |W | ≤ ∆
−1 if W < −∆,

(3.1)

where Wq is quantized and W is full-precision, ∆ represents the positive threshold
parameter. The value for ∆ is here computed through an optimization procedure,
notably, via minimization of the Euclidean distance between Wq and W .

Another crucial contribution was provided by Zhu et al. [30], proposing “Trained
Ternary Quantization” (TTQ) in 2016. The ternarization approach is based on the
weights {−W (l)

n , 0, W (l)
p } instead of {−1,0, +1}, with the superscript (l) standing

for the layer number, indeed these quantization values are layer-dependent. Weights

27

Methodology

are quantized following Equation 3.2:

W
(l)
t =


W (l)

p if W (l) > ∆(l)

0 if
---W (l)

--- ≤ ∆(l)

W (l)
n if W (l) < −∆(l),

(3.2)

with ∆(l) being the threshold linked to the layer l. They employ a constant t for
all layers, a parameter with which ∆(l) is computed, according to Equation 3.3.

∆(l) = t×max
1---W (l)

---2 . (3.3)

The TTQ training procedure leverages two different gradients, one has the role of
adjusting full-precision weights upon which the quantization is developed, and the
other is needed to update the quantized ternary weights W (l)

p and W (l)
n , Figure 3.1

displays a simple illustration of the process.

Figure 3.1: Schematic representation of TTQ, originally appeared in [30]. Full-
precision weights are normalized to the range [−1, +1] and then quantized. This
process entails two gradients, one involved in the update of the weights and the
other in updating the quantized weight values.

3.2 Proposed method
In continuation to the exploration of neural network ternarization presented in the
preceding section, we turn the focus to the description of our proposed methodol-
ogy. This method aims to effectively sparsify and quantize network architectures
right from the initial stages of the learning process, employing quantization-aware
training.

The quantization is performed, similarly to Equation 3.1, with a thresholding
operation indicated in Equation 3.4:

θq =


+1 if θ ≥ ∆

0 if |θ| < ∆
−1 if θ ≤ −∆,

(3.4)

28

Methodology

as is customary θq is quantized while θ is the full precision parameter. The sparsifi-
cation interval ∆ is not layer-dependent and it influences the whole architecture,
moreover, the quantized weights are fixed to +1, 0, and −1 and are not tuned as
in TTQ. However, similar to TTQ, our model necessitates recording full-precision
latent parameter values used during the ternarization stage.

The proposed method applies the ternarization function to the FP weights
and activations in the forward pass, effectively sparsifying the network. Namely,
all parameters that fall within (−∆, +∆) are set to zero. This entails simplified
computational calculations, primarily dominated by multiplications that can be
readily set to 0 when the architecture is sparse. These weights don’t contribute
to the network’s output and consequently, to the calculation of the loss. As
discussed in [29], the zero values introduced by the ternarization allow the model
to be compatible with dedicated deep-learning hardware for even more efficient
computation of the mathematical operations.

The activations are quantized via Equation 3.4, while the FP weights are both
clipped to [−1, +1] and ternarized. Clipping is a common practice in many binary
or ternary frameworks [26], this precaution is taken to prevent their values from
drifting away from the [−1, +1] interval, and acquiring large values that would
have no impact on the quantization scheme.

The significance of full-precision parameters becomes clear during the backward
pass. During the backward phase, it is essential to compute the gradients to
determine the descent direction in the loss landscape for error minimization. This
cannot be achieved with ternary weights since they are obtained through the
non-differentiable ternarization function. Therefore, we compute these derivatives
with respect to the full-precision weights. Furthermore, accumulating updates on
the quantized weights would barely see a modification, as the quantization step is
much bigger than what a simple optimization step could change.

Backpropagation algorithms employed to compute gradients encounter challenges
with non-differentiable functions as Equation 3.4. In 2013, Bengio et al. proposed a
solution known by the name of straight through estimator [25]. It involves using the
gradient of the identity function during the backward pass, allowing gradients to
flow through non-differentiable elements. This strategy enables the incorporation
of non-differentiable operations, such as ternarization, into the backpropagation
process. Similarly to BNN [27], we use a version of the STE that accounts for the
saturation effect, as stated by Equation 3.5:

gr = gq × ⊮|r|≤1, (3.5)

where gq is an estimator of the gradient ∂L
∂q

, gr is the gradient of the loss with
respect to r, where q and r are related through q = Ternarize(r). Effectively in the
backward pass, the non-differentiable operation is bypassed by an identity function.

29

Methodology

The update is calculated on the full-precision parameters, which are then clipped
to [−1, +1] as previously mentioned. We employ an Adam optimizer with learning
rate (λ) decay.

The overall outline of the method is presented in Algorithm 1 and Algorithm 2.

Algorithm 1 Outline of our ternarization procedure in the forward pass. The
Ternarize() function operates the ternarization of activations and weights. Batch-
Norm() computes the normalization with parameters ϕ. W (k) is the weight of layer
k, ∆ the threshold for 0 in the ternary setup, and a(k−1) is the input to layer k.

1: procedure Forward Pass
2: for k = 1 to N do
3: W (k)

q ← Ternarize(W (k), ∆) ▷ Ternarize full-precision weights
4: z(k) ← a(k−1)

q W (k)
q ▷ Compute multiplication operations

5: a(k) ← BatchNorm(z(k), ϕ(k)) ▷ Apply batch normalization
6: if k < N then
7: a(k)

q ← Ternarize(a(k), ∆)
8: end if
9: end for

10: end procedure

Our results prove that keeping a fixed ∆ entails models with levels of sparsity
that depend on the threshold itself, but hardly surpass 40%. Thus, we take a
step forward to try to maximize the sparsification induced by the ∆ threshold.
More detailed information about the results obtained will be provided in chapter 4,
elaborating on the impact of fixed and growing ∆ ternarization regimes on model
outcomes.

