POLITECNICO DI TORINO

Master’s Degree
in Computer Engineering

M.Sc. Thesis

Towards Autonomous Robotic Spray Painting
with Unsupervised Reinforcement Learning

Supervisors Candidate
Prof. Tatiana Tommasi Marco Prattico

Prof. Raffaello Camoriano
M.Sc. Gabriele Tiboni

Academic Year 2022-2023

Abstract

Long-standing problems in robotics such as cleaning and spray painting require the
generation of task-specific trajectories satisfying physical constraints. Accelerating
the generation process by autonomously deriving robotic paths would reduce the
manual effort currently required in such settings. Furthermore, path generation
needs to adapt to the specific geometries of the target objects. These stringent
requirements are usually met by designing ad-hoc heuristics for each specific object
category.

Reinforcement Learning (RL) has been successfully employed to tackle au-
tonomous robotic tasks in the literature, from robotic manipulation to locomo-
tion. However, RL algorithms can suffer from low generalization capabilities and
low sample efficiency, i.e., a large number of agent-environment interactions are
often needed for the algorithm to converge to successful, yet specific, policies. Un-
supervised Reinforcement Learning (URL) has been proposed to speed up policy
training by introducing a task-agnostic policy pre-training phase. In particular,
pre-training does not involve task-specific reward signals. Instead, it exploits in-
trinsic motivation to encourage exploration of the underlying environment. This
approach enables collecting transferable knowledge from the environment to be
later used for fine-tuning the policy on a range of more specific downstream tasks.
Recent works successfully employ URL to drive exploration, e.g., by maximiz-
ing the entropy of the state visitation distribution. Nevertheless, such algorithms
have only been investigated in locomotion tasks or gridworld environments, despite
their potential to be applied to coverage path planning (CPP) problems, which
may benefit from state-entropy maximization.

This thesis investigates the utilization of (U)RL for path-planning problems. In
particular, we focus on robotic spray painting, a fundamental industrial manufac-
turing task and strongly related to the class of CPP problems. In this context, we
adopt the URL framework to speed up the training process of an object-specific
policy by pre-training a single policy with a state-entropy maximization objec-
tive. Our experimental results characterize the impact of intrinsic motivation on
the training process, comparing the final learning outcomes when training from
scratch with those obtained by starting from a pre-trained URL policy.

Acknowledgements

First of all, I would like to thank my thesis supervisors, Raffaello, Gabriele, and
Professor Tommasi, for their valuable support and experience during the develop-
ment of this work, with the hope of collaborating on new research projects in the
future. I am grateful to the Vandal group with whom I spent the last months in
the lab and for the great aperitifs together. This was my first time spending an
office-like experience and I really hope to find a similar atmosphere in the future.
I think I have grown a lot professionally over the past period, and thanks to my
lab colleagues, I have learned valuable insights into what I hope will be my future
job, as an Al researcher. I wish you all good luck with your research projects.

Then, I would like to mention my family for always supporting my studies,
my interests and my passions. This great step in my life I owe mostly to them.
Another mention of honour is to the family I chose, my friends. I want to thank all
my friends from Rome, with whom I spent the last years on incredible adventures
and in simple pub nights, which, however, should not be taken for granted. I am
profoundly grateful for your friendship. Although I am not a person who expresses
his feelings explicitly, however, I owe you all a thank you. Special mentions go to
my friend Niccolo T. and my former flatmate Alessandro C., with whom I shared
a substantial part of my university journey.

Last but not least, I want to thank my "Turin Party Group" friends for the
memorable nights in Turin, hoping for more celebrations ahead. I am also grateful
to all the colleagues I've met throughout my university years who turned great
friends, your friendships have enriched my academic journey in profound ways.

II

Contents

List of Tables

List of Figures

1 Introduction

2 Background

2.1

2.2

2.3

Reinforcement Learning
2.1.1 Markov Decision Processes
2.1.2 Policies
2.1.3 State Distribution oL
214 TheReward
2.1.5 The RL Problem
2.1.6 Value Functions and Bellman Equations
2.1.7 Classes of Algorithms
2.1.8 Model-based and Model-free
2.1.9 On-policy, Off-Policy, and Offline RL
2.1.10 Value-based Algorithms
2.1.11 Policy Search Algorithms
2.1.12 Actor-Critic Algorithms,
2.1.13 Open Challengesin RL
Information Entropyo
2.2.1 Information Content
2.2.2 Discrete Entropyo oo
2.2.3 Differential Entropyo
2.2.4 Non-Parametric Differential Entropy Estimator
Robotic Spray Painting and Coverage Path Planning
2.3.1 Robotic Spray Painting L.
2.3.2 Coverage Path Planning Problems

II1

VI

VII

Unsupervised Reinforcement Learning
3.1 Introduction
3.2 Intrinsic Rewards
3.2.1 Curiosity-driven Exploration
3.2.2 Skill Discovery
3.2.3 Data Coverage Maximization
The State Entropy Objective
4.1 Introduction
4.2 MEPol
4.3 Learning in Multiple Environments
431 aoMEPol
4.4 Non-Markovianity in URL
441 MEMENTO
4.4.2 MEMENTO in Multiple Environments
Spray Painting Tasks
5.1 Spray Painting as an Optimization Problem
5.2 Spray Painting and Deep Learning
5.3 Spray Painting and Reinforcement Learning
5.3.1 Reinforcement Learning for CPP
Methodology
6.1 Overview.
6.2 The Method
6.2.1 Problem Formulation
6.2.2 Method Overview L.
6.3 Key Design Choices oL
6.3.1 Pre-training
6.3.2 Painting Simulatoro
Experimental Analysis
7.1 Pre-training
7.1.1 Pre-training on a Single Shape
7.1.2 Pre-training on Multiple Shapes
7.2 Fine-tuningo
7.2.1 Baseline
7.2.2 Paint Thickness Objective
7.2.3 Fine-tuning after Pre-training over Multiple shapes
7.2.4 Fine-tuning on a Novel Shape
7.3 Discussion
7.3.1 Pre-trainingo

27
27
28
28
29
29

33
33
34
35
36
37
39
40

43
43
44
45
45

47
47
48
48
48
51
51
93

7.3.2 Fine-tuningo o 67

8 Conclusions 69
A Empirical Analysis: further details 71
A1l Pretrainingo 71
A.1.1 Pre-training on a Single Shape 71

A.1.2 Pre-training on Multiple Shapes 72

A2 Fine-tuning 73
A2.1 Baseline 73

A.2.2 Baseline and the Paint Thickness Objective 74

A.2.3 Fine-tuning after Pre-training over Multiple Shapes 75

A.2.4 Fine-tuning on a Novel Shape 76

List of Tables

7.1

7.2

7.3

7.4

7.5

Al

A2

A3
A4

A5
A6

In this table, we show how the entropy increases using the entropy-
based algorithm described in Section 6.2.2. We thus compare the
outcomes of both kinds of pre-training, when considering a single
target shape and we consider multiple variations.
Baseline Setting comparison, considering only the Paint Coverage
objective or both, Paint Coverage and Paint Thickness. Here, 1
indicates that we prefer higher results, while | means that lower is
better.
This table shows the average percentage of coverage we obtain after
brief fine-tuning of 20, 40 and 60 episodes.
We compare the results obtained when fine-tuning the behaviour
on a single target shape, considering only the Paint Coverage objec-
tive or both, Paint Coverage and Paint Thickness. The pre-trained
policy employed in this setting faced multiple target shapes during
pre-training. 1 higher the better, and | lower the better.
We compare the results obtained when fine-tuning the behaviour
on a window-like target shape, considering only the Paint Coverage
objective or both, Paint Coverage and Paint Thickness. The pre-
trained policy employed in this setting faced multiple target shapes
during pre-training, but it didn’t encounter window-like shapes. 1
higher the better, and | lower the better.
Hyperparameters used for pretraining considering a single target
shape.
Hyperparameters used for pretraining considering multiple target

Hyperparameters used for fine-tuning in the baseline settings.
Hyperparameters used for fine-tuning in the baseline settings, con-
sidering also the Paint Thickness objective.
Hyperparameters used for fine-tuning on a single target shape. . . .
Hyperparameters used for fine-tuning on a novel target shape.

VI

I0)

List of Figures

2.1 Agent-Environment interaction loop

2.2 Visual representation depicting three distinct reinforcement learn-
ing scenarios, from [27]: classic on-policy reinforcement learning
(a), classic off-policy reinforcement learning (b), and offline rein-
forcement learning (c). In on-policy reinforcement learning (a), the
policy m, continuously updates itself using the real-time data it
generates. In classic off-policy reinforcement learning (b), the agent
accumulates its experiences in a data buffer (also referred to as
a replay buffer) D, with each new policy 7, gathering additional
data, thus comprising samples from g, 7, ..., 7, all of which is
employed to train an updated policy mxy1. In contrast, offline re-
inforcement learning (c) utilizes a dataset D collected by a (poten-
tially unknown) behaviour policy 7. This dataset is collected once
and remains unaltered during training, allowing for the utilization
of large previously collected datasets. The training process remains
decoupled from the Markov Decision Process (MDP), and the policy
is deployed only after comprehensive training.

4.1 Ilustrative two-rooms domain from [68]. The agent starts in the
middle, colored traces represent optimal strategies to explore the
left and the right room 0oL

4.2 Visualization of the policy structure used by MEMENTO from [71].
The recursive aspect is emphasized through the link connecting the
output of the history encoder to its subsequent input in the following
time step. e

6.1 Spray gun and coordinate system (from [87]).
6.2 Painter simulator examples.o 000
7.1 Example of a window target surface

VII

7.2

7.3
7.4

7.5

7.6
7.7

7.8

7.9

7.10
7.11

7.12

Al

In this figure, we plot the trajectories generated by policies during
the fine-tuning phase. In Figure 7.2a, 7.2b, 7.2c we plot trajectories
of the non-pre-trained policies, while Figure 7.2d, 7.2e, 7.2f show
the generated trajectories at the end of pre-training. The columns
represent 3 different seeds.
Entropy curve during the pre-training on a single shape.
Trajectories generated by policies after pre-training on multiple tar-
get shapes.
In this figure we show fine-tuning outcomes focusing solely on the
Paint Coverage objective. Figures 7.5a, 7.5b, and 7.5¢ depict re-
sults from three distinct seeds during the fine-tuning of randomly
initialized policies. Conversely, Figures 7.5d, 7.5¢, and 7.5f showcase
results from fine-tuning pre-trained policies.
Plot of the reward curve in the baseline setting.
[lustrated in these figures are the optimal outcomes achieved after
20, 40, and 60 episodes, corresponding to intervals of approximately
3 minutes each. The top row displays results from fine-tuning us-
ing randomly initialized policies, while the bottom row showcases
outcomes following prior pre-training.
Best results of fine-tuning, when starting from random initialized
or from pre-trained policies.o
These bar plots illustrate the coverage achieved by trajectories gen-
erated by non-fine-tuned policies (on the left of the figure) compared
to those fine-tuned for only 20 episodes (on the right of the figure),
requiring a training time of 1.5 minutes. For the paint coverage
objective, the higher the better, for pain thickness, the lower the
better.
Results after fine-tuning on a single target shape.
The curve represents the coverage ratio during the fine-tuning con-
sidering a window as a target policy.
These bar plots illustrate the coverage achieved by trajectories gen-
erated by non-fine-tuned policies (on the left of the figure) compared
to those fine-tuned for only 20 episodes (on the right of the figure),
requiring a runtime of 1.5 minutes, considering a window target
shape. The bars on the right are further divided into two groups,
representing experiments conducted with a focus on paint coverage
optimization only and experiments considering both paint coverage
and paint thickness objectives. For the paint coverage objective, the
higher the better, for pain thickness, the lower the better.
Results after fine-tuning for 20 episodes on a single target shape. . .

VIII

75

List of Algorithms

S T W N~

SARSA . . 15
-Learning L 16

Q g

Q Actor-Critic 20

MEPol 35

aMEPol . . . 37

MEMENTO 40

IX

If a machine can think, it might think
more intelligently than we do, and then
where should we be?

[A. TURING, Computing Machinery and
Intelligence, 1950]

Chapter 1

Introduction

Many real-world problems require making a sequence of choices in order to achieve
an objective. Reinforcement Learning (RL) [1] can be employed to formalize and
tackle these sequential decision-making problems, which are commonly modelled
as a Markov Decision Process (MDP). Within this framework, a decision-maker,
often referred to as an agent, operates within an environment, making decisions
and taking actions to interact with it. The agent’s behaviour, or its strategy for
selecting actions, is commonly called policy. We refer to the current condition
of the environment as the state of the environment, which fully describes the
relevant properties of the environment at any given time step. On the other hand,
the observation is a potentially partial description of the state to which the agent
has access and it may omit some information. This interaction process is typically
divided into discrete time intervals. At training time, the agent executes an action
according to its exploration policy and its observations, receives a reward, and then
observes the environment after the action is taken. The standard MDP formulation
assumes that the next environmental state depends only on the current state and
the current action, known as the Markov Property.

The primary objective of an RL agent is to maximize the cumulative reward over
a series of successive interactions. This entails learning how to optimize rewards
not just in the immediate future but also over the long term.

RL has recently achieved significant success as this paradigm can be used to
solve different types of tasks, such as robotic manipulation [2], playing Atari games

(3], GO [4].

The Reward The goal of a learning process is the maximization of a cumulative
reward signal. This signal is designed to carry information on how well is the
agent performing a task, in order to guide the trial-and-error process. At first, the
agent acts according to a random policy. The information gathered during these
interactions is then used to adapt and refine the agent’s behaviour. The reward,

1

Introduction

serving as the driving signal behind this learning process, is generally shaped by
a human designer. This design task can be complex and costly, as various tasks
may necessitate reward signals that are diverse in nature. Any suboptimal reward
design choices can result in unintended behaviours.

To address this complexity, a common approach is to use sparse reward signals,
meaning that the agent receives a reward only when it successfully completes the
required task, with no incentives offered for intermediate steps leading to that ac-
tion. The process of effectively and efficiently exploring the environment becomes
crucial; if the agent cannot acquire any rewards, it becomes incapable of learning.
Even in cases where the agent can collect rewards, if they are sporadic, the learn-
ing process can become prohibitively time-consuming, and the agent may fail to
attain the desired behaviour. Consequently, the effectiveness of the learning pro-
cess is profoundly influenced by the structure of the reward and the environment’s
characteristics.

Unsupervised Reinforcement Learning Despite recent achievements, RL
faces several drawbacks, including issues related to sample efficiency [5] and gener-
alization [6]. A key challenge in RL is the reliance on a well-shaped reward function
[7] to describe the task performance. However, in practice, since the reward func-
tions are often manually shaped, a careful design to describe the desired learning
process toward desirable outcomes is necessary. This requirement presents a sig-
nificant obstacle to autonomous learning since each new task demands a costly
and task-specific reward formulation. Additionally, the transferability of knowl-
edge from solving one RL problem to another is limited, reducing the potential for
generalization.

The Unsupervised Reinforcement Learning (URL) approach [8] seeks to address
this generalization problem. In the URL framework, the learning agent interacts
with the environment in two distinct phases. First, during the unsupervised pre-
training phase, no task-specific reward is employed, and the agent’s goal is to
pre-train a policy to capture knowledge for future use. This pre-training can
take various forms, including learning transition dynamics, devising exploratory
policies, generating relevant interactions with the environment, encoding abstract
state representations, or constructing a dataset of informative interactions.

Then, during fine-tuning, the agent strives to efficiently learn a policy that
maximizes a task-specific reward, starting from the pre-trained model and not
from a random policy. Using a pre-trained policy as the initial one to learn a
subsequent new task enhances the efficiency of the learning process, even in settings
with sparse reward signals.

This thesis aims to establish an efficient pipeline, employing the Unsupervised
RL approach, for enabling an agent to acquire the skill of painting objects.

2

Introduction

Robot Spray Painting The primary objective of this thesis is to address the
challenge of robotic spray painting from the perspective of coverage path planning.
The task deals not only with the precise application of paint, covering entirely the
surfaces but also with smooth and uniform paint thickness over the target surface.
To address this problem, we take advantage of RL and unsupervised RL with the
goal of improving autonomous path generation for robotic spray painting.

Coverage path planning (CPP) is a key robotic planning problem, including
spray painting tasks. It is aimed at finding a robot path ensuring complete and
uniform coverage of the target surface and avoiding obstacles [9]. Some recent
works make progress in solving CPP problems with the use of RL [10], [11]. This
thesis investigates the complexities of formulating the robotic spray painting task
as a coverage path planning problem and of dealing with different object shapes,
emphasizing the need for a two-step strategy — pre-training and fine-tuning —
for an efficient robot learning process.

State-Entropy Maximization In the unsupervised pre-training process driven
by state entropy maximization, the objective is to identify a policy that maximizes
the entropy of the induced state distribution [12]. It is important to note that
this approach significantly differs from a policy that assigns equal probability to
all actions in a given state. Such a policy overlooks the sequential nature of
problems, where a specific sequence of actions is often required to reach certain
states with high probability, rendering state entropy maximization a non-trivial
task. Despite its non-trivial nature, obtaining this policy does not necessitate
any feedback embedded in the environment, rendering its learning process entirely
unsupervised.

A policy pre-trained to maximize the entropy of the induced state distribution
can offer valuable advantages during the subsequent fine-tuning phase. Indeed,
the pre-training allows the agent to interact with the environment in diverse and
informative ways collecting knowledge to use in the latter fine-tuning phase. Then,
thanks to pre-training, this latter phase will require less data thus tackling one of
the key issues of RL, which is sample efficiency [7]. From a theoretical point of

view, many works demonstrated the significance of state coverage in data collection
for offline [13]-[17] and online RL methods [18], [19].

In this thesis, we show that pre-training, guided by a state-entropy maximiza-
tion objective, enhances performance and sample efficiency when fine-tuning to
refine the policy behaviour according to the characteristics of a specific CPP
problem. Practically speaking, our intuition is based on the similarity between
the state-entropy maximization objective and the final coverage goal belonging to
problems in the context of Coverage Path Planning.

3

Introduction

Contribution The work of this thesis aims to take a step further in the au-
tomation of robotic spray painting processes within industrial settings. While a
handful of works [20]-[22] address this task in the literature, it remains far from
being considered a solved problem. Challenges such as object-conditioned learning
and sample inefficiency significantly limit the effectiveness of learning methods for
spray painting and other CPP problems.

