
POLITECNICO DI TORINO

Master’s Degree in ICT for smart societies

Master’s Degree Thesis

A new normalization data platform on

Oracle ADB using a Google service

Supervisors

Prof. PAOLO GARZA

ALESSANDRO DUGO

Candidate

MATTEO BOGONI

December 2023

Abstract

The goal of this thesis is to propose a new alternative to the current normalization
software, Trillium, used inside the database of an automotive company. The idea
is to develop a new product that is able to maintain the same quality standard
and that can be sold separately to the entire flow of the database.
To do that, the new available technologies on the market were considered: for
the normalization component it was used the Google Address Validation, a tool
provided by Google where by passing an address, it is returned normalized. All
the system is developed on the Oracle cloud using the Autonomous database, a
fully automated service based on the AI.

i

Acknowledgements

Vorrei ringraziare per primo il mio relatore Paolo Garza, che mi ha seguito nella
stesura di questo elaborato rendendosi sempre disponibile per ogni chiarimento.
Inoltre ringrazio Alessandro Dugo per avermi dato l’opportunità di svolgere la
tesi all’interno dell’azienda e di avermi inserito all’interno del progetto del Central
Customer Database. A questo punto vorrei anche ringraziare tutti i miei colleghi
all’interno del team che mi hanno accolto ed aiutato durante il mio percorso. In
particolare vorrei ringraziare Marcello che mi ha seguito dall’inizio e mi ha spiegato
tutto, dalla A alla Z.
A questo punto vorrei ringarziare i miei genitori che mi hanno sempre sostenuto e
mi hanno dato l’opportunità di affrontare questi cinque anni e diventare la persona
che sono. Una dedica anche a mio fratello Pietro con cui ho convissuto per più di
24 anni e con cui ho un legame speciale.
Un ringraziamento anche a tutti i miei nonni, zii e cugini che fanno parte della mia
famiglia e a cui sono molto legato.
Finendo la magistrale è doveroso ringraziare tutti i miei colleghi di corso che oltre
ad essere tali sono diventati anche amici con cui, oltre a subire insieme le pene
degli esami e scadenze dei progetti, condivido anche momenti di divertimento al di
fuori del Politecnico. In particolare un ringraziamento al team del ping pong con il
quale ho passato più tempo giocare che a lezione.
Colgo l’occasione per ringraziare anche tutti gli amici conosciuti i tre anni precedenti
che mi hanno accompangato in questo viaggio e con i quali condivido bellissimi
momenti.
Un ringrziamento poi a tutti gli amici che ho avuto e che ho, da chi ho conosciuto

ii

più recentemente a chi conosco da sempre, per essermi sempre stati accanto ed
aver reso questi anni indimenticabili.
Infine per gli amici veri, quelli che ci sono sempre stati e su cui posso sempre
contare, con cui ho passato mille avventure e con cui ne passerò altrettante. Grazie
di tutto!

‘Per tutta la gente che c’è dall’inizio
E per tutti quelli che ho perso lungo il cammino

È stato un lungo viaggio’
∞ Love by Guè

iii

Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 State of the art . 2

2 Control Customer Database structure 5
2.1 Introduction . 5
2.2 Data model . 6

2.2.1 Master data . 7
2.2.2 Product data . 8

2.3 CCDB structure . 10
2.3.1 Load & Adjustment . 11
2.3.2 Mapping . 12
2.3.3 Check & Transcoding . 14
2.3.4 Normalization . 14
2.3.5 Deduplication . 15
2.3.6 Historicization . 17
2.3.7 Master Data summary . 17
2.3.8 Products, services and contacts deduplication 18
2.3.9 Products, services and contacts summary 18
2.3.10 Master data and products reconciliation 19

2.4 Normalization phase . 19

v

2.4.1 Pre-Trillium . 20
2.4.2 Trillium . 21
2.4.3 Post-Trillium . 23

3 New normalization environment solution 25
3.1 Introduction . 25
3.2 Uploading group shell . 27
3.3 Project uploading . 29

3.3.1 Repository and user . 30
3.4 Export shell . 32
3.5 Non regression analysis . 35

3.5.1 Implementation . 36
3.5.2 Results . 38

4 Novel normalization data platform architecture 47
4.1 Introduction . 47
4.2 The structure . 49

4.2.1 Address component normalization 52
4.3 Analysis, comparison with Trillium 60
4.4 Possible future developments . 62

5 Conclusion 64

A Code 66

Bibliography 70

vi

List of Tables

3.1 Machine execution time . 45
3.2 Group uploading execution time . 46

4.1 Group normalization execution time 60
4.2 Address match level distribution . 61

vii

List of Figures

2.1 Master data tables flow . 7
2.2 Product data tables flow . 9
2.3 CCDB phases . 11
2.4 Deduplication flow . 16
2.5 Example of Trillium project . 22

3.1 Party type and gender distribution 39
3.2 Same party type / gender distribution 40
3.3 Different party type / gender distribution 40
3.4 Address match level distribution . 41
3.5 Same address match level . 41
3.6 Different address match level . 42
3.7 Geographic code distribution . 43
3.8 Same and different geographic code distribution 44
3.9 Coordinates uncertainty . 44

4.1 Comparison between two normalized record 62

viii

Chapter 1

Introduction

In the digital age, where data collection and management constitute a fundamental
pillar for every sector, the importance of integrity and precision in information
emerges as a crucial element. This context highlights the key role of databases,
which form the foundation for the creation, preservation, and analysis of essential
data critical for the effective functioning of various industries and services.
Within this informational landscape, one of the critical aspects in data management
pertains to the need for ensuring a uniform and accurate representation of postal
addresses within databases. Addresses, considered vital elements for identification
and localization, play a central role in a wide range of applications, from e-commerce
to healthcare and the management of public resources.
This thesis, conducted in collaboration with the consulting firm "Technology Reply",
aims to thoroughly explore the issue of address normalization within an extensive
database of a significant automotive company. Address normalization, a complex
and crucial process, aims to achieve uniformity in data, reducing ambiguities, and
improving the overall quality of stored information. Focusing on this theme is
imperative, as associating a postal address or comprehensive contact information
with a user allows for fully harnessing the potential of databases, contributing
significantly to the improvement of operational efficiency and analytical precision.
Throughout this work, an initial examination of the structure and overall functioning
of the database in question is undertaken, providing a detailed overview of the

1

Introduction

various phases and processes that guide an address from its entry into the database
to the actual storage phase. A deeper analysis will be dedicated to the normalization
phase, highlighting its execution and the software involved.
Subsequently, a concrete challenge encountered in the use of external software for
normalization is addressed, emphasizing the need to implement a new solution.
The related tests and regression analyses necessary to ensure the proper functioning
of the process will also be presented.
Finally, through the analysis of case studies and exploration of services available
on the market, a new solution for the data normalization phase based on emerging
technologies is proposed. This solution will be subject to a comparison evaluating
its effectiveness, with the prospect of potentially replacing the current software in
the future. Despite this possibility, the primary objective remains the search for
optimal solutions to enhance data integrity and quality.

1.1 State of the art

The address data normalization is an important topics which has been dealt with at
length in recent years. An interesting solution has been presented in the paper titled
"A Hybrid Approach to Address Normalization" by Wing Shing Wong (Chinese
University of Hong Kong) and Mooi Choo Chuah (AT&T Bell Laboratories)[1],
where they explores three distinct approaches in the landscape of address nor-
malization. The first involves the creation of an extensive dictionary containing
all conceivable combinations of address elements, leading to a resource-intensive
and slow normalization process. The second approach adopts a rule-based system
that extracts street name, city name, and ZIP code based on keywords or word
positions. However, this method faces challenges in terms of rule modification and
updates, potentially causing conflicts. The third and innovative approach involves
a learning system that is initially trained on a subset of addresses, demonstrating
continuous self-learning similar to neural network systems. The contribution to this
domain is a hybrid system, incorporating the third approach along with spelling
correction, aiming to normalize mailing addresses accurately and efficiently. The
system integrates an address dictionary and a scoring system, that is inspired by

2

Introduction

analogue neural network. The system’s key processes include learning, further
divided into dictionary creation/updating and system parameter training. During
the learning phase, the system is trained to recognize a set of addresses, leading to
the construction and updating of an address dictionary. This dictionary classifies
grouped address components, referred to as tokens, assigning weights based on
their frequency in the learning set. In the normalization of a new address, the
system consults the address dictionary to recognize various components, and in
cases of ambiguity, a scoring function resolves multiple meanings.
Another method for the address standardization is outlined in the technical report
called ’Address Standardization’ [2], with a specific focus on the USC WebGIS Open
Source Geocoding Platform. Address standardization involves various techniques
and is integral to the address data cleaning process. The report delves into different
levels of address standardization and its implementation within the USC WebGIS
platform, emphasizing its significance in creating high-quality spatial data for
subsequent analyses.
The document details the procedures involved in address data cleaning, including
parsing, normalization, and other essential processes. Address validation and
normalization, crucial components of the address cleaning process, are explored
extensively.

In order to provide a clear and cohesive organizational structure, the following
chapters will address specific key aspects of this topic, offering a comprehensive
overview of the normalization phase within a database.
Chapter 2 will focus on a detailed analysis of the functioning of the database in
question, examining each stage through which data passes before being permanently
stored. Special attention will be given to the normalization phase, providing an
in-depth explanation of its operation and the external software on which it is based.
In Chapter 3, real issues related to the normalization phase will be addressed,
presenting tangible solutions. Targeted tests will be conducted to ensure the
effectiveness of the changes implemented.
Chapter 4 will introduce a new proposal for address normalization based on emerging

3

Introduction

technologies, evaluating its effectiveness in comparison to the current methodology.
Subsequently, future developments will be suggested to enhance the efficiency of
the new solution.
Finally, Chapter 5 will conclude the thesis by examining the work undertaken and
proposing potential practical applications for the proposed solution.

4

Chapter 2

Control Customer Database
structure

2.1 Introduction

In the automotive sector, "Technology Reply" has developed the Central Customer
Database, also known as CCDB, for a renowned multinational company. This
cutting-edge platform is designed for the acquisition, consolidation, and utilization
of information derived from user interactions with the company, its products, and
services, such as automobiles and maintenance, over time and in diverse ways.
The CCDB aims to address various critical needs, such as evaluating the perfor-
mance of the sales network, providing an indicator of the effectiveness of undertaken
marketing actions, and expediting network contact actions for those expressing
interest.
Operating in Europe, South America, the Middle East, and some countries in
Africa, the CCDB can process, analyze, recognize, control, enrich, and integrate
data from various sources while respecting the specificity of each country. Given
its multi-market nature, the process is handled uniquely for each market due to
potential differences in formats, codifications, and specificity. In this thesis, all
proposed activities are focused on the market ’1000’, identifying the market in
Italy.

5

Control Customer Database structure

Among the CCDB’s key functionalities there are data input control and standard-
ization, assignment of uniqueness to the subject through deduplication algorithms,
definition of data quality KPIs, nominal name search, and corporate management
of personal data and data retention processes.
The CCDB has proven to be the primary source of information for operational
marketing activities, post-sales support, and surveys. The resulting benefits include
increased efficiency and effectiveness of processes based on this information, perfor-
mance analysis of processes, immediate actions triggered by collected information,
and a detailed view of the customer’s history during interactions.

CCDB environments

It is crucial to delve into the ’internal’ structure and management of the CCDB.
There are two distinct development environments, namely Certification and Pro-
duction, which broadly contain the same elements, the same files, tables, etc. The
substantial difference lies in the fact that the first environment is exclusively used to
test new modifications and conduct tests. In contrast, the Production environment
actively runs the data flow from various markets, populating what will eventually
become the complete database used for analyses and subsequent decision-making.
Understanding the significance of the Certification environment becomes evident, as
it is the space where modifications are tested before being introduced to Production.
This practice aims to prevent any disruptions to the flow and potential damages,
which could significantly impact the concerned company.
It is important to note that all modifications, tests, and implementations proposed
in this thesis have been carried out in the Certification environment.

2.2 Data model

As mentioned earlier, the database contains records related to both users, i.e.,
individuals, and products, such as automobiles, as well as services like maintenance
or insurance.
As will be explained later, depending on the type of data, the record undergoes

6

Control Customer Database structure

various operations and populates different tables, only to be recompiled in the final
step.

2.2.1 Master data

Figure 2.1: Master data tables flow

Figure 2.1 represent the entity-relationship model and it shows the main tables
involved in the master data management process.

