
POLITECNICO DI TORINO
Master’s Degree in Mechatronic Egineering

Master’s Degree Thesis

Design, Simulation and Testing of a linear
MPC for lateral dynamic control of a
Formula Student Driverless prototype

Supervisors

Prof. Nicola AMATI

Prof. Massimo CANALE

PhD Luis M. CASTELLANOS MOLINA

Candidate

Alessandro DI ROSIO

December 2023

Summary

The automotive world has passed through a large number of evolutionary steps
in history, the latter being the development and implementation of autonomous
driving capabilities in passenger vehicles, with the objective of making travelling
by car more efficient and secure for people.
With this awareness, Formula Student, that is one of the most important University
student competitions of engineering, introduced the Driverless category in 2017.
The aim is to give the opportunity to autonomous driving to develop even faster
inside universities, making future engineers able to confront this new technological
challenge.
This thesis work presents the design and real-time deployment of a model predictive
controller (MPC) for vehicle dynamics control in the Formula Student Driverless
prototype of Politecnico di Torino. The scope is to propose a simple yet effective
approach that can effectively control the yaw dynamics to follow a reference
trajectory of a closed loop circuit.
To properly design any controller, the system dynamics have to be deeply analysed
first. For this reason, a proper simulation model is developed in MATLAB®

Simulink, composed by the mathematical forward model of the vehicle, validated
with experimental data, and the low level controller (LLC) already deployed on
the real prototype.
The controller algorithm is written in C++ language to enhance the code efficiency
and runtime, allowing a software in the loop (SiL) testing procedure, making
straight forward the real time implementation (RTI) on the embedded hardware of
the prototype. An hardware in the loop (HiL) validation is performed, allowing a
full-scale testing and tuning of the developed controller in its final configuration.
Finally, results of the MPC performance on the HiL tests bench are presented and
future developments are addressed.

ii

Table of Contents

List of Tables vi

List of Figures vii

Acronyms x

1 Introduction 1
1.1 Formula SAE . 1
1.2 Squadra Corse Driverless Team . 4

1.2.1 The Team . 4
1.2.2 The prototype: VaLentina 4
1.2.3 Use of the MPC algorithm 6

2 Vehicle Modeling 8
2.1 Reference frames and transformations 8
2.2 Vehicle Dynamics Equations . 12

2.2.1 Wheel dynamics . 12
2.2.2 Chassis dynamics . 14

2.3 Simulation Environment . 18
2.4 Prediction model . 20

2.4.1 Kinematic equations . 22
2.4.2 Dynamic equations . 22
2.4.3 Linearized model . 23

3 MPC Problem Formulation 35
3.1 Discrete time prediction model . 35

3.1.1 Local frame model formulation 35
3.1.2 Physical constraints . 38
3.1.3 Discrete time model . 38
3.1.4 Reference trajectory discretization 40

3.2 Optimization problem . 41

iv

3.3 Real Time Implementation . 43
3.3.1 Solver choice . 43
3.3.2 MPC problem casting to a QP problem 44

4 HiL Simulation and Controller Tuning 48
4.1 ROS2 integration and simulation 48
4.2 HiL Simulation and Tuning . 54

5 Conclusions 60
5.1 Results . 60
5.2 Future works . 61

Bibliography 62

v

List of Tables

4.1 Tyre parameters of the Pacejka "Magic Formula" equation, evaluated
with static load experienced by each vehicle wheel during straight
driving at vx = 10m/s. 49

4.2 Cross Track error comparison between nominal and disturbed condi-
tions during SiL simulation . 54

4.3 Cross Track error and computational time comparison when decreas-
ing the prediction horizon. 59

vi

List of Figures

1.1 SAE levels of Driving Automation. 2
1.2 FSAE DV track cones layout. 3
1.3 Squadra Corse Driverless and VaLentina at Formula Student East

2023, event held at the Hungaroring F1 circuit. 5
1.4 Lidar and Camera system of the VaLentina prototype. 6
1.5 Autonomous System overview including MPC. 7

