
POLITECNICO DI TORINO
Master’s Degree in COMPUTER ENGINEERING

Master’s Degree Thesis

Scenario Generation and Simulation for
Autonomous Software Validation

Supervisors

Prof. ANDREA TONOLI

Prof. NICOLA AMATI

Prof. ANGELO BONFITTO

PhD Candidate STEFANO FAVELLI

PhD Candidate EUGENIO TRAMACERE

Candidate

PENG CAO

DECEMBER 2023

Abstract

Simulation and testing of Advanced Driving Assistance Systems (ADAS) and
Autonomous Driving Systems (ADS) has gained in the recent years a lot of attention
both from the automotive industry and academia. Testing this systems on the road
is closer to their final real-world application and it is a desirable approach, but it
is incredibly costly at the same time. Also, it is unfeasible or too dangerous to
cover rare corner cases using such real-world testing. Thus, the common goal of the
industry is to evaluate the systems’ performance in some well-designed challenging
scenarios, a.k.a. scenario-based testing, in a safe virtual environment. Testing in a
virtual environment offers several advantages, including cost and time savings, as
well as the ability to perform comprehensive tests that may not be feasible in the
real world. Furthermore, it allows us to address the rare corner cases that are too
challenging to cover on roads or proving grounds.

Simultaneously, virtual testing environment allows the data generation and
collection from sensors within the simulation and the testing of algorithms. This
approach provides a popular alternative for evaluating the performance of ADS
and ADAS in well-designed challenging scenarios, also known as scenario-based
testing.

This thesis primarily focuses on the design of the scenarios that cannot be
effectively covered in a real-world environment. It begins by introducing some
fundamental concepts related to ADAS and vehicle automation. Additionally,
it discusses the regulations governing the testing of those systems in different
countries. Following these regulatory guidelines, a set of relevant scenarios that
meet provisions of relevant laws is proposed.

An important step of the activity, involved the selection of a suitable simulation
software for testing. During this process, various simulation software products
available in the market are analyzed, considering their advantages and disadvantages.
A tool that aligns with the requirements to conduct the testing is selected and the
design and validation of the scenarios for testing is performed. The final objective
is to create a set of relevant scenarios and execute them in the virtual environment.

As a final step, the tool of scenario engineering is introduced to enhance the
diversity and safety of real-road testing by integrating virtual and physical compo-
nents in the testing loop.

Keywords: Scenario generation , Autonomous driving, Testing, Automated Driv-
ing System, Advanced Driver Assistance Systems

Table of Contents

1 Introduction 1
1.1 Background . 1

1.1.1 Autonomous Driving . 1
1.1.2 Autonomous Driving software development 8

1.2 Simulation for Autonomous Driving Software Development 9
1.3 V-cycle software development . 10
1.4 Regulations for AD software simulation and testing 13
1.5 Thesis Outline . 14

2 Theoretical Background 16
2.1 Autonomous Driving Software Pipeline 16
2.2 Simulation Requirements . 18
2.3 Simulation Tools . 19

2.3.1 CARLA . 20
2.3.2 Driving Scenario designer from MATLAB 22
2.3.3 SCANeR . 25

3 Methodology 28
3.1 Scenario . 28
3.2 Scenario category . 29
3.3 Tags . 30
3.4 Selection of tags and trees of tags 31
3.5 Existing Assessment Metrics . 32

3.5.1 Safety Related Assessment Metrics 32

4 Simulations and Results 39
4.1 SC1: Driving straight . 39

4.1.1 General description . 39
4.1.2 Formal description . 40
4.1.3 Parameters . 40
4.1.4 Simulation Result . 43

ii

4.2 SC2: Cut-in in front of the ego vehicle 45
4.2.1 General description . 45
4.2.2 Formal description . 46
4.2.3 Parameters . 46
4.2.4 Simulation result . 47

4.3 SC3: Following the leader car . 48
4.3.1 General description . 49
4.3.2 Formal description . 49
4.3.3 Parameters . 50
4.3.4 Simulation result . 50

4.4 SC4: Following the two vehicles . 52
4.4.1 General description . 53
4.4.2 Formal description . 53
4.4.3 Parameters . 53
4.4.4 Simulation result . 53

4.5 SC5: Cut-out in the front of the ego vehicle 55
4.5.1 General description . 56
4.5.2 Formal description . 56
4.5.3 Parameters . 56
4.5.4 Simulation result . 56

4.6 SC6: Following the two car,cut-in in the front of the ego vehicle . . 58
4.6.1 General description . 59
4.6.2 Formal description . 59
4.6.3 Parameters . 60
4.6.4 Simulation result . 60

5 Conclusions and Future Works 62

List of Tables 66

List of Figures 67

Bibliography 70

iii

Chapter 1

Introduction

1.1 Background

1.1.1 Autonomous Driving

Before delving into the assessment of Automated Driving (AD), it is essential to
grasp the fundamental principles of driving automation. This section begins by
introducing the definition of automated driving within the context of road vehicles.
Subsequently, a brief overview of the history of AD summarizes its current stage of
development. Finally, the structure of a state-of-the-art system and its components
is outlined.

This thesis presents the background of Autonomous Driving, along with strict
criteria for selecting papers. Terminologies are introduced along the way, addition-
ally, provide a summary of all abbreviations utilized in this document within the
Table 1.1.

Levels of Driving Automation

Autonomous driving invariably pertains to a self-driving car, also recognized as an
autonomous car (AC), capable of traveling without human input. These vehicles
undertake the tasks of perceiving the environment, monitoring crucial systems,
and controlling navigation. The perception system processes visual and audio data
from both external and internal sources, interpreting it to abstractly depict the
vehicle and its surroundings. The control system subsequently executes actions to
maneuver the vehicle, taking into account the designated route, road conditions,
traffic signals, and obstacles.

1

Introduction

Notation Meaning
ACC Adaptive Cruise Control

ADAS Advanced Driver-Assistance System
ADS Automated Driving System
AEB Automated Emergency Braking
ALC Automated Emergency Centering
ALC2 Automated Emergency Change
ARM Autoregressive Model
BO Bayesian Optimization
CLS Coverage and Local Search
CNN Convolutional Neural Network
DAS Driving Automation System
DE Differential Evolution

DNN Deep Neural Network
DRL Deep Reinforcement Learning
DT Decision Tree
EA Evolutionary Algorithm

FCW Forward Collision Warning
GA Genetic Algorithm
GP Gaussian Process
IL Imitation Learing
IS Importance Sampling

LDW Lane Departure Warning
NPC Non-Player Character
NN Neural Network

ODD Operational Design Domain
OEDR Object and Event Detection and Response

PP Pedestrian Protection
RL Reinforcement Learning
SA Simulated Annealing

TSR Traffic Sign Recognition
TTC Time to Collision

Table 1.1: Table of Notations

These self-driving cars possess the potential to profoundly influence various do-
mains, encompassing the automotive industry, healthcare, welfare, urban planning,
traffic management, insurance, the labor market, and more. The implementation
of suitable regulations is imperative to ensure their safe integration.

2

Introduction

Level Name Example Sustained
Control

Lat&Long Complete
OEDR

System
Fallback

Unlimited
Domain

0 no driving
automation

automated
emergency
breaking

× × × × ×

1 driver assis-
tance

adaptive
cruise con-
trol

√
× × × ×

2 partial driv-
ing automa-
tion

adaptive
cruise
control
and lane
centering
at the sam
time

√ √
× × ×

3 conditional
driving
automation

traffic jam
chauffeur

√ √ √
× ×

4 high driving
automation

local
driverless
taxi

√ √ √ √
×

5 full driving
automation

driverless
taxi of all
conditions

√ √ √ √ √

Table 1.2: Driving automation at different levels

As shown in Table 1.2, the SAE J3016(TM) ”Standard Road Motor Vehicle
Driving Automation System Classification and Definition” [1]categorizes driving
automation systems into six levels from level0 to level5.

This report categorizes these systems as L0 to L5. L0 systems provide mo-
mentary intervention during potentially hazardous situations, such as Automated
Emergency Braking (AEB) and Forward Collision Warning (FCW). L1 systems sup-
port sustained longitudinal or latitudinal control, including examples like Adaptive
Cruise Control (ACC), Automated Lane Centering (ALC), and Automated Lane
Change (ALC2). L2 systems enable both sustained longitudinal and sustained lati-
tudinal driving controls simultaneously, as seen in systems with both ACC and ALC.

L3 systems integrate Object and Event Detection and Response (OEDR) func-
tionality, allowing them to monitor the driving environment and execute appropriate
responses. An example is a traffic jam chauffeur. L4 systems additionally support
system fallback, ensuring no human interventions are required within a geo-fenced
region. A typical example is a local driver-less taxi. L5 systems can operate un-
der all conditions, exemplified by a driverless taxi capable of handling any situation.

3

Introduction

Automated Driving System (ADS) refers to a highly automated system [1] (i.e.,
L3-L5). Advanced Driver Assistance System (ADAS) encompasses a broad range
of features, including L0 and L1 features. In literature, it is commonly used to
refer to an L0-L2 system.

Even if it might be overly ambitious to achieve L5 systems, many industrial
companies are working hard to establish L4 systems. An architectural overview of
a typical L4 Automated Driving System (ADS) is given in Figure 1.1 [2]. In order
for a L4 system to understand its driving context, which includes its location (lo-
calization), traffic signs (perception), obstacles (perception), and their trajectories
(prediction), it uses real-time sensor data (such as Cameras, Radar, LiDAR, and
GPS) and High-Definition (HD) map data. To create short-term trajectories, the
Planning module analyzes the information about the destination and the perceived
driving environment. In order to manage the vehicle actuators, including the steer-
ing wheel and gas/brake, the manage module, at the end, converts the trajectory
into orders for the Controller Area Network (CAN) bus.

Figure 1.1: Overview of a typical L4 ADS

Middle-class and luxury vehicles now frequently have L0-L2 systems installed;
Tesla’s AutoPilot, for example, is an L2 system. Since cameras and radar are the
main sensors used by L0-L2 systems, several of the elements shown in Figure 1.1
might not be present. For example, a deep neural network (DNN) might replace
the entire middle block in an end-to-end lane follower (L2).

4

Introduction

Automated Driving Systems (ADSs) usually have different designs than sophis-
ticated Driver Assistance Systems (ADASs) since ADSs provide more sophisticated
features. However, experts have seen similarities in the way that both ADS and
ADAS are tested, especially when the test device is handled like a black box.
As a result, They have chosen to incorporate both into our analysis. Systems
ranging from L0 to L4 have been tested in the included works. And it can be
straightforwardly categorized the distinct classes as follows [1]:

• SAE level 0 – No Automation: This characterizes vehicles without any
automation at all. The human driver is responsible for all aspects of the
driving task.

• SAE level 1 – Driver Assistance: As soon as modern driving assistance
systems like ACC or Lane Keeping Assistance System (LKAS) can take over
longitudinal or lateral control, respectively, the automation reaches level 1. A
significant limitation is that either of these systems is allowed to be active
simultaneously. The human driver is still respon- sible for the system and
environment supervision and acts as a fallback. Also, ODD(Operational
Design Domain) for such systems is limited.