• The TB_PT_MAP table contains the master information: it should allow
the storage of all the master information received from the different input
systems, regardless of the source market. The TB_PT_MAP table contains
the data as provided by the input systems, unless data deleted due to consis-
tency and transcoding checks. The data in the table represent the input of
the normalization process.

7

Control Customer Database structure

• The TB_PT_FLAG_MAP can be seen as an extension of the TB_PT_MAP
table, and it is intended to contain additional flags that are not present within
TB_PT_MAP but are necessary during the mapping of new input flows.

• The TB_PT_NORM table contains the master data that are subjected to
normalization process. The latter process takes as input the contents of the
TB_PT_MAP table while the output is stored inside the TB_PT_NORM.
The relationship between the two tables is 1:1.

• The TB_PT_KEY_DEDUP table contains the dedup "secca" keys, so
the master columns that, if they are equal in two different records, determine
automatically the equality of the two records.

• The TB_PT_KEY_DEDUP_GRP tables represent grouping tables,
that is, many to one relationship. In this case, the table allows for the
relationship of individual master movements on the TB_PT_NORM that
are subjected to dedup "secca" and then are converged to a single key in the
TB_PT_DEDUP table.

• The TB_PT_GROUP table maintains the relationship between two or
more dedup keys (TB_PT_KEY_DEDUP) that were found to be associated
with the same subject as a result of the algorithms applied in the dedup
phase. The grouping key assigned to each record group is the code that will
be assigned to the golden record, that is, the unique code by which the master
subject will be identified within the database.

• The TB_PARTY contains the master golden record, that is, the summary
of the best of the information received as input for that specific master subject.

2.2.2 Product data

In Figure 2.2 are shown the main tables involved in the process of product data
management.

• The TB_PARTY_CAR table maintain the relationship between customer
and car. For products for which there is a single, non-transferable customer

8

Control Customer Database structure

Figure 2.2: Product data tables flow

(e.g., warranty work), the associated customer is in the table itself while for
products for witch is possible to have more customers, it is provided another
table. Specifically, the TB_PARTY_CAR table maintains the link between a
car and its owner. We may have, for the same car, the one who bought it new
and all subsequent changes of ownership.

• The TB_OCF_RECORD_MAP table contains information about car
orders, such as requested model, requested version, etc.

• The TB_CAR_RECORD_MAP table contains information about both
new and old cars.

• The TB_OCF_RECORD_GROUP table allows to relate single orders
in the TB_OCF_RECORD_MAP that are subjected to dedup phase and
thus associated with a single TB_OCF table element.

• The TB_CAR_RECORD_GROUP table has a similar function to
TB_OCF_RECORD_GROUP, as it relate car data of TB_CAR_RECORD_MAP
that are subjected to dedup phase and thus associated with a single TB_CAR
table element.

9

Control Customer Database structure

• The TB_OCF table contains the golden records of the car orders, that is,
the best information received for that specific order. The table also contains
the relation between the master subject matched to the order and the car to
which the order relates.

• The TB_CAR table contains the golden records of the cars and also in this
case it is composed by the best available information.

In general, within the CCDB, it is possible to identify three main type of tables,
each of them with a specific purpose:

• the tables with the suffix "_MAP" represent the mapping tables, so, tables
that fill the staging area during the transfer of information from the input
files to the rest of the database.

• The tables with the suffix "_GROUP" represent the grouping tables, in
which the relation is many : 1.

• The tables without any particular suffix, such as TB_OCF and TB_CAR,
contains the golden record of their respective areas.

2.3 CCDB structure

In figure 2.3 is represented the main structure of CCDB system and, thus, the
entire process to which an input record is subjected in the system. The process is
composed by several blocks, each of which represent a specific operation. As result
of these operation a table is populated with updated information and the follow
block will use this table as input and it will populate another table in turn.
According to the type of data inside the record, product or master data, it follows
a different branch and it is subjected to different procedures.

10

Control Customer Database structure

Figure 2.3: CCDB phases

2.3.1 Load & Adjustment

The Load phase has the function of insert inside the database the information
coming from supply flows. Since the flows are not always generated for this specific
task, due to the fact that they comes from different sources and they are used
also in other system with different requirements, it may be necessary to adjust the
format and the content to the system requirements.
The Adjustment operation is apt to delete possible records that are not useful for
the application purposes and to delete possible abnormal fonts.

11

Control Customer Database structure

This activity can be done:

• Before the Load phase: in this case the operation will be done directly on the
input flux and the output will consist of one or more new flux which will be
subsequently processed;

• During the Load phase: the adjustment phase is an integral part of the
Load procedure and occurs concurrently with the data loading phase in the
appropriate staging areas

The Load operation represents the first step in the process of populating the
database following the receipt of one or more input streams.
Each new processed movement is assigned a unique identifier (id_record) that will
be carried over to all staging tables on which the movement can be distributed.
Through the id_record it is then possible to relate data that are part of the same
input movement.
Each Load operation that is performed, has a unique identifier (id_load) that is
associated with each individual record entered on the database within the same load
cycle. Thus, transactions that are part of the same load cycle will have different
id_record but will be grouped under a single id_load.
Within the same Load operation, information from different sources may be loaded;
data processed in the same load cycle are subject to the same processing rules, which
are specific through a code provided at the start of the load cycle (Load_group
code).

2.3.2 Mapping

The Mapping phase allows the different formats used by different input streams to
be adapted to the standard structure of the information as it is managed within
the CCDB system. Thanks to the Mapping component, new input streams can be
integrated into the system without intervention to the software.
The procedures for loading the master and product data require that the information
are present in specific tables (target_map), where the information has already
been broken down on the various fields. These tables contain all the information

12

Control Customer Database structure

manageable by the system, in the expected format.
Mapping rule configuration can be multi-market or market-specific.
Specific rules for the input list need to be configured before the mapping step
is executed. A key element in list configuration is defining the list type, that is,
defining the characteristics of the populating operation being performed. The
different types of lists are:

• Standard: This is the normal list type with which periodic uploads are made. It
can contain only master data or also product data. Master data are subjected
to a specific completeness check, since they must contain a minimum set of
information to be accepted, and then they are subjected to normalization.

• Anagraphic recycling: In this case, it is about targeted updates to master
records already in the database. Normally they are used for master data,
but product data can also be associated. Data processing is similar to the
processing done for standard lists.

• Master enrichment lists: are lists used to supplement what is already on the
system with new punctual information, without specifying the master data in
its entirety (e.g., updating phones, e-mail, etc.).

• Product recycling lists: the list only involves updating product data while
master data operations are performed

• Phone / e-mail cancellation and annulment list: list allows you to annul or
delete phones and e-mails of specific clients.
In case of cancellation phone number and e-mail address will be marked as
invalid and will not be used in the creation of the final record. If the numbers
or e-mails are later submitted again by an input stream, the data will become
valid again.
In case of annulment phone number and e-mail address will be marked as
invalid and will not be used in the creation of the final record. If the numbers
or e-mails are later submitted again by an input stream, they will be considered
invalid.

13

Control Customer Database structure

Once the list type is defined, the distribution of the input data to the various
mapping tables (target_map) should be done. A mapping table is provided for
each entity in the database.
To move a data from input record to a mapping table, it is sufficient to indicate
the input record’s offset, length, table name, and target field.

2.3.3 Check & Transcoding

When defining mapping rules, it is possible to include checks on the input data. If
data fails to pass the check it will not be totally used or it will be limited to master
or product part. The possible controls provided are:

• Obligation of a single piece of data: it is possible to require the discard of a
record, or a part of it, if one or more fields are not valued.

• Format control: it is possible to request the discard of a record or a part of it,
if one or more fields do not meet the required format.

• Domain control: it is possible to require validation of a field in the input
record. For codes, is checked the presence into a lookup table and for date is
checked the inclusion or exclusion within given period.

• Transcoding: domain check can be extended with a transcoding, in this case
the check will not be performed using a lookup table but using a transcoding
table. Failure the check can result in discarding the entire record (or a part of
it), forcing it to null or to a default value for the specific field.

2.3.4 Normalization

The normalization phase consists of a series of operations aimed at data cleaning,
a subsequent syntactic analysis, and an application of a standardization phase.
This crucial phase is carried out in part directly on the database while for some
components, such as name and address, it is entrusted to an external software
called Trillium
Since it is used an external software, a portion of normalization process is integrated

14

Control Customer Database structure

via shell-unix in batch mode, which takes care of extracting the information from
the database, starting the normalization process, and, then, loading the normalized
data.
This phase will be deepened in the following section since it is the phase most
involved in the development of the thesis.

2.3.5 Deduplication

The deduplication component is aimed at parsing new input master subjects to
check whether they already exist on the database and thus avoid entering the same
master subject multiple times (i.e., the same person or company multiple times).
Usually, data from the input streams do not have a unique key that allows simple
and certain identification of the subject existence in the database. Identification is
based on a certain amount of information that, when it reaches a level of similarity
above a certain threshold, makes it possible to declare that two master records
refer to the same person.
The deduplication operation, within the CCDB system, identifies all activities
carried out aimed at identifying:

• The presence of master records referring to the same subject among the master
records during the upload. Indeed, it is possible that in the same stream or
set of streams that is uploaded, there are already master records referring to
the same subject.

• The presence of input master records that are already in the CCDB database

• The presence of master records already on the CCDB that due to updating
are found to have reached a level of similarity whereby they can be considered
to belong to the same individual.

The deduplication operation then operates both on new input master records,
looking for duplicates within the input stream and from the input stream to the
database, and on master records already in the database and subject to update.

Figure 2.4 shows the process of searching for any duplicate master record
performed inside CCDB system. It is possible to identify two possible type of

15

Control Customer Database structure

Figure 2.4: Deduplication flow

deduplication: "secca" and "pesata".
The deduplication "secca" is referred to the identification of master records belonging
to the same subject on the basis of complete equality of all information identified
as deduplication keys. Deduplication keys are the set of all information that can
lead to the identification of duplicates. This duplicate search phase does not apply
any recognition algorithm but, based on the total equality of all deduplication keys,
assumes that two master records belong to the same subject. In this way it is
possible to avoid applying complex algorithms when two master record are clearly
the same, in order to make the operation faster.
The deduplication "pesata" involves the usage of recognition algorithms, since the
process take place among sets of deduplication keys that are not completely equal
(if they were equal they would have already been deduplicated in the previous
phase). The algorithm has an high computational complexity, so it is applied on
a subset of records that have common characteristics, like same address or same
phone number. The search for possible candidate records for the deduplication is

16

Control Customer Database structure

called "windowing".
Once the candidates are determined, their similarity are checked. Through a specific
configuration table, it is possible to define which combinations of deduplication
keys are the same or have a level of similarity above a certain threshold such that
it can be determined that the records belongs to the same subject.

2.3.6 Historicization

Once records belonging to the same subject have been identified, it is necessary
that the different information are organized in such a way to maintain all the data.
The goal is to always be able to identify the most recent, thanks to date, and
possibly most reliable information, thanks to source. Indeed some feeder systems
provide certified information that are therefore more reliable than others.
Each list used for uploading data to the system has a priority level, through which
is determined the greater or lesser reliability of the data relative to other lists.
The updating of the information follows these two rules:

• the list is updated only if the one of the new record has an higher priority
with respect to the one inside the database. The priority is expressed through
a number, where 0 is the lower.

• the data is updated only if the one of the new record is more recent with
respect to the one inside the database.

2.3.7 Master Data summary

Once information that are part of the same master record have been identified, it
is necessary for all these information to be associated to single record for every
master subject, that contains the best data. This operation, called synthesis, must
be done whenever new master information goes into updating the database.
The synthesis of a master data is done in two distinct steps

• An initial summary is done in the previous phase (Historicization) where the
received data are subject to a first level of synthesis, aimed at aggregating all

17

Control Customer Database structure

the master information, received at different times and from different sources,
that report exactly the same information

• The second step is aimed to obtaining the single master record, called golden
record: among all the records available for the master subject (as a result
of the activity performed during the historization phase), the most recent
information present on the record will be selected.

The data obtained from the synthesis is the data visible outside the CCDB
system: this means that all the features that have access to the CCDB have access
to the summarized data.

2.3.8 Products, services and contacts deduplication

Like master data, also vehicle, service and contact data require a dedup operation,
which is aimed at analyzing new products being acquired to see if they are already
in the database and thus avoid entering the same product multiple times.
The management of product data is simpler than for master data, since for the
product data there is a unique natural key that makes it possible to identify in
a simple and certain way the existence or non-existence of the subject on the
database. In addition, it is not required any normalization activities for product
data.