In our approach, we employ the Reinforcement Learning framework to auto-
mate trajectory generation for covering target surfaces. Additionally, we incorpo-
rate the Unsupervised Reinforcement Learning framework to tackle the challenges
posed by object-conditioned learning. Our method involves pre-training policies
across various target shapes using Unsupervised Reinforcement Learning, followed
by fine-tuning to generate trajectories tailored to specific shapes. The two-step
training process, as demonstrated in our work, proves to be advantageous in terms
of both performance and training time. Leveraging pre-trained policies allows
the RL agent to learn to generate effective trajectories with fewer environment
interactions.

In summary, this work contributes by formalizing the setup for employing Re-
inforcement Learning algorithms in continuous spaces for robotic spray painting
tasks and proposing a pre-training method that reduces the fine-tuning time for
object-conditioned training.

Overview This thesis is structured as follows:

o Chapter 2: covers essential mathematical foundations, technical terminol-
ogy, and background concepts necessary for understanding the contents of the
thesis. It introduces the basic background for sequential decision-making and
Reinforcement Learning, delves into the mathematical definition of entropy,
and provides an overview of spray painting and Coverage Path Planning prob-
lems.

o Chapter 3 is dedicated to Unsupervised Reinforcement Learning, presenting
the general problem formulation and an overview of the different literature
approaches.

o Chapter 4 presents the state-entropy maximization objective, illustrating
the problem formulation and several algorithms guided by this objective.

o Chapter 5 illustrates the approaches found in the literature for addressing
robotic spray painting tasks.

o Chapter 6 describes the details of our pipeline and formulates the underlying
problem to be solved.

Introduction

o Chapter 7 provides an experimental evaluation of our method, showcasing
trajectories generated by pre-trained and fine-tuned policies, evaluated on a
painter simulator.

o Chapter 8 offers a concluding summary, highlighting key takeaways, and
suggesting directions for future research.

Chapter 2
Background

This chapter serves as a foundational introduction that lays the necessary back-
ground for the subsequent parts of this thesis. Section 2.1 delves into the prin-
ciples of Reinforcement Learning (RL), explaining its goals and the terminology
used in RL algorithms. We introduce the framework of Markov Decision Processes
(MDPs), which plays a pivotal role in formalizing the problems addressed within
the realm of RL. Next, Section 2.2 provides an exposition of additional mathe-
matical concepts for understanding entropy, which is the core of the unsupervised
RL algorithm used in this work. Finally, Section 2.3 provides an overview of the
robotic spray painting task, and how it is modelled according to the CPP problem
formulation. These foundational elements collectively serve as the cornerstone for
the comprehensive exploration and analysis presented in this thesis.

2.1 Reinforcement Learning

2.1.1 Markov Decision Processes

A Markov Decision Process (MDP) is the foundational model for decision-making
problems [23]. Within this framework, a decision-maker, often referred to as an
agent, is situated within an environment. The agent can interact with the envi-
ronment by executing actions, thereby influencing and altering the environment’s
current state. The environment’s current state, typically referred to as state, or a
part of it, is observed by the agent, allowing it to make informed decisions.

This interaction occurs in a sequence of discrete time intervals, represented as
t=0,1,2,3,...,T. At each time step, denoted as t, the agent uses the information
from the current state s; or observations to select an action to execute. After
performing the action, the agent receives numerical reward signal 7,7 from the
environment and can observe how the environment changed, observing the new

7

Background

state s;y1. In Figure 2.1, we can observe the scheme of an MDP, in which are
described the interactions between the environment and the agent. The agent’s

state S; - Y

| agent action A;
)

reward R

St

\

| environment
Risq ™)

Figure 2.1: Agent-Environment interaction loop

interactions with the Markov Decision Process (MDP) result in the generation of a
sequence including States, Actions, and Rewards, often referred to as a trajectory.
A discrete-time MDP can be formally defined as a tuple (S, A, P, R, dy, T'), where:

S € R™ represents an ns-dimensional continuous space, commonly referred
to as the state space. This state space embodies what the agent can perceive
in its environment, such as measurements from sensors in a robot.

A € R" corresponds to an n,-dimensional continuous space, typically de-
noted as the action space. The action space encapsulates the set of actions
at the agent’s disposal, signifying the range of possible torques that a motor
can output, for instance.

P :8x A — A(S) serves as a Markovian transition model, where A(S)
denotes the simplex over the state space. P(s|s,a) indicates the conditional
probability of transitioning to the next state s’, given the current state s and
an action a. This function defines the dynamics of the environment.

R : S x A — R represents the reward function, with R(s,a) indicating the
anticipated scalar reward received after taking action in a state s. Alterna-
tively, the reward function can be defined as R : § — R, wherein R(s) is the
scalar reward granted upon reaching state s. This signal plays a pivotal role
in guiding the learning process and encoding the desired task performance
the agent is expected to achieve.

do € A(S) corresponds to the initial state distribution, with dy(s) specifying
the probability that the initial state sy is equivalent to s.

T is the time horizon, which denotes the maximum length of a trajectory and
T eN.

2.1 — Reinforcement Learning

While we have defined continuous action and state spaces, it’s worth noting that
they can also be formulated as discrete sets. It’s essential to highlight that the
transition model P(s'|s,a), given the Markov property, implies that transitions
depend solely on the current state and action, without any consideration of previ-
ously visited states or actions taken.

2.1.2 Policies

In this section, we describe the role of an agent in the interaction process with the
environment. This interaction is characterized by a policy, denoted as 7 : S — A,
which represents the agent’s strategy for selecting actions given observations within
an MDP. The policies can be divided into two categories:

o Markovian (M) policies II,;: These policies collapse to a single, time-
invariant decision rule 7 = (7,7, ...), i.e., the same policy at each time-step,
such that 7 : S — A(A). They map a state s to a probability distribution

m(-]s)-

« Non-Markovian (NM) policies Iy, In this category, each policy 7 €
[Ty simplifies to a single time-invariant decision rule 7 = (7, 7, ...), repre-
sented as m : H — A(A), where H denotes the history space. These policies
consider the entire history h € H for action selection.

Additionally, there are other two categories:

o Deterministic policies, which select an action with probability 1, represented
as Sty = f(St, at).

 Stochastic policies, which select an action with a probability p € [0,1], rep-
resented as s;.1 ~ P(+]s, ay).

With the formalization of the MDP and the policy’s definition in mind, we now
formalize the agent’s interaction with the MDP. This interaction starts at time
t = 0, with the agent situated in an initial state sq determined by the distribution
dp. At each time step, the agent chooses an action a; to execute, according to the
policy 7(:|s;). The environment then changes into a new state s,y according to
its transition model, and the agent receives a reward signal r;,;. This interaction
persists until the predefined horizon T is reached. A trajectory 7 € T, where T
is the set of trajectories, is defined as a sequence (s, a;, rt)—o,... 7—1, encapsulating
the states, actions, and rewards gathered during the agent’s interaction process.
The probability that a policy 7 induces a trajectory 7 in the environment is defined
as:

T-1

p(rIm) = do(so) [] Plsertlsi al)m(als:) (2.1)

t

9

Background

2.1.3 State Distribution

An agent, which acts according to a policy 7 in an MDP, induces a distribution
over the states of the MDP. The probability of reaching a state s at time step ¢
during the interaction loop can be defined as:

dj (s) = P(s; = s|m). (2.2)

This distribution can also be expressed in terms of the set of possible trajectories
T as:
dj(s) = / P(7|m, st = s)dr. (2.3)
T

Here, P(7|m,s; = s) is the probability of being in a trajectory 7 when acting
according to policy 7 and being in the state s; within that trajectory.

2.1.4 The Reward

The reward function R plays a crucial role in reinforcement learning and depends
on the current state of the world, the taken action, and the next state of the
environment, often represented as:

ry = R(3t> Qy, 5t+1) (2-4)

The reward functions could be stochastic or deterministic, but we restrict our focus
on deterministic ones. Frequently, the reward function is simplified considering just
the current state, r, = R(s;), or the state-action pair, r, = R(sy, ay).

The primary goal of the agent is to maximize the return over a trajectory,
commonly called cumulative reward, which can take on various forms. One type
of return is the infinite or finite-horizon undiscounted return, which represents the
sum of rewards obtained in the sequence of time steps:

R(1) = Zrt (2.5)

Another type of return is infinite or finite-horizon discounted return, which ac-
counts for the sum of all rewards acquired by the agent, but these rewards are
discounted based on how far in the future they are obtained. This formulation of
reward introduces a discount factor v € (0,1):

T

R(t) =) 'ri (2.6)

t=0

Introducing a discount factor, denoted as v, on an intuitive level, reflects the prin-
ciple that having access to rewards in the present holds a more significant value

10

2.1 — Reinforcement Learning

than acquiring them in the distant future. Mathematically, an unbounded sum-
mation of rewards over an infinite horizon may fail to converge to a finite value,
rendering it challenging to incorporate into equations and analytical frameworks.
However, the inclusion of a discount factor, when applied under reasonable condi-
tions, ensures the convergence of the infinite sum. Thus, the introduction of v in
the reward formulation strikes a balance between capturing the value of immediate
rewards and facilitating mathematical treatment.

2.1.5 The RL Problem

[rrespective of the selected return function — infinite or finite-horizon and dis-
counted or undiscounted — and regardless of the chosen policy, the core objective
within the domain of Reinforcement Learning (RL) [1] is to identify a policy that
maximizes the expected return when performing a task. Let’s consider a scenario
in which both environmental transitions and the policy are stochastic. In this case,
the probability of observing a T-step trajectory is expressed as in Equation 2.1.
The expected return, denoted as J(m), can be formally represented as:

J(m) = / P(r|m)R(r) = B,y [R(7)] 2.7)
As a result, the central optimization problem in RL can be stated as:
™" € argmax J(m), (2.8)

where 7* signifies the optimal policy actively sought within the realm of RL.

2.1.6 Value Functions and Bellman Equations

In Reinforcement Learning, understanding the concept of value functions is very
important. These functions allow us to quantify the expected returns an agent
can achieve in various states and state-action pairs, which are fundamental for the
development of effective RL algorithms. Indeed, the goal of an agent interacting
with an MDP is to maximize the reward sum collected in the long term. This means
that the agent is far-sighted, i.e., it looks not only at the reward it can obtain in
the short term but also at the one it can obtain in the future. This concept is
expressed by the so-called value functions. The value function is defined as follows:

T—1

Vi(s) :=E > R(sy,av)|si=s (2.9)

t'=t

The equation defines the value V;"(s) when the agent is the state s at the time
t and following the policy w. Similarly, we can define the value function for a

11

Background

discounted MDP as:
T—1
Vi(s) =E [Z YR (st,ar) | so = s] (2.10)
t=0

The value function V(s) at state s depends on the value in the next state s’. For
this reason, the Equation 2.10 can be written in a recursive formulation:

Vi(s)= E lR(s,a)—irfy

a~vm(:]s)

s /) 1
B)] 1)
which is named Bellman expectation equation [24].
In the same way, we can define the action-value function Q7 (s, a) based on the
state-action pair. The two defined functions are linked in the following way:

Vi(s) = E [Q"(s,a)]

anrvT

V*(s) = max Q*(s,a)

where * means the optimal value.

2.1.7 Classes of Algorithms

In the world of Reinforcement Learning, several dichotomies arise from different
algorithms’ aspects. In [1] all the main characteristics and distinctions between
the algorithms are described. One of the most important dichotomies is related
to the question of whether the agent has access to or has to learn a model of
the environment. The model of the environment is a function to predict state
transitions and rewards. The algorithms are divided into:

o Model-based: The agent has a model of the environment,

e Model-free: The agent learns the model of the environment. It doesn’t have
any a-priori knowledge of the environment transition dynamics.

Another distinction is related to the length of trajectories, and the algorithms are
divided into:

o Infinite-horizon: The experience is composed of a unique infinite-length
trajectory;

» Episodic: The experience is divided into multiple finite-length trajectories.

Additionally, the algorithms are differentiated in when the learning happens and
how the policy uses the collected data to learn:

12

2.1 — Reinforcement Learning

e On-policy: The agent collects data using the latest learned policy and it
uses these data to improve;

o Off-policy: The agent learns through the experience collected at any point
of the training, collecting experience through the last learned policy and older
ones;

o Offline: The agent learns through batches of previously collected trajectories.

Another distinction in an RL algorithm is related to the question of what to
learn. The algorithm can be defined as:

o Value-based: The agent learns a value function and generates actions opti-
mizing it at each step;

« Policy-based: The agent learns a representation of the policy and tries to
optimize it;

e Actor-Critic: The agent learns the policy as in the policy-based methods
and learns the value function as in the value-based methods. It has been
designed to combine the advantages of value-based and policy-based methods
[25].

2.1.8 Model-based and Model-free

One of the critical decisions in reinforcement learning algorithms revolves around
whether the agent has access to or has to learn a model of the environment, which
refers to a function capable of predicting state transitions and rewards. Generally,
the two approaches are referred to as model-based or model-free. Model-based
algorithms offer a significant advantage, indeed they empower the agent to plan,
reasoning about the current state and action by predicting the consequences on
the environment. The success of this approach is exemplified by AlphaZero [26],
which substantially improves sample efficiency compared to model-free methods.
However, a notable drawback is that a ground-truth model of the environment is
typically unavailable to the agent. In such cases, the agent, to employ an environ-
mental model, must learn it solely through experiential data, presenting several
challenges. The most substantial challenge is the potential for bias in the learned
model, which can be exploited by the agent, leading to a situation where the agent
performs well based on the learned model but behaves sub-optimally or poorly
in the actual environment. Model learning is intrinsically challenging, and even
intensive efforts—investing considerable time and computational resources—may
not yield significant benefits. In the end, while model-free methods may sacri-
fice the potential advantages in sample efficiency associated with having a model,

13

Background

they are often more straightforward to implement and fine-tune. All algorithms
we will see in the next chapters, such as SARSA, Q-Learning, and MEPol, are
model-free methods and, generally, these are more prevalent, having undergone
more extensive development and testing compared to model-based methods.

2.1.9 On-policy, Off-Policy, and Offline RL

(a) online reinforcement learning (b) off-policy reinforcement learning (c) offline reinforcement learning

rollout data {(8;.a;,8;.17]} roliout data {(8;. 8.8}, 1] }

5.7

S

rollout(s)

data collected ONCE == == = = = 1
with any policy training phase

Figure 2.2: Visual representation depicting three distinct reinforcement learning
scenarios, from [27]: classic on-policy reinforcement learning (a), classic off-policy
reinforcement learning (b), and offline reinforcement learning (c). In on-policy
reinforcement learning (a), the policy m continuously updates itself using the
real-time data it generates. In classic off-policy reinforcement learning (b), the
agent accumulates its experiences in a data buffer (also referred to as a replay
buffer) D, with each new policy 7, gathering additional data, thus comprising
samples from 7y, 7, ..., s, all of which is employed to train an updated policy
Tre1- In contrast, offline reinforcement learning (c¢) utilizes a dataset D collected
by a (potentially unknown) behaviour policy mz. This dataset is collected once and
remains unaltered during training, allowing for the utilization of large previously
collected datasets. The training process remains decoupled from the Markov Deci-
sion Process (MDP), and the policy is deployed only after comprehensive training.

On-policy In On-policy RL, the agent updates it policy using recent data col-
lected with the most recent policy [1]. This process involves continuous interaction
between the agent and the environment to collect experience. Generally, in on-
policy methods, the policy is soft, which means that m(a|s) > 0 for all s € S and
all @ € A. A common example of on-policy learning is the SARSA algorithm,
which stands for State-Action-Reward-State-Action. This algorithm updates the
value of the current ()-function based on the reward and the value of the next
action and observed state.

The SARSA algorithm learns a policy that strikes a balance between explo-
ration and exploitation, finding applications in various domains such as robotics,

14

2.1 — Reinforcement Learning

Algorithm 1 SARSA

Require: Step size a € (0,1], small ¢ > 0
Initialize Q(s,a) for all s € St a € A(s), arbitrarily, except that
Q(terminal,-) =0
for each episode do
Initialize S
Choose A from S using a policy derived from @ (e.g., e-greedy)
while S is not terminal do
Take action A, observe R, S’
Choose A" from S’ using a policy derived from @ (e.g., e-greedy)
QS A) + Q(S, A) +a [R +Q(S', A) — Q(S, A)]
S« 5
A+ A
end while
end for

gaming, and decision-making. Nevertheless, it’s worth noting that SARSA’s con-
vergence can be slow, especially when dealing with large state spaces. In such
cases, alternative reinforcement learning algorithms might offer more effective so-
lutions.

On the bright side, on-policy learning exhibits greater consistency and stability.
However, its drawback lies in its potential inefficiency due to the need to carefully
manage exploration and exploitation.

In numerous scenarios, the on-policy approach may not be feasible or practi-
cal, primarily because data collection carries inherent risks (e.g., in autonomous
driving) or substantial costs (e.g., in robotics) as discussed in Levine et al. [27].

Off-policy In off-policy RL, the agent collects experiences and stores the data
in a buffer (also referred to as a replay buffer) D, with each new policy 7 gath-
ering additional data, thus comprising samples from 7, 7y, ..., 7, all of which is
employed to train a new updated policy 7 1. That means the agent can use data
from other sources or policies to improve its own policy. A common example of
off-policy learning is Q-learning [28], which is a variant of SARSA that updates
the value of the current action based on the reward and the maximum value of the
next state, based on:

Q (St Ar) + Q(Si, Ar) +a | R + Y max @ (St41,a) — Q (Sis Ar) | - (2.12)

Here, the learned Q-function directly approximates the optimal action-value func-
tion, independent of the policy being followed [1]. This setting simplifies the

15

Background

Algorithm 2 Q-Learning

Require: Step size a € (0,1], small € > 0
Initialize Q(s,a) for all s € St a € A(s), arbitrarily, except that
Q(terminal, -) = 0
for each episode do
Initialize S
while S is not terminal do
Choose A from S using a policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) + Q(S, A) + a[R + ymax, Q(5,a) — Q(S, A)]
S+ S
end while
end for

analysis of the algorithm and enables early convergence. The policy has the power
to choose which state-action pairs will be visited and updated in the Q)-function.
Off-policy learning offers the advantage of potentially greater speed and flexibility
as it can leverage any available data and exploit optimal actions. However, it
comes with the drawback of being more susceptible to errors and instability since
it might either overestimate or underestimate the values of certain actions.

