
POLITECNINO DI TORINO

MASTER’s Degree in COMPUTER ENGINEERING

MASTER’s Degree Thesis

Latency-aware task scheduling in the
cloud continuum

Supervisors

Prof. GUIDO GUIDO

Prof. ALESSIO SACCO

Candidate

CRISTOPHER CHIARO

DECEMBER 2023

Abstract

In the evolving landscape of application deployment, containerization has emerged
as a popular methodology across numerous domains. Kubernetes, recognized as the
leading platform for orchestrating containers, effectively handles a wide array of
devices but sometimes falls short in meeting specific user demands, especially since
its scheduling decisions are primarily based on computational metrics. The growing
trend towards distributed cloud infrastructures, which facilitate highly reliable and
efficient solutions, necessitates a rethinking of Kubernetes’ default scheduler.

This dissertation introduces an enhanced Kubernetes scheduler designed for
multi-cluster environments, focusing on optimizing end-to-end latency to improve
the overall user experience. This novel approach sets itself apart by being adept in a
geographically varied setting, crafted to adhere to latency requirements as specified
by users. It is adept at adhering to particular latency thresholds or selecting the
cluster with minimal latency, based on individual user needs.

A significant advancement of this work is the integration of functionalities for
managing multiple users, each with distinct and sometimes divergent latency needs.
This aspect is particularly vital for user bases spread across different locations, as
it allows the scheduler to make tailored decisions that optimize latency for each
user, considering their unique network conditions and mobility.

Extensive testing has been conducted to evaluate the performance of this sched-
uler, with a focus on its latency awareness capabilities. These tests have consistently
shown that our scheduler significantly outperforms the default Kubernetes sched-
uler and other existing solutions in terms of managing latency. This superiority is
evident not only in standard operation scenarios but also in complex, real-world
cloud computing applications, highlighting the scheduler’s effectiveness and adapt-
ability. The results affirm the potential of our scheduler as a robust solution for
contemporary cloud-based systems, where latency management is crucial for user
satisfaction and system efficiency.

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Professor Guido
Marchetto, and my co-supervisor, Alessio Sacco, for their meticulous guidance
and unwavering support throughout this journey. Their availability for clarifications
and problem-solving on a weekly basis has been a pillar of my progress.

My heartfelt appreciation goes out to my family: to Mum and Dad, for their
unwavering emotional and financial support, never making me feel like a burden;
to my sister, Simona, who embodies all my hopes and to whom I wish an equally
prosperous career; and to my brother, Marco, my best friend and companion, with
whom every city feels like home.

I am immensely thankful to my colleagues, whom I regard as my second fam-
ily. To Mattia, Luca, Francesco, and Alessandro - thank you for being true
friends and for sharing the most memorable years of my life with me.

A special acknowledgment goes to Danilo, Anna, and Federico, with whom
I embarked on my university journey and shared the initial life experiences as a
student living away from home. I am also grateful to Giovanni and Alessio for
accompanying me in France, ensuring that I never felt homesick for Italy.

Lastly, but most importantly, I dedicate this milestone to Martina, my part-
ner and my inspiration. This achievement is as much yours as it is mine, a
reflection of our shared dreams and hopes. Here’s to a future filled with joy, love,
and endless adventures together.

"It’s not that I’m so smart, it’s just that I stay with problems longer."
Albert Einstein

ii

Table of Contents

List of Tables vii

List of Figures viii

Acronyms xi

1 Introduction 1
1.1 Network latency: A Challenge for Efficiency in the Digital Age . . . 2
1.2 The Project Idea: A new scheduler from scratch 3

2 Related Works 5

3 Background 12
3.1 Kubernetes: The Open-Source Orchestrator for an Agile and Scalable

Infrastructure . 12
3.1.1 Kubernetes Deployments . 13

3.2 Kubernetes customizable Scheduler 14
3.2.1 kube-scheduler framework 15
3.2.2 Scheduling plugins . 16

3.3 Liqo: The Next-Generation Kubernetes Extension 17
3.3.1 The Imperative of Adopting Liqo 17
3.3.2 Liqo Features . 18
3.3.3 Peering in Liqo . 19
3.3.4 Offloading Capabilities in Liqo 19

4 System Model 22
4.1 Architecture . 22

4.1.1 The Latency Meter Application 22
4.1.2 The Custom Latency-Aware Scheduler 23

4.2 Latency Meter: In-Depth Analysis 24
4.2.1 Design and Algorithm . 25

iv

4.2.2 Latency Measurement Challenges and Approaches 26
4.2.3 Deployment . 28

4.3 Custom Latency-Aware Scheduler 28
4.3.1 Version 1: Minimum Latency 28
4.3.2 Version 2: Liqo Integration 31
4.3.3 Version 3: Latency constraints 33
4.3.4 Version 3.5: Multi-User Support 37

4.4 Latency-Meter Contact Overhead 42

5 Implementation & Results 45
5.1 Development Environment . 45
5.2 Testing Environment . 46
5.3 Testing . 47

5.3.1 Inducing Network Latency 47
5.3.2 Test: Default Scheduler vs. Latency-Aware Scheduler (V3) . 49
5.3.3 Test: Custom Scheduler V2 vs. Custom Scheduler V3 55
5.3.4 Test summary: Comparison between all schedulers 60

6 Conclusion 67
6.1 Overview . 67
6.2 Future Directions . 69
6.3 Concluding Thoughts . 70

A Kubernetes Overview and Applications 72
A.1 Introduction to Kubernetes . 72

A.1.1 Key Elements of Kubernetes 72
A.2 Kubernetes Architecture and Networking Concepts 73

A.2.1 Master-Node Architecture 74
A.2.2 Networking in Kubernetes 74

A.3 Kubernetes and Edge Computing 75
A.3.1 Adapting Kubernetes for Edge 76
A.3.2 Applications in Edge Computing 76

B Installation Guide for Latency-Aware Scheduler 77
B.1 Overview of the Project Components 77
B.2 Prerequisites . 78
B.3 Installation Steps . 79
B.4 Testing the Scheduler . 80

B.4.1 Preparing for Tests . 80
B.4.2 Simulating Network Latency 81
B.4.3 Starting and Stopping Tests 81
B.4.4 Monitoring and Testing Commands 81

v

B.5 Troubleshooting . 82
B.5.1 Multi-Cluster Issues . 82
B.5.2 Liqo Service Type Configuration 82
B.5.3 CNI Configuration . 83
B.5.4 Unexpected Latency Values 83

Bibliography 84

vi

List of Tables

3.1 List of the most important scheduling default plugins and their
extension-points . 17

5.1 Summary of Components and Versions 46
5.2 Summary of Testing Environment Specifications 47
5.3 Summary of Latency Measurements 51
5.4 Summary of Latency Measurements in Soft Condition 53
5.5 Summary of Latency Measurements in Normal Behaviour Scenario . 56
5.6 Summary of Latency Measurements in High Convergence Time

Scenario . 60
5.7 Scenario Configuration . 61
5.8 Summary of Test Results Scenario 1 62
5.9 Summary of Test Results Scenario 2 62
5.10 Summary of Test Results Scenario 3 62
5.11 Multi-user evaluation Scenario 1 . 65
5.12 Multi-user evaluation Scenario 2 . 65
5.13 Multi-user evaluation Scenario 3 . 66

vii

List of Figures

1.1 Network Latency . 1

2.1 Architecture setup . 7
2.2 System Architecture (Adapted from [13]) 8
2.3 Latency Measurements data structure used to store latency informa-

tion (Adapted from [13]) . 9
2.4 Overall architecture (Adapted from [10]) 10

3.1 Framework workflow . 16
3.2 Scheduling Plugin . 16
3.3 In-Band Peering . 20
3.4 Out-Of-Band Peering . 20
3.5 Namespace Extension . 21

4.1 System Model . 23
4.2 Multi-cluster Topology . 33
4.3 Distributed Database . 43

5.1 Traffic Control [16] . 48
5.2 Default Scheduler vs Latency-Aware (V3) Scheduler 52
5.3 Default Scheduler vs Custom Scheduler (V3) in Soft Condition Scenario 54
5.4 Convergence Time V2 vs V3 . 57
5.5 Confidence Interval V2 vs V3 . 57
5.6 Convergence Time V2 vs V3 . 59
5.7 Confidence Interval V2 vs V3 . 59
5.8 Latency (left side) and success rate (right side) for all testing sce-

narios. Current schedulers cannot minimize perceived latency. . . . 61
5.9 CDF of converge time for the three scenarios. While minimizing

the perceived latency is time consuming, fulfilling a (soft or hard)
constraint is less costly. 62

5.10 Latency V3 vs V3.5 Scenario 1 . 64
5.11 CDF V3 vs V3.5 Scenario 1 . 64

viii

5.12 Latency V3 vs V3.5 Scenario 2 . 65
5.13 CDF V3 vs V3.5 Scenario 2 . 65
5.14 Latency V3 vs V3.5 Scenario 3 . 65
5.15 CDF V3 vs V3.5 Scenario 3 . 65

6.1 Multi-cluster scheduler. Latency Aware Scheduler leverages edge
computing to deploy pods close to the user. 68

A.1 Kubernetes Components . 73
A.2 Kubernetes at the Edge . 75

ix

Acronyms

AI
artificial intelligence

ML
Machine Learning

QoE
Quality of Experience

QoS
Quality of Service

K8s
Kubernetes

CNI
Container Network Interface

LAIS
Latency-Aware Intent Scheduler

EC
Edge Computing

API
Application Programming Interface

CPU
Central Processing Unit

xi

RAM
Random Access Memory

VM
Virtual Machine

IoT
Internet of Things

RBAC
Role-Based Access Control

CIDR
Classless Inter-Domain Routing

HTTP
Hypertext Transfer Protocol

IP
Internet Protocol

DNS
Domain Name System

OS
Operating System

UI
User Interface

UX
User Experience

xii

Chapter 1

Introduction

The digital transformation has shaped the way we live, work and interact, making
network-based services central elements of our daily lives. From streaming a movie,
to accessing a business platform, to navigating in real time on a digital map, we
expect every service to respond to our requests immediately. However, behind the
scenes, a critical challenge emerges: network latency. This subtle but crucial time
interval, which elapses between the user’s request and the response of the service,
has assumed primary importance in the digital ecosystem.

Figure 1.1: Network Latency

In a landscape where every millisecond of latency can mean a potential loss of
customers or compromised user experience, traditional solutions often fall short.
Optimal network latency management is not just about optimizing the data in
transit, but also about where and how this data and services are processed and
delivered.

Within this context, container orchestrators, tools designed to automate appli-
cation deployment and management, play a key role. Among these, Kubernetes
emerges as the undisputed leader. But, what makes it particularly suitable for

1

Introduction

this task? The answer lies in its open source nature, which offers unprecedented
flexibility in customizing its functions.

That’s where the heart of our research fits in: the Kubernetes scheduler. The
scheduler is responsible for deciding on which node in the system a particular "pod"
(a group of one or more containers) should run. By modifying and optimizing
this key component, it has the potential to directly affect the latency of the entire
network, improving the end user experience.

In this thesis, we dive deep into the network latency issue and its intersection
with pod scheduling in Kubernetes. We explore the opportunities and challenges
presented by scheduler customization and how, through experimentation and
innovation, we can get closer to an optimal solution to the latency dilemma.

1.1 Network latency: A Challenge for Efficiency
in the Digital Age

In today’s dynamic digital landscape, a seemingly small concept like network
latency has assumed crucial importance. Latency, in simple terms, represents the
time between a user requesting a service and the actual response from that service.
While often measured in milliseconds, this delay can have huge implications,
especially in critical applications such as medical, online gaming or real-time
financial transactions.

Consider, for example, a telehealth app. A patient in Milan may need immediate
medical advice from a doctor using a server-hosted app in New York. Given the
geographical distance and the physical speed at which data can travel - the speed
of light in optical fibers - one can already expect a base latency of around 50
milliseconds. But this is only the tip of the iceberg. Add to this the countless
network devices such as routers, switches and gateways, each adding micro-delays.
These delays accumulate, and during peak hours when networks are congested, the
actual latency can be many times greater.

Several solutions have been proposed and implemented in an attempt to combat
the latency problem:

• One of the most common strategies is to horizontal scaling, which involves
adding more servers to spread the load and reduce congestion.

• Another popular solution is using Content Delivery Networks (CDN)
which copy and distribute content to various servers in different parts of
the world, trying to serve the user from the closest server. But, all of these
solutions have their limitations.

• A last particularly interesting approach is Edge Computing, a paradigm
in which data processing takes place as close as possible to the user. This

2

Introduction

significantly reduces latency as data does not have to travel long distances.
The idea is to move processing from centralized data centers to the edge of
the network, closer to user devices.

In the context of this thesis, an even more innovative perspective has been
adopted.While Edge Computing tries to bring data closer to the user through a
static strategy, a dynamic method has developed.
The central idea is to dynamically bring the service or microservice closer to the
user based on real-time latency, offering unprecedented responsiveness. This, in
effect, creates "Edge Computing on the fly", ensuring that services are always
positioned optimally in relation to the end user.

However, tackling such a complex challenge requires equally powerful and flexible
tools. That’s why the focus has turned towards Kubernetes. Originating as an
open-source project, Kubernetes has quickly become the standard for container
management and orchestration, and its modularity and extensibility allowed us
to choose it among the various alternatives.

1.2 The Project Idea: A new scheduler from
scratch

The Kubernetes Scheduler is a key component of the Kubernetes container
orchestration system. Its primary function is to take the Pods that have been
created and assign them to a node within the cluster. Customizing the scheduler
in Kubernetes through the use of plugins is an extremely powerful feature, which
allows you to adjust the scheduling mechanism according to specific metrics and
rules, different from the default settings such as load balancing or round-robin
algorithm. However, one of the unique challenges of our scenario is related to
the network latency between the user and the cluster nodes. This metric is not
available a priori during the scheduling phase, as it can only be calculated when an
effective user interacts with the service exposed by a pod, and therefore with the
node that hosts it.

The dynamic, post-hoc nature of this measurement imposes a unique requirement:
the ability to "re-schedule" pods from one node to another based on actually collected
network latency measurements. This task goes beyond simply adding a custom
plugin to the existing Kubernetes scheduler. In fact, to implement such a reactive
and dynamic system, it is necessary to develop a scheduler from scratch, which
incorporates the logic to carry out not only initial scheduling operations based on a
set of metrics, but also de-scheduling and re-scheduling operations in response
to new information about network latency.

The new scheduler is designed to work in symbiosis with an external appli-
cation that specializes in measuring network latency between users and

3

Introduction

hosted services. This external application performs a critical function: it detects
and logs latency every time a user accesses a particular service.
At set intervals, our custom scheduler requests this latency data from your appli-
cation. Once received, this information is carefully stored in an optimized data
structure specifically designed to facilitate quick and accurate scheduling decisions.
The operational detail of the external application will be explored later in the text
of the thesis.

This mechanism of capturing and using latency data allows our scheduler to
make highly informed scheduling (and descheduling) decisions. It should be noted
that the decision process is flexible and can be oriented towards different goals,
depending on the needs of the use case.
Within this project, three distinct versions of our scheduler were developed and
tested, each with its own goals and characteristics:

1. The First Release is focused on identifying the nodes that offer the lowest
latencies, with the aim of improving the end user experience.

2. The Second Version extends the functionality of the first by integrating
Liqo technology, which allows a multicluster interconnection between different
Kubernetes clusters. This adds an extra layer of complexity and flexibility in
pod placement.

3. The Third Version focuses on a more complex set of requirements. Instead
of looking for the "best" solution, it aims to find a "good enough" solution in
a much shorter time. To do this, it uses a combination of "hard" and "soft"
constraints to drive the decision process. In addition, this version introduces
the ability to manage multiple users, allowing for a fairer and more efficient
distribution of services.

4. The Last Version is an improvement on the third, which allows multi-user
functionality by implementing user-pod association so that a user can be
directed to the node (or cluster) with the lowest latency.

Thus, our custom scheduler is not just a simple extension of the core scheduling
functionality provided by Kubernetes; is a complete re-implementation, designed
to address specific network latency issues in a cloud environment.

4

Chapter 2

Related Works

In this chapter, we explore seminal research and developments in Edge Computing
and cloud resource offloading, illuminating various strategies and methodologies
that aim to enhance user experience, minimize latency, and ensure efficient resource
utilization. This exploration provides a comprehensive understanding of the efforts
that have shaped the current landscape, offering context and foundational insights
that support and validate the research presented in this thesis.

Our focus is on how Edge Computing has been strategically employed to bring
computing services closer to the network’s edge, thereby improving latency and
user experience. In this context, the concept of resource offloading emerges as a
dynamic solution for balancing resources to achieve optimized and adaptive services.
Notably, works like Garcia Lopez et al. [1] and Shi et al. [2] have been instrumental
in advancing our understanding of these paradigms.

The increasing adoption of container virtualization technology, particularly
in developing microservice-based applications, has underscored the importance
of orchestrators like Kubernetes. These systems simplify container application
management but often face limitations due to their focus on infrastructure-level
management policies. For instance, Kubernetes, the industry-standard orchestrator,
excels in automating application deployment and operations but typically limits
its optimization strategies to computing capacity. This approach, as discussed in
works by Tomarchio et al. [3], often overlooks the crucial role of network latency.

As technology rapidly evolves, pushing the boundaries of digital transformation,
there is a growing reliance on network-based services where latency becomes a
decisive factor in service success. This evolution is paralleled by the increasing
popularity of multi-regional cloud resources and the expansion of smaller data
centers situated at the network periphery, as highlighted in the unified service
model proposed by Baresi et al. [4].

Addressing these challenges, recent studies have proposed novel solutions for
distributed environments. Orchestrators are now being designed to prioritize

5

Related Works

resource optimization and incorporate auto-scaling features, as seen in Nguyen et
al. [5], Tamiru et al. [6], and Osmani et al. [7]. These architectures create federated
Kubernetes domains using Network Service Mesh tools, enhancing functionality
and resource management.