2.3.9 Products, services and contacts summary

Also in this case, after dedup, a synthesis operation takes place to collect all the
information on the individual object received at different times from different
sources, so as to obtain a single record per product, containing the best data.
The summary procedure aimed at obtaining the single product record (golden
record), consists of selecting from all the available records of the single product,
the most recent data. Thus, for each column the value present in the most recently
received record is extracted.
Each time new information about an existing product is uploaded to the system,

18

Control Customer Database structure

the summary process is repeated to ensure that the information received becomes
part of the golden record.

2.3.10 Master data and products reconciliation

The purpose of the reconciliation phase is to reconcile master and product informa-
tion that in the mapping phase has been dissected and distributed on the different
tables and that, once distributed on the different target tables need to be related.
The aim of this phase is to match each product with the master subject to whom
it is referred and to match each non-auto product with the auto to which it is
referred.

2.4 Normalization phase

As introduced before, the normalization phase is a key point in the process of
data storage. Indeed, the records that are passed as input into the database can
have very different origins from each other: they may, for example, come from
dealerships because an individual has shown interest in buying a car, or from
surveys via telephone or taken online. In addition, since it is a very large and
globally known automaker and includes several brands within, it has markets that
span many countries.
As a result, data have different formats depending on the market and source and
they may be subject to various errors caused by missing data or incorrect data
entry.
Therefore, it is necessary a phase in which there is an enrichment and cleansing
of data so that we have values that are as clean as possible within the database
and so that, at a later time, it is possible to work and perform analysis on truthful
data.
The normalization is a single phase but it can be divided in is three main conceptual
steps:

• Pre-Trillium

19

Control Customer Database structure

• Trillium

• Post Trillium

2.4.1 Pre-Trillium

This is the first step of the normalization phase where some fields are cleaned
and adjusted in order to have a readable and standardized data according to the
database specifications.
This step takes as input data from "TB_PT_MAP" table where the initial record
is split inside the various fields and its goal is to generate the input file for Trillium,
containing the data to be normalized.
Firstly, a series of cleaning operations are done on various fields in order to provide
the cleanest possible data to Trillium. Some components such as email, phone,
tax codes (nat_id) and vat number (company_id) are normalized and validated
directly on the database through custom validation functions and they will no
longer be normalized by the software, while, for components such as name and
address, in this step are performed only cleaning operations.
The input file for Trillium is composed, therefore, of some already cleaned and
normalized fields on which the software will not act and other cleaned fields on
which it will perform normalization.

1 f unc t i on fn_get_first_name (p_cod_market varchar2 , p_first_name
varchar2) re turn varchar2 i s

2

3 v_first_name varchar2 (4000 char) := p_first_name ;
4

5 begin
6

7 i f r egexp_l ike (upper (trim (v_first_name)) , ’^X ([[: space :]] ∗
X) ∗X$ ’ , ’ i ’)

8 or regexp_l ike (tr im (v_first_name) , ’ ^ ([[: punct :]] { 1 } [[:
space :]] ∗)+$ ’ , ’ i ’)

9 then
10 re turn n u l l ;
11 end i f ;

20

Control Customer Database structure

12

13 re turn v_first_name ;
14

15 end fn_get_first_name ;

Listing 2.1: Example of pre-Trillium normalization function

The code 2.1 shows an example of normalization function: in particular, it is
referred to the field called "first_name".
The function takes as input the value referred to the field "first name" and check if
it is composed only by punctuation marks followed by blank space or if it starts
with the letter X followed by other letter "X" or blank space and ends again with
letter X, to avoid values such as "XXX" or "X XX" that are not valid.
If at least one of this condition is satisfied the function return a null as value to
avoid the storing of wrong data.

2.4.2 Trillium

The second step of the normalization is done relying on an external software called
Trillium.
The Trillium Software System (TSS) is a widely solution for managing data quality.
It specializes in providing tools and services for cleansing, standardizing, enriching,
and improving the quality of data within an organization. TSS is able to handle
diverse types of data, including structured and unstructured information, and
it offers features like data profiling, data cleansing, data enrichment, and data
matching. These functionalities help organizations in maintaining high-quality
data, which is essential for making informed decisions and achieving operational
efficiency [3].
In particular Trillium Software System is used to perform the normalization of the
street address components, such as street name, street number and geographical
coordinates and of name components, such as first name and the assignment of
gender and party type.
For the street address component, TSS base its operation on postal files, that are
files containing all the address information. Note that these files are extremely

21

Control Customer Database structure

important as without them it is not possible to perform the address normalization.
Indeed, they have to be periodically updated, in order to have the newest and
updated version of them.
Instead the name components rely on dictionaries, that are file containing informa-
tion and patterns about master information.
There are two types of dictionaries: the standard one provided by Trillium and
the custom one that is the result of multiple modifications and interventions made
over time, both by consultants and by Trillium’s own suppliers.
Trillium receives the input file created appropriately, as described in the previous
step, and based on its internal components it processes an output file containing
the normalized data.
The process from input to output is nothing more than a series of sequential steps in
which are performed transformations, cleaning, and normalization of data (address
and name).

Figure 2.5: Example of Trillium project

Figure 2.5 shows an example of the process that occurs inside Trillium. As
it can be noticed there are some steps: firstly the block called "Customer Data

22

Control Customer Database structure

Parser" is a dictionary and it is used to normalize the name component, splitting
if necessary the record in name and surname and assigning the gender and party
type. The "Postal Matcher" refers to the address component and contain the postal
table on which is based the address normalization. Then the "Transformer Data
Reconstruction" is used to reconstruct the entire record as it is divided into the
various components during the process.
It is important to underline that what happen inside this process is a sort of "black
box", in that it is possible to modify and customize the flow but the normalization
itself is managed by the software.

2.4.3 Post-Trillium

Once Trillium performs the normalization of the input data, the results are upload
inside the CCDB, thank the external tables. Before that the records are stored
inside the target table, TB_PT_NORM, additional check and adjustments arose
over time, are made on the database and not on Trillium since it is easier working
directly on the tables and it impact less the normalization phase from a performance
point of view.

1 f unc t i on fn_get_hno (p_cod_market varchar2 , p_hno_map varchar2 ,
p_hno_norm varchar2 , p_addr_match_level number) re turn varchar2 as

2

3 v_hno varchar2 (50 char) := ’ ’ ;
4

5 begin
6

7 v_hno := trim (upper (p_hno_norm)) ;
8 i f v_hno i s n u l l then
9 v_hno := trim (upper (p_hno_map)) ;

10 end i f ;
11

12 re turn v_hno ;
13

14 end fn_get_hno ;

Listing 2.2: Example of post-Trillium normalization function

23

Control Customer Database structure

The code 2.2 reports an example of post normalization adjustment: in this case
the field under review is "hno", that correspond to the street number. The value
received as output by Trillium is transformed in upper case and possible leading
and trailing blank spaces are removed.
Then if the value is null, it is replaced by the one present on the "TB_PT_MAP",
also in this case in upper case and without leading and trailing blank spaces.
Finally, once all post normalization adjustment are performed, the data are uploaded
on the "TB_PT_NORM" table and begins the deduplication phase.

24

Chapter 3

New normalization
environment solution

3.1 Introduction

As mentioned in the previous chapter, a part of the normalization phase is entrusted
on an external software called Trillium. This implies that there are shells used to
handle the extraction of data from the database, to manage the call the software,
and finally to send back the output to the database.
Both CCDB system and Trillium software run on IBM’s AIX servers, but, unfortu-
nately, for the latter the company has not granted development and service/support,
so no more updates have been brought in.
For this reason, it was necessary to find an alternative to ensure the proper func-
tioning of the software and the normalization phase. The idea was to propose a new
solution that is relied on a new server, RedHat, which led to the development and
implementation of Trillium on the new server, while the entire CCDB remained on
AIX servers.

25

New normalization environment solution

AIX

AIX, which stands for Advanced Interactive eXecutive, is a significant operating
system in the enterprise computing domain that it is developed by IBM. AIX is
built upon the UNIX operating system and it brings together reliability, scalability,
and security.
IBM AIX is usually used for corporate servers and workstations. It allows to
distribute access to memory, processor, and disk between different tasks and
it is possible to configure various security options like dynamic secure tunnel
authentication [4].

Redhat

RedHat is a software company that provides open source software products to
enterprises. One of their flagship products is Red Hat Enterprise Linux (RHEL)
that is a powerful and widely used operating system designed for enterprise-level
computing environments. One of the key strengths of RHEL lies in its stability
and reliability. It undergoes rigorous testing and quality assurance processes to
ensure it meets the stringent standards required for enterprise-grade computing
environments. It also incorporates robust security features, including encryption
protocols, access controls, and compliance tools [5].

Not being completely familiar with the version of Trillium on Red Hat, it was
necessary to adapt some processes, such as the implementation and testing of the
new interface between AIX and Red Hat for what concern the call to Trillium
software. Another necessary action was to export existing projects on the old
version and import them in the new one, making sure that they work properly.
Taking advantage of this migration, the postal files used for correct address nor-
malization were updated. Since the CCDB system can handle different markets,
the mailboxes will have different formats and standards for each of them, and it is
therefore necessary to install postal files for each of them.

26

New normalization environment solution

Finally, the non-regression tests were performed in which it was checked that the pro-
cesses did not perform significantly worse than the previous version. These checks
were performed on the following components: Name, Address, and Geocoding.

3.2 Uploading group shell

As just mentioned, it was necessary to adapt some of the components inherent
to the management of the software for normalization, since during the transition
many things changed, such as directories and file names, in addition to the very
fact of having the software on another server.
Since this phase was shell-unix based, it was tested that the various commands
would run correctly also on the new machine and that the shells would work
properly.
The first shell that was modified is the one called "start_batch_load.sh" which is
used after the check and transcoding phase to upload data streams to the Trillium
software and initiate normalization. Moreover it is also used by technicians to
manually launch some uploads in order to perform tests and/or analysis.
Going into more detail, the shell receives as input some parameters such as "market
code", "group code" and "id load" based on the type of load you want to run.
After an initial phase in which the input parameters are checked, there is the
normalization phase: the ".dat" file containing all the data to be normalized for
that specific upload is moved from the ’datadir’ directory of the database into the
batch in the ’data’ section. The batch in question is the project of Trillium, so the
one responsible for the normalization, that has been exported in batch form on
the server. In the following section the structure of this batch will be explained in
more detail.
At this point, depending on the casuistry, the file "debug_norm_failure.sh", "paral-
lel_start.sh" or "start.sh" is run to kick off the normalization phase on Trillium.
Then the normalized data are moved within the database on target tables and the
Trillium directories are cleaned to avoid contaminating subsequent operations.
Changes have been made in the new version of the shell to ensure proper functioning.
For examples, some of the directories changed and had to be updated.

27

New normalization environment solution

As mentioned before, the Trillium software was moved to the RedHat servers while
the CCDB remained on the AIX server. The most substantial difference was in
developing and handling the connection to another server. In fact, previously, the
call to the trillium software was done by simply moving to the batch directory with
the command cd $CCDB_NORMDIR/$1/n1/p$3/batch/scripts and then running
the appropriate file, such as "debug_norm_failure.sh."
With the new version, however, a call to an external server is required. To do this,
it is used the command ssh which provides a ssh connection.
Shh stands for "Secure Shell" and it is a cryptographic network protocol that
provides a secure way to access and manage remote machines over a network. SSH
applications are based on a client–server architecture, connecting an SSH client
instance with an SSH server [6].