2.1 Rw reference frame following ISO sign convention. 9
2.2 Reference Frames: RF 1 and RFw. 9
2.3 Forces acting on the vehicle, overhead view. 15
2.4 Ride Roll distances. 17
2.5 Wheel subsystem simulation model developed on MATLAB® Simulink. 18
2.6 Chassis subsystem simulation model developed on MATLAB® Simulink. 19
2.7 Complete simulation model developed on MATLAB® Simulink. . . . 20
2.8 Data comparison between the simulation model and track-tests data. 21
2.9 Bicycle Model representation in RF 0. 21
2.10 Bicycle model with acting forces. 23
2.11 Prediction error over 1 second and 1.5 seconds at constant inputs. . 34

3.1 High level overview of the control scheme in which the MPC will be
deployed. 36

3.2 Cross Track Error between the vehicle and the reference trajectory . 41

4.1 Simulation race track, with cones (in blue and yellow) and Reference
Trajectory (in red), 5 meters for each grid’s square. 51

4.2 Effects of rδ on the control input and on the performance parameter
Cross Track error in nominal conditions. 52

4.3 Effects of r∆δ on the steering angle δ and on the performance pa-
rameter Cross Track error in nominal conditions. 52

4.4 Comparison between Nominal and Disturbed conditions. 53

vii

4.5 Effects of r∆δ on the performance parameter and noise rejecting in
disturbed conditions. 53

4.6 HiL setup: the NVIDIA Jetson AGX Orin (in the middle) communi-
cating with the dSPACE MicroAutoBox III (on the left) via Kvaser
Leaf Light V2 (on the bottom). 56

4.7 Comparison between SiL simulation and HiL simulation. 57
4.8 Complete HiL Simulation including longitudinal and lateral control,

MPC performances. 58
4.9 Complete HiL Simulation including longitudinal and lateral control,

longitudinal dynamics. 58

viii

Acronyms

SCD
Squadra Corse Driverless PoliTO

RRT
rapid-exploring random tree

MPC
model predictive controller

SAE
Society of Automotive Engineers

FSAE
Formula SAE

ADAS
advanced driver assistance systems

CV
internal combustion vehicle

EV
electric vehicle

DV
driverless vehicle

ACU
autonomous control unit

x

ECU
electronic control unit

LLC
low level controller

ROS
Robotic Operating System

ROS2
Robotic Operating System 2

µC

micro-controller

RF
reference frame

CoG
center of gravity

CoP
center of pressure

TV
torque vectoring

IMU
inertial measurement unit

LiDAR
light detection and ranging

LTI
linear time invariant

LTV
linear time variant

xi

LPV
linear parameter varying

OP
optimization problem

QP
quadratic program

SLAM
simultaneous localization and mapping

RTI
real time implementation

SiL
software in the loop

HiL
hardware in the loop

xii

Chapter 1

Introduction

1.1 Formula SAE

The Society of Automotive Engineers (SAE) is a non-profit educational and scientific
organization, which is committed to advancing mobility technology for the benefit
of humanity. With a membership exceeding 130’000 engineers and scientists, SAE
focuses on generating technical knowledge across various self-propelled vehicles. The
organization shares this wealth of information through its meetings, publications,
technical papers, magazines, standards, reports, professional development programs,
and electronic databases. Among its different commitments, in 1981 the first
Formula SAE (FSAE) event was organised by the SAE organization, a university
competition aimed to make engineering students apply their knowledge in the
automotive field to design and build racing prototypes.
Other than making young engineers improve their skills with practical experience
while still studying, the FSAE aims to be a research competition where universities
are spurred to invest in the automotive research, speeding up the innovation process
in the engineering field. For this reason the FSAE has always followed the most
actual trends in the automotive field, expanding and updating the competition:
starting from having only the internal combustion vehicle (CV) category, the
Hybrid Vehicles class was introduced in 2007, followed by the electric vehicle
(EV) class in 2010, and concluding with the most recent driverless vehicle (DV)
category, introduced in 2017. Focusing on this newest class of vehicles, the SAE
organization introduced the concept of advanced driver assistance systems (ADAS)
as a transformative paradigm in automotive technology, aiming to enhance vehicle
safety, efficiency, and overall driving experience. This includes the introduction of
cutting-edge sensors, like cameras, radar, and other advanced technologies to provide
real-time data and feedback. Common ADAS functionalities include adaptive cruise

1

Introduction

control, lane departure warning and assistance, automatic emergency braking, blind-
spot detection, parking assistance, and collision avoidance systems. By actively
monitoring the vehicle’s surroundings and analyzing potential risks, ADAS alert
drivers to potential hazards and, in some cases, intervenes autonomously to prevent
or mitigate collisions. The integration of ADAS into modern vehicles reflects a
commitment to improve road safety, reducing accidents, and enhancing overall
transportation efficiency. As technology continues to evolve, ADAS is expected to
play a pivotal role in the development of autonomous vehicles, paving the way for a
future where driving is not only safer but also more intelligent and connected. Five
classes of ADAS capabilities have been introduced by SAE to describe the level of
automation and intervention requested to the driver, as shown in Figure 1.1.

