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Summary

In the recent years there has been an increasing investment by car
manufacturers in the production of electric and hybrid electric vehi-
cles. The reason for this sudden change can be associated with the
stringent environmental constraints imposed by government regulations.
The consequence is that many researches are now focusing on the em-
ployment of new strategies to keep up with these restrictions. These
studies develop technologies both at vehicle-level (control strategies)
and subsystem-level (powertrain and energy storage components).
An important component to manage the power supply of Electric Vehi-
cles (EVs) and Hybrid Electric Vehicles (HEVs) is the Energy Storage
System (ESS). Batteries are the most common ESS component thanks
to their energy density, compact size and reliability. When the vehi-
cle undergoes significant variation of power, the battery cell, as the
only element of ESS, may not be able to supply the required power
demand or absorb the power from regenerative braking. To solve this
problem, hybrid energy storage systems (HESS) combine two or more
types of storage components with complementary features. One of
the most functional combinations studied for a HESS is composed by
supercapacitor and battery. Research results have proven that the use
of supercapacitors in parallel with batteries greatly improves energy
storage capabilities.
The vehicle considered in this thesis work is a 48V P1 hybrid light-duty
commercial vehicle. This type of architecture leads to a high current
rate due to the 48V. The solutions can be the limitation of the current,
the employment of components with higher performance or adding a
supercapacitor. In this work two different approaches are analyzed.
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The first one considers the feasibility of a HESS composed by a super-
capacitor in parallel of the main battery, while the second one considers
the improvement of the EMS considering battery thermal behavior and
State-of-Health estimation. Starting from the forward vehicle model in
Matlab Simulink, the model of the supercapacitor is introduced and
its performance analyzed. Then, a new battery model is introduced
considering the thermal dynamics and cooling, while State-of-Charge
and State-of-Health estimation algorithms are implemented.
The results of the analysis are twofold: on one hand, the introduction
of the supercapacitor does not contribute to the improvement of the
efficiency of ESS for the 48V P1 architecture. On the other hand, the
thermal modeling and the algorithm to estimate the State-of-Health
enhance battery usage if considered during the design of the EMS.
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Chapter 1

Introduction

1.1 Background

The automotive sector significantly contributes to global pollution.
According to the European Environment Agency’s report, the trans-
portation sector accounted for nearly 25% of the total greenhouse gas
emissions in the European Union in 2019, with road transportation
contributing to 72% of this figure [1]. Greenhouse gases, including CO2
and NOx, have adverse effects not only on climate change (due to the
greenhouse effect contributing to the rise in global temperatures) but
also on human health, leading to respiratory diseases.
As a result, the reduction of vehicle emissions has become a crucial
focus for both governments and the automotive industry. The European
Union aims to achieve a 90% reduction in greenhouse gas emissions
from transportation compared to 1990 levels by the year 2050.

1



Introduction

Figure 1.1: Transport emission in UE [2]

Figure 1.2: Evolution of CO2 emissions in the EU for each sector
(1990-2019) [2]

2



Introduction

1.1.1 Electrification
Electrification plays a significant role in reducing vehicle emissions.
Electrification involves replacing thermal power (obtained from fuel)
with electric power, a shift that can manifest in the form of pure electric
vehicles or hybrid electric vehicles that retain a combustion engine.

According to the European Environment Agency’s report on "Electric
vehicles from life cycle and circular economy perspectives" [3], the
greenhouse gas emissions over the entire life cycle of electric vehicles are
up to 30% lower compared to petrol and diesel cars. With the ongoing
decarbonization of the EU’s energy mix, this percentage is anticipated
to reach 73% by 2050 [4].
The electric car market has experienced significant growth in sales,
increasing from 4% of total car sales in 2020 to 14% in 2022. This
surge is attributed not only to government incentives for electric vehicle
purchases but also to the continually rising fuel costs. Additionally,
electric vehicles contribute to a reduction in noise pollution, further
enhancing environmental quality.

1.2 Project overview
This thesis is a component of the "AutoEco" project, funded by Pi.Te.F.
(Piattaforma Tecnologica di Filiera) in the Piedmont region, in col-
laboration with Politecnico di Torino, Dayco Europe S.r.l, Podium
Advanced Technologies, and other companies. The primary objective
of this project is the hybridization and automation of a light-duty
hybrid electric vehicle, with the goal of reducing fuel consumption and
enhancing energy efficiency.

1.3 Thesis outline
This thesis comprises four chapters:

1. The initial chapter (Introduction) provides a project overview, a

3
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brief introduction to electrification a summary of transport CO2
emissions produced in the EU in past years until today.

2. The second chapter (Theoretical Background) presents a compre-
hensive exploration of hybrid vehicles and associated technologies.
It includes a detailed categorization of hybrid electric vehicles, ac-
companied by explanations of various energy management control
strategies and energy storage systems. The chapter also introduces
a description of the characteristics of supercapacitors and batteries
focusing on the depiction of the various types of the latter.

3. The third chapter (Methodology), includes a vehicle model overview
centering on energy analysis of it. Furthermore, it encompasses bat-
teries and supercapacitors modeling. The chapter also contains the
description of battery thermal dependence including the description
of the Matlab model used in this thesis work. The last part of
this chapter includes the explanation of the Kalman filter used to
calculate the estimate of the State-of-Charge and State-of-Health
to improve the previously used model with the addition of these
estimators.

4. The fourth chapter (Simulation and Results) compiles all the find-
ings, elucidated through the utilization of figures and tables.

5. The final chapter is devoted to the conclusion, succinctly restating
the key aspects of the project and offering insights into potential
future developments.

4



Chapter 2

Theoretical background

2.1 Hybrid Electric Vehicle

Hybrid Electric Vehicle (HEV) provides an alternative source of energy
for vehicle propulsion by integrating electric motors with an internal
combustion engine. A battery integrates the power of the internal
combustion engine (ICE) and allows it to operate in a more efficient
region, thus improving fuel economy. Other advantages that HEVs
can offer are the reduction of carbon and toxic gas emissions and the
improvement of powertrain performance since the electric system assists
the engine in functioning in its efficient range.

2.2 HEVs Classification

HEVs are usually classified according to three parameters:

1. Degree of hybridization

2. Electric motor position

3. Powertrain architectures

5
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2.2.1 HEVs classification based on hybridization

The most important classification made on hybrid vehicles is related
to the degree of hybridization; generally, four different degrees of hy-
bridization can be defined

• Micro hybrid: It is the lightest form of hybridization. The original
system comes with a small electric machine which has the function
of replacing the starter motor and the alternator. So, in this type
of system, the necessary energy is provided by itself thermal engine
and, for this reason, we are not talking about true hybrid systems.

• Mild hybrid: It is the most used form of hybridization today.
This system typically only provides a boost to the ICE and, for this
reason, it is unable to propel the vehicle on electric power alone.
The electric motor can be used also for braking, in this way, part of
the kinetic energy can be converted into electric energy to charge
the battery.

• Full hybrid: This type of vehicle is capable of driving in pure
electric mode but only for a short distance, depending on battery
capacity. Therefore, in a full hybrid vehicle, there are three op-
eration modes: engine only, battery only, and a combination of
both.

• Plug-in hybrid: The most powerful powertrain is contained in
this type of HEV. Unlike the full hybrid, with the plug-in hybrid we
can travel longer distances in pure electric. This is made possible
thanks to more powerful batteries which are recharged through the
electrical grid.

6
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Type of hybrid Battery
Voltage [V]

Electric machine
power [kW]

Pure electric
mode range [Km]

CO2 estimated
reduction benefit [%]

Micro Hybrid 12 2-3 0 5-6

Mild Hybrid 48-160 10-15 0 7-12

Full Hybrid 200-300 30-50 5-10 15-20

Plug-in Hybrid 300-400 60-80 <100 >20

Table 2.1: Characteristics of various hybrid electric vehicles

2.2.2 HEV’s classification based on position of
electric motor

Another possible classification is based on the position of the electric
motor with respect to the ICE. As it is shown in Figure 2.1, we can
have different types of hybrid configurations.

Figure 2.1: HEVs classification based on EM position

• P0: The electric machine is connected directly via the belt system
to the engine. The advantage of this configuration is the low cost.

7
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The disadvantages are the impossibility of mechanical disconnection
between the electric machine and ICE and the limitation of power
and torque due to the restricted space for the installation.

• P1: The electric machine is placed in the crankshaft of the engine,
just like in P0, it is connected directly. For this reason, in this
configuration, the electrical machine and ICE work together. The
differences between P0 and P1 configurations are that in the latest
can provide higher torque and a more efficient regenerative braking.

• P2: The electric machine is connected to the input shaft of the
transmission. On the contrary of the previous configurations, in
P2 architecture the electric machine and ICE can be mechanically
disconnected by using a clutch or a set of clutches.

• P3: The electric machine is mounted at the output shaft of the
transmission. Since between the wheels and the electric car, there
is only the differential, a maximization of regenerative braking is
obtained. Another advantage of this configuration is the increase
in torque, so there is the opportunity to choose the speed of the
two motors separately.

• P4: The electric machine is placed on the rear axle drive. This is
the most optimized configuration. Furthermore, P4 architecture
allows the four-wheel drive if the ICE is connected to the front axle
drive.

2.2.3 HEVs classification based on powertrain lay-
out

The last classification is based on powertrain architecture. All the archi-
tecture discussed in subsection 2.2.2 are considered parallel hybrid but
the powertrain can be classified also as series hybrid and series/parallel
hybrid.

• Parallel hybrid: The ICE and the electric motor are directly
mechanically connected using a joint. Power from ICE and from

8
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electric motor are summed together therefore a clutch is needed.
When the clutch is disengaged, the vehicle can be pushed using
only the battery, allowing pure electric mode. When the clutch
is engaged it is possible to obtain different operating modes: ICE
only, the two energy sources can simultaneously provide power to
the transmission and ICE can be used to charge the battery during
regenerative braking events.

Figure 2.2: Parallel Hybrid architecture [5]

• Series hybrid: The two sources of energy are in series. More
precisely, the ICE gives mechanical energy to the generator which
produces electrical energy to be given as input to the electric motor.
The latest converts the electric energy into mechanical one to drive
the wheels. This type of mechanism causes the presence of many
losses.
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Figure 2.3: Series Hybrid architecture [5]

• Series/parallel hybrid: This is the most flexible architecture.
This configuration offers the advantages of both series and parallel
architecture thanks to a power slit device which is used to switch
between different operating modes.

Figure 2.4: Series/parallel Hybrid architecture [5]

2.3 HEVs operating mode
HEVs can have different operating modes:
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1. ICE only
All the power is given by the internal combustion engine.

2. Hybrid mode
The power required is given simultaneously by the internal com-
bustion engine and the electric motor.

3. Engine drive and battery charging
Only the internal combustion engine gives the required torque to
the wheel. If the engine produces more power than the one required
and the battery SOC is low, some of this power is given to the
battery for its recharge.

4. Engine and motor drive and battery charging
Both engine and electric motor give the power requested. As in the
previous operating mode, a part of ICE’s power is used to charge
the battery.

5. Regenerative braking
During the braking action, the electric motor becomes a genera-
tor by converting the kinetic energy, that would be wasted, into
electrical energy useful for charging the battery.