∆new = ∆0 + ∆0 × f (M × Epoch) (3.6)

The employed method is based on a ∆ growth regime, mathematically described
in Equation 3.6. ∆new is the current iteration threshold, and we choose an estimate
for the 0-interval, ∆0, which acts as an initial value for the growth regime, whose
functional form is defined by f . M is a global hyperparameter selected a priori, a
constant multiplier fundamental to adjust the shape of the growth, while “Epoch”
represents the index for the current epoch of training. This implies that the current
threshold ∆ utilized in the ternarization framework is updated to ∆new, contingent
on the ongoing training epoch. The selection of the hyperparameter M depends
on the selected regime and is employed to influence the ∆, ensuring it acquires
specific values at predefined epochs.

In the standard fixed-∆ configuration, weights undergo random initialization,
and their subsequent updates quickly lead them to surpass the threshold. This

30

Methodology

Algorithm 2 The framework involves optimizing the cost function L for a minibatch.
The learning rate is denoted by λ, and the number of layers is represented by N. ◦
is an element-wise multiplication. Clip() function defines how weights are clipped
during the training iterations, while BackBatchNorm() computes the necessary
backward pass operations through the BN. Decay() represents the λ schedule. The
gradient gaL

= ∂L
∂aL

is computed knowing output aL and the targets a∗.
1: procedure Backward pass and parameter update
2: ▷ Backward pass.
3: for k = N to 1 do
4: if k < N then
5: ga(k) ← g

a
(k)
q
◦ 1|a(k)|≤1

6: end if
7: (gz(k) , gϕ(k))← BackBatchNorm(ga(k) , z(k), ϕ(k))
8: g

a
(k−1)
q
← gz(k)W (k)

q

9: g
W

(k)
q
← g⊤

z(k)a
(k−1)
q

10: end for
11: ▷ Parameter update.
12: for k = 1 to N do
13: ϕt+1,(k) ← Update

1
ϕ(k), λ, gϕ(k)

2
▷ Update BN parameters

14: W t+1,(k) ← Clip(Update(W (k), λ, g
W

(k)
q

),−1,1) ▷ Update FP weights
and clip to [−1, +1]

15: λt+1 ← Decay(λ) ▷ Update learning rate
16: end for
17: end procedure

31

Methodology

implies that during the initial training iterations, a significant portion of the
parameters is already ternarized to either −1 or +1, while their full-precision
counterparts fluctuate around these values, extending beyond the 0-interval.

Hence, we introduce a dynamic growth regime for ∆ (Equation 3.6) to conform
to the swift evolution of parameters. This approach ensures that the ternarization
threshold adapts to the nature of the parameter update, facilitating keeping a
sparsified model throughout the entirety of the training process.

However, a consideration arises, as an upper bound must be imposed to prevent
∆ increases beyond a critical value. Indeed, ∆ could reach an absolute value equal
to 1, leading to overlapping intervals in Equation 3.4. This scenario would breach
the ternarization constraints, as the intervals would no longer remain distinct.
Thus, it is essential to restrict ∆’s growth before reaching this value. Generally, a
higher ∆ value entails a greater amount of zeros, but if taken too far, it can lead
to situations where the model is too sparse. This can result in highly oscillating
validation accuracy, and, in more extreme cases, it can result in a complete drop
to zero accuracy. Finding the ideal ∆ balance is essential to preserving a trade-off
between model performance and sparsity.

Figure 3.2: A comparison between the distributions of fixed and linear ∆ ternar-
ization regimes. (Left) Parameter distribution for a fixed ∆ = 0.1 at epoch 100.
(Right) Parameter distribution for linear growth (with ∆0 = 0.1, M = 0.05, and f
is the identity function) at epoch 100.

In the following chapter 4, we comprehensively assess the efficacy of the proposed
method employing the described architecture on the designated CIFAR-10 dataset
for image classification. Our goal is to achieve high accuracy even at elevated
sparsity rates, providing a robust evaluation of the method’s effectiveness. We test
various configurations to find the setup that yields the best results.

32

33

Chapter 4

Experimental evidence

This chapter focuses on the practical validation of our proposed memory-efficient
neural network methodology. Building upon the theoretical framework described in
earlier sections, our objective is to evaluate the impact of the employed ternarization
on sparsification and quantization during the learning process with empirical results.
We emphasize providing an objective analysis of the experimental outcomes. In
the initial section, we delve into the experimental design, focusing on the employed
architecture and making considerations on the dataset and hyperparameters. The
performance metrics for evaluation are described in the subsequent section. The
chapter closes with a segment on results and their analysis.

4.1 Experimental design
In this section, we outline the experimental design conducted to evaluate the
efficacy of our proposed ternarization method. The experiments were performed
on the ResNet-20 architecture, a well-established model for image classification
tasks, specifically utilizing the CIFAR-10 dataset. We test the proposed method
on a ResNet architecture because it’s a widely popular framework, known for its
crucial results in image classification tasks. The CIFAR-10 dataset (Figure 4.1) is
used as a benchmark for the conducted experiments, it comprises 60000 32× 32
color images categorized into 10 classes, with each class containing 6000 images.
The dataset is divided into 50000 training images and 10000 test images.

The model processes image batches with a fixed size of 256, and allows for
parallel processing, leveraging the capabilities of the GPUs, thereby accelerating
the training process. Additionally, it provides sufficiently diverse samples of data
to generalize well during the learning process. The learning rate (λ) undergoes a
scheduled decay as follows:

• Initial → λ = 5e−3

34

Experimental evidence

Figure 4.1: CIFAR-10 dataset. The dataset has 10 classes, all images are randomly
selected, originally featured in [31].