• SAE level 2 – Partial Automation: Vehicles able to take over both lateral
and lon- gitudinal control simultaneously qualify for level 2. However, the
human driver is still responsible for monitoring the driving task and intervening
at any time. The ODD(Operational Design Domain) is still limited to, e.g.,
highways. Vehicles that offer these capabilities for a limited time range are
already available on the market.

• SAE level 3 – Conditional Automation: With level 3, the human driver
is not responsible for supervising the environment and system anymore, while
the machine is responsible for lateral and longitudinal control. However, he
must still be present as a fallback by request, and the ODD is still limited.

• SAE level 4 – High Automation: Level 4 extends the previous layer’s
capabilities by removing the need for a human driver as a fallback. The
limitation on the ODD still applies.

• SAE level 5 – Full Automation: Lastly, the ODD becomes unlimited in
level 5. A fully automated vehicle is capable of driving in any environment
without the need for a passenger at all.

5

Introduction

History and Progress in Automated Driving

Since being recorded in history about a century ago, the idea and goal of driving
automation have had a considerable trip [3]. The reality of this technology has
frequently seemed to be just 20 years away, despite the ongoing expectation [4].
This section tries to shed light on how Automated Driving (AD) has historically
changed from the past to the predicted future.The information mainly based [3]
and [5].

The first autonomous vehicle was seen on Ohio’s streets in Dayton in 1921, to
much surprise [3]. Even though it was not completely autonomous and was still
under human control, it raised awareness of the idea. The American Wonder, the
first full-size driverless automobile with remote control, was originally launched by
the Houdina Radio Control Company in 1925 [6].

The concept of automated driving (AD) was momentarily laid aside when the
Great Depression struck between 1929 and 1941. General Motors Company LLC
(GM) made a big advancement in 1958 when it switched from remotely operated
to automatically guided vehicles. They created an autonomous guided vehicle that
could drive itself and locate wires hidden in the road using sensors beneath the
front end of the vehicle.

The "Stanford Cart" research project, which began in 1960, marked the first
steps toward automation. The cart succeeded in 1966 when it used remotely run
vision-based algorithms on a host computer to follow printed white lines on its
own. These techniques were called guided because they did not correspond with
the completely automated driving we expect today, even though they theoretically
automated the driving work.

The "Stanford Cart" was the subject of a thorough investigation carried out by
the same academics in 1979, which laid the groundwork for modern autonomous
driving technology. With the "Stanford Cart," a little car with autonomous naviga-
tion capabilities, the driving task was first automated. The cart could navigate
obstacles on its own and find a route to a predetermined destination. Stereo vision
and sophisticated vision algorithms were used to plot the course using cameras
that moved horizontally and were fixed on the track. It took the trolley five hours
to finish the 20-meter obstacle course, though.

The 1986 launch of the PROgraMme for a European Traffic of Highest Efficiency
and Unprecedented Safety (PROMETHEUS) was a major turning point toward the
automation of full-size cars on public roads. A research vehicle called VaMP [7] from

6

Introduction

the University of Munich, part of the Bundeswehr, completed a 1,000-kilometer
final demonstration in 1994 while traveling on Motorway 1 close to Paris-Charles
de Gaulle Airport. VaMP was acknowledged as one of the first fully autonomous
automobiles when the vehicle executed a number of autonomous duties during this
highway journey, including lane changes and overtaking [8].An important turning
point in urban autonomous driving was the 2007 Urban Challenge, which was
run by the Advanced Research Projects Agency (DARPA) of the US Department
of Defense [9]. Participating organizations used their research vehicles to put up
parkour races in urban settings. The winners of this challenge were the Carnegie
Mellon University (CMU) team known as "Tartan Racing" [10].

For the industry, particularly Original Equipment Manufacturers (OEMs), early
research efforts demand substantial time and resources. The market launch of such
technologies typically involves an extensive process of development, testing, and
validation.

In the realm of automation in the automotive sector, the first vehicle meeting
SAE Class 1 standards was developed by Toyota, featuring the inaugural laser-based
automatic control system in 1997 [11]. Mercedes embraced the now widely used
radio detection and ranging (radar)-based system in 1999. Nissan introduced the
first Lane Keeping Assist System (LKAS) in 2001. Although the foundational
systems for longitudinal or lateral guidance were introduced two decades ago,
fully integrated SAE Level 2-compliant systems have been utilized in consumer
cars since 2015. Since then, Tesla’s Autopilot has demonstrated the capability
to navigate motorways, assuming both lateral and longitudinal control [12]. The
subsequent year saw other automakers, including Audi[13], BMW [14], and Daimler
[15], releasing Level 2 production vehicles.

As of the current writing, this reflects the industry’s progression. The release
of Level 3 and higher vehicles is marked by announcements and commitments,
contingent on the resolution of regulatory considerations. For instance, Audi’s 2019
A8 is purportedly capable of Level 3, but the system is yet to be delivered [14].
Similarly, BMW has outlined its plans for 2021. Discussions on level 4 and level 5
remain distant, lacking further developments.

Progress toward the ambitious objective of achieving fully autonomous driving
is underway. Its Technology Readiness Level (TRL) [16] has surpassed level 4 [17],
indicating that it has entered the industrial development phase, necessitating the
establishment of standards and regulations. Consequently, the assessment of its
eventual market launch, being one of the many sub-topics of autonomous driving
technology that is still unclear, remains an open question for current research.

7

Introduction

1.1.2 Autonomous Driving software development
Autonomous driving software development refers to the process of designing, cre-
ating, and implementing software systems that enable vehicles to operate au-
tonomously without human intervention. This field combines various technologies,
algorithms, and components to achieve safe and efficient self-driving capabilities.
Key aspects of autonomous driving software development include:

• Perception and Sensor Fusion: Autonomous vehicles are equipped with
sensors such as LiDAR, Radar, Cameras, and ultrasonic sensors to perceive
their environment. Software is developed to process data from these sensors
and create a detailed understanding of the vehicle’s surroundings.

• Localization: Software algorithms are used to determine the precise location
and orientation of the vehicle in real-time, often through a combination of
sensor data and high-definition maps.

• Mapping: High-definition maps are essential for autonomous driving, and
software is used to create and maintain these maps. These maps provide
information about road geometry, lane markings, traffic signs, and more.

• Path Planning: Path planning algorithms are responsible for generating
a safe and efficient route for the vehicle to follow, taking into account the
vehicle’s current position, destination, and the surrounding environment.

• Control Systems: Control software ensures that the vehicle follows the
planned path, adjusting throttle, brake, and steering inputs to navigate safely
and smoothly.

• Machine Learning and Artificial Intelligence: Machine learning and AI
techniques are often used to improve decision-making, adapt to changing road
conditions, and handle complex scenarios.

• Human-Machine Interface (HMI): User interfaces are developed to com-
municate with passengers and provide information about the vehicle’s status
and intentions.

• Safety and Redundancy: Safety-critical software components and redun-
dancy systems are integrated to ensure the vehicle’s safety and the ability to
handle unexpected situations.

• Testing and Validation: Extensive testing, including simulation and real-
world testing, is a crucial part of software development to ensure the system’s
reliability and safety.

8

Introduction

• Regulatory Compliance: Developers must adhere to regulations and stan-
dards specific to autonomous vehicles and their use on public roads.

Autonomous driving software development is a multidisciplinary field that
combines expertise in software engineering, artificial intelligence, sensor technology,
and vehicle dynamics. It aims to create safe and efficient self-driving systems that
can navigate roads and interact with their environment autonomously.

1.2 Simulation for Autonomous Driving Software
Development

Simulation plays a crucial role in the development of autonomous driving software.
It provides a controlled environment for testing and validating various aspects of
the software without the need for real-world scenarios. Here are key aspects of
simulation for autonomous driving software development:

• Scenario Testing: Simulations allow developers to create and replicate
diverse driving scenarios, including challenging and rare situations, to evaluate
the software’s performance.

• Virtual Environments: Developers can create virtual environments that
mimic real-world conditions, such as different weather conditions, road types,
and traffic scenarios, to assess the software’s adaptability.

• Sensor Simulation: Simulating sensor inputs, including cameras, lidar, radar,
and other perception sensors, helps test the software’s ability to interpret and
respond to the environment.

• Traffic Simulation: Simulating other vehicles and pedestrians in the envi-
ronment enables testing of the software’s ability to navigate complex traffic
situations.

• Behavior Prediction: Simulations can be used to predict the behavior of
other entities on the road, allowing the software to anticipate and respond to
dynamic situations.

• Edge Cases: Simulating edge cases and extreme scenarios helps uncover
potential vulnerabilities or weaknesses in the software and ensures robustness
in real-world conditions.

• Machine Learning Training: Simulated environments are used for training
machine learning models that are part of the autonomous driving software,
providing a safe and controlled setting for learning.

9

Introduction

• Regulatory Compliance: Simulations help assess the software’s compliance
with regulatory requirements and safety standards before real-world testing
and deployment.

• Cost-Efficiency: Simulations offer a cost-effective means of testing and
refining software algorithms without the expenses and risks associated with
real-world testing.

• Continuous Improvement: Simulation allows for continuous testing and
improvement of the software throughout the development lifecycle, addressing
issues and enhancing performance iteratively.

By leveraging simulation, developers can accelerate the development process,
enhance the safety and reliability of autonomous driving software, and ensure
readiness for real-world deployment.

1.3 V-cycle software development
"V-cycle software development" refers to a software development process that is
shaped like the letter ’V’ when represented graphically. It is a model that em-
phasizes a systematic and structured approach to software development. This life
cycle initiates with the requirements phase and progresses through multiple stages,
culminating in the verification and validation phases.

Here’s an overview of the V-cycle software development process:

• Requirements Analysis (Left Side of the ’V’): The left side of the "V"
represents the initial stages of the project. It begins with requirements analysis,
where the project team defines the system and software requirements. This
phase involves close interaction with stakeholders to gather and document all
necessary specifications.

• System Design: Once the requirements are established, the system design
phase involves creating a high-level design that outlines the overall system
architecture and how the software components will interact with each other
and the hardware.

• Software Design: Following system design, the software design phase focuses
on creating detailed software specifications and designs. This includes defining
the data structures, algorithms, and interfaces that will be used in the software.

• Coding and Implementation: The coding and implementation phase
involves writing the actual source code of the software based on the design
specifications. This is where the software is developed.

10

Introduction

Figure 1.2: V-cycle software development process

• Unit Testing: After coding, unit testing is performed to validate individual
software components (units). Each component is tested in isolation to ensure
that it works correctly.

• Integration Testing: The right side of the "V" starts with integration testing,
where the individual software units are integrated and tested as a whole to
verify that they work together as intended.

• System Testing: System testing involves testing the entire system as a whole,
ensuring that it meets the specified requirements and functions correctly.

• Validation and Verification (Right Side of the ’V’): The right side of
the "V" represents the final stages of the project. Verification ensures that the
software is built correctly (meeting the requirements), and validation ensures
that the right software was built (meeting the user’s needs). These phases
often involve validation against customer needs, regulatory compliance, and
safety standards.

• Acceptance Testing: In acceptance testing, the software is tested against
the user’s acceptance criteria. This phase ensures that the software satisfies

11

Introduction

the end users’ requirements and expectations.