6. Electric motor only
All the power is given by the electric motor.

2.4 Energy Storage Systems (ESS)
One of the most important components of Electric Vehicles (EVs) and
Hybrid Electric Vehicle (HEVs) is the Energy Storage System (ESS).
Commonly, ESS can be classified into two categories:

1. High-frequency components such as a sudden increase in energy
demand

2. Low-frequency components such as renewable energies or daily
energy consumption resources
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Batteries are the most common energy storage component for EVs
and HEVs thanks to their energy density, compact size, and reliability.
However, as it is shown in the table below, the battery cell has low
specific power.

Energy storage system Energy
density

Power
density

cycle
life

response
time

Cost

chemical battery high low short medium low

sodium-sulphur
battery

medium low short slow medium

flywheel low high long fast high

supercapacitor low high long fast medium

superconducting mag-
netic

medium high long fast high

Table 2.2: Characteristics of different ESS element [6]

These elements, taken individually, none of them respond optimally to
both high and low-frequency power exchanges, furthermore, in EV/HEV
when the vehicle undergoes a significant variation of power, the battery
cell, as the only element of ESS, may not be able to supply the required
power demand or absorb the power from regenerative braking. Even
if the power demand is supplied or the available regenerative braking
power is absorbed, due to the huge fluctuations of charge/discharge
current, the efficiency and consequently, the lifetime of the battery
cells are compromised [7]. To solve this problem, hybrid energy storage
systems (HESS) combine two or more types of storage components with
complementary features.
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2.4.1 Hybrid Energy Storage Systems (HESS)

A Hybrid Energy Storage System (HESS) is a combination of differ-
ent energy storage technologies designed to work together to optimize
energy management and provide a more reliable and efficient energy
supply. It typically combines two or more types of energy storage
systems, such as batteries, ultracapacitors (supercapacitors), flywheels,
and more, to address various energy storage requirements in a unified
manner.
One of the most functional systems studied in recent years is the HESSs
composed of batteries and Ultracapacitors (UCs) due to their capacity
being much bigger than conventional ones and their high specific power
levels. The combination of such different systems allows the EVs/HEVs
to operate during extended driving range because the battery can ensure
only the average power and the supercapacitors can ensure the power
variation. Therefore, UCs are usually used to absorb the high power
of regenerative braking and supply maximum power for acceleration,
whereas the batteries are used for vehicle operations involving less
power [8].
As well as being applied to hybrid vehicles, HESS is often used in
applications like renewable energy integration, microgrids, and indus-
trial settings where maintaining a stable power supply and managing
fluctuations in energy demand are critical. It allows for a versatile and
adaptable approach to energy storage, meeting the specific needs of
different applications. The chart below compares the energy density of
fuel cells, batteries, ultracapacitors, and conventional capacitors versus
their specific power.
From figure 2.5 it is clear why we choose to combine battery and UCs
to realize the required energy and power characteristics.
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Figure 2.5: Ragone curve[7]

The advantages of a Hybrid Energy Storage System include:

1. Improved Energy Management: HESS balances power and energy
requirements allowing for better control of energy sources. In
fact, with this type of technology, it is possible to store excess
energy during periods of low demand and release it during peaks
in demand.

2. Enhanced Energy Efficiency: Combining different types of energy
storage together can provide greater overall efficiency and faster
response to load changes.

3. Increased Reliability: If one component fails or reaches the end of
its life cycle, the others can continue to provide energy.

4. Extended Lifespan: Combining different energy storage helps to
reduce the stress of by potentially extending the overall lifetime of
the system.

5. Rapid Power Delivery: Some energy storage technologies, like
ultracapacitors, excel at delivering power quickly, making them
suitable for applications where rapid power output is essential.
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In [9] is analyzed the differences between Battery Energy Storage
(BESS) and HESS show that BESS has higher efficiency in electricity
cost and less capital cost than HESS. The HESS benefit is obtained
by increasing the time between replacements of the battery pack. For
BESS, the battery pack will be replaced twice during the 10 years,
which will significantly increase the cost. Based on current prices the
total cost of HESS, including capital cost, electricity cost, and battery
replacement cost, is 25.9 % less than that of BESS.

2.4.2 HESS typologies
In literature, different HESS topologies have been studied in which
various architectures using batteries and supercapacitors have been
proposed. In general, battery-supercapacitor can be categorized based
on their connection topology as depicted below:

Figure 2.6: Classification of battery-SC HESS typologies [6]

Passive connection is the simplest and cheapest HESS topology in
which the battery and UCs are connected to the DC bus directly, hence,
they share the same terminal voltage. In the semi-active connections
power electronic converters are situated between the battery or UCs
and the DC bus, which means that only one of the two ESS components
is actively controlled. On the other hand, in the fully active components
both the battery and supercapacitor are both actively controlled by
bidirectional DC/DC converters. We can make a further subdivision
within the following categories:
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Figure 2.7: Different architecture of battery-SC [7]

Figure 2.7(a) shows a direct connection of the Battery unit and UC to
the DC bus hence a passive connection. Given that the control system
is simple, this configuration is easy to build and cheaper. However,
since the BU is directly to the DC bus, it can be exposed to large and
fast variations of discharge/charge currents, causing the deterioration
of the battery with a reduction of battery life. Two typologies exist
for the semi-active configuration: the one in Figure 2.7(b) where UC is
connected directly to the DC bus and the other one in Figure 2.7(c)
where the battery unit is directly connected to the DC bus. In the first
typology, due to the fact that the battery is decoupled from the DC bus,
it is possible to solve the problem that is shown in the configuration
in Figure 2.7(a), in fact, the power demand is picked up by the UC
at the DC bus and battery can be controlled. The only problem with
this configuration is that now the DC bus voltage may be exposed to
large and fast variations. In the second topology DC bus does not
undergo significant voltage variations as in the first one but the battery
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is exposed to high charge/discharge fluctuations. One of the good
things about this topology is that UC can operate over a wide voltage
range. For the full active configuration, we can distinguish two main
typologies: Cascade and Parallel. The simplest one is shown in Figure
2.7(d) where the battery and UC are parallel-connected, and they are
decoupled from the DC bus by a DC-DC converter. Although there are
some controls over the output power of battery-UC, it still suffers from
limitations of UC as it is clamped to the battery. Cascade typologies are
shown in Figures 2.7(e) and 2.7(f) where the main difference between
these two configurations is the position of the battery unit and UC,
they are reversed. In the configuration in Figure 2.7(e) the battery
is connected to the lowest voltage terminal and the UC is installed
at the intermediate voltage level. In this way, the UC voltage is free
to fluctuate, and this is a big problem for the stability of the system.
A solution for this problem could be to swap the positions of the
battery and UC, as shown in Figure 2.7(f). In this way, the battery
is more stable, but cell balancing could be difficult to manage at high
voltage. A crucial drawback of the cascaded typologies is the potential
stability problems as they can represent a DC-DC converter. The
last configuration in Figure 2.7(g) is a parallel-converter typology. All
the stability problems are solved in this configuration by classifying
converters for battery and UC separately.

2.4.3 Power converters

From the previously explained architectures, we can see that another
fundamental element for HESS technology is present. A DC-DC con-
verter is an essential component found on an HEV powertrain, with
unidirectional and bidirectional variants existing. Bidirectional con-
verters have two modes of operation: The first is boost, also known as
a step-up converter, it takes an input voltage that is typically lower
than the desired output voltage and raises it to a higher level, while the
second is called the buck, also known as a step-down converter, it takes
an input voltage that is typically higher than the desired output voltage
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and decreases it to a lower level (used for battery charging). The typol-
ogy of the converter can be further divided into isolated or non-isolated.
The main task of the converter is to control the energy flows between
the battery and the supercapacitor and to transport energy to the load.
Therefore, the insertion of the converter safeguards the system and
protects the battery from load energy peaks, thus increasing its life.
Every phase of the power converter became crucial because you have
to choose the typology, the operating mode, the switching frequency
and make thermal consideration for safety.
The most famous HESS architecture is the one with a battery and
supercapacitor in parallel. The main problem of this configuration
is that the power shared between the battery and supercapacitor is
determined by their respective series resistances. The consequence is
that the output voltage follows the battery charge/discharge curve.
Placed a converter between the two ESS to avoid this phenomenon.
Research demonstrates that the total losses of a HESS system with a
DC/DC converter can be reduced by a third compared to the losses
of a HESS system consisting only of batteries and supercapacitors of
the same size. Unfortunately, adding a DC/DC converter increases
the cost and weight of the entire system. Since the converter must
work at a high switching frequency in order to reduce the weight and
dimensions of the magnetic elements present in the converter itself and
since it is not easy to satisfy all the requests with traditional Buck and
Boost converter, in [10] is modeled a type of converter that solve these
problems. This DC/DC converter has four operating modes:

• Buck mode for acceleration

• Boost mode for acceleration

• Buck mode for braking

• Boost mode for braking

In order to realize all four possible modes of operation they chose to
adopt a scheme of four bridge valves.
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2.5 Supercapacitors

Supercapacitors are particular types of capacitors that are able to store
a large quantity of charge (1000 Farad). They have specific power and
energy bigger than the traditional capacitors. In fact, as shown in
Table 2.2, supercapacitors have important features such as high-power
density, long lifetime, fast charging capabilities, and environmental
safety with no gas emissions that made them popular in applications like
electric and hybrid vehicles, wireless sensor networks, memory backup
system, power bank for improvement of battery performances. However,
supercapacitor has some disadvantages like less energy density and
higher self-discharge at no load condition, the latter becomes a serious
issue when the long-term response of a supercapacitor is important.
The reason behind the self-discharge is the redistribution of charge into
the porous structured carbon electrode by diffusion and leakage current
flow through the ohmic path between electrode-electrolyte interfaces
[11].

2.5.1 Chemical Structure

As it is described in [12], SCs do not have dielectric material between
positive and negative electrodes. Instead of an electrolyte that has
positive ions and negative ions filled between the two electrodes, it
uses the electrical double layer (EDL) that is formed at the interface
of the solid electrode and liquid electrolyte. An electrical double layer
is formed at each interface where the active carbon powder contacts
the electrolyte as shown in figure 2.8. So, whenever a charged surface
comes into contact with any electrolyte solution, a potential difference
is created between the surface and the solution by attraction and re-
pulsion of ions of opposite and equal charge, respectively. This layer of
opposite charges is called an electrical double layer (EDL).
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Figure 2.8: Structure of SCs [12]

The SCs are charged by ions moving through the carbon surface
(figure 2.9) and discharged by reverse moving away of ions (figure 2.9).
The capacitance value of SCs is dependent on the surface area.

Figure 2.9: (a) Charge (b) Discharge [12]

The stored energy is higher than a classic capacitor because the
charge separation occurs in the electrolytic double layer. Below the
equations of a parallel capacitor:

C = ϵ0ϵr
S

d
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W = 1
2CV 2

Where C is the capacity, ϵ0 is the permittivity of free space (8.859
pF/m), ϵr is the relative permittivity, W is the stored energy, V is the
voltage of the capacitor.

Figure 2.10: Comparison between capacitors and supercapacitors

However, in addition to the resulting capacity due to the high coal
surface area, a contribution is obtained from the separation of charges
obtained in the double-layer also from reactions that can occur on the
surface of the coal. These reactions cause a further accumulation of
electric energy that leads to a reduction of the supercapacitor’s life
cycle.
To conclude, the advantages and disadvantages of supercapacitors are
briefly listed.