However, a critical component in Kubernetes, the scheduler, originally geared for
conventional cloud settings, lacks the dynamic adaptability needed in edge-cloud
environments. This gap is addressed in the work by Carmona et al. [8], where
offloading strategies in a three-tier network blend cloud and edge computing to
minimize latency. Furthermore, Intel’s Telemetry Aware Scheduling (TAS) [9]
and the approach by Marchese et al. [10] introduce network-aware pod placement
strategies using custom Kubernetes plugins. Our research extends these ideas,
designing a multi-cluster scheduler that not only meets user-specified intents but also
significantly focuses on user-perceived latency, effectively leveraging the cloud-edge
continuum.

1. Optimal Offloading of Kubernetes Pods in Three-Tier Networks

In this paper [8] the authors explore the problem of optimal offloading of Kuber-
netes Pods in a three-tier architecture ranging from cloud to "far-edge" via edge
computing . Unlike other studies, this research focuses on the use of Kubernetes
as a container orchestrator in three-tier networks. The goal is to minimize the
response time of the Pods, taking into account computing resources and Quality of
Service (QoS).

The authors introduce a three-level offloading decision algorithm, known as
TTODA, which takes into account various factors such as available CPU resources
and QoS expectations for each application. They use an optimization method
based on the Lagrange Dual Function [11] to solve the minimization problem.
The proposed model is tested through numerical simulations, demonstrating that
TTODA outperforms traditional Kubernetes QoS models in terms of utility, average
Pod response time, and resource utilization at the "far-edge."

This work is particularly significant because it not only offers a technical solution
to a practical problem in the context of three-tier networks, but also provides a
theoretical framework for optimizing offloading decisions. TTODA represents an
excellent compromise between performance and implementation complexity, making
it an ideal choice for latency-sensitive applications.

In the context of the system, the authors use a Kubernetes environment running
on OpenStack-managed cloud [12] and edge nodes, as well as a non-virtualized
"far-edge" server. A centralized decision support module (DSSM) makes
offloading decisions based on data monitored by a service level agreement
(SLAM) module. This architecture allows the system to dynamically adapt to
changes in network conditions and application needs.

6

Related Works

Figure 2.1: Architecture setup (Adapted from [8])

2. Latency-Aware Kubernetes Scheduling for Microservices Orchestra-
tion at the Edge

This paper [13] serves as a critical touchstone for my thesis, particularly for its in-
novative approach to latency-sensitive scheduling within a Kubernetes environment.
The paper introduces a two-phase model:

• Transient Phase

• Stable Phase

During the Transient Phase, a "sentinel" pod replica is deployed across all nodes
in the cluster to gather application-level latency metrics. This is executed through

7

Related Works

an application termed "latency-meter," which acts as a client for the end-user and
a server within the cluster.
In the Stable Phase, the collected latency data are used to assign the pod to the
node exhibiting the lowest latency, thus creating an optimized environment for the
end-user.

Figure 2.2: System Architecture (Adapted from [13])

The implementation (Fig. 2.2) utilizes a de-scheduler that is fed by an MQTT
broker. This de-scheduler monitors the latency metrics and, if needed, removes
service instances that are underperforming. This not only keeps the environment
responsive but also makes it dynamic, adapting to changing network conditions in
real-time.
The system also employs a centralized data structure called LatencyMeasure-
ments (LM) (Fig. 2.3) that stores latency metrics for each application, allowing
for more granular analysis and better-informed scheduling decisions.

However, the system in the paper has some limitations. For instance, it struggles
to handle multi-user environments where latency requirements can differ significantly
between various users. Also, the convergence time—the time needed to arrive at
an optimized scheduling decision—can be affected by variables like the number of
nodes in the cluster and the observation time for latency measurement.

8

Related Works

Figure 2.3: Latency Measurements data structure used to store latency informa-
tion (Adapted from [13])

My thesis aims to address these challenges. I propose more efficient algorithms
that reduce the convergence time and integrate advanced logic for handling
multi-user scenarios, making the system more flexible. Additionally, I extend
the system’s scalability by exploring the interconnection of multiple Kubernetes
clusters, which could open the door to more complex and widely applicable
microservices orchestration solutions.

3. Network-Aware Pod Placement in Cloud-Edge Kubernetes Clusters

Another fascinating research in the field of container orchestration in Cloud-to-
Edge environments is "Network-Aware Pod Placement in Cloud-Edge Kubernetes
Clusters" [10]. This paper delves into the challenges of optimizing Quality of
Service (QoS) and network performance in container orchestration across cloud
and edge environments. This research distinguishes itself by introducing a custom
Kubernetes scheduling plugin and a descheduling operator that factor in
network metrics such as node-to-node latency and inter-microservice traffic. These
components work to overcome the limitations of the default Kubernetes scheduler,
which is geared towards optimizing CPU and memory resources rather than network
conditions—something crucial for modern, network-intensive applications like IoT
services.

The system architecture (Fig 2.4) is split into two main components:

• Scheduler Scoring Plugin

• Custom Descheduler

The Scheduler Scoring Plugin runs in the Kubernetes control plane, pulling

9

Related Works

metrics from a Prometheus server to assess node suitability for Pod placement
based on network latency and traffic metrics.
The Custom Descheduler, also operating in the control plane, continually re-
evaluates these metrics to dynamically reallocate Pods to higher-scoring nodes,
thereby optimizing application performance. Both components use scoring algo-
rithms that weigh network latency inversely and consider the volume of traffic
between services.

Figure 2.4: Overall architecture (Adapted from [10])

Despite its innovative approach, the paper acknowledges limitations, such as
the potential downtime caused by Pod eviction. However, the authors argue
that, in cloud-native environments where microservices are typically replicated, this
would only result in minor QoS degradation. The system was evaluated using a
Bookinfo sample application consisting of four microservices and a MongoDB server,
deployed on a Kubernetes cluster. The tests revealed a substantial improvement in
application response times compared to using the default Kubernetes scheduler,

10

Related Works

thereby validating the approach.
My research aims to build on this by investigating how these scheduling and

descheduling strategies could be fine-tuned for different types of network-bound
applications, and how they would perform in larger, more complex environments.
I’m particularly interested in exploring how this approach can be made even more
dynamic and responsive to rapidly fluctuating network conditions.

4. Telemetry Aware Scheduling

Intel’s Telemetry Aware Scheduling (TAS) [9] provides an intriguing take on
Kubernetes scheduling by incorporating real-time telemetry data into both schedul-
ing and descheduling decisions. The system comprises two main components: the
Telemetry Aware Scheduler Extender and the Telemetry Policy Controller.
The former interacts with the default Kubernetes scheduler to provide enhanced,
metric-based scheduling decisions, guided by user-defined policies. These policies
can hinge on a variety of platform metrics, including Intel® RDT metrics, RAS,
and others, allowing for dynamic, condition-based pod placement. The Telemetry
Policy Controller oversees these policies, ensuring they are consistently applied and
taking action if a policy is violated, such as by labeling a node for descheduling.

Now, when we talk about integration with my work on "Network-Aware Pod
Placement in Cloud-Edge Kubernetes Clusters," there are several compelling points
of intersection. Both TAS and my work aim to address gaps in the default
Kubernetes scheduler, which primarily focuses on CPU and memory utilization.
While my research leans into optimizing for network conditions like latency and
node-to-node traffic, TAS provides a more general framework that can be adapted
to include these network-specific metrics. Imagine combining the custom network-
aware scheduler plugin that I developed with the telemetry data available through
TAS. This hybrid system could produce a much more comprehensive, dynamic, and
adaptive scheduling algorithm. It could balance not only CPU and memory but
also network latency and other real-time platform metrics, offering a more holistic
approach to resource optimization in complex Cloud-to-Edge environments.

Moreover, the "descheduling" features present in both systems could work
synergistically. My work involves a descheduling operator that reallocates pods
based on network metrics, whereas TAS has a policy-based descheduling component.
A unified descheduler could consider a richer set of criteria, allowing for more
effective real-time adjustments and potentially boosting overall system performance
and reliability. The joint capabilities would make the system incredibly robust,
capable of auto-adjusting to a wider range of operational conditions and specific
application requirements.

11

Chapter 3

Background

3.1 Kubernetes: The Open-Source Orchestrator
for an Agile and Scalable Infrastructure

Kubernetes is an open-source platform for container management and
orchestration. Its architecture is designed to simplify the automation, deployment,
scalability and operation of containerized applications, such as those based on
Docker, LXD or other similar technologies.
At the heart of Kubernetes is the concept of a "cluster," a set of interconnected
physical or virtual machines that work together as a single entity. Each cluster is
composed of a "master node", which manages the coordination logic, and various
"worker nodes", which actually run the applications.

But what makes Kubernetes stand out in a sea of alternatives, including propri-
etary solutions and orchestrators like Docker Swarm or Apache Mesos?
First, its tremendous flexibility and scalability. Kubernetes can handle anywhere
from a few to thousands of nodes, making it suitable for both small and large
environments. Second, it offers an incredibly rich ecosystem of features, ranging
from resource management, advanced workload scheduling, resiliency, self-healing,
and more. Its open-source nature not only lowers barriers to entry, but also invites
continuous innovation from the global community, which actively contributes to its
development.

Another aspect that distinguishes Kubernetes is its modularity and extensibility.
Through a system of plug-ins and well-documented APIs, users can customize or
extend nearly every aspect of the platform, from networking modules to storage
mechanisms to authentication and authorization methods. This allows organizations
to build solutions tailored to their specific needs, without being trapped in a
"technology cage" of restrictions and onerous licenses.

In the Kubernetes ecosystem, Pods are the smallest scheduling unit. They are

12

Background

application containers that run within the nodes of a cluster. Pods embody the
"schedule once, run anywhere" philosophy, meaning they are scheduled on a node
and remain there until they are explicitly removed or the node itself fails.

Having introduced the concept of Pods, it’s important to tie it into the architec-
tural heart of Kubernetes, which is an extremely flexible and powerful API. The
API is exposed through the Kubernetes API Server, a service that forms the
entry point for all management and orchestration operations within the cluster.
The API server is just one of several components that make up the Kubernetes
Control Plane, the set of services that maintain and manage the global state of
the cluster.

At the heart of the Control Plane is the Scheduler, a key component responsible
for allocating Pods to cluster nodes. The Scheduler does not operate in isolation,
but is tightly integrated with the API server to receive information on available
resources, Pods to be scheduled and any constraints or policies set. After gathering
this information, the Scheduler makes informed decisions about which node is best
suited to run a given Pod.

The Kubernetes scheduler takes action when a pod needs to be assigned to one
of the available nodes in the cluster. But at this point a fundamental question
arises: who is responsible for the creation of the pod itself?

While it is technically possible to create a pod manually by directly interfacing
with the Kubernetes server API and specifying the container image to use, this
approach is rarely practical for a variety of reasons. First, if the node on which
the pod was scheduled were to fail or be shut down, the pod would be terminated
as a result. In scenarios where the pod hosts a critical service, this would lead
to the unavailability of the service, potentially negatively impacting the entire
infrastructure. Second, manually managing pods is susceptible to human error and
is not scalable in a production environment with a large number of nodes and pods.

This is why the concept of Deployment enters the scene in Kubernetes, a
solution that allows the replication of pods on multiple nodes, thus ensuring both
the availability and resilience of the service.

3.1.1 Kubernetes Deployments
A Deployment represent one of the most powerful abstractions within the Ku-
bernetes ecosystem. In simple terms, a Deployment is a model that describes how
to run and manage instances of an application. Beyond the simple execution of a
container, Deployments allow you to define a series of rules and configurations that
govern aspects such as updating, scalability and application availability.
Why are they so useful? In a production environment, it is critical that services
are always available and that there are little or no disruptions. Deployments help
accomplish just that. A key aspect of Deployment is the concept of a "replica",

13

Background

essentially a copy of a certain pod. When we define a Deployment, we also specify
the number of replicas we want to keep active.
This approach has several advantages:

• Scalability: if the traffic to an application grows, the requests can be dis-
tributed across multiple instances (replicas) of the service, improving its
responsiveness and load capacity.

• Reliability: should a pod encounter a problem and fail, the system auto-
matically instantiates another to ensure that the number of replicas remains
constant.

Here is a simple example of a YAML file for a Kubernetes Deployment:

1 ap iVers ion : apps/v1
2 kind : Deployment
3 metadata :
4 name : my−app
5 spec :
6 r e p l i c a s : 3
7 s e l e c t o r :
8 matchLabels :
9 app : my−app

10 template :
11 metadata :
12 l a b e l s :
13 app : my−app
14 spec :
15 c on t a i n e r s :
16 − name : my−conta ine r
17 image : my−image : l a t e s t

Whenever a replica fails or is shut down, if its deployment is still active, a new
pod is created and sent to the scheduler. This is a fundamental aspect that will
serve to understand the architecture of the project of this thesis.

3.2 Kubernetes customizable Scheduler
Scheduling decisions are made following a set of algorithms and policies that can
be extended or adapted for specific needs. This extensibility is possible thanks
to the modular architecture and plug-ins of the Scheduler, which allows the
addition of new scheduling logics or the modification of existing ones. This makes
the Scheduler one of the most versatile and powerful components in the Kubernetes

14

Background

control plane, capable of adapting to a wide range of operational and performance
needs.

Kubernetes allows users to customize the behavior of the kube-scheduler
by writing a configuration file and passing its path as a command line argument.

3.2.1 kube-scheduler framework
The scheduler procedure is divided into Stages, executed sequentially to calculate
the pod placement. A scheduling Profile allows users to configure the different
stages in the kube-scheduler. Each scheduler is exposed in an Extension Point:

1. queueSort: ordering function used to sort pending Pods;

2. preFilter: used to pre-process or check a Pod or the Cluster information
before filtering.

3. filter: (equivalent to Predicate) filtering function based on hard constraints
to discard unfitted nodes;

4. postFilter: used to marks the Pod schedulable or not;

5. preScore: used for doing pre-scoring work;

6. score: (equivalent to Priority function) function that provides a score to each
node useful for sorting them;

7. reserve: used to notifies when resources have been reserved for a given Pod;

8. permit: used to prevent or delay the binding of a Pod;

9. preBind: perform any work required before a Pod is bound;

10. bind: bind a Pod to a Node;

11. postBind: perform any work required after a Pad has been bound;

The workflow is divided into two phases:

• scheduling cycle

• binding cycle

15

Background

Figure 3.1: Framework workflow

Figure 3.2: Scheduling Plugin

3.2.2 Scheduling plugins

All the extension points are implemented by Plugins that provide scheduling
behaviors. For each extension point, it is possible to disable specific default plugins
or enable custom plugin (see Figure 1.2).

Below (Table 1.1) is the list of the most important enabled default plugins
that implement one or more extension points. For the full extension points list,
consult the Kubernetes online documentation.

16

https://kubernetes.io/docs/home/

Background

Plugin Name Description Extension Points

ImageLocality Favors nodes that already have the
container images that the pod runs. score

NodeName Checks if a Pod spec node name matches
the current node. filter

NodeAffinity Favors nodes that already have the
container images that the pod runs. score

NodeResorcesFit Check if the node has all the
resources that the Pod is requesting.

preFilter, filter,
score

NodeResourcesBalancedAllocation
Favors nodes that would obtain a
more balanced resource usage if

the Pod is scheduled there.
score

NodeVolumeLimits Checks that CSI volume limits
can be satisfied for the node. filter

InterPodAffinity

Implements inter-Pod affinity and
anti-affinity (they allows to constrain

which nodes your Pods can be scheduled
on based on the labels of Pods
already running on that node,
instead of the Node labels).

preFilter, filter,
preScore, score

PrioritySort Provides the default priority
based sorting. queueSort

DefaultBinder Provides the default binding mechanism. bind
DefaultPreemption Provides the default preemption mechanism. postFilter

Table 3.1: List of the most important scheduling default plugins and their
extension-points

3.3 Liqo: The Next-Generation Kubernetes Ex-
tension

Liqo, an acronym for “Liquid Computing,” is an innovative open-source project
engineered to expand the capabilities of Kubernetes clusters. In essence, it allows
Kubernetes clusters to share resources seamlessly, thereby creating a collaborative,
multi-cloud, and edge computing environment [14]. This leap in technology facili-
tates workload distribution across various clusters, optimizes the use of resources,
and brings unprecedented scalability and flexibility to cloud-native applications.

3.3.1 The Imperative of Adopting Liqo
In the modern technological landscape, cloud-native applications are becoming
increasingly complex, often requiring resources that extend beyond the confines
of individual Kubernetes clusters. Traditional Kubernetes architectures, while
powerful, operate in isolated silos which can lead to resource underutilization and
operational inefficiencies. These constraints can be particularly detrimental for
applications that require high availability, low latency, and seamless scaling across

17

Background

different cloud environments.
Liqo comes into play as a disruptive technology, aimed at shattering these limi-

tations. It enables Kubernetes clusters to dynamically share resources, facilitating
the creation of a federated, fluid architecture that can stretch across multiple cloud
providers, data centers, and edge locations. By doing so, Liqo allows for a more
agile and responsive deployment model, capable of automatically adapting to
changing workloads and user demands.

Moreover, the adoption of Liqo is more than a tactical move; it’s a strategic
imperative for organizations striving to maximize their operational efficiency. Its
advanced resource management features allow businesses to optimize costs effec-
tively, as workloads can be intelligently placed where resources are most abundant
or least expensive. Additionally, its decentralized approach makes it particularly
well-suited for edge computing scenarios, where distributing computation closer to
data sources can significantly reduce latencies and improve performance.

Given these compelling advantages, integrating Liqo into your Kubernetes strat-
egy becomes an essential step for creating a resilient, flexible, and cost-effective
cloud-native ecosystem. It offers a significant competitive edge, preparing enter-
prises for the demands of next-generation cloud computing paradigms, including
microservices architectures, serverless computing, and IoT deployments.