Offline RL 1In the category of offline RL [27], algorithms exclusively rely on pre-
existing data and do not engage in additional online data collection. Consequently,
the agent loses its capacity to interact with the environment and accumulates new
transitions following the latest learned behaviour policy. Instead, the learning al-
gorithm operates with a static dataset denoted as D = {(s},a}, si,,7})}, and it
must derive the best possible policy solely from this fixed dataset. Then, the learn-
ing process lacks access to supplementary data since there is no interaction with
the environment. In essence, offline reinforcement learning necessitates the learn-
ing algorithm to gain a comprehensive knowledge of the dynamic system inherent
to the Markov Decision Process (MDP) solely from a fixed dataset. Subsequently,
it builds a policy 7(a|s) that maximizes the cumulative reward when this policy is
deployed for interactions with the MDP. As discussed by Levine et al. [27], a few
scenarios in which offline RL might be involved are decision-making in health care,
learning robotic manipulation skills, and Learning goal-directed dialogue policies.

2.1.10 Value-based Algorithms

In value-function methods, we implicitly learn the policy. Indeed, the goal is
essentially to learn to estimate the value of specific states (or state-action pairs)

16

2.1 — Reinforcement Learning

based on past experiences. In general, in environments featuring multiple states
and sequential decision-making, the value of a state is defined by the expected
long-term return given that state as a starting point. Importantly, the policy
becomes implicit, shifting the problem’s complexity from optimizing 7 explicitly to
estimating expected cumulative rewards. Then, these methods learn an estimator
Qo(s,a) of the optimal action-value function, Q*(s,a). Since the goal is to learn
the approximation @), these algorithms are called @-learning methods [28]. In
Algorithm 2, we report the pseudocode of these methods. As mentioned in the
previous chapter, this optimization is almost always performed off-policy, meaning
that each update can use data collected at any point during training, regardless
of how the agent chose to explore the environment when the data was obtained.
The corresponding policy is obtained via the connection between Q* and 7* and
the actions taken by the Q-learning agent are given by

a(s) = arg max Qo(s,a). (2.13)

Practically speaking, tabular methods can explicitly represent these functions by
storing each state entry s € S and the corresponding optimal action a € A. How-
ever, for continuous state and action spaces, parameterized function approximators
like neural networks are commonly employed. The primary challenge is to maxi-
mize these value functions while exploring the environment. Monte Carlo methods
address this by sampling return estimates G; at each time step while collecting
complete episodes with a current policy m. These methods are particularly effec-
tive for episodic tasks and generally result in lower variance in return estimates. In
contrast, Temporal Difference (TD) methods attempt to alleviate the need to wait
for exact sampled returns by using bootstrapping. This involves the use of learned
value function estimates to begin learning from a single transition. For example,
TD methods can approximate Gy ~ r; + v V(stH) and update their belief about
V(s) accordingly as soon as r; is obtained. SARSA and Q-learning are examples of
value-based TD methods for reinforcement learning problems with discrete action
spaces. The latter has found success in the field of Deep Reinforcement Learn-
ing, particularly when estimating value functions in high-dimensional state spaces
(e.g., images) using convolutional neural networks.

2.1.11 Policy Search Algorithms

In this section, we cover the mathematical foundations of policy optimization al-
gorithms. This family of RL algorithms aims to find the optimal policy by directly
searching in the policy space. The main Unsupervised RL algorithm used in this
thesis is built upon gradient-based methods [29], [30], based on gradient ascent to
conduct the policy optimization. Consider a stochastic, parameterized policy my,

17

Background

and the goal of maximizing the expected return J(my) = E [R(7)]. To optimize
T~y
the policy via gradient ascent:
Hk-i-l = Qk + « V@J(?Tg”ek . (214)

Here, 6 represents the vector of the parameters which define the policy. The policy
gradient Vy.J(my) is the key component of policy gradient algorithms. Indeed, the
learning process is performed by computing the gradient of the policy performance
with respect to the parameter vector. For this reason, the policy must be stochastic
and differentiable in 6. For practical use, we need an expression for the policy
gradient, that we can numerically compute with data from a finite number of
agent-environment interaction steps. We can derive the gradient expression [25],
as:
V@J(ﬂ'@) = VQ E R(T)

T~TY

= Vo [p(rl)R(7)
= [Vup(rl)R(7)

_ / p(T10) Vg log p(r|0) R(7)
= E Vylog p(|0)R(7).

Then, we can define:

VoJ(mg) = E ZVglogm(atht) (7). (2.15)

This expectation can be computed from the sampled data, i.e., the trajectory.
The gradient estimation can be computed considering a batch of trajectories D =
{7:}i=1...n, collected during the agent-environment interaction process according
to a policy my. We can compute the policy gradient as:

VQJ 7T9 "D‘ Z ZV@IOg’/TQ at\st) () (2.16)

T7€D t=0

where |D| is the number of trajectories in the batch D. It’s noteworthy that this
formulation resembles the well-known cross-entropy loss employed in supervised
learning. Indeed, with this gradient, we are updating the policy parameters to
increase the likelihood of actions performed in trajectories with higher performance
and reduce the likelihood of actions performed in the less promising ones. Equation
2.16 offers a straightforward approach for computing the gradient, typically by

18

2.1 — Reinforcement Learning

utilizing sample estimates of the expected value, a method akin to Monte Carlo
techniques, such as REINFORCE [29].

In summary, the policy gradient algorithms’ goal is to maximize the likelihood
of each action chosen during an episode based on the rewards received. Negative
returns result in a negative gradient, discouraging higher probabilities during the
update step, while positive returns have the opposite effect. In practical appli-
cations, additional strategies are often employed to expedite the training process.
These strategies include subtracting a constant (or state-dependent) baseline from
the rewards and employing techniques like bootstrapping, as seen in Temporal-
Difference methods.

An example of policy gradient methods widely adopted in reinforcement learn-
ing is the Trust Region Policy Optimization (TRPO) [31] and the Proximal Policy
Optimization (PPO) [32] family of algorithms. These algorithms have gained pop-
ularity due to their ease of implementation and tuning while still achieving results
close to the current state-of-the-art. Consequently, they have become the default
choice for various applications in reinforcement learning, as demonstrated in Chap-
ter 4.2, in which we show the MEPol [33] algorithm which is based on the principles
of TRPO.

2.1.12 Actor-Critic Algorithms

Actor-critic methods [34], [35] represent a category of policy gradient algorithms
that simultaneously learn a parameterized policy (actor) and estimate the value
function (critic). The critic’s role is to approximate future rewards in a Temporal-
Difference fashion for policy gradient estimation, facilitating single-step updates.
There are a number of different variants of actor-critic methods, including on-policy
variants that directly estimate V7™(s) [34], and off-policy variants that estimate
Q™ (s,a) via a parameterized state-action value function QF(s,a) [36], [37], the
pseudocode in the latter case is reported in Algorithm 3. Actor-critic methods can
be seen as a policy-based method extension, in which the)-function estimates the
policy gradient (Equation 2.15) and it is learned through experience. In the actor-
critic methods, the Soft Actor-Critic (SAC) [38] algorithm reached remarkable
empirical success by optimizing an entropy-regularized objective in addition to
the standard objective (Equation 2.8).

2.1.13 Open Challenges in RL

Despite notable advancements, RL faces several noteworthy challenges that impact
its practicality. These challenges are related to sample efficiency [5] and general-
ization [6], which are essential for RL agents to perform effectively and adapt to
new tasks. One of the central problems in RL revolves around the necessity for

19

Background

Algorithm 3 Q Actor-Critic

Require: Initialize parameters 0, w, learning rates ay, a,,; sample a ~ mg(a | s).
1: fort=1to T do

2: Sample reward r, ~ R(s,a) and next state s’ ~ P(s' | s,a)

3: Sample the next action a’ ~ m(a’ | §)

4: Update the policy parameters: 6 < 6 + apQ., (s, a)Vglogmy(a | s)
5: Compute the correction (TD error) for action-value at time ¢:

6: O =1 +7Quw(s,d") — Qu(s, a)

7: Use it to update the parameters of the Q function:

8: W 4— W+ y0; Vi Qo (8, @)

9: Move to a < a' and s < &

10: end for

a specifically hand-crafted reward function, "Curse of Goal Specification" [7], [39],
to define the desired task. Indeed, RL algorithms heavily rely on this reward sig-
nal to guide their learning process. In theory, having a perfectly shaped reward
function would simplify the learning process, but in reality, these reward func-
tions are often manually crafted and hard to optimize. This manual shaping of
rewards poses a significant limitation to autonomous learning as it demands careful
and task-specific formulation for each new task that an RL agent needs to tackle.
Moreover, this task-specific reward formulation requirement results in a substan-
tial cost and time overhead. Each time a new task is introduced, it necessitates
the labour-intensive process of designing a tailored reward function, often referred
to as reward shaping. This task-specificity not only escalates the complexity of
RL implementation but also limits the transferability of knowledge from one RL
problem to another. As a result, the potential for generalization across diverse
tasks is reduced, hindering the efficiency and scalability of RL algorithms.

Other issues emerge when we use RL in the real world. Indeed, as discussed by
Kormushev et al. [40], the application of RL on real robots faces several challenges
such as safety, scalability, etc. The safety problems are certainly non-negligible,
indeed, the robot policy should be safe not only for the robot itself, that it might
break down during the training and repairing it would inevitably raise the cost,
but also for the people around. Additionally, the training, or the early stage of the
training, is performed in simulation. However, the use of simulated environments
brings several problems, such as the so-called "Curse of Under-Modeling and Model
Uncertainty" [39], [41]. In simulation, we need to use models to describe the real
world, but, often, these models use approximations or they can’t describe exactly
the reality. The inaccuracy of models creates the problem of transferring the policy
from simulation to the real world, "Sim2Real Problem" [42].

In this thesis, we show how the Unsupervised Reinforcement Learning approach

20

2.2 — Information Entropy

[8] seeks to solve some RL issues, such as the generalization and the sample effi-
ciency problems.

2.2 Information Entropy

2.2.1 Information Content

The main idea of information theory [43] is that the meaningful content of a mes-
sage is related to the degree to which the content of the message is surprising.
The more often an event occurs, the less informative it is and vice versa. Math-
ematically, considering a random variable or vector X, with possible outcomes
x € {xy,...,2,}, the information content associated with X assuming a value z;
can be defined as:

I(x;) = log ! ~ = —log P(z;). (2.17)

Here, P(z;) is the probability of X to assume the value x;. As mentioned above,
the information content gives a value indicating how unlikely an event is.

2.2.2 Discrete Entropy

The information level in a random vector or variable X is measured using the
discrete entropy defined by Shannon et al. [43]:

H(X)= E I(2) =~ Ple)log P(x) (2.18)

The entropy measures the expected information which brings a random variable
X. Indeed, a higher entropy value corresponds to a less predictable variable,
indicating that it carries more information. If we read the concept of disorder as
unpredictability, we can easily understand why entropy is often interpreted as a
measure of disorder. The maximum entropy for a discrete variable occurs when
the distribution of outcomes is uniform, indicating that no outcome is more likely
than any other and all outcomes are equally meaningful. It is instead minimal
when P(x;) corresponds to a Dirac distribution, which indicates that one single
outcome has the maximum probability, while the others have a zero probability.
The entropy value is always positive, since the probabilities 0 < P(z;) < 1 and
the log P(z;) < 0. As a result, each term in the summation is either negative or
zero, ensuring that the overall discrete entropy is always positive.

21

Background

2.2.3 Differential Entropy

The concept of discrete entropy can be extended to random vectors with continuous
support. Let f(X) be the probability density of the random vector X with values
in R?| its differential entropy [43] is defined as:

H(X) = ~E[log(f(2)] = = [f(x)log(f(x))dz (2.19)

where X is the support region of the random variable X and f(x) is the probability
density function of X.

2.2.4 Non-Parametric Differential Entropy Estimator

When the distribution f is not available, the differential entropy can be estimated
through the realization of X = {z;}Y, [44]. In the Unsupervised RL algorithms
used in this thesis, to deal with high-dimensional data, we used the non-parametric
k-Nearest Neighbors entropy estimators defined by Sing et al. [45]:

— 1Y k
H(f) = Y ZlogW+logk;—\I!(k;) (2.20)
=1 2

where log k — W(k) serves as a bias correction term for the estimate, while log NLV,Q

measures the density of samples in proximity to the i-th sample. The latter is
then averaged across all samples to provide an estimation of their distribution.
In Equation 2.20, ¥ is the digamma function and Vj represents the volume of
the hyper-sphere of radius R; = |r; — x|, which denotes the Euclidean distance
between x; and its k-nearest neighbor xy,, and:

p
T; — a:f"”’ - P/?

r(2+1)

vk =

1

, (2.21)

where I' is the gamma function, and p is the dimension of X. In the end, the
estimator in 2.20 is known to be asymptotically unbiased and consistent [45].
Considering an off-policy scenario, we can obtain samples from a distribution
f that may differ from the target distribution f’. In this case, we can provide an
estimate of H(f’) by means of an Importance-Weighted (IW) k-nearest neighbour
estimator [46] to compute the entropy under f’, based on samples collected using
f:
N
ﬁk(f’|f):—ZI/;C/’ln‘V/V;—i—lnk—\Il(k), (2.22)
i=1 i

22

2.3 — Robotic Spray Painting and Coverage Path Planning

where Wy = >, Nk Wj 18 the sum of the normalized importance weights w; com-

puted over the set NF of k-nearest neighbour samples of z;. The normalized
importance weights w; can be computed as:

) /)
= SN) [F @) (2:23)

Starting from the normalized importance weights, it is also possible to compute
an estimate of the Kullback-Leibler (KL) divergence:

1 Y k/N
D 1 .
KL f 1f) = Z 0g ZNZ!@ w;

(2.24)

This measure is closely related to entropy and is sometimes referred to as relative
entropy. It serves as a divergence measure between two distributions. We can note
that, when f' = f and w; = %, the estimator in Equation 2.22 is equivalent to

Equation 2.20 and Dy (f'||f) = 0.

2.3 Robotic Spray Painting and Coverage Path
Planning

2.3.1 Robotic Spray Painting

Spray painting has played a pivotal role in industrial applications for over a cen-
tury, providing an efficient means to achieve uniform paint coverage on a wide
range of surfaces and components. For years, this process relied on manual op-
erations, which still persists even in highly automated industries. Nevertheless,
the landscape of industrial spray painting has evolved significantly over the last 50
years, with automation becoming increasingly prevalent. This transition towards
automation is driven by its potential to enhance quality while simultaneously re-
ducing costs and health risks [47].

From early developments in automation, the importance of automated spray
systems emerged. Over time, these systems have evolved into fully automated
and robotized spray-painting booths that are commonplace in many industries
today. Robotic spray painting, in particular, has become a standard technique in
highly automated production processes, notably within the automotive industry.
Often, the process involves the use of manual teaching to record and then replicate
robot trajectories. However, the advent of offline simulation has revolutionized this
domain by simplifying the work for spray-painting engineers.

Accurate simulation of the spray-painting process enables engineers to predict
the resulting paint thickness for a given robot trajectory, offering valuable feed-
back for trajectory optimization. This approach not only reduces the need for

23

Background

physical testing but also allows for the modification and improvement of robotic
trajectories before implementation and testing in real-world scenarios. With a fo-
cus on achieving precise simulations, attention subsequently shifts towards solving
the painting problem. This problem consists of finding a painting trajectory that,
when executed, produces a paint thickness that closely matches a specified tar-
get thickness. This optimization problem seeks to determine an optimal painting
trajectory given a desired paint thickness and a model of the surface to be painted.

Despite the importance of spray painting in the industry, trajectory generation
has not reached a sufficient level of automation. Researchers’ interest is shifting to
this topic, but there is not yet a well-established literature on it. The goal of this
thesis is to combine the RL framework with the robotic spray painting problem,
focusing not only on the final model performance but also on the computational
efficiency of the entire training process.

2.3.2 Coverage Path Planning Problems

Coverage Path Planning (CPP) is the task of determining a path that passes over
all points of an area of interest while avoiding obstacles [48]. This task plays a
crucial role in many robotic applications, such as vacuum cleaning robots [49],[11]
and painter robots [50]. However, the main objective of CPP is to determine a
path or a sequence of waypoints, which guarantee the complete coverage of an area
and, simultaneously, the trajectory must satisfy several criteria. As discussed in
[48], the requirements that a generated trajectory must satisfy are:

 the robot must move through all the points of the target area,
« robot must fill the region without overlapping paths,

robot must avoid obstacles,

« simple trajectory must be used (e.g., straight lines or circles),
e an optimal path is desired.

However, it is not always possible to satisfy all these criteria in complex environ-
ments. Therefore, sometimes a priority assignment is required, for example, giving
priority to optimal coverage with respect to the trajectory length.

The coverage algorithms can be classified as heuristic or complete depending
on whether or not it is proven that they guarantee complete coverage of the space
[9]. As in [51], another distinction in these algorithms is related to the data they
use. Indeed, an offline algorithm relies on stationary information, supposing that
there is a full prior knowledge about the environment. This latter scenario is
unrealistic in many real-world scenarios. On the other hand, we can classify a

24

2.3 — Robotic Spray Painting and Coverage Path Planning

coverage algorithm as online if we do not assume any prior knowledge related to
the environment. In this case, the robot relies on real-time data coming from
sensor measurements to sweep the target space. This latter class could be also
called sensor-based coverage algorithms. Since robots usually work in unknown
scenarios or partially unknown environments, CPP can be combined with other
tasks, such as environmental mapping. Additionally, these problems are proven to
be NP-hard, since the computational time to solve them drastically increases as
the dimensionality of the problem grows. In certain settings, a random policy with
an infinite horizon is a valid approach to solving coverage problems. Indeed, if an
agent moves randomly over a surface for an infinite interval of time is guaranteed
that the agent sooner or later will pass over all points on the surface. Nevertheless,
this solution is impractical in real-world applications and researchers created algo-
rithms, based on cellular decomposition and adjacency graphs, such as trapezoidal
[52], [53] or boustrophedon decomposition [54]. Instead, in this thesis, we show a
method to tackle coverage path planning using the RL framework.

25

26

Chapter 3

Unsupervised
Reinforcement Learning

In this chapter, we will explore the details of the Unsupervised Reinforcement
Learning (URL) framework, introducing the fundamental principles of these al-
gorithms. Following a concise introduction to the topic, Section 3.2 presents an
examination of the diverse techniques employed by URL algorithms, along with
an analysis of their inherent constraints.

3.1 Introduction

Previously, in Section 2.1, we introduced the RL framework [1] for enabling robots
to acquire task-solving capabilities in challenging environments. Despite its suc-
cesses, RL has exhibited various challenges and limitations, including issues like
reward shaping and sample efficiency during the learning process. These challenges
pose significant obstacles to the development and generalization of RL.