• Advantages

– High power density
– Long lifetime
– Fast charging capability
– Environmentally safe
– Low internal resistance
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– High efficiency

• Disadvantages

– Low energy density
– High self-discharge at no load condition
– Low voltages for single cells

2.6 Batteries
As described previously in paragraph 2.4, a battery is one of the most
common energy storage systems due to its high energy density, low
self-discharge rate, and no memory effect. In the aspect of technology,
the rechargeable battery is improved from a lead acid battery to a
nickel-based battery and from a nickel-based battery to a lithium-ion
(Li-ion) battery. In this subsection, the main battery storage systems
present on the market will be described.
Lead-acid batteries: Lead-acid batteries are the oldest rechargeable
battery system. Although they are known for their robustness and low
cost, they have a low energy density and a limited number of charging
cycles.
Nickel-cadmium batteries:Nickel-cadmium (NiCd) is used in ap-
plications that require extended life, high discharge currents, and the
ability to operate in extreme temperature environments. Despite their
renowned robustness and resistance, NiCd batteries have the significant
drawback of suffering from a marked memory effect.
Nickel-metal-hydride batteries:They are the perfect replacement
for NiCd as the latter cause environmental problems due to the chemical
products used. An advantage of this type of battery is the high specific
energy.
Lithium-ion battery:They have higher terminal voltage, higher power
density, and higher energy density compared to the other rechargeable
batteries, moreover, Li-ion cells are now widely used in EV/HEV ap-
plications. In [13] it is explained that modern Li-ion batteries are
composed of three parts soaked in electrolyte solution: two electrodes
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and one separator which is a permeable membrane placed between the
two electrodes to keep them apart to prevent electric short circuits.
Usually, carbon material doped with lithium is used as the negative
electrode, and a metal oxide material containing lithium as the positive
electrode. During the discharge process of Li-ion batteries, the lithium
active particles diffuse up to the surface of the negative electrode and
react, then, the produced lithium ions flow through the electrolyte and
arrive at the positive electrode where they react with the metal oxide
material and diffuse into it. The electrons produced at the negative
electrode cannot pass through the separator, so they flow through the
external circuit, producing the current. The inverse reactions occur
when charging the battery.

2.6.1 Types of lithium-ion batteries
Lithium-ion batteries are named after the acronyms of the active mate-
rials they are made from composed. For example, lithium and cobalt
oxide, one of the most common Li-ion ions, have chemical symbols
LiCoO2 and abbreviation LCO. Cobalt is the main active material that
gives particular characteristics of the battery [14].

• LithiumCobaltOxide(LiCoO2): The battery is made of an oxide
lithium-cobalt cathode and a lithiated graphite carbon anode. The
drawback of Li-cobalt is its short lifespan, low thermal stability,
and low specific power.

• LithiumManganeseOxide(LiMn2O4): This battery has a mix of
oxide manganese and lithium as cathode material. An added benefit
of this structure is the high thermal stability and increased safety,
however, the lifespan is limited.

• LithiumNickelManganeseCobaltOxide(LiNiMnCoO2oNMC):
To improve specific energy and prolong Li-manganese battery lifes-
pan, it mixes with lithium nickel manganese cobalt oxide (NMC).
This cathode combination is one of the most successful Li-ion
systems. Nickel is known for its high specific energy but poor
stability, on the other hand, manganese has great stability but low
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specific energy. The combination of the two metals allows them to
compensate for the weak sides of each of them.

• LithiumNickelCobaltAluminumOxide(LiNiCoAlO2oNCA):
They are similar to NMC but with high energy specific. Further-
more, they have reasonably good specific power and long life.

• LithiumTitanate(Li4Ti5O12): Li-titanate replaces the graphite in
the anode of a typical lithium-ion battery. The cathode can be
lithium manganese oxide or NMC. The advantage of titanate is
that it is safe, has thermal stability at high and low temperatures,
and is, therefore, better than other lithium-ion systems. However,
the battery is expensive and has low specific energy.

Figure 2.11: Specific energy in different BESS [14]

2.6.2 Battery characteristics
Accurate information about batteries, such as the state of charge
(SOC), Open circuit voltage (OCV), and temperature, is essential for
circuit designers to manage the energy consumption of battery-powered
systems.
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• The State of Charge (SOC) is a relative measure of the amount of
energy stored in a battery, defined as the ratio between the amount
of charge that can be extracted from the cell at a given moment
and the total capacity.

SOC% = 100(Q0 + Q)
Qmax

Where Q0 is the internal charge of the battery, Q the electricity
delivered by or supplied to the battery, Qmax is the total capacity.

• The Depth of Discharge (DOD) is the amount of charge that already
dissipated from the battery.

DOD = 1 − SOC

• Open Circuit Voltage (OCV) is the battery terminal voltage when
the battery’s internal equilibrium is reached in the absence of load.
Battery OCV depends on the SOC, temperature, and previous
charging/discharging history, which is referred to as the hysteresis
effect.

• Temperature influences the battery capacity, as explained in [15],
battery rated capacity is usually measured at room temperature,
e.g., 25◦C. The available capacity decreases as temperature de-
creases and can be halved when the temperature falls below −20◦C.
Temperature also has an influence on battery internal resistance.
When the temperature inside a battery increases, the electrons are
excited, therefore, the internal resistance will decrease, and the
battery can produce a larger current. In EV/HEV applications, a
thermal model that can predict battery temperature under various
charging and discharging conditions is necessary for developing
thermal management algorithms and cooling strategies.
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• Aging condition can be indicated by two factors: capacity fading
or internal resistance increment. Battery capacity fading is the
permanent capacity loss after a certain period of storage or usage,
and battery end-of-life is usually defined as when the capacity falls
below 80% of its nominal capacity. There are two different types
of battery aging processes, namely calendar life (capacity fading
due to storage) and cycling (capacity fading due to usage).

• State of Health (SOH) characterizes the ability of the current bat-
tery to store energy relative to the new battery. It can be defined as:

SOH% = 100 Caged

Crated

Where Caged is the current capacity of the battery, Crated is the
rated capacity of the battery.
The internal resistance R0 is an important indicator of the aging
of a battery. In fact, the SOH can be calculated also as follows:

SOH% = 100 REOL − R0

REOL − Rnew

Where REOL is the internal resistance at the end of life, R0 is the
internal resistance of the current battery, and Rnew is the internal
resistance of the new battery.

A summary representation of the three main statuses (SoC, SoH,
and DoD) of the battery related to the capacity.

Figure 2.12: SoC, SoH, and DoD
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Comparison between battery and supercapacitor

The table compares the parameters of the three main categories of
supercapacitors with electrolytic capacitors and lithium-ion batteries.

Parameter
Aluminium
electrolytic
capacitors

Double-layer
capacitors

supercapacitors
for power
applications

Pseudo/hybrid
capacitors
Li-ion cap

Li-ion
batteries

Temperature
range [◦C]

-40 to 125 -20 to 70 -20 to 70 -20 to 70 -20 to 60

Cell
Voltage [V]

4 to 550 1.2 to 3.3 2.2 to 3.3 2.2 to 3.8 2.5 to 4.2

Charge/
Discharge
Cycles

unlimited 105 to 106 105 to 106 2 ∗ 104 to 105 500 to 104

Capacitance
range [F]

< 1 0.1 to 470 100 to 12000 300 to 3300 -

Energy density
[Wh/Kg] 0.01 to 0.3 1.5 to 3.9 4 to 9 10 to 15 100 to 265

Power density
[kW/Kg] > 100 2 to 10 3 to 10 3 to 14 0.3 to 1.5

self-discharge
time at 25◦C days weeks weeks month month

Efficiency [%] 99 95 95 90 90

Lifetime at
25◦C [Years]

>20 5 to 10 5 to 10 5 to 10 3 to 5
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2.7 Energy Management System (EMS)

The energy management system is a mechanism created to monitor,
control, and optimize the performance of a system. The aim of the
EMS in a HEV system is to determine the optimal power split between
the on-board energy source. Deciding the amount of power delivered
by the different energy sources of an HEV in such a way as to follow a
certain driving path is the main problem faced by the EMS. The control
of this type of vehicle is divided into two paths: Low-level control and
High-level control. The low-level control manages the energy sources, it
is responsible for providing the requested power and it is then performed
on single components using traditional closed-loop control methods. On
the other hand, high-level control is responsible for energy optimization
on vehicles. Its task is to receive information about the amount of
requested power from the driver and send this data to the actuator
controllers. This type of control is the energy management system
(EMS). The driver’s desires are translated into actions by the low-level
control.

Figure 2.13: Energy Management System
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So the purpose of the control strategy is to allocate the output/input
power according to the characteristics of the two power sources as well
as to improve the power efficiency and dynamic performance. Due to
the complex and non-linear characteristics of vehicle components, a
simple power allocation method may be not enough to allocate the
power demand among the energy storage elements, for this reason,
advanced supervisory control algorithms for EMS have been developed.

Figure 2.14: Classification of intelligent algorithms for EMS [6]

As can be seen from figure 2.14, algorithms for EMS control are
categorized into two main classes: Rule-based and optimization-based.

• Rule-Based approaches: As the name itself suggests, in this type of
approach the power demand is controlled by rules. These rules can
be based on intuition, experiences, or mathematical models. This
type of strategy has the advantages of low computational complex-
ity, simple control, and high reliability. Rule-based approaches can
be deterministic or fuzzy type. In deterministic rule-based control
models of operation are determined on power demand. Fuzzy logical
control (FLC) is a mathematical logic based on the degree of truth
unlike true or false. This algorithm improved the control according
to the prediction and the real demand power value. In addition,
it can be divided into typical Fuzzy Logic, Fuzzy Predictive, and
Fuzzy Adaptive.
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• Optimization-Based approaches: This type of approach employs
modern optimization algorithms with high complexity. The op-
timization problem can be solved using different algorithms such
as Linear Programming, used if the system is convex and can be
represented by a set of linear functions, Dynamic Programming
(DP), in which it can determine the optimal control input via
the design optimization objective function, DP is able to handle
complex linear and non-linear systems, Stochastic DP, this DP
control needs a large amount of data, especially in case of multiple
states and multiple inputs, it may occur heavy calculation, Genetic
algorithm, it a method of searching the optimal solution by sim-
ulating the natural evolution process, Model Predictive control,
that depends on two aspects: the prediction accuracy and the
optimization of the control strategy. For real-time optimization,
the artificial intelligence (AI) algorithms are implemented. [16]

2.7.1 Equivalent Consumption Minimization Strat-
egy (ECMS)

The above classification is missing one of the most commonly used
hybrid control strategies: the equivalent consumption minimization
strategy (ECMS). ECMS is a strategy based on the idea that the
difference between the initial and final State of Charge of the battery
must be very small with respect to the total energy used in an entire
cycle. This means that the electrical energy used by the battery must
be restored using the fuel tank or through regenerative braking. This
leads to a cost function based on the energy taken from both the tank
and the battery. Considering a specific operational condition, two
scenarios can arise:

1. Discharge case when the battery power is positive. This implies that
at a later time, the battery will discharge, resulting in additional
fuel consumption required for recharging. The quantity of fuel
needed is also contingent on the effectiveness of energy recovery
via regenerative braking.
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2. Charge case when the battery power is negative. This signifies
that at some point in the future, this energy will be employed to
supplement the overall energy required by the powertrain, leading
to an immediate reduction in fuel consumption.