• Epoch 101 → λ = 1e−3

• Epoch 142 → λ = 5e−4

• Epoch 184 → λ = 1e−4

• Epoch 220 → λ = 1e−5

In chapter 3, our proposed ternarization approach introduces a ∆ growth
regime, featuring a non-learned hyperparameter denoted as M , which requires a
predefined value. Our investigation has been dedicated to determining optimal
values for this constant. Training is performed for a total of 500 epochs, taking
into account the characteristics of the chosen growth regime. Indeed, the growth
regime (Equation 3.6) itself influences the learning process, we exploited different
functions:

• Identity (linear):

∆new = ∆0 + ∆0 ×M × Epoch, (4.1)

• Square:
∆new = ∆0 + ∆0 × (M × Epoch)2 , (4.2)

• Square root:
∆new = ∆0 + ∆0 ×

ñ
M × Epoch, (4.3)

35

Experimental evidence

• Exponential:
∆new = ∆0 + ∆0 × e(M×Epoch), (4.4)

• Logarithm:
∆new = ∆0 + ∆0 × log (M × Epoch). (4.5)

The majority of our efforts were dedicated to optimizing linear and logarithmic
regimes. We initially explored the simplicity of the linear approach in the early
stages of our research, and as our findings progressed, the logarithmic regime
emerged as the most effective.

The parameters in the ternarized convolutional layers are initialized according
to Equation 4.6:

θ ∼ N

0,

ó
2
n

 . (4.6)

This initialization strategy involves drawing the parameters from a normal distri-
bution N with a mean of 0 and a standard deviation of

ñ
2
n
, where n corresponds

to the number parameters in the convolution kernel.

4.2 Performance metrics
Within this section, we provide a definition of the metrics used to assess the
effectiveness of our proposed method.

• Top-1 validation accuracy: henceforth referred to as accuracy, is a fun-
damental metric in evaluating the performance of a neural network model,
particularly in the context of image classification tasks. It represents the
percentage of correctly predicted labels out of the total number of validation
samples. The top-1 indicates that we are focusing on the accuracy of the
single most likely prediction. This metric provides a measure of the model’s
ability to correctly classify instances from the validation set.

• Sparsity: is the second most important metric in the landscape of the
optimization of memory usage, it measures the percentage of zero elements
among the parameters of a neural network. In the context of our proposed
ternarization method, sparsity plays a crucial role as it represents the portion
of parameters set to zero among the quantized ones. Higher sparsity is
desirable for memory-efficient neural networks as it leads to more compact
model representations.

• Entropy of the parameters’ distributions: for our proposed ternarization
method, we compute the entropy of the distribution of the ternary parameter

36

Experimental evidence

values (−1, 0, and +1) over the whole neural network. A higher entropy
indicates a more diverse configuration of parameters, while a lower entropy
suggests a more concentrated distribution around a single value. The formula
for the entropy is given by:

H(X) =
Ø

i

p(xi) log2(p(xi)), (4.7)

where X is a random variable that can have outcomes xi, specifically −1, 0 and
+1, p(·) represents the frequency count of xi. Therefore, in the ternarization
context, p(0) is the proportion of zeroes out of the total number of parameters.
Entropy is expressed in bits/symbol and it measures the average number of
bits needed to represent the information content of a random variable.

• Training velocity: denotes the epoch during training where the highest
accuracy is reached. This metric provides details on the duration of the
training process needed to achieve the optimal model result.

4.3 Results and analysis
We focus on the course of the experiments we performed, from the early results
to the most recent that achieved ternary models that can outperform the binary
counterpart by a reasonable margin, both in terms of accuracy and sparsity.

4.3.1 Examining ternarization conditions
The initial test we performed was aimed at understanding whether the sparsification
interval had to include the “equals” condition or not. In Equation 4.8 the quantized
parameter θq is set to 0 if |θ| < ∆, while in Equation 4.9 the 0 is retrieved through
|θ| ≤ ∆.

θq =


+1 if θ ≥ ∆

0 if |θ| < ∆
−1 if θ ≤ −∆,

(4.8) θq =


+1 if θ > ∆

0 if |θ| ≤ ∆
−1 if θ < −∆,

(4.9)

We estimated that there would be no distinction between the two approaches
because there would only be a difference in the unusual cases where the parameter
was updated exactly to the value of ∆. The outcomes of the experiments proved
us right, in Table 4.1 we report results for five different simulations for both
frameworks, the difference in average accuracy is minimal, and it is justified by a

37

Experimental evidence

discrepancy in standard deviation, likely caused by random fluctuations. Visual
proof is provided in Figure 4.2.

Table 4.1: Comparison between ternarization conditions in five experiments each.
The table specifies the best accuracy of the simulations along with their average
and standard deviation.

Accuracy Average SD

|θ| < ∆ 90.74 91.37 91.41 91.42 91.46 91.28 0.30

|θ| ≤ ∆ 91.66 91.56 91.25 90.92 91.67 91.41 0.32

Figure 4.2: Comparing the ternarization conditions with two accuracy graphs
chosen at random among the five simulations mentioned in Table 4.1. The experi-
ment undergo a training process of 300 epochs, with fixed ∆0 = 0.01

Based on the conducted experiments and found no significant difference between
the two approaches, we selected Equation 4.8 as the preferred method. All the

38

Experimental evidence

following experiments are carried out using this configuration.

4.3.2 ∆0 impact on model learning
After selecting the ternarization setup described in the previous subsection, we
turned our attention to finding a proper initial value to ∆0.

The starting threshold is a fundamental parameter that needs to be set for both
fixed-∆ and increasing-∆ frameworks. In the former, it not only represents the
initial value but the whole training process is based on that. Whether in the latter
it sets the basis for the growth regime. This subsection’s work concentrated on
fixed-∆ models. Threshold values of 1e−1, 1e−2 and 1e−3 enable the model to
achieve accuracy over 90%, as shown in Figure 4.3.

Figure 4.3: Accuracy of simulations with ∆0 = 0.1, ∆0 = 0.01 and ∆0 = 0.001

These values are significant for a fixed threshold configuration, the accuracy
rapidly increases in the first iterations and reaches a plateau after epoch 101 where
the learning rate drops according to schedule. However, they entail values of sparsity
that decrease considerably during training, this trend is depicted in Figure 4.4.

39

Experimental evidence

There are substantial differences between the three curves appearing in Figure 4.4,

Figure 4.4: Sparsity trends of simulations with various ∆0 values.

all contingent on the value of ∆0. An initial threshold of 0.1 eventually leads to
much higher sparsities than 0.01 and 0.001.