In response to these limitations, the Unsupervised RL (URL) framework [8] has
emerged as a promising solution. The URL framework operates through a two-
step learning process. The initial phase involves an unsupervised pre-training step
in which the agent acquires knowledge, such as information related to transition
dynamics and state representations within its interacting environments. The pri-
mary objective of this phase is to provide a pre-trained model for the subsequent
supervised fine-tuning phase. In the supervised fine-tuning phase, the agent learns
how to accomplish specific tasks using predefined reward functions. Utilizing a
pre-trained policy, rather than a randomly initialized one, offers substantial ad-
vantages in the training process [8], [55], [18]. After unsupervised pre-training, the
model leverages the knowledge acquired during the unsupervised phase, enhancing
its efficacy in mastering the desired task.

27

Unsupervised Reinforcement Learning

This approach also empowers the agent to discover latent dataset characteristics
that conventional supervised methods might neglect, evaluating them as insignif-
icant or rare outliers. In traditional learning processes, overlooked characteristics
can impede efficient learning for such data samples. Then, this unsupervised ap-
proach allows the agent to discover improbable states that during the task-specific
learning process might be neglected. Furthermore, during the supervised train-
ing phase, a randomly initialized policy can often struggle to proficiently tackle a
specific task, particularly when dealing with sparse reward signals. By employing
unsupervised pre-training, wherein the agent is tasked to acquire valuable skills
and explore a wide range of states, the URL framework facilitates the develop-
ment of a policy that can effectively tackle the downstream task learning even
when confronted with sparse rewards.

3.2 Intrinsic Rewards

The URL framework is characterized by the absence of an extrinsic hand-crafted
reward function. However, there is still a reward signal, called Intrinsic Reward,
to make the agent explore the environment. Intrinsic reward, unlike task-specific
extrinsic reward functions, refers to exploration and it encourages the agent to
learn to collect diverse experiences or to develop useful skills. In this section, we
will provide a complete overview of the commonly used intrinsic reward functions
and we will underline their advantages and disadvantages. We can classify the
approaches of intrinsic reward into three categories: curiosity-driven exploration,
skill discovery, and maximal data coverage [56].

3.2.1 Curiosity-driven Exploration

Curiosity-driven exploration aims to increase knowledge about the environment.
The exploration follows the principle that if the agent fails the prediction on the
next state, it has to explore this new state to reduce its uncertainty. Indeed, the
agent has to explore the states in which there is more uncertainty and, then, the
prediction error is likely higher. In practice, the goal of the agent is to maximize
the error of the next-state prediction made by the learned dynamics model. A
concrete example of this principle is the ICM algorithm [57], in which the intrinsic
reward is proportional to the prediction error as:

Tintrinsic X || f(@(s¢), ar) — ¢(5t+1)‘|§) (3.1)

where f and ¢ represent respectively the learned forward dynamics model and the
feature encoder.

28

3.2 — Intrinsic Rewards

Limitations One of the most important issues is related to the difficulties in
distinguishing the epistemic and aleatoric uncertainty [56]. The first refers to
uncertainty in the lack of knowledge, while the latter is related to variability in
the outcome due to random effects. An example of this phenomenon appears in
the noisy TV problem [58], where the agent gets trapped by its curiosity in a highly
stochastic environment.

3.2.2 Skill Discovery

Another URL is based on learning a set of useful skills, which can be useful for
solving downstream tasks, in a model-free setting. This approach is commonly
called skill discovery. The core intuition is based on the fact that the learned skill
controls which set of states the agent will visit. For example, in the Ant Mujoco
environment [59] the visited states will be different depending on whether the ant
moves forward or backward. Practically speaking, the skill discovery objective is
to maximize the mutual information between the skill latent vector z and the state
s:

I(s;2) = H(z) — H(z|s) = H(s) — H(s|z). (3.2)

The use of mutual information between skills and states encodes the idea that the
skill determines which states the agent will visit. An algorithm based on the skill
discovery idea is DIAYN [60]. Here, Eysenbach et al. [60], provided a method based
on mutual information for learning skills without an extrinsic reward function and,
once the agent learns different skills in an MDP, it can learn easier downstream
tasks.

Limitations One of the main issues of the skill discovery-based algorithms is
that an agent does not necessarily visit a huge amount of states, since it can
maximize the mutual information objectives in a small state variation [61], [62].
This limitation in state coverage could in turn limit the learning of downstream
tasks in complex environments [61].

Additionally, due to the restricted skill space, the performance of skill discovery
methods is lower than other pertaining methods [8].

3.2.3 Data Coverage Maximization

Other pertaining strategies are based on the objective of maximizing the data
diversity. This idea is directly related to exploration and coverage, since the agent,
to satisfy the goal, has to visit different states. In the literature, this objective is
formalized in two ways: using counters of the visited states or using entropy.

29

Unsupervised Reinforcement Learning

Count-based exploration

This first way of formalizing the data coverage objective is called count-based
exploration. This method directly counts the visited states to induce the agent
to go towards new and unexplored states [63]. In this class of algorithms, the
state-action counters N (s;, a;) serves as exploration bonus reward:

NI

Tintrinsic ¢ IV (8¢, a¢)~ (3:3)

However, the previous equation is intractable in high-dimensional spaces. To
solve this limitation, Bellaemare et al. [63] introduced the pseudo-counts using
density models and the counter is defined as follows:

)=)
N =) —ns) (34)

in which p is the density model over state space S, p;(s) is the density computed
after the training on a set of states and pj(s) is the density computed after the
training on an additional set of states.

Limitations In previous works [64], it has been proven that count-based meth-
ods suffer from detachment, because the agent loses track of interesting areas to
explore, and derailment, because the agent, following the exploration objective, is
prevented from going back to previously visited states. Additionally, this approach
drives the agent to be stuck in local minima [65].

Entropy Maximization

This latter class of algorithms is based on the idea of maximizing the entropy to
encourage novel state visitation and achieve data diversity. This objective can be
formalized as:

™ € arg maz H(d,) (3.5)
mell
In this equation, d, is the state distribution induced by a policy m(a|s) and H (")
could be the Shannon entropy [43], the k-NN entropy estimator [45], etc.

The state entropy maximization objective is notoriously hard to estimate and
optimize. In recent years, many algorithms have used different ways to perform the
optimization. Several methods have been proposed to solve this objective, such as
the algorithms APT [66], ProtoRL [67] and Mepol [33]. All three of them use the
particle-based entropy estimator (2.20) trying to maximize the distance between
k-nearest neighbours.

30

3.2 — Intrinsic Rewards

Limitations In addition to the complexity of the state entropy optimization,
it has been shown theoretically that the Markovian class of policies are insuffi-
cient to solve the entropy objective, while non-Markovian policies guarantee good
exploration [68].

31

32

Chapter 4

The State Entropy
Objective

This chapter covers the state-entropy maximization objective. First, we offer a
mathematical formulation of the objective in Section 4.1. Later, we explain the
main algorithms used to reach this objective. The first algorithm we present in
Section 4.2 is Maximum Entropy POLicy optimizaton (MEPol), which belongs
to the policy gradient methods [69] category and is guided by the state-entropy
maximization objective. We then present two extensions of MEPol, a-MEPol [70]
and MEMENTO [71], with better performance for working in multi-environment
settings.

4.1 Introduction

Maximum state entropy methods aim to define an objective that facilitates the
learning of an exploratory policy, which can subsequently be fine-tuned to effec-
tively address various tasks. The ideal objective here is to encourage a uniform
exploration of the state space, essentially maximizing the entropy of the state dis-
tribution generated by the policy. Hazan et al. introduce this objective in their
work [12] as follows:

7 € argmax H(d,). (4.1)

well
Here, II represents the policy space, d, denotes the state distribution induced by
policy 7, and H (d,) represents the entropy of the state distribution. Several meth-
ods [12], [33], [66], [67], [72]-][75] have been proposed to optimize this particular
objective. Hazan et al. [12] propose a method that employs the Frank-Wolfe al-
gorithm to approximate gradients for learning an optimal mixture of policies. In

33

The State Entropy Objective

another approach outlined in [76], the agent is provided with a target distribu-
tion d* that represents the desired state distribution. The exploration objective is
reformulated as:

min Dicr (dr[|d") = max By () log d” + H (dx) (4.2)

Here, Dy represents the Kullback-Leibler divergence between the distribution
induced by policy 7 and the target distribution d*. This objective is used to opti-
mize a mixture of policies, employing a density model to estimate the entropy of
the state distribution. In [33], a novel approach employs a K-nearest neighbour
estimator for the entropy of the state distribution induced by a policy. Building
upon this concept, Seo et al. [75] extend the idea to environments with visual in-
puts, utilizing estimates in the reduced dimensionality obtained through randomly
initialized convolutional encoders.

4.2 MEPol

Mutti et al. [33], introduced an algorithm known as Mazimum Entropy POLicy
optimizaton (MEPol), to train a single policy in a continuous high-dimensional
domain. The algorithm is designed to compute at every epoch the maximization
for the entropy estimation using gradient descent [77], according to policy gradient
methods. MEPol employs a non-parametric entropy estimation method based on
the importance-weighted entropy estimator described in Section 2.2.4 to calculate
the entropy of the state distribution d, across the state space.

MEPol combines this entropy estimator with an offline importance sampling
optimization technique [78]. This approach allows for the efficient recycling of
samples collected using earlier policies. After the selection of the horizon 7' and
the parameter £ € N, a batch of trajectories with 7" elements is sampled from
the environment, obtaining N samples and a set of states D = {s;}¥,, where
s; ~ d. Additionally, it employs gradient ascent within a trust-region boundary
[31] to update the agent’s policy, limiting the policy’s divergence from the one used
during sample collection. As in the TRPO method [31], the divergence is quantified
as the Kullback-Leibler (KL) divergence between the distributions induced by the
two policies, as estimated in equation 2.24. Then, given a trust-region threshold
0, the algorithm aims to solve:

. . T 0/
maximize Ek (dT> | (43)
subject to Dy, (d’}”d%) <.

In summary, the algorithm operates by gathering batches of trajectories and
using these batches to estimate the entropy of the state distribution. Subsequently,

34

4.3 — Learning in Multiple Environments

Algorithm 4 MEPol

Input: Horizon T, sample-size N, trust-region threshold d, learning rate «,
nearest neighbors k
Initialize 6
while not converged do
Draw a batch of [%W trajectories of length T’
Build a dataset of particles D, = {(7},s;)}
0+ 6, g+ 0
while Dy, (dr(0)||dr (¢')) < 6 do
0' =0 +aVo Hy (dr (0') | dr(0))
end while
0« 0
end while
return task-agnostic policy g

it updates its policy using off-policy updates based on this estimate, i.e., the agent
does more policy updates using the same entropy estimation. Indeed, the collected
samples are reused until the policy surpasses a predefined threshold ¢ for the
estimated KL divergence. This iterative process continues until convergence is
achieved.

4.3 Learning in Multiple Environments

Our goal in this section is to to present advanced URL methods considering the
problem of state entropy mazimization in multiple environments. Indeed, the algo-
rithms presented in the previous sections are environment-specific. In the multiple
environment setting, during the pre-training phase, the agent faces a series of
different reward-free environments belonging to the same domain, with the same
states and action spaces, but with a different transition dynamic. Several works
[70], [79] tackle the multiple environment settings to improve URL policy transfer-
ability across environments. Mutti et al. [70], during the learning process, situate
the agent into an environment sampled from the environment class, where it in-
teracts before facing a new environment. As they underlined, the ultimate goal
of the agent is to pre-train a maximum entropy policy helpful to solve any subse-
quent fine-tuning task that can be specified over any environment of the class. In
this setting, the pre-training becomes a multi-objective problem, since we aim to
maximize the entropy over different environments. Before presenting the a-MEPol
[70] algorithm, we present other previous works which faced the above-mentioned
setting.

35

The State Entropy Objective

In a prior study, Rajendran et al. [80] explore a learning procedure that con-
sists of two distinct phases: an initial agnostic pre-training phase, referred to as
practice, followed by a subsequent supervised fine-tuning phase known as match.
In their framework, these two phases are interleaved, and the supervision signal
obtained during the fine-tuning phase facilitates the learning of reward signals for
the practice phase through a meta-gradient approach. On the other hand, Parisi
et al. [79] explore the domain of unsupervised reinforcement learning in multiple
environments in which they introduce a fundamentally distinct approach with re-
spect to the one used in Section 4.3.1. They adopt a pre-training objective inspired
by count-based methods [63] instead of the entropy-based objective. Furthermore,
in the context of multiple environments, they devise a specific bonus system for
establishing a uniform preference across the entire class rather than prioritizing
the worst-case environment as in Section 4.3.1.

4.3.1 aoMEPol

A straightforward method for extending a single-environment algorithm to discover
an exploratory policy across multiple environments involves averaging the entropies
acquired from training in each of these environments. Given a set of environments,
denoted as M = {Mj, ..., M;}, characterized by diverse transition models P; but
sharing common action and state spaces, and a probability distribution p,; over
this set, the problem can be viewed as multi-objective. It allows for expressing
preferences among the environments within M by assigning different weights when
computing the average entropy.

However, a drawback of simply averaging the entropies across trajectories from
different environments is that it overlooks the tail end of entropies stemming from
unfavourable or infrequent environments. To address this limitation, an extension
called a-sensitive Maximum Entropy POLicy optimization (aMEPol) [70] has been
introduced, building upon the original MEPol approach. aMEPol incorporates a
novel objective, in which they consider the mean of a critical percentile of the
objective function, i.e., its Conditional Value-at-Risk (CVaR) [81] at level «, to
prioritize the entropy achieved in particularly rare or adverse environments, applied
to the entropies of collected trajectories:

CVaRe (H) = E [H, | H; < VaR Ry (H,)] (4.4)
~PM
T~pr,M

In this equation, H, stands for the entropy of the state distribution, estimated in
Equation 2.22, with the states visited along trajectory 7. This objective enhances
the optimization of entropy, particularly in unfavourable or rare environments,
making it more resilient to challenging transition functions. The algorithm acts as

36

4.4 — Non-Markovianity in URL

Algorithm 5 aMEPol

Input: percentile o, learning rate (3
Output: policy g
Initialize @
for epoch = 0,1, ..., until convergence do
fori=1,2,...,N do
Sample an environment M; ~ puy
Sample a trajectory 7; ~ pr, m,
Estimate H,, with (3)
end for
Estimate VaR,, (H,) with (4)
Estimate V&4 (1) with (5)
Update parameters 6 < 6 + 6695?(4 (7g)
end for

a policy gradient method [29], [30]. It directly optimizes the parameters 6 for find-
ing the optimal policy. The algorithm updates repeatedly the policy parameters
until a stationary point is reached. The update is performed as:

0 — 60+ FVeES (o) . (4.5)

In this equation, [is the learning rate and the /V\gfj‘\“,l (mg) is the gradient of
Equation 4.4 with respect to the parameters @ of the policy.

4.4 Non-Markovianity in URL

In their work, Mutti et al. [68] demonstrate the limitations of a Markovian policy
in the context of unsupervised pre-training. They start from the intuition that
using the history of interactions becomes valuable when the agent’s objective is
to explore the environment uniformly. Having knowledge of past visits allows for
more informed decision-making. To illustrate this point, consider an illustrative
example in which the agent is placed in the middle of a two-room domain (as
depicted in Figure 4.1) and has a limited budget of interactions, just enough to
visit every state within a single episode. In this scenario, it becomes evident
that an optimal Markovian strategy, optimized for the Maximum State Entropy
(MSE) objective, would involve randomizing between moving left and right from
the initial position. Subsequently, it would follow the most efficient route within a
room, ultimately returning to the initial position. As a result, each episode would
either involve visiting the left room twice, the right room twice, or both rooms
once, with all these outcomes carrying equal probabilities. Thus, while the agent’s

37

The State Entropy Objective

g —N
l@l
{E} +

-
——

Figure 4.1: Illustrative two-rooms domain from [68]. The agent starts in the
middle, colored traces represent optimal strategies to explore the left and the right
room

exploration may appear suboptimal when considering a single episode, it achieves
uniform exploration when averaged over an infinite number of trials. In summary,
Mutti et al. [68] show that non-Markovianity allows us to find the optimal policy
when we are in a finite horizon setting. On the other hand, they show that not-
Markovianity does not provide any advantage in an infinite horizon setting, but
this is impractical in real-world applications.

Notably, the Markovian approach differs significantly from how a human would
approach the problem. A human would intentionally decide to explore one room
before the other when positioned in the middle. This strategy ensures uniform
exploration of the environment in every trial but introduces a non-Markovian ele-
ment to the decision-making process. This is the reason why they highlighted that
a Markovian stochastic policy may excel in exploring an environment over an infi-
nite number of trials but can underperform in any single trial. Such a policy can
effectively explore an environment or a class of environments given a sufficiently
large number of trials. In certain environments, a Markovian policy frequently
encounters the same state with multiple possible actions, enabling exploration of
various parts of the environment. However, relying solely on the information of
the current state, the Markovian policy resorts to randomization, resulting in an
exploration of all available choices on average. When considering exploration in
a single trial, the Markovian policy proves suboptimal. Randomization prevents
it from avoiding revisiting states it has already explored. In contrast, employing
a history-based perspective instead of solely relying on the current state equips
the agent with the ability to retain information about the environment. This, in
turn, allows the agent to disambiguate its actions and make informed choices. By
remembering previously visited states, the agent can opt for different actions, fa-
cilitating more effective single-trial exploration and a better understanding of the

38

4.4 — Non-Markovianity in URL

v Gaussian Policy T4,
® Encoder fg, -
- o =e

Yi-1 o o [.® []
b o— : : B ~ :
[] ° [o []
. @

s
b ¥ ¢ at

®

Figure 4.2: Visualization of the policy structure used by MEMENTO from [71].
The recursive aspect is emphasized through the link connecting the output of the
history encoder to its subsequent input in the following time step.

environment.