Figure 2.15: Energy path in the discharging phase (a) and in the
charging phase (b) for a parallel HEV. [17]

The fundamental idea of ECMS is illustrated in figure 2.15.
The instantaneous equivalent fuel consumption associated with the

electric energy is defined as:

ṁf,eqv(t) = ṁf(t) + ṁress(t) (2.1)

Where the real instantaneous total fuel consumption of the engine is:

ṁf(t) = Peng(t)
ηeng(t)Qlhv

(2.2)

Qlhv is the fuel’s lower heating value, ηeng(t) is the engine efficiency,
and Peng(t) is the power produced by the engine when it operates at a
certain efficiency.

The virtual fuel consumed by the electric machine is calculated as:
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ṁress(t) = s(t)
Qlhv

Pbatt(t) (2.3)

Pbatt(t) is the battery power, s(t) is an equivalence factor that assigns
a cost to the use of electrical power. It is a vector composed by scharge

and sdischarge, two terms correlated by the relationship:

scharge(t) = (ηbatt)2sdischarge(t) (2.4)

where ηbatt is the battery charge/discharge efficiency.

The optimization task is simplified into a local problem, focused on
minimizing ṁfeqv(t), as opposed to the broader problem of minimizing
the total cost minPbatt∈UPbatt

s tf

t0 ṁf,eqv(t)dt

SOCmin ≤ SOC ≤ SOCmax

(2.5)

A multiplicative penalty function (p(SOC))is used to ensure that
SOC does not pass the imposed limits and it is defined as:

p(SOC) = 1 −
3 SOC(t) − SOCtarget

(SOCmax − SOCmin)/2

4a

(2.6)

This factor considers the difference between the current SOC and
the desired SOC, and makes adjustments to account for it. There are
three possible cases:


SOC(t) = SOCtarget =⇒ p(SOC) = 1
SOC(t) > SOCtarget =⇒ p(SOC) < 1
SOC(t) < SOCtarget =⇒ p(SOC) > 1

The behavior of p(SOC) depends on the choice of the exponent a.
The total instantaneous equivalent fuel equation can be rewritten as:

ṁf,eqv(t) = ṁf(t) + s(t)
Qlhv

Pbatt(t)p(SOC) (2.7)
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The selection of the parameter s is a pivotal aspect of ECMS, as its
determination has a direct impact on both the battery SOC and fuel
consumption.

In the conventional ECMS, the equivalence factor s remains fixed
and is determined offline, relying on prior knowledge of the driving
cycle. An alternative approach is the Adaptive ECMS, where the value
of s is dynamically adjusted in real-time to align with the current
driving patterns. Further details on this application are provided in
the following section.

2.7.2 Adaptive ECMS
Adaptive ECMS (A-ECMS) is a real-time optimization technique that
continuously adjusts the value of the equivalence factor s based on the
target driving conditions.
In literature exist three different types of adaptation techniques:

1. Adaptation based on driving cycle prediction:
The ECMS is combined with a module that establishes a connection
between the present speed profile and the assessment of parameter
s. Various methodologies are employed for this purpose.

2. Adaptation based on driving pattern recognition:
This method relies on the premise that comparable driving patterns
are associated with akin values of s.

3. Adaptation based on feedback from SOC:
This approach is founded on the concept of adjusting the equivalence
factor based on the SOC’s deviation from the target value. These
calculations are performed without the need for historical data or
predictive driving pattern information.
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Chapter 3

Methodology

3.1 Vehicle model overview
The vehicle considered in this thesis work is a 48V P1 mild-hybrid light-
duty commercial vehicle implemented in MATLAB/Simulink/Simscape.
There are different approaches to modeling hybrid vehicles. Among
these, it is possible to distinguish two approaches based on the direction
of the calculation method: Backward and Forward.

Figure 3.1: Backward and Forward approach [18]

1. Backward approach
In this approach, the driving cycle provides a set speed, called
target speed, and it’s assumed that the vehicle follows this speed
perfectly. The vehicle parameters evolve over time. The data flows
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from the wheels to the powertrain.

2. Forward approach
In this approach, the driving cycles provide a target speed, as in
the previous method but no assumption is made for the vehicle
speed. The data flows from the driver to the powertrain to the
wheels.

The method used for modeling the vehicle implemented in Simulink
is the forward one.

Figure 3.2: Simulink model

3.1.1 Plant

The Plant implemented in Matlab contains the vehicle model, tire
model, and powertrain modeled in two dimensions.
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Figure 3.3: Plant

As shown in the figure 3.3, the longitudinal dynamics block contains
the model of the vehicles schematized through a two-axle body in
longitudinal motion which accounts for body mass, aerodynamics drag,
weight distribution between axles, and road incline.

Powertrain model

From the figure 3.4 it is possible to observe that the electric motor is
placed on the output of the crankshaft of the engine, directly connected
to the ICE, so it is a P1 configuration.
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Figure 3.4: Powertrain

3.1.2 Energy Analysis
The focus of this thesis work is the improvement of energy management
strategy, therefore it is important to understand the energy recovery
potential and the losses from the energy point of view. In this way it is
possible to observe where it is necessary to act to improve efficiency.
This configuration of hybrid vehicle uses the engine as the primary
source of power and the electric motor is used only to assist the ICE.
Hence, the total energy needed for the traction of the vehicle is pro-
duced by the Internal Combustion Engine and P1 motors. The Electric
Motor (EM) has two operating modes: for positive torques operates in
motoring mode, and for negative torque the EM operates as a generator
and produces electric energy that is stored in the battery. So, the total
energy requested is calculated as:

Epowertrain = EICE + EP1,motor

This energy goes to the driveline, more precisely it is transmitted to
the torque converter and then goes to the differential. The driveline
includes all the rotating elements and gears. The input energy should
be equal to the energy that comes from the motors but due to the losses
in the driveline, this energy is dissipated according to:
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Epowertrain − Edifferential = Edriveline,losses

The energy from the differential is transferred to the wheels and
transformed into energy of motion, which is the energy needed by the
wheels to move the vehicle. This energy should compensate for the
energy dissipated due to aerodynamic resistance, rolling resistance, and
potential energy, caused by the respective forces:

Faereodynamic = 1
2ρairAfCdv2

vehicle

Frolling = croll(vveh, ptire, ...)Mvehiclegcosδ
Fgrade = Mvehiclegsinδ

Where ρair is the air density, Af the vehicle frontal area, Cd the
aerodynamic drag coefficient, g is the gravity acceleration, δ the road
slope angle, and croll is a rolling resistance coefficient.

ρair 1.225
croll 0.0107
Af 4.614
Cd 0.46
δ 0

Table 3.1: Values of dissipation forces coefficients

As it is possible to notice from the formulas above, the value of losses
strictly depends on the velocity. The histogram 3.5 shows this behavior.
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Figure 3.5: Losses at different velocities

The analysis is performed on complete driving cycles. The aero-
dynamic losses increase with high velocities, while at low velocities
they are almost zero because the aerodynamic force is proportional to
the square of the vehicle speed. A similar behavior is followed by the
driveline losses that increase with increasing velocity. On the other
hand, the losses due to rolling resistance are less relevant compared to
the other losses.

Battery analysis
The characteristics of the battery are:

Nominal Voltage [V] 48
Cell Capacity [Ahr] 32

Nominal power [kWhr] 1.5

Table 3.2: Battery characteristics

The battery losses are computed as the difference between the output
and the input power of the battery, where the input power is the electric
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power coming from the P1 motor:

Pbatt − Pp1,el = Ploss

Where:

Pbatt = IV

The power of the P1 motor can be divided between electric and
mechanical, defined as:

Pp1,el = Pp1η
sign(−Pp1)
em

Pp1,mec = Tp1ωp1,mec

The difference between the mechanical and electric power of P1 is
the losses of the electric motor

Pp1,mec − Pp1,el = Ploss,em

An important parameter for battery analysis is the C-rate. A C-rate
is a measure of the rate at which a battery is discharged relative to its
maximum capacity. Knowing that the battery has a capacity of 32 Ah,
it can discharge 32 A of current in 1 hour or, similarly, considering the
nominal energy of 1.5 kWh it can discharge 1.5 kW in 1 hour. In the
model used for this work a maximum C-rate is around 17C. However,
the current is limited by the power electronics to around 400A, so we
can assume a maximum C-rate of 15C.
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Figure 3.6: Current limitation

In the figure 3.6 there are many points where the current goes beyond
the limits of 15C, these points correspond to sudden changes in the
slope of the acceleration.
The vehicle under examination is a 48V P1 mild-hybrid, which exhibits
high current demands owing to its 48V system voltage. To address this,
potential solutions involve current limitations, using higher-performance
components, or integrating a supercapacitor.
In this thesis, two distinct approaches are investigated. The first assesses
the viability of a Hybrid Energy Storage System (HESS) comprising
a supercapacitor in parallel with the primary battery. The second
approach focuses on enhancing the Energy Management System (EMS)
by accounting for battery thermal characteristics and State-of-Health
estimation.

3.1.3 Controller
The controller in figure 3.7 consists of a high lever controller in which
the driving cycles give the driver the reference speed profile. The driver
is modeled as a PI controller. The output of this controller is the
throttle which is further converted into torque and supplied to the
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control strategy. The subsequent control approach strives to determine
the most efficient power distribution between the electric motor and
the internal combustion engine. Therefore there are different operating
modes: ICE only or Hybrid mode. For the Hybrid mode, there are
different approaches, the one applied in this work is the ECMS described
in chapter 2.7.1.

Figure 3.7: Controller

As mentioned previously, the control strategy takes torque as its
input, which can be either positive or negative.

• If the torque is negative means that the electric motor works as a
generator and produces electric energy used to recharge the battery.

Trequested < 0 ⇒ Trequested = TP1,generator

• If the torque is positive means that the electric motor works as a
motor and it assist the ICE to supply the total requested torque.

Trequested > 0 ⇒ Trequested = TP1,motor + TICE

This strategy also manages the battery energy storage. An initial
differentiation that needs to be made involves distinguishing between
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charge-sustaining (CS) and charge-depleting (CD) modes.
In CS mode, the vehicle’s battery is discharged by the electric motor
during startup and boost operations, and it is recharged during regen-
erative braking to maintain the battery within a predefined state of
charge limits.
In CD mode, the battery is discharged more than it is replenished by
the generator or regenerative braking, resulting in a lower final SOC
compared to the initial target.

Figure 3.8: Charge Sustaining and Charge Depleting [19]

In the analyzed model, the battery is in charge-sustaining mode and
the imposed limits for SOC are 56% and 64% because the required
target is 60% .

As mentioned before in paragraph 2.7.1, the equivalent factor s is
an important parameter for ECMS. In this case, s is set taking into
account the limitation for the SOC of the charge-sustaining mode. It is
modeled as a rely.
This relay activates when the State of Charge (SoC) exceeds the upper
threshold of 64%. Once activated, the relay remains on until the lower
threshold of 56% SoC is reached. It remains off until the upper threshold
is reached again.
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The equivalence factor, determined through this process, serves as an
input to the ECMS, which can adjust the torque distribution based on
the SoC. When the SoC surpasses 64%, only the P1 motor provides
torque to bring the SoC within the desired range. Conversely, when
the SoC falls below 56%, only the internal combustion engine (ICE)
contributes to the torque to recharge the battery.