• Deployment and Maintenance: Once the software passes all testing phases,
it can be deployed for actual use. Maintenance involves ongoing support,
updates, and bug fixes.

The V-cycle methodology is particularly suited for industries where safety and
reliability are critical, as it emphasizes extensive testing and validation to ensure
that the software meets the intended requirements and functions correctly. It
provides a structured approach to software development, with an emphasis on
thorough testing and verification throughout the entire project life cycle.

The V-cycle process is important in software development, particularly in the
context of Automotive Software Development (AD), for several reasons:

• Clarity and Structure: The V-cycle provides a clear and structured ap-
proach to software development. It breaks down the development process into
distinct phases, making it easier for development teams to understand and
follow.

• Early Detection of Defects: The V-cycle emphasizes testing at each
stage, from unit testing to system testing. This approach allows for the early
detection and correction of defects, reducing the likelihood of more serious
issues arising later in the development process or after deployment.

• Traceability: The V-cycle establishes a clear relationship between each devel-
opment phase and its corresponding testing phase. This traceability ensures
that each requirement is addressed and tested, providing a comprehensive
verification process.

• Efficient Use of Resources: By catching defects early in the development
process, the V-cycle helps in avoiding costly rework and modifications in later
stages. This efficiency is crucial in automotive software development, where
precision and reliability are paramount.

• Validation against Requirements: The V-cycle ensures that the final
software product is validated against the initial requirements. This helps
in confirming that the software meets the specified criteria and performs as
intended in the automotive context.

• Risk Mitigation: The phased approach of the V-cycle allows for the iden-
tification and mitigation of risks at different stages of development. This
is particularly important in safety-critical systems, such as those found in
automotive applications.

12

Introduction

• Regulatory Compliance: In the automotive industry, there are often strict
regulatory standards and safety requirements. The V-cycle, with its emphasis
on testing and validation, provides a framework for compliance with these
standards.

• Incremental and Iterative Development: The V-cycle supports an in-
cremental and iterative development approach, allowing for the progressive
refinement of the software through multiple cycles. This is beneficial in address-
ing evolving requirements and accommodating changes in the development
process.

In summary,the V-cycle process is important in Automotive Software Develop-
ment because it promotes a systematic,thorough,and risk-mitigated approach,ultimately
contributing to the development of reliable and high-quality software for automotive
systems.

1.4 Regulations for AD software simulation and
testing

The United States pioneered autonomous driving technology, becoming the first
country to enact laws related to its implementation.In contemporary times, the
concept of Autopilot, often associated with Tesla, has become widely recognized.
Tesla, an American company, has played a prominent role in popularizing and im-
plementing autonomous driving technologies. In September 2016, the U.S. National
Economic Council and the U.S. Department of Transportation (USDOT) issued
the Federal Automated Vehicles Policy. These standards outline how automated ve-
hicles should respond in the event of technology failures, address passenger privacy
concerns, and establish protocols for passenger safety in case of accidents. The
purpose of these federal guidelines is to prevent a disparate set of state laws while
ensuring they do not unduly inhibit innovation.And many states have enacted laws
or issued executive orders pertaining to autonomous vehicles.

The European Union (EU) has implemented legislation governing the type
approval of Automated Driving Systems (ADS) for fully automated vehicles. In
July 2022, the "Vehicle General Safety Regulation" came into effect, establishing a
legal framework for approving automated and fully driverless vehicles (Level 3 and
above) within the EU. The EU Commission’s delegated regulation includes specific
requirements with regulatory distinctions among various types of fully automated
vehicles. This reflects the stringent regulations in the EU concerning autonomous
driving, emphasizing a dedicated legal framework for ensuring safety in autonomous
driving technologies.several European countries have implemented legislative and

13

Introduction

regulatory frameworks for self-driving cars and transportation systems. Notably,
Germany has introduced the Federal Act Amending the Road Traffic Act and the
Compulsory Insurance Act, while France has enacted the Mobility Orientation
Law.

In summary, the majority of countries and regions have implemented laws
regarding autonomous driving, with a particular emphasis on passenger safety. In
the United States, safety is a paramount concern reflected in regulations that focus
on rigorous testing and validation of autonomous technology to meet stringent
safety standards. Ensuring the safety of self-driving cars remains a top priority.
In the European Union (EU) and the United Nations Economic Commission
for Europe (UNECE), collaborative efforts have been made to establish safety
standards for autonomous vehicles, defining the conditions for their deployment.
Consequently, developing robust test scenarios is crucial to effectively enhance the
safety of autonomous driving. When it comes to scenario creation for simulation
testing, it’s often the responsibility of developers and manufacturers to ensure
that their testing covers a diverse range of scenarios, including edge cases and
challenging conditions. Adhering to safety and functional standards is crucial in
this process. It’s important to note that the field of autonomous vehicles is rapidly
evolving, and new regulations and standards may be introduced. Organizations
involved in autonomous vehicle development should stay informed about the latest
developments and work in collaboration with relevant regulatory bodies to ensure
compliance and safety.

1.5 Thesis Outline
This thesis works as follows :

• Chapter 2 presents the theoretical background of the topics presented,with a
particular focus on AD(Autonomous Driving) software simulation and test-
ing.Following that, it outlines the simulation requirements and explores several
widely-used simulation software options, providing a comparative analysis of
their respective advantages and disadvantages.

• Chapter 3 is devoted to detailing the design of the system architecture and
the implementation of the proposed method. It begins with defining scenes
and introducing tags, followed by the categorization of scenes. Subsequently,
the report introduces various security metrics and proceeds to design scenarios
aligned with these security metrics.

• Chapter 4 presents the setup of the validation process for Autonomous
Driving (AD) software simulation scenarios and the corresponding test results.

14

Introduction

Figure 1.3: PITEF Project

• Chapter 5 is the final chapter ,where conclusions and future works are
reported.

15

Chapter 2

Theoretical Background

Before delving into the proposed method, this chapter is dedicated to providing a
theoretical background for the thesis work. The autonomous driving industry has
witnessed continuous development, leading to the emergence of various research
findings and solutions. While this project does not aim for fully autonomous
driving, its foundational principles align closely with environmental awareness and
data processing.

To lay the groundwork, this thesis will first introduce the autonomous driving
software pipeline. Subsequently, it will elaborate on the simulation requirements.
Finally, it will delve into an examination of several popular simulation tools,
comparing their respective advantages and disadvantages.

2.1 Autonomous Driving Software Pipeline
The Autonomous Driving Software Pipeline in the context of simulation for au-
tonomous driving tests is connected to various components that collectively enable
the simulation process. This pipeline encompasses software modules and algorithms
designed for tasks such as perception, decision-making, and control, all crucial
for simulating the behavior of an autonomous vehicle. The integration of these
components within the pipeline allows for comprehensive testing and evaluation of
autonomous driving capabilities in a simulated environment.

Here is a high-level overview of the typical components in an autonomous driving
software pipeline:

Perception:

• Sensor Input: In this stage, data is collected from various sensors such as
Cameras, Lidar, Radar, and other environmental sensors.

16

Theoretical Background

• Sensor Fusion: The data from different sensors is integrated and processed
to create a comprehensive and accurate representation of the vehicle’s sur-
roundings.

• Object Detection and Recognition: Algorithms analyze the sensor data
to identify and classify objects in the environment, such as other vehicles,
pedestrians, and obstacles.

Localization:

• Mapping: The vehicle’s position is determined by comparing the sensor data
with pre-existing maps or by creating a real-time map of the environment.

• Sensor-based Localization: Combining sensor data with mapping infor-
mation helps the vehicle accurately determine its position in relation to the
surroundings.

Path Planning:

• Route Planning: The system determines the optimal route or path based
on the destination, traffic conditions, and other relevant factors.

• Trajectory Planning: Once the route is established, the system plans a
trajectory that considers the vehicle’s dynamics and the surrounding environ-
ment.

Control:

• Vehicle Control: The control system executes the planned trajectory by
adjusting the vehicle’s speed, steering, and other control parameters.

• Adaptive Cruise Control (ACC) and Lane Keeping Assist (LKA):
These systems assist in maintaining a safe distance from other vehicles and
staying within the lanes.

Decision-Making:

• Behavior Planning: The vehicle makes high-level decisions, considering
traffic rules, safety requirements, and the overall driving strategy.

• Risk Assessment: The system assesses potential risks and adapts the driving
behavior accordingly.

Human-Machine Interface (HMI):

• Feedback and Communication: The HMI provides feedback to the vehicle
occupants and communicates the vehicle’s intentions to pedestrians and other
road users.

17

Theoretical Background

Figure 2.1: Autonomous Driving Software Pipeline

The architecture and components of the autonomous driving software pipeline
can vary among different manufacturers and developers of autonomous vehicles.
These components work together to enable self-driving vehicles to navigate, make
decisions, and respond to their environment without human intervention.

2.2 Simulation Requirements
Autonomous Driving Software Simulation Requirements refers to the requirements
necessary for developing and testing autonomous driving software in a simulated
environment. These requirements encompass hardware, software, data, and other
aspects to ensure that the simulation environment accurately replicates real-world
road scenarios and various conditions for the development and testing of autonomous
driving software.

Here are some potential requirements for autonomous driving software simula-
tion:

• High-Performance Computing Hardware: The simulation environment
requires powerful computing hardware, including high-performance CPUs and
GPUs, to process a large amount of sensor data and complex algorithms in
real-time.

• Sensor Simulation: The simulator needs to be capable of simulating various
sensors such as cameras, LiDAR, radar, and ultrasonic sensors to generate
accurate perception data.

18

Theoretical Background

• High-Definition Maps and Road Data: The simulation environment
needs accurate high-definition map data, including road layouts, lane markings,
traffic signals, and road signs, to simulate real road scenarios.

• Weather and Lighting Simulation: The simulator should be able to
simulate different weather conditions (e.g., rain, snow, fog) and various lighting
conditions (e.g., day and night) to test the robustness of the autonomous
driving software.

• Traffic Flow and Pedestrian Simulation: The simulation environment
needs to simulate the behavior of other vehicles, traffic flow, and dynamic
pedestrian behavior to test the performance of autonomous vehicles in complex
traffic environments.

• Real-Time Physics Engine: The simulator needs a real-time physics en-
gine to accurately simulate the vehicle’s dynamics, braking, and suspension
characteristics.

• Data Recording and Playback: The simulation environment should be
able to record data from simulations for subsequent analysis and improvement.

• Diversity and Edge Cases: The simulation environment should be capable
of generating a variety of scenarios, including extreme and edge cases, to test
the software’s responsiveness.

• Virtual Vehicle and Scene Generation Tools: Developers need the
ability to create virtual vehicles and road scenes to test software performance
in different scenarios.

• Safety and Privacy: Safety and data privacy should be critical considerations
in the simulation environment to ensure data is secure and protected from
unauthorized access and risks.

These requirements help ensure that autonomous driving software undergoes
comprehensive testing and validation in a simulated environment, ultimately im-
proving the reliability and safety of autonomous driving systems.