4.4.1 MEMENTO

In this section, we present the policy gradient algorithm MEmory-based Maxi-
mum ENTropy Optimization (MEMENTO) [71]. The algorithm aims to learn a
non-Markovian policy to reach the optimal performance over a multi-environment
setting. By definition, in this case, the trajectory history is available and they use a
function to provide a compact representation to analyze the history. In particular,
we are concerned with a parametric architecture denoted as my, 0 € © C R?, which
is the composition of two modules, each implemented by distinct neural networks:
a recursive history encoder characterized by parameters 0,, and a Gaussian policy
characterized by parameters 0, with ¢ being the union of 6. and 0,. Figure 4.2
provides an illustration of the entire architecture. The recursive history encoder,
shown on the left side of Figure 4.2, serves the purpose of obtaining a concise rep-
resentation 1, for the current historical information h;. Specifically, at each time
step t, the previous representation ¢,_; and the current state s; are transformed
into a new historical representation ¢, using the following recursive equation:

o =0
{ Yy = fo. (3t>¢t—1)) (4-6)

where fy, represents a multi-layer perceptron parameterized by .. The resulting
output from the recursive history encoder is subsequently input into a Gaussian
policy, depicted on the right side of Figure 4.2, which defines the strategy for
selecting actions. The MEMENTO algorithm could be seen as an extension of
MEPol [33], described in Section 4.2, in which the employed architecture follows
what is described in Figure 4.2. Indeed, in MEMENTO the MSE objective is
pursued using the entropy estimator (Equation 2.22), as in MEPol.

39

The State Entropy Objective

Algorithm 6 MEMENTO

Input: Horizon T, number of batches N, batch-size B, trust-region threshold
0, learning rate a, nearest neighbors k, max off-policy iterations >, ..
Initialize 6
while not converged do
Draw N batches of B trajectories of length T’
0 0,3 pax < 0
while Dy (dr(0)|dr (0')) < 0& Sepoen < Cinaw do
0' =0 +aVeHy (dr (0') | dr(0))
Zepoch < Zepoch +1
end while
0«0
end while
return Recursive history encoder fy,, Gaussian policy g,

4.4.2 MEMENTO in Multiple Environments

In their work, Maldini and Mutti [71], show the performance of the MEMENTO
algorithm compared to aMEPol and MEPol, in a multi-environment setting. In
particular, they show that non-Markovian policy outperforms MEPol and aMEPol
in a small or large set of environments and that non-Markovian policy can effi-
ciently deal with the identification-exploitation dilemma, i.e., deciding when to
gather information about the environment, and when to exploit this information
with the best environment-specific strategy.

They test the above-mentioned algorithms in a small class of environments,
named GridWorld with Slope [70], which is composed of four rooms connected by
four corridors. The non-Markovian policy learned by MEMENTO outperforms the
other algorithms in both cases: when the sampling probability of the environment
remains the same in the training and testing time and in the unfavorable configu-
ration, in which the most sampled environment during the training phase becomes
less probable during the testing phase. Additionally, they also exploited a large
class of environments, and, as previously, MEMENTO outperforms the Markovian
counterparts.

In gridworlds [70] with different transition dynamics, the act of identifying the
environment with the aim of leveraging the most suitable environment-specific
strategy can often entail a substantial cost in terms of initial performance during
pre-training. This gives rise to a challenging identification problem that we refer
to as the "identification-exploitation dilemma', i.e., understanding when it is con-
venient to seek the environment identification rather than directly optimizing the
pre-training objective under uncertainty.

40

4.4 — Non-Markovianity in URL

A Markovian policy represents one extreme end of the spectrum, consistently
prioritizing the exploitation of interactions to augment entropy without precise
knowledge about the particular environment. On the contrary, non-Markovian
policy can deal with environmental uncertainty, making decisions about whether
to exploit existing knowledge or gather additional information while taking into
account the expected cost associated with the identification of the environment.
Indeed, history can help to identify correctly the current environment. In the
end, the proposed non-Markovian algorithm MEMENTO can help in a multi-
environment setting.

41

42

Chapter 5
Spray Painting Tasks

In this chapter, we show the various approaches that have been explored in the
context of solving the spray painting problem in the literature. We illustrate the
spray painting task and the diverse methodologies employed for its resolution.
In Section 5.1, we discuss the formalization of this challenge as an optimization
problem, where the objective is to discover an optimal trajectory that minimizes a
predefined cost function. Subsequently, in Section 5.2, we present a recent study
that introduces a neural network-based approach for trajectory generation. Finally,
we examine recent advancements employing reinforcement learning techniques.

5.1 Spray Painting as an Optimization Problem

In recent years, the field of robotic spray painting has garnered significant attention
both in academic research and industrial applications. Robotic spray painting
presents an automated solution for the painting process in the industry, offering
the potential to enhance quality and safety while reducing costs.

The core problem is formulated as follows: generating a set of painting tra-
jectories that achieves a target paint thickness on a given surface. Notably, this
challenge has been rigorously formalized in works such as [22] and [82] as an opti-
mization problem.

Gleeson et al. [22] introduced an optimization framework tailored to capture
the real-world behaviour of spray-painting robots. Furthermore, they devised a
method for generating feasible trajectories to guide the painting process. Their
approach includes the development of a projection model to faithfully emulate
the physical paint deposition process on surfaces. Leveraging this model, they
could create trajectories that satisfy various constraints, including paint thickness
requirements. The methodology involves refining pre-existing trajectories while
minimizing deviations from the target paint thickness.

43

Spray Painting Tasks

Subsequently, Gleeson et al. [82] enhanced their prior work by presenting an
algorithm capable of addressing paint thickness optimization along with additional
constraints, such as the inter-sweep distances, maximum segment lengths, and
more. Moreover, their algorithm can generate trajectories with minimal or no
intersections. Similar to their previous work, they cast this problem as a continuous
non-linear optimization task. The algorithm’s primary objective is to minimize a
comprehensive cost function that encapsulates various trajectory attributes and
requirements.

The main limitations of this type of approach relate to object-conditioned opti-
mization, meaning that an entire optimization process is required for every specific
target surface, and this has high computational costs.

5.2 Spray Painting and Deep Learning

The main goal of [20] is the robotic spray painting task involving 3D objects.
Tiboni et al. [20] aims to introduce a novel 3D deep learning approach that deals
with this task and operates on unstructured input - point clouds - and mixed-
structure output spaces - unordered sets of painting strokes.

Nowadays, despite the growing interest in robotic spray painting and its rele-
vance in product manufacturing, this task remains a largely understudied topic.
One of the main reasons is the lack of a sufficient amount of objects and an-
notated painting trajectories. Therefore, [20] offers the first supervised dataset,
with complex 3D objects for learning robotic spray painting path generators, such
as cuboids, windows, shelves, etc. Then, they formalize the task as a 3D deep-
learning problem, building a pipeline which takes as input a set of point clouds
- to describe the 3D object - and provides a set of poses as output. Their ap-
proach is able to learn a representation of the 3D object, capturing its properties
and details. Through this representation, they can predict path segments to be
concatenated, building a long-horizon path to paint the 3D object. Unlike other
heuristic methods, this method is not object-specific but, instead, it can be applied
to any 3D object. Additionally, this data-driven approach needs to learn only from
a set of human demonstrations but it can be applied to any object, regardless of
its complexity provided that its characteristics are covered by the training set.

In the end, they provide a method for making a qualitative comparison between
strokes, through the paint coverage, that is the percentage of surface covered,
and the Pose-wise Chamfer Distance, which is a metric to compare the predicted
and the ground truth paths. With this method, they are able to achieve a good
percentage of paint coverage with respect to ground truth.

44

5.3 — Spray Painting and Reinforcement Learning

5.3 Spray Painting and Reinforcement Learning

In the existing literature, there is a scarcity of research addressing the intersec-
tion of spray painting and the application of RL to path generation for robotic
spray painting. The pioneering work in this domain was introduced by Kiemel et
al. [21], who presented a framework for optimizing industrial spray painting in a
2D setting. Their approach to approximating the spray painting process encom-
passes several key steps. Firstly, they model the spray gun as an array of rays
and compute intersections between these rays and the pixels on surfaces, thereby
determining paint deposition based on a beta distribution. They employ the PPO
algorithm [32]. The state representation is composed of the spray gun’s position
(i.e., the intersection of the spray arrays) and the ratio of unpainted pixels to total
pixels. Actions are discrete, signifying movements in the up, down, left, or right
directions. The reward is exclusively based on the number of newly painted pixels.
Their results show that the generated coverage path for painting a car door exhibits
performance comparable to a manually implemented zigzag baseline. Nonetheless,
this method has several limitations, such as relying on simplified models, assum-
ing quasi-planar surfaces and other approximations, particularly in considering a
discrete movement of the spray gun. Additionally, it does not consider uniform
coverage, a vital aspect in industrial painting, as the generated paths often exhibit
excessive twists and overlapping. In this thesis, we propose a novel methodology
to address the limitations of the approach mentioned above.

5.3.1 Reinforcement Learning for CPP

Although RL applications in the context of spray painting are limited, there exists
related work focusing on Complete Coverage Path Planning (CCPP) problems,
including scenarios like robot cleaning [10], [11].

In [10], Lakshmanan et al. presented a method for solving CCPP using Deep
RL, employing the hTetro reconfigurable robot. This robot consists of four blocks
connected by three hinges, allowing for freedom of movement and seven differ-
ent morphological configurations. The robot can change its configuration through
transformations. These are not cost-free since the robot needs to consume energy
to change its configuration. Additionally, the robot can rotate by maintaining
the same configuration and there is a cost proportional to the energy consump-
tion. Therefore, the goal is not only to optimize the path but also to minimize
energy consumption, considering that each action, be it a move, transformation,
or rotation, consumes energy. Their approach operates in discrete action and
state spaces, where states are transformed into images before being fed to a neu-
ral network composed of a Convolutional Neural Network (CNN) [83] and a Long
Short-Term Memory (LSTM) [84] network. The reward function encourages the

45

Spray Painting Tasks

agent to cover new cells while penalizing energy consumption and illegal moves to-
ward obstacles. The results indicate lower cost - based on path length and energy
consumption - and time efficiency compared to baseline methods such as zigzag
or spiral pattern generators, as well as greedy search and genetic algorithms [85].
However, the proposed method can lead to suboptimal paths (in terms of length)
in certain cases. For example, if the optimal path (in terms of length) requires
a large number of transformations, the algorithms will generate a less expensive
path (in terms of energy consumption), since most transformations are as expen-
sive or more expensive than a simple translation, which could be necessary for the
optimal path. In summary, the method proposed in [10] generates a trajectory
minimizing energy consumption, which refers not only to moves but also to rota-
tions and transformations and the generated trajectory may not be optimal if we
consider only the path length. However, the proposed method works well also in
the real world in which the generated path for complete coverage presents a few
recovered areas.

In another study by Moon et al., [11], a discrete setting is also studied. Their
state representation encompasses the observation of eight surrounding tiles around
the robot. The reward function encourages covering new cells and discourages
unnecessary robot rotations. To prevent the robot from getting stuck in an area
with all cells cleaned, they implement a heuristic to find the nearest uncleaned
tile. While their approach outperforms random and zigzag policies, it has been
primarily tested in simulations and not validated in real-world settings.

Overall, the algorithms discussed in this chapter are tailored to specific envi-
ronments. With this thesis, we aim to generalize the application of RL in solving
CPP problems.

46

Chapter 6

Methodology

In this chapter, we provide a comprehensive presentation of the learning pipeline
devised to address the challenges posed by robotic spray painting tasks. Our ap-
proach involves a two-step methodology, comprising initial pre-training and subse-
quent fine-tuning. Firstly, in Section 6.1, we elucidate the motivation and founda-
tional concepts that underlie our methodology. This section aims to provide a clear
understanding of the key principles and design choices of our proposed approach.
Subsequently, in Section 6.2, we provide the mathematical details of our method, il-
lustrating the formulation of both the pre-training and fine-tuning rewards. Later,
we present an overview of the process for selecting the key parameters that char-
acterize the algorithm, and we provide insights into the implementation details.
In conclusion, we illustrate how we implement the spray painting simulator, which
plays a key role in our work since it has been used for evaluating all the generated
trajectories.

6.1 Overview

Tasks within the domain of CPP problems, such as robotic cleaning and spray
painting, present a multitude of challenges. The generated trajectory must not
only ensure optimal coverage of the underlying environment but also minimize
unnecessary energy consumption by avoiding obstacles and overlapping areas, for
example. Moreover, the path generation needs to adapt to the specific geometries
of the target objects.

To address the task of autonomous robotic path generation, we leverage RL, a
framework proven to successfully solve diverse problems, including robotic manip-
ulation, video games, and locomotion. However, RL algorithms often suffer from
limitations in generalization and sample efficiency, requiring a substantial number
of agent-environment interactions to converge to successful yet specific policies.

47

Methodology

Specifically, we consider the spray painting task in the setting of CPP problems,
which plays a pivotal role in industrial manufacturing. The main problem, when
addressing solutions for this task using RL, is that policy training must be per-
formed on a specific target object. This setting is essential to generate satisfactory
solutions tailored to that particular object.

To overcome the bottleneck, related to object-specific training, we introduce a
first prior pre-training phase. This additional step serves to accelerate the object-
specific training process, performing a pre-training in which the agent is able to
collect valuable knowledge about multiple target shapes. This step is performed
before the fine-tuning step, in which the policy specializes on a single shape.

In the pre-training phase, we employ algorithms belonging to the URL frame-
work. Specifically, we adopted entropy-based algorithms, in which the goal is to
maximize the entropy within the agent states. Since the entropy defined in Equa-
tion 2.22 is proportional to the distances between particles, i.e., states visited by
the agent, the entropy-maximization objective is close to our final coverage ob-
jective. Moreover, the incorporation of intrinsic rewards enables us to conduct
pre-training without the need for the computationally intensive painting simulator
tool, thereby avoiding a significant slowdown in this prior phase.

6.2 The Method

6.2.1 Problem Formulation

In this section, we will outline the problem formulation for our RL approach,
building upon the concepts introduced in Section 2.1.1.

In the context of our spray painting scenario, a state s encapsulates the agent’s
position at time step ¢t and low-level environmental features representing the target
shape M. This state information is used as input to the policy 7y to choose actions
a and transition to new states s;.1. The sequence of states collected within the
same episode constitutes the trajectory 7 = (so, s1,...,S7-1,57). The problem
we address in this work can be stated as follows: given a target shape M, the
policy my must generate the best trajectory 7, in order to maximize the expected
discounted return J(m).

6.2.2 Method Overview

To speed up the object-specific training process and enhance performance, partic-
ularly with respect to the final reward, we consider a two-step pipeline comprising
prior pre-training and final fine-tuning. The fine-tuning phase has the goal of max-
imizing the reward related to paint coverage and paint thickness variations on the

48

6.2 — The Method

target shape. These evaluations are carried out using the spray painter simulator
discussed in Section 6.3.2.

For the pre-training phase, we leverage the concept of intrinsic reward from the
URL framework, which allows us to avoid interactions with the computationally
expensive painter simulator. In the following sections, we show the details of both
the pre-training and fine-tuning steps.

The pre-training process This prior pre-training is based on the MEPol al-
gorithm described in Section 4.2, belonging to the URL algorithms with a state-
entropy maximization objective. As mentioned above, the employment of this class
of algorithms is due to the nature of the entropy-maximization objective which is
related to our coverage-maximization goal.

In our case, the pre-training process for the policy, 7, starts with sampling a set
of B target shapes M, with which the agent interacts. During this interaction, the
agent generates a set of B trajectories, each with a length of T" and in a different
environment M;. The introduction of the parameter B is also motivated by the
variance and the bias problems of the entropy estimator defined in Equation 2.22.
To obtain a reliable estimate, a substantial number of samples is required. We
provide further details in Section 6.3.

The entropy of each trajectory, denoted as H,;, is computed using Equation
2.22. We underline that the entropy is computed considering only the agent posi-
tion information of the state s, and the entropy is computed considering the states
within the same trajectory. Subsequently, the policy gradient is computed as de-
scribed in Section 2.1.11. The policy update is performed off-policy, following a
similar approach to [33], [70]. This process continues until the updated policy, 7',
falls within a trust-region bound [31]. The trust-region bound is computed as the
Kullback-Leibler (KL) divergence between my (the current policy) and the sam-
pling policy. Alternatively, the process may conclude if the number of off-policy
iterations exceeds a predefined threshold. The overall structure of the algorithm
resembles that of Algorithm 4, but it involves processing multiple trajectories over
different target shapes M, instead of a single trajectory. The other difference
lies in the state structure, which also includes the target shape information, in
addition to the agent position at step t. In particular, in the experiments, we
mainly deal with rectangular shapes rotated and with different dimensions. In
our experiments, we use a state representation denoted as s, which is defined as
follows:

49

Methodology

(z,y)
(ajmim ymin)
s = (xmaX7ymaX) (61)
sin(«)
cos()

Here, each element of the state vector is associated with specific parameters:

o (z,y) represents the Cartesian coordinates, defining the agent’s spatial posi-
tion within the environment,

e (Tmin, Ymin) a0d (Tmax, Ymax) define the minimum and maximum extents of a
rectangular bounding box, offering insights into the agent’s operational space,

o sin(«) and cos(«) capture the sine and cosine of the rotation angle «, respec-
tively, characterizing the orientation of the rectangular bounding box.

This state representation describes the essential spatial and geometric parameters,
enabling the agent to effectively perceive and navigate within the target shape.

The other difference with respect to MEPol [33], consists of sampling B target
environments at each epoch, and, consequently, B trajectories on each target shape
M;. In the next chapter, we provide a detailed account of the experimental results
achieved through training using this approach.

RL Fine-Tuning In the fine-tuning phase of our pipeline, we aim to further
enhance the performance of our agent. In this stage, we select a single target shape
M, which remains the same throughout the entire finetuning process. Within this
fine-tuning step, we use the same state representation defined in 6.1, to encapsulate
essential information for the agent’s interaction with the target shape.

The primary objective during this phase is to train the agent to maximize
a hand-crafted extrinsic reward using the TRPO algorithm [31]. We employ a
temporal difference learning method, and at each time step ¢, the agent receives a
reward defined as follows:

R(t) = Apc(t) — done X opp (6.2)

Then, in our work, we employ a multi-objective reward function [86], in which
we provide feedback related to the increase in the number of newly painted pixels
Apc(t) between the current time step ¢ and the previous time step ¢t — 1. Addition-
ally, we apply a penalty o5, (f) proportional to the variations in paint thickness
among the painted pixels. This latter penalization is given only in the terminal
time step of the episode because, once we have the full trajectory, we are able

50

6.3 — Key Design Choices

to evaluate the paint variations over the target shape. This multi-objective re-
ward function allows the agent to strike a balance between coverage and thickness
variation. The paint thickness variations are quantified using the coefficient of
variation, a metric that measures the relative variability used in our setting to
measure paint thickness variations within the painted region, defined as:

ap

T (6.3)

opr =
In this equation, op stays for the standard deviation computed considering only
the painted pixels P, while up is the average paint thickness among the painted
pixels P. Our goal is to reduce the paint variations on the target surface, and then
reduce the variation of coefficient value.
This fine-tuning step is pivotal in refining the agent’s performance and optimiz-
ing its painting strategy, ultimately contributing to achieving the desired painting
results tailored to a specific target.