At the beginning of the learning process, when the gradients of the loss function
are stronger and rapidly push the parameters away from the threshold, all trends
have a steep decrease. After 101 epochs of training the sparsity reaches a plateau
as the accuracy did in Figure 4.3. ∆0 = 0.1 yields the best sparsity with fixed-∆
configurations without sacrificing accuracy percentages. It’s tempting to push the
values of ∆0 beyond the presented setups, but that causes a rupture of the model
training process. We set up fixed-∆ models with initial thresholds of 0.2, 0.5, and
0.75, the outcomes are depicted in Figure 4.5.

At first glance, simulations with ∆0 = 0.2 seem to enable learning, however, upon
closer inspection, it is clear that the accuracy values achieved are significantly lower
than those with ∆0 ≤ 0.1. Higher thresholds of 0.5 and 0.75 don’t even initiate
the training, keeping the accuracy to a level of 10% (they are overlapping), which,
given the classification task we are solving on CIFAR-10, represents a random

40

Experimental evidence

Figure 4.5: Failed simulations with large ∆0. Over 0.1 thresholds prevent the
model from learning.

guess. We inferred the reason is to be found in the number of parameters that are
quantized to zero in the first epochs. With elevated threshold levels, sparsification
affects the majority of parameters, as they indeed fall within the sparsification
interval (−∆, +∆). When most (if not all) parameters are quantized to 0, the
training process becomes ineffective, preventing the update of weights and biases.
The histogram illustrated in Figure 4.6 provides an overview of the distribution of
full-precision parameters in the first epoch of training, with the majority falling
within the sparsification interval, for a setup with ∆0 = 0.2.

In the next subsection, we investigate potential solutions and adjustments,
aiming to enhance the training process and improve overall model performance.

4.3.3 Unbounded ∆ growth
The outcomes of the fixed-∆ approach are promising but can be improved in a
variety of ways. The sparsity is notably modest, averaging 44.11% across five

41

Experimental evidence

Figure 4.6: Distribution of full-precision parameters at the beginning of training
in ∆0 = 0.2 models. On the y-axis is the number of parameters.

distinct simulations with ∆0 = 0.1. In Table 4.2, we present the results of these
simulations conducted on a model with ∆0 = 0.1.

Table 4.2: Accuracy and sparsity of five simulations with ∆0 = 0.1. The accuracy
fluctuates around 91.4% and the sparsity hardly surpasses 45%, meaning that the
architecture relies on more than half of the parameters.

Outcomes Mean SD

Accuracy 91.01 91.45 91.47 91.56 91.45 91.39 0.22

Sparsity 44.65 45.01 43.43 44.24 43.21 44.11 0.77

Additionally, the achieved accuracy is not remarkable, aligning closely with that
of a binary counterpart implemented using BNN [27]. In Figure 4.7 we depict the
accuracy of the model as a function of the training epoch and compare it with
that of a binary architecture. Specifically, we plot the chart of the simulation with
∆0 = 0.1 that yields the best results, paired with the average level of the best
accuracy of three binary experiments.

42

Experimental evidence

Figure 4.7: Average binary accuracy between three simulations compared to the
accuracy curve of the best ∆0 = 0.1 fixed-∆ simulation.

Fixed-∆ models and their binary counterparts have similar accuracy. Although
ternary architectures perform better than BNNs, the difference is not large, suggest-
ing potential for improvement. Therefore, we introduce an approach characterized
by a dynamic ∆ threshold described by Equation 3.6, especially with identity func-
tion f , which essentially produces linear growth. The first growing ∆ experiments
performed had a limit set to 1 to avoid conflict between the ternarization conditions
(henceforth referred to as unbounded). As a result, once ∆ reached that terminal
level, all parameters would be quantized to 0, which is a consequence of the clipping
to [−1, +1] of the full-precision coefficients. As previously mentioned, learning is
not possible if all parameters are set to zero, when the model has ∆ close to 1,
we anticipate a decrease in accuracy in the results. Figure 4.8, Figure 4.9 and
Figure 4.9 depict the situation for various simulations with ∆0 = 0.1, ∆0 = 0.01,
and ∆0 = 0.001.

In Figure 4.8, it is evident that the training process encounters difficulties
initiating, due to the excessively large M linear coefficients, ∆ increases faster than
the parameters’ rate of update until most of the parameters are quantized to zero
and accuracy drops to random guess (10%). Conversely, Figure 4.9 displays a more
varied scenario. Two experiments fail due to the issues explained in Figure 4.8,

43

Experimental evidence

Figure 4.8: Accuracy of unbounded simulations with ∆0 = 0.1.

Figure 4.9: Performance evaluation for unbounded simulations with ∆0 value of
0.01.

44

Experimental evidence

Figure 4.10: Analyzing the accuracy in unbounded simulations with ∆0 = 0.001.

while another maintains high accuracy throughout the entire training process.
The difference in the third curve lies in the M coefficient. This lower coefficient
facilitates a more gradual growth of ∆, preventing it from reaching excessively
large values until the conclusion of the training. Figure 4.10 depicts three accuracy
graphs that perform similarly to the green curve in Figure 4.9. The initial ∆0 is
an order of magnitude smaller, signifying that M , which shares the same order
of magnitude as in the previous experiments, adapts to the configuration more
effectively.

In Figure 4.8, we presented simulations with ∆0 = 0.1 that did not yield
promising results. However, upon careful consideration, we attempted to employ
the same value with a different, lower M value, in the hope of achieving a fully-
trained model and obtaining higher sparsity compared to those with lower orders of
magnitude of ∆0. Indeed, in subsection 4.3.2, we highlighted that ∆0 = 0.1 implied
better sparsity values right from the beginning, as evident in Figure 4.4. Therefore,
a not excessively large value for M might allow the model to successfully complete
training, possibly introducing higher sparsity into the framework.