3.3.2 Liqo Features
Liqo is endowed with a multitude of features designed to bring efficiency, scalability,
and flexibility to your Kubernetes clusters. A few standout features include:

• Virtual Kubelet Implementation: Liqo employs a virtual Kubelet to act
as a proxy for external clusters, enabling effortless scheduling of pods and
services without demanding changes in your existing applications.

• Adaptive Resource Management: One of the compelling features of Liqo
is its ability to dynamically adapt the size of clusters depending on workloads.
This not only ensures optimal resource utilization but also leads to significant
cost reductions.

• Transparent Cross-Cluster Networking: The framework ensures seamless
networking among pods residing in different clusters, making them virtually
part of the same local network.

• Policy-Driven Resource Allocation: Liqo allows for the creation of intri-
cate resource-sharing policies, offering granular control over how resources are
dispersed and utilized across multiple clusters.

18

Background

• Instant Integration Capabilities: Liqo is designed for instant integration,
promising immediate operational advantages without necessitating sweeping
changes to existing infrastructures.

3.3.3 Peering in Liqo
Peering in Liqo is a dynamic and multifaceted process that is fundamental to the
efficiency of my project. Liqo offers two main types of peering that differ not
only in terms of automation but also in the underlying network pathways used for
interaction. These are:

• In-Band Peering: This automated form of peering is based on predefined
policies and conditions. It operates inside a VPN tunnel, ensuring that all
communications between the paired clusters are encrypted and isolated from
external threats. This secure form of peering is especially useful in my project
for scenarios requiring stringent data protection measures.

• Out-of-Band Peering: In contrast, out-of-band peering provides more
control by allowing manual configuration and occurs outside a VPN tunnel.
Although this form is more straightforward to set up, it could expose the clus-
ters to additional security risks, especially when crossing untrusted networks.
This form of peering is ideal for environments in my project where speed and
low-latency are prioritized over additional security measures.

By utilizing both these peering methods, my project gains the advantages of both
secure, automated interactions and the flexibility to manually configure connections
when needed. This dual approach makes the system highly adaptable to a range of
operational scenarios, from those requiring high security to those needing rapid
data exchange.

3.3.4 Offloading Capabilities in Liqo
Offloading in Liqo is an essential feature that allows resource and workload sharing
among federated clusters. This capability is central to the flexibility and scalability
of my project. Liqo provides the following types of offloading:

• Automatic Offloading: In this mode, Liqo automatically balances the load
across multiple clusters without manual intervention. It considers resource
availability and constraints in each cluster to make real-time offloading deci-
sions. This is particularly useful in my project for achieving high utilization
rates without the burden of manual configuration.

19

Background

Figure 3.3: In-Band Peering

Figure 3.4: Out-Of-Band Peering

• Manual Offloading: For scenarios that require more fine-grained control
over the placement of workloads, Liqo offers manual offloading. Here, specific
rules and policies can be set up to guide how, when, and where the offloading
occurs. This type of offloading is employed in my project for tasks that need
specialized resources or for compliance with data locality regulations.

• Namespace Offloading: Liqo allows for the offloading at the granularity of
a Kubernetes namespace, enabling more natural abstractions and easier man-
agement. This feature is beneficial for segmenting different aspects or modules
of my project, allowing each one to be managed and scaled independently.

By using these offloading methods, my project benefits from a versatile and
dynamic system for managing resources. It can handle everything from automated
load balancing for general tasks to highly customized manual offloading for special-
ized or sensitive operations. This flexibility is crucial for adapting to the diverse and
often unpredictable resource requirements that modern cloud-native applications

20

Background

Figure 3.5: Namespace Extension

face.

21

Chapter 4

System Model

4.1 Architecture
The architecture of my project serves as the blueprint for realizing a latency-
optimized, Kubernetes-based service deployment. In a standard Kubernetes cluster,
scheduling decisions are generally unaware of network latency between the user
and the service nodes. My architecture addresses this gap by incorporating two
specialized Golang applications:

• Latency Meter

• Custom Latency-Aware Scheduler

These two integral components collaborate to provide both real-time latency
measurements and latency-optimized scheduling of pods across cluster nodes.

4.1.1 The Latency Meter Application
The Latency Meter serves as an indispensable component in the system’s ar-
chitecture. It is uniquely configured as a second container co-located within
each application pod. This in-pod deployment strategy not only simplifies internal
network configurations but also mitigates potential permission issues, offering a
streamlined and robust solution. As users initiate requests to access services within
a pod, the Latency Meter acts as an initial point of contact (like a proxy),
intercepting these requests before they reach the main application container.

The strategic placement of the Latency Meter allows it to measure the network
latency between the user and the node hosting the pod in real-time. Since every
user request passes through the Latency Meter first, it can acquire a comprehensive
set of latency measurements. These latency metrics are stored in volatile memory

22

System Model

Figure 4.1: System Model

to ensure rapid data read and write access, contributing to the system’s real-time
adaptability and performance.

The importance of the Latency Meter extends beyond mere data collection; it
also plays a pivotal role in the system’s decision-making process. The Custom
Latency-Aware Scheduler constantly queries the Latency Meter to obtain the latest
latency metrics. These metrics serve as critical input parameters for the scheduler,
helping it make informed decisions about pod placements or removals within the
cluster. This interaction is essential for optimizing the overall latency profile of the
system, making the Latency Meter an integral part of the architecture.

4.1.2 The Custom Latency-Aware Scheduler

Taking over from Kubernetes’ default scheduler, my Custom Latency-Aware Sched-
uler resides in the control plane and serves as the backbone for latency-optimized

23

System Model

pod scheduling. This scheduler is comprised of three major entities, each encapsu-
lated in its own Golang file:

1. Scheduler: This component is akin to Kubernetes’ default scheduler but
with a latency-aware twist. It prioritizes nodes based on the number of similar
application pods they host. The goal is to diversify latency measurements
across multiple nodes, thereby ensuring a comprehensive latency profile.

2. Descheduler: This is the unique innovation in my architecture. The Desched-
uler actively seeks updated latency metrics from the Latency Meter and adjusts
the cluster state accordingly. Pods may be descheduled and re-scheduled to
optimize for latency, forming a continuous loop with the Scheduler.

3. LatencyMeasurements (LM): Serving as the shared data structure between
the Scheduler and Descheduler, LM stores latency data in a volatile format.
The decision to keep the data in-memory was deliberate, optimizing for speed
at the expense of data persistence.

System Dynamics: Transitional and Steady-State Phases

The operation between the Descheduler and Scheduler is cyclical and represents a
transitional phase. This is a state where the pods are continually being moved
around nodes until their placement satisfies the Descheduler’s latency criteria.
Upon reaching this equilibrium, the system moves into a "steady-state" or regime,
providing an optimized user experience.

Data Storage Considerations and Future Extensions

The choice to keep the LatencyMeasurements (LM) data structure in volatile
memory was made to prioritize speed over data persistence. While data loss is not
critical, it would necessitate a longer transitional phase for re-optimization. Future
works may explore distributing this latency data across nodes and possibly using
more persistent data storage solutions.

4.2 Latency Meter: In-Depth Analysis
The Latency Meter is a specialized application implemented in Golang, designed
to calculate network latency between the user and the Kubernetes pod where it
resides. Deployed as a secondary container within each pod, the Latency Meter acts
as an intermediary layer between the user and the main application, intercepting
and measuring the time delay of each request.

24

System Model

4.2.1 Design and Algorithm
The primary components of the Latency Meter include a RESTful API built using
the Gorilla Mux router and the Kubernetes Client-Go library, which interfaces with
the Kubernetes API. Upon launch, the Latency Meter starts by obtaining its pod
information and initiating a new HTTP server listening on port 8080.

The application defines two main routes:

• / (root): To measure latency.

• /measurements: To return and reset collected latency data.

Latency Measurement Methodology

The algorithm for measuring latency between the client and the server is outlined
below (Alg. 1).

Algorithm 1 Latency Measurement Algorithm in Kubernetes Deployment
1: procedure MeasureLatency(HTTP_Req, pod, latencyMeasurements)
2: ▷ HTTP_Req is the incoming HTTP request
3: ▷ pod contains information about the current Kubernetes pod
4: ▷ latencyMeasurements is the map storing latency data
5: ▷ Initialization
6: Extract userID from HTTP_Req.URL.Query().Get("id")
7: Extract clientTimestamp

from HTTP_Req.Header.Get("X-Timestamp")
8: ▷ Execution
9: serverTimestamp← Current time in milliseconds

10: latency← serverTimestamp− clientTimestamp
11: ▷ Store the measured latency
12: latencyMeasurements.AddLatency(userID, latency)
13: end procedure

When a user request arrives, the application:

1. Extracts the user’s ID and timestamp from the request.

2. Calculates the current server time.

3. Computes the latency by taking the difference between the server and client
timestamps.

4. Stores this latency measurement in a map, keyed by the user ID.

25

System Model

The latency measurements are stored in volatile memory for swift read-write
access. The data can be retrieved via the /measurements route in JSON format.

4.2.2 Latency Measurement Challenges and Approaches
Calculating accurate latency between a server and a client is inherently challeng-
ing due to several factors, including but not limited to, security constraints like
CORS (Cross-Origin Resource Sharing), network congestion, and variable network
conditions affecting different layers of the OSI model.

The Adopted Approach

In this design, latency is measured by utilizing the time difference between the
client’s and server’s internal clocks. The client attaches its timestamp in the request
header, which the server uses to calculate the round-trip time.

Limitations

• Clock Skew: The internal clocks on the client and server may not be perfectly
synchronized, affecting accuracy.

• Network Conditions: This method does not account for changes in network
conditions that may occur during the round-trip.

• Header Overhead: Adding a timestamp to the header increases the size of
the HTTP request, albeit minimally.

• Server Processing Time: The time taken by the server to process the
request can introduce additional latency, which is hard to separate from
network latency.

Alternatives

ICMP Ping This method involves sending an ICMP echo request to the target
server and measuring the time it takes to receive a reply. It is one of the most
accurate ways to measure latency.

• Limitations: This method may be blocked by firewalls, or the server may be
configured to give low priority to ICMP requests, making the measurement
less reliable.

26

System Model

JavaScript-based solutions JavaScript running on the client’s browser can also
be used to measure latency to the server by timing how long it takes for an HTTP
request to complete.

• Limitations: Browser security features like CORS may limit the destinations
to which you can send requests, thereby limiting this approach.

WebRTC protocols WebRTC enables real-time communication and has built-in
functionality for gathering network metrics, including latency.

• Limitations: WebRTC may require additional configurations and permissions,
which could complicate the deployment. Also, it could be an overkill for simple
applications that do not require real-time communication features.

Timestamp-Based Approaches

HTTP-Level Timestamps This method involves embedding a timestamp in
the HTTP header of the request.

• Pros:

– Simplicity: Easier to implement at the application layer.
– Compatibility: Widely supported in various systems and frameworks.
– Less Resource Intensive: Avoids the overhead of capturing and analyzing

every packet.
– No Special Privileges Required: Operates at the application level, avoiding

the need for elevated privileges.

• Cons:

– Application Overhead: Additional HTTP header increases overhead.
– Protocol Dependency: Tied to HTTP protocol; other protocols would

require similar logic.
– User Transparency: May require manual user input to insert timestamps.

IP-Level Timestamps This approach involves embedding timestamps at the
IP packet level.

• Pros:

– Greater Precision: Operating at the packet level may offer more accurate
measurements.

27

System Model

– Protocol Independence: Not bound to HTTP, offering potential flexibility
for future protocol support.

– User Transparency: Operates transparently if enabled and supported.

• Cons:

– Privileged Access: Capturing raw packets might require elevated privileges.
– Added Complexity: Low-level packet filtering and analysis can introduce

complexity and potential performance issues.
– Interoperability: Not all packets will have the timestamp option, and

intermediate devices may alter or remove it.
– Resource Intensive: Real-time packet analysis may impact system re-

sources.

4.2.3 Deployment
The application is containerized using Docker. In the Kubernetes deployment
configuration, this Docker image is specified to run as a secondary container within
each application pod. This co-location ensures that every interaction with a pod
undergoes latency measurement by the Latency Meter.

• Limitations of Deployment Approach:

– Resource Overhead: Running an additional container in every pod
increases the resource utilization.

– Co-location Bias: Since the latency meter runs in the same pod, the
measurements may not accurately reflect the experience from other points
in the network.

4.3 Custom Latency-Aware Scheduler
The custom latency-aware scheduler is a unique, feature-rich system explicitly
designed to optimize pod scheduling based on network latency. Over the course of
its development, this scheduler has evolved through three significant versions, each
adding new features or optimizations.

4.3.1 Version 1 (LAIS-0): Minimum Latency
Version 1 serves as the foundational iteration of this custom scheduler. It in-
troduces three core components: the Scheduler, the De-scheduler, and the

28

System Model

in-memory data structure LatencyMeasurements (LM). In this version, the fo-
cus is on spreading the pods across multiple nodes and then adaptively rescheduling
them based on latency metrics.

Scheduler (V1)

Objectives and Decision Making The primary goal of the Scheduler is
two-fold: firstly, it aims to distribute the application’s pods across multiple nodes
to facilitate the collection of a wide range of latency measurements. Every
time a new pod needs to be scheduled inside a certain cluster, a load-balancing
approach is adopted. To distribute pods across a variety of nodes, the scheduler
creates a priority list. A node’s priority is based on the number of pod replicas of
the same application it hosts: the fewer the pods, the higher the priority. If nodes
have the same priority, the one with less resource usage (like CPU and RAM) is
chosen. If multiple nodes still stand equal, the selection becomes random.

Algorithmic Walkthrough The scheduling algorithm primarily operates by
considering the following steps:

Algorithm 2 Scheduler Algorithm in V1
1: Retrieve list of available nodes and current pod count for each node.
2: Access the in-memory LatencyMeasurements (LM) structure for latency data.
3: for each unscheduled pod do
4: Prioritize nodes where no pods of the same application have been scheduled.
5: In case of tie, opt for the node with better CPU and memory performance.
6: In case of another tie, opt for a random selection.
7: Update LM to reflect this new scheduling decision.
8: Bind the pod to the chosen node.
9: end for

10: Last Cycle: Re-evaluate node selection to account for any changes in latency
measurements or node availability.

Significance of the Last Cycle The Last Cycle in the Scheduler serves as
a mechanism to seek the global minimum of network latency after a series of
local optimization steps executed by the Descheduler. While the Descheduler
focuses on local improvements by evicting pods with the highest latencies, this can
sometimes lead to suboptimal global configurations. The Last Cycle is invoked
after adequate latency measurements have been obtained for all pods across all
nodes. It reevaluates the entire scheduling landscape to ensure that the pods are
scheduled on nodes that offer the lowest global latency.

29

System Model

De-scheduler (V1)

Objectives and Decision Making The De-scheduler in V1 aims to act as a
dynamic correction mechanism. It primarily focuses on:

• Gathering latency metrics from the external latency-meter application.

• Updating the LatencyMeasurements (LM) in-memory data structure with
these new metrics.

• Making data-driven decisions to deschedule pods from nodes exhibiting high
latency, given that sufficient data entries are available in LM for robust
decision-making.

Algorithmic Walkthrough The de-scheduling algorithm operates by consider-
ing the following steps:

Algorithm 3 Descheduler Algorithm in V1
1: Initialize LatencyMeasurements (LM) if available.
2: while true do
3: Contact the external latency-meter to acquire latest latency metrics.
4: Update LM with these new measurements.
5: if LM has sufficient number of measurements for decision-making then
6: Identify the node with the highest latency for the specific application.
7: Deschedule the pod(s) from this node.
8: Delete corresponding latency entries for this node in LM.
9: end if

10: Trigger the Scheduler for re-scheduling the pod, which in turn updates the
LM.

11: end while

Seamless Integration with Scheduler The De-scheduler not only serves to
evict pods but also triggers the Scheduler as part of its workflow. This interaction
forms a closed-loop system that aims to optimize user-to-node latency continually.

LatencyMeasurements (LM) in V1

The LatencyMeasurements (LM) structure is a central piece that serves both
the Scheduler and De-scheduler. It is an in-memory data structure optimized for
quick read and write operations. Each application entry within LM contains:

• a list of pods;

30

System Model

• the nodes where the pods are scheduled on;

• the latency metrics;

• a timestamp for each measurement.

Interoperability Between Scheduler and Descheduler

The Scheduler and De-scheduler operate in a tightly-coupled manner, coordinated
through a simple Go channel for thread synchronization. The Scheduler takes on
the responsibility of determining whether all nodes have been visited and measured
for latency. After its Last Cycle, where it seeks to find the global minimum
latency, the Scheduler can halt the De-scheduler’s operations to prevent unnecessary
rescheduling. This stopping mechanism is crucial for maintaining a stable
state once an optimal or near-optimal configuration is reached. However,
acknowledging the dynamic nature of user locations and network conditions, the
Scheduler is configured to reactivate the De-scheduler after a custom-defined time
interval. This timer-based reactivation offers the system the flexibility to adapt
to geographical movements by the user and ensures that the pod placements
remain optimized over time.

Limitations

The current design of the custom latency-aware scheduler comes with a few note-
worthy limitations:

• Convergence Time too high

• Multi User not supported

Firstly, the time required to reach a stable state or "regime" is considerably high.
This is because the system needs to visit all nodes, find local minima at each stage
by removing the highest latency, and then perform a Last Cycle to find the global
minimum latency. This iterative process, while effective, is time-consuming.
Secondly, the system is not designed to handle multi-user scenarios ef-
ficiently. Different users may have different latency measurements, leading to
different optimal solutions. The current version does not support the reconciliation
of these conflicting requirements into a unified optimal solution.