2.3 Simulation Tools
Along with the development of autonomous driving, simulation test software for
autonomous driving is also booming. The following section introduces a few popular
test software and compares their advantages and disadvantages.In the following
section, this thesis will provide a comprehensive analysis of three simulation software

19

Theoretical Background

platforms: SCANeR, CARLA, and MATLAB. The assessment will encompass
various aspects, including API compatibility, ROS integration, and the support for
an Autonomous Driving sensor suite. This exploration is particularly relevant as one
of the primary objectives of this article is to experiment with data transfer between
the Robot Operating System (ROS) and simulation scenarios. This experimentation
aims to enhance the testing capabilities of Advanced Driver Assistance Systems
(ADAS).

2.3.1 CARLA
CARLA Simulator is an open-source simulator for autonomous driving research.It
provides a platform for testing and developing autonomous vehicle algorithms in
a realistic and controlled environment. The simulation platform supports flexible
specification of sensor suites, environmental conditions, full control of all static and
dynamic actors, maps generation and much more.

CARLA has its highlighted features:

Figure 2.2: CARLA

• Scalability via a server multi-client architecture: multiple clients in the
same or in different nodes can control different actors.

20

Theoretical Background

• Flexible API: CARLA exposes a powerful API that allows users to control
all aspects related to the simulation, including traffic generation, pedestrian
behaviors, weathers, sensors, and much more.

• Autonomous Driving sensor suite: users can configure diverse sensor
suites including LIDARs, multiple cameras, depth sensors and GPS among
others.

• Fast simulation for planning and control: this mode disables rendering
to offer a fast execution of traffic simulation and road behaviors for which
graphics are not required.

• Maps generation: users can easily create their own maps following the
OpenDrive standard via tools like RoadRunner.

• Traffic scenarios simulation: our engine ScenarioRunner allows users to
define and execute different traffic situations based on modular behaviors.

• ROS integration: CARLA is provided with integration with ROS via our
ROS-bridge

• Autonomous Driving baselines: we provide Autonomous Driving baselines
as runnable agents in CARLA, including an AutoWare agent and a Conditional
Imitation Learning agent.

CARLA’s Core features:

• Quickstart: Getting started with CARLA is easy, this guide will show you
how to install and run the simulator.

• Actors: CARLA’s actors are entities that interact within the simulation like
vehicles, pedestrians and traffic signals. Get to know them here.

• Sensors: CARLA boasts an impressive array of models of real world sensors
like cameras, LIDAR and RADAR. The simulator also gives access to priv-
ileged information such as ground truth semantic segmentation and depth
information.

• Traffic Manager: CARLA’s Traffic Manager controls NPCs to challenge
your autonomous driving agent.

• ROS bridge: CARLA’s ROS bridge enables seamless connection with the
Robot Operating System.

21

Theoretical Background

Figure 2.3: CARLA’s advantages

Figure 2.4: MATLAB

2.3.2 Driving Scenario designer from MATLAB

Matlab is a high-level programming language and an integrated development
environment (IDE) primarily used for numerical and scientific computing.

Matlab, short for Matrix Laboratory, is a high-performance programming lan-
guage and environment primarily used for numerical computing, data analysis, and
visualization. It is widely used in academia, industry, and research for a variety

22

Theoretical Background

Figure 2.5: Driving Scenario Designer app of MATLAB

of applications, including signal processing, image processing, machine learning,
control systems, and more.

The key point is that MATLAB offers a simulation environment for Autonomous
Driving. This environment enables the design of driving scenarios, the configuration
of sensors, and the generation of synthetic data.

The Driving Scenario Designer app enables you to design synthetic driving
scenarios for testing your autonomous driving systems.

Using the app, you can:

• Create road and actor models using a drag-and-drop interface.

• Configure vision, radar, lidar, INS, and ultrasonic sensors mounted on the
ego vehicle. You can use these sensors to generate actor and lane boundary
detections, point cloud data, and inertial measurements.

23

Theoretical Background

• Load driving scenarios representing European New Car Assessment Programme
(Euro NCAP) test protocols and other prebuilt scenarios.

• Export road network and static actors to the RoadRunner HD Map file format.

• Export synthetic sensor detections to MATLAB

• Generate MATLAB code of the scenario and sensors, and then program-
matically modify the scenario and import it back into the app for further
simulation.

• Generate a Simulink model from the scenario and sensors, and use the gener-
ated models to test your sensor fusion or vehicle control algorithms.

But also every software has its drawbacks and limitations.Here is the limitations:

Clothoid Import/Export Limitations

• Driving scenarios presently support only the clothoid interpolated roads. When
you import roads created using other geometric interpolation methods, the
generated road shapes might contain inaccuracies

Sensor Import/Export Limitations

• Driving scenarios presently support only the clothoid interpolated roads. When
you import roads created using other geometric interpolation methods, the
generated road shapes might contain inaccuracies

Euro NCAP Limitations

• Scenarios of speed assistance systems (SAS) are not supported. These scenarios
require the detection of speed limits from traffic signs, which the app does not
support.

Heading Limitations to Road Group Centers

• When you load a drivingScenario object containing a road group of road
segments with specified headings into the Driving Scenario Designer app, the
generated road network might contain inaccuracies. These inaccuracies occur
because the app does not support heading angle information in the Road
Group Centers table.

Parking Lot Limitations

• The importing of parking lots created using the parkingLot function is not
supported. If you import a scenario containing a parking lot into the app, the
app omits the parking lot from the scenario.

24

Theoretical Background

Figure 2.6: SCANeR with 3D UXD engine

Figure 2.7: Different Application Cases with SCANeR

2.3.3 SCANeR

SCANeR studio is a simulation software developed by the company AVSimulation.
It is used in the automotive industry for virtual testing and simulation of various
aspects of vehicle behavior and performance. The software allows users to create
realistic virtual environments, simulate driving scenarios, and test the functionality
of different vehicle systems.

25

Theoretical Background

Key features of SCANeR studio include the ability to simulate real-world driving
conditions, assess vehicle safety, test advanced driver assistance systems (ADAS),
and evaluate the performance of autonomous vehicles. It is a valuable tool for
automotive engineers and researchers to conduct virtual tests before physical pro-
totypes are built, saving time and resources in the product development process.

It is the most complete solution on the market with its full graphical environ-
ment: it allows users to configure, prepare, run simulations and analyze results.
Flexible and versatile, it can be used by different teams working on different aspects
of the same project (headlights, AD/ADAS, HMI, etc.). Moreover, SCANeR is the
only simulation software that can be used throughout the V-cycle: from the vali-
dation of the requirements expression to acceptance tests ViL (Vehicle in the Loop).

The standardization around SCANeR is a competitive advantage. Indeed, the
generalization of its use favors the sharing and reuse of experiments by different
teams. Moreover, experience shows that the use of SCANeR eliminates the devel-
opment and maintenance of tools that are supposed to allow teams to share and
exchange data or simulation results between them. Finally, the widespread use of
SCANeR ensures that best practices are shared, employee skills are increased and
efficiency is improved.

SCANeR is an open software, the development kit is provided with all configu-
rations at no extra cost. Thanks to this kit, customers can adapt SCANeR to their
needs, to their existing tools or to third-party software (compatible with Windows
and Linux). Moreover, it can be easily updated

XiL testing with SCANeR enables the early detection and resolution of issues
before physical hardware becomes available. This approach results in cost savings
by minimizing the necessity for testing on real hardware. Additionally, hazardous
or uncontrollable scenarios can be safely tested within a simulated environment.

While there are many benefits to sensor fusion XIL Test with SCANeR, it serves
as a crucial component of our testing process. Firstly, it facilitates the connection
between software simulation and hardware simulation data. Additionally, it allows
for component and sub-system level functional tests, in-lab optimization before test
drives, and reliability and regression testing for ADAS functions. Furthermore, it
offers customization for ADAS sensor configurations, boasts a future-proof modular
architecture for evolving sensors, and provides support for evolving standards such
as EuroNCAP and SOTIF, among others.

In summary, SCANeR software perfectly aligns with our requirements. It stands

26

Theoretical Background

out as the only simulation software applicable throughout the entire V-cycle. Given
that this thesis follows a V-cycle approach for the process, SCANeR facilitates
testing and validation of scenarios seamlessly.

27

Chapter 3

Methodology

This section aims to clarify the terms employed in this report, reducing ambiguity in
their usage. Initially, the concept of a scenario is introduced in Section 3.1. Subse-
quently, Section 3.2 delves into scenario categories, which represent the abstraction
of scenarios. As detailed in Section 3.3, scenario categories are characterized by a
set of tags. Section 3.4 presents the tags utilized to describe the scenario categories
defined in Section 4. Finally, Section 3.5 introduce the existing assessment metrics,
it is of paramount importance to ADAS test scenarios.

3.1 Scenario
In defining a scenario, this thesis presents the term’s definition, which is more
applicable to the context of assessing Autonomous Vehicles (AVs). Before presenting
the definition of the term "scenario," a few key concepts are introduced.

• Ego vehicle: The term "ego vehicle" pertains to the perspective from which
the world is observed. Typically, it denotes the vehicle that perceives the world
through its sensors or the vehicle tasked with a specific function. The ego
vehicle is commonly denoted as the system-under-test or the vehicle-under-test
(VUT) – in our context, the Autonomous Vehicle (AV)-under-test.

• Activity: An activity refers to the behavior of a specific mode within a
system. For instance, an activity could be described by labels such as ’braking’
or ’changing lanes’.

• Event: An event marks the instant in time when a transition of state occurs,
signifying that before and after the event, the state corresponds to two distinct
activities. For instance, an event could be described by the label ’initiate
braking’.

28

Methodology

• Actor: An actor is an element within a scenario that operates on its own
behalf. Examples of actors in a scenario include the ego vehicle and other
road users.

• Static environment: The static environment encompasses elements in
a scenario that remain unchanged throughout its duration. This includes
geo-spatially stationary elements, such as the infrastructure layout, road
configuration, and road type. Additionally, the presence of buildings near the
roadside, serving as view-blocking obstructions, is considered part of the static
environment.

• Dynamic environment: In contrast to the static environment, the dynamic
environment pertains to the elements in a scenario that undergo changes
within its time frame. The dynamic environment is delineated by activities,
illustrating how the state of actors evolves over time. In practical terms, the
dynamic environment predominantly comprises moving actors (excluding the
ego vehicle) that are pertinent to the ego vehicle.

• Conditions : Crucial to the scenario description are the weather and lighting
conditions, as they significantly impact the ego vehicle. For instance, precipi-
tation can markedly affect sensor performance and vehicle dynamics. Lighting
conditions also play a crucial role in sensor performance; for example, cameras
may struggle to detect and classify objects during nighttime in the absence of
artificial light. While one may debate whether light and weather conditions
are dynamic, it is reasonable to assume that these conditions, in most cases,
do not undergo significant changes during the scenario’s time frame.

The definition of "Scenario" is taken from [18]:

Definition 3.1(Scenario). A scenario is a quantitative description of the ego
vehicle, its activities and/or goals, its dynamic environment (consisting of traffic
environment and conditions) and its static environment. From the perspective of
the ego vehicle, a scenario contains all relevant events.

3.2 Scenario category
While a scenario is inherently a quantitative description, there also exists a qualita-
tive counterpart known as a scenario category. The qualitative description serves
as an abstraction of the quantitative scenario.