Figure 1.1: SAE levels of Driving Automation.

As of today, most advanced vehicle companies in the automated driving ca-
pabilities achieved a SAE Level 3 of automation, which are already deployed in
road vehicles. The FSAE competition, in particlar with the DV category, aims
to develop and test automated driving capabilities of higher levels, ensuring high
safety standards. During the competition the Driverless prototypes run without

2

Introduction

any driver on board, along four dynamic events with different characteristics. In
general, the circuit is made by cones of different shapes and colours as in figure 1.2,
which must be recognized by the car first, which then moves accordingly in the
fastest time possible.

Figure 1.2: FSAE DV track cones layout.

Being an engineering design competition, a FSAE competition holds two different
type of events: static and dynamic. In the static events, namely Design Event,
Cost Event and Business Plan Event, each team presents the overall season project
to a judges committee, that validate the team organization and improvements, as
well as its capability to confront with typical industrial challenges, such as the costs
management for the prototype realisation and the capability to derive a business
plan idea from the designed prototype. In the dynamic events, where performances
achieved are measured directly on the track, teams are called to let the car run
through four different disciplines:

• Acceleration: straight driving run for 75 meters, after which the car should
come to a safe stop.

• Skidpad: 8-shaped track with standard dimensions, which is run two time in
each circle

• Autocross: single run of an unknown track

• Trackdrive: 10 runs of an unknown track

Most points are awarded for the Trackdrive event, since it is the most complicated
and proves each team capabilities to optimize the lap time through innovative
control algorithms.

3

Introduction

1.2 Squadra Corse Driverless Team

1.2.1 The Team

Squadra Corse Driverless PoliTO, in short SCD, is a university student team of
Politecnico di Torino, born in April 2021 with the goal to research, develop and test
Autonomous Driving solutions. The team uses a FSAE electric racing prototype,
realised by the fellow student team Squadra Corse PoliTO, to implement and test
all the developed solutions, both hardware and software. The SCD team, together
with the Center for Automotive Research and Sustainable mobility, CARS@PoliTO,
and the LIM laboratory of Politecnico di Torion, developed and installed the
Autonomous Steering System and the Autonomous Braking System, which ensured
the missing actuation capabilities of the base prototype. Different other researches
about state estimation, environmental perception and path planning were carried on
together with the research group, which laid the basis of the new born student team.
Since the team establishment, all the different subsystems have been integrated on
the base prototype, and the missing parts where developed, up until in May 2022
the first SCD prototype made its first meters in fully autonomous mode. The first
season ended with a third place overall in the Driverless category of the Formula
SAE event held in Varano de’ Melegari, Italy, but the driverless system of the SCD
prototype was still in its first stages and needed a lot of upgrades.
During the second season of the Team, huge steps forward have been made, both for
the hardware and the softwares. On the prototype, a completely redesigned braking
system has been developed and tested, which ensured higher safety standards,
while a brand new set of sensors and algorithms have been added: a 64 channels
Ouster LiDAR, together with 2 ALVIUM Allied Vision cameras, allowed to greatly
improve the precision of cones identification and positioning, and also allowed the
development of high level algorithms such as SLAM ([1]), Ground Filtering etc.
This rapid development of the software package allowed the Driverless package
provided by the team to achieve high levels of performance and safety, also giving
the opportunity to start researching more complicated solutions. The full equipped
prototype has been given the name of VaLentina, which is a female italian name
and, if read as two separate words as "Va Lentina", translates to "She goes slowly",
a fun way to describe the first very slow meters made in autonomous mode.