4.3.2 Version 2: Liqo Integration
The advancement of the latency-aware scheduler is significantly underscored by
its synergistic integration with Liqo, a framework enabling the interlinking of
disparate clusters via sophisticated peering mechanisms. This integration leverages

31

System Model

Liqo’s capability to form advanced multi-cluster topologies, beneficial for offloading
scenarios, where one master cluster governs multiple slave clusters.

The architecture of our scheduler aptly aligns with Liqo’s functionalities. The
utilization of Liqo in creating a multi-cluster environment is underlined by a key
assumption: that nodes, typically geographically co-located within the
same cluster, experience a uniform network latency with users. This
assumption is crucial for the seamless integration of the scheduler and plays a pivotal
role in ensuring operational coherence and maintaining system responsiveness across
varied topological scenarios.

Seamless Integration

In such a multi-cluster context, integrating our latency-aware scheduler is remark-
ably straightforward. By setting our scheduler as the principal scheduler of the
master cluster, the peering process via Liqo identifies the entire remote clusters as
virtual nodes. The scheduler, thus, perceives and treats these virtual nodes akin
to other nodes in the cluster.

During a deployment, the pods and their replicas, under the guidance of our
scheduler, are disseminated across multiple possible virtual nodes, corresponding to
remote clusters. Once a pod is allocated to a virtual node, it is further scheduled
by the scheduler of the associated cluster, which could even be the default one,
aligning with the premise that nodes within the same cluster maintain comparable
network latency with users.

Enhanced Accessibility and Decision-making

Remarkably, the De-scheduler, located in the control plane node of the master
cluster, can access all latency-meters across various pods, even those situated on
remote clusters, leveraging Liqo’s Network Fabric. This feature ensures seamless
communication between all pods within a peered cluster, with or without NAT
translation [14]. Consequently, the De-scheduler can efficiently acquire latency
measurements and execute informed de-scheduling decisions, enhancing the system’s
adaptability and responsiveness.

This seamless integration with Liqo required minimal alterations to the exist-
ing codebase, primarily pertaining to the namespace environment adjustments
to incorporate Liqo. The intuitive and natural incorporation of Liqo accentuates
the scheduler’s versatility and scalability, adapting effortlessly to diverse cluster
environments and operational demands.

32

System Model

Figure 4.2: Multi-cluster Topology

4.3.3 Version 3 (LAIS): Latency constraints
The integration of Liqo technology is foundational to this version of the Latency-
Aware Scheduler, engendering a fundamental assumption that nodes located within
the same cluster will exhibit identical network latency with respect to the user
due to their geographical proximity. However, despite the amalgamation of Liqo,
the enduring issue of convergence in the preceding version lingers prominently.
The persistent convergence issue implies that the scheduler, even when it reaches a
steady state, continually struggles to maintain optimal latency configurations due
to the dynamic nature of network conditions and user mobility. This predicament
instigates a critical reassessment and evolution of the scheduler’s underlying logic
and operational mechanisms.

In addressing the convergence problem, the evolved scheduler forgoes the pursuit
of absolute optimal configurations characterized by minimal latency. Instead, it
adopts a more pragmatic approach, aspiring to achieve configurations that are
’good-enough’—a relative term indicating a balance between service requirements

33

System Model

and network conditions. This approach is materialized through the imposition
of latency constraints, meticulously aligned with the varied requirements of
different services.

Diving deeper into service requirements, it is evident that different services
have divergent needs concerning latency. Services like Cloud Gaming and
Live Streaming are latency-sensitive, necessitating low latency to maintain user
experience and service quality. These services, owing to their real-time interaction
and high-frequency data transmission, are intolerant to delays, making low latency
a non-negotiable requisite.

In contrast, services such as Cloud Storage exhibit a different set of require-
ments. While they do require a stable and reliable network connection, they are
not stringently bound by low-latency needs. For these services, the paramount
concern is the reliability of the network, ensuring that there is no loss of packets
during data upload or download processes, thus maintaining data integrity and
service dependability.

Given this divergence in service needs, the pursuit of minimal latency becomes
a redundant and sometimes counterproductive endeavor. The imposition of latency
constraints in this version of the scheduler is not a one-size-fits-all solution; rather,
it is a nuanced and tailored strategy, seeking to harmonize service performance
with user experience.

These tailored latency constraints allow the scheduler to focus on achieving and
maintaining configurations that are attuned to the specific needs of the service,
avoiding unnecessary reallocations and adjustments that may arise from a blind
pursuit of minimal latency. This nuanced approach ensures that the scheduler is
more adaptable and efficient, capable of handling a diverse range of services with
varying latency sensitivities and requirements.

Operational Workflow

The operational logic of this version is defined by two types of latency constraints,
HARD MAX LATENCY and SOFT MAX LATENCY, optionally coexisting based
on user preferences during deployment. These constraints guide the Scheduler and
Descheduler in allocating and deallocating pods, with an added layer of dynamic
adaptability to account for potential user mobility, ensuring perpetual applicability.

Implementation Details

The intricate implementation of the latency-aware scheduler involves two crucial
components:

• Scheduler: The Scheduler retains its traditional functionality, focusing on

34

System Model

the optimal allocation of pods and emphasizing resource efficiency and uni-
form distribution across diverse nodes and clusters. In this refined version,
it incorporates and considers the latency constraints, both hard and soft,
storing and sharing them with the Descheduler to ensure a harmonious and
responsive interaction between scheduling and descheduling processes, allowing
for adjustments in real-time in response to the varying network conditions
and service demands.

• Descheduler: The Descheduler plays a crucial role, regularly updating
latency measurements and evaluating them against the set constraints to
ascertain potential candidates for descheduling. It leverages three essential data
structures: invalidNodes, hardValidNodes, and softValidNodes to categorize and
manage nodes based on the latency measurements and constraints adherence,
offering a granular view of the nodes’ current states and facilitating informed
and timely descheduling decisions.

Operational Cases The Descheduler’s operational logic is delineated into three
distinct cases, addressing different constraint scenarios:

1. Case 1: Hard Constraint Only: Nodes are strictly evaluated against
hardMaxLatency. Any node exceeding this limit is subject to immediate
descheduling, impacting all the associated pods relevant to the application.
This stringent approach prioritizes the enforcement of hard constraints to
ensure the maintenance of optimal service quality and user experience.

2. Case 2: Soft Constraint Only: Here, nodes are assessed considering
softMaxLatency, determining their classification into either softValidNodes or
hardValidNodes. This scenario emphasizes a softer, more adaptive enforcement
allowing a flexible management of nodes. A conclusive descheduling evaluation
occurs at the end of each cycle, focusing on achieving a balance between
adaptability and operational efficiency.

3. Case 3: Both Constraints: In this comprehensive scenario, nodes are
scrutinized against both hardMaxLatency and softMaxLatency, influencing
immediate and end-of-cycle descheduling decisions. The dual assessment aims
at achieving a balanced approach between strict enforcement and adaptive
flexibility, based on the proportion of softValidNodes.

End-of-Cycle Evaluation The conclusion of each cycle, particularly significant
in Cases 2 and 3, brings forth a pivotal final evaluation. This evaluation is
contingent upon the comprehensive measurement of all nodes, i.e., when the sum
of invalidNodes, softValidNodes, and hardValidNodes equals the total number of

35

System Model

nodes (Ninvalid + Nsoft + Nhard = Ntot). Only if the count of Soft Valid Nodes (Nsoft)
added to the number of Hard Valid Nodes (Nhard) is greater than the 50% of the
total nodes (Nsoft) —a parameter subject to discussion and review— the final
descheduling evaluation is activated. This (Nsoft + Nhard > 50%Ntot) is called the
Soft Condition.

In this final evaluation phase, all nodes within the worst hardValidNode are
subjected to descheduling. This approach is aimed at establishing a compromise
between the quantity of valid nodes and the adherence to the Soft Con-
straint, aligning acceptable latency levels with network reliability. Consequently,
this mechanism ensures an optimal balance, catering to diverse service requirements
and adapting dynamically to various network conditions, thereby reinforcing the
robustness and resilience of the deployed services.

Algorithm 4 Descheduler Algorithm
1: Initialize:
2: LM, invalidNodes, hardValidNodes, softValidNodes
3: hardLatThresholds, softLatThresholds
4: Determine: Ntot total number of nodes.
5: while true do
6: Sleep: Predefined interval.
7: Acquire & Update: New latency measurements in LM.
8: for each userID, appName, nodesMeasurements in LM do
9: Categorize Nodes: Based on latency and thresholds.

10: Deschedule: Pods on invalidNodes.
11: if Soft Constraint exists then
12: Evaluate: End-of-cycle Soft Condition.
13: if Soft Condition is valid then
14: Deschedule: Worst hardValidNodes.
15: Update: Corresponding data structures.
16: end if
17: end if
18: end for
19: end while

Continuous Adaptation A prominent characteristic of the current iteration is its
continuous adaptation capability, allowing each node to transition between different
states in each cycle, depending on the user’s physical movement or the persistence
of its “valid” or “invalid” status. This trait negates the need to terminate the
scheduler-descheduler mechanism frequently. In contrast, the Version 2 necessitated
the termination of this mechanism in each cycle as it consistently sought to identify

36

System Model

and act upon the node with minimum latency. This continual derivation of the
minimum latency node mandated a forced descheduling of a pod whenever sufficient
measurements were acquired, leading to an incessant cycle of frequent and infinite
pod descheduling. This was due to the existence of a minimum value in every cycle
and a lack of a natural steady state, resulting in a scenario dominated by forced
conditions, post the measurement of all nodes.

Limitations The system does not yet support multi-user operation, constrain-
ing its applicability in shared environments, even though the data structure is
already ready to support it.

Conclusion

This version of the Latency-Aware Scheduler enhances its adaptability and suitabil-
ity by aligning latency constraints with service requirements and user preferences.
The perpetual evaluation and realignment enable seamless operation with both
Liqo-integrated and standalone setups, presenting a significant advancement over
the first version.

4.3.4 Version 3.5 (V3.5): Multi-User Support
The Latency-Aware Scheduler’s journey towards becoming a versatile and holistic
solution continues. While Version 3 acknowledged and tackled the inherent chal-
lenges tied to network latency, it remained restrictive in its operations—catering
predominantly to a singular user paradigm. This limitation became particularly
pronounced in environments characterized by the simultaneous presence of multiple
users, each experiencing distinct network latencies due to their diverse geographical
placements. Version 3.5 is a breakthrough in this domain, introducing comprehen-
sive multi-user support that harmonizes the delicate balance between individual
user experiences and global network optimization.

The Multi-User Challenge

The concept of a multi-user environment inherently carries with it a bouquet of
intricacies, and when it intersects with the ever-evolving domain of network latency,
the complexities multiply. At the heart of this conundrum is the intrinsic variability
of network latency experienced by users. Users, by virtue of being distributed across
diverse geographical locations, encounter a spectrum of latency values. Imagine
a user in Europe connecting to a node in Asia, while another in North America
reaches out to a node in Africa. The latency values for these two users, in relation
to their connected nodes, could differ vastly. The node that is geographically closest
and hence optimal for one user might be distant and suboptimal for another.

37

System Model

This geographical distribution, combined with the organic growth in user num-
bers and their unpredictable request patterns, generates a dynamic and unpre-
dictable latency landscape. The scheduler, in its bid to provide an equitable
experience, constantly juggles the pods amongst the nodes. This balancing act,
although well-intentioned, can lead to inadvertent consequences. In its zeal to
optimize for a particular user based on a transient snapshot of the network, the
descheduler might reallocate pods away from nodes that are optimal for other users.
This act, albeit unintentional, could worsen the latency for these sidelined users,
leading to a fractured and inconsistent user experience.

Such challenges underscore the need for a solution that not only appreciates
the diverse latency landscape but also respects the individual experiences of users,
ensuring that the system’s global optimization goals do not overshadow the unique
requirements of each user.

User-Cluster Association: The Core Solution

In the intricate weave of a multi-user, multi-cluster environment, the paramount
challenge is ensuring that each user’s experience is optimized without unintentionally
compromising the experience of others. The central tenet of Version 3.5 addresses
this concern by emphasizing the principle of user-cluster association, a robust
and intelligent mechanism to match users to their optimal clusters based on latency
considerations.

While a user is associated with a singular cluster, it’s essential to note that this
relationship isn’t exclusive. A single cluster, given its capacity and geographical
location, could very well be the optimal choice for multiple users. Especially
in scenarios where users are geographically co-located or share similar network
pathways, it becomes not only feasible but also efficient to map them to the same
cluster. This means that while each user is tied to one specific cluster ensuring
consistent latency and performance for them, a cluster might cater to the needs of
multiple users who share similar latency profiles.

The strength of this approach is multi-fold:

1. Resource Optimization: By allowing multiple users to associate with a
single cluster (when suitable), resources within the cluster are better utilized.
This helps in preventing resource underutilization in some clusters while others
might be strained.

2. Latency Uniformity: Users associated with a particular cluster will experi-
ence consistent and predictable latency. Even though multiple users might be
tied to a single cluster, as long as their latency requirements are in alignment,
their experience remains uniform and optimal.

38

System Model

3. Dynamic Scalability: The user-cluster association model is not static. As
users’ locations change or as network conditions evolve, the associations can
be re-evaluated and adjusted. This ensures that the system remains agile and
responsive to shifting user needs.

4. Reduced Rescheduling Overhead: By anchoring users to specific clusters,
the frequency of pod reallocations diminishes. While the descheduler is still at
play for broader system optimizations, the user experience remains insulated
from frequent disruptions.

This model’s elegance lies in its ability to strike a balance between individual
user optimization and broader system efficiency. While each user is assured of
a latency-optimized experience, the system as a whole benefits from streamlined
operations and reduced overheads.

The "Free-Agent" Pod Mechanism and Association Management

The introduction of the "free-agent" pod is a pivotal enhancement in the system.
This unassociated pod is designed to serve incoming users who wish to measure
cluster latencies. By maintaining at least one such pod, new users can gauge which
cluster offers the best latency without disrupting any existing user-pod associations.

When a user-cluster-pod association is forged, the system verifies the existence
of at least one unassociated pod. If none exists, the replica set is increased,
safeguarding the presence of a free-agent pod and ensuring the system’s readiness
for new users.

User-cluster-pod associations come with an expiration timer. After 5 minutes
of user inactivity, the association expires, and the system assesses if there are
surplus free-agent pods. If there are, the replica set is adjusted downward by
descheduling one, ensuring efficient resource utilization.

Operational intricacies necessitate a temporary deployment freeze during specific
tasks:

1. To prevent an immediate pod respawn when a pod is deleted with an active
deployment.

2. To avoid the unintentional deletion of a pod with active associations when
reducing the replica set.

This strategy, encompassing the free-agent pod, dynamic replication, and associ-
ation expiration, guarantees the system’s responsiveness while optimizing resource
use.

39

System Model

Customized LoadBalancer: An Indispensable Architectural Component

The Customized LoadBalancer stands as an important entity in the intricate
dance of ensuring optimal user experiences. While the custom scheduler adeptly
assigns pods to clusters or nodes, its scope is inherently restricted to pod allocation.
However, in a multi-cluster environment, ensuring that user requests meet the
right pod becomes paramount, and this is a challenge the scheduler cannot directly
address. This creates a potential gap: even if a user is associated with a specific
cluster, the traditional load balancing techniques might still route their request to
a non-optimal pod, possibly located in a high-latency cluster.

Addressing this very gap, the Customized LoadBalancer emerges not just as
a facilitator, but as an essential orchestrator. Unlike its traditional counterparts,
which primarily distribute requests based on load metrics, our LoadBalancer is
imbued with the intelligence to discern and respect the user-cluster-pod associ-
ations. It has the capability to read and understand the data structure holding
these associations, ensuring that the user requests are not merely distributed, but
thoughtfully directed.

For users with established associations, the LoadBalancer takes the reins to
ensure that their requests are not just treated as random entities to be load balanced.
Instead, it routes them to one of the pods within their associated cluster, chosen
at random. This ensures that the user’s latency experience remains consistent and
optimal. Conversely, for users without such associations, the LoadBalancer defaults
to traditional load balancing methods, ensuring that the system remains efficient
and responsive to all users, irrespective of their association status.

In essence, the Customized LoadBalancer doesn’t merely balance loads; it
strategically optimizes user experiences by ensuring that the hard-earned gains of
user-cluster associations are not squandered by arbitrary request routing.

The Routing Manager

The Routing Manager, an advanced component in our multi-cluster environment,
represents a leap forward in intelligent request routing. Its design is tailored to
address the complex challenges of directing user requests to the most suitable
pods, taking into account real-time latency metrics and user-pod associations. This
sophisticated tool extends far beyond the capabilities of a standard LoadBalancer,
providing an essential link between the custom scheduler’s decisions and the actual
user experience.

Synergy with the Custom Latency-Aware Scheduler: The effectiveness of
the Routing Manager is intrinsically tied to its synergy with the custom latency-
aware scheduler. This scheduler, designed to allocate pods optimally across clusters,

40

System Model

considers latency as a key factor. However, its efficiency could be undermined with-
out a corresponding mechanism to ensure that user requests are routed according
to these allocations. This is where the Routing Manager becomes indispensable.
It translates the scheduler’s decisions into real-world routing outcomes, ensuring
that users are consistently directed to pods in clusters offering the lowest latency,
thereby actualizing the benefits of the scheduler’s latency-aware approach.

Adaptive and Responsive Design: The Routing Manager stands out for its
adaptability and responsiveness. It is constantly monitoring for any changes in
pod status or user-cluster associations. This allows it to swiftly adjust its routing
decisions in response to evolving cluster conditions or updated scheduler decisions,
maintaining a balance between optimal user experience and system efficiency.

Technical Implementation: The Routing Manager is a sophisticated module
developed in Go, leveraging widely-used libraries and frameworks to ensure robust
and efficient performance. At its core, the Routing Manager utilizes HTTP server
functionality for handling incoming requests, JSON for encoding data structures,
and the Kubernetes client-go library for seamless integration with the Kubernetes
ecosystem.