3.2 Batteries modeling
Researchers have developed different battery models based on different
levels of accuracy and complexity. Generally, we can classify these
models into three categories: White-box models, Grey-box models,
and Black-box models. An example of the white-box model is the
Electrochemical model, this model uses physical law that governs the
internal electrochemical process of the battery, moreover, it takes into
consideration several non-equilibrium effects involving high power den-
sity and high-density power source. However, to use the electrochemical
models for simulation, many parameters based on in-depth knowledge
of the battery’s chemical structure and properties, such as chemical
composition and material conductivity, need to be measured or known,
which is impractical for many system design engineers [15]. On the
other hand, examples of Grey-box models are equivalent electric cir-
cuit models (EECMs) and reduced-order models. The first one use a
combination of a voltage source, resistors, capacitors, and sometimes
non-linear elements to describe battery behavior. To avoid complex
analysis of non-linear elements, such as the Warburg impedance, it has
been proposed in [15] to use a linear EECM structure, consisting of
an ideal voltage source representing the open circuit voltage (OCV)
which is controlled by state of charge (SOC) and temperature, a re-
sistor representing for the internal resistance, and a few RC networks
connected in series to capture the dynamics of the battery behavior.
Such a linear EECM is defined as a n-th order if it consists of n-series
RC networks. The latter is based on the electrochemical model shown
before by making additional assumptions that simplify the battery
model, however, models result in a heavy loss of information compared
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with the complete electrochemical model. Black-box models describe
battery behavior using some intelligent modeling methods without the
need to understand the electrochemical processes in the battery.

3.2.1 Equivalent electric circuit models (EECMs)

The circuit model is the one that will be taken into consideration later
in this thesis work. Different categories of equivalent circuits will be
analyzed below.

• Ideal model
The battery is represented by an ideal voltage generator, the internal
parameters and state of charge are ignored. This makes it the
simplest battery model.

Figure 3.9: Ideal model [20]

• Simplified model
This model is composed of an ideal voltage generator with a resistor
in series which represents the internal resistance of the battery. As
in the previous model, the state of charge is not considered. In
the figure 3.9 Voc is the ideal open circuit voltage while Vt is the
measured voltage.
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Figure 3.10: Simplified model [20]

• Simplified model I
This is still a simplified model but compared to the previous one,
in this one, the internal resistance and the voltage are functions of
the state of charge. The internal resistance is calculated in this way:

Rint = R0

Sk

Where R0 is the initial internal resistance and Sk is the initial
battery state of charge.

Figure 3.11: Simplified model I [20]

• Simplified model II
This is a model similar to the previous one, in fact in this model
the voltage and the internal resistance is a function of the state
of charge. The difference is in the relationship that describes the
open voltage circuit:
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Vt = Voc(SOC) − IRint(SOC)

Where Voc(SOC) is the no-load voltage of the battery and Rint(SOC)
is the internal resistance of the charge and discharge cycle.

Voc = V0 − AD
Rint = R0 − BD

Where V0 is the open circuit voltage with the battery fully charged,
D is the state of discharge, Rint is the internal resistance with the
battery fully charged and A and B are constantly obtained from
experimental tests [20].

Figure 3.12: Simplified model II [20]

• Simplified model III
This model is based on the Thevenin model in which the open
circuit voltage and the internal resistance have a non-linear relation:

Vt = Voc − (Rint + K

SOC
)I

where K is the polarization constant and I is the discharge current
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Figure 3.13: Simplified model III [20]

• Simplified model IV
As shown in figure 3.14, this model has more than one voltage
source in series with the internal resistance.

Figure 3.14: Simplified model IV [20]

Where E-Bat is the ideal source of the battery cell, E-pol shows the
polarization effect on the battery, and E-Temp shows the thermal
effect on the battery.

• Thevenin model
All the previous models do not take into account the dynamic effect
of the battery. To analyze transient conditions, Thevenin add to
the equivalent circuit an RC circuit. The simplest Thevenin model
is shown in the figure 3.15 below.
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Figure 3.15: Thevenin model [20]

In this model, all the parameters are assumed as constant but in
literature, there are different modified Thevenin models in which
state of charge, temperature, and other values are tacked into
account.

3.3 Supercapacitors modeling

Various models are elaborated and discussed in the literature, in terms
of model structure, complexity, and accuracy for electrical behavior sim-
ulation, which are sorted into four groups: electrochemical, equivalent
circuit, intelligent, and fractional-order models [21]. Electrochemical
models offer high accuracy but increase complexity. This model is also
known as a double-layer model due to the capacitor structure described
above. Equivalent circuit models derive from empirical and experimen-
tal data, this circuit employs parameterized RC (capacitor-resistor)
networks to mimic the electrical behavior of SCs. Intelligent circuit
models predict the performance of energy storage systems. Fractional-
order models consist of non-integer order differential equations and
they are able to capture the SC dynamics. According to [12], the
structural simplicity and decent modeling accuracy make the equivalent
electrical circuit model very suitable for power electronic applications
and real-time energy management simulations.
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3.3.1 Equivalent circuit models

Over the years, many methods of modeling supercapacitors have been
studied through the appropriate interconnection of RC circuits. The
most used ones will be explained below:

• RC series model
This is the easiest model used to have a general overview of the
component’s behavior. It consists of a capacitance and a resistor
in series. Unfortunately, this model does not take into account
the self-discharge phenomena and it cannot accurately represent
charging and discharging cycles.

Figure 3.16: RC series model

• Two-branch model
As the name suggests, it is composed of two branches; The first
one consists of a capacitor that is the sum of two terms: a con-
stant one and a voltage-dependent one, and a resistance that is
one that acts as Equivalent Series Resistance (ESR). The second
branch represents the medium-long term. The third branch rep-
resents the phenomenon of self-discharge. This model is used for
representations of generally shorter periods.
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Figure 3.17: Two-branch model

• Zubieta-Bonert model
In this model, there are three groups of RC circuits and one resistor
connected to each other in parallel. Every RC branch has its own
time constant.

Figure 3.18: Zubieta-Bonert model

As in the previous model, the last branch represents the phe-
nomenon of self-discharge. In the first branch, called the immediate
or short-term branch, Rf dominates the behavior in the order of a
few seconds, and Cf2 represents the voltage dependence from the
double layer capacity. The second branch, called the delayed or
medium-term branch, with RL, influences behavior in the minute
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range. The third, the long period branch influences the response of
the circuit after a time of ten minutes. This model is very good at
low frequencies but not very good at high ones.

• Musolino-Piegari model
In [22], a full-frequency-range model that can be used to represent
all of the phenomena that involve supercapacitors. Moreover the
authors present a simple procedure to identify the parameters of
the model that can be used to characterize this supercapacitor.

Figure 3.19: Musolino-Piegari model

All the elements of the first branch depend on the three parameters:
Ri, C, and τ ; the last two are voltage-dependent parameters. For
slow dynamics, the number of parallel branches should be infinite.
However, two parallel branches are sufficient to achieve accurate
results. Finally, a resistor Rleak is added to model the self-discharge
phenomenon.

• RC Transmission Lines Model
The RC transmission line model is based on the Porous Electrode
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Theory developed by de Levie. According to this theory, each pore
is modeled as one transmission line. This leads to a ladder network
with potentially many RC elements.

Figure 3.20: RC Transmission Lines Model

The transmission line model attempts to capture the distributed
double-layer capacitance and the distributed electrolyte resistance that
extends the depth of the pore [23].

3.4 Thermal dependence
Under varying environmental conditions, it may be necessary to either
dissipate or introduce heat to regulate the battery’s temperature and
keep it within the ideal range. An uneven temperature distribution can
lead to reduced charging and discharging efficiency and cell imbalances
over time. Established methods for thermal management encompass
the use of coolants, insulating materials, and phase-change substances.
Integral tools in the design and thermal control of automotive battery
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packs are thermal and performance models. These models rely on input
data, including system and operational parameters. However, not all
of these parameters are straightforward to directly measure (e.g., heat
effects ) because their impacts cannot be isolated.

3.4.1 Lumped thermal network model
The lumped thermal network model for the battery cell is illustrated
in 3.21. The type of Li-ion battery taken into account in this work is a
prismatic NMC battery cell.

Figure 3.21: Lamped thermal model of prismatic NMC battery cell
[24]

The model consists of various nodes that symbolize different compo-
nents, including the inner core of the battery, its external faces, and
the surrounding ambient temperature. The heat generated within the
battery’s core is conducted through the material to the faces, from
where it is then released into the surroundings through convection [24].

Heat generation
The heat produced within the battery cell due to electrochemical
reactions and the movement of ions in the electrolyte can be described by
considering the local internal resistance and current densities. According
to the theory, the total heat generated is calculated as:

mCp
dT (t)

dt
= k[Ri2(t)] − (Qconv + Qrad) (3.1)
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m is the cell mass, Cp is the specific heat capacity, T is the cell temper-
ature, i is the charge/discharge current, R is the internal resistance of
the cell, k represents the scaling factor that accommodates the variation
in electrical conductivity between the positive and negative electrodes,
Qconv is the convection heat energy, Qrad is the radiation heat energy.
In ideal conditions, R can be defined as a fixed value but in reality, it
can be expressed as a function of battery State-of-Charge (SOC), as
shown in figure 3.22, or as a function of temperature, as shown in figure
3.23.

Figure 3.22: Internal resistance of battery cell as a function of SOC
[25]
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Notably, the charge resistance is lower than the discharge resistance,
indicating that less Joule heat is generated during the charging phase.

Figure 3.23: Internal resistance of battery cell as a function of tem-
perature

A typical trend of R with SOC and T for a lithium cell is studied in
[26] and it is depicted in the illustration 3.24:

Figure 3.24: Internal resistance of battery cell as a function of tem-
perature and SOC
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The data in figure 3.24 illustrates the variations of the internal
resistance concerning the State of Charge (SOC) and temperature.
Consequently, as elaborated in Chapter 3.1.3, the battery under exami-
nation operates in a charge-sustaining mode, and due to the applied
strategy, the SOC operates within the range of 50% to 70% to achieve
the desired target of 60% and the temperatures taken into consideration
will be 25, 30 and 40 ◦C. This results in a relatively stable internal
resistance.
As with R Voc in an ideal condition is defined as a fixed value but in
reality, it can be expressed as a function of battery State-of-Charge
(SOC) or temperature. This relations are illustrated in 3.25 and 3.26.