1 t r i l l ium_path=$RH_NORMDIR/$1/n1/p$3/ batch / s c r i p t s
2 cd $tr i l l ium_path
3

4 i f [[(" $1 " == " 3106 " | | " $1 " == " 3123 ") && −f debug_norm_failure . sh
]]

5 then
6

7 ssh tss15adm@XX .XX.XX.XXX << EOF
8 cd $tr i l l ium_path
9 . / debug_norm_failure . sh

10 e x i t
11 EOF
12

13 e l i f [[−f p a r a l l e l _ s t a r t . sh]]
14 then
15

16 ssh tss15adm@XX .XX.XX.XXX << EOF
17 cd $tr i l l ium_path
18 . / p a r a l l e l _ s t a r t . sh
19 e x i t
20 EOF
21

22 e l s e

28

New normalization environment solution

23

24 ssh tss15adm@XX .XX.XX.XXX << EOF
25 cd $tr i l l ium_path
26 . / s t a r t . sh
27 e x i t
28 EOF
29

30 f i

Listing 3.1: Ssh implementation in "start_batch_load" shell

In code 3.1 is shown an excerpt from the new shell. As it can be noticed after
an initial "if" where is checked if exist the file, is performed the ssh connection.
The ssh command is composed by two parts: the one before the ’@’, in this case
tss15adm, is the user that we want to use for the authentication in the server while
the part after ’@’ is the IP address or the name of the server. In this case, for
privacy reasons, the IP has been covered.
Once the ssh command successfully connect to RedHat server, we moved into the
script path and then the normalization file is run.

3.3 Project uploading

When Trillium software was moved to the new server, pre-existing configurations
and assignments were not retained. As a result, they had to be recreated, including
repositories and related users.
In addition, also the projects that were on the old server have had to be managed
since they were not automatically imported on the new one. Therefore, it was
necessary to export projects from the old server and import them on the new one.
This process ensured that project definitions, configurations, and cleanup rules
were replicated in the new environment.
In order to manage the various projects, it was used the Control Center, also called
the CC [7]. The CC is the main interface of the software and it is the central point
from which users can access and manage all aspects of their data quality projects,
such as initiating, monitoring, and managing data cleaning and normalization

29

New normalization environment solution

processes.
At first, through the CC of the software installed on AIX, the projects were exported.
In particular, as already mentioned, the thesis is focused on market number 1000,
that is the one referred to the Italian market.

3.3.1 Repository and user

Another operation to be done was to create the "repository - user" association,
since, initially, Trillium on the new server was completely empty.
As a result, it was necessary to recreate these associations to ensure that users have
access to the appropriate projects and project definitions in the new environment.
This step is critical to enable users to continue to work effectively with Trillium
projects in the new server while maintaining proper control over access and permis-
sions.
Specifically, each market has been associated with its user, who is then the only
one able to operate on the project within its repository.
To do this, it was necessary to use a specific component of the software called the
Repository Manager. The Repository Manager serves as a central repository where
all project definitions, configurations, cleanup rules and other information related
to Trillium projects are stored. It also allows users to manage permissions to access
and modify project definitions, providing adequate control over access to data and
configurations.

To get a more complete overview of how the normalization phase works through
Trillium, let’s now take a closer look at the structure of the projects and their
respective batches.
When a project is on Trillium, it is a "client-side" project, in that definitions and
configurations are stored and managed within the Trillium environment, either
locally or on the server. In this case, users have the ability to open, edit and run
projects directly in the Trillium interface.
This approach is useful when you want to work interactively and have direct control

30

New normalization environment solution

over data cleaning operations. It is particularly suitable for tasks that require
active user intervention and supervision.
But when a project is integrated within an automated flow, as in the case of CCDB,
it is necessary to export them in batch form so that they can be executed without
the need for direct user interaction.
In paticular, a batch of a Trillium project is structured in the following folders
(directories):

• data: as suggested by the name in this directory there are the data. There are
those that have to be normalized and those after normalization. Initially this
directory is empty and it is dynamically filled each time with the new data,
which once normalized, are deleted so as to leave it clean for the following
loading.

• ddl: ddl stands for Data Definition Language and it contains the files that
define the structure and format of the data within the project.

• logs: this folder is filled during normalization with any logs. Having this folder
is very useful in case there are some errors so that it is possible figure out in
which step they occurred and act accordingly.

• scripts: this directory contains the files that initiate the actual normaliza-
tion. Specifically, the files in question are "debug_norm_failure.sh", "paral-
lel_start.sh" and "start.sh" which are run by the shell "start_batch_load.sh",
as explained earlier.

• settings: in this folder there are configuration files and specific definitions for
the project.

• tables: the directory contains files or resources that are relevant to the tables
and data that are used or generated during project execution.

Notice that inside the batch, also the contents of some files such as the "start.sh"
and "debug_norm_failure.sh" were changed. In particular, the "start.sh" shell has
been updated with the directories of the new server, and some configuration files

31

New normalization environment solution

have been changed, such as the "config_batch" file, which became "config64."
But it is important to underline that in the "start.sh" shell, not only the file
names and directory have changed, but the table and data configuration has been
completely redesigned, as well as the management of the various normalization
processes.

3.4 Export shell

The second shell that was modified is the one called "export_batch.sh". This file is
very important in that it is responsible for exporting a project from the Control
Center and importing it in the server in the form of a batch so that it can be used,
for example, running the shell "start_batch_load.sh", or by manually inserting the
data within the batch into the ’data’ directory and running the file "start.sh".
Specifically, once the shell is run with the relevant market as a parameter, it is
chosen from a list which of the projects in that market you want to export. Once
selected the batch is extracted from the project. At this point the ".sh" file in
the scripts directory is renamed to "start.sh" so that it is aligned with the batch
specification. Then the contents of some files is modified, including the "start.sh"
file itself, updating the directories with those of the server so as to ensure proper
operation.
Finally, the commands shown in the code 3.2 are printed on the screen, and they
must be executed manually by the user:

1 echo " ∗Backup∗ the prev ious batch and execute the f o l l o w i n g command
with the user ccdb0000 "

2 echo " $ mv ${ batch_dir_f ina l } ${ batch_dir_f ina l }_bck_$(date +%Y%m%d
) && cp −r $batch_dir ${ batch_dir_f ina l%%/batch } "

3 echo "To import the cur rent batch in Production execute the f o l l o w i n g
from product ion "

4 echo " $ mv ${ batch_dir_f ina l } ${ batch_dir_f ina l }_bck_$(date +%Y%m%d
) && scp −r XX.XX.XX.XX: ${ batch_dir } ${ batch_dir_f ina l } "

Listing 3.2: batch moving commands

32

New normalization environment solution

As anticipated by the comment, the first part of the first command, $ mv

$batch_dir_final $batch_dir_final_bck_$(date +%Y%m%d), makes a backup
of any previous project, renaming it with the current date, while with the sec-
ond part, cp -r $batch_dir $batch_dir_final%%/batch, the batch is physically
moved from the Control Center directory to the server.
Similar to what has just been described, the second command performs the same
operations as the previous one with the difference that the batch is saved in the
"Production" environment and not the "Certification" environment, as it can be
seen from the IP present before the directory (obscured in this case for privacy
reasons).

In this case, a new shell called "wrapper.sh" had to be created on the RedHat
server that would be able to manage calls to the "export_batch.sh" shell.
Indeed, as already mentioned, many directories changed in the new server, and, in
addition to changing from one server to another, a substantial difference was that
in this case they also changed from the Certification environment to the Production
one. This was not happening on the AIX server, in which there were no directory
differences between the two environments.
Specifically, the directory inherent to the Trillium software, the one from where you
take batches to export, is called trilliumQA in certification while in production it
is trilliumPROD.
For this reason it was necessary to create the shell "wrapper.sh", shown in part in
Code 3.3, which run the shell "export_batch.sh" in the two different environments,
passing them as a parameter.

1 . / export_batch . sh $cod_market $encoding CERT $ s u f f i x
2

3 RCcert=$?
4 i f [[$RCcert −gt 0]]
5 then
6 echo " Error in CERT batch "
7 e x i t $RCcert
8 f i

33

New normalization environment solution

9

10 . / export_batch . sh $cod_market $encoding PROD $ s u f f i x
11

12 RCprod=$?
13 i f [[$RCprod −gt 0]]
14 then
15 echo " Error in PROD batch "
16 e x i t $RCprod
17 f i

Listing 3.3: Wrapper shell

Once the shell "wrapper.sh" was created, the shell "export_batch.sh" has been
modified so that it could handle the two different environments.
In addition to the changes already described due to the move to the new server, an
example of a change is that depending on the environment passed as input, there
is a different directory, which value is insert inside a variable that is subsequently
used as shown in the code 3.4.

1

2 i f [[$environment == ’CERT’]]
3 then
4 ts_env=/tr i l l iumQA
5

6 e l i f [[$environment == ’PROD’]]
7 then
8 ts_env=/trilliumPROD
9

10 e l s e
11 echo " Unsupported environment "
12 e x i t 1
13 f i

Listing 3.4: New environment management in "export_batch" shell

Similar checks are also performed within some files where, depending on the
environment, some paths are updated. In these cases, the files are modified,
updating path an name of other components, in order to make them executable for

34

New normalization environment solution

the specific environment.
Additionally, a new logic has been developed to ensure that the same project is
always exported in the two different environments. When the "start_batch_load.sh"
shell is first runs with the CERT parameter, the user chooses which project within
a specific market they want to export. Note that there can be more than one
project, and in that case, the user selects it. At this point, thanks to the developed
enhancements, when the shell is runs for the second time with the PROD parameter,
the initially selected project is automatically exported to avoid potential user errors
and streamline the process.

3.5 Non regression analysis

During the software development cycle, a key phase is the non-regression analysis.
This process is a set of tests, both automatic and manual, that are performed after
implementing changes in an application’s code. The main functionality is to detect
and correct regressions [8].
Within the CCDB, non-regression analyses are performed whenever the postal
files and dictionaries of the Trillium software are changed. Indeed, as explained
in the previous chapter, these files are updated approximately every six months,
so that they have the most recent and reliable versions and, consequently, the
normalization is more accurate.
The analyses that are performed are used to make sure that the normalization
results have not undergone a regression, that is a change in the behaviour of the
software that leads to a result that does not conform to expectations, or in this
case leads to a result that is worse than the previous version.
Usually, the non-regression analyses are performed over three different component:

• Postal component: related to the customer address, such as city and street
name

• Custom component: related to the master information such as the gender

• Geocoder component: related to the geographical coordinates

35

New normalization environment solution

In this case, having developed a new environment for the software, in addition to
the tests just described, further analyses were conducted to assess the performance
of the new solution.
The first test concerned computational time, during which the execution times
of the two different machines were compared. In the second test, it was verified
whether or not the addition of the ssh call to an external server led to a significant
increase in execution time.

3.5.1 Implementation

In the non-regression analyses has been made changes so as to improve the accu-
racy of the analyses. In particular, these improvements were made in the postal
component.
The analysis are launched by a procedure that initially creates two different external
tables that are filled with the contents of two files, respectively: ’tss_output_asis’
and ’tss_output_tobe’.
These files represent the outcomes of the normalization process using the Trillium
software with two versions of the postal files. The "asis" designation is referred to
the old version, while the "tobe" designation corresponds to the updated postal
files.
Once these tables are obtained, the analysis are performed comparing the data,
and the output consists in the generation of two files: ’postal_file_detail’ and
’postal_file_general’.
In the "detail" file there are all the records in which something has changed, from
one version to another. This provides the capability to have the entire record in
both versions and compare them. Notice that, being highly detailed, the file is sent
to the ICT team, which is responsible for analizying any errors in singles records.
In the "general" file, on the other hand, there are general statistics, such as, the
total number of records where something changed in normalization and it is used
to get an overview of how the results have changed since the files were updated.
The implementation was performed in the creation of the "general" file. Among the
possible statistics, are also presented information concerning the address match

36

New normalization environment solution

levels within the file. This metric is a number that normally varies between 0 and 5
(but it depends from market to market) and indicates how accurately the address
has been normalized: a value of 0 indicates that the address has had a positive
match in all normalized fields and, therefore, it is possible to locate the position
on a map with high accuracy. A value of 5 still suggests relatively good accuracy,
even if with some limitations. As the value decreases, the quality of the address
deteriorates, until it reaches 1 where the information are so poor that make the
identification of the building impossible.
One of the results of this analysis is a table in which there are the number of
records that changed level of quality of the address in the two version of postal
file. In this case there are two abbreviations: "OK" indicates that the level is 0 and
"KO" indicates that the level is one of the other cases, so that the address has not
been perfectly normalized.
Since the CCDB is multi-market, each market may have its own particular address
match level management, dictated by the fact that each State has a different
management of addresses and, consequently, of postal files. In fact, in some cases,
an address match level of "4" is sufficient to identify a building and it is therefore
considered good as well as level 0, which shows up as "OK" on the table.
The idea for the modification was to include in the results table the cases where
values other than 0 are considered optimal, hence "OK". Indeed, previously, all the
values different form 0 were considered "KO".
Initially, a function called fn_check_valid_aml() was created, taking the market
code and the address match level as input. Subsequently, it checks if there are
additional accepted values for that specific market and returns "0" if the level
passed as input is considered optimal and "1" if it is not.
After creating the function, the table generation was also modified, adding two
rows that represent the cases where a record changes the value of address match
level but it is still considered "OK". For example if a record pass from a level of
0 to 4 it is considered in the row "OLD OK > NEW OK" in the table 3.6, while
without this modification it would be considered in the row "OLD OK - NEW KO".
Thus, this modification corrects the whole distribution in the table, as it add a new
casuistry.