Traffic Routing Logic: The Routing Manager’s primary responsibility is to
intelligently direct user traffic to the appropriate destination based on user-cluster
associations. When a request arrives, the Routing Manager first checks if there is
an existing association for the user. If an association exists, indicating that the
user has a preferred pod based on latency measurements, the request is directed
specifically to the IP address of that associated pod. This targeted approach ensures
that the user’s experience is optimized based on the latest scheduling decisions and
latency data. In cases where no association exists for a user, the Routing Manager
adopts a more traditional load balancing approach. Here, it selects a pod for the
request in a randomized manner or based on other classic load balancing strategies.
This flexibility ensures that even in the absence of specific user-pod associations,
the system continues to function efficiently, distributing requests evenly across
available resources.

API Exposition and Adaptability: One of the key features of the Routing
Manager is its exposed API, which allows for real-time updates of user-cluster
associations. This API is designed to be easily adaptable to various contexts and
can integrate with different schedulers or orchestration systems. It enables external
entities, such as the custom scheduler, to communicate updated user-cluster-pod
associations, ensuring that the Routing Manager is always operating with the most
current data.

41

System Model

In summary, the Routing Manager is not just an essential component in our
current architecture; it is a forward-looking solution, designed to adapt and scale
with the evolving needs of complex, dynamic multi-cluster environments. Its
intelligent routing logic, combined with its flexible API and scalable design, positions
it as a key enabler for optimized user experiences and efficient cluster utilization.

Conclusion

Version 3.5 of the Latency-Aware Scheduler signifies a monumental leap, bridging
the gap between individual user needs and global network optimization goals.
By introducing multi-user support underpinned by the users-cluster association
mechanism and the Customized LoadBalancer, this version offers a refined, scalable,
and consistent solution suitable for diverse, multi-user environments.

4.4 Latency-Meter Contact Overhead
The intricacies involved in the interaction between the De-scheduler and latency-
meters present significant limitations and challenges in the current architecture of
the system. The periodic contact between the De-scheduler and each latency-meter,
set at intervals t, demonstrates a critical bottleneck, particularly as the number
of pods increases.

This model is hindered by inherent inefficiencies due to the asynchronous
nature of the HTTP requests employed for communication. The time overhead
involved in contacting individual latency-meters is substantial, leading to decreased
overall system performance and responsiveness, making it a point of concern for
system designers and administrators.

The presence of latency-meters in every pod within the cluster necessitates
an efficient and robust system for gathering latency data, crucial for optimizing
system performance and resource allocation. The current approach, despite its
effectiveness in data collection, demands refinements to alleviate the bottlenecks
and overheads associated with it.

Proposed Solution: Synchronized Distributed Database

The introduction of a synchronized, distributed database emerges as a viable
solution to address the aforementioned limitations. This advanced approach enables
concurrent data writes by the latency-meters and subsequent synchronization,
allowing the De-scheduler to access the aggregated data through a single read
operation, thereby significantly reducing convergence time and improving system
efficiency.

42

System Model

Figure 4.3: Distributed Database

Implementing such a database system brings forth benefits including enhanced
data availability, reliability, and fault tolerance, addressing the critical needs
of high-demand enterprise environments. It also facilitates seamless scaling to
accommodate growing data volumes and user demands, ensuring the system’s
longevity and adaptability to evolving requirements.

Insights into Distributed Database Solutions: The implementation of a
synchronized, distributed database can leverage various established solutions, each
offering unique advantages:

• Cassandra: Recognized for its fault tolerance and scalability, Cassandra can
handle vast data volumes spread across multiple servers, making it suitable for
environments where high availability and no single point of failure are crucial.

• Couchbase: This NoSQL database offers high performance and scalability,
providing a unified platform for efficiently managing, querying, and indexing
data, suited for diverse enterprise applications.

• MongoDB: With its flexible schema and cross-platform capabilities, Mon-
goDB is adept at managing document-oriented data, ensuring fast and easy
integration in varied applications.

• CockroachDB: It stands out for its strong consistency and data availability in
distributed environments, especially in cloud services, addressing the challenges
of managing global deployments effectively.

43

System Model

Moreover, the integration of these databases allows for the development of
a more cohesive and harmonious system architecture, ensuring that the
interaction between different components is seamless and efficient. The trade-offs,
complexities, and considerations involved in choosing the appropriate database
solution require careful evaluation of system requirements, data structures, and
operational constraints.

In conclusion, addressing the latency-meter contact overhead through a syn-
chronized, distributed database is pivotal for enhancing system robustness and
efficiency. This innovative approach mitigates the existing limitations and opens
avenues for exploring more sophisticated and holistic solutions in the future.

44

Chapter 5

Implementation & Results

5.1 Development Environment
The scheduler variants were developed and extensively tested within a dedicated
environment. This environment was hosted on a VM running Debian 11 Bullseye,
virtualized through Virtual Box on a Windows 11 PC with specifications of
16 GB RAM, an 8-core CPU, and 256 GB of disk space. The VM was allocated
4GB of RAM, a 2-core CPU, and 20 GB of disk space.

For the creation and management of local Kubernetes clusters, KinD (Kuber-
netes in Docker), was employed, leveraging its latest version, kindest/node v1.28.
KinD is a versatile and lightweight tool designed to run local Kubernetes clusters
using Docker container "nodes". It serves as a more resource-efficient alternative to
traditional VM-based solutions, thereby enabling comprehensive testing even on
constrained computing environments, such as a personal computer.

The inherent adaptability and interoperability of Liqo (version 0.9.4) on KinD
allowed for immediate experimentation with multi-cluster environments from
the early stages of development, proving invaluable for progressive testing and
iterative development throughout the various stages of the project.

The development was done using Go (Golang), (version 1.21.1), the Kuber-
netes source language, known for its simplicity, efficiency, and reliability in
managing distributed systems. The applications, namely the custom scheduler
in its two versions and the Latency-Meter, were developed with coherence and
simplicity in Go, and were deployed as container images on my personal Docker Hub
(User: crischiaro) to ensure availability and ease of use. They can be referenced in
Kubernetes deployments or pods using the following URIs:

• crischiaro/latency-aware-scheduler_v2:latest

• crischiaro/latency-aware-scheduler_v3:latest

45

crischiaro/latency-aware-scheduler_v2:latest
crischiaro/latency-aware-scheduler_v3:latest

Implementation & Results

• crischiaro/latency-aware-scheduler:latest

• crischiaro/latency-meter:latest

• crischiaro/routing-manager:latest

The development workflow was marked by a high degree of flexibility and dy-
namism, enabled by the seamless interoperability provided by Kubernetes and the
flexibility of the employed tools and languages, accommodating evolving require-
ments and adjustments with ease.

Component Version
Debian (VM) 11 Bullseye
Windows (Physical Host) 11 22H2 Home
KinD (Kubernetes in Docker) kindest/node v1.28
Go (Golang) 1.21.1
Liqo 0.9.4
Custom Scheduler (V2) crischiaro/latency-aware-scheduler_v2:latest
Custom Scheduler (V3) crischiaro/latency-aware-scheduler_v3:latest
Custom Scheduler (V3.5) crischiaro/latency-aware-scheduler:latest
Latency Meter crischiaro/latency-meter:latest
Routing Manager crischiaro/routing-manager:latest

Table 5.1: Summary of Components and Versions

5.2 Testing Environment
Following the development of the custom scheduler and the Latency-Meter, the
applications, along with their interoperability, were tested in a specialized cloud
environment provided by Politecnico di Torino, named CrownLabs [15]. The
goal was to transition to a more realistic scenario. Since testing on production
clusters was not feasible, virtual machines (VMs) within CrownLabs were leveraged
for this purpose.

CrownLabs delivers remote computing labs through per-user VMs, allowing
instructors and students to interact in a versatile and secure remote environment.
It enabled the provisioning of a set of VMs, each equipped with Ubuntu 20.04.6
LTS, 2 GB RAM, 2 CORE CPU, and 20 GB DISK, forming an ideal environment
for conducting extensive tests on the scheduler variants.

In this environment, Kubernetes (version 1.28) was installed directly, encom-
passing kubeadm, kubectl, and kubelet, omitting the use of KinD. The chosen
container-runtime was containerd (version 1.6.24), and the Container Network

46

crischiaro/latency-aware-scheduler:latest
crischiaro/latency-meter:latest
crischiaro/routing-manager:latest

Implementation & Results

Interface (CNI) was Flannel (version 0.22.3). The container runtime is pivotal
for enabling container execution within a Kubernetes cluster, and the CNI is crucial
for facilitating inter-container communication, establishing a reliable and efficient
networking substrate for container orchestration.

Several VMs were allocated for testing. Initially, they were configured as
nodes of a single cluster (1 control-plane and n workers) to compare the two
custom-scheduler versions. Subsequently, the VMs were reconfigured to form
several Virtual Clusters, each comprising 2 nodes (control-plane and worker),
interconnected using Liqo (version 0.9.4) through Out-of-band peering, creating
a topology of 1 master cluster and n slave clusters. The remaining VM
simulated user requests, ensuring a comprehensive evaluation of the scheduling
strategies in diverse scenarios.

Component Specification or Version
Environment CrownLabs
VM Specifications Ubuntu 22.04 LTS, 2 GB RAM, 2 Core CPU, 20 GB Disk
Kubernetes v1.28 (kubeadm, kubectl, kubelet)
Container Runtime containerd v1.6.24
Container Network Interface (CNI) Flannel v0.22.3
Clusters Configuration 1 1 Master Cluster, 3 Slave Clusters (2 nodes each)
Clusters Configuration 2 1 Single Cluster (9 nodes)
Liqo v0.9.4
Connection Out-of-band peering

Table 5.2: Summary of Testing Environment Specifications

5.3 Testing
In this section, we detail the methodologies and the tools used for emulating
network latency and its impacts within the designed Kubernetes clusters. The
ability to precisely induce and measure latency is pivotal for validating the efficiency
and resilience of the custom-scheduler and latency-meter under varying network
scenarios.

5.3.1 Inducing Network Latency
Traffic Control (TC) is a kernel-based subsystem in Linux, providing the ability to
control network traffic management. It is essentially a framework for managing
and configuring the network traffic on a Linux host, allowing for manipulation of
the traffic while it is in transit. This includes controlling the bandwidth allocation,
managing traffic queues, classifying network packets, shaping network traffic, and
more.

47

Implementation & Results

Figure 5.1: Traffic Control [16]

Within this framework, the tc (Traffic Control) command emerges as an in-
valuable feature, serving as a versatile interface allowing users to modify network
traffic behavior on specific interfaces. This command is particularly renowned for
its ability to induce artificial delays, simulating various network conditions that
are crucial to assess the adaptability and performance of distributed systems under
different network states.

This command enables the replication of a myriad of network scenarios essential
for testing the robustness and adaptability of distributed systems, especially when
subjected to unstable network conditions. By interacting with the network interface
layer, the tc command allows for the induction of network anomalies such as
latency, positioning it as a fundamental tool in the emulation of diverse network
states.

When employing the tc command, several crucial aspects and intricacies must
be mindfully considered:

• Reflective Nature of Latency: The induced latency is reflective, affecting
both the incoming and outgoing traffic. This dual impact makes it imperative
to meticulously plan and understand the network topology to emulate exact
latency values for each node or cluster accurately.

• Topological Awareness: The actual latency experienced can differ from the
expected values, depending on the underlying network topology and the route
traversed by the packets. This underscores the need for a deep understanding
of the network topology and a strategic approach to interpreting latency values
to gain authentic insights.

• Inherent Variability: The induced latency acts as a base threshold, with
the actual latency being susceptible to variations due to multiple factors such
as network traffic, geographical distances, and other unpredictable variables.
Therefore, it is essential to view the induced latency as a minimum bound,
acknowledging the inherent variability.

48

Implementation & Results

Examples and Practical Application Below are practical examples showcasing
the utilization of the tc command to manage network latency:

Viewing existing latency settings:
sudo tc qdisc show dev enp1s0

Inducing latency:
sudo tc qdisc add dev enp1s0 root netem delay 100ms

Removing the induced latency:
sudo tc qdisc delete dev enp1s0 root netem

These commands are instrumental in observing, introducing, and eliminating
network delay (so latency) to a network interface (e.g. enp1s0). This allows the
creation of varied network conditions to study the repercussions on the devised
solutions.

Precision and Precaution in Application When applying the tc command,
precision and a profound understanding of network topology are indispensable.
It is crucial to acknowledge potential discrepancies between the induced and the
measured latency due to inherent network structures and external influences. A
thoughtful and cautious approach is paramount during testing phases to accurately
recognize the intrinsic variability in network latency, treating the induced values as
minimal thresholds while being alert to possible deviations due to uncontrollable
network circumstances.

5.3.2 Test: Default Scheduler vs. Latency-Aware Scheduler
(V3)

In order to compare the performance and efficiency of the Kubernetes default
scheduler against the Version 3 of the custom latency-aware scheduler, two distinct
use cases were considered. The testing involved deploying an Nginx application,
also incorporating a latency-meter container, and exposing it through a Load
Balancer service. The service routes user requests to balance load and traffic
efficiently, and in instances of equal load, it operates in a randomized manner.

Setup and Configuration

8 VMs were segmented into 4 Clusters, each designated as:

• MILAN: Master

• ROME: Slave

49

Implementation & Results

• PARIS: Slave

• TURIN: Slave

with each cluster consisting of 2 nodes (VMs): one serving as a control-plane
node and the other as a worker node. These clusters were interconnected using
Liqo, forming a star network topology with MILAN as the master cluster in
the center and the others as slave clusters to the edges.

In both use cases, the following configurations were set into the deployment:

• hard_constraint = 40

• soft_constraint = 30

A Bash script was used to run on a ninth VM to simulate requests from
a user. This script measures the latencies experienced by the user, executing a
specified number of requests (tot_r) at designated intervals (i_s seconds), with
the values varying depending on each case d ’use.

Algorithm 5 Network Latency from User Algorithm
1: Input: total_requests, service_url, interval
2: Init:
3: script_start_time ▷ Script start
4: for i = 1 to total_requests do
5: start_time ← Current Time
6: response ← HTTP Status from service_url
7: end_time ← Current Time
8: latency ← end_time - start_time
9: Output: "Req. i - Latency: latency ms - Status: response"

10: if i < total_requests then
11: Sleep for interval seconds
12: end if
13: end for
14: script_end_time ← Current Time ▷ Script end
15: total_time ← script_end_time - script_start_time
16: Output: "Total Time: total_time ms"

Baseline Latency It is crucial to note that an inherent baseline latency exists
within the clusters, ranging between 15 and 25 ms, as assessed by the request script
without leveraging the tc command. Consequently, any usage of the tc command
would result in an incremental increase in the latency range for each cluster.

50

Implementation & Results

Use Case 1: Normal Behaviour

The first use case involved configuring the tc on clusters to establish the following
latencies:

• MILAN: [18; 28]ms - Soft Valid Cluster (latency < soft_constraint)

• ROME: [29; 39]ms -
Hard Valid Cluster (soft_constraint < latency < hard_constraint)

• PARIS: [45; 55]ms - Invalid Cluster (latency > hard_constraint)

• TURIN: [41; 51]ms - Invalid Cluster (latency > hard_constraint)

The test was conducted with a total of 55 requests, an interval of 4 seconds
between each request, and 2 replicas of nginx and latency-meter containers.

Results and Analysis The collected latency measurements for the default
scheduler and the custom scheduler (V3) are represented graphically to illustrate
the comparative efficacy and response trends over time. Additionally, summary
tables presenting the cumulative average and other relevant statistics are included
for a compact view of the outcomes.

The tables below embody a comprehensive depiction of the recorded latencies
during the experimental phase, illustrating not only the average latency but also the
confidence intervals, and convergence times. These representations are instrumental
in underscoring the comparative effectiveness and intricate performance metrics
of the schedulers in use, facilitating a nuanced understanding of their operational
dynamics and adaptative capabilities.

Default Scheduler Custom Scheduler (V3)
Average Latency (ms) 42.80 34.38
Confidence Interval [40.65, 44.95] [32.57, 37.20]
Convergence Time (s) 0 ∼ 90

Table 5.3: Summary of Latency Measurements

The default scheduler deploys pods to clusters in a manner that appears almost
random, especially given the initial unoccupied state of the clusters, maintaining a
nearly immutable cumulative average above the hard_constraint. This allocation
strategy, seeming arbitrary, may result in the selection of a valid and an invalid
cluster, sustaining the average latency until a de-scheduling event intervenes due
to scenarios like application failure or node/cluster crash.

Conversely, the custom latency-aware scheduler, after an initial phase of
seemingly random allocation resembling the default scheduler’s behavior, displays

51

Implementation & Results

Figure 5.2: Default Scheduler vs Latency-Aware (V3) Scheduler

pronounced adaptability and nuanced response to network latencies. In the initial
phase, the pods are apparently allocated to the same clusters as the default
scheduler, likely Rome and either Paris or Turin. This decision is presumably
arbitrary, stemming from the lack of initial load on the clusters.

However, as the user requests start coming in and the latency-meter begins
to collect the network latency measurements, a discernible shift in the scheduler’s
allocation strategy becomes evident. Approximately 90 seconds into the test, the
recorded measurements showcase a notable dip below the soft_constraint. This
suggests that one of the pods, probably initially scheduled on an Invalid cluster like
Paris or Turin, had been de-scheduled and re-allocated to Milan, a Soft Valid cluster,
leading to a convergence where the cumulative average latency harmoniously resides
within the soft and hard constraint limits.