Figure 3.25: OCV of battery cell as a function of SOC
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Figure 3.26: OCV of battery cell as a function of temperature

In figure 3.26 the first graph refers to the voltage measured with an
exchange temperature equal to 40 ◦C and the second with the exchange
temperature equal to 30 ◦C.
The heat transfer through convection, denoted as Qconv, at the surface
of the battery cell, can be represented as follows:

Qconv = hA(Ts − Tc) (3.2)

where h represent the convective heat transfer coefficient, A is the
area of battery cell, Ts is the surface temperature of the cell, Tc is the
temperature of cooling air.
The heat transfer coefficient (h) is strongly linked to the cooling valve’s
power within the battery module. A high coefficient necessitates a
larger cooling valve with a correspondingly higher power requirement.
Therefore, the higher ’h’ is, the more energy will be consumed.
The study in [27] examined the ideal heat transfer coefficient between the
battery and the surrounding ambient temperature. The findings indicate
that the heat transfer coefficient exhibits a cubic relationship with the
ambient temperature. For instance, when the ambient temperature is
30◦C, the heat transfer coefficient should be a minimum of 12 W/m2K.
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Modeling conditions

Properties of the cells, including density, thermal conductivity, and
specific heat capacity, are presumed to be constant across the entire
battery and to stay within a predefined temperature range. The values
of these parameters used for the model under consideration will be
illustrated in the next chapter.
In this study, we operate on the assumption that the heat exchange by
convection takes place on a well-defined surface. This simplification is
used which consists of modeling the battery as a single body to simplify
the model.

3.4.2 Matlab model

The battery was modeled in Matlab Simscape environment.This partic-
ular software enables the creation of physical component models using
physical connections, which can then be linked through block diagrams
within Simulink.
The previous model of the battery is made up of the fundamental
battery model in Simscape as shown in figure 3.27.

Figure 3.27: Battery model

Through the use of this Matlab block, the battery is represented
by a combination of a series resistor and a voltage source that varies
with charge. The voltage is dependent on the charge and follows this
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relationship:
V = V0

SOC

1 − β(1 − SOC) (3.3)

Where SOC is the State of Charge (how the SOC is calculated is
explained in chapter 2.6.2), V0 is the nominal voltage, β is a constant
that is calculated so that the battery voltage is V1 when the charge is
AH1, V1 is the voltage measured when the charge is AH1, AH1 is the
charge measured when no-load volts are V1 .
This equation offers an estimation of the voltage as it relates to the
remaining charge. This approximation mimics the rapid decline in
voltage as charge levels decrease, and it guarantees that the battery
voltage reaches zero when the charge is fully depleted. The model’s
benefit lies in its simplicity, as it relies on only a small number of
parameters, typically found on most datasheets. By utilizing this
model, it becomes feasible to assess the battery’s State of Charge
(SOC), which is then provided as feedback to the controller.
One of the goals of this thesis is to consider the thermal aspect of the
battery. Adding this aspect to the previous battery model the voltage
equation will become:

V = V0T
SOC

1 − βT (1 − SOC) (3.4)

V0T = V0(1 + λV (T − T1)) (3.5)
where T is the battery temperature, T1 is the nominal measurement
temperature, λV is the parameter temperature dependence coefficient
for V0 , βT is calculated as:

βT = β[1 + λβ(T − T1)]

λβ is the parameter temperature dependence coefficient for β, β is
calculated in the same way of 3.3 using V0T .
All the coefficients related to temperature dependence are calculated
based on the provided values at both the nominal and the second
measurement temperatures
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Figure 3.28: Battery model with thermal dependence

The battery temperature is provided by:

MthṪ =
Ø

i

V 2
t,i

Rt,i
(3.6)

Where Mth is the battery thermal mass, i corresponds to the ith
ohmic loss contributor that in the analyzed model corresponds to series
resistances and self-discharge resistance, VT,i is the voltage drop across
resistor i, RT,i is resistor i.
The block uses linear interpolation for the derived equation coefficients.
All the coefficients given as input to the thermal part of the battery
come from "Temperature measurements" block illustrated in figure 3.28.

Figure 3.29: Temperature measurements block

The block shown in figure 3.29 receives as input the constant value
of the exchange temperature which is the temperature of the cooling
system, it is sent to the ideal temperature source block that simulates
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an ideal thermal energy source that maintains specified temperature
difference across the source regardless of the heat flow consumed by
the system. The temperature differential is sent to the convective heat
transfer block that describes heat transfer between two bodies through
fluid motion and represents it as convection. This heat transfer process
is explained by Newton’s law of cooling:

Q = kA(TA − TB) (3.7)

where Q is the heat flow, k is the convection heat transfer coefficient, A
is the surface area, TA and TB are the temperature of the two bodies.
The heat flow is also equal to the power dissipated over the time:

Q = Pdisst (3.8)

Substituting 3.7 into 3.8 :

Pdisst = hA∆T (3.9)

The power dissipated in the battery model is an electrical power and is
calculated as:

Pdiss = RI2 (3.10)

In conclusion, substituting 3.10 in 3.9 the previous equation becomes:

RI2t = hA∆T (3.11)

Hence, the output temperature of this block is calculated as:

TA = TB + Q

KA
(3.12)

Where Q is calculated as in 3.8 and it is sent to the battery.

3.5 SOH Estimation
It’s crucial for a battery to maintain a proper State of Charge (SOC)
and State of Health (SOH) for various reasons. It’s important to keep
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track of two key factors.
SOC refers to the amount of charge currently stored in the battery, while
SOH reflects the overall condition of the battery over time. A decrease
in SOH can indicate a decline in the battery’s ability to store and release
energy, which can negatively impact its overall performance. Properly
monitoring and managing SOC and SOH is crucial to maximize the
lifespan of the battery and ensure reliable long-term performance.

As mentioned in 2.6.2, the State of Health is calculated as:

SOH% = 100 REOL − R0

REOL − Rnew

As seen in the previous formula, the internal resistance R0 is an impor-
tant indicator of the aging of a battery.
To determine the State of Health (SOH), a Simulink block in Matlab is
employed. This block takes the SOC estimation, R0, and the measured
temperature as inputs. The temperature is calculated in the same man-
ner as in the prior model illustrated in the previous paragraph. The
remaining two parameters are derived from a separate Matlab/Simulink
block, which employs a Kalman filter algorithm to estimate the State
of Charge (SOC) and the terminal resistance of the battery.

Figure 3.30: SOH estimation battery model
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3.5.1 Kalman Filter
The widely used filtering technique is the Kalman filter, which processes
a sequence of measurements collected over time, corrupted by statisti-
cal noise, to generate estimates of unknown variables. The algorithm
begins with an initial prediction step, relying on prior knowledge of the
state to be estimated, and then proceeds to an update or correction
step, where the predicted state is adjusted based on the innovation
introduced by the current measurements.
The system under examination is built upon non-linear Kalman filtering
methods, which expand the application of Kalman filters to non-linear
systems.

More specifically, the Matlab block employs these state variables as
non-linear functions:

x = [SOC, V1, R0]

and this process and observation of nonlinear functions:

h(x, i) = V0(SOC, T ) − iR0 − V1

f(x, i) =


− i

3600AH(T )
i

Ci(SOC, T ) − V1

R1(SOC, T )C1(SOC, T )
0


The most common approach to applying Kalman theory to non-linear

systems is the Extended Kalman filter (EKF). The EKF algorithm
involves linearizing non-linear functions using a Gaussian random vari-
able (GRV), which is then advanced through a first-order linearization
of the non-linear system via Taylor expansion. However, a challenge
with this propagation through the dynamics of non-linear systems is
that it can introduce significant errors in the mean and covariance of
the transformed GRV, potentially leading to filter divergence.
To address the limitations of the EKF, the Unscented Transformation
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(UT) was developed as a method for propagating mean and covariance
information through non-linear transformations. Consequently, the
Kalman filter utilized in this battery model is the Unscented Kalman
filter (UKF). Notably, the computational complexity of the UKF is in
the same order as that of the EKF.

Figure 3.31: Example of the UT for mean and covariance propagation.
a) actual b) first-order linearization c) UT [28]

The Unscented Kalman Filter (UKF) approximates the state distribu-
tion with a Gaussian random variable (GRV), much like the Extended
Kalman Filter (EKF). However, in the UKF, this distribution is rep-
resented using a minimal set of strategically selected sample points
known as σ-points. These σ-points fully encapsulate the actual mean
and covariance of the GRV. When these points are propagated through
the genuine non-linear system, the filter can accurately capture the
posterior mean and covariance up to the third-order Taylor series expan-
sion for any non-linearity. The σ-points and their associated weights
are defined as:

χ[0] = µχ[i] = µ + (
ñ

(n + λ)Σ)i for i = 1, .., n

χ[i] = µ − (
ñ

(n + λ)Σ)i−n for i = n + 1, ..,2n
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w[0]
m = λ

n + λ

w[0]
c = w[0]

m + (1 − λ2 + β)

w[i]
m = w[i]

c = 1
2(n + λ)

Where λ is calculated as follow:

λ = α2(n + k) − n

The distribution of σ-points relative to the mean state value is governed
by two parameters, α and k. A third parameter, β, influences the
weights applied to the transformed points when calculating state and
measurement covariances.

• α → is a coefficient that regulates the dispersion of σ-points. It
falls within the range 0 < α ≤ 1. Lower values result in sigma
points positioned closer to the mean state.

• β → is a distribution coefficient with a minimum value of 0 or
greater. In the case of a Gaussian distribution, its optimal value is
2.

• k → A secondary scaling parameter. σ-points are positioned closer
to the mean state with smaller values. The calculation for k is as
follows:

k = 3 − n

where n is the number of states.
The complete formulation of the UKF algorithm is presented in
figure 3.32, with the reference [29].
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Figure 3.32: Unscented Kalman Filter algorithm

The matrix Qt, which represents the covariance of measurement noise,
is considered to be constant. Meanwhile, the covariance of process noise,
Rt, is treated as a tuning parameter. Proper tuning of the process noise
covariance ensures that the filter performs well in terms of the posterior
estimate covariance while maintaining a level of responsiveness similar
to that of the EKF.

3.6 Driving Cycles
All these simulations are conducted utilizing distinct current profiles
extrapolated by different European standard driving cycles. Driving
cycles are speed profiles based on statistical data.
The United Nations Economic Commission for Europe (UNECE) has
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developed an approval procedure for light-duty vehicles with driving
cycles. To be commercialized, vehicles must undergo a series of tests
to verify the conformity to standards. The tests are executed in the
laboratory and are based on specific driving cycles. The aim of the tests
is to verify fuel consumption and polluting emissions. Fuel consumption
and emission tests are performed on chassis dynamometers. Driving
cycles are produced by different countries, in Europe the cycles used
for this purpose are NEDC (New European Driving Cycle), WLTP
(Worldwide harmonized Light vehicles Test Procedure), and RDE (Real
Driving Emission).

WLTC cycle

The Worldwide Harmonized Light Vehicles Test Procedure (WLTP)
comprises a series of protocols developed by the UNECE. Implemented
in 2017 to replace the NEDC cycle, which was deemed less realistic,
particularly in terms of acceleration values, WLTP mandates various
WLTC cycles for emission tests in Europe. These cycles are categorized
based on the power-to-mass (PMR) ratio, with three distinct vehicle
categories being considered:

• Class 1: low-power vehicles with PMR ≤ 22 W/Kg

• Class 2: vehicles with 22 W/Kg < PMR ≤ 34 W/Kg

• Class 3: high-power vehicles with PMR > 34 W/Kg

The cycle can be subdivided into four parts of increasing speed, for
urban, rural, and highway scenarios:
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Figure 3.33: WLTP cycle

The cycle parameters are reported in the following table [30]:

Parameter Low Medium High Extra-high Total
Distance [km] 3095 4756 7162 8254 23266
Total time [s] 589 433 455 323 1800

Average speed [km/h] 18.9 39.5 56.7 92.0 46.5
Maximum speed [km/h] 56.5 76.6 97.4 131.3 131.3

Maximum acceleration [m/s2] 1.47 1.57 1.58 1.03 1.58

Table 3.3: WLTC parameters

RDE cycle
The Real Driving Emission (RDE) cycles are implemented to assess
vehicle emissions in actual driving conditions rather than relying solely
on test benches, as is the case with WLTC or NEDC. This cycle
encompasses three distinct driving scenarios: urban, rural, and highway.
The urban scenario has a maximum speed of 60 km/h, the rural scenario
spans speeds between 60 km/h and 90 km/h, while the highway scenario
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is designed for speeds above 90 km/h up to 130 km/h. Detailed
specifications are provided in the figure 3.34.