37

New normalization environment solution

This concept will be further explored in the "Postal Components" section, dedicated
to a more detailed analysis of these tables.

3.5.2 Results

The results of the non-regression analyses and of the runtime tests are shown below.
The results obtained from the Trillium software in the new solution, with updated
postal files, are compared with those from the software in the old version.
Notice that, as explained, the thesis is focused on the market 1000, the Italian one,
and consequently, also the analysis are performed on this market.
The non-regression analysis results display the "general" files and they are divided
by components, while at the end are presented the runtime test results.

Custom component

The first results are inherent in the customer master component, specifically on
the gender and party type values.
As it can be seen, the file is composed by three different tables: a black, an orange
and a blue one.
The black table shows the distribution of party type and gender values of the
normalized records. In particular, the party type represents the type of record and
it takes the value "C" if the record corresponds to a company, "P" if it is a private
person, and "U" if it is undefined.
On the other hand, the gender applies only to person and takes the value of "M" if
the person is a man, "F" if it is a woman, "U" if it is undefined, and "N" if the field
is null.

In Figure 3.1 are shown the statistics of values just described, in three different
situations: "INPUT" indicates the value of the record before it was normalized, so
as input to Trillium, "OLD" indicates the record normalized with the old postal
files while "NEW" indicates the record normalized with the updated ones. For each
of these there is both the number of records and the percentage of the total.
As it can be seen there is a difference only between the input and output values
while nothing has changed between the old and new versions. This result is actually

38

New normalization environment solution

(a) Caption

(b) Caption

Figure 3.1: Party type and gender distribution

perfectly normal since, during the update only the new postal files, containing the
address component, were updated while the dictionaries were not changed.
However, it can be seen a massive decrease in records that were initially identified
as private but gender was undefined, passing from more than half of the records,
51.46%, to a negligible percentage, 0.29%. This result is a clear sign that the
normalization phase is extremely important and it is also very effective.
In the orange table, the one at Figure 3.2, are shown the number and percentages
of record distributions that from the input to the output of the normalization phase
maintained the same party type value.
Here we have the comparison between one version and another, but as already
mentioned, in this case there are no differences.

The last table is the blue one, shown in Figure 3.3, and it is the opposite of the
previous one. Indeed, it shows the number and percentages of records that have
changed the value of party type. As it can be seen, in the "OLD vs NEW" section,
representing precisely the comparison between the old and the new version, the
percentage of records that changed is 0%.

39

New normalization environment solution

(a)

(b)

Figure 3.2: Same party type / gender distribution

(a)

(b)

Figure 3.3: Different party type / gender distribution

Postal components

The second set of results is associated to addressing component and also in this
case we have three different tables refining the overall statistics.
The first is the black one in Figure 3.4, which shows the distribution in numbers
and in percentages of the address match level values of the records before and after
the postal file update. As it can be seen there are differences between the OLD
column and the NEW one which shows that indeed there have been changes using
the new postal files.
Looking more closely it can be seen that level 0 has remained more or less unchanged
while high values, which correspond to good addresses, have decreased in favour of
low values, which are associated to incomplete addresses. At first this behaviour

40

New normalization environment solution

might seem negative, as address match levels have worsened. In reality, updating
the postal files results in more accurate address normalization, which leads to
more careful level assignment. In this case, some records that had previously been
assigned as discrete, or at least with a higher level, were reevaluated in favour of
greater veracity of the data. In this way there are fewer cases of false positives,
that are records that were initially decreed as good but actually were not.
However, as mentioned before, more detailed analyses are left to a specialized team
that analyze individual cases.

Figure 3.4: Address match level distribution

Also in this case, the orange table in figure 3.5 depicts the number of records
that maintained the same address match level value.
This data is important because it can quickly give useful information. In fact
knowing that with a postal file update about 93% of the records did not change
level is good since if they had changed for example half of the records there would
have been something strange.
If that had happened, it should have been investigated what might have been the
cause of such a large change.

Figure 3.5: Same address match level

41

New normalization environment solution

The last table, depicted in Figure 3.6, shows the number of records that changed
address match level value.
In this case the value of "OK" indicates a high level of accuracy, thus 0 and in some
markets other values as well, while "KO" indicates a not optimal level.
As it can be seen the values in the two versions are compared, and in each row a
different case history is represented. The first shows the records that pass from a
value of 0 or considered good, to a not good level.
In the second row there are the records that were instead considered not optimal
but, thanks to the postal file update, were normalized correctly.
In the third row there are the records that remained non-sufficient (KO), worsening
also their level, e.g., passing from a value of 3 to a value of 2.
The next row shows the opposite, i.e., all those records that remained KO but that
improved their level of accuracy, e.g., passing from 3 to 4.
The last two lines were introduced recently, thanks to the implementation made
in the code of non-regression analyses. In fact, initially it was not expected that
there would be multiple levels considered OK, since the only acceptable value was
0. With the addition of the changes instead, in some markets, even values such
as 4 are considered good. It is therefore necessary to keep track of all the records
that, although they are still considered good, pass from a level of 0 to a lower one,
for example 4 (fifth line) and vice versa (last line).
In this case, the analysis was performed on market 1000, which, however, does not
accept as OK any values other than 0.

Figure 3.6: Different address match level

42

New normalization environment solution

Geocoder component

Finally there are the results of the non-regression analyses for the geocoder compo-
nent.
In the first table in Figure 3.7 the distribution of records in the various accuracy
levels are shown. Again, OLD values are compared with NEW values.
Note that in this case, as shown in the first column, the best value, so the one with
the highest accuracy, is level 5, which identifies the roof of the building. As the
value approaches 1 the accuracy becomes worse.

Figure 3.7: Geographic code distribution

Three different tables are represented in Figures 3.8: the first represents the
number and percentage of records that maintained the same geographic code value
(89.56%) and those that changed it (the remaining 10.44%).
The second table shows the number of records who maintained the same geogrfice
coordinates and the number of those who changed them, among those that main-
tained the same level of geographic code.
The third table shows the records that, by changing the geographic code, had an
improvement (increase in level) and the records that, instead, had a decrease in
precision.

Finally, the last table in Figures 3.9, represents the distribution of how accurate
the coordinates of the records are. In particular, it can be seen that most of the
results, about 94%, have good accuracy, with an uncertainty range of less than
1km. On the other hand, less than 5% are in a range between 1 and 5km and only
2% have an uncertainty greater than 5km.

This last tables contain the results of the non-regression analyses that are
normally performed when postal files and dictionaries are updated.
As already mentioned, it is very important to understand these results in the correct

43

New normalization environment solution

Figure 3.8: Same and different geographic code distribution

Figure 3.9: Coordinates uncertainty

way so that it is possible to follow the evolution of this delicate phase and know in
which part of normalization phase act in case of any unexpected results.

Computational time component

As explained, since it has been developed a new normalization solution using a
new environment it was so necessary to perform analyses inherent to the execution
time so as to compare the runtime in the two cases.
Two different tests were performed: in the first one it is evaluated the simple
machine execution time, that is, the speed at which the Trillium software runs on
the two different servers.
To perform this test, three different files containing different numbers of records

44

New normalization environment solution

were used so as to subject the servers to various case histories and file sizes: the
files have respectively 1000, 10000 and 100000 samples each.
Once the files were created they have been inserted, one at a time, inside the Trillium
project batch, in the ’data’ section. Then, the shell called ’debug_norm_failure’
was executed, which initiates normalization using Trillium. In particular, the
command date && ./debug_norm_failure.sh && date was run, which allows to
takes the time before and after the shell execution, so as to take the total execution
time.
The table 3.1 shows the results of this test. As it can be seen, for small files the
time is almost the same while for larger sizes, Trillium performs normalization
faster on RedHat servers than on AIX ones coming to be, in the case of large files,
even 30% faster.

File dimension Server Elapsed time
1000 Red Hat 00:00:08

Aix 00:00:09
10000 Red Hat 00:00:14

Aix 00:00:41
100000 Red Hat 00:02:22

Aix 00:03:20

Table 3.1: Machine execution time

The second test was performed taking into account the entire flow to which the
record sets are subjected in the normalization phase. Thus, an entire batch was
loaded using the shell start_batch_load.sh in order to test the new changes and
also take into account the time it takes to execute an ssh call on another server.
Also in this case, three different files of sizes 1000, 10000 and 100000 samples
were generated but, instead of placing them inside the batch, they were left in the
directory inside the CCDB on the AIX server.
Once this was done, the old shell was run on the AIX server, while on RedHat the
updated one was run, as previously described, adding the commands date before
and after so as to have the total execution time.

45

New normalization environment solution

File dimension Server Elapsed time
1000 Red Hat 00:00:31

Aix 00:00:34
10000 Red Hat 00:03:18

Aix 00:03:17
100000 Red Hat 00:30:04

Aix 00:30:27

Table 3.2: Group uploading execution time

In table 3.2 the results obtained are shown. As it can be seen, in all three case
histories, the execution times are practically the same.
This result is very important since developing a new solution, based on the new
environment where Trillium software runs does not involve changes in timing and
thus does not lead to slowdowns in the normalization phase.
This means that the new changes are valid and they can therefore be implemented
in the production environment. Subsequently, they will be gradually extended to
all markets so that the entire database relies on the new solution.

46

Chapter 4

Novel normalization data
platform architecture

4.1 Introduction

Once the Trillium software had been moved to new server, developing a new
solution, and verified the correct functioning and fit within the CCDB flow, an
alternative to the normalization software was considered. Indeed, the need for this
migration, due to the failure to guarantee support and updates from AIX, gave
raise to the development of an alternative product that could be sold separately
from the entire data acquisition, cleansing and storage flow and that, in the future,
could also replace Trillium itself within the CCDB.
The implementation of the new normalization system required a cutting-edge ap-
proach, harnessing the potential offered by leading technologies available on the
market.
By basing the data platform on Oracle’s Autonomous Database (ADB) and in-
tegrating the Google Address Validation API service, a robust infrastructure for
advanced address management was established.
Subsequently, the features of Google Address Validation API, Oracle Cloud In-
frastructure (OCI), and Oracle Autonomous Database (ADB) were thoroughly
examined. These technologies represent the core of innovation, with each making a

47

Novel normalization data platform architecture

distinctive contribution to optimizing the address normalization process.
This chapter focuses on the in-depth analysis of integrating these technologies
within the new normalization system, highlighting their impacts on performance
and operational efficiency.

Google Address Validation

Google Address Validation API is a service offered by Google that provides address
normalization and validation functionality. This API enables the efficient manage-
ment of large volumes of address-related data by offering a reliable mechanism to
ensure that addresses are correct and valid [9].
The API accepts an address as input and returns the normalized and enriched
address, along with additional information about the quality of the normalization.
Google Address Validation API leverages an extensive database of addresses to
ensure that the provided address is valid and accurate. This helps in avoiding
delivery or shipping errors caused by incorrect or incomplete information. Using
this service, businesses can enhance operational efficiency and accuracy in address
management.

Oracle Cloud Infrastructure - OCI

Oracle Cloud Infrastructure (OCI) is a cloud computing platform provided by
Oracle Corporation. It is a highly scalable and reliable cloud environment that
offers a wide range of IT services and resources on-demand [10].
One of the distinguishing features of OCI is its cloud architecture, designed to
deliver superior performance and security. OCI provides a diverse range of services,
including computing, storage, databases, networking, and many others.
A fundamental aspect of OCI is its flexibility in adapting to various business needs.
It enables organizations to create, deploy, and manage applications and workloads
in a highly customizable manner, while also allowing for resource optimization and
operational cost reduction.
Additionally, OCI offers advanced tools for security, monitoring, and resource
management, ensuring a secure cloud environment. This includes features such as

48

Novel normalization data platform architecture

data encryption, access control, and advanced management tools.