6.3 Key Design Choices

Within our pipeline, we encounter a multitude of parameters and implementation
options that demand careful selection in alignment with our ultimate goals. In
the subsequent sections, we will elucidate our process for determining the key
parameters and implementation choices.

6.3.1 Pre-training

In this phase, aimed at preparing the policy before encountering the last phase,
we have to carefully choose different hyperparameters in accordance with our final
painting objectives. In the next paragraphs, we offer an overview of the hyperpa-
rameters to be chosen and how we should set their values.

Batch size The original MEPol [33] objective is to maximize the entropy within a
multiple set of trajectories on the same target shape. This goal slightly differs from
ours. Indeed, we aim to maximize the coverage, and, subsequently, the entropy
within the same stroke. This suggests shifting the original MEPol focus from
maximizing the entropy of multiple trajectories on the same shape to considering
a single stroke. Then, in our scenario, a batch should consider a single trajectory
for computing the entropy value.

K-th Neighbour Another important hyperparameter to be chosen is related to
which neighbour we have to consider for computing distances to then compute

51

Methodology

entropy as in Equation 2.22. Given that we consider a single stroke per shape, we
have to consider that our goal is to stretch our stroke as much as possible until it
reaches the target shape boundaries or previously visited regions. This intuition
makes us consider not choosing a neighbour too far away, since we may lose the
possibility to stretch trajectory.

Number of Batches and KL-threshold The parameter indicating the number
of batches (B) plays an important role in our setting. The entropy estimator
of Equation 2.22 suffers from variance and bias. The estimator is proven to be
asymptotically unbiased [45], but in our scenario we work with a finite number of
samples. Moreover, if the distance between the sampling distribution f and the
target f’ grows large, a high variance might negatively affect the estimation, as
stated in [68]. For this reason, to have a reliable entropy estimation, we average
the entropy values computed considering different batches.

Additionally, the KIL-divergence threshold in algorithms such as TRPO [32]
and PPO [31] is used to quantify the difference between the new policy that the
algorithm wants to update and the old policy that was used to collect the current
batch of data. The threshold is a way to ensure that the policy update doesn’t
introduce drastic changes that could lead to instability or poor performance. If the
KL divergence between the old and new policies exceeds the specified threshold, the
update is scaled down or rejected to keep the changes within a certain acceptable
range. This helps maintain a degree of stability during the learning process. Due
to instability problems of the entropy estimator, we use a low value of the KL-
Divergence threshold to prevent wrong policy updates and ensure that the learning
process is more controlled and stable.

Markovianty vs Non-Markovianity Another important choice to be addressed
in the pretraining setting is regarding whether or not to use a history-based pol-
icy. Practically speaking, the use of history can help the agent to identify which is
the underlying target shape. The use of non-Markovian policies showed remark-
able results in the identification of the environment sampled from a finite set [71].
However, in our setting, we already provide the information related to the target
shape and we consider the history information redundant. Moreover, as explained
in the next chapter, we generate target shapes every time we need to sample a
trajectory. This means that we sample shapes from an infinite set of shapes and
non-Markovian policies serve to identify the underlying target shape sampled from
a finite set of shapes.

52

6.3 — Key Design Choices

Paint flow
GCP

A

Spray distance

A<

W Spray area

Figure 6.1: Spray gun and coordinate system (from [87]).

6.3.2 Painting Simulator

The painter simulator is a computational tool designed to simulate the behaviour
of a robotic painter. It operates by modelling the paint deposition process on
a pixel map as the robot follows a given trajectory. To model the behaviour of
a spray painter, the trajectory is divided into points at which the paint spray
occurs, which we define as spray points. The simulator calculates the thickness of
paint deposited on each pixel of the target environment, considering the distance
between the pixel target points and pixel spray points. The paint thickness is
computed as in [87], following a parabolic distribution:

T(.I) __ 16 Qo (w2 _ 41.2)3/2 _ 16 Qo (1 o 43:2)3/27

T 3wt v T 3mw v w2

—w/2 <z <w/2 64

This equation models the paint thickness distribution on a flat surface as in Figure
6.1. In the equation, x is the distance between the pixel and the spray point, w
represents the diameter of the circular spray area, () is the paint flux, the amount

53

Methodology

Painter Robot Simulation Painter Robot Simulation Painter Robot Simulation
—

—— Border
60 3s = e
Not Painted

0.0
00 05 10 15 20 25 30 35 40
axis

(a) Simple line trajectory (b) Raster pattern (c) Squared spiral

Figure 6.2: Painter simulator examples.

of paint sprayed by the painter, and v is the moving velocity of the spray gun.
The pixel map is then printed as an intensity map. In Figure 6.2, we show some
examples of the painter simulator outcomes.

The key advantage of this simulator lies in its ability to visualize and analyze
the paint deposition process, allowing for the evaluation of painting strategies.
However, the simulator has some limitations. It simplifies the real-world painting
process by assuming a parabolic distribution model, which may not accurately
represent all painting scenarios. Additionally, the simulator does not currently
consider external factors or the dynamics of the painting environment, such as the
electrostatic effect which draws the paints towards the edge of the shapes when
the gun paints near the target shape borders [82]. Additionally, the painter simu-
lator accuracy strongly depends on the number of pixels in the map, which is the
resolution, but, higher accuracy means higher computational costs. Nevertheless,
it is a valuable tool for studying and improving the efficiency of painting robots.

54

Chapter 7
Experimental Analysis

In this section, we illustrate the experiments conducted with our method. First,
we present the results following the pre-training step and showcase the trajectories
generated by the pre-trained policy in relation to our final painting objective.

We empirically demonstrate that our entropy-based algorithm, inspired by
MEPol [33], provides effective pre-training for CPP problems. We further compare
the fine-tuning results starting from scratch and from a pre-trained policy, ana-
lyzing the strengths and weaknesses of the latter. To conduct this comparison, we
design the following experiments to test the effectiveness of our pipeline in terms
of coverage and smooth paint thickness:

o Pre-training on a Single Shape and Fine-tuning on a Single Shape:
in this case, pre-training is performed considering a single target shape, and
fine-tuning targets the same shape.

e Pre-training on Multiple Shapes and Fine-tuning on a Single Shape:
here, pre-training involves various target shapes, including rectangles of dif-
ferent dimensions, rotations, and positions in space. However, the fine-tuning
phase focuses on a single target shape, similar to the ones faced during pre-
training.

e Pre-training on Multiple Shapes and Fine-tuning on a Novel Shape:
In this experiment, the pre-training phase is similar to the previous one, but
the fine-tuning is conducted on a different shape referred to as window. This
shape resembles a rectangle but has two vertically disposed holes (see Figure
7.1).

Additionally, we provide a comparison of our final results to the setting inspired
by [21], which we refer to as the baseline.

55

Experimental Analysis

0.0 1

0 1 2 3 4

Figure 7.1: Example of a window target surface

7.1 Pre-training

The primary objective of the pre-training phase is to make the agent learn valuable
knowledge about the target shapes. We leverage the Intrinsic Reward formulation
defined in Equation 2.22 to achieve this objective. In this section, we present the
intermediate results, showcasing the trajectories a policy can generate solely after
the pre-training.

7.1.1 Pre-training on a Single Shape

In this scenario, the agent undergoes training employing a single target shape. In
practical terms, the agent’s objective is to maximize entropy by increasing dis-
tances between k-neighbours. Since the agent explores a single environment, the
bounding box and the rotation information are redundant. The detailed hyperpa-
rameters for this experiment are outlined in A.1.1.

As illustrated in Figure 7.2, the agent, at the end of pre-training, can gener-
ate trajectories resembling spirals that already achieve an acceptable coverage of
the target surface. Figure 7.2 presents the results for three different seeds. These
empirical findings underscore the effectiveness of entropy as a target metric for im-
proving coverage. However, it’s noteworthy that sometimes the plotted trajectory
doesn’t converge toward the centre of the target shape, which is crucial for at-
taining satisfactory coverage results. To emphasize the impact of pre-training, we
compare these results with those of a non-trained policy, which tends to navigate
towards boundaries or stay near the starting position, without sufficiently covering

56

7.1 — Pre-training

Agent Position Track Agent Position Track 40 Agent Position Track

0.0 - n
0.0 0.5 1.0 15 2.0 25 3.0 35 4.0
X

(a) (b) (c)

00 05 10 15 20 25 30 35 40
X

Agent Position Track Agent Position Track Agent Position Track

4.0 4.0 S 4.0
35 35 /—(\‘\L\ 35
3.0 30 3.0
25 25 > 25
] .

0.5 05 05 I/&//‘()
& 1 0.0 0.0 AL

.0 .
00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40
X x X;

(d) () (f)

Figure 7.2: In this figure, we plot the trajectories generated by policies during the
fine-tuning phase. In Figure 7.2a, 7.2b, 7.2c we plot trajectories of the non-pre-
trained policies, while Figure 7.2d, 7.2e, 7.2f show the generated trajectories at
the end of pre-training. The columns represent 3 different seeds.

o0 o

the surface. The training curve in Figure 7.3 demonstrates quite a stability and
relatively fast convergence.

7.1.2 Pre-training on Multiple Shapes

To make the agent explore different shapes, we randomly pick B shapes for each
episode. Practically, we generate bounding boxes and rotations whenever we sam-
ple a trajectory, giving the agent a wide range of shapes to handle. This choice is
intentional since we want the agent to develop a general behaviour without over-
specializing on a fixed set of shapes. Unlike before, now the bounding box and
rotation details are crucial for understanding each shape. When creating rectan-
gles, we add a rule to ensure they have a minimum area.

Figure 7.4, shows that, as in the previous experiment, the agent learns a policy
that, at the end of pre-training, can cover different shapes effectively. In Table

57

Experimental Analysis

Entropy
2.5

1.5

0.5

Epoch

2k 4k 6k 8k 10k 12k

Figure 7.3: Entropy curve during the pre-training on a single shape.

‘ Horizon (7') Starting Entropy Final Entropy

Single Shape 150 1.1£0.3 2.3 £0.11
Multiple Shapes 100 0.25 4+ 0.01 2.8+0.8

Table 7.1: In this table, we show how the entropy increases using the entropy-based
algorithm described in Section 6.2.2. We thus compare the outcomes of both kinds
of pre-training, when considering a single target shape and we consider multiple
variations.

7.1, we can see a comparison of the starting entropy, i.e., the entropy obtained
when the agent is not yet trained, and the maximum average entropy obtained
during the pre-training process. Indeed, for the fine-tuning step, we are going to
use the best-performing policy we found in this prior step. As you may notice
from Table 7.1, we used a shorter horizon 7' in this latter setting, since the area
of the target shapes encountered here is generally lower than the example shown
in Section 7.1.1.

7.2 Fine-tuning

In this section, we provide an analysis of the last step of our pipeline, which is
fine-tuning. With this step, our goal is to refine the policy behaviour making
it able to generate a trajectory for covering the target shape. First, we provide
a baseline experiment, which is developed in the simpler case, where the agent
policy starts from scratch and receives feedback based on the newly painted pixels.
The baseline setting is inspired by [21]. However, the overall setting is different.

58

7.2 — Fine-tuning

Figure 7.4: Trajectories generated by policies after pre-training on multiple target
shapes.

Then, we perform the same experiment using pre-trained policies as described in
the previous sections. Since our main goal is to speed up the training process,
we compare results after a few episodes when starting the training using random
policies and taking advantage of pre-training. Generally, we compare the generated
trajectories comparing their paint coverage (PC'), which is the percentage of the
painted pixels over the total number of pixels within the target shape, and their
paint thickness variation using the coefficient of variation (op;), as defined in
Equation 6.3. What we desire from these experiments is to have the highest paint
coverage and the lowest paint thickness possible.

59

Experimental Analysis

7.2.1 Baseline

This first experiment focuses on policy training over a single target shape, in
which, the goal is to maximize only the coverage objective. This means that, for
our baseline, we do not consider thickness constraints and we use the following
reward function:

R(t) = Apc(d), (7.1)

in which positive feedback is given only according to newly painted pixels Apq(t).
In Figure 7.5, we show the best results for three different seeds in the first 150
episodes. We can observe that the best trajectories are obtained when performing
the fine-tuning phase starting from a pre-trained policy as in Section 7.1.1. Indeed,
it is clear how the final training process benefits from pre-training. This is also
shown in the following plot (see Figure 7.6), where we can observe that the curve of
a pre-trained policy starts from a higher level with respect to the fine-tuning with
a randomly initialized policy. Generally, an episode during the fine-tuning process
lasts for ~ 9s, then, a training performed for 150 episodes lasts for ~ 22min 1.

7.2.2 Paint Thickness Objective

With respect to the baseline, we introduce the paint thickness minimization objec-
tive, this means we want to reduce as much as possible the variations of the paint
deposited on the underlying surface. To do that, we introduce the variation of co-
efficient (0p,) and we use the reward function defined in Equation 6.2. As shown
in Table 7.2, the fine-tuning conducted following our pipeline outperforms the case
with random initialization. Indeed, we obtain satisfactory results in terms of cov-
erage and thickness, when starting from a pre-trained policy. However, the results
in Table 7.2 show that, in a pre-trained setting, the paint thickness objective helps
in reducing the thickness variations at the expense of the paint coverage.

Short Fine-tuning

To clarify how our pipeline improves the standard training process, in this section
we analyze a very short fine-tuning. We show the best results in time slots, showing
the best results obtained after 20, 40 and 60 episodes. We recall that 20 episodes
are performed in ~ 3 minutes. From Figure 7.7 and Table 7.3, we note that we need
a few episodes to obtain a coverage higher than 80%, if we leverage pre-trained
policies.

"We refer to a CPU AMD Ryzen 9 3950X: featuring 16 cores, 32 threads, a 72 MB cache, and
a maximum boost clock of 4.7 GHz.

60

7.2 — Fine-tuning

Painter Robot Simulation

Painter Robot Simulation

Painter Robot Simulation

40 s
— 300 400
—— Tajectory
. 500 g | NotPainted
p i 350
250
) 400 300
3 200
> N 250 o
2 300 G % 0 2 0% 2
g0 5 2 1508 % 200 &
E s £
g § 150
200 100
X : 100
100 50
. - 50
o 0 o 0 0.0 o
00 05 10 15 20 25 30 35 40

.0
00 05 10 15 20 25 30 35 40
X-axis

(a)

X-axis

(c)

Painter Robot Simulation

Painter Robot Simulation

120 160 X
m 120
100 140
120 . 3 g 100
80
100 80
2 @ z @ z
60 2 H 80 2 H 2
§ g g
- NS o £
w© 60
0
20
20 . 20

. o - Ar'("' 4

0.0 00
00 05 10 15 20 25 30 00 05 10 15 20 25 30 35 40
Xaxis Xaxis

caxis

(d) () (f)

Figure 7.5: In this figure we show fine-tuning outcomes focusing solely on the Paint
Coverage objective. Figures 7.5a, 7.5b, and 7.5c depict results from three distinct
seeds during the fine-tuning of randomly initialized policies. Conversely, Figures
7.5d, 7.5e, and 7.5f showcase results from fine-tuning pre-trained policies.

Reward
O Random Initialization O Pre-trained

80
60
40
20
0 Episodes
0 20 40 60 80 100 120 140

Figure 7.6: Plot of the reward curve in the baseline setting.

61

Experimental Analysis

| PC objective PT objective PC 1 PT(o%y) |

Random v X 844+ 12.0)% 70.2 % 39.8
Pre-trained v X (99.5+0.3)% 13.2+29

Random v v (43.9£18.9)% 161.7 £80.1
Pre-trained v v (99.2+£0.7% 945+ 1.8

Table 7.2: Baseline Setting comparison, considering only the Paint Coverage ob-
jective or both, Paint Coverage and Paint Thickness. Here, 1 indicates that we
prefer higher results, while | means that lower is better.

(a) Episode = 20 (b) Episode = 40 (c) Episode = 60

Painter Robot Simulation

Painter Robot Simulation Painter Robot Simulation

00 0.0
00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40
X-axis X-axis

Painter Robot Simulation Painter Robot Simulation

! ‘ :0

0.0
00 05 10 15 20 25 30 35 40
X-axis

el v o

0.0
00 05 10 15 20 25 30 35 40
X-axis

Figure 7.7: Illustrated in these figures are the optimal outcomes achieved after 20,
40, and 60 episodes, corresponding to intervals of approximately 3 minutes each.
The top row displays results from fine-tuning using randomly initialized policies,
while the bottom row showcases outcomes following prior pre-training.

7.2.3 Fine-tuning after Pre-training over Multiple shapes

The setting of this experiment is more complex than the ones seen in the previous
sections. Indeed, the pre-training phase is conducted considering different target
shapes as described in Section 7.1.2. Then, in the fine-tuning step, we consider
a single target shape to refine the policy behaviour. Here, we aim to show that
pre-trained policies, which face multiple target shapes, are able to refine their
behaviour on a single target shape using a few environment interactions. Indeed, as

62

7.2 — Fine-tuning

| 20(~3min) 40(~6min) 60 (~ 9min)
Random | (20.8+8.7)% (30.2+9.2)% (36.2+13.1)%
Pre-trained | (97.2+1.9)% (97.8+1.6)% (98.46 £1.3)%

Table 7.3: This table shows the average percentage of coverage we obtain after
brief fine-tuning of 20, 40 and 60 episodes.

in the previous sections, we compare the results of this latter phase when employing
randomly initialized or pre-trained policies.

Table 7.4 shows that the results of pre-trained policies outperform the best
results of fine-tuning random initialized policies after 150 episodes. As expected,
the coverage performance when involving pre-trained policies is higher and with
a lower variance. This means that employing pre-training guarantees a higher
coverage ratio after a few episodes. Moreover, considering the paint thickness
objective, we generally obtain smoother trajectories, but it may happen that we
sacrifice a few percentage points of coverage ratio.

Painter Robot Simulation Painter Robot Simulation

._.
w
o
Intensity
o
o
Intensity

=
153
o

0.0 0 y 0
00 05 1.0 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40
Xaxis X-axis
(a) Fine-tuning results considering ran- (b) Fine-tuning results of a pre-trained
dom initialization policy

Figure 7.8: Best results of fine-tuning, when starting from random initialized or
from pre-trained policies.