Scenarios are classified into scenario categories, with multiple scenarios poten-
tially falling into a single category, and vice versa—a scenario may belong to one

29

Methodology

or multiple categories. To illustrate, consider all scenarios occurring during the
nighttime, constituting the scenario category "Nighttime". Similarly, all scenarios
featuring sunny are categorized under "Sunny" as depicted in Figure 3.1. A sce-
nario occurring during the daytime without sunny does not align with any defined
scenario categories. Conversely, a scenario transpiring during daytime with rain
falls into both the "Nighttime" and "Sunny" scenario categories.

Figure 3.1: Scenario Categories (Nighttime and Sunny)

Furthermore, a scenario category can encompass another scenario category. For
instance, in our prior example involving the scenario categories "Nighttime" and
"Sunny", these categories include the scenario category "Nighttime and sunny".

3.3 Tags
It is proposed to associate scenarios with relevant tags that qualitatively describe
the scenario. The tags assigned to a scenario determine its inclusion in specific
scenario categories. For instance, if a scenario unfolds during nighttime, it will
be annotated with the property “tags=Nighttime”. Consequently, the scenario
is automatically identified as an instance of the scenario category “Nighttime”
distinguished by the singular tag “Nighttime”.The use of these tags offers several
advantages:

• Scenarios are not required to be directly categorized, saving time, especially
with a large number of scenario categories.

• When a scenario category with known tags is added to the scenario category
database, it becomes easy to identify which scenarios belong to it by inspecting
the tags of the scenarios..

30

Methodology

• Selecting scenarios from a scenario database or library becomes straightforward
using tags or a combination of tags.

The balance between generic and specific scenario categories, resulting in vari-
ability among scenarios within a category, is crucial. Different systems may have
varying interests, with some focusing on specific scenarios and others on a diverse
set. To address this, tags are organized in trees , where each layer represents a
different abstraction level.

The report proposes a first list of tags and trees of tags on Figure 3.2.Certainly,
incorporating numerous labels enhances the comprehensiveness of the test, but it
also escalates the workload significantly. In this thesis, we strive to judiciously select
the necessary labels to set up the scenarios.In the following section we describe the
tags we have selected.

Figure 3.2: Tag Trees

3.4 Selection of tags and trees of tags
The definition of tags and trees of tags will be presented subsequently for the
dynamic environment, for the static environment , and finally for the conditions.This
thesis delves into practical scenario design, considering factors such as manpower.
To streamline the scenarios, we aim to simplify them as much as possible, yet
ensuring that the designed scenarios meet project requirements. Consequently,
this thesis primarily focuses on the ego car and leader car, with the possibility
of adding, at most, one other vehicle. Moreover, the behavior of these additional
vehicles is limited to cut-in and cut-out maneuvers.As shown in the figure 3.3.

31

Methodology

Figure 3.3: Tags Chosen

3.5 Existing Assessment Metrics
Following the introduction of a test case, the assessment of results becomes crucial.
A key aspect of assessing autonomous driving (AD) is the definition of metrics.
In the subsequent sections, we elaborate on existing metrics from the literature
used to assess driving tests. Given that accident risk is paramount for evaluating
the safety of an AD system, this thesis places a primary focus on such metrics.
To provide a comprehensive overview, we also briefly touch upon insights into the
other two categories of metrics.

3.5.1 Safety Related Assessment Metrics
Numerous assessment metrics pertaining to traffic safety have been identified in the
literature, with many focusing on measuring the time until an impending incident
within a given scenario. The subsequent sections present various existing metrics
from the field of Situation Threat Assessment (STA).

Time-to-Collision (TTC)

The primary and widely used metric involves measuring the time remaining until an
impending collision between two vehicles. To illustrate, a vehicle following scenario
is illustrated in Figure 3.4.In this scenario, the blue vehicle, with a velocity denoted
as vfollow and acceleration as afollow, is trailing the orange vehicle, which has a
velocity vlead and acceleration alead. The Time-to-Collision (TTC) is calculated as
follows:

32

Methodology

Figure 3.4: TTC

vrel = vfollow − vlead (3.1)

TTC = d

vrel

vrel ⩾ 0m

s
(3.2)

Notably, the TTC is only defined for a positive relative velocity vrel, as there
will never be a collision if the following vehicle is slower. The simplified formula in
Equation 3.2 only applies to this exact scenario. If the distance d calculates along
the vehicles’ predicted paths to the collision point, the formula applies to arbitrary
scenes. Still, only a single future path for TO (Traffic Object)s is considered, and
uncertainties in their driving intention are ignored.

The Time-to-Collision (TTC) is specifically defined for a positive relative velocity
vrel indicating that a collision is only relevant when the following vehicle is moving
faster than the lead vehicle. The simplified formula in Equation 3.2 is tailored to
the described scenario. For a more general application to arbitrary scenes, the
distance is calculated along the predicted paths of the vehicles to the collision
point. It’s important to note that this formula considers only a single future path
for the Time Origins (TOs) and doesn’t account for uncertainties in their driving
intentions.

Enhanced Time-to-Collision (ETTC)

The Enhanced Time-to-Collision (ETTC) extends the standard TTC by incorporat-
ing the acceleration of the participating vehicles, aiming to enhance the precision
of the metric. The calculation of ETTC is based on the standard TTC and is
expressed as follows:

33

Methodology

arel = afollow − alead (3.3)

ETTC =

ñ
v2

rel + 2areld − vrel

arel

v2
rel > 2areld (3.4)

Again, a condition on the relative velocity vrel and acceleration arel must be
satisfied for the Enhanced Time-to-Collision (ETTC) to be defined. Despite its
increased accuracy, the same drawbacks as those of TTC apply.

Worst-Time-to-Collision (WTTC)

Another extension to the standard Time-to-Collision (TTC) is its worst-case
estimation, known as Worst-Time-to-Collision (WTTC). In this metric, not only
is a single path of the vehicles considered, but a whole set of physically drivable
trajectories is predicted using a simple vehicle model. Consequently, a broader set
of TTCs emerges from collision checking, and its worst case is selected to represent
the scene. It can be interpreted as the time until a collision, with every traffic
participant attempting to achieve a collision as fast as possible. This metric is
the first to consider multiple possible Time-to-Collision scenarios and, therefore,
includes uncertainties in human intention. However, as it overestimates the scene’s
risk due to the worst-case consideration, it is useful for filtering large datasets for
potentially critical scenes rather than for detailed assessment.

Time-Headway (THW)

The Time-Headway (THW) metric can be considered as a simplification of the
Time-to-Collision (TTC). It only contemplates the velocity vfollow of the following
vehicle and is hence defined for a broader range of velocities. The calculation is
done as follows:

THW = d

vfollow

vfollow > 0 (3.5)

The THW is used in the German Straßenverkehrsordnung (StVO) to calculate
fines for tailgating [118]. Being a simplification of TTC, the same drawbacks apply.
It is a good measure for traffic congestion and flow rather than for safety.

Time-to-React (TTR)

Now, as all of the above-mentioned evasion strategies reveal different reaction
times, the TTR is defined as the maximum of those, hence the evasion strategy
leaving the most reaction time for the EGO vehicle acceleration. As depicted
through the purple maneuver in Figure 3.5, acceleration is not as powerful as

34

Methodology

Figure 3.5: Description of TTR alongside a crossroad scenario. The EGO vehicle
pictures in blue and the TO in orange. Evasion plans are shown in light blue for
steering, yellow for braking, and purple for acceleration.

braking, and the maneuver needs to be initiated earlier to have the same effect.
Thus, the Time-to-Accelerate (TTA) is longer than the TTB. While the literature
on the TTC focuses on time, the literature on the TTR extends its perspective
to space. The focus in this report is on time metrics, thus only the scenario in
Figure 3.5 is of interest. All considered measures are purely preventive, aiming
to avoid collisions altogether, and are limited by the capabilities of the EGO vehicle.

Now, as all of the above-mentioned evasion strategies reveal different reaction
times,[19] indicates that he TTR is defined as the maximum of those, hence the
evasion strategy leaving the most reaction time for the EGO vehicle acceleration.For
upcoming collisions, three basic evasion options are defined and illustrated in Figure
3.5.

In a crossroad scenario, the trajectory of the blue vehicle is jeopardized by an
orange vehicle that disregards the red light. Without intervention, a collision would
occur after the expiration of the time defined by the TTC (Time-to-Collision).
As the primary avoidance measure, thorough investigation into full braking is
conducted. This allows the orange vehicle to clear the intersection before the
blue vehicle enters the critical zone. The maneuver is depicted in yellow. The
remaining time until full braking prevents the accident and is estimated as the
Time-to-Break (TTB).Algebraic solutions for the TTB are proposed in [20].A
second option involves traversing the critical area ahead of the orange vehicle by

35

Methodology

employing full acceleration. As illustrated by the purple maneuver in Figure 3.5,
acceleration is not as potent as braking, necessitating an earlier initiation of the
maneuver, consequently leading to a lower Time-to-Kickdown (TTK). Steering to
the left or right stands as the final option. In the illustrative scenario, evading
through full left steering is represented in light blue. This provides the maximum
time for avoidance, as defined by the Time-to-Steer (TTS).

Now, considering the diverse reaction times associated with the aforementioned
evasion strategies, the Total Time to React (TTR) is defined as the maximum
among them. Consequently, the chosen evasion strategy allows the EGO vehicle
the maximum available reaction time.

TTR = max(TTB, TTK, TTD) (3.6)

The TTR provides an enhanced comprehension of risk by incorporating the
EGO’s options to avert an imminent accident. Nevertheless, it is crucial to note
that uncertainties regarding the intentions of other traffic objects are still not taken
into account.

Predicted-Minimum-Distance (PMD) and Time-to-PMD (TPMD)

After highlighting the limitations of static Space-Time Analysis (STA) calcula-
tions like Time-to-Collision (TTC) and Time Headway (THW) for next-generation
Advanced Driver Assistance Systems (ADAS), reference [21] introduces Predicted-
Minimum-Distance (PMD) along with Time-to-PMD (TPMD). In this approach, a
future collision on predicted vehicle paths is not obligatory. Instead, the algorithm
initially seeks the shortest distance between the EGO vehicle and other Traffic
Objects TOs (Traffic Object) or obstacles in the scene, resulting in the PMD.
Subsequently, TPMD is defined as the time until this minimum distance is reached.

An improvement of this metric lies in its ability to measure risk even in "close
call" situations, where vehicles pass each other too closely to be considered safe.
However, it’s important to note that this approach only incorporates a single future
trajectory for uncertain Traffic Objects.

Metrics play a crucial role in the context of Autonomous Driving (AD) software
simulation and testing for several reasons:

• Safety Verification: Metrics provide a quantitative way to assess the safety
of autonomous systems. Safety is paramount in AD, and metrics help evaluate
how well the software performs in various scenarios, including edge cases.

36

Methodology

• Performance Evaluation: Metrics allow developers to measure the per-
formance of AD software in terms of accuracy, efficiency, and responsiveness.
This includes assessing how well the system detects and responds to objects,
pedestrians, and other vehicles.

• Validation of Simulation Scenarios: Metrics help validate the effectiveness
of simulation scenarios. By quantifying the outcomes of simulated events,
developers can ensure that the scenarios are representative of real-world
conditions.