1.2.2 The prototype: VaLentina

The prototype which is used by the Squadra Corse Driverless PoliTO team is
a Formula SAE electric prototype developed by the fellow team Squadra Corse
in 2019, which won that season’s edition of the Formula SAE Italy event. The

4

Introduction

Figure 1.3: Squadra Corse Driverless and VaLentina at Formula Student East
2023, event held at the Hungaroring F1 circuit.

prototype is equipped with 4 in-wheel electric motors, each one capable of deliver-
ing up to 35kW of power and 21Nm of torque. Each motor has a self-developed
three-stage planetary gear transmission with fixed velocity reduction ratio of 14.92,
which allows each wheel to deliver to the ground up to 313 Nm of torque for each
wheel. The motors are driven by their manufacturer inverters, each one controlled
independently, and the energy is provided by a self-developed High Voltage battery
pack of about 500V and 2.5kWh of storable energy. The total output power of
the battery is limited by Formula SAE regulations to 80kW, which also limits the
actual power delivered by the motors, but a well-designed torque vectoring (TV) is
able to exploit all the 80kW optimally.
To guarantee autonomous capabilities, the steering actuator controls the full steer-
ing range of the system, and together with the braking actuator, also providing
emergency braking functionalities, the VaLentina prototype has the full control
over lateral and longitudinal dynamic.
The environmental perception is made by acquiring data from a 64 channels Ouster
LiDAR and 2 ALVIUM Allied Vision cameras, which through a custom developed
sensor fusion algorithm gives the prototype a 80° horizontal field of view with a
cones identification confidence distance of 25 meters, due to the small shape of the
cones to be identified.

5

Introduction

The Odometry information, which derives from the integration of a Fuzzy logic

Figure 1.4: Lidar and Camera system of the VaLentina prototype.

algorithm for velocity estimation information ([2]) and an EKF for pose estimation
(both using data coming from sensors such as IMU, wheel encoders and steering
encoders), is fused with a self developed SLAM algorithm that provides optimized
state measures.
The high level stack of softwares, starting from the environmental perception,
through SLAM and high level control, runs on a NVIDIA Jetson AGX Orin com-
puter, which is referred s the onboard autonomous control unit (ACU). The low
level controller (LLC), such as the steering control, braking control and torque vec-
toring (TV) runs on a dSPACE MicroAutoBox III Real Time hardware, commonly
referred as the prototype electronic control unit (ECU), which also implements
CANbus communication with all the boards and subsystem of the prototype. The
two Control Units communicate via CANbus protocol too using a serial-to-CAN
converter Kvaser Leaf Light v2.

1.2.3 Use of the MPC algorithm
The VaLentina prototype developed by the team, after two season of development,
has now become a test bench for autonomous driving solutions testing, since the
Control Units installed are highly flexible for prototyping. In particular, the ACU
runs all the different algorithms in a ROS2 workspace, which is composed by nodes
communicating with each other using the native publisher-subscriber protocols of
ROS2. This means that all the informations and data can be made available to be
elaborated from each individual node, and the results published as topics made
available to other nodes.

6

Introduction

For the Formula SAE Driverless events described in 1.1, the track is marked by
small yellow and blue cones, that are recognized by the sensors. When the circuit is
not known, the VaLentina prototype runs a simple steering controller, which tries
to follow the local path generated by a self developed rapid-exploring random tree
(RRT) algorithm ([3]), which allowed the prototype to move freely in an unknown
circuit since its first meters. In Driverless events like Trackdrive, where only the
first lap is unknown, it is possible to develop optimised control strategies starting
from the second lap on to achieve better performances. One of the most used
control algorithms, both in FSAE and in industrial applications, is without doubt
the model predictive controller (MPC), that has proved to be well suited for the
objective of achieving performances over a known circuit, since it can account for
system constraints directly in the computation of the optimal control input.
This thesis work has the objective to investigate the MPC as a solution to the
problem of path tracking, with particular focus on its real time implementation,
trying to achieve the best trade-off between computational effort and performance
of the controller. The MPC algorithm is included in the full autonomous system as
represented in Figure 1.5. In order to make the controller easy to implement on
the real prototype, both software in the loop (SiL) and hardware in the loop (HiL)
validation is performed.

Figure 1.5: Autonomous System overview including MPC.