We tested the concept using simulations based on M = 0.02 and M = 0.01. The
former is adjusted such that ∆ would reach 1 at epoch 450 and the latter is half
of the first one, to show the result of an even slower increase. The outcomes are
displayed in Figure 4.11, Figure 4.12 and Figure 4.13, and they are much more
promising than in Figure 4.8, with training reaching acceptable levels of accuracy in

45

Experimental evidence

Figure 4.11: Accuracy of experiments conducted with low values of M and
∆0 = 0.1.

Figure 4.12: Sparsity of experiments conducted with low values of M and
∆0 = 0.1.

46

Experimental evidence

Figure 4.13: ∆ increase of experiments conducted with low values of M and
∆0 = 0.1.

both simulations. While M = 0.01 allows the model to maintain high accuracy, the
experiment with M = 0.02 suffers from the same previously mentioned accuracy
dropping to 0 issues. The sparsity observed in these models, as illustrated in
Figure 4.12, is noteworthy. Throughout the entire training process, it maintains
a level considerably higher than 44.11%, which denotes the average sparsity in
fixed-∆ simulations, as depicted in Table 4.2. Because of its larger ∆, illustrated
in Figure 4.13, the M = 0.02 model is substantially sparser than the M = 0.01
framework. In the following subsection, we introduce a constraint on the increment
of ∆ to further explore these findings.

4.3.4 Constraining the linear increase of ∆
Introducing a linear growth for ∆ appears to be the correct approach. Nevertheless,
as noted in the preceding subsection, it must be coupled with a constraint on ∆,
as the absence of such a cap can potentially disrupt the training process.

The conducted experiments focus on models with ∆0 = 0.1, as selected upon
thorough considerations of its ability to promote higher sparsities, discussed in the
previous subsection. In these simulations, we introduce a new hyperparameter ∆f

which denotes the limit to the growth of ∆. The accuracy of the simulations is
illustrated in Figure 4.14, the plotted curves differ in ∆f . A ∆f equal to 0.9 signifies

47

Experimental evidence

Figure 4.14: Comparison of simulation accuracy varying ∆f . All experiments
yield similar best accuracy, the higher ∆f is, the more fluctuations the curve has.

that during the training the value of the ∆ threshold updates up to 0.9. The
observed fluctuations in models with a higher constraint on ∆ can be attributed to
the quantization of parameters to zero during training. Specifically, a larger cap
on the growth of the threshold results in a greater number of parameters being
ternarized to 0. This reduction in the number of weights and biases available to
the architecture makes it more susceptible to random fluctuations. All experiments
show high accuracy that does not experience drops as in some unbounded cases
presented in subsection 4.3.3.

The sparsity is remarkable, in Figure 4.15 we display the trends for the same
simulations represented in Figure 4.14. Each curve initiates with elevated sparsity
values that decrease rapidly due to high gradients in the update algorithm. Then,
sparsity increases again until the model reaches ∆ = ∆f , where it peaks, leading
to a subsequent stabilization of the model. Larger values of ∆f lead to higher
sparsities but generate more fluctuating models.

Implementing a constraint on the growth of ∆ results in neural network models

48

Experimental evidence

Figure 4.15: Analysis of sparsity levels varying ∆f . Sparsity provided by linearly
growing and constrained ∆ increases with the value of ∆f , it rises to 90%.

with both significant accuracy and significant sparsity. This subsection focused on
linear growth, the next is characterized by the research of the optimal growth regime,
namely, finding the f function in Equation 3.6 that yields the best outcomes.

4.3.5 Finding the optimal growth regime
The concept of a growth regime for ∆ during training was presented in Equation 3.6.
In this subsection, we conduct experiments to identify the optimal regime in terms
of accuracy, sparsity, entropy, and training velocity.

In section 4.1, we introduced the employed regimes, distinguished by exponential,
square root, square, and logarithmic functions. We display the outcomes of accuracy
and sparsity in Figure 4.16, and couple them with the growth trend of the respective
model’s ∆, moreover, we enter into the details of the accuracy after 200 iterations.

With the exception of the exponential curve, which fluctuates more, the accuracy
follows the previously observed trend. This is because the exponential causes ∆ to

49

Experimental evidence

(a) Accuracy levels for different growth
regimes (∆f = 0.8).

(b) Sparsity for different growth regimes
(∆f = 0.8).

(c) ∆ increasing for different growth regimes
(∆f = 0.8).

(d) Detail of the accuracy trends over 200 it-
erations for different growth regimes (∆f =
0.8).

Figure 4.16: The figures show different metrics that are used to assess how well
the models perform. Despite having the same initial ∆0 = 0.1 and final ∆f = 0.8,
they illustrate distinct types of growth f .

grow too quickly, sparsifying the model too soon and leaving the architecture with
an excessively low number of parameters. Sparsity exhibits two distinct trends:
the first rises immediately upon training commencement and stabilizes later; the
second, typical of square growth, is characterized by a decline, which is followed
by an increase and stabilization. This difference results from the square regime’s
initial lower slope. In Figure 4.16c the detail of the accuracy after 200 epochs
is illustrated. This figure is particularly useful to focus on the levels of accuracy
these models can achieve. Square regimes performance is underwhelming, and
exponential functions result in too many fluctuations. Conversely, both logarithm

50

Experimental evidence

(a) Accuracy levels for different growth
regimes (∆f = 0.9).

(b) Sparsity for different growth regimes
(∆f = 0.9).

(c) ∆ increasing for different growth regimes
(∆f = 0.9).

(d) Detail of the accuracy trends over 200 it-
erations for different growth regimes (∆f =
0.9).

Figure 4.17: The figures show different metrics utilized to evaluate the perfor-
mance of models characterized by different growth regimes (∆f = 0.9). Compared
to curves with ∆f = 0.8, these experiments lead to higher accuracy and sparsity,
at the cost of more fluctuations.

and square root regimes perform better than binary models.