Figure 3.34: RDE specifics [31]
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Chapter 4

Simulation and Results

4.1 Model setup

As explained in the chapter 2.6.1 there are different types of lithium
batteries. In this thesis work a Lithium Nickel Manganese Cobalt Oxide
(NMC) battery was taken into consideration. This cathode pairing
stands out as one of the most successful Li-ion systems. Nickel, rec-
ognized for its high specific energy, has a drawback of poor stability,
while manganese boasts excellent stability but lower specific energy.
The amalgamation of these two metals enables compensation for the
respective weaknesses of each.
The simulations are all performed considering a battery cell, by perform-
ing the same simulations on the entire battery pack the temperature
results are similar because we consider the battery modeled as a single
block, and by proportionally increasing the values the results are the
same. This result can be demonstrated starting from the relationship
used in 3.12 to calculate the output temperature TA.
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To calculate the temperature for the battery cell:

TA,cell = TB,cell + RcellI
2

hAcell,exchange
(4.1)

Where the cell parameters are illustrated in 4.1.
To calculate the temperature for the entire battery pack the following
formula is used:

TA,batt = TB,batt + RbattI
2

hAbatt,exchange
(4.2)

Where the cell parameters are illustrated in 4.3.
From the formulas presented in 4.3 and 4.4, the equations used to
determine the battery pack temperature became:

TA,batt = TB,batt + (RcellNs/Np)(INp)2

h(Acell,exchangeNsNp) (4.3)

where Ns is the number of battery cells in series Np is the number of
series in parallel in the battery pack and TB,cell = TB,batt

By making the necessary simplifications, it is clear that the two expres-
sions are similar. So we can conclude that:

∆Tbatt = ∆Tcell

Figure 4.1: Battery cell and Battery pack
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Cell parameters

Symbol Description Value

Vcellmax Maximum cell voltage [V] 4.3

Vcellnom Nominal cell voltage [V] 3.7

Vcellmin Minimum cell voltage [V] 2.7

AH Ampere-hour rating [hrA] 16

Ri Internal resistance [mΩ] 2

Cp Thermal capacity [J/KgK] 1200

Ns Number of cell in series 12

Np Modules in parallel 2

Table 4.1: cell parameters

The differences between the various types of batteries are not only
in their chemical structure but also in their geometry. The battery
cell under analysis is a prismatic battery. The cell dimension for this
prismatic lithium-ion NCM battery is illustrated in the table 4.2.
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Height [m] 0.12

Length [m] 0.18

Width [m] 0.04

Mass of the cell [Kg] 0.5

Thermal mass [J/K] 600

Table 4.2: cell dimension

For calculating the total area of the battery cell:

Acell,tot = 2((Height∗Length)+(Height∗Width)+(Length∗Width))

Acell,tot = 0.0672m2

For the simulations, not the total area was taken into consideration
but only the exchange surface which is equivalent to the lower part of
the cell. So:

Acell,exchange = Height ∗ Width = 0.0072m2

Thanks to the cell parameters we can calculate battery parameters
as follow:
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Parameter Formula Value

Nominal voltage [V] VcellmaxNs 50.4

V1 [V] VcellnomNs 44.4

AH [Ahr] NpAHcell 32

AH0 [Ahr] SOC0AH 19.2

AH1 [Ahr] AH/2 16

Battery Capacity [Whr] V1AH 1420.80

Internal resistance [mΩ] (Ns/Np)Ricell
12

Table 4.3: Battery parameters

Battery dimension are illustrated in table 4.4

Parameter Formula Value

Height of the battery [m] Height 0.12

Length of battery [m] Length ∗ Np 0.18

Width of battery [m] Width ∗ Ns 0.48

Battery mass [Kg] Mcell ∗ Ns ∗ Np 12

Battery thermal mass [J/K] Battery mass ∗ Thermal capacity 600

Table 4.4: Battery dimension
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For calculating the total area of the battery:

Abat,tot = 2((Height∗Length)+(Height∗Width)+(Length∗Width))

Abat,tot = 0.5472m2

For the simulations, as in the previous case, not the total area was
considered but only the exchange surface which is equivalent to the
lower part of the battery. So:

Abat,exchange = AcellNsNp = 0.1728m2

4.2 Cooling system design
The goal of incorporating thermal dependence into the battery is to
extract parameters for the design of the cooling system.
The assumptions to be considered include that the battery in question
exchanges heat with the exchanger through convection in a well-defined
area (Acell,exchange and Abatt,exchange ). The area is one of the parameters
considered for the design of the cooling system, kept constant.
Other parameters that are useful for the design of the cooling system
are the exchange temperature and the heat transfer coefficient. The
exchange temperatures used are 25 ◦C and 30 ◦C because it is assumed
that the cooling temperature is already “hot” because it has already
exchanged with the battery and the ambient temperature ( about 25
◦C).
In terms of the heat transfer coefficient, this study considered two
values: 20 and 30 W

m2K
. The choice of these values was made based on

the findings reported in the referenced study [27].

4.3 Results thermal model
The optimal operating temperatures for a lithium-ion battery range
from 20◦C to 30◦C, with temperatures between -40 ◦C and 60◦C also
permissible. The higher the operating temperature of the cell, the faster
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its aging rate. If the temperature becomes excessively high (beyond
80-100◦C), the active materials inside the cell can become thermally
unstable. Therefore, temperature control is a crucial factor for both
battery performance and lifespan.
All these simulations are conducted utilizing distinct current profiles
extrapolated by different European standard driving cycles, more pre-
cisely, RDE and WLTC.

4.3.1 Simulation of the temperature trend at 1C
for constant current and power

To demonstrate that the model in question is sensitive to changes in
Texchange and heat transfer coefficient (h), the following simulations take
into account two factors:
The heat transfer coefficient (h) was initially tested with different values
( h= [5, 15, 30, 50] W

m2K
)

The exchange temperatures used are 30 ◦C and 40 ◦C.
The initial simulations are conducted with both constant current input
and constant power input.

Figure 4.2: Temperature measurement at different heat coefficient
with constant current as input
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In figure 4.2 the exchange temperature taken into consideration is
30 ◦C and the temperature values measured for each heat transfer
coefficient (h) are reported in the table 4.5. A discharge current equal
to 1C was applied and simulated for 3600 seconds.

h [ W

m2K
] Tmax [◦C]

5 32.6

15 32.2

30 31.7

50 31.21

Table 4.5: Tmax at different h at Texch =30 ◦C with constant current

Figure 4.3: Temperature measurement at different heat coefficient
with constant power as input

78



Simulation and Results

In figure 4.3 the same consideration is taken into account with the
only difference being that a constant power input is used, which is
divided by the voltage measured by a voltage sensor connected in
parallel to the battery. The temperature values measured for each heat
transfer coefficient (h) are shown in the table 4.6:

h [ W

m2K
] Tmax [◦C]

5 31.7

15 31.43

30 31.09

50 30.80

Table 4.6: Tmax at different h at Texch =30 ◦C with constant power

The same simulations were performed by varying the value of the
exchange temperature and using 40 ◦C.
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Figure 4.4: Temperature measurement at different heat coefficient
with constant current as input

The measured temperature, in this case, are in table 4.7 :

h [ W

m2K
] Tmax [◦C]

5 42.5

15 42

30 41.54

50 41.12

Table 4.7: Tmax at different h at Texch =40 ◦C with constant current
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Figure 4.5: Temperature measurement at different heat coefficient
with constant power as input

The temperature values measured for each heat transfer coefficient
(h) are illustrated in the table 4.8

h [ W

m2K
] Tmax [◦C]

5 41.6

15 41.33

30 41.01

50 40.74

Table 4.8: Tmax at different h at Texch =40 ◦C with constant power

From these simulations, we can infer that the temperature increases
linearly, and the temperature difference (∆T ) between the smallest and
largest heat transfer coefficients is approximately 1-1.5 ◦C.
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From these simulations, we observe that indeed, the analyzed model is
sensitive to variations in these two parameters.
Furthermore, as explained in the chapter 3.4.1, when the surrounding
temperature is around 30 ◦C, a minimum heat transfer coefficient of 15

W

m2K
is required.

4.3.2 Simulation of the power profile for the WLTC
cycle

In these simulations, the power profile is obtained from a WLTC cycle.
Below are the current, voltage, power, and SOC characteristics.

Figure 4.6: WLTC profile in the battery pack

Since the goal is to find optimal parameters to ensure that the battery
operates within a specific temperature range for designing a cooling
system, the combinations of h and Texchange studied in these simulations
are four:
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h [ W

m2K
] Texchange [◦C]

20 25

30 25

20 30

30 30

Table 4.9: combinations of h and Texchange

Figure 4.7: Temperature measurement for WLTC cycle in the battery
pack

It can be observed that in all combinations, the temperature reached
by this cycle hovers around 50 ◦C and the one that appears optimal is
the one with Texchange = 25 and h = 30. This temperature result is not
optimal but certainly still acceptable. This result is achieved because,
as can be seen in the figure 4.6, there is a high torque demand fulfilled
by the electric motor.
The efficiency map of the electric motor shown in figure 4.8, can observe
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the operating points of the WLTC. The trends in the map can also
reflect the battery’s working zone showing its utilization during the
cycle, indicating energy discharge or recharging. Indeed, from this map,
it can be observed that in this cycle, the operation frequently occurs at
high efficiency and involves high torque demand.

Figure 4.8: EM efficiency map of WLTC

4.3.3 Simulation of the power profile for the RDE
cycle

In these simulations, the current profile is provided from an RDE cycle.
As mentioned in 3.6, this cycle comprises three different driving sce-
narios: urban, rural, and highway. In the urban setting, the maximum
speed is capped at 60 km/h. The rural scenario encompasses speeds
ranging from 60 km/h to 90 km/h, while the highway scenario is tailored
for speeds exceeding 90 km/h and reaching up to 130 km/h.
The first analyzed case is the RDE urban, which exhibits the following
characteristics of current, voltage, power, and State of Charge (SOC):
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Figure 4.9: RDE urban profile in the battery pack

Also for this cycle, combinations are considered in the table 4.9.

Figure 4.10: Temperature measurement for RDE urban cycle in the
battery pack

In contrast to the previous cycle, in this case, the temperatures
measured are lower, around 35◦C. This is because, as it is shown in
Figure 4.11, the urban RDE operates at low speeds, resulting in a
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lower demand for torque from the electric motor so the temperatures
registered are not high.