• Generalization Capability: Metrics assist in evaluating the generalization
capability of AD software. A well-performing system should be able to handle
a wide range of scenarios, and metrics provide insights into how the software
adapts to new and diverse situations.

• Robustness Testing: Metrics support robustness testing by measuring how
well the AD software performs under adverse conditions, uncertainties, and
unexpected scenarios. This is crucial for ensuring the system’s reliability in
real-world environments.

• Adherence to Regulations: Metrics help demonstrate compliance with
regulatory standards and guidelines. Regulatory bodies may require specific
performance metrics to ensure that autonomous vehicles meet safety and
operational requirements.

• Benchmarking: Metrics provide a basis for benchmarking different AD
software solutions. Comparative analysis through metrics allows developers
to identify strengths and weaknesses in their systems compared to industry
standards or competitors.

• Continuous Improvement: Metrics enable continuous improvement by
providing feedback on system performance. Developers can use metrics to
identify areas that need enhancement or refinement, leading to iterative
improvements in the software.

• Risk Assessment: Metrics contribute to assessing and quantifying risks
associated with AD software. This is essential for identifying potential areas
of concern and implementing risk mitigation strategies.

• Simulation Validation: Metrics play a role in validating the effectiveness of
simulation as a testing methodology. By comparing simulated results with real-
world outcomes, developers can ensure that simulations accurately represent
the complexities of on-road scenarios.

37

Methodology

In summary, metrics are essential in AD software simulation and testing as they
offer a quantitative means of evaluating safety, performance, compliance, and the
overall robustness of autonomous systems. They provide actionable insights for
developers to enhance the capabilities and reliability of AD software in diverse and
challenging environments.

38

Chapter 4

Simulations and Results

4.1 SC1:Driving straight

Figure 4.1: Schematic representation of SC1 : Driving straight.

4.1.1 General description
The scenario is schematically shown in 4.1. The ego vehicle is driving on a straight
road. It is assumed that the initial objective of the ego vehicle is to continue driving
straight in the same direction. The road, however, might be slippery, for example
because of oil on the road or an excess of water. It might, therefore, be possible
that the ego vehicle needs to divert its path to avoid the oil or water on the road.
The presence of bad, unclear or aged line markings is considered a subclass of this
scenario class.

39

Simulations and Results

Figure 4.2: Tags of SC1 : Driving straight.

4.1.2 Formal description
• Static environment The static environment consists of a straight road. Parts

of the road might be slippery, having a lower friction coefficient.

• Ego vehicle The initial objective of the ego vehicle is to drive straight.

• Dynamic environment For this scenario category, no dynamic environment is
considered.

4.1.3 Parameters
The scenarios that belong to the scenario category depicted in Figure 4.1 are
described by at least the parameters mentioned as follows :

• The ego car accelerates from 0 to 120 km/h and maintains a constant speed
thereafter

• Camera’s configuration is set up as Figure 4.3 4.4 and 4.5 shown here.The
position of the Camera is X=1 m,Y=0 m, Z=1.5 m 4.3.Horizontal and Vertical
of the Filed of view are 110.00◦ and 70.00◦ individually .And Width and Height
of the resolution is 1280 px and 720 px separately .At the same time, the
Focal is added that the Camera could identify Cars ,Bicycles and so on in 150
meters .The Detecting Targets could be added in this interface Figure4.5.

• LiDAR’s configuration is set up as Figure 4.6 shown here. The position of the
LiDAR is X=1 m,Y=0 m, Z=2 m.The Frequency is 10.00HZ and the Field of
view is 0.628319◦ X 0.541052 ◦.

• Camera‘s Detailed table of camera detection targets and distances Figure.

40

Simulations and Results

Figure 4.3: Sensors setup

41

Simulations and Results

Figure 4.4: Camera setup

Figure 4.5: Camera setup for target

42

Simulations and Results

Focal Distance
Cars 150

Bicycles 150
Motor Cycles 150

Bus 150
Trucks 150

Dynamic Object 150
Traffic light 150

Vertical road sign 150
Horizontal road sign 150

Barrier 150
Lanes 150
Lines 150

Table 4.1: Table of Camera Detection Targets and Distances

4.1.4 Simulation Result

Figure 4.8: Output of Simulation for SC1 : Driving straight

43

Simulations and Results

Figure 4.6: LiDAR setup

Figure 4.9: Output of Simulation for SC1 : Driving straight

44

Simulations and Results

Figure 4.7: LiDAR Output setup

Figure 4.8 contains Camera’s bounding box map. Figure 4.9 contains the LiDAR
point cloud proximity map for scenario 1 .

4.2 SC2: Cut-in in front of the ego vehicle

Figure 4.10: Schematic representation of SC2: Cut-in in front of the ego vehicle

4.2.1 General description
The scenario is schematically shown in Figure 4.10. Another vehicle is driving in the
same direction as the ego vehicle in an adjacent lane. The other vehicle makes a lane
change, such that is becomes the lead vehicle from the ego vehicle’s perspective.
The reason for the other vehicle to perform the lane change is principally not

45

Simulations and Results

Figure 4.11: Tags of SC2 : Cut-in in front of the ego car.

important to the scenario. As shown in Figure 4.10, the reason for the other vehicle
to change lane is for instance that the lane of the other vehicle is merged with the
ego vehicle lane.

4.2.2 Formal description
• Static environment The static environment consists of a road with at least

two lanes at the starting location of the ego vehicle.

• Ego vehicle The objective of the ego vehicle is to continue driving in the same
direction.

• Dynamic environment The dynamic environment consists of another vehicle
that starts at a lane adjacent to the ego vehicle lane. The other vehicle
performs a lane change towards the ego vehicle lane.

4.2.3 Parameters
The scenarios that belong to the scenario category depicted in Figure 4.10 are
described by at least the parameters mentioned as follows :

46

Simulations and Results

• The ego car accelerates from 0 to 120 km/h and maintains a constant speed
thereafter

• Camera’s configuration is set up as Figure 4.3 4.4 and 4.5 shown here.The
position of the Camera is X=1 m,Y=0 m, Z=1.5 m 4.3.Horizontal and Vertical
of the Filed of view are 110.00◦ and 70.00◦ individually .And Width and Height
of the resolution is 1280 px and 720 px separately .At the same time, the
Focal is added that the Camera could identify Cars ,Bicycles and so on in 150
meters .The Detecting Targets could be added in this interface Figure4.5.

• LiDAR’s configuration is set up as Figure 4.6 shown here. The position of the
LiDAR is X=1 m,Y=0 m, Z=2 m.The Frequency is 10.00HZ and the Field of
view is 0.628319◦ X 0.541052 ◦.

4.2.4 Simulation result

Figure 4.12 contains Camera’s bounding box map. Figure 4.13 contains the LiDAR
point cloud proximity map for scenario 2 .

Figure 4.12: Output of Simulation for SC2 : Cut-in in front of the ego vehicle.

47

Simulations and Results

Figure 4.13: Output of Simulation for SC2 : Cut-in in front of the ego vehicle.

4.3 SC3: Following the leader car

Figure 4.14: Schematic representation of SC3: follow the lead vehicle

48

Simulations and Results

Figure 4.15: Tags of SC3 : follow the lead vehicle.

4.3.1 General description

The scenario is schematically shown in Figure 4.14. Another vehicle is driving
in the same direction as the ego vehicle in an same lane. The other vehicle is
positioned as the lead vehicle from the perspective of the ego vehicle. Both the
other vehicle and the ego vehicle are moving at a relatively constant speed. The
other vehicle is traveling in the same direction as the ego vehicle, maintaining a
consistent relative distance and speed, as depicted in the diagram.

4.3.2 Formal description

• Static environment The static environment consists of a road with at least
two lanes at the starting location of the ego vehicle.

• Ego vehicle The objective of the ego vehicle is to continue driving in the same
direction.

• Dynamic environment The dynamic environment features an additional vehicle
in the same starting lane as the ego vehicle. This other vehicle is moving
within the same lane as the ego vehicle, maintaining a constant speed.

49

Simulations and Results

4.3.3 Parameters

The scenarios that belong to the scenario category depicted in Figure 4.14 are
described by at least the parameters mentioned as follows :

• The ego car and lead car accelerates from 0 to 120 km/h and maintains a
constant speed thereafter

• Camera’s configuration is set up as Figure 4.3 4.4 and 4.5 shown here.The
position of the Camera is X=1 m,Y=0 m, Z=1.5 m 4.3.Horizontal and Vertical
of the Filed of view are 110.00◦ and 70.00◦ individually .And Width and Height
of the resolution is 1280 px and 720 px separately .At the same time, the
Focal is added that the Camera could identify Cars ,Bicycles and so on in 150
meters .The Detecting Targets could be added in this interface Figure 4.5.

• LiDAR’s configuration is set up as Figure 4.6 shown here. The position of the
LiDAR is X=1 m,Y=0 m, Z=2 m.The Frequency is 10.00HZ and the Field of
view is 0.628319◦ X 0.541052 ◦.

4.3.4 Simulation result

Figure 4.16 contains Camera’s bounding box map. Figure 4.17 contains the LiDAR
point cloud proximity map for scenario 3 .

50

Simulations and Results

Figure 4.16: Output of Simulation for SC3: follow the lead vehicle

Figure 4.17: Output of Simulation for SC3: follow the lead vehicle

51

Simulations and Results

4.4 SC4: Following the two vehicles

Figure 4.18: Schematic representation of SC4: follow the two vehicles

Figure 4.19: Tags of SC4 : follow the two vehicles.

52

Simulations and Results

4.4.1 General description
The scenario is schematically shown in Figure 4.18 .The leader car is driving in the
same direction as the ego vehicle in an same lane. Another vehicle driving in the
same direction as the ego vehicle in an adjacent lane. Both the other vehicles and
the ego vehicle are moving at a relatively constant speed. The other vehicles are
traveling in the same direction as the ego vehicle, maintaining a consistent relative
distance and speed, as depicted in the diagram.

4.4.2 Formal description
• Static environment The static environment consists of a road with at least

two lanes at the starting location of the ego vehicle.

• Ego vehicle The objective of the ego vehicle is to continue driving in the same
direction.

• Dynamic environment The dynamic environment features an additional vehicle
in the same starting lane as the ego vehicle. This other two vehicles are moving
within the same lane as the ego vehicle, maintaining a constant speed.

4.4.3 Parameters
The scenarios that belong to the scenario category depicted in Figure 4.18 are
described by at least the parameters mentioned as follows :

• The ego car and other two cars accelerates from 0 to 120 km/h and maintains
a constant speed thereafter

• Camera’s configuration is set up as Figure 4.3 4.4 and 4.5 shown here.The
position of the Camera is X=1 m,Y=0 m, Z=1.5 m 4.3.Horizontal and Vertical
of the Filed of view are 110.00◦ and 70.00◦ individually .And Width and Height
of the resolution is 1280 px and 720 px separately .At the same time, the
Focal is added that the Camera could identify Cars ,Bicycles and so on in 150
meters .The Detecting Targets could be added in this interface Figure 4.5.