In an effort to enhance sparsity, we experiment with a larger value of constraint
to ∆, employing ∆f = 0.9. The outcomes are represented in Figure 4.17. With
accuracy exceeding 92% and sparsity surpassing 85%, the logarithmic growth
simulation produces the best stable combination of results among these experiments
without exhibiting the fluctuating behavior tested in the exponential regime.

51

Experimental evidence

4.3.6 Comparative analysis of growth regimes
To prove that the logarithmic regime performs the best, we tested more experiments
with various parameter combinations, differing ∆f , multipliers M , and regimes,
while we maintained ∆0 = 0.1 across all of them. In order to compare the
simulations, we plot the training velocity, entropy, accuracy, and sparsity metrics
against each other. Notably, four graphs result from this analysis:

• Accuracy vs. Sparsity: a comparison that provides insight into which
simulation is more accurate and sparser than the others.

• Accuracy vs. Entropy: shows the models’ entropy on the x-axis. It specifies
which experiment yields the highest accuracy and the greatest compressibility.

• Sparsity vs. Velocity: determines which simulations achieve higher sparsity
levels most rapidly.

• Accuracy vs. Velocity: identifies which models produce their best accuracy
results the fastest.

The study’s findings are here summarized. In Figure 4.18 point clouds of
different models, characterized by specific combinations of parameters and regime,
are compared in a graph that tracks accuracy against sparsity. Every combination
experiment is conducted three times, giving rise to three points on the graph. This
chart is notably significant as it serves as the most influential instrument to compare
models and select the optimal regime. The best configurations are represented by
both large accuracy and sparsity, namely, they occur in the upper right portion of
the graph where logarithmic regime points are located. Exponential simulations, as
previously stated, result in higher sparsities but are not practical due to excessive
accuracy fluctuations during training. The accuracy achieved by all of the described
configurations is greater than that of BNN models, with logarithmic frameworks
exceeding it by approximately two percentage points.

Logarithmic simulations reach accuracy levels of nearly 93.5% and have sparsity
percentages of nearly 90%, meaning that these frameworks are highly compressible.
The results in sparsity rates are correlated with the value of the growth constraint
∆f ; the higher the limit, the better the sparsity can be; however, as was previously
observed, if the limit is too large, the accuracy may deteriorate. Higher multiplier
M logarithmic simulations typically exhibit better accuracy, this could indicate
that ∆ growth adapts more readily to parameter updates, allowing for a model
that operates effectively with ternarized parameters.

The best accuracy points are plotted against entropy in Figure 4.19, compared
to the chart that was previously described, this is inverted. The reason behind
this behavior lies in the fact that entropy is closely related to sparsity, indeed

52

Experimental evidence

Figure 4.18: Scatter plot of accuracy vs. sparsity in multiple regime setups.
Three identically colored points for every set of parameters correspond to three
equal experiments. The dotted grey line indicates the level of average accuracy of
BNN models.

a highly sparse network results in lower entropy. The values of the logarithmic
configurations are approximately 0.6bits/symbol.

An analysis of the relationship between accuracy and training velocity, as well as
sparsity and training velocity, is needed to thoroughly understand the performance
of various growth regimes. Figure 4.20 and Figure 4.21 depict them. Compared to
the previous two charts, the point clouds in these graphs are much more dispersed,
suggesting that the best outcomes for each setup can be found at various points
during training. Occasionally, random fluctuations will cause the model to find
its optimal result earlier than in other instances. Adding up these considerations,
it becomes evident that the logarithmic growth regime stands out as the most
favorable choice.

53

Experimental evidence

Figure 4.19: Accuracy point cloud for each model against entropy. Each set of
parameters is represented by three points sharing the same color, indicating three
identical experiments.

In this chapter, we examined the evidence that gave rise to our novel ternarization
method, which utilizes a growth regime to produce outcomes that outperform both
the fixed-threshold ternarization and binary architectures. After that, we conducted
a selection process using a variety of metrics, which enabled us to conclude that
the logarithmic regime produces the best results, with an entropy of approximately
0.6bits/symbol and accuracy exceeding 93% and sparsity approximately 90%. We
observed that the values of the hyperparameters, specifically ∆f and M , can be
tuned to lean towards more accuracy-based or more sparsity-based models.

54

Experimental evidence

Figure 4.20: Sparsity in relation to velocity for various growth regimes. Three
experiments, all identical in terms of parameters, are denoted by three points of
matching color.

55

Experimental evidence

Figure 4.21: Relationship between accuracy and training velocity in various
models. For every configuration of parameters, three points with consistent coloring
indicate three equivalent experiments.

56

57

Chapter 5

Conclusions and future
studies

In this thesis, we examined the challenge of improving neural network efficiency
from the perspective of memory occupation. We started with an introduction to
how neural networks work, explaining their origins and their structure, mentioning
some of the most important architectures, and how neural networks are trained.
Subsequently, we presented the techniques of model compression currently in use,
among which are pruning and quantization, and we proceeded to outline the method
employed to address this challenge. The proposed approach is characterized by
the ternarization of the neural network, it is a combination of sparsification and
quantization procedures that act on parameters and activations of the architecture
during training. It sets them to -1, 0, and +1 values, effectively sparsifying
the network topology. The experimental evidence is collected working in an
image classification landscape, especially employing a ResNet architecture with the
CIFAR-10 dataset. Our most significant contribution arises with the introduction
of a dynamic threshold ∆ for the zero-value quantization. Specifically, this thesis
demonstrates that the best overall results for our framework in accuracy and sparsity
are obtained with a dynamic logarithmic growth of the threshold. We show that this
method allows for neural network frameworks with sparsification rates over 90% and
improvements in top-1 validation accuracy with respect to their binary counterparts.
Despite the additional complexity of implementing the ternarization, we prove
that the remarkable sparsity rates result in parameter distributions with minimal
entropy (about 0.6bits/symbol), providing highly compressible architectures.