Autonomous Database

Oracle Autonomous Database is a fully automated service that simplifies the de-
velopment and deployment of application workloads for organizations, regardless
of complexity, scalability, or criticality. The service’s converged engine supports
various data types, streamlining application development and deployment, from
modeling and coding to ETL, database optimization, and data analysis. With ma-
chine learning-based optimization, scalability, and patching, Autonomous Database
delivers top-notch performance, availability, and security for OLTP, analytics, batch,
and Internet of Things (IoT) workloads. Built on Oracle Database and Oracle
Exadata, Autonomous Database is available on Oracle Cloud Infrastructure (OCI)
for serverless or dedicated implementations [11].

4.2 The structure

The idea is to redesign the normalization phase again, creating a new package
"pg_party_norm", that replace the one currently in use within the CCDB. This pack-
age contains the procedures used to initiate and execute the normalization phase.
Also in the Oracle environment the package has been named "pg_party_norm"
and within it contains the procedure "pr_populate_tmp_tmp_pt_map" which is
used to initiate the normalization phase.

1

2 procedure pr_populate_tmp_pt_map (p_cod_market varchar2 , p_id_load
number) i s

3 begin
4

5 d e l e t e from tmp_pt_map ;
6

7 i n s e r t i n to TMP_PT_MAP

49

Novel normalization data platform architecture

8 s e l e c t cod_market , nu l l , id_record , id_load , i d _ l i s t ,
record_date , f irst_name , f irst_name_short , last_name_prefix ,
last_name_main , last_name_suff ix , generic_name , company_name ,
party_type , gender , care_of , address_lang_code , sub_add_1 ,
sub_add_2 , street_name , street_type , hno , hno_addition ,
nuts_lv1_name , nuts_lv2_name , nuts_lv3_name , nuts_lv4_name ,
nuts_lv5_name , post_code , geographic_code_1 , geographic_code_2 ,
geographic_code_3 , long i tude , l a t i t u d e , pobox , nat_id1 , nat_id2 ,
nat_id3 , nat_id4 , company_id , email_1 , email_2 , website ,
phone_1_int_prefix , phone_1_full_num , phone_1_type ,
phone_2_int_prefix , phone_2_full_num , phone_2_type ,
phone_3_int_prefix , phone_3_full_num , phone_3_type ,
phone_4_int_prefix , phone_4_full_num , phone_4_type ,
phone_5_int_prefix , phone_5_full_num , phone_5_type ,
phone_6_int_prefix , phone_6_full_num , phone_6_type ,
phone_7_int_prefix , phone_7_full_num , phone_7_type ,
company_form_code , company_type_code , company_cat1 , company_cat2 ,
company_cat3 , company_cat4 , company_turnover , company_emp_num,
company_reference , ref_name , ref_gender , r e f_ro l e , ref_note ,
emai l_ref , emai l_ref_val id , b i r thdate , b i r thcountry , s a l u t a t i on ,
academic_t i t l e , n o b i l i t y _ t i t l e , o the r_t i t l e , pro fess ion_code ,
pre ferred_language , s choo l ing , mar i ta l_status , household_members ,
f i n a n c i a l _ r i s k _ l e v e l , pref_contact_code , f lag_fga_employee ,
f lag_dac , f lag_nomail , f l a g_ l ea s i ng , f l ag_rent ing , f l a g _ s e l l e r ,
add_fie ld1 , add_fie ld2 , add_fie ld3 , id_party_input ,
date_endval_record , id_key_feed , f lag_hidden

9 from TB_PT_MAP
10 where cod_market = p_cod_market and id_load = p_id_load ;
11

12 pr_normalize_address (p_cod_market , p_id_load) ;
13 pr_normalize_name (p_cod_market , p_id_load) ;
14 pr_normalize_phone (p_cod_market , p_id_load) ;
15 pr_normalize_email (p_cod_market , p_id_load) ;
16 pr_normalize_natid (p_cod_market , p_id_load) ;
17 pr_normalize_companyid (p_cod_market , p_id_load) ;
18 pr_populate_tss_elab_norm (p_cod_market , p_id_load) ;
19

20 end pr_populate_tmp_pt_map ;

50

Novel normalization data platform architecture

Listing 4.1: pr_populate_tmp_tmp_pt_map procedure

As can be seen in the code 4.1, once the procedure is run, it is populated the
table "TMP_PT_MAP", which contains all the data that must be normalized.
These fields are taken from the "TB_PT_MAP" which is the table that, in the
CCDB flow, is populated at the end of the Check and Transcoding phase, i.e., the
table from which the normalization is drawn.
As always, the ’id_load’ and ’cod_market’ values are passed as parameters, which
are used in the WHERE condition to prevent mixing records belonging to different
markets, and therefore having different characteristics, or from other loads. Further-
more, this operation is important as it reduces the size of the table, focusing only on
records of interest, and avoiding the need to work directly with the "TB_PT_MAP"
that may contains millions of data.
Tables with the prefix ’TMP_’ indicate temporary tables, which are created and
used temporarily during the execution of a session. In this case, global temporary
tables were employed, which, once created, are visible to all sessions within the
database instance. After data are inserted into a global temporary table, they are
only visible in the current session and they are deleted at the end of the session or
when the process that inserted them terminates.
Despite being automatically cleared at the end of each session, it is a good practice
to clean the table before use.
Once populated the table, the procedures ’pr_normalize_address’, ’pr_normalize_name’,
’pr_normalize_phone’, ’pr_normalize_email’, ’pr_normalize_natid’, ’pr_normalize_companyid’
and finally ’pr_populate_tss_elab_norm’ are run.
As the name implies, most of these procedures are used to perform the normaliza-
tion of various component and, currently, they are executed sequentially because, as
shown below, they do not contain any normalization operations yet. However, the
idea of splitting the normalization of various components into separate procedures
is done in order to be able to run them in parallel, reducing the execution time of
the normalization phase.

1

51

Novel normalization data platform architecture

2 procedure pr_normalize_name (p_cod_market varchar2 , p_id_load number)
i s

3 begin
4 d e l e t e from tmp_pt_name_map ;
5

6 i n s e r t i n to tmp_pt_name_map
7 s e l e c t cod_market , id_com_fi lter , id_record , id_load ,

i d _ l i s t , record_date , f irst_name , FIRST_NAME_SHORT,
LAST_NAME_PREFIX, LAST_NAME_MAIN, LAST_NAME_SUFFIX, GENERIC_NAME,
COMPANY_NAME, PARTY_TYPE, GENDER

8 from tmp_pt_map
9 where cod_market = p_cod_market and id_load = p_id_load ;

10

11 −− hypo the t i c a l norma l i za t i on phase f o r name component
12

13 i n s e r t i n to tmp_pt_name_output_map
14 s e l e c t ∗
15 from tmp_pt_name_map
16 where cod_market = p_cod_market and id_load = p_id_load ;
17

18 end pr_normalize_name ;

Listing 4.2: pr_normalize_name procedure

In this case, the normalization procedures are empty since they are not the
focus of this thesis. In code 4.2, an example of an empty procedure is shown. As it
can be observed, the structure for a future normalization phase has been set up.
Specifically, all fields related to that component, in this case the name, are inserted
into an input table. After potential normalization, they are then inserted into an
output table, which will contain the normalized and enriched data.
The only complete procedure is pr_normalize_address, which initiates address
normalization via Google address Validation.

4.2.1 Address component normalization

As just said, the goal of the pr_normalize_address is to kick off the address nor-
malization.

52

Novel normalization data platform architecture

Indeed, in this procedure, it is again populated a temporary table, the tmp_pt_address_map,
with the following code 4.3.

1

2 i n s e r t i n to tmp_pt_address_map
3 s e l e c t cod_market , id_com_fi lter , id_record , id_load , i d _ l i s t ,

record_date , care_of , sub_add_1 , sub_add_2 , street_name ,
street_type , hno , hno_addition , nuts_lv1_name , nuts_lv2_name ,
nuts_lv3_name , nuts_lv4_name , nuts_lv5_name , post_code ,
geographic_code_1 , geographic_code_2 , geographic_code_3 , long i tude
, l a t i t u d e , pobox ,

4 ROW_NUMBER() over (p a r t i t i o n by sub_add_1 , sub_add_2 , street_name
, street_type , hno , hno_addition , nuts_lv1_name , nuts_lv2_name ,
nuts_lv3_name , nuts_lv4_name , nuts_lv5_name , post_code ,
geographic_code_1 , geographic_code_2 , geographic_code_3 , long i tude
, l a t i t u d e ORDER by id_record) as rn ,

5 min(id_record) over (p a r t i t i o n by sub_add_1 , sub_add_2 ,
street_name , street_type , hno , hno_addition , nuts_lv1_name ,
nuts_lv2_name , nuts_lv3_name , nuts_lv4_name , nuts_lv5_name ,
post_code , geographic_code_1 , geographic_code_2 , geographic_code_3
, long i tude , l a t i t u d e ORDER by id_record) as par t i t i on_id_record

6 from tmp_pt_map
7 where cod_market = p_cod_market and id_load = p_id_load ;

Listing 4.3: Query for tmp_pt_address_map population

As it can be observed, the table is populated with fields related to the address
component, such as street name and street number, in addition to the fields inherent
to general and identifying information, such as market code and id record. These
values are retrieved from the previously populated tmp_pt_map, that contains all
the data that have to be normalized.
In addition to the fields just described, two new columns are also added, called
’rn’ and ’partition_id_record’, which were not present in the previous table.
These columns are respectively created using the commands row_number() over

(partition by ... ORDER BY id_record) and min(id_record) over (partition

by ... ORDER BY id_record).
In the first column, the command row_number() over (...) assigns a unique

53

Novel normalization data platform architecture

sequential number to each row returned by a query. In this case, the content within
the ’OVER’ clause specifies the criteria by which the rows should be grouped and
ordered. The partition by command divides the result sets into partitions based
on the fields that follow, and finally, ORDER BY defines the order in which the rows
should be numbered.
As a result of the query, to each record within a set, composed by all records
that have the fields inside OVER equal to each other, will be assigned an increasing
number starting from 1. The order in which the numbers are assigned is based
on the order of the ’id_record’ fields: the record with the smallest value will be
assigned 1, and so on in ascending order.
The commands in the second column are similar but instead of assigning a different
value to each record in the group, they assign the smallest ’id_record’ to all of them
in that group. This allows for the unique identification of sets of equal records.
After populating the ‘tmp_pt_address_map’ table, the following procedure is
called ‘pr_call_api’. Within this procedure, there is a cursor that points to the
just described table. For each group of identical records, it retrieves the first one,
that is the one with the ’rn’ column equal to 1. The cursor iterates through all the
groups, and the corresponding record is passed as a parameter to the subsequent
procedure, the ’pr_request_address’.
Note that by doing this, there is an initial ’screening’ of records. This means that,
if within the same load there are multiple records that can be traced back to the
same address, only one of them is processed. This results in a reduction of workload
for the system, which translates to a decrease in execution time.

Google Address Validation request

The ’pr_request_address’ is the procedure used to handle requests to Google
Address Validation.
Firstly, variables are declared, and in this step, some fields are subjected to an
initial cleaning phase. Specifically, the fields ’nuts_lv1_name’ (corresponding to
the name of city), ’street_name’, ’post_code’, and ’hno’ (corresponding to the
street number) are passed as input to their respective cleaning functions, such as

54

Novel normalization data platform architecture

’fn_nuts_lv1_name_cleaning’, ’fn_street_name_cleaning’, and so forth.