Short Fine-tuning

As in the previous sections, we show the effectiveness of our pipeline by considering
the results after a few epochs. Differently from the previous experiment, we show
the best results considering only 20 episodes, which requires 1.5 minutes of fine-
tuning. As shown in Figure 7.9, pre-training initialization favours fine-tuning

63

Experimental Analysis

| PC objective PT objective PC 1 PT(o%y) |
Random v X (887 L£9.6)% 94.4 £ 349
Pre-trained v X (99.7£0.3)% 46.4+£9.0
Random 4 4 (52.4+23.0)% 209.8 £+ 136.9
Pre-trained v v (98.7+£1.3)% 424+44

Table 7.4: We compare the results obtained when fine-tuning the behaviour on a
single target shape, considering only the Paint Coverage objective or both, Paint
Coverage and Paint Thickness. The pre-trained policy employed in this setting
faced multiple target shapes during pre-training. 1 higher the better, and | lower
the better.

process even in the very first episodes. Using pre-trained policies allows us to
obtain fine-tuned policies to generate trajectories covering more than the 98% of
the target shape with few interactions. Slightly lower coverage values occur when
considering the paint thickness objective, this is due to the fine-tuned policy dealing
with multi-objectives, so it may learn to sacrifice the paint coverage ratio favouring
a smoother paint coverage (see Figure 7.9a). Indeed, in Figure 7.9b, we can observe
a slightly lower value and lower variance of paint thickness when considering the
paint thickness minimization objective. Visual results are presented in Appendix
A.2.3.

100 Policy Initialization

500
=== Random
mmm Pre-trained
80 400
60 300
40 200
20 100
Policy Initialization
mmm Random
— Pmtralned -
0 0

Non fine-tuned PC nb]ectwe PC and PT objectives Non fine-tuned PC objective PC and PT objectives

Percentage of Coverage (%)
Paint Thickness (0*)

) Paint Coverage (b) Paint Thickness

Figure 7.9: These bar plots illustrate the coverage achieved by trajectories gen-
erated by non-fine-tuned policies (on the left of the figure) compared to those
fine-tuned for only 20 episodes (on the right of the figure), requiring a training
time of 1.5 minutes. For the paint coverage objective, the higher the better, for
pain thickness, the lower the better.

64

7.2 — Fine-tuning

7.2.4 Fine-tuning on a Novel Shape

This experiment introduces a new shape referred to as a window. An example of
the window shape is illustrated in Figure 7.1.

In this setting, the policy behaviour is fine-tuned on this unfamiliar shape,
which was not encountered during the initial pre-training phase. The objective is
to demonstrate the adaptability of our pipeline in fine-tuning considering target
shapes different from those encountered during pre-training. Throughout this
phase, the agent learns to navigate and adapt to the new properties of the target
shape, particularly in this case, learning to avoid the holes. Figure 7.10 visually
depicts how the refined policy behaviour, especially when leveraging pre-trained
policies, achieves superior performance, often surpassing an 85% coverage on the
window surface.

Painter Robot Simulation . .)
Painter Robot Simulation

. Y 0.0
0.0 05 1.0 15 20 25 3.0 35 40 00 05 10 15 20 25 3.0 35 4.0
X-axis X-axis

(a) Fine-tuning results starting from a (b) Fine-tuning results starting from a
random initialized policy pre-trained policy

Figure 7.10: Results after fine-tuning on a single target shape.

Short Fine-tuning

In Figure 7.12, we compare the results after few epochs of fine-tuning. The initial
epochs contribute significantly to the increase in coverage percentage compared to
non-fine-tuned policies. Generally, achieving coverage above 85% requires approx-
imately 20 episodes (equivalent to ~ 1.5 minutes) of fine-tuning.

Figure 7.11 further illustrates the evolution of coverage percentage during train-
ing. Notably, when employing pre-trained policies, we observe an initial peak in
coverage, followed by a temporary decrease. This behaviour may suggest that the
agent escapes from a local maximum, subsequently re-learning and discovering a

65

Experimental Analysis

new maximum. For this reason, the best results shown in Figure 7.10 are obtained
during the first episodes of fine-tuning.

Coverage (%)
O Pre-trained O Random Initialization

80
60
40

20
Episodes

0 20 40 60 80 100 120 140

Figure 7.11: The curve represents the coverage ratio during the fine-tuning con-
sidering a window as a target policy.

Policy Initialization
-— Randum
— S Bl

Non fine-tuned PC ob]ectwe PC and PT objectives Non fine-tuned PC objective PC and PT objectives

(a) Paint Coverage (b) Paint Thickness

Policy Initialization
mmm Random

~
=3
=3

a
3
=3

o)
=3
S

IS
S
S

Paint Thickness (0*)
w
&
3

Pen:entage of Coverage (%)

N
S
S

-
S
S

o

Figure 7.12: These bar plots illustrate the coverage achieved by trajectories gen-
erated by non-fine-tuned policies (on the left of the figure) compared to those
fine-tuned for only 20 episodes (on the right of the figure), requiring a runtime of
1.5 minutes, considering a window target shape. The bars on the right are further
divided into two groups, representing experiments conducted with a focus on paint
coverage optimization only and experiments considering both paint coverage and
paint thickness objectives. For the paint coverage objective, the higher the better,
for pain thickness, the lower the better.

66

7.3 — Discussion

‘ PC objective PT objective PC 1 PT(ohy) |

Random v X (59.7 £ 12.3)% 153.1 £ 49.9
Pre-trained v X (91.8+1.99% 60.2+10.7

Random 7 7 (423 +11.0)% 2041+655
Pre-trained v v (90.4£23)% 53.0+4.5

Table 7.5: We compare the results obtained when fine-tuning the behaviour on a
window-like target shape, considering only the Paint Coverage objective or both,
Paint Coverage and Paint Thickness. The pre-trained policy employed in this
setting faced multiple target shapes during pre-training, but it didn’t encounter
window-like shapes. 1 higher the better, and | lower the better.

7.3 Discussion

The application of our pipeline for addressing robotic spray paint leads us to
significant new results. We thus report our discussion on the results we obtained.

7.3.1 Pre-training

Employing entropy-based algorithms demonstrated to benefit the final results in
our spray painting scenario. Indeed, the agent can generate acceptable trajectories
for covering target shapes already after the pre-training. Figures 7.2 and 7.4 show
the trajectories generated by pre-trained policies and we can observe that these can
sufficiently cover the target shape. Moreover, considering batches of trajectories
sampled from different target shapes showed to be a good choice for improving
the generalization of the agent. Indeed, at the end of pre-training, it can generate
satisfactory results on the different target shapes it faces.

Limitations The pre-training algorithm we provided and inspired by MEPol [33]
demonstrated to give satisfactory results. However, the generated trajectories tend
to converge to a spiral-like shape. Generally, the best trajectories for painting a
surface are similar to raster patterns as shown in Figure 6.2b. Then, in the first few
episodes of fine-tuning, the agent learns to refine this sub-optimal behaviour and
it is not able to find a new optimum, which may generate raster-like trajectories.

7.3.2 Fine-tuning

Thanks to fine-tuning, the policy can refine its behaviour to generate trajectories
tailored to a specific target surface. The results we reported in the previous sec-
tion achieved high performance after a few episodes of fine-tuning the pre-trained

67

Experimental Analysis

policies. Indeed, the trajectories generated can cover more than the 85% of the
target surface. Thanks to pre-training, we can deal with the limitation of object-
conditioned training, since we are now able to obtain good results after a few
minutes of fine-tuning. These advantages in terms of time are shown in Figures
7.9, 7.12 and in Table 7.3, in which we illustrate that we need only a few minutes
of fine-tuning to reach high performance.

Moreover, the introduction of the paint thickness optimization objective, as in
Equation 6.3, helps the agent to generate smoother trajectories, even if it needs to
trade off with few coverage percentage points.

In the end, we demonstrated how pre-training can benefit fine-tuning of new
target shapes. As expected, the performance of this latter case is slightly lower
than the other two experiments, but still with a coverage higher than 85% and
much better than the random initialized policies.

Limitations As we mentioned above, the fine-tuning phase serves to refine a sub-
optimal behaviour and it may reach a new optimal if we consider a long fine-tuning.
However, the scope of this work is to obtain good results in a few episodes of fine-
tuning. Additionally, there are a few limitations in the setting since the agent
can’t go out of the target shape boundaries. Indeed, some optimal patterns for
covering target surfaces assume the trajectories turning outside the target shape,
to reduce paint thickness variations.

The main difference between our setting and human behaviour is that humans
remember the previous positions in the trajectories. We think that adding the
past history to the state information defined in Equation 6.1 may be a poten-
tially promising direction to help the agent avoid previously seen regions, reducing
thickness variations.

68

Chapter 8

Conclusions

In this work, we present a two-step pipeline for addressing robotic spray painting
leveraging URL. The primary objective of this thesis is to tackle the challenge of
object-conditioned training, a significant limitation in existing learning methods for
spray painting [20], [21]. Object-specific training is crucial for obtaining policies
capable of generating trajectories tailored to specific shapes. To overcome this
limitation, we introduce prior pre-training to reduce the overall training time.

For pre-training, we employ an entropy-based algorithm inspired by MEPol
[33]. The entropy maximization objective aligns with our subsequent coverage
goal. We demonstrate that focusing on entropy during pre-training significantly
benefits the final fine-tuning process. During the prior pre-training phase, we
consider rectangles of various shapes and poses to generalize the agent’s behaviour.
Consequently, the same pre-trained policies can be fine-tuned by choosing various
target shapes.

Our method is tested on rectangles and different shapes that the agent did not
encounter during pre-training. During fine-tuning, the agent refines its behaviour
for this new shape.

Results indicate that with a low number of fine-tuning episodes, trajectories
covering over 85% of the target surface can be achieved using pre-trained policies.
Furthermore, our pipeline outperforms the baseline experiment inspired by [21].
The incorporation of a multi-objective reward function aids in optimizing coverage
while reducing paint thickness variations, generating smoother trajectories over the
underlying target shape.

In summary, this work provides an efficient pipeline, consisting of pre-training
and fine-tuning, for addressing robotic spray painting. Pre-trained policies can be
used for short fine-tuning periods to efficiently adapt to a target shape.

Future Research While this work represents progress in automating robotic
spray painting, challenges remain, particularly in more complex environments.

69

Conclusions

Simple planar shapes like rectangles and windows were chosen due to the relative
simplicity of the associated state space definition (Equation 6.1). Generalization
can be improved by incorporating masks to describe the target shape and employ-
ing a feature extractor [88] to extract target shape properties.

A promising and unexplored research direction involves extending this work
to consider 3D shapes, utilizing point clouds [89] to describe target objects, as
demonstrated in [20].

Another potential avenue is the creation of a dataset containing expert-human-
made trajectories that optimally cover a target surface. This dataset can be lever-
aged to refine policy behaviour, incorporating desired thickness information [82].
Considering a desired thickness as in [20] may aid the agent in learning to generate
smoother trajectories.

70

Appendix A

Empirical Analysis: further
details

A.1 Pre-training

A.1.1 Pre-training on a Single Shape

Single Shape

Number of epochs 12k
Horizon (T) 150

N Batches (B) 8

K1 threshold (4) 1072
Learning rate (o) 107°
Max off-policy iters 30
Number of neighbors (k) 3
Policy hidden layer sizes (128,128)

Policy hidden layer act. function ReLLU

Table A.1: Hyperparameters used for pretraining considering a single target shape.

71

Empirical Analysis: further details

A.1.2 Pre-training on Multiple Shapes

Multiple Shapes

Number of epochs 12k
Horizon (T) 150

N Batches (B) 8

Kl threshold (9) 1072
Learning rate («) 1075
Max off-policy iters 30
Number of neighbors (k) 3
Policy hidden layer sizes (128,128)
Policy hidden layer act. function ReLU

Table A.2: Hyperparameters used for pretraining considering multiple target
shapes.

72

A.2 — Fine-tuning

A.2 Fine-tuning

A.2.1 Baseline

Fine-tuning

Number of Episodes 150
Horizon (T) 100
Batch Size 100
K1 threshold (4) 1073
Learning rate («) 1072
Discount Factor () 0.995
PC objective v
PT objective X
Number of neighbors (k) 3
Policy hidden layer sizes (128,128)

Policy hidden layer act. function ReLU

Table A.3: Hyperparameters used for fine-tuning in the baseline settings.

73

Empirical Analysis: further details

A.2.2 Baseline and the Paint Thickness Objective

Fine-tuning

Number of Episodes 150
Horizon (T) 100
Batch Size 100
K1 threshold (6) 1073
Learning rate («) 1072
Discount Factor (7) 0.995
PC objective v
PT objective v
Number of neighbors (k) 3
Policy hidden layer sizes (128,128)

Policy hidden layer act. function ReLLU

Table A.4: Hyperparameters used for fine-tuning in the baseline settings, consid-
ering also the Paint Thickness objective.

74

A.2 — Fine-tuning

A.2.3 Fine-tuning after Pre-training over Multiple Shapes

Fine-tuning

Number of Episodes
Horizon (T)

Batch Size

K1 threshold (0)
Learning rate («)
Discount Factor (7)
PC objective

PT objective

Number of neighbors (k)
Policy hidden layer sizes

Policy hidden layer act. function

150
100
100
1073
1072
0.995
v
v
3
(128,128)
ReLU

Table A.5: Hyperparameters used for fine-tuning on a single target shape.

Brief fine-tuning visual results

Painter Robot Simulation
4.0

3.5

3.0

2.5

2.0

Y-axis
Intensity

15
1.0
0.5

0. 0

.0
0.0 0.5 10 15 2.0 25 3.0 35 40
X-axis

(a) Fine-tuning results starting from a
random initialized policy

Painter Robot Simulation

4.0

35

3.0

25

2.0

Y-axis

15

10

0.5

0.0
00 05 10 15 20 25 30 35 40
X-axis

(b) Fine-tuning results starting from a
pre-trained policy

Figure A.1: Results after fine-tuning for 20 episodes on a single target shape.

75

Empirical Analysis: further details

A.2.4 Fine-tuning on a Novel Shape

Fine-tuning

Number of Episodes 150
Horizon (T) 100
Batch Size 100
K1 threshold (6) 1073
Learning rate («) 1072
Discount Factor (7) 0.995
PC objective v
PT objective v
Number of neighbors (k) 3
Policy hidden layer sizes (128,128)

Policy hidden layer act. function ReLLU

Table A.6: Hyperparameters used for fine-tuning on a novel target shape.

76

Bibliography

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, Sec-
ond. The MIT Press, 2018. [Online|. Available: http://incompleteideas.
net/book/the-book-2nd.html.

OpenAl, M. Andrychowicz, B. Baker, et al., “Learning dexterous in-hand ma-
nipulation”, CoRR, vol. abs/1808.00177, 2018. arXiv: 1808.00177. [Online].
Available: http://arxiv.org/abs/1808.00177.

V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Human-level control through
deep reinforcement learning”, Nature, vol. 518, no. 7540, pp. 529-533, Feb.
2015, 18sN: 00280836. [Online]. Available: http://dx.doi.org/10.1038/
nature14236.

D. Silver, S. Singh, D. Precup, and R. S. Sutton, “Reward is enough”, Ar-
tif. Intell., vol. 299, p. 103535, 2021. [Online|. Available: https://api.
semanticscholar.org/CorpusID:236236944.

M. S. Kakade, “On the sample complexity of reinforcement learning”, Ph.D.
dissertation, 2003. [Online|. Available: https://www.ias.informatik.tu-
darmstadt.de/uploads/Research/NIPS2006/SK.pdf.

R. Kirk, A. Zhang, E. Grefenstette, and T. Rocktéaschel, “A survey of gener-
alisation in deep reinforcement learning”, CoRR, vol. abs/2111.09794, 2021.
arXiv: 2111.09794. [Online|. Available: https://arxiv.org/abs/2111.
09794.

J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A
survey”, International Journal of Robotics Research, vol. 32, no. 11, pp. 1238~
1274, 2013. poI: 10.1177/0278364913495721.

M. Laskin, D. Yarats, H. Liu, et al., “URLB: unsupervised reinforcement
learning benchmark”, CoRR, vol. abs/2110.15191, 2021. arXiv: 2110.15191.
[Online]. Available: https://arxiv.org/abs/2110.15191.

7

http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://arxiv.org/abs/1808.00177
http://arxiv.org/abs/1808.00177
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature14236
https://api.semanticscholar.org/CorpusID:236236944
https://api.semanticscholar.org/CorpusID:236236944
https://www.ias.informatik.tu-darmstadt.de/uploads/Research/NIPS2006/SK.pdf
https://www.ias.informatik.tu-darmstadt.de/uploads/Research/NIPS2006/SK.pdf
https://arxiv.org/abs/2111.09794
https://arxiv.org/abs/2111.09794
https://arxiv.org/abs/2111.09794
https://doi.org/10.1177/0278364913495721
https://arxiv.org/abs/2110.15191
https://arxiv.org/abs/2110.15191

BIBLIOGRAPHY

[10]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

E. Galceran and M. Carreras, “A survey on coverage path planning for
robotics.”, Robotics Auton. Syst., vol. 61, no. 12, pp. 1258-1276, 2013. [On-
line]. Available: http://dblp.uni-trier.de/db/journals/ras/ras61.
html#GalceranC13.

A. K. Lakshmanan, R. E. Mohan, B. Ramalingam, et al., “Complete cover-
age path planning using reinforcement learning for tetromino based cleaning
and maintenance robot”, Automation in Construction, vol. 112, p. 103078,
2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:
214475070.

W. Moon, B. Park, S. H. Nengroo, T. Kim, and D. Har, Path planning of
cleaning robot with reinforcement learning, 2022. arXiv: 2208.08211 [cs.R0].

E. Hazan, S. Kakade, K. Singh, and A. Van Soest, “Provably efficient max-
imum entropy exploration”, in International Conference on Machine Learn-
ing, PMLR, 2019, pp. 2681-2691.

A. Antos, C. Szepesvari, and R. Munos, “Learning near-optimal policies with
bellman-residual minimization based fitted policy iteration and a single sam-
ple path”, Machine Learning, vol. 71, pp. 89-129, 2008.

J. Chen and N. Jiang, “Information-theoretic considerations in batch re-
inforcement learning”, in International Conference on Machine Learning,
PMLR, 2019, pp. 1042-1051.

Y. Jin, Z. Yang, and Z. Wang, “Is pessimism provably efficient for offline r1?”,
in International Conference on Machine Learning, PMLR, 2021, pp. 5084—
5096.

D. J. Foster, A. Krishnamurthy, D. Simchi-Levi, and Y. Xu, “Offline rein-
forcement learning: Fundamental barriers for value function approximation”,
arXiv preprint arXiw:2111.10919, 2021.