Our findings are remarkable, yet there remain open questions that require further
examination. While the CIFAR-10 dataset has been the focus of our experimental
evaluation, our ternarization approach can be extended to other data sources.
Furthermore, this dissertation targeted image classification, but the method we

58

Conclusions and future studies

proposed can be evaluated on neural networks trained to perform various tasks
beyond the ones explored in this study. Moreover, the employed architecture
is a ResNet, but further exploration of a broader range of frameworks would
prove the solidity of this method. While the experimental setup explored various
combinations of hyperparameters, including the initial threshold ∆0, threshold limit
∆f , multiplier M , and regime function, the impact of the learning rate on model
performance remained mostly ignored. A thorough examination of this relationship
would provide valuable insights and potentially enhance the method’s effectiveness.

To conclude, our work has produced significant results toward addressing the
memory consumption challenge of deep neural networks and toward developing
models that can be deployed on devices with limited resources, more manageable
and efficient.

59

60

Bibliography

[1] Warren S McCulloch and Walter Pitts. «A logical calculus of the ideas
immanent in nervous activity». In: The bulletin of mathematical biophysics 5
(1943), pp. 115–133 (cit. on p. 5).

[2] Frank Rosenblatt. «The perceptron: a probabilistic model for information
storage and organization in the brain.» In: Psychological review 65.6 (1958),
p. 386 (cit. on p. 6).

[3] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. «Gradient-
based learning applied to document recognition». In: Proceedings of the IEEE
86.11 (1998), pp. 2278–2324 (cit. on pp. 6, 7).

[4] Kunihiko Fukushima. «Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position». In:
Biological cybernetics 36.4 (1980), pp. 193–202 (cit. on p. 6).

[5] DE Rumelhart, GE Hinton, and RJ Williams. «Learning representations by
back-propagating errors (from Nature 1986)». In: Spie Milestone Series Ms
96 (1994), pp. 138–138 (cit. on p. 7).

[6] Xavier Glorot and Yoshua Bengio. «Understanding the difficulty of training
deep feedforward neural networks». In: Proceedings of the thirteenth inter-
national conference on artificial intelligence and statistics. JMLR Workshop
and Conference Proceedings. 2010, pp. 249–256 (cit. on p. 8).

[7] Vinod Nair and Geoffrey E Hinton. «Rectified linear units improve restricted
boltzmann machines». In: Proceedings of the 27th international conference on
machine learning (ICML-10). 2010, pp. 807–814 (cit. on p. 8).

[8] Muhamad Yani, S Irawan, and Casi Setianingsih. «Application of Transfer
Learning Using Convolutional Neural Network Method for Early Detection
of Terry’s Nail». In: Journal of Physics: Conference Series 1201 (May 2019),
p. 012052. doi: 10.1088/1742-6596/1201/1/012052 (cit. on p. 13).

[9] Sergey Ioffe and Christian Szegedy. «Batch normalization: Accelerating deep
network training by reducing internal covariate shift». In: International
conference on machine learning. pmlr. 2015, pp. 448–456 (cit. on p. 14).

61

https://doi.org/10.1088/1742-6596/1201/1/012052

BIBLIOGRAPHY

[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. «Imagenet classi-
fication with deep convolutional neural networks». In: Advances in neural
information processing systems 25 (2012) (cit. on pp. 15, 21).

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. «Ima-
genet: A large-scale hierarchical image database». In: 2009 IEEE conference
on computer vision and pattern recognition. Ieee. 2009, pp. 248–255 (cit. on
p. 15).

[12] Karen Simonyan and Andrew Zisserman. «Very deep convolutional networks
for large-scale image recognition». In: arXiv preprint arXiv:1409.1556 (2014)
(cit. on p. 15).

[13] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. «Going deeper with convolutions». In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2015, pp. 1–9 (cit. on
p. 16).

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. «Deep Residual
Learning for Image Recognition». In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2016, pp. 770–778. doi: 10.1109/
CVPR.2016.90 (cit. on p. 16).

[15] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. «Generative
adversarial nets». In: Advances in neural information processing systems 27
(2014) (cit. on p. 17).

[16] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. «Attention is all you
need». In: Advances in neural information processing systems 30 (2017) (cit.
on p. 17).

[17] Alexey Dosovitskiy et al. «An image is worth 16x16 words: Transformers
for image recognition at scale». In: arXiv preprint arXiv:2010.11929 (2020)
(cit. on p. 18).

[18] Herbert Robbins and Sutton Monro. «A stochastic approximation method».
In: The annals of mathematical statistics (1951), pp. 400–407 (cit. on p. 19).

[19] Diederik P Kingma and Jimmy Ba. «Adam: A method for stochastic opti-
mization». In: arXiv preprint arXiv:1412.6980 (2014) (cit. on p. 19).

[20] Yann LeCun, John Denker, and Sara Solla. «Optimal brain damage». In:
Advances in neural information processing systems 2 (1989) (cit. on p. 20).

62

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90

BIBLIOGRAPHY

[21] Song Han, Jeff Pool, John Tran, and William Dally. «Learning both weights
and connections for efficient neural network». In: Advances in neural infor-
mation processing systems 28 (2015) (cit. on pp. 21, 22).

[22] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney,
and Kurt Keutzer. «A survey of quantization methods for efficient neural net-
work inference». In: Low-Power Computer Vision. Chapman and Hall/CRC,
2022, pp. 291–326 (cit. on p. 22).

[23] Olivia Weng. Neural Network Quantization for Efficient Inference: A Survey.
2023. arXiv: 2112.06126 [cs.LG] (cit. on p. 23).

[24] Song Han, Huizi Mao, and William J. Dally. Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huffman
Coding. 2016. arXiv: 1510.00149 [cs.CV] (cit. on p. 23).

[25] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or Propa-
gating Gradients Through Stochastic Neurons for Conditional Computation.
2013. arXiv: 1308.3432 [cs.LG] (cit. on pp. 23, 29).

[26] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. «Binarycon-
nect: Training deep neural networks with binary weights during propagations».
In: Advances in neural information processing systems 28 (2015) (cit. on pp. 24,
29).

[27] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. Binarized Neural Networks: Training Deep Neural Networks
with Weights and Activations Constrained to +1 or -1. 2016. arXiv: 1602.
02830 [cs.LG] (cit. on pp. 24, 29, 42).