1

2 f unc t i on fn_nuts_lv1_name_cleaning (p_cod_market varchar2 ,
p_nuts_lv1_name varchar2) re turn varchar2 i s

3

4 v_nuts_lv1_name tb_pt_map . nuts_lv1_name%type :=
p_nuts_lv1_name ;

5

6 begin
7 −− campo nuts_lv1_name :
8 i f l ength (trim (v_nuts_lv1_name)) = 1 or regexp_l ike (

trim (v_nuts_lv1_name) , ’^X ([[: space :]] ∗X) ∗X$ ’ , ’ i ’) then
9 v_nuts_lv1_name := n u l l ;

10 e l s i f r egexp_l ike (tr im (p_nuts_lv1_name) , ’ ^ [[: punct :]] ’ ,
’ i ’) then

11 v_nuts_lv1_name := subs t r (tr im (v_nuts_lv1_name) , 2) ;
12 end i f ;
13

14 −− P u l i z i a su nuts_lv1_name :
15 v_nuts_lv1_name := regexp_replace (v_nuts_lv1_name , ’ [[:

space :]] + ’ , ’ ’) ;
16

17 i f r e p l a c e (v_nuts_lv1_name , ’ ∗ ’ , ’ ’) i s n u l l then
18 v_nuts_lv1_name := n u l l ;
19 end i f ;
20

21 v_nuts_lv1_name := trim (regexp_replace (r e p l a c e (
v_nuts_lv1_name , ’ ∗ ’ , ’ ’) , ’ [[: space :]] + ’ , ’ ’)) ;

22

23 re turn v_nuts_lv1_name ;
24

25 end fn_nuts_lv1_name_cleaning ;

Listing 4.4: Example of cleaning function

Above, the code 4.4 shows an example of a field cleaning function related to the
street number. Initially, are removed any unwanted characters, such as the letter
’n’ before the number and its respective punctuation marks, as well as the character

55

Novel normalization data platform architecture

’°’, which could interfere with the actual normalization phase. Additionally, any
leading and trailing blank space and leading zeros are also eliminated.
After executing all the functions for the initial field cleaning, the variable ‘com-
posed_address’ is created. This variable is composed of the fields that have just
been normalized, in addition to others taken from the input record: these fields
together form a complete address.
Subsequently, a query is executed in which the variable ’composed_address’ is com-
pared with the ’input_address’ field in the table named ’TB_ADDRESS_COMPONENT’.
This table contains all the responses received from Google Address Validation, and
specifically, the ’input_address’ field contains the string sent to the Google tool for
normalization.
In this way, it is checked whether the address of the record in question has already
been normalized or not. In case this field is not present in the table, the request to
the Google API proceeds.

1

2 v_input_json := ’ {
3 " address " : {
4 " addre s sL ines " : [" ’ | | v_composed_address | | ’ "]
5 }
6 } ’ ;
7

8 v_response := APEX_WEB_SERVICE.MAKE_REST_REQUEST(
9 p_url => url ,

10 p_http_method => ’POST ’ ,
11 p_body => v_input_json
12) ;
13

14 pr_read_response (v_response , v_composed_address) ;

Listing 4.5: Requesto for Google Address Validation

The code snippet 4.5 illustrates the structure required for normalization. In the
variable ‘v_input_json’, it is created a JSON containing the address to be normal-
ized and populated, while the response from the API is stored in the ‘v_response’
variable. Specifically, the command APEX_WEB_SERVICE.MAKE_REST_REQUEST is a

56

Novel normalization data platform architecture

function that enables a PL-SQL application to communicate with external web
services through HTTP requests, such as RESTful requests.
The function takes parameters including the URL, which facilitates communication
with the API, the HTTP method (in this case POST), and finally, the content of
the JSON.
Then it is run the ’pr_read_response’ procedure, which is aimed to read and
manage the response from the Google API.
Instead, if the address contained within the variable ’composed_address’ is found
in the ’TB_ADDRESS_COMPONENT’, it means that the address has already
been normalized in the past. It would be redundant and time-consuming to query
the API again, as it would incur unnecessary costs.

Google Address Validation response

The procedure ’pr_read_response’ is run only when a request is made to the Google
service and it is used to handle the response. It takes as input the response and the
address before normalization (the one inside the ’composed_address’ variable) and,
as mentioned before, it inserts them into the ’TB_ADDRESS_COMPONENT’
table, which maintains a history of all the normalized addresses.
However, the response is received in JSON format, so it is necessary to extract
the relevant data [12]. Below is an example of the format received from Address
Validation [13]:

1 {
2 " r e s u l t " : {
3 " v e r d i c t " : {} ,
4 " address " : {
5 " formattedAddress " : ’ ’ ,
6 " posta lAddress " : {} ,
7 " addressComponents " : [{ }] ,
8 " missingComponentTypes " : [] ,
9 " unconfirmedComponentTypes " : [] ,

10 " unresolvedTokens " : []
11 } ,
12 " geocode " : {} ,

57

Novel normalization data platform architecture

13 " metadata " : {} ,
14 " uspsData " : {} ,
15 } ,
16 " r e sponse Id " : " ID"
17 }

Listing 4.6: Google Address Validation response structure

As shown in the code 4.6, the JSON is divided into two sections: ’result’ and
’responseID’, which respectively contain the normalization results and a code asso-
ciated with the made request.
The ’result’ section is composed of sub-sections, each containing groups of informa-
tion.
The first section is ’verdict’, which provides fields indicating the quality of the
output address in string form. This field can be seen as the equivalent of the
’address_match_level’ field present in the CCDB, as it indicates how well the
address has been normalized.
The second section is named ’address’, and there are the details of the processed
address, including ’formatted_address’ that contains the fully normalized address,
or ’postal address’ which includes all information representing a postal address
such as country, city, ZIP code, etc...
Another very important field within the ’address’ section is called ’addressCompo-
nents’, which contains all the various components of an address. This field has a
structure similar to the one shown in code 4.7.

1 {
2 " componentName " : {
3 " t ex t " : " 24 "
4 } ,
5 " componentType " : " street_number " ,
6 " con f i rmat ionLeve l " : "CONFIRMED"
7 } ,

Listing 4.7: Address component structure

As it can be seen, there is the type of component which can be, for example,

58

Novel normalization data platform architecture

’route’, ’street_number’, ’country’, etc., along with their respective values. Ad-
ditionally, there is a field indicating whether the component has been verified
correctly or not.
Finally, the data related to geocoging are placed within the ’geocode’ section, where,
in particular, it is possible to find the geographical coordinates of the address.
An example of response received from Google Address Validation is shown in the
appendix in A.1. In this case the input was ’corso duca degli abruzzi 24, Torino’.

Within the ’pr_request_address’ procedure, whether the record has already been
normalized or a request has been made to the Google service, the ’tmp_pt_address_output_map’
table is populated.
This table combines data from the ’TB_ADDRESS_COMPONENT’ table, which
contains the normalized data, and from the ’tmp_pt_address_map’, which con-
tains the input address components grouped by partition by. For each record
within the group, the same normalized and enriched values are assigned, as it has
been observed that they represent the same address.
The ’tmp_pt_address_output_map’ table adopts the same format and column
names as the table within the CCDB, making it compatible with the entire flow.
For this reason, functions were created in order to adapt certain fields to the
established format. An example is the ’quality_address’ function, which takes the
quality value of the address normalization as input, which, as a reminder, is in
string format, and converts it to a numerical value ranging from 0 to 5, similar to
the ’address_match_level’ field.
Once this table is populated, the address component normalization phase is con-
cluded. As shown in code 4.1, the other normalization procedures are run, but they
are currently empty.
Finally, the ’pr_populate_tss_elab_norm’ procedure is run. Within this proce-
dure, a query is executed to populate the ’tmp_tss_elab_norm’ table. This table
reconstructs the initial record by combining the output tables from the various
normalization phases. In this case as well, the table adopts the same format and
columns as the corresponding table in the CCDB: the ’tb_pt_norm’.

59

Novel normalization data platform architecture

4.3 Analysis, comparison with Trillium

After developing the new data platform and ensuring its capability to handle
address normalization, the performance was compared with the current system
based on Trillium, installed on the RedHat server.
The first test conducted pertained to the execution time for normalizing a set of
records. Three different files were created, containing respectively 10, 100, and
1000 records. In this case, a reduced number of samples were tested compared to
the Trillium test between the AIX and RedHat servers. This decision was made
because using Google Address Validation incurs a cost for each request made to
the service. Therefore, it was chosen a number that allowed for multiple tests to
be conducted.
For the new data platform, the ’pr_populate_tmp_pt_map’ procedure was exe-
cuted with the respective cod_market and id_load, using the following command
before and after to calculate the elapsed time: DBMS_UTILITY.GET_TIME.
Regarding the Trillium software within the CCDB, the ’start_batch_load’ shell
was run, which encompasses the entire normalization phase, including the SSH call
to the RedHat server.

File dimension Approach Elapsed time
10 Trillium 00:00:00,27

Google Address Validation 00:01:23
100 Trillium 00:00:05

Google Address Validation 00:10:40
1000 Trillium 00:00:32

Google Address Validation 01:55:48

Table 4.1: Group normalization execution time

In Table 4.1 the results related to the execution time are shown. As it can be
observed, for the same file size, the current normalization system based on Trillium
is significantly faster than the one relying on the Google service.

60

Novel normalization data platform architecture

In the first case, with just 10 samples, normalization with Trillium is almost imme-
diate, while the one with Google Address Validation it already takes over a minute.
However, the most striking case is the one with the file containing 1000 records,
where using Trillium takes about 30 seconds, whereas with the Google service, it
takes almost two hours.
Obviously, these results are very unfavourable as the time difference is enormous,
and the two services are not even remotely comparable.
However, it is important to note that the test with the Google service was re-
peated a second time, using the same set of 1000 records. In this case, no
API requests were needed as the addresses had been previously saved in the
’TB_ADDRESS_COMPONENTS’ table and, surprisingly, the execution time was
just 4.88 seconds, considerably less compared to the Trillium case.
From this data, it can be understood that the issue regarding excessive execution
time is caused by the request and response from the API.

After testing the performance in terms of execution time speed, they were
conducted test regarding the quality of normalized data. Specifically, the results of
normalization through Trillium and the Google service were analyzed.

AML different resultes Num Records (%)
OLD KO - NEW OK 3 %
OLD OK - NEW KO 28 %
OLD OK - NEW OK 62 %
OLD KO - NEW KO 7 %

Table 4.2: Address match level distribution

Table 4.2 shows the distribution of values in the ’address_match_level’ field,
particularly comparing the numbers in the Trillium version (OLD) with those from
the Google Address API (NEW).
As observed, 62% of the records already had an excellent level of normalization and
maintained it when using the Google address validation API. Only 3% improved,
while 27% decrease in the level.
Although these results may initially appear negative, it is important to consider

61

Novel normalization data platform architecture

the context in which we are working. Since two different software solutions were
used, they will also have different validation standards. As previously explained,
the Google service returns a string value to assess the quality of normalization,
which is then converted to an integer to be compatible with the corresponding field
currently in use on the CCDB.
However, this conversion is based on the original 5 levels (from 0 to 5) proposed by
Trillium, which may not necessarily align with those of the Google service.

Figure 4.1: Comparison between two normalized record

An example highlighting the importance of a more in-depth evaluation is il-
lustrated in Figure 4.1, where two records normalized using Trillium and Google
Address Validation services are compared. The two records have an address match
level of 0 for the first record and 1 for the second.
As it can be observed, the majority of fields are identical in both records. Note
that in the ’nuts_lv5_code’ column, the record normalized with the Google service
has a correctly populated value, unlike the other record where it is empty.
This example clearly demonstrates that relying solely on the comparison of the
"address_match_level" could be misleading. Despite the two records having dif-
ferent values for this specific field, the reality is that the fields related to address
component are very similar.

4.4 Possible future developments

As shown above, the main issue related to processing time is caused by the request
to the Google service. For this reason, initial logic has already been implemented

62

Novel normalization data platform architecture

in order to reduce the number of request, such as grouping records with similar
addresses using ’partition by’ and normalizing them only once, as well as saving
the response in ’TB_ADDRESS_COMPONENTS’ table to avoid re-normalizing a
previously normalized record.
Since the system is based on Oracle’s Autonomous Database, a possible future
implementation could be to develop an AI capable of more accurately recognising
if an address has already been normalized. Currently, the system relies only on the
exact match of the "composed_address" field between two different records.
Among the various AI possibilities, one could be the implementation of a Natural
Language Processing (NLP) model trained to recognise common patterns and
similarities between addresses, extracting the key information from the address.
This approach would not only reduce execution time but also decrease costs associ-
ated with the request themselves.
Another possible implementation, once the normalizations of the other components
are completed, is to execute the respective procedures in parallel instead of sequen-
tially.
Indeed, Oracle Cloud Infrastructure provides features for distributing workloads
across different sessions or processes, for example, using job management functions
or parallel sessions. This function allows procedures to be executed simultaneously
rather than sequentially.
Furthermore, it would be possible to develop a graphical interface based on Oracle
APEX. Oracle Application Express is a web application development platform
based on databases that allows for the rapid creation of dynamic applications
integrated directly with Oracle databases.
In this way, it would be possible to create a user-friendly interface for managing the
address component normalization process and given an input address, it could be
also able to display key information about the normalized data, such as identifying
its location directly on a map.
This would allow for individual record usage, in addition to managing the entire
loading process.