W. Zhan, B. Huang, A. Huang, N. Jiang, and J. Lee, “Offline reinforcement
learning with realizability and single-policy concentrability”, in Conference

on Learning Theory, PMLR, 2022, pp. 2730-2775.

T. Xie, N. Jiang, H. Wang, C. Xiong, and Y. Bai, Policy finetuning: Bridging
sample-efficient offline and online reinforcement learning, 2022. arXiv: 2106.
04895 [cs.LG].

T. Xie, D. J. Foster, Y. Bai, N. Jiang, and S. M. Kakade, “The role of coverage
in online reinforcement learning”, arXiv preprint arXiv:2210.04157, 2022.

G. Tiboni, R. Camoriano, and T. Tommasi, Paintnet: Unstructured multi-
path learning from 3d point clouds for robotic spray painting, 2023. arXiv:
2211.06930 [cs.RO].

78

http://dblp.uni-trier.de/db/journals/ras/ras61.html#GalceranC13
http://dblp.uni-trier.de/db/journals/ras/ras61.html#GalceranC13
https://api.semanticscholar.org/CorpusID:214475070
https://api.semanticscholar.org/CorpusID:214475070
https://arxiv.org/abs/2208.08211
https://arxiv.org/abs/2106.04895
https://arxiv.org/abs/2106.04895
https://arxiv.org/abs/2211.06930

BIBLIOGRAPHY

[21]

22]

23]

[24]
[25]

28]
[29]

[30]

J. Kiemel, P. Yang, P. Meifiner, and T. Kroger, “Paintrl: Coverage path plan-
ning for industrial spray painting with reinforcement learning”, Jun. 2019.

D. Gleeson, S. Jakobsson, R. Salman, et al., “Robot spray painting trajectory
optimization”, in 2020 IEEE 16th International Conference on Automation
Science and Engineering (CASE), IEEE, 2020, pp. 1135-1140.

M. L. Puterman, Markov decision processes: discrete stochastic dynamic pro-
gramming. John Wiley & Sons, 2014.

R. Bellman, Dynamic Programming. Dover Publications, 1957.

J. Peters and S. Schaal, “Reinforcement learning of motor skills with policy
gradients.”, Neural Networks, vol. 21, no. 4, pp. 682-697, 2008. [Online].
Available: http://dblp.uni-trier.de/db/journals/nn/nn21.html#
PetersS08.

D. Silver, T. Hubert, J. Schrittwieser, et al., Mastering chess and shogi by
self-play with a general reinforcement learning algorithm, 2017. arXiv: 1712.
01815 [cs.AI].

S. Levine, A. Kumar, G. Tucker, and J. Fu, Offline reinforcement learning:
Tutorial, review, and perspectives on open problems, 2020. arXiv: 2005.01643
[cs.LG].

C. J. Watkins and P. Dayan, “Q-learning”, Machine learning, vol. 8, pp. 279~
292, 1992.

R. J. Williams, “Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning”, Machine learning, vol. 8, pp. 229-256, 1992.

M. P. Deisenroth, G. Neumann, J. Peters, et al., “A survey on policy search
for robotics”, Foundations and Trends® in Robotics, vol. 2, no. 1-2, pp. 1—
142, 2013.

J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, Trust region
policy optimization, 2017. arXiv: 1502.05477 [cs.LG].

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, Proximal
policy optimization algorithms, 2017. arXiv: 1707.06347 [cs.LG].

M. Mutti, L. Pratissoli, and M. Restelli, Task-agnostic exploration via policy
gradient of a non-parametric state entropy estimate, 2021. arXiv: 2007 . 04640
[cs.LG].

V. Konda and J. Tsitsiklis, “Actor-critic algorithms”, Advances in neural
information processing systems, vol. 12, 1999.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, et al., “Continuous control with deep
reinforcement learning”, arXiv preprint arXiv:1509.02971, 2015.

79

http://dblp.uni-trier.de/db/journals/nn/nn21.html#PetersS08
http://dblp.uni-trier.de/db/journals/nn/nn21.html#PetersS08
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2007.04640
https://arxiv.org/abs/2007.04640

BIBLIOGRAPHY

[38]

[39]

[40]

[41]

[42]

[43]

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor”, in
International conference on machine learning, PMLR, 2018, pp. 1861-1870.

N. Heess, G. Wayne, D. Silver, T. Lillicrap, T. Erez, and Y. Tassa, “Learning
continuous control policies by stochastic value gradients”, Advances in neural
information processing systems, vol. 28, 2015.

T. Haarnoja, A. Zhou, K. Hartikainen, et al., Soft actor-critic algorithms and
applications, 2019. arXiv: 1812.05905 [cs.LG].

J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics:
A survey”, The International Journal of Robotics Research, vol. 32, no. 11,
pp. 1238-1274, 2013.

P. Kormushev, S. Calinon, and D. G. Caldwell, “Reinforcement learning in
robotics: Applications and real-world challenges”, Robotics, vol. 2, no. 3,
pp. 122-148, 2013.

B. Liitjens, M. Everett, and J. P. How, “Safe reinforcement learning with
model uncertainty estimates”, in 2019 International Conference on Robotics
and Automation (ICRA), IEEE, 2019, pp. 8662-8668.

S. Hofer, K. Bekris, A. Handa, et al., “Perspectives on sim2real transfer for

robotics: A summary of the r: Ss 2020 workshop”, arXiv preprint arXiv:2012.03806,

2020.

C. E. Shannon, “A mathematical theory of communication”, The Bell System
Technical Journal, vol. 27, pp. 379-423, 1948. [Online]. Available: http :
//plan9.bell-1labs.com/cm/ms/what/shannonday/shannon1948 . pdf
(visited on 04/22/2003).

J. Beirlant, E. Dudewicz, L. Gyor, and E. Meulen, “Nonparametric entropy
estimation: An overview”, International Journal of Mathematical and Statis-
tical Sciences, vol. 6, Jan. 1997.

H. Singh, N. Misra, V. Hnizdo, A. Fedorowicz, and E. Demchuk, “Nearest
neighbor estimates of entropy”, American journal of mathematical and man-
agement sciences, vol. 23, no. 3-4, pp. 301-321, 2003.

J. Ajgl and M. Simandl, “Differential entropy estimation by particles”, IFAC
Proceedings Volumes, vol. 44, no. 1, pp. 11991-11 996, 2011.

H.-J. D. Streitberger and K.-F. Dssel, “Automotive paints and coatings”,
2008. [Online|. Available: https://api.semanticscholar.org/CorpusID:
138819835.

E. Galceran and M. Carreras, “A survey on coverage path planning for
robotics”, Robotics and Autonomous systems, vol. 61, no. 12, pp. 1258-1276,
2013.

80

https://arxiv.org/abs/1812.05905
http://plan9.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
http://plan9.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
https://api.semanticscholar.org/CorpusID:138819835
https://api.semanticscholar.org/CorpusID:138819835

BIBLIOGRAPHY

[49]

[50]

[51]

[52]

[53]

[59]

[60]

F. Yasutomi, M. Yamada, and K. Tsukamoto, “Cleaning robot control”, in
Proceedings. 1988 IEEE International Conference on Robotics and Automa-
tion, IEEE, 1988, pp. 1839-1841.

P. N. Atkar, A. Greenfield, D. C. Conner, H. Choset, and A. A. Rizzi, “Uni-
form coverage of automotive surface patches”, The International Journal of
Robotics Research, vol. 24, no. 11, pp. 883-898, 2005.

H. Choset, “Coverage for robotics—a survey of recent results”, Annals of math-
ematics and artificial intelligence, vol. 31, pp. 113-126, 2001.

J.-C. Latombe, A. Lazanas, and S. Shekhar, “Robot motion planning with
uncertainty in control and sensing”, Artificial Intelligence, vol. 52, no. 1,
pp. 1-47, 1991.

H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, and W. Burgard,
Principles of robot motion: theory, algorithms, and implementations. MIT
press, 2005.

H. Choset and P. Pignon, “Coverage path planning: The boustrophedon cel-
lular decomposition”, in Field and service robotics, Springer, 1998, pp. 203—
209.

C. Jin, A. Krishnamurthy, M. Simchowitz, and T. Yu, Reward-free explo-
ration for reinforcement learning, 2020. arXiv: 2002.02794 [cs.LG].

Z. Xie, Z. Lin, J. Li, S. Li, and D. Ye, Pretraining in deep reinforcement
learning: A survey, 2022. arXiv: 2211.03959 [cs.LG].

D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, Curiosity-driven explo-
ration by self-supervised prediction, 2017. arXiv: 1705.05363 [cs.LG].

A. Mavor-Parker, K. Young, C. Barry, and L. Griffin, “How to stay curious
while avoiding noisy T'Vs using aleatoric uncertainty estimation”, in Proceed-
ings of the 39th International Conference on Machine Learning, K. Chaud-
huri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato, Eds., ser. Pro-
ceedings of Machine Learning Research, vol. 162, PMLR, 2022, pp. 15220-
15240. [Online]. Available: https://proceedings.mlr.press/v162/mavor-
parker22a.html.

E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-
based control”, in 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2012, pp. 5026-5033. pDOI: 10 . 1109/ IR0S . 2012 .
6386109.

B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine, “Diversity is all you need:
Learning skills without a reward function”, CoRR, vol. abs/1802.06070, 2018.
arXiv: 1802 .06070. [Online|. Available: http://arxiv. org/abs/1802.
06070.

81

https://arxiv.org/abs/2002.02794
https://arxiv.org/abs/2211.03959
https://arxiv.org/abs/1705.05363
https://proceedings.mlr.press/v162/mavor-parker22a.html
https://proceedings.mlr.press/v162/mavor-parker22a.html
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1109/IROS.2012.6386109
https://arxiv.org/abs/1802.06070
http://arxiv.org/abs/1802.06070
http://arxiv.org/abs/1802.06070

BIBLIOGRAPHY

[64]

V. Campos, A. Trott, C. Xiong, R. Socher, X. Giro-i-Nieto, and J. Torres,
Ezxplore, discover and learn: Unsupervised discovery of state-covering skills,
2020. arXiv: 2002.03647 [cs.LG].

S. Park, J. Choi, J. Kim, H. Lee, and G. Kim, Lipschitz-constrained unsu-
pervised skill discovery, 2022. arXiv: 2202.00914 [cs.LG].

M. G. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R.
Munos, “Unifying count-based exploration and intrinsic motivation”, CoRR,
vol. abs/1606.01868, 2016. arXiv: 1606 .01868. [Online|. Available: http:
//arxiv.org/abs/1606.01868.

A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune, “First
return, then explore”, Nature, vol. 590, no. 7847, pp. 580-586, 2021. DOTI:
10.1038/s41586-020-03157-9. [Online|. Available: https://doi.org/10.
1038%2Fs41586-020-03157-9.

Y. Burda, H. Edwards, A. Storkey, and O. Klimov, Fxploration by random
network distillation, 2018. arXiv: 1810.12894 [cs.LG].

H. Liu and P. Abbeel, Behavior from the void: Unsupervised active pre-
training, 2021. arXiv: 2103.04551 [cs.LG].

D. Yarats, R. Fergus, A. Lazaric, and L. Pinto, Reinforcement learning with
prototypical representations, 2021. arXiv: 2102.11271 [cs.LG].

M. Mutti, R. D. Santi, and M. Restelli, The importance of non-markovianity
in maximum state entropy exploration, 2022. arXiv: 2202.03060 [cs.LG].

J. Peters, “Policy gradient methods”, Scholarpedia, vol. 5, no. 11, p. 3698,
2010.

M. Mutti, M. Mancassola, and M. Restelli, Unsupervised reinforcement learn-
ing in multiple environments, 2021. arXiv: 2112.08746 [cs.LG].

P. Maldini, M. Mutti, R. De Santi, and M. Restelli, “Non-markovian poli-
cies for unsupervised reinforcement learning in multiple environments”, in

First Workshop on Pre-training: Perspectives, Pitfalls, and Paths Forward
at ICML 2022, 2022.

Z. D. Guo, M. G. Azar, A. Saade, et al., “Geometric entropic exploration”,
arXiv preprint arXiv:2101.02055, 2021.

L. Lee, B. Eysenbach, E. Parisotto, E. Xing, S. Levine, and R. Salakhut-
dinov, “Efficient exploration via state marginal matching”, arXiv preprint
arXiv:1906.05274, 2019.

M. Mutti and M. Restelli, “An intrinsically-motivated approach for learn-
ing highly exploring and fast mixing policies”, in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, 2020, pp. 5232-5239.

82

https://arxiv.org/abs/2002.03647
https://arxiv.org/abs/2202.00914
https://arxiv.org/abs/1606.01868
http://arxiv.org/abs/1606.01868
http://arxiv.org/abs/1606.01868
https://doi.org/10.1038/s41586-020-03157-9
https://doi.org/10.1038%2Fs41586-020-03157-9
https://doi.org/10.1038%2Fs41586-020-03157-9
https://arxiv.org/abs/1810.12894
https://arxiv.org/abs/2103.04551
https://arxiv.org/abs/2102.11271
https://arxiv.org/abs/2202.03060
https://arxiv.org/abs/2112.08746

BIBLIOGRAPHY

[36]

[87]

[88]

Y. Seo, L. Chen, J. Shin, H. Lee, P. Abbeel, and K. Lee, “State entropy max-
imization with random encoders for efficient exploration”, in International
Conference on Machine Learning, PMLR, 2021, pp. 9443-9454.

L. Lee, B. Eysenbach, E. Parisotto, E. Xing, S. Levine, and R. Salakhutdinov,
Efficient exploration via state marginal matching, 2020. arXiv: 1906.05274
[cs.LG].

J. Zhang, Gradient descent based optimization algorithms for deep learning
models training, 2019. arXiv: 1903.03614 [cs.LG].

A. M. Metelli, M. Papini, F. Faccio, and M. Restelli, Policy optimization via
importance sampling, 2018. arXiv: 1809.06098 [cs.LG].

S. Parisi, V. Dean, D. Pathak, and A. Gupta, Interesting object, curious
agent: Learning task-agnostic exploration, 2021. arXiv: 2111.13119 [cs.LG].

J. Rajendran, R. Lewis, V. Veeriah, H. Lee, and S. Singh, How should an
agent practice?, 2019. arXiv: 1912.07045 [cs.AI].

R. T. Rockafellar, S. Uryasev, et al., “Optimization of conditional value-at-
risk”, Journal of risk, vol. 2, pp. 21-42, 2000.

D. Gleeson, S. Jakobsson, R. Salman, et al., “Generating optimized trajecto-
ries for robotic spray painting”, IEEFE Transactions on Automation Science
and Engineering, vol. 19, no. 3, pp. 1380-1391, 2022.

K. O’Shea and R. Nash, “An introduction to convolutional neural networks”,
arXiv preprint arXiv:1511.08458, 2015.

J. Cheng, L. Dong, and M. Lapata, Long short-term memory-networks for
machine reading, 2016. arXiv: 1601.06733 [cs.CL].

A. V. Le, P-C. Ku, T. Than Tun, N. Huu Khanh Nhan, Y. Shi, and R. E.
Mohan, “Realization energy optimization of complete path planning in differ-
ential drive based self-reconfigurable floor cleaning robot”, Energies, vol. 12,
no. 6, p. 1136, 2019.

C. F. Hayes, R. Radulescu, E. Bargiacchi, et al., “A practical guide to
multi-objective reinforcement learning and planning”, Autonomous Agents
and Multi-Agent Systems, vol. 36, no. 1, p. 26, 2022.

M. S. Arikan and T. Balkan, “Process simulation and paint thickness mea-
surement for robotic spray painting”, CIRP Annals, vol. 50, no. 1, pp. 291—
294, 2001.

W. K. Mutlag, S. K. Ali, Z. M. Aydam, and B. H. Taher, “Feature extraction
methods: A review”, in Journal of Physics: Conference Series, IOP Publish-
ing, vol. 1591, 2020, p. 012 028.

33

https://arxiv.org/abs/1906.05274
https://arxiv.org/abs/1906.05274
https://arxiv.org/abs/1903.03614
https://arxiv.org/abs/1809.06098
https://arxiv.org/abs/2111.13119
https://arxiv.org/abs/1912.07045
https://arxiv.org/abs/1601.06733

BIBLIOGRAPHY

[89] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun, Deep learning
for 3d point clouds: A survey, 2020. arXiv: 1912.12033 [cs.CV].

84

https://arxiv.org/abs/1912.12033

	List of Tables
	List of Figures
	Introduction
	Background
	Reinforcement Learning
	Markov Decision Processes
	Policies
	State Distribution
	The Reward
	The RL Problem
	Value Functions and Bellman Equations
	Classes of Algorithms
	Model-based and Model-free
	On-policy, Off-Policy, and Offline RL
	Value-based Algorithms
	Policy Search Algorithms
	Actor-Critic Algorithms
	Open Challenges in RL

	Information Entropy
	Information Content
	Discrete Entropy
	Differential Entropy
	Non-Parametric Differential Entropy Estimator

	Robotic Spray Painting and Coverage Path Planning
	Robotic Spray Painting
	Coverage Path Planning Problems

	Unsupervised Reinforcement Learning
	Introduction
	Intrinsic Rewards
	Curiosity-driven Exploration
	Skill Discovery
	Data Coverage Maximization

	The State Entropy Objective
	Introduction
	MEPol
	Learning in Multiple Environments
	TEXTMEPol

	Non-Markovianity in URL
	MEMENTO
	MEMENTO in Multiple Environments

	Spray Painting Tasks
	Spray Painting as an Optimization Problem
	Spray Painting and Deep Learning
	Spray Painting and Reinforcement Learning
	Reinforcement Learning for CPP

	Methodology
	Overview
	The Method
	Problem Formulation
	Method Overview

	Key Design Choices
	Pre-training
	Painting Simulator

	Experimental Analysis
	Pre-training
	Pre-training on a Single Shape
	Pre-training on Multiple Shapes

	Fine-tuning
	Baseline
	Paint Thickness Objective
	Fine-tuning after Pre-training over Multiple shapes
	Fine-tuning on a Novel Shape

	Discussion
	Pre-training
	Fine-tuning

	Conclusions
	Empirical Analysis: further details
	Pre-training
	Pre-training on a Single Shape
	Pre-training on Multiple Shapes

	Fine-tuning
	Baseline
	Baseline and the Paint Thickness Objective
	Fine-tuning after Pre-training over Multiple Shapes
	Fine-tuning on a Novel Shape