[28] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a
Neural Network. 2015. arXiv: 1503.02531 [stat.ML] (cit. on p. 24).

[29] Bin Liu, Fengfu Li, Xiaoxing Wang, Bo Zhang, and Junchi Yan. «Ternary
Weight Networks». In: ICASSP 2023 - 2023 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). 2023, pp. 1–5. doi:
10.1109/ICASSP49357.2023.10094626 (cit. on pp. 27, 29).

[30] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. «Trained ternary
quantization». In: arXiv preprint arXiv:1612.01064 (2016) (cit. on pp. 27,
28).

[31] Alex Krizhevsky, Geoffrey Hinton, et al. «Learning multiple layers of features
from tiny images». In: (2009) (cit. on p. 35).

63

https://arxiv.org/abs/2112.06126
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1602.02830
https://arxiv.org/abs/1602.02830
https://arxiv.org/abs/1503.02531
https://doi.org/10.1109/ICASSP49357.2023.10094626

Acknowledgements

Questa tesi la dedico a te, Ponchi,
con le tue parole e il tuo sorriso sei stata la mia ispirazione.

64

Acknowledgements

Il mio primo ringraziamento va ai professori che mi hanno seguito durante questo
percorso di tesi, il professor Magli, la professoressa Fracastoro, la professoressa
Fosson, il professor Bianchi e il professor Migliorati, che mi han dato preziose
indicazioni per procedere nel modo migliore durante lo sviluppo delle simulazioni e
nel processo di scrittura dell’elaborato.

Un pensiero per Ponchi, che oggi non potrà venire, ma che nel mio cuore mi
sarà sempre accanto, mi hai dato la forza di concludere questo lavoro, ti abbraccio
da qui, ovunque tu sia.

Non sarei qui se non fosse stato per la mia famiglia, Marta, la mia gemellina che
sempre mi è stata vicina supportandomi, Mamma e Babbo che mai hanno smesso
di ascoltarmi. Manna che mi ha accompagnato nel cammino e zii Paolo e Sergio
che dal Piemonte hanno sempre creduto in me. Grazie anche ai nonni che non ci
sono più, spero sarebbero fieri di questo traguardo.

L’altro giorno mi hai detto “sono importanti i ricordi”, ed è anche merito tuo,
Marti, se questo giorno e questi anni me li ricorderò per tutta la vita, sei la luce
che mi ha illuminato il cammino, grazie a te per tutto quello che sei e che fai per me.

Ad Ale, Giordi e Maggie, che disturbo da una vita e disturberò per una vita, un
ringraziamento speciale, so che potrò contare sempre su di voi, siete il mio punto
di riferimento.

E che dire dei miei compagni di viaggio qui a Torino, Auri, Cops, Erny, Fra, Gra,
Nick, Zimo, vi ho conosciuti in un momento della mia vita dove mi sentivo solo, voi
mi avete accolto e reso parte di un gruppo che mi ha ha accompaganto attraverso
tutte le difficoltà e le bellezze di questo percorso, non potrò mai ringraziarvi abbas-
tanza.

Come non parlare dei miei compagni di quando ero ancora ingegnere, Ivan,
Lorenzo, Loris e Peppe, ricordo con nostalgia le serate sulle panchine fuori dal poli
e le giornate passate a fare gli elettronici, grazie di tutto.

Fondamentali nella mia vita siete stati voi amici di Bovezzo, Anna, Arianna,
Bruno, Chiaretta, Giuli, Luca, Man, Marco, Matteo e Ventu, che ormai da anni
siete il motivo per cui sono legato così tanto al mio paesino, siete una certezza.

E i miei torinesi preferiti, Gio, Ste e Dani, con cui ho passato giornate e serate
bellissime all’insegna del cibo piemontese e della bagna cauda, vi sono profon-
damente grato per quello che siete per me, è anche merito vostro se sono così

65

Acknowledgements

affezionato a questa città.

È il momento di ringraziare due delle persone che ho conosciuto in collegio che
più mi sono vicine, Chia la mia amica 98 e Luci la mia compagna di pale, ho
passato momenti fantastici con voi che mi avete migliorato le giornate.

Grazie anche alle mie coinquiline Deni e Paola, con cui vivo da relativamente
poco tempo ma con cui mi sento già benissimo e a mio agio, grazie per la compren-
sione che avete.

Ogni anno non vedo l’ora che arrivi l’estate, per passarla a San Felice e stare
con voi, i miei amici del lago, Alex, Luchi, Nico, il Baro e tutti gli altri, per le
belle giornate che mi permettete di passare, le nuotate e i vari giochi in scatola, vi
ringrazio immensamente.

A settembre 2021 mi trasferito a Leuven per l’Erasmus, e ne sono uscito come
una persona nuova, ho vissuto momenti fantastici che ancora sono vividi nella
mia mente, ho conosciuto amici con cui ho vissuto mille esperienze fantastiche,
partite di pallavolo, salti coi trampolini e gite in varie città belga. Ho conosciuto
persone con background unici e culture diverse, grazie a voi che avete reso tutto
ciò irripetibile.

Ultimi ma non per importanza, i compagni di collegio che ho conosciuto nei
miei anni universitari, vivere in residenza mi ha cambiato la vita, sono cresciuto e
maturato, senza di voi non sarei la persona che sono ora, tante, tante grazie.

66

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Background on neural networks and model compression
	Neural networks
	An overview
	The origins
	The structure
	The most common layers
	CNN architectures
	Training feedforward neural networks

	Model compression
	Pruning
	Quantization
	Other compression techniques

	Methodology
	The ternarization
	Proposed method

	Experimental evidence
	Experimental design
	Performance metrics
	Results and analysis
	Examining ternarization conditions
	Delta impact on model learning
	Unbounded Delta growth
	Constraining the linear increase of Delta
	Finding the optimal growth regime
	Comparative analysis of growth regimes

	Conclusions and future studies
	Bibliography