7

Chapter 2

Vehicle Modeling

The first step in designing any controller algorithm is to study the dynamic of
the system to be controlled and build a proper representation of it, called plant,
in a simulation environment. The objective is to represent the most accurately
possible the system to be controlled, that can be later used to evaluate stability
and performance of the designed controller. This step is also fundamental in order
to properly study open loop stability of the system, evaluate limits and constraints,
and uncertainties that can affect the real system.

2.1 Reference frames and transformations
The system to be controlled is a 4WD electric prototype race-car based on the
Formula SAE regulations, equipped with four in-wheel electric motors that can be
controlled individually allowing torque vectoring implementation. Moreover it’s
equipped with steering and braking actuators to allow it to move in full autonomous
mode without any driver action. In order to fully describe the dynamics of the
system, a total of 6 reference frame (RF) representations are needed: the fixed
inertial frame RF 0, a mobile reference frame RF 1 that is integral with the car and
four reference systems RFw that are integral with each wheel.
Starting with RF 1, it is based on the ISO 8855-2011 standard where its origin
follows the center of gravity (CoG) of the vehicle, the x-axis is called longitudinal
axis and is directed along the centerline of the vehicle, the z-axis is perpendicular
to the ground when the car is steady and pointing upward, and the y-axis describes
a right-handed orthogonal reference system with the two axis described above.
The fixed reference frame RF 0 follows the same standard as RF 1, but is placed in
the starting position of the vehicle and does not move.
Finally, the four reference systems RFw

i , i = fl, fr, rl, rr have their origin placed in

8

Vehicle Modeling

each wheel’s contact point at the ground, defined by the ISO 8855-2011 standard,
represented in Figure 2.1.

Figure 2.1: Rw reference frame following ISO sign convention.

Figure 2.2: Reference Frames: RF 1 and RFw.

It is convenient to evaluate the transformation matrices that are used when a

9

Vehicle Modeling

change of reference system is needed. In particular, it will be useful later on to
change coordinates between RF 0 and RF 1.
Based on the Formula Student prototype application on which this thesis work
is focusing, it can be assumed that the movement only occurs along the XY
plane, thus neglecting any movement along the Z-axis. Moreover, later on it will
be described a method to address roll and pith dynamics of the vehicle chassis,
without taking into consideration actual rotations around the vehicle’s x-axis and
y-axis. Thanks to this assumptions, only three degrees of freedom are necessary to
fully describe the chassis motion and its reference frame RF 1, and the Yaw Angle
ψ is the only one needed to describe the different orientation between RF 0 e RF 1.
Moreover, the Yaw Rate r is defined, as the rate of change of the angle ψ at the
time instant k:

r(t) = ψ̇(t),

ψk = ψ0 +
Ú k

0
r(t)dt

(2.1)

At a given time instant k, the reference frame RF 1 can now be described as the
result of a rotation around its z-axis of the angle ψk, described by the rotation
matrix

R0
1,k =

cosψk − sinψk 0
sinψk cosψk 0

0 0 1

 (2.2)

and a rigid translation of the vector:

t0
01 =

è
Xk Yk 0

éT
(2.3)

that expresses the distance vector between the two frame’s origins described in
RF 0, so the position of the CoG of the vehicle at the time instant k expressed in
the fixed frame.
At a given time instant k, a point in the 3D space P can be expressed as a set
of coordinates in both reference frames, where for the inertial frame RF 0, upper
case letters X, Y, Z will be used, while for the moving frame RF 1 lower-case letters
x, y, z will be used instead:

P 0
k =

è
XP,k YP,k ZP,k

é
P 1

k =
è
xP,k yP,k zP,k

é (2.4)

It can be found that the following holds:
XP,k

YP,k

ZP,k

1

 = t0
01 + R0

1,k ·

xP,k

yP,k

zP,k

1

 (2.5)

10

Vehicle Modeling

and can be rewritten as
XP,k

YP,k

ZP,k

1

 =
C
R0

1,k t0
01

0 1

D
∗

xP,k

yP,k

zP,k

1

 = T0
1,k ·

xP,k

yP,k

zP,k

1

 (2.6)

where, by making explicit all the components, the transformation matrix can be
obtained:

T0
1,k =

cosψk − sinψk 0 Xk

sinψk cosψk 0 Yk

0 0 1 0
0 0 0 1

 (2.7)