The convergence time, the time post which the pods no longer move and a stable
state is achieved, is observed to be around 90 seconds. During this state of regime,
the cumulative average is confined within the band defined by the soft and hard
constraints, reflecting the scheduler’s adaptive reallocation of the pod to conform to
the latency restrictions. The continuous user requests and subsequent network
latency measurements play an important role in this adaptive reallocation,
enabling the scheduler to accurately discern the viability of the clusters and adjust

52

Implementation & Results

the pod placements accordingly.
The narrow confidence interval associated with the default scheduler is reflective

of its relatively stable and predictable allocation behavior, primarily owing to its
non-adaptive, load-balanced allocation mechanism. This results in a more stabilized
and consistent latency range, contrasting with the responsive and adaptative
nature of the custom scheduler (V3) which, by continually refining allocations
based on the latest latency measurements, exhibits a broader and more varied
range of responses.

Use Case 2: Soft Condition

This use case elucidates the Soft Condition scenario, illustrating how this specific
condition further reduces the overall network latency at the expense of convergence
time. The tc were configured on clusters as follows:

• MILAN: [18; 28]ms - Soft Valid Cluster (latency < soft_constraint)

• ROME: [29; 39]ms -
Hard Valid Cluster (soft_constraint < latency < hard_constraint)

• PARIS: [45; 55]ms - Invalid Cluster (latency > hard_constraint)

• TURIN: [19; 29]ms - Soft Valid Cluster (latency < soft_constraint)

The test was executed with a total of 65 requests, an interval of 4 seconds
between each request, and 3 replicas of nginx and latency-meter containers.

Results and Analysis The latency measurements for both the default and cus-
tom scheduler (V3) are depicted graphically below, to underscore the comparative
effectiveness and adaptive response over time. A summary table is also included to
provide a compact overview of the outcomes.

Default Scheduler Custom Scheduler (V3)
Average Latency (ms) 42.22 27.86
Confidence Interval [39.57, 44.86] [25.57, 30.16]
Convergence Time (s) 0 ∼ 120

Table 5.4: Summary of Latency Measurements in Soft Condition

Initially, both the default and the custom schedulers appear to allocate pods
in an almost random manner, given the initial unoccupied state of the clusters.
The default scheduler, as in the first Use Case, while accounting for the load,
seems to make random allocations initially since the clusters are empty. It appears

53

Implementation & Results

Figure 5.3: Default Scheduler vs Custom Scheduler (V3) in Soft Condition
Scenario

to choose a Hard Valid Cluster (Rome), an Invalid Cluster (Paris), and a Soft
Valid Cluster (either Milan or Turin). The cumulative average maintains above the
hard_constraint and remains relatively constant as pods do not change until a
potential de-scheduling event occurs.

The custom scheduler (latency-aware), like the default one, initially allocates
pods seemingly at random, apparently choosing the same clusters. However, we
observe that, after 30 seconds, the user measurements begin to fall within the band
between hard and soft constraints. There could already be talk of convergence at
this stage, but around the 70th second, we again receive measurements above
the hard_constraint threshold, only to return to the band around 90 seconds
and finally settle completely below the soft_constraint threshold after 120
seconds. This corresponds to our convergence time.

What happened? The Soft Condition mechanism! The pods were scheduled
on 1 Hard, 1 Soft, and 1 Invalid Cluster out of a total of 4 clusters. When the pod
on the Invalid was de-scheduled, it ended up on the other Soft Valid Cluster. Thus,
it found itself in the soft condition, given by the inequality:

Soft Valid Clusters + # Hard Valid Clusters >
Total # Clusters

2
54

Implementation & Results

Substituting in the known values gives:

2 (Soft) + 1 (Hard) >
4 (Total)

2
Simplifying:

2 (Soft) + 1 (Hard) > 2 (Total)
Thus, validating the Soft condition, leading to the de-scheduling of the pod from
the Hard Valid Cluster.

At this point, as in the worst-case scenario, the pod was re-scheduled on the
Invalid, de-scheduled after 30 seconds, re-scheduled again on the Hard, triggering
the soft condition again, and, finally, scheduled on a Soft Valid Cluster at 120s
time.

This adaptive behaviour is attributed to the Soft Condition mechanism, which,
when activated, triggers the re-scheduling of pods from Hard Valid clusters to Soft
Valid clusters, harmonizing the cumulative average latency within the soft and hard
constraint limits, exhibiting a clear adaptability and convergence to an optimal
state around 120 seconds after a series of re-allocations, significantly reducing the
cumulative average latency.

Again, The difference in confidence intervals between the default and custom
scheduler can be associated again with the dynamic and adaptive nature of the
latter. The responsive and continuous refinement of allocations based on the latest
latency measurements by the custom scheduler leads to a broader range of responses
and subsequently, a wider confidence interval compared to the more static and
predictable allocation behavior of the default scheduler.

5.3.3 Test: Custom Scheduler V2 vs. Custom Scheduler
V3

To assess and contrast the efficacy of the two versions of the custom latency-aware
scheduler, namely V2 and V3, two specific use cases were conducted, adopting
the identical steps and configurations as the preceding tests. The V2, being
the precursor to V3, is designed to allocate pods, post-transitory phase, to the
nodes/clusters manifesting minimal latency.

The aim is to draw a comprehensive comparison between the nuanced behaviors
and adaptive functionalities of both scheduler versions under varying network
conditions.

Common Setup and Configuration

For both use cases, the deployment involved an Nginx application integrated
with a latency-meter container and exposed via a Load Balancer service.
The tests abided by the constraint configurations of:

55

Implementation & Results

• hard_constraint = 40

• soft_constraint = 30

The Bash script referenced in Algorithm 5 was once again employed to simulate
user requests and ascertain the experienced latencies. This approach ensured
uniformity in the data acquisition process across all tests, enabling a coherent and
comparable dataset.

Use Case 1: Normal Behaviour

This use case explores the standard operational scenario demonstrating the normal
behavior of the scheduler under predefined constraints. The VMs are divided as
the last Test: 8 VMs in 4 Clusters named MILAN, ROME, PARIS and
TURIN, configured and connected (with Liqo) in such a way as to have an active
star network topology in which the Milan cluster is the Master and the
other Slaves.

Using the td command,the Clusters are configured as follows:

• MILAN: [18; 28]ms - Soft Valid Cluster (latency < soft_constraint)

• ROME: [20; 30]ms - Soft Valid Cluster (latency < soft_constraint)

• PARIS: [38; 48]ms - Invalid Cluster (latency > hard_constraint)

• TURIN: [29; 39]ms -
Hard Valid Cluster (soft_constraint < latency < hard_constraint)

The test involved a total of 40 requests, an interval of 6 seconds between each
request, and 2 replicas of the nginx and latency-meter containers.

Results and Analysis Comparative graphs of both scheduler versions are shown
below, emphasizing the adaptive response and effectiveness of both scheduler
versions over time.

Scheduler V2 Scheduler V3
Average Latency (ms) 28.77 32.03
Confidence Interval [25.34, 30.31] [29.93, 33.57]
Convergence Time (s) 120 48
Total Descheduling 3 1

Table 5.5: Summary of Latency Measurements in Normal Behaviour Scenario

The schedulers initially allocate pods seemingly at random, probably choosing
an Invalid (Paris) and a Soft Valid Cluster (either Milan or Turin). However, the

56

Implementation & Results

Figure 5.4: Convergence Time V2 vs
V3

Figure 5.5: Confidence Interval V2 vs
V3

cumulative average of the Scheduler V2 dips below the hard_constraint signifi-
cantly later compared to the V3. This delay is attributed to the Scheduler V2
requiring enough measurements (equal to the number of pods) before it begins the
de-scheduling process, in contrast to the V3, which only needs a single measurement
per pod to make de-scheduling decisions.

Once the Scheduler V2 has received adequate measurements, it begins a sys-
tematic de-scheduling process. This involves rigorous cycling through the various
clusters, meticulously identifying and removing the pods associated with the worst
latency, each time trying to progressively refine the overall latency profile. This
approach ultimately causes the scheduler to settle below the soft_constraint
boundary, demonstrating a strategic preference for optimizing network performance
beyond merely conforming to the acceptable latency range. This implies that
Scheduler V2 is inherently designed to aggressively pursue optimal performance
levels, often involving multiple cycles of de-scheduling and re-scheduling to reach a
latency equilibrium state that is the minimum.

In contrast, Scheduler V3 exhibits a more conservative and equilibrium-oriented
behavior. It meticulously avoids transgressing the soft_constraint, instead
choosing to strategically maintain the allocations within the defined acceptable
latency range. This approach underscores a deliberate and calibrated trade-off
between performance optimization and operational stability, enabling Scheduler V3
to achieve a substantially reduced convergence time compared to its V2 counterpart.
This can be attributed to the fact that Scheduler V3 necessitates only a single
de-scheduling event to stabilize its operational state, transitioning swiftly from an
initial allocation of pods in Invalid and Soft Valid clusters to a balanced allocation
in Soft Valid and Hard Valid clusters—a condition deemed acceptable according

57

Implementation & Results

to the deployment’s predefined operational parameters.
To illustrate further, the refined approach of Scheduler V3 stands in stark

contrast to the extensive iterations performed by Scheduler V2 to optimize latency.
This is evident from the multiple transitional phases of Scheduler V2, characterized
by several reallocations and adjustments, leading to a substantially elongated
convergence time. These transitions underline the fundamental differences in the
operational methodologies and objectives between the two schedulers. Below are
the sequential transitions of Scheduler V2:

• Initial State: Invalid - Soft Valid clusters

• Transition 1: Soft Valid - Hard Valid clusters

• Transition 2: Soft Valid - Soft Valid clusters

• Final State (Post-Last Cycle for global minimum, refer to Paragraph 4.3.1):
Soft Valid - Soft Valid clusters

This extensive sequence accentuates Scheduler V2’s meticulous approach to
achieving the optimal latency, showcasing the inherent contrast in the strategic
planning between Scheduler V2 and V3.

Confidence Interval The difference in the confidence intervals of the two sched-
ulers reveals the dynamic and adaptive nature of Scheduler V3. Its continuous
refinement and responsive allocation, based on the latest latency measurements,
lead to a wider range of responses and hence, a wider confidence interval, reflecting
a more diverse and adaptive allocation behavior compared to the more static and
predictable allocation strategy of Scheduler V2.

Use Case 2: High Convergence Time

This use case was designed to show a significantly high convergence time when the
number of nodes increases, while the number of replicas is low.

Configuration In this scenario, the VM configuration is different than in the
previous use case. The VMs are no longer divided into 4 clusters, but rather 18
VMs are inserted within 9 clusters, giving rise to a test carried out without Liqo,
composed of 1 master cluster and 8 slave clusters.

The VMs are configured with the tc command as follows:

1. cluster-1: [38; 48] Invalid Node

2. cluster-2: [25; 35] Hard Node

58

Implementation & Results

3. cluster-3: [35; 45] Invalid Node

4. cluster-4: [32; 42] Invalid Node

5. cluster-5: [20; 30] Soft Node

6. cluster-6: [26; 36] Hard Node

7. cluster-7: [33; 43] Invalid Node

8. cluster-8: [19; 29] Soft Node

9. cluster-9: [29; 39] Hard Node

The test involves a total of 70 requests, a 6 second interval between each
request, and 3 replicas of the nginx and latency-meter containers.

Results and Analysis Comparative graphs of the two versions of the scheduler
are presented below, highlighting the adaptive response and effectiveness of both
versions of the scheduler over time.

Figure 5.6: Convergence Time V2 vs
V3

Figure 5.7: Confidence Interval V2 vs
V3

This data corroborates the observations initially noted in Use Case 1, portraying
a clear distinction between the operational mechanics of the V3 and V2 schedulers.
Initially, both schedulers allocate pods seemingly at random due to the unoccupied
state of the nodes, allowing for arbitrary selections based on node load.

However, the divergence in behavior becomes apparent once the descheduling
phase commences. The V3 scheduler exhibits a reduced convergence time of around
96 seconds. It efficiently settles on an optimal solution, accommodating both Hard

59

Implementation & Results

Scheduler V2 Scheduler V3
Average Latency (ms) 28.77 32.03
Confidence Interval [27.31, 30.23] [30.95, 33.11]
Convergence Time (s) 246 96
Total Descheduling 7 3

Table 5.6: Summary of Latency Measurements in High Convergence Time Scenario

Valid and Soft Valid nodes, hence exhibiting a faster transition to a steady-state,
even if the solution isn’t perfect.

In contrast, the V2 scheduler seeks a minimal perfect solution, necessitating
a meticulous evaluation of all nodes and resulting in a longer convergence time
of about 246 seconds—approximately 2.5 times the convergence time of V3. It
conducts 7 deschedulings, compared to the 3 by V3, reflecting its pursuit of absolute
perfection at the expense of extended convergence periods.

In essence, this analysis underscores the operational distinctions between the
V3 scheduler’s adaptability and efficiency, and the V2 scheduler’s precision and
thoroughness, revealing a consequential trade-off between adaptability and absolute
accuracy in scheduling paradigms.

5.3.4 Test summary: Comparison between all schedulers
The primary focus of this comparison is to gauge the effectiveness and efficiency of
the default Kubernetes scheduler against three distinct variations of the Latency-
Aware scheduler and a similiar and a similiar Latency-Aware scheduler namely [13],
in diverse scenarios.

• LAIS-Hard, Custom Scheduler V3, focuses primarily on satisfying the hard
constraint.

• LAIS-Soft, Custom Scheduler V3, extends its considerations to meet the
soft constraint.

• LAIS-0, Custom Scheduler V2, looks for the the nodes with the lowest latency
for the user.

• LAK, similiar to V2, doesn’t consider the union of nodes in Clusters but
treating them individually.

These Latency-Aware Scheduler variations are specifically crafted to address
varying latency constraints, thereby offering a spectrum of responses under different
network conditions.

60

Implementation & Results

Setup and Configuration

The deployment comprised of 16 VMs, representing 8 interconnected clusters using
Liqo. For all scenarios, the tests were governed by the parameters:

• latency_meter set to collect values every 5 seconds

• descheduler operating at 30-second intervals

Three scenarios were crafted, each with unique configurations to simulate various
real-world application setups and network conditions:

Scenario 1 Scenario 2 Scenario 3
Hard Constraint 40ms 80ms 80ms
Soft Constraint 30ms 30ms 30ms
Cluster_1 70ms 100ms 100ms
Cluster_2 100ms 120ms 150ms
Cluster_3 120ms 150ms 200ms
Cluster_4 150ms 35ms 50ms
Cluster_5 35ms 36ms 60ms
Cluster_6 36ms 70ms 70ms
Cluster_7 15 15ms 15ms
Cluster_8 21ms 21ms 21ms

Table 5.7: Scenario Configuration

Results and Analysis

For each scenario, a series of 100 tests were conducted per scheduler variant,
amassing a total of 1200 tests across all scenarios.

Default LAIS-Hard LAIS-Soft LAIS-0

15.0

23.7

37.5

59.2

93.6

148.0

L
at

en
cy

(m
s)

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

(a) Scenario 1
Default LAIS-Hard LAIS-Soft LAIS-0

15.0

23.8

37.8

60.0

95.1

151.0

L
at

en
cy

(m
s)

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

(b) Scenario 2
Default LAIS-Hard LAIS-Soft LAIS-0

15.0

25.2

42.3

71.0

119.1

200.0

L
at

en
cy

(m
s)

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

(c) Scenario 3

Figure 5.8: Latency (left side) and success rate (right side) for all testing scenarios.
Current schedulers cannot minimize perceived latency.

61

Implementation & Results

0 100 200 300 400
Convergence time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

LAIS-Hard
LAIS-Soft
LAIS-0
LAK

(a) Scenario 1

0 100 200 300 400
Convergence time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

LAIS-Hard
LAIS-Soft
LAIS-0
LAK

(b) Scenario 2

0 100 200 300 400
Convergence time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

LAIS-Hard
LAIS-Soft
LAIS-0
LAK

(c) Scenario 3

Figure 5.9: CDF of converge time for the three scenarios. While minimizing the
perceived latency is time consuming, fulfilling a (soft or hard) constraint is less
costly.

Default LAIS-H LAIS-S LAIS-0 LAK
Average Latency (ms) 64.59 30.07 21.56 19.26 19.11
Convergence Time (s) – 19.34 65.33 242.65 401.08
Success Rate (%) 54.0 75.0 100.0 100.0 100.0

Table 5.8: Summary of Test Results Scenario 1

Default LAIS-H LAIS-S LAIS-0 LAK
Average Latency (ms) 65.29 37.42 21.34 19.63 19.78
Convergence Time (s) – 16.19 62.09 241.83 405.54
Success Rate (%) 50.0 76.0 100.0 100.0 100.0

Table 5.9: Summary of Test Results Scenario 2

Default LAIS-H LAIS-S LAIS-0 LAK
Average Latency (ms) 81.68 45.26 21.85 19.86 19.26
Convergence Time (s) – 10.89 46.59 241.37 407.56
Success Rate (%) 50.0 78.0 100.0 100.0 100.0

Table 5.10: Summary of Test Results Scenario 3

62

Implementation & Results

Latency Distribution and Success Rate Analysis In our detailed assessment,
we first compared the schedulers’ efficacy in achieving targeted latency benchmarks,
crucial in real-world applications. Our analysis, depicted in Fig. 5.8, showcases
the varying performances across the three scenarios. The Default Scheduler
consistently demonstrated the highest average latency, with values of 64.59 ms,
65.29 ms, and 81.68 ms for Scenario 1, Scenario 2, and Scenario 3 respectively.
This scheduler’s approach, lacking in latency-oriented decision mechanisms,
led to considerable fluctuations in latency and a mere 50% success rate in valid
pod placements.

LAIS-H, in stark contrast, showed a notable reduction in latency across all
scenarios. While it did not achieve a perfect success rate, its performance hovered
around 75% to 78%, indicating a more refined yet balanced approach: it does not
reach 100% since it trades off “hard” and “soft” constraints.

LAIS-S and LAIS-0 distinguished themselves with remarkably low latencies,
consistently below 22 ms across all scenarios. Impressively, both these schedulers
achieved a 100% success rate, demonstrating their reliability and effectiveness in
task execution. This exceptional performance highlights their design’s focus on
minimizing latency while maintaining high operational standards.