• LiDAR’s configuration is set up as Figure 4.6 shown here. The position of the
LiDAR is X=1 m,Y=0 m, Z=2 m.The Frequency is 10.00HZ and the Field of
view is 0.628319◦ X 0.541052 ◦.

4.4.4 Simulation result
Figure 4.20 contains Camera’s bounding box map. Figure 4.21 contains the LiDAR
point cloud proximity map for scenario 4 .

53

Simulations and Results

Figure 4.20: Output of Simulation for SC4: follow the two vehicles

Figure 4.21: Output of Simulation for SC4: follow the two vehicles

54

Simulations and Results

4.5 SC5: Cut-out in the front of the ego vehicle

Figure 4.22: Schematic representation of SC5: Cut-out in front of the ego vehicle

Figure 4.23: Tags of SC5 : Cut-out in front of the ego vehicle.

55

Simulations and Results

4.5.1 General description
The scenario is schematically shown in Figure 4.22 .The leader car is driving in the
same direction as the ego vehicle in an same lane. The leader vehicle makes a lane
change, then drives in an adjacent lane, the scenario is similar to scenario 4.1.It is
schematically shown in 4.1 .

4.5.2 Formal description
• Static environment The static environment consists of a road with at least

two lanes at the starting location of the ego vehicle.

• Ego vehicle The objective of the ego vehicle is to continue driving in the same
direction.

• Dynamic environment The dynamic environment features an additional vehicle
in the same starting lane as the ego vehicle. This other vehicle is moving
within the same lane as the ego vehicle, maintaining a constant speed.and
then the leader vehicle makes a lane change, then drive in an adjacent lane in
the constant speed.

4.5.3 Parameters
The scenarios that belong to the scenario category depicted in Figure 4.22 are
described by at least the parameters mentioned as follows :

• The ego car and the leader car accelerates from 0 to 120 km/h and maintains
a constant speed thereafter,

• Camera’s configuration is set up as Figure 4.3 4.4 and 4.5 shown here.The
position of the Camera is X=1 m,Y=0 m, Z=1.5 m 4.3.Horizontal and Vertical
of the Filed of view are 110.00◦ and 70.00◦ individually .And Width and Height
of the resolution is 1280 px and 720 px separately .At the same time, the
Focal is added that the Camera could identify Cars ,Bicycles and so on in 150
meters .The Detecting Targets could be added in this interface Figure 4.5.

• LiDAR’s configuration is set up as Figure 4.6 shown here. The position of the
LiDAR is X=1 m,Y=0 m, Z=2 m.The Frequency is 10.00HZ and the Field of
view is 0.628319◦ X 0.541052 ◦.

4.5.4 Simulation result
Figure 4.24 contains Camera’s bounding box map. Figure 4.25 contains the LiDAR
point cloud proximity map for scenario 5 .

56

Simulations and Results

Figure 4.24: Output of Simulation for SC5: Cut-out in the front of the ego vehicle

57

Simulations and Results

Figure 4.25: Output of Simulation for SC5: Cut-out in the front of the ego vehicle

4.6 SC6:following the two car,cut-in in the front
of the ego vehicle

Figure 4.26: Schematic representation of SC6: following the two car,cut-in in the
front of the ego vehicle

58

Simulations and Results

Figure 4.27: Tags of SC6: following the two car,cut-in in the front of the ego
vehicle

4.6.1 General description
The scenario is schematically shown in Figure 4.26 .The leading car is moving in
the same direction as the ego vehicle within the same lane. The other car, traveling
at the same speed, initiates a lane change, moving into an adjacent lane also in the
same direction, and subsequently merges back into the original lane with the ego
vehicle.

4.6.2 Formal description
• Static environment The static environment consists of a road with at least

two lanes at the starting location of the ego vehicle.

• Ego vehicle The objective of the ego vehicle is to continue driving in the same
direction.

• Dynamic environment The dynamic environment features an additional vehicle
in the same starting lane as the ego vehicle. This other vehicle is moving
within the adjacent lane near the ego vehicle, maintaining a constant speed.and

59

Simulations and Results

then the other vehicle makes a lane change, then drive in an same lane with
the ego car.

4.6.3 Parameters

The scenarios that belong to the scenario category depicted in Figure 4.22 are
described by at least the parameters mentioned as follows :

• The ego car and the other two cars accelerates from 0 to 120 km/h and
maintains a constant speed thereafter,

• Camera’s configuration is set up as Figure 4.3 4.4 and 4.5 shown here.The
position of the Camera is X=1 m,Y=0 m, Z=1.5 m 4.3.Horizontal and Vertical
of the Filed of view are 110.00◦ and 70.00◦ individually .And Width and Height
of the resolution is 1280 px and 720 px separately .At the same time, the
Focal is added that the Camera could identify Cars ,Bicycles and so on in 150
meters .The Detecting Targets could be added in this interface Figure 4.5.

• LiDAR’s configuration is set up as Figure 4.6 shown here. The position of the
LiDAR is X=1 m,Y=0 m, Z=2 m.The Frequency is 10.00HZ and the Field of
view is 0.628319◦ X 0.541052 ◦.

4.6.4 Simulation result

Figure 4.28 contains Camera’s bounding box map. Figure 4.29 contains the LiDAR
point cloud proximity map for scenario 6 .

60

Simulations and Results

Figure 4.28: Output of Simulation for SC6: following the two car,cut-in in the
front of the ego vehicle

Figure 4.29: Output of Simulation for SC6: following the two car,cut-in in the
front of the ego vehicle

61

Chapter 5

Conclusions and Future
Works

With the increasing development of artificial intelligence and the automotive
industry, the capability of vehicles for Efficient and Complete Testing Enables
ADAS Releasing has become a crucial aspect of ADAS. This work aims to investigate
the feasibility of meeting project requirements for the environmental awareness
task in a real ADAS project and propose a practical solution.

The study begins by investigating the theoretical background of each related
field, which involves ADAS(Advanced Driver Assistance Systems), XiL, and simu-
lation testing techniques. By gaining a deep understanding of these concepts, the
groundwork is laid for the subsequent development of an effective solution. Then
the focus shifts to the design of hardware and simulation software , leveraging
existing hardware equipment available. Next, we build a reliable software working
environment that enables seamless integration between the hardware and software
components. Then some basic scenarios are developed to realize virtual environ-
ment testing, which aims to effectively combine data from various virtual sensors,
such as LiDAR and camera, with potential scalability, and output meaningful
result according to system requirements, as depicted in Figure 5.1 5.2, enabling a
comprehensive perception of the vehicle’s surrounding environment.

Once the scenarios are tested in the virtual environment successfully, which will
reduce the cost in the real-world test vehicle. Real-world testing conducting in
diverse application scenarios to evaluate the performance and capabilities of the
system is very expensive.By testing in the virtual environment,the same effect will
be achieved Throughout the virtual environment testing phase, data is collected
and analyzed to assess the system’s performance, reliability, and adherence to
project requirements. This evaluation serves as a foundation for identifying areas of
improvement, refining algorithms, enhancing the overall performance of the system,

62

Conclusions and Future Works

and Demonstrating the effectiveness and reliability economics of system integration
with ADAS systems.

Based on the test results, several key conclusions can be drawn. First, While
testing in virtual environments cannot fully replace real-world testing, certain
aspects of virtual testing can serve as viable substitutes for real-world scenarios.
This not only results in cost and time savings but also streamlines the testing
process for Advanced Driver Assistance Systems (ADAS).Additionally,Utilizing
simulation software and the ROS environment, one can test the adaptability of the
actual machine within the simulated scenario. This marks the next step in the
exploration of this area.

This study outlines the process of exploring, designing, implementing,and evalu-
ating Autonomous Driving (AD) software simulation scenarios in SCANeR.The
proposed framework introduces a flexible and resource-efficient method for testing
ADAS using the simulation software SCANeR, demonstrating its potential as a
promising solution for XiL testing in simulation. The collected data and analysis
provide valuable insights for further development of the ADAS system, offering
an opportunity to enhance the safety and capabilities of vehicles in real-driving
scenarios by leveraging virtual-driving scenarios.

In conclusion, this study provides a solid testing platform for future development
in the ADAS system. Upgrading simulation software, improving, and optimizing
test scenarios can contribute to enhancing the system’s performance, safety, and
overall user experience. Continuous innovation and advancements in this field will
contribute to the realization of more sophisticated and effective ADAS systems in
the future.

Our future work involves creating an efficient platform for enhanced data transfer
between hardware and software, thereby improving the testing of scenarios.In this
case, our specific work starts with the creation of more scenarios.the tool of scenario
engineering is introduced to enhance the diversity and safety of real-road testing
by integrating virtual and physical components in the testing loop.

63

Conclusions and Future Works

Figure 5.1: Visualization of Simulation result

Figure 5.2: Visualization of Simulation result

64

List of Tables

1.1 Table of Notations . 2
1.2 Driving automation at different levels 3

4.1 Table of Camera Detection Targets and Distances 43

66

List of Figures

1.1 Overview of a typical L4 ADS . 4
1.2 V-cycle software development process 11
1.3 PITEF Project . 15

2.1 Autonomous Driving Software Pipeline 18
2.2 CARLA . 20
2.3 CARLA’s advantages . 22
2.4 MATLAB . 22
2.5 Driving Scenario Designer app of MATLAB 23
2.6 SCANeR with 3D UXD engine . 25
2.7 Different Application Cases with SCANeR 25

3.1 Scenario Categories (Nighttime and Sunny) 30
3.2 Tag Trees . 31
3.3 Tags Chosen . 32
3.4 TTC . 33
3.5 Description of TTR alongside a crossroad scenario. The EGO vehicle

pictures in blue and the TO in orange. Evasion plans are shown in
light blue for steering, yellow for braking, and purple for acceleration. 35

4.1 Schematic representation of SC1 : Driving straight. 39
4.2 Tags of SC1 : Driving straight. 40
4.3 Sensors setup . 41
4.4 Camera setup . 42
4.5 Camera setup for target . 42
4.8 Output of Simulation for SC1 : Driving straight 43
4.6 LiDAR setup . 44
4.9 Output of Simulation for SC1 : Driving straight 44
4.7 LiDAR Output setup . 45
4.10 Schematic representation of SC2: Cut-in in front of the ego vehicle . 45
4.11 Tags of SC2 : Cut-in in front of the ego car. 46

67

List of Figures

4.12 Output of Simulation for SC2 : Cut-in in front of the ego vehicle. . 47
4.13 Output of Simulation for SC2 : Cut-in in front of the ego vehicle. . 48
4.14 Schematic representation of SC3: follow the lead vehicle 48
4.15 Tags of SC3 : follow the lead vehicle. 49
4.16 Output of Simulation for SC3: follow the lead vehicle 51
4.17 Output of Simulation for SC3: follow the lead vehicle 51
4.18 Schematic representation of SC4: follow the two vehicles 52
4.19 Tags of SC4 : follow the two vehicles. 52
4.20 Output of Simulation for SC4: follow the two vehicles 54
4.21 Output of Simulation for SC4: follow the two vehicles 54
4.22 Schematic representation of SC5: Cut-out in front of the ego vehicle 55
4.23 Tags of SC5 : Cut-out in front of the ego vehicle. 55
4.24 Output of Simulation for SC5: Cut-out in the front of the ego vehicle 57
4.25 Output of Simulation for SC5: Cut-out in the front of the ego vehicle 58
4.26 Schematic representation of SC6: following the two car,cut-in in the

front of the ego vehicle . 58
4.27 Tags of SC6: following the two car,cut-in in the front of the ego vehicle 59
4.28 Output of Simulation for SC6: following the two car,cut-in in the

front of the ego vehicle . 61
4.29 Output of Simulation for SC6: following the two car,cut-in in the

front of the ego vehicle . 61

5.1 Visualization of Simulation result 64
5.2 Visualization of Simulation result 64

68

Bibliography

[1] Taxonomy and Definitions for Terms Related to Driving Automation Systems
for On-Road Motor Vehicles. url: https://www.sae.org/standards/
content/j3016_202104/. (accessed: 30.04.2021) (cit. on pp. 3–5).