Figure 4.11: EM efficiency map of RDE urban

The second analyzed case is the RDE rural, and all its characteristics
are presented in the figure below:

Figure 4.12: RDE rural profile in the battery pack
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Here too, the same assumptions are taken into account.

Figure 4.13: Temperature measurement for RDE rural cycle in the
battery pack

In this scenario, it operates at much higher speeds, causing significant
stress on the battery and resulting in elevated temperatures. This
behavior is clearly illustrated in the figure 4.14. This continuous
demand for current from the battery leads to reaching 63 ◦C in the
worst case possible.

Figure 4.14: EM efficiency map of RDE rural
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The analysis of the RDE motorway cycle proves to be interesting.
The characteristics of current, voltage, power, and State of Charge
(SOC) are illustrated in the figure below:

Figure 4.15: RDE motorway profile in the battery pack

Figure 4.16: Temperature measurement for RDE motorway cycle in
the battery pack

This case is intriguing because, as evident from Figure 4.15, there
are frequent instances of zero power. This occurs because, being a
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cycle that operates at very high speeds, the torque demand is so high
that the electric motor cannot meet it, and it is only satisfied by the
internal combustion engine (ICE). This also explains that when the
torque is satisfied, the battery is highly stressed, leading to quite high
temperatures approximately equal to 40 ◦C.
It is also evident from the figure 4.17, depicting the operating points
of the electric motor. It is observed that there are significantly fewer
points compared to the other maps previously analyzed, and the few
that exist operate at very high speeds and torque. Therefore, as
mentioned earlier, even though the internal combustion engine (ICE)
predominantly operates in this cycle, the battery undergoes degradation
due to the high current demand.

Figure 4.17: EM efficiency map of RDE motorway

In conclusion, the analysis of the thermal behavior of the battery
concerning the complete RDE is presented, providing a comprehensive
overview of the entire driving cycle. The characteristics of current,
voltage, power, and state of charge are depicted in the figure below in
figure 4.18.
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Figure 4.18: RDE profile in the battery pack

The same assumptions are taken into account and also in this case
the optimal combination results the one with Texchange =25 ◦C and
h=30 W

m2K
.

Figure 4.19: Temperature measurement for RDE cycle in the battery
pack

Here, all the considerations made for the various RDE cycles hold
true.
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It is clear that in RDE complete the measured temperatures are too
high. The solution can be integrating the temperature parameter into
the control logic to limit the electric machine power, which serves to
safeguard the battery from deterioration.

Figure 4.20: EM efficiency map for RDE complete

From this efficiency map of the electric motor, encompassing all
operating points of a complete RDE cycle, one can observe the extent
to which the battery is stressed.

For completeness, here in figure 4.21 is the efficiency map comparison
graph that contrasts both cycles used in the simulations:
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Figure 4.21: EM efficiency map

From this map, it is evident that both cycles operate at high efficiency
but the RDE operates more under high torque demands. Thus, in the
RDE cycle, the battery undergoes more degradation compared to the
WLTC cycle.

4.4 Kalman filter tuning
As explained in Chapter 3.5.1, in the Unscendent Kalman Filter, the dis-
tribution is represented by a set of strategically selected sample points,
known as σ-points. To compute these σ-points and their corresponding
weights, three parameters need to be defined:

• α = 1; It is a coefficient that controls the dispersion of σ-points. It
is within the range 0 < α ≤ 1.

• β = 2; For a Gaussian distribution, the optimal value in this case
is set to 2.

• k = 3 − n = 0; n indicates the number of states, which, in this case,
are three: State of Charge (SOC), voltage, and internal resistance
(R0).
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From the algorithm illustrated in figure 3.32, it can be noted that
three other parameters are crucial to set:

• Qt that represents the process noise covariance. Presuming a very
small process variance, we let Qt = ϵI, where ϵ is a small positive
value. It is possible to set ϵ to zero, but assuming a small but
non-zero value provides more flexibility in ’tuning’ the filter [32].

Qt =


1e − 14 0 0

0 1e − 14 0
0 0 1e − 14



• Rt = 0.75 that represents measurements noise covariance. A high
Rt-value implies that the filter anticipates a significant amount of
noise in the measurements. Since the system has only one input
variable (the current), the measurement noise is a one-element
vector.

• P0 that represents the initial state error covariance. During the
initial state of a system, the error covariance is represented by P0.
As the initial state at time step 0 is 0, P0 is set to small values to
describe the initial state. In the beginning, small Kalman gains will
be obtained, and as P0 increases due to noise (determined by the
covariance matrix Qt), the Kalman gains will gradually increase.

P0 =


1e − 12 0 0

0 1e − 12 0
0 0 1e − 12



Other input parameters to the filter include the initial state of charge,
set at 60% according to the strategy used in the model, and the internal
resistance value equal to that reported in the battery datasheet, i.e.,
12 mΩ.

As input for the filter is added a noise for both current and voltage
as illustrated in the following figure:
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Figure 4.22: Current and voltage with noise

4.4.1 Estimation of SOC, R, and SOH in WLTC
cycle

The simulation depicted in figure 4.23 was conducted using a power pro-
file extracted from a WLTC cycle and setting the exchange temperature
to 25 ◦C

Figure 4.23: Estimation of SOC, R, and SOH in WLTC cycle

94



Simulation and Results

From this simulation, it is possible to conclude that the estimated
State of Charge (SOC) overlaps with the actual one, indicating optimal
estimation. Regarding the internal resistance, we observe that its value
decreases slowly due to deterioration. Lastly, the State of Health (SOH)
estimation remains at 100% because the battery is being tested for a
duration of 1800 seconds (30 minutes), so it is normal for the SOH to
be at its maximum.
Based on findings from a study [33] that examined the estimation
of battery state of health and state of charge, the following can be
confirmed: if the State-of-Health remains constant at 100%, and the
State-of-Charge varies only slightly within the 50% to 70% range, then
the internal resistance of the battery tends to decrease. This behavior
is depicted in figure 4.24 where the dependency of internal resistance
on SOC and SOH is illustrated in a 3D graph.

Figure 4.24: Dependency of internal resistance on SOC and SOH [33]
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4.4.2 Estimation of SOC, R, and SOH in RDE
cycle

These simulations were conducted using a power profile extracted from
an complete RDE cycle and setting the exchange temperature to 25
◦C.

Figure 4.25: Estimation of SOC, R, and SOH in RDE cycle

Here the same considerations as previous cycle are valid. The only
difference is that the temperature is higher as explained before. This
leads to a worse deterioration of the internal resistance.

4.4.3 Simulation of a modified WLTC cycle

The same simulation was conducted by alternating the previously used
WLTC cycle with profiles of zero power (thus, current equal to zero )
of the same duration as the cycle (30 minutes).
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Figure 4.26: New power profile

For the assessment of the SOH and the filter performance in the long
term, a new current profile obtained by concatenating the previously
used WLTC cycle with zero power vectors was tested.

Figure 4.27: Estimation of SOC,R and SOH

From these simulations, it is possible to conclude that the estimated
SOC closely follows the real value, considering noisy measurements of
voltage and current, thus being promising for real application. Regard-
ing the internal resistance, it is observed that its value decreases slowly
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due to deterioration and the increase of temperature. Lastly, the SOH
estimation remains at 100% because the battery is being tested for 10
hours maximum so this value is expected to remain stable with the
power profiles considered.
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Chapter 5

Conclusion

This concluding chapter aims to recapitulate the objectives set for this
project, outline the methodologies employed, and present the ultimate
results obtained for each task, while also exploring potential avenues
for future enhancements.
The primary goal of this thesis is to improve the Energy Management
Strategy of a Hybrid Electric Vehicle with regard to battery thermal
behavior and state of health. To achieve this, two distinct approaches
are analyzed. The first investigates the feasibility of a Hybrid Energy
Storage System (HESS) incorporating a supercapacitor parallel to the
main battery. The second approach aims to enhance the Energy Man-
agement System (EMS) by considering battery thermal behavior and
implementing State-of-Charge, internal resistance, and State-of-Health
estimation.
The study begins by employing a forward model of a 48V P1 hybrid
light-duty commercial vehicle in Matlab Simulink, introducing and
analyzing the supercapacitor’s model and performance. The results
of this analysis show that the supercapacitor does not enhance the
efficiency of Energy Storage Systems (ESS) in the context of the 48V P1
architecture. Furthermore, as it is explained in the chapter 2.4.3, the
main problem of HESS architecture in which a battery and supercapac-
itor are in parallel is that the power shared between them is determined
by their respective series resistances. To prevent this phenomenon, a
converter was installed between the two ESS. Unfortunately, adding a
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DC/DC converter increases the cost and weight of the entire system
and reduces its efficiency. So, it can be concluded that, in the analyzed
case study, it is not a viable strategy to implement for improving the
Energy Management System (EMS).
The second analysis consists of a new battery model in which thermal
dynamics and cooling are incorporated. Temperature control is crucial
for battery performance and lifespan. The objective of introducing
thermal dependence into the battery is to derive parameters for cool-
ing system design. Assumptions include heat exchange between the
battery and air through convection in defined areas (Acell,exchange and
Abatt,exchange), this is considered a constant parameter for cooling system
design. Additional parameters studied to obtain the cooling system
design include the exchange temperatures and heat transfer coefficient.
For the first parameter 25◦C and 30◦C are the examined values, and for
the heat transfer coefficient, two values (20 and 30 W

m2K
) are consid-

ered. Simulations use distinct current profiles extracted from different
European standard driving cycles, specifically RDE and WLTC.
It can be observed that in the WLTC cycle, the temperature reached
hovers around 50 ◦C. This temperature result is not optimal but cer-
tainly still acceptable. Similarly, in the case of the RDE urban and
motorway cycles, the temperature operates within an acceptable range.
In the urban scenario, this is attributed to working at lower temper-
atures, while in the motorway scenario, there are frequent instances
of zero power. This occurs because, being a cycle that operates at
very high speeds, the torque demand is so high that the electric motor
cannot meet it, and it is only satisfied by the internal combustion
engine (ICE). On the other hand, the RDE rural operates at much
higher speeds, causing significant stress on the battery and resulting in
elevated temperatures. The solution can be integrating the temperature
parameter into the control logic to limit the electric machine power,
which serves to safeguard the battery from deterioration.
To optimize battery usage, the tuning of a Kalman filter was performed
to obtain the SOC and internal resistance estimation. These param-
eters are useful to calculate the State of Health of the battery. The
simulations are executed with the same driving cycles as the previous
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model to better understand how the filter works. For the assessment
of the SOH and the filter performance in the long term, a new current
profile obtained by concatenating the previously used WLTC cycle with
zero power vectors was tested. From these simulations, it is possible to
conclude that the estimated SOC closely follows the real value, consid-
ering noisy measurements of voltage and current, thus being promising
for real application. Regarding the internal resistance, it is observed
that its value decreases slowly due to deterioration and the increase of
temperature. Lastly, the SOH estimation remains at 100% because the
battery is being tested for 10 hours maximum so this value is expected
to remain stable with the power profiles considered.

5.1 Future works
Future research explores integrating the temperature parameter into
the control logic, thus implementing an adaptive ECMS to limit the
electric machine power, which serves to safeguard the battery from
deterioration. Another possible future work can be the validation of
the results by testing a single cell of a battery on a test bench.
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