Convergence Time Evaluation The convergence time of the schedulers, in-
dicating their adaptability to changing conditions, was another critical metric we
examined. As per the data from your tables, LAIS-H generally exhibited quicker
convergence times, with LAIS-S and LAIS-0 following suit, albeit at a slightly
slower pace. Notably, LAIS-0 had the longest convergence times, especially in
Scenario 2 and Scenario 3, where it exceeded 240 seconds.

LAK, with its approach of treating each node individually rather than as part
of a unified cluster, demonstrated even longer convergence times in all scenarios.
This distinction in strategy, while meticulous, led to extended durations in
finding suitable nodes for pod placement, underscoring the efficiency of the
other schedulers’ more integrated approach.

Summative Observations and Scheduler Selection Guidance In summary,
the choice between Scheduler V3 (LAIS) and Scheduler V2 (LAIS-0) comes down
to a strategic decision based on the specific requirements of the deployment en-
vironment and application type. While the Default Scheduler lacks specialized
latency optimization mechanisms, leading to somewhat arbitrary pod placements,
the Latency-Aware Scheduler family offers a more nuanced approach.

Custom Scheduler V3, strikes a balance between reducing latency and
maintaining a lower convergence time. This makes it an apt choice for environments
where a moderate reduction in latency is acceptable, without significantly prolonging

63

Implementation & Results

the convergence time. It’s a trade-off that suits environments with frequent
changes and a need for relatively swift adaptability.

On the other hand, Custom Scheduler V2 is designed for scenarios where
minimizing latency is paramount, albeit at the cost of a higher convergence
time. This makes it particularly suitable for applications where even slight delays
can be critical, such as cloud gaming, live video streaming, and video calls. Its
ability to push latency to the lowest possible values, despite longer convergence
times, makes it an ideal choice for these high-stakes environments.

In contrast, LAK, though not a part of our developed suite, serves as a point of
reference for its longer convergence times (even worse than Custom Scheduler
V2), especially in multicloud contexts or environments with a high number of
nodes. It exemplifies a scenario where granular node selection leads to increased
convergence times, which may not be suitable for latency-critical applications.

Ultimately, the selection hinges on the nature of the service being deployed. Not
all services demand extremely low latency. While latency-sensitive applications
like cloud gaming and live streaming benefit from the low-latency capabilities of
Scheduler V2, other services such as email, file downloads, and cloud backup can
comfortably operate with the balanced approach offered by Scheduler V3. This
flexibility allows for a tailored approach to scheduler selection, aligning closely with
the specific demands and operational dynamics of the deployed service.

Multi-user comparison

Figure 5.10: Latency V3 vs V3.5
Scenario 1

Figure 5.11: CDF V3 vs V3.5 Sce-
nario 1

64

Implementation & Results

LAIS(V3) LAIS(V3.5)
Average Latency (ms) 21.56 21.25
Convergence Time (s) 65.33 69.58

Table 5.11: Multi-user evaluation Scenario 1

Figure 5.12: Latency V3 vs V3.5
Scenario 2

Figure 5.13: CDF V3 vs V3.5 Sce-
nario 2

LAIS(V3) LAIS(V3.5)
Average Latency (ms) 21.34 20.92
Convergence Time (s) 62.09 67.31

Table 5.12: Multi-user evaluation Scenario 2

Figure 5.14: Latency V3 vs V3.5
Scenario 3

Figure 5.15: CDF V3 vs V3.5 Sce-
nario 3

65

Implementation & Results

LAIS(V3) LAIS(V3.5)
Average Latency (ms) 21.85 21.37
Convergence Time (s) 46.59 50.85

Table 5.13: Multi-user evaluation Scenario 3

The tests conducted aimed to compare the performance of the Latency-Aware
Scheduler in its V3 and V3.5 iterations under identical scenarios. Notably, the
tests evaluated the behavior of each scheduler version from the perspective of a
single user within a multi-user environment.

As illustrated in Figures 5.10, 5.12, and 5.14, and the accompanying cumulative
distribution function (CDF) plots 5.11, 5.13, and 5.15, the latencies observed in
both versions of the scheduler are quite similar. This similarity is noteworthy, con-
sidering the additional complexities introduced in the V3.5 version. The tabulated
data in Tables 5.11, 5.12, and 5.13 reflect these findings, showing only marginal
differences in average latency between the two versions.

However, a consistent trend observed across all scenarios is the slightly increased
convergence time in the V3.5 version. This increase is attributed to the
additional overhead of managing the user-cluster (pod) association data
structure and regularly communicating this information to the Routing Manager.
Despite this, the slight increase in convergence time is deemed acceptable, given the
significant benefit of V3.5’s multi-user capability. This capability allows multiple
users to simultaneously utilize the service, directing each to the clusters offering
the lowest network latency relative to their specific locations.

In contrast, the V3 version, while effective in a single-user context, struggles
to maintain stability in multi-user scenarios. When faced with requests from
users with different sets of valid clusters, the V3 scheduler exhibits continuous
pod re-scheduling in an attempt to simultaneously satisfy multiple users’ latency
requirements. This leads to fluctuating latencies from the user’s perspective, a
challenge effectively mitigated by the V3.5 scheduler.

These tests underscore the V3.5 version’s ability to accommodate multiple users
in a dynamic cloud environment while maintaining comparable latency performance
to the V3 version, validating its efficacy in complex, real-world applications.

66

Chapter 6

Conclusion

6.1 Overview
In this thesis, we confronted the challenge of enhancing the default Kubernetes
scheduler, which often exhibits limited adaptability in dynamic cloud environments.
We developed a brand new Latency Aware Scheduler, a sophisticated solution that
fundamentally rethinks pod allocation by using real-time latency measurements to
meet user-defined intents. This advanced scheduler is uniquely designed to manage
geographically distributed clusters, tapping into edge computing’s potential to
strategically position pods in low-latency clusters.

Design Philosophy

The core philosophy of our Latency Aware Scheduler is to provide a seamless,
unified management approach for distributed Kubernetes clusters. By harnessing
the power of edge computing, our scheduler not only reduces latency but also
optimizes resource allocation and enhances user experience.

• Latency Measurement: At the heart of our scheduler lies the Latency
Meter, a tool that continuously gauges the network latency between users and
pods, thus empowering the scheduler with real-time data to make informed
decisions.

• Load Balancing: Within each cluster, we left the robust load-balancing
strategy that ensures an even distribution of pods across nodes, mitigating the
risk of overloading individual nodes and promoting overall system stability.

• Adaptive Scheduling: Our scheduler is adaptive, capable of dynamically
adjusting to the user’s mobility and changing network conditions. This ensures
that scheduling decisions remain optimal over time.

67

Conclusion

• User Intent Fulfillment: Depending on the user’s specified intent, the sched-
uler can either prioritize a balance between responsiveness and performance
or focus solely on achieving the lowest possible latency.

Figure 6.1: Multi-cluster scheduler. Latency Aware Scheduler leverages edge
computing to deploy pods close to the user.

Scheduler Evaluation

We developed and evaluated four distinct versions of the Latency Aware Scheduler,
each tailored to different operational scenarios and user needs.

1. Version 1: Focused on single-cluster scenarios, aiming for minimal latency in
pod scheduling.

2. Version 2: Integrated with Liqo for multi-cluster management, considering
geographically close nodes within a cluster to have similar network latencies.

3. Version 3: The ’Intent’ version, accepting hard and soft latency constraints
and seeking to balance latency reduction with convergence time.

4. Version 3.5: Targeted at multi-user environments, utilizing a custom load bal-
ancer called Routing Manager to direct requests based on scheduler mappings
and ensure optimal user-cluster associations.

68

Conclusion

In our comparative testing, the Latency Aware Scheduler distinctly outperformed
the default Kubernetes scheduler in key areas. Specifically, it reduced network
latency by an average of 30%, a significant improvement, particularly in multi-
cluster setups. This was measured across various test cases, ranging from stable
to highly dynamic network conditions. In scenarios demanding rapid response,
such as high-traffic web services, our scheduler demonstrated a marked decrease in
latency spikes, maintaining performance stability.

Furthermore, when tailored to user-defined latency constraints, our scheduler
achieved a 100% success rate in adhering to ’hard’ constraints and an about 78%
success rate for ’soft’ constraints. In contrast, the default Kubernetes scheduler,
lacking such customization, had a considerably lower adherence rate, struggling
especially in scenarios with strict latency requirements. This stark difference
underscores our scheduler’s capability to not only manage latency more effectively
but also to meet diverse user requirements with greater precision.

Repository and Additional Resources

The complete source code, along with detailed documentation, installation instruc-
tions, and troubleshooting guides for the Latency Aware Scheduler and its associated
components, are available in our public GitHub repository. This repository serves
as a comprehensive resource for understanding the practical implementation aspects
of the scheduler and offers insights into the real-world application of the concepts
discussed in this thesis. The repository can be accessed at [17], providing an open
platform for further development and collaboration.

6.2 Future Directions
Looking ahead, there are several exciting avenues for further development and
research:

AI Integration

The integration of artificial intelligence, particularly machine learning algorithms,
into the scheduling process presents a revolutionary prospect. This approach
can significantly enhance the scheduler’s decision-making capabilities by enabling
predictive scheduling. Machine learning models could analyze historical data and
real-time metrics to forecast future network conditions, user demands, and optimal
pod placement strategies. This predictive ability would not only improve resource
allocation efficiency but also proactively manage workloads, thereby reducing
latency and improving overall system performance.

69

Conclusion

Advanced Latency Measurement Techniques

Another key area of advancement is the refinement of latency measurement tech-
niques. The current approach, based on timestamp differences, offers a basic
understanding of network latencies. Future developments could involve more
nuanced methods, such as real-time network analytics, application-level latency
tracking, or even incorporating machine learning to predictively model network
conditions. These enhanced measurement techniques would provide a more accurate
and dynamic understanding of latency, allowing for more responsive and precise
scheduling decisions.

Expanding Use Cases

Extending the scheduler to a broader array of cloud services opens up new horizons
for its application. For instance, in the Internet of Things (IoT) domain, where
devices often operate under strict latency constraints, our scheduler could ensure
timely data processing and action. Similarly, in real-time data analytics, where
prompt data processing is crucial, our scheduler could dynamically allocate resources
to meet the stringent timing requirements. These expanded use cases would not
only demonstrate the scheduler’s versatility but also its effectiveness in diverse
operational environments.

Multi-Dimensional Resource Management

Future iterations of the scheduler could adopt a more holistic approach to resource
management by considering multiple resource metrics. Current Kubernetes sched-
ulers primarily focus on CPU and memory. However, incorporating additional
metrics such as network bandwidth, storage I/O, and even energy consumption
could significantly enhance the scheduler’s effectiveness. This multi-dimensional
resource management would allow for more nuanced and efficient pod placements,
ensuring optimal utilization of all available resources and further reducing opera-
tional costs and environmental impact.

In conclusion, these future directions present a pathway for transforming our
Latency Aware Scheduler into an even more powerful tool for Kubernetes environ-
ments, aligning it with the evolving demands of modern cloud and edge computing
infrastructures.

6.3 Concluding Thoughts
This thesis introduces a significant advancement in Kubernetes pod scheduling
with the development of the Latency Aware Scheduler, a prototype that brings
the concept of latency-awareness into the realm of cloud computing. While this

70

Conclusion

scheduler marks a leap forward in aligning resource management with user-specific
needs and enhancing overall system performance, it is essential to recognize its
current stage as a prototype. This initial implementation serves primarily for
testing purposes and is not yet ready for deployment in a production environment.
There are critical areas, particularly in security and performance, that require
further refinement and improvement. However, despite its current limitations,
this work represents a crucial step towards infrastructural innovation in cloud
and edge computing. It lays the groundwork for future developments that will
likely encompass more sophisticated algorithms, enhanced security features, and
performance optimizations, ultimately leading to a more intelligent, efficient, and
user-focused resource management ecosystem.

71

Appendix A

Kubernetes Overview and
Applications

A.1 Introduction to Kubernetes
Kubernetes is an open-source platform for automating the deployment, scaling, and
management of containerized applications [18]. Originally developed by Google and
now maintained by the Cloud Native Computing Foundation, Kubernetes provides
a resilient framework for running distributed systems, enabling efficient scaling
without overburdening operational teams. This efficiency is primarily achieved
through the use of containers, which package applications and their dependencies
into a standardized, lightweight, and portable format.

A key component in the containerization process is the container runtime,
which is the underlying software responsible for running containers. Kubernetes
is designed to be agnostic to the choice of container runtime, supporting several
options including Docker, containerd, and CRI-O. Among these, Docker has been
particularly popular in the early stages of Kubernetes’ development, due to its
user-friendly interface and widespread adoption.

A.1.1 Key Elements of Kubernetes
Kubernetes operates based on a series of fundamental concepts and components,
each playing a vital role in the orchestration and management of containerized
applications:

• Pods: The smallest and simplest Kubernetes object, a Pod represents a set
of running containers on your cluster. A Pod encapsulates an application’s
container (or, in some cases, multiple containers), storage resources, a unique
network IP, and options that govern how the container(s) should run.

72

Kubernetes Overview and Applications

• Nodes: These are the worker machines (physical or virtual) that host the Pods.
Each node is managed by the master components and includes the services
necessary to run Pods, managed by the Kubernetes runtime environment.

• Services: A Kubernetes Service is an abstraction layer which defines a logical
set of Pods and a policy by which to access them. This abstraction enables Pod
scaling and connectivity without worrying about the specific IPs of individual
Pods.

• Deployments: A Deployment provides declarative updates for Pods and
ReplicaSets. You describe a desired state in a Deployment, and the Deployment
Controller changes the actual state to the desired state at a controlled rate.
This allows you to easily update, roll back, and scale applications.

The integration of these elements allows Kubernetes to offer a robust, scalable,
and efficient platform for container orchestration, facilitating a wide range of
cloud-native applications.

A.2 Kubernetes Architecture and Networking
Concepts

Figure A.1: Kubernetes Components

The architecture of Kubernetes is intricately designed to be both distributed
and modular, allowing it to efficiently manage containerized applications across a
cluster of machines. This architecture is fundamentally composed of two types of
resources: the Master and the Nodes.

73

Kubernetes Overview and Applications

A.2.1 Master-Node Architecture
• Master: The master is the control plane of the Kubernetes cluster. It is

responsible for managing the state of the cluster, scheduling applications,
maintaining desired states, rolling out new updates, and a host of other
complex cluster coordination functions. The master’s components include the
API Server, the Controller Manager, the Scheduler, and etcd.

– API Server: Acts as the frontend to the cluster, exposing the Kubernetes
API.

– Controller Manager: Runs controller processes, managing the core control
loops.

– Scheduler: Watches for new Pods with no assigned node and selects a
node for them to run on.

– etcd: A consistent and highly-available key-value store used as Kubernetes’
backing store for all cluster data.

• Nodes: Nodes are the worker machines (physical or virtual) that run your
applications. Each node is equipped with the necessary tools to run Pods,
managed by the master. A node’s components include the kubelet, a kube-
proxy, and the container runtime.

– Kubelet: An agent running on each node, ensuring that containers are
running in a Pod.

– Kube-proxy: Maintains network rules on nodes, allowing network com-
munication to your Pods from network sessions inside or outside of your
cluster.

– Container Runtime: The software responsible for running containers (e.g.,
Docker, containerd).

A.2.2 Networking in Kubernetes
In Kubernetes, networking plays a pivotal role in ensuring that applications running
in Pods can communicate both internally and externally. This communication is
facilitated by various networking concepts and solutions:

• Pod Networking: Each Pod in Kubernetes is assigned a unique IP address
within the cluster, enabling direct communication between Pods without NAT.

• Service Networking: Kubernetes Services provide a static IP address and
DNS name by which Pods can be accessed. This ensures that client applications
can reliably connect to services regardless of the Pod IP changes.

74

Kubernetes Overview and Applications

• Network Plugins: Kubernetes supports a range of network plugins through
the Container Network Interface (CNI), allowing users to choose the networking
solution that best fits their needs. These solutions address various networking
challenges such as network policy enforcement, load balancing, and traffic
routing.

The combination of these networking capabilities ensures that Kubernetes can
provide robust, efficient, and flexible networking for the diverse array of applications
it manages.

A.3 Kubernetes and Edge Computing

The advent of edge computing technology is reshaping how data is processed,
moving from centralized data centers to processing closer to the source devices. In
this context, Kubernetes is increasingly playing a pivotal role, evolving to support
these decentralized environments. The core principles of Kubernetes, including
its modularity and scalability, make it well-suited to manage and orchestrate
applications in edge computing scenarios, where network latency and swift response
times are of paramount importance.

Figure A.2: Kubernetes at the Edge (Image Credit: [19])

75

Kubernetes Overview and Applications

A.3.1 Adapting Kubernetes for Edge
Kubernetes’ architecture inherently supports distributed systems, making it a
natural fit for edge computing environments. Key adaptations and enhancements
include:

• Lightweight Nodes: Implementing lightweight Kubernetes nodes, which
consume fewer resources, to run efficiently on edge devices.

• Network Optimization: Customizing networking approaches to handle the
high latency and lower reliability often found in edge network environments.

• Decentralized Management: Facilitating decentralized cluster manage-
ment to enable autonomous operation at the edge, even with intermittent
connectivity to the central cloud.

A.3.2 Applications in Edge Computing
In edge computing environments, Kubernetes facilitates a wide range of applications
by orchestrating containers across diverse edge devices. This orchestration spans
from small IoT devices, which may handle simple data processing tasks, to large
servers capable of more complex computations. Examples of applications include:

• Real-Time Data Processing: Applications that require immediate process-
ing of data from IoT devices, like sensors or cameras, for real-time analytics
or decision-making.

• Localized Content Delivery: Enhancing user experience by caching content
on edge servers, reducing latency for content delivery.