63

Chapter 5

Conclusion

Throughout this thesis, the crucial issue of address normalization within a vast
database of a major automotive company has been extensively explored. This
involved an established system and the design and implementation of an innovative
solution. In an era where accuracy and integrity of information are paramount, it
has been demonstrated the vital role of addresses as key elements for identification
and localization in various contexts.
The detailed analysis of the database structure and processes involved has high-
lighted the complexity of the path an address takes, from initial entry to the storage
phase. The normalization phase, which received particular focus, represented the
heart of this research, aiming to ensure data uniformity, reduce ambiguities, and
enhance the overall quality of stored information.
During the study, a concrete challenge in the use of external software for nor-
malization was addressed, leading to the need for implementing a new solution.
Crucial roles were played by the tests and analyses conducted, demonstrating that,
despite the changes made, the new solution is capable of operating correctly and
maintaining performance on par with the previous version.
These results are very promising, as they provide a solution to the initial problem
and will gradually allow for the implementation of these changes in the production
environment. In addition, the phase of updating postal files has been explained,
crucial to ensure increasingly accurate and up-to-date data.

64

Conclusion

Subsequently, through case study analysis and exploration of emerging technolo-
gies, an innovative solution based on new technologies for data normalization was
proposed. In particular, the new address validation service offered by Google was
utilized.
This solution, thoroughly compared with the Trillium software discussed in the first
part of the thesis, introduces new perspectives in address validation. However, the
tests conducted highlighted a significant difference in execution times, favouring the
currently used software. These prolonged timelines are attributed to the Google
Address Validation service and are therefore challenging to improve.
Despite these challenges, the proposed solution should not be completely dismissed.
Although it cannot currently replace the Trillium software within the CCDB, the
product could be advantageous in situations where the data to be processed are not
extremely voluminous or for small businesses geographically confined. As indicated
by the results, if an address has already been normalized and, thus, it is present in
the database, the execution time is significantly faster.
Furthermore, it is crucial to consider also the economic aspect. The proposed
solution incurs costs only in the case of API requests. In scenarios with a limited
amount of data, it might not be cost-effective to recurrently pay licenses for the
use of Trillium software but to pay only when the normalization of data is actually
needed.
In conclusion, the new data platform presented emerges as a potential solution for
address normalization. However, it is important to note that in order to maximize
its adaptability and potential applications, it is crucial to consider the previously
discussed additional developments. These future implementations could signifi-
cantly expand the capabilities of the data platform, paving the way for broader
utilization in diverse scenarios.

65

Appendix A

Code

1 {
2 " r e s u l t " : {
3 " v e r d i c t " : {
4 " inputGranu lar i ty " : "PREMISE" ,
5 " v a l i da t i on Gr anu l a r i t y " : "PREMISE" ,
6 " geocodeGranular i ty " : "PREMISE" ,
7 " addressComplete " : true ,
8 " hasInferredComponents " : t rue
9 } ,

10 " address " : {
11 " formattedAddress " : " Corso Duca d e g l i Abruzzi , 24 , 10129 Torino

TO, I t a l i a " ,
12 " posta lAddress " : {
13 " regionCode " : " IT " ,
14 " languageCode " : " i t " ,
15 " postalCode " : "10129" ,
16 " admin i s t ra t iveArea " : "TO" ,
17 " l o c a l i t y " : " Torino " ,
18 " addre s sL ines " : [" Corso Duca d e g l i Abruzzi , 2 4 "] } ,
19 " addressComponents " : [
20 {" componentName " : {
21 " t ex t " : " Corso Duca d e g l i Abruzzi " ,
22 " languageCode " : " i t "
23 } ,

66

Code

24 " componentType " : " route " ,
25 " con f i rmat ionLeve l " : "CONFIRMED"
26 } ,
27 {
28 " componentName " : {
29 " t ex t " : " 24 "
30 } ,
31 " componentType " : " street_number " ,
32 " con f i rmat ionLeve l " : "CONFIRMED"
33 } ,
34 {
35 " componentName " : {
36 " t ex t " : " Torino " ,
37 " languageCode " : " i t "
38 } ,
39 " componentType " : " l o c a l i t y " ,
40 " con f i rmat ionLeve l " : "CONFIRMED"
41 } ,
42 {
43 " componentName " : {
44 " t ex t " : " I t a l i a " ,
45 " languageCode " : " i t "
46 } ,
47 " componentType " : " country " ,
48 " con f i rmat ionLeve l " : "CONFIRMED"
49 } ,
50 {
51 " componentName " : {
52 " t ex t " : "TO" ,
53 " languageCode " : " i t "
54 } ,
55 " componentType " : " admini s t rat ive_area_leve l_2 " ,
56 " con f i rmat ionLeve l " : "CONFIRMED" ,
57 " i n f e r r e d " : t rue
58 } ,
59 {
60 " componentName " : {
61 " t ex t " : " Torino " ,

67

Code

62 " languageCode " : " i t "
63 } ,
64 " componentType " : " admini s t rat ive_area_leve l_3 " ,
65 " con f i rmat ionLeve l " : "CONFIRMED" ,
66 " i n f e r r e d " : t rue
67 } ,
68 {
69 " componentName " : {
70 " t ex t " : "10129"
71 } ,
72 " componentType " : " postal_code " ,
73 " con f i rmat ionLeve l " : "CONFIRMED" ,
74 " i n f e r r e d " : t rue
75 }
76]
77 } ,
78 " geocode " : {
79 " l o c a t i o n " : {
80 " l a t i t u d e " : 45 .0624757 ,
81 " l ong i tude " : 7 .6623485
82 } ,
83 " plusCode " : {
84 " globalCode " : "8FQ93M66+XW"
85 } ,
86 " bounds " : {
87 " low " : {
88 " l a t i t u d e " : 45 .0624757 ,
89 " l ong i tude " : 7 .6623485
90 } ,
91 " high " : {
92 " l a t i t u d e " : 45 .0624757 ,
93 " l ong i tude " : 7 .6623485
94 }
95 } ,
96 " p l a ce Id " : "ChIJR22IE3FtiEcRoCXXwNR3T14 " ,
97 " placeTypes " : [
98 " s t r e e t_addre s s "
99]

68

Code

100 }
101 } ,
102 " r e sponse Id " : " e61b3d15−9a2c −492d−91b2−e1dcd09a07e3 "
103 }

Listing A.1: Example of Google Address Validation JSON response

69

Bibliography

[1] Wing Shing Wong and Mooi Choo Chuah. «A hybrid approach to address
normalization». In: IEEE Expert 9.6 (1994), pp. 38–45 (cit. on p. 2).

[2] Daniel W Goldberg, Jennifer N Swift, and John P Wilson. Address stan-
dardization. Tech. rep. Technical report 12. Los Angeles, CA: GIS Research
Laboratory, University of . . ., 2014 (cit. on p. 3).

[3] Precisely. Trillium Software’s data quality. url: https://www.precisely.

com/about-us/trillium-software (cit. on p. 21).

[4] IBM. IBM. url: https://www.ibm.com/products/aix (cit. on p. 26).

[5] RedHat. RedHat. url: https://www.redhat.com/en (cit. on p. 26).

[6] Wikipedia. Wikipedia. url: https://en.wikipedia.org/wiki/Secure_

Shell (cit. on p. 28).

[7] Trillium Software System. Control Center. url: https://docs.precisely.c

om/docs/sftw/trillium_series7/7.16/en-us/pdf/trillium-software-

system-v7-16-00-control-center.pdf (cit. on p. 29).

[8] La scuola dei dati. url: https://www.yimp.it/il-test-di-non-regress

ione/ (cit. on p. 35).

[9] Google. Google Maps Platform. 2022. url: https://developers.google.

com/maps/documentation/address-validation/overview (cit. on p. 48).

[10] Oracle. Oracle Cloud Infrastructure Platform Overview. 2021. url: https:

//www.oracle.com/a/ocom/docs/cloud/oracle-cloud-infrastructure-

platform-overview-wp.pdf (cit. on p. 48).

70

https://www.precisely.com/about-us/trillium-software
https://www.precisely.com/about-us/trillium-software
https://www.ibm.com/products/aix
https://www.redhat.com/en
https://en.wikipedia.org/wiki/Secure_Shell
https://en.wikipedia.org/wiki/Secure_Shell
https://docs.precisely.com/docs/sftw/trillium_series7/7.16/en-us/pdf/trillium-software-system-v7-16-00-control-center.pdf
https://docs.precisely.com/docs/sftw/trillium_series7/7.16/en-us/pdf/trillium-software-system-v7-16-00-control-center.pdf
https://docs.precisely.com/docs/sftw/trillium_series7/7.16/en-us/pdf/trillium-software-system-v7-16-00-control-center.pdf
https://www.yimp.it/il-test-di-non-regressione/
https://www.yimp.it/il-test-di-non-regressione/
https://developers.google.com/maps/documentation/address-validation/overview
https://developers.google.com/maps/documentation/address-validation/overview
https://www.oracle.com/a/ocom/docs/cloud/oracle-cloud-infrastructure-platform-overview-wp.pdf
https://www.oracle.com/a/ocom/docs/cloud/oracle-cloud-infrastructure-platform-overview-wp.pdf
https://www.oracle.com/a/ocom/docs/cloud/oracle-cloud-infrastructure-platform-overview-wp.pdf

BIBLIOGRAPHY

[11] Oracle. Using Oracle Autonomous Database Serverless. Anno. url: https:

//docs.oracle.com/en/cloud/paas/autonomous-database/serverless/

adbsb/autonomous-intro-adb.html#GUID-8EAA5AE6-397D-4E9A-9BD0-

3E37A0345E24 (cit. on p. 49).

[12] Oracle. Oracle. url: https://docs.oracle.com/en/database/oracle/

oracle-database/12.2/adjsn/using-PLSQL-object-types-for-JSON.

html#GUID-F0561593-D0B9-44EA-9C8C-ACB6AA9474EE (cit. on p. 57).

[13] Google. Google Maps Platform. 2022. url: https://developers.google.

com/maps/documentation/address-validation/understand-response

(cit. on p. 57).

71

https://docs.oracle.com/en/cloud/paas/autonomous-database/serverless/adbsb/autonomous-intro-adb.html#GUID-8EAA5AE6-397D-4E9A-9BD0-3E37A0345E24
https://docs.oracle.com/en/cloud/paas/autonomous-database/serverless/adbsb/autonomous-intro-adb.html#GUID-8EAA5AE6-397D-4E9A-9BD0-3E37A0345E24
https://docs.oracle.com/en/cloud/paas/autonomous-database/serverless/adbsb/autonomous-intro-adb.html#GUID-8EAA5AE6-397D-4E9A-9BD0-3E37A0345E24
https://docs.oracle.com/en/cloud/paas/autonomous-database/serverless/adbsb/autonomous-intro-adb.html#GUID-8EAA5AE6-397D-4E9A-9BD0-3E37A0345E24
https://docs.oracle.com/en/database/oracle/oracle-database/12.2/adjsn/using-PLSQL-object-types-for-JSON.html#GUID-F0561593-D0B9-44EA-9C8C-ACB6AA9474EE
https://docs.oracle.com/en/database/oracle/oracle-database/12.2/adjsn/using-PLSQL-object-types-for-JSON.html#GUID-F0561593-D0B9-44EA-9C8C-ACB6AA9474EE
https://docs.oracle.com/en/database/oracle/oracle-database/12.2/adjsn/using-PLSQL-object-types-for-JSON.html#GUID-F0561593-D0B9-44EA-9C8C-ACB6AA9474EE
https://developers.google.com/maps/documentation/address-validation/understand-response
https://developers.google.com/maps/documentation/address-validation/understand-response

	List of Tables
	List of Figures
	Introduction
	State of the art

	Control Customer Database structure
	Introduction
	Data model
	Master data
	Product data

	CCDB structure
	Load & Adjustment
	Mapping
	Check & Transcoding
	Normalization
	Deduplication
	Historicization
	Master Data summary
	Products, services and contacts deduplication
	Products, services and contacts summary
	Master data and products reconciliation

	Normalization phase
	Pre-Trillium
	Trillium
	Post-Trillium

	New normalization environment solution
	Introduction
	Uploading group shell
	Project uploading
	Repository and user

	Export shell
	Non regression analysis
	Implementation
	Results

	Novel normalization data platform architecture
	Introduction
	The structure
	Address component normalization

	Analysis, comparison with Trillium
	Possible future developments

	Conclusion
	Code
	Bibliography