[2] apollo: Open source autonomous driving, url: https://github.com/Apoll
oAuto/apollo. (accessed: 14.07.2023) (cit. on p. 4).

[3] Automated Driving in Its Social, Historical and Cultural Contexts. url: https:
/ / link . springer . com / chapter / 10 . 1007 / 978 - 3 - 662 - 48847 - 8 _ 3.
(accessed: 2016) (cit. on p. 6).

[4] J Wetmore. «Driving the dream. The history and motivations behind 60 years
of automated highway systems in America». In: Automotive History Review 7
(2003), pp. 4–19. doi: 10.1007/978-3-662-45854-9_3 (cit. on p. 6).

[5] Prof. Schmidhuber’s highlights of robot car history. url: https://people.
idsia.ch/~juergen/robotcars.html. (accessed: 2019) (cit. on p. 6).

[6] History of Autonomous Cars. url: https://www.tomorrowsworldtoday.co
m/artificial-intelligence/history-of-autonomous-cars/. (accessed:
2021) (cit. on p. 6).

[7] J Wetmore. «A system architecture for autonomous visual road vehicle guid-
ance». In: IEEE (Nov. 1997). doi: 10.1109/ITSC.1997.660538 (cit. on
p. 6).

[8] Ernst D. Dickmanns. Dynamic Vision for Perception and Control of Motion.
Springer London, 2007. doi: https://doi.org/10.1007/978-1-84628-
638-4 (cit. on p. 7).

[9] Sanjiv Singh Martin Buehler Karl Iagnemma. The DARPA Urban Chal-
lenge:Autonomous Vehicles in City Traffic. Springer Berlin, Heidelberg, 2009.
doi: https://doi.org/10.1007/978-3-642-03991-1 (cit. on p. 7).

70

https://www.sae.org/standards/content/j3016_202104/
https://www.sae.org/standards/content/j3016_202104/
https://github.com/ApolloAuto/apollo
https://github.com/ApolloAuto/apollo
https://link.springer.com/chapter/10.1007/978-3-662-48847-8_3
https://link.springer.com/chapter/10.1007/978-3-662-48847-8_3
https://doi.org/10.1007/978-3-662-45854-9_3
https://people.idsia.ch/~juergen/robotcars.html
https://people.idsia.ch/~juergen/robotcars.html
https://www.tomorrowsworldtoday.com/artificial-intelligence/history-of-autonomous-cars/
https://www.tomorrowsworldtoday.com/artificial-intelligence/history-of-autonomous-cars/
https://doi.org/10.1109/ITSC.1997.660538
https://doi.org/https://doi.org/10.1007/978-1-84628-638-4
https://doi.org/https://doi.org/10.1007/978-1-84628-638-4
https://doi.org/https://doi.org/10.1007/978-3-642-03991-1

BIBLIOGRAPHY

[10] Dave Ferguson Tugrul Galatali Chris Geyer Michele Gittleman Sam Har-
baugh Martial Hebert Tom Howard Alonzo Kelly David Kohanbash Maxim
Likhachev Nick Miller Kevin Peterson Raj Rajkumar Paul Rybski Bryan
Salesky Sebastian Scherer Young Woo-Seo Reid Simmons Sanjiv Singh Jar-
rod Snider Anthony Stentz William “Red” Whittaker Chris Urmson Joshua
Anhalt Drew Bagnell Christopher Baker Robert Bittner John Dolan Dave
Duggins and Jason Ziglar. «Tartan Racing: A Multi-Modal Approach to the
DARPA Urban Challenge». In: ResearchGate (Apr. 2007) (cit. on p. 7).

[11] TOYOTA Motor — 75 Years of TOYOTA — Technical Development —
Electronics Parts. url: https : / / www . toyota - global . com / company /
history_of_toyota/75years/data/automotive_business/products_
technology/technology_development/electronics_parts/index.html.
(accessed: 2019) (cit. on p. 7).

[12] Tesla beams down ’autopilot’ mode to Model S. url: https://www.aut
onews.com/article/20151014/OEM06/151019938/tesla- beams- down-
autopilot-mode-to-model-s (cit. on p. 7).

[13] 2019 Audi A8 L Review | Brilliant engineering in an unassuming wrapper.
url: https://www.autoblog.com/2018/10/16/2019-audi-a8-l-review-
first-drive/ (cit. on p. 7).

[14] The history of autonomous driving at the BMW Group. url: https://
www.autonomousvehicleinternational.com/features/the-history-of-
autonomous-driving-at-the-bmw-group.html (cit. on p. 7).

[15] Mercedes-Benz E-Class 2016 first drive: The Einstein of luxury cars. url:
https://www.pocket-lint.com/cars/reviews/mercedes-benz/136965-
mercedes-benz-e-class-2016-first-drive-the-einstein-of-luxury-
cars/ (cit. on p. 7).

[16] European Space Agency. «Technology Readiness Levels Handbook for Space
Applications». In: ESA CSC (Sept. 2008). url: https://connectivity.
esa.int/sites/default/files/TRL_Handbook.pdf (cit. on p. 7).

[17] European Space Agency. «ERTRAC - Automated Driving Roadmap». In: ESA
CSC (July 2015). url: https://www.ertrac.org/wp-content/uploads/
2022/07/ERTRAC-CAD-Roadmap-2019.pdf (cit. on p. 7).

[18] Hala Elrofai Jan-Pieter Paardekooper Erwin de Gelder Sytze Kalisvaart
Olaf Op den Camp. «SCENARIO-BASED SAFETY VALIDATION OF
CONNECTED AND AUTOMATED DRIVING». In: StreetWise (July 2018).
url: https://www.scipedia.com/public/Elrofai_et_al_2018a (cit. on
p. 29).

71

https://www.toyota-global.com/company/history_of_toyota/75years/data/automotive_business/products_technology/technology_development/electronics_parts/index.html
https://www.toyota-global.com/company/history_of_toyota/75years/data/automotive_business/products_technology/technology_development/electronics_parts/index.html
https://www.toyota-global.com/company/history_of_toyota/75years/data/automotive_business/products_technology/technology_development/electronics_parts/index.html
https://www.autonews.com/article/20151014/OEM06/151019938/tesla-beams-down-autopilot-mode-to-model-s
https://www.autonews.com/article/20151014/OEM06/151019938/tesla-beams-down-autopilot-mode-to-model-s
https://www.autonews.com/article/20151014/OEM06/151019938/tesla-beams-down-autopilot-mode-to-model-s
https://www.autoblog.com/2018/10/16/2019-audi-a8-l-review-first-drive/
https://www.autoblog.com/2018/10/16/2019-audi-a8-l-review-first-drive/
https://www.autonomousvehicleinternational.com/features/the-history-of-autonomous-driving-at-the-bmw-group.html
https://www.autonomousvehicleinternational.com/features/the-history-of-autonomous-driving-at-the-bmw-group.html
https://www.autonomousvehicleinternational.com/features/the-history-of-autonomous-driving-at-the-bmw-group.html
https://www.pocket-lint.com/cars/reviews/mercedes-benz/136965-mercedes-benz-e-class-2016-first-drive-the-einstein-of-luxury-cars/
https://www.pocket-lint.com/cars/reviews/mercedes-benz/136965-mercedes-benz-e-class-2016-first-drive-the-einstein-of-luxury-cars/
https://www.pocket-lint.com/cars/reviews/mercedes-benz/136965-mercedes-benz-e-class-2016-first-drive-the-einstein-of-luxury-cars/
https://connectivity.esa.int/sites/default/files/TRL_Handbook.pdf
https://connectivity.esa.int/sites/default/files/TRL_Handbook.pdf
https://www.ertrac.org/wp-content/uploads/2022/07/ERTRAC-CAD-Roadmap-2019.pdf
https://www.ertrac.org/wp-content/uploads/2022/07/ERTRAC-CAD-Roadmap-2019.pdf
https://www.scipedia.com/public/Elrofai_et_al_2018a

BIBLIOGRAPHY

[19] A. M. Spieker J. Hillenbrand and K. Kroschel. «A multilevel collision mitiga-
tion ap- proach—Its situation assessment, decision making, and performance
tradeoffs». In: IEEE 7 (Dec. 2006). doi: 10.1109/TITS.2006.883115 (cit. on
p. 35).

[20] K. Kroschel J. Hillenbrand and V. Schmid. «Situation assessment algorithm
for a collision prevention assistant». In: IEEE (June 2005). doi: 10.1109/
IVS.2005.1505146 (cit. on p. 35).

[21] A. Polychronopoulos; M. Tsogas; A. Amditis; U. Scheunert; L. Andreone;
F. Tango. «Dynamic situation and threat assessment for collision warning
systems: the EUCLIDE approach». In: IEEE (June 2004). doi: 10.1109/
IVS.2004.1336458 (cit. on p. 36).

72

https://doi.org/10.1109/TITS.2006.883115
https://doi.org/10.1109/IVS.2005.1505146
https://doi.org/10.1109/IVS.2005.1505146
https://doi.org/10.1109/IVS.2004.1336458
https://doi.org/10.1109/IVS.2004.1336458

	Introduction
	Background
	Autonomous Driving
	Autonomous Driving software development

	Simulation for Autonomous Driving Software Development
	V-cycle software development
	Regulations for AD software simulation and testing
	Thesis Outline

	Theoretical Background
	Autonomous Driving Software Pipeline
	Simulation Requirements
	Simulation Tools
	CARLA
	Driving Scenario designer from MATLAB
	SCANeR

	Methodology
	Scenario
	Scenario category
	Tags
	Selection of tags and trees of tags
	Existing Assessment Metrics
	Safety Related Assessment Metrics

	Simulations and Results
	SC1: Driving straight
	General description
	Formal description
	Parameters
	Simulation Result

	SC2: Cut-in in front of the ego vehicle
	General description
	Formal description
	Parameters
	Simulation result

	SC3: Following the leader car
	General description
	Formal description
	Parameters
	Simulation result

	SC4: Following the two vehicles
	General description
	Formal description
	Parameters
	Simulation result

	SC5: Cut-out in the front of the ego vehicle
	General description
	Formal description
	Parameters
	Simulation result

	SC6: Following the two car,cut-in in the front of the ego vehicle
	General description
	Formal description
	Parameters
	Simulation result

	Conclusions and Future Works
	List of Tables
	List of Figures
	Bibliography