• Smart Infrastructure: Managing applications in smart city infrastructures,
including traffic management systems and environmental monitoring.

• Remote Monitoring and Control: Enabling industries to monitor and
manage remote operations, such as in agriculture or offshore facilities.

Kubernetes’ ability to efficiently manage and scale these applications in diverse
and challenging edge environments highlights its versatility as a platform, not just
in traditional cloud computing, but in the emerging domain of edge computing as
well.

76

Appendix B

Installation Guide for
Latency-Aware Scheduler

This appendix provides a detailed guide on installing and setting up the Latency-
Aware Scheduler, a key component of the research presented in this thesis. The
Latency-Aware Scheduler project consists of three primary applications written
in Golang: the Latency Meter, the Custom Latency Aware Scheduler, and the
Routing Manager (in Version 3.5).

B.1 Overview of the Project Components
Latency Meter The Latency Meter is a crucial component designed to measure
network latency between users and Kubernetes cluster nodes. Deployed on all
worker nodes, it acts as a proxy, intercepting data packets to measure latency
before forwarding them to the target pod.

Custom Latency Aware Scheduler This custom scheduler, substituting Ku-
bernetes’ default, consists of three main parts: the Scheduler, the Descheduler, and
the LatencyMeasurements (LM) structure. It prioritizes pod placement based on
latency metrics, enhancing the overall network efficiency.

Routing Manager (Version 3.5) Introduced in version 3.5, the Routing Man-
ager dynamically directs user traffic to optimal pods within the Kubernetes envi-
ronment, based on user-cluster associations and real-time latency measurements.
It complements the Custom Latency Aware Scheduler, ensuring efficient request
routing.

77

Installation Guide for Latency-Aware Scheduler

B.2 Prerequisites
Before initiating the installation process of the Latency-Aware Scheduler, it is
crucial to ensure that the following prerequisites are met. These prerequisites are
foundational for the successful deployment and operation of the scheduler in a
Kubernetes environment.

• Container Runtime:

– Containerd: A popular container runtime known for its simplicity and
efficiency in managing the complete container lifecycle.

– CRI-O: A lightweight container runtime specifically designed for Kuber-
netes, providing a balance between performance and features.

– Docker Engine: One of the most widely used container runtimes, com-
patible with Kubernetes through ‘cri-dockerd‘, which enables Docker
containers to be managed by Kubernetes.

It’s essential to have one of these container runtimes installed as they are
responsible for running the containerized applications that make up your
Kubernetes pods.

• Kubernetes Tools:

– Kubeadm: A tool for quickly setting up a Kubernetes cluster. Version 1.22
or later is recommended for its latest features and stability improvements.

– Kubelet: A component that runs on all nodes within your Kubernetes
cluster and manages things like starting pods and containers.

– Kubectl: A command-line tool for interacting with the Kubernetes cluster,
essential for managing resources and deployments.

These tools are necessary for creating and managing your Kubernetes cluster
where the scheduler will be deployed.

• Network - Container Network Interface (CNI):

– Flannel, Calico, or Canal: These are different types of CNIs that enable
pod-to-pod networking within your Kubernetes cluster. They handle
network routing and isolation to ensure that pods can communicate
securely and efficiently.

A properly configured CNI is vital for the network functionality of Kubernetes,
particularly important for the scheduler’s functionality which relies on network
latency measurements.

78

Installation Guide for Latency-Aware Scheduler

• (Optional) Liqoctl:

– A command-line tool for setting up and managing Liqo, which is essential
for multi-cluster deployments. Liqo extends Kubernetes capabilities to
enable dynamic and decentralized multi-cluster configurations, an environ-
ment where the Latency-Aware Scheduler can be particularly beneficial.

While optional, Liqoctl is recommended for scenarios that require the integra-
tion of multiple Kubernetes clusters, enhancing the scheduler’s capability in
distributed environments.

Ensuring these prerequisites will facilitate a smooth installation process and
optimal operation of the Latency-Aware Scheduler.

B.3 Installation Steps
To successfully deploy the Latency-Aware Scheduler, follow these detailed steps:

Cloning and Setting Up the Repository

Begin by cloning the repository to get the latest version of the Latency-Aware
Scheduler. This will download the necessary files to your local machine.

git clone https://github.com/CrisChiaro/latency_aware_scheduler.git
cd ./latency-aware-scheduler/quick\ start/

This step involves using Git, a version control system, to clone the repository.
After cloning, navigate into the project’s directory, particularly the ’quick start’
folder, which contains the essential files for a quick setup.

Applying RBAC and Starting the Scheduler

Role-Based Access Control (RBAC) configurations are crucial for securing Kuber-
netes clusters by defining what actions different entities (users, applications) can
perform. Apply these configurations to set up the necessary permissions for the
scheduler.

kubectl apply -f rbac.yaml
kubectl apply -f scheduler-rsa.yaml

For version 3.5:
kubectl create namespace routing
kubectl apply -f routing-rbac.yaml
kubectl apply -f latency-aware-scheduler

79

Installation Guide for Latency-Aware Scheduler

Here, ‘kubectl apply -f‘ is used to apply the RBAC configurations and the
custom scheduler’s settings to your cluster. In version 3.5, an additional namespace
for routing is created, and specific RBAC configurations for this version are applied.

Modifying Deployment YAML

The Deployment YAML file defines how your applications should run in the cluster.
Modify this file to include the custom scheduler and the Latency Meter container,
which are vital components of the Latency-Aware Scheduler system.

spec:
serviceAccountName: latency-meter
schedulerName: latency-aware-scheduler
containers:
- name: <container_name>

image: <container_img>
...

- name: latency-meter
image: crischiaro/latency-meter:latest
...

In this step, you will edit the deployment specification (‘spec‘) to use the custom
scheduler (‘latency-aware-scheduler‘) and to include the Latency Meter as an
additional container within your pod. This modification allows your deployment to
utilize the Latency Meter for real-time latency measurements and ensures that the
pod is managed by the custom scheduler.

Following these steps carefully will ensure that the Latency-Aware Scheduler is
correctly installed and configured in your Kubernetes environment.

B.4 Testing the Scheduler
After the successful installation of the Latency-Aware Scheduler, it is imperative to
conduct thorough testing to ensure its functionality and to validate its performance
in various scenarios. The following steps outline the testing process.

B.4.1 Preparing for Tests
First, navigate to the ‘./tests/‘ directory in the project repository. This directory
contains the scripts and resources needed for testing.

cd ./latency-aware-scheduler/tests/

80

Installation Guide for Latency-Aware Scheduler

B.4.2 Simulating Network Latency
To accurately test the scheduler under various network conditions, artificially
introduce network latency using the ‘tc‘ (Traffic Control) tool. This tool allows
you to control the network traffic characteristics, such as latency, bandwidth, and
packet loss, on your Kubernetes nodes.

tc qdisc add dev eth0 root netem delay 100ms

In this example, a delay of 100 milliseconds is added to the ‘eth0‘ network
interface, simulating a higher network latency. Adjust the delay value to simulate
different network conditions.

B.4.3 Starting and Stopping Tests
Utilize the provided scripts in the ‘./tests/‘ directory to start and stop your
tests. These scripts are designed to automate the deployment and removal of test
environments.

• To start the test, run the ‘start.sh‘ script.

• To stop the test and clean up, run the ‘stop.sh‘ script.

B.4.4 Monitoring and Testing Commands
During the testing phase, certain commands are particularly useful for monitoring
the behavior of your system and verifying the functionality of the scheduler.

• Viewing Logs: To monitor the logs of a specific pod, use:

kubectl logs -f <pod-id>

This command provides real-time logs from the specified pod, allowing you to
observe the scheduler’s decisions and actions.

• Testing Latency: To test the latency between a user and a service, use the
‘curl‘ command with a custom header to include a timestamp:

curl -H "X-Timestamp: $(date +%s%3N)" "http://<service_IP>/?id=123"

This command simulates a user request to your service, enabling you to measure
the response time and validate the scheduler’s latency-aware decisions.

81

Installation Guide for Latency-Aware Scheduler

By following these testing procedures, you can effectively evaluate the perfor-
mance of the Latency-Aware Scheduler under various conditions and ensure its
readiness for deployment in a production environment.

B.5 Troubleshooting
Troubleshooting in complex Kubernetes environments, especially those involving
multi-cluster setups and latency-sensitive applications, requires careful consideration
of various components. This section provides guidance on resolving common issues
encountered with the Latency-Aware Scheduler.

B.5.1 Multi-Cluster Issues
• Issue: Inconsistent behavior or communication problems across different

clusters.

• Solution: Ensure that all clusters share the same podCIDRs (Pod IP address
ranges) to facilitate seamless inter-cluster communication. Discrepancies in
podCIDRs can lead to routing and connectivity issues. If difficulties persist,
refer to the Liqo documentation for specialized multi-cluster troubleshooting.

• Reference: [Liqo Documentation](https://docs.liqo.io/en/v0.9.4/index.html)

B.5.2 Liqo Service Type Configuration
• Issue: Liqo fails to operate correctly, possibly due to LoadBalancer configura-

tion issues.

• Solution: When installing Liqo, ensure that the LoadBalancer used by Liqo
has an external IP. If an external IP is not available, you can configure Liqo to
use NodePort instead. This can be done using the ‘–service-type‘ flag during
the Liqo installation process.

liqoctl install kubeadm --service-type NodePort --cluster-name paris

This adjustment allows Liqo to function correctly even without a LoadBalancer
with an external IP.

82

Installation Guide for Latency-Aware Scheduler

B.5.3 CNI Configuration
• Issue: Network issues such as pod-to-pod communication failure or unreach-

able services.

• Solution: Verify that the Container Network Interfaces (CNIs) are configured
properly according to the podCIDRs. Incorrect CNI configurations can lead
to network malfunctions. The default CIDR is ‘10.244.0.0/16‘, but this may
need to be adjusted based on your specific network setup.

B.5.4 Unexpected Latency Values
• Issue: Latency measurements do not match expected values or settings.

• Solution: Investigate the network path within the cluster. Network topology
and CNI configuration can significantly affect latency. For instance, requests
may traverse multiple nodes, each adding its own latency. This cumulative
effect can result in higher than expected latency values. Diagnostic tools and
careful examination of the network routes within the cluster are advised to
identify and address these issues.

83

Bibliography

[1] Pedro Garcia Lopez, Alberto Montresor, Dick Epema, Anwitaman Datta,
Teruo Higashino, Adriana Iamnitchi, Marinho Barcellos, Pascal Felber, and
Etienne Riviere. «Edge-centric computing: Vision and challenges». In: ACM
SIGCOMM Computer Communication Review 45.5 (2015), pp. 37–42 (cit. on
p. 5).

[2] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. «Edge
computing: Vision and challenges». In: IEEE internet of things journal 3.5
(2016), pp. 637–646 (cit. on p. 5).

[3] Orazio Tomarchio, Domenico Calcaterra, and Giuseppe Di Modica. «Cloud
resource orchestration in the multi-cloud landscape: a systematic review of
existing frameworks». In: Journal of Cloud Computing 9 (2020), pp. 1–24
(cit. on p. 5).

[4] Luciano Baresi, Danilo Filgueira Mendonça, Martin Garriga, Sam Guinea, and
Giovanni Quattrocchi. «A unified model for the mobile-edge-cloud continuum».
In: ACM Transactions on Internet Technology (TOIT) 19.2 (2019), pp. 1–21
(cit. on p. 5).

[5] Nguyen Thanh Nguyen and Younghan Kim. «A Design of Resource Allocation
Structure for Multi-Tenant Services in Kubernetes Cluster». In: 27th Asia
Pacific Conference on Communications (APCC ’22’). IEEE. 2022, pp. 651–
654 (cit. on p. 6).

[6] Mulugeta Ayalew Tamiru, Guillaume Pierre, Johan Tordsson, and Erik Elm-
roth. «mck8s: An Orchestration Platform For Geo-distributed Multi-cluster
Environments». In: International Conference on Computer Communications
and Networks (ICCCN). IEEE. 2021, pp. 1–10 (cit. on p. 6).

[7] Lirim Osmani, Tero Kauppinen, Miika Komu, and Sasu Tarkoma. «Multi-
cloud connectivity for kubernetes in 5g networks». In: IEEE Communications
Magazine 59.10 (2021), pp. 42–47 (cit. on p. 6).

84

BIBLIOGRAPHY

[8] Estela Carmona-Cejudo, Francesco Iadanza, and Muhammad Shuaib Siddiqui.
«Optimal Offloading of Kubernetes Pods in Three-Tier Networks». In: 2022
IEEE Wireless Communications and Networking Conference (WCNC). 2022,
pp. 280–285. doi: 10.1109/WCNC51071.2022.9771724 (cit. on pp. 6, 7).

[9] Intel Corporation. Telemetry Aware Scheduling. https : / / github . com /
intel/platform-aware-scheduling/tree/master. 2021 (cit. on pp. 6, 11).

[10] Angelo Marchese and Orazio Tomarchio. «Network-Aware Container Place-
ment in Cloud-Edge Kubernetes Clusters». In: 2022 22nd IEEE International
Symposium on Cluster, Cloud and Internet Computing (CCGrid). IEEE. 2022,
pp. 859–865. doi: 10.1109/CCGrid54584.2022.00102 (cit. on pp. 6, 9, 10).

[11] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University
Press, 2004 (cit. on p. 6).

[12] [online] Available: https://www.openstack.org. (Cit. on p. 6).
[13] C. Centofanti, W. Tiberti, A. Marotta, F. Graziosi, and D. Cassioli. «Latency-

Aware Kubernetes Scheduling for Microservices Orchestration at the Edge». In:
2023 IEEE 9th International Conference on Network Softwarization (NetSoft).
IEEE. 2023, pp. 426–431. doi: 10.1109/NetSoft57336.2023.10175431
(cit. on pp. 7–9, 60).

[14] Liqo Team. Liqo: Seamless Multi-Cloud and Cluster Federation. Accessed:
2023-05-27. 2023. url: https://liqo.io/ (cit. on pp. 17, 32).

[15] CrownLabs. https://crownlabs.polito.it. Accessed: 2023-09-28 (cit. on
p. 46).

[16] Excentis. Use Linux Traffic Control as Impairment Node in a Test Envi-
ronment. Accessed: 2023-09-29. 2023. url: https://www.excentis.com/
blog/use-linux-traffic-control-as-impairment-node-in-a-test-
environment-part-1 (cit. on p. 48).

[17] Cristopher Chiaro. Latency Aware Scheduler. https://github.com/CrisCh
iaro/latency_aware_scheduler. 2023 (cit. on p. 69).

[18] Kubernetes Documentation. https://kubernetes.io/docs/. Accessed: 2023-
11-10 (cit. on p. 72).

[19] Weave Works. Kubernetes at the Edge. https://www.weave.works/blog/
kubernetes-at-the-edge-part-1. Accessed: 2023-11-10 (cit. on p. 75).

85

https://doi.org/10.1109/WCNC51071.2022.9771724
https://github.com/intel/platform-aware-scheduling/tree/master
https://github.com/intel/platform-aware-scheduling/tree/master
https://doi.org/10.1109/CCGrid54584.2022.00102
https://doi.org/10.1109/NetSoft57336.2023.10175431
https://liqo.io/
https://crownlabs.polito.it
https://www.excentis.com/blog/use-linux-traffic-control-as-impairment-node-in-a-test-environment-part-1
https://www.excentis.com/blog/use-linux-traffic-control-as-impairment-node-in-a-test-environment-part-1
https://www.excentis.com/blog/use-linux-traffic-control-as-impairment-node-in-a-test-environment-part-1
https://github.com/CrisChiaro/latency_aware_scheduler
https://github.com/CrisChiaro/latency_aware_scheduler
https://kubernetes.io/docs/
https://www.weave.works/blog/kubernetes-at-the-edge-part-1
https://www.weave.works/blog/kubernetes-at-the-edge-part-1

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Network latency: A Challenge for Efficiency in the Digital Age
	The Project Idea: A new scheduler from scratch

	Related Works
	Background
	Kubernetes: The Open-Source Orchestrator for an Agile and Scalable Infrastructure
	Kubernetes Deployments

	Kubernetes customizable Scheduler
	kube-scheduler framework
	Scheduling plugins

	Liqo: The Next-Generation Kubernetes Extension
	The Imperative of Adopting Liqo
	Liqo Features
	Peering in Liqo
	Offloading Capabilities in Liqo

	System Model
	Architecture
	The Latency Meter Application
	The Custom Latency-Aware Scheduler

	Latency Meter: In-Depth Analysis
	Design and Algorithm
	Latency Measurement Challenges and Approaches
	Deployment

	Custom Latency-Aware Scheduler
	Version 1: Minimum Latency
	Version 2: Liqo Integration
	Version 3: Latency constraints
	Version 3.5: Multi-User Support

	Latency-Meter Contact Overhead

	Implementation & Results
	Development Environment
	Testing Environment
	Testing
	Inducing Network Latency
	Test: Default Scheduler vs. Latency-Aware Scheduler (V3)
	Test: Custom Scheduler V2 vs. Custom Scheduler V3
	Test summary: Comparison between all schedulers

	Conclusion
	Overview
	Future Directions
	Concluding Thoughts

	Kubernetes Overview and Applications
	Introduction to Kubernetes
	Key Elements of Kubernetes

	Kubernetes Architecture and Networking Concepts
	Master-Node Architecture
	Networking in Kubernetes

	Kubernetes and Edge Computing
	Adapting Kubernetes for Edge
	Applications in Edge Computing

	Installation Guide for Latency-Aware Scheduler
	Overview of the Project Components
	Prerequisites
	Installation Steps
	Testing the Scheduler
	Preparing for Tests
	Simulating Network Latency
	Starting and Stopping Tests
	Monitoring and Testing Commands

	Troubleshooting
	Multi-Cluster Issues
	Liqo Service Type Configuration
	CNI Configuration
	Unexpected Latency Values

	Bibliography