The transformation matrix T0
1,k obtained describes how to compute the coordi-

nates of a point in RF 0 by using its coordinates in RF 1.
Similarly, the inverse transformation matrix can be derived, used to move from the
inertial frame RF 0 to the local frame RF 1:

xP,k

yP,k

zP,k

1

 = T1
0,k ∗

XP,k

YP,k

ZP,k

1

 (2.8)

T1
0,k =

cosψk sinψk 0 −Xk cosψk − Yk sinψk

− sinψk cosψk 0 +Xk sinψk − Yk cosψk

0 0 1 0
0 0 0 1

 (2.9)

Note that this transformation matrices, used for points in the space, can also
be applied to vectors, that can always be described by their components in a
given reference frame. When dealing with vectors transformation between reference
frames, usually only their direction and magnitude are of interest and not their
point of application, so when passing from a reference frame representation to
another the vectors are rigidly moved to the actual frame’s origin, that translates
into applying the following:

v0
x

v0
y

v0
z

1

 = T0
1 ∗

v1

x

v1
y

v1
z

1

− t0
01 (2.10)

which, with some simple manipulation, can also be written in the following
simplified relation: v

0
x

v0
y

v0
z

 = R0
1 ∗

v
1
x

v1
y

v1
z

 (2.11)

11

Vehicle Modeling

2.2 Vehicle Dynamics Equations

2.2.1 Wheel dynamics
In order to evaluate the dynamic of the whole vehicle, it is convenient to divide it
into subsystems and analyse them individually, making explicit forces and torques
exchanged at the interface with other systems.
Starting from the wheel subsystem, which reference frame is shown in Figure 2.1,
it is subject to:

• Force exchanged with the ground, with components along the three directions
of the frame

• Motor torque Tmotor

• Braking torque Tbrake

• Rolling resistance moment My,w

• Force exchanged at the interface with the vehicle

• Inertia
Some assumptions and simplifications are made in order to simplify the analysis:

• Wheel-rim, tire, motor and transmission are considered as a unique rotating
object with mass mw and equivalent moment of inertia Jy,w, which has been
evaluated in the design phase of the fixed ratio transmission gear

• The force exchanged with the vehicle are considered as acting at the center
of mass of the wheel subsystem: this implies null overturning moment along
the wheel’s longitudinal axis due to the attachment position of the suspension
system, resulting in a static camber during motion

• The self aligning moment is not influencing the steering actuation: this can
be considered valid since the low level steering controller compensates for it

• Motor torque and braking torque are considered as a unique torque acting
on the system: this hypothesis is not limiting the analysis since the low level
torque vectoring translates braking torque into suitable combination of braking
action and regenerative motor torque

Four equilibrium equations can be derived for the wheel subsystem:
x : Fx,w − Fx,car = mwẍ

y : Fy,w − Fy,car = mwÿ

z : Fz,w − Fz,car −mwg = mwz̈

ω : Tin · τ −My,w − Fx,w ·Rroll = Jy,wω̇w

(2.12)

12

Vehicle Modeling

Where Tin is the input torque as output of the motor, so it is multiplied by the
fixed transmission ratio τ , and Rroll is the rolling radius. The linear influence of
the inertia is considered null, due to the low mass of the wheel subsystem and its
suspension constraints along the x and y local directions, together with an ideal
flat surface assumed for the track. As a result, the following set of equations are
obtained:

Fx,car = Fx,w

Fy,car = Fy,w

Fz,w = Fz,car +mwg

ω̇w = Tin·τ−My,w−Fx,w·Rroll

Jy,w

(2.13)

Where the unknowns are Fx,w, Fy,w, Fz,car and My,w. While Fz,car depends on
the chassis dynamics and the suspension effects during the motion, the other un-
knowns derive from the interaction between pneumatic and ground. The pneumatic
characterisation and its dynamics have been at the center of the scientific literature
for years. While simplified models are easier to understand, although they do not
consider non-linearities and transient behaviours, more complex models have been
developed: the "brush model" and the "Pacejka model". The first describes in a
rigorous analytic way the forces generated by the pneumatic-ground interaction,
meeting solid experimental data validation especially in non-transient behaviours [4].
The Pacejka model instead is an empirical-derived model, which uses a parametric
expression, also known as "magic formula" [5], to evaluate the pneumatic-ground
forces:

Fi = Di sin(Ci arctan((1 − Ei)Bisi + Ei arctan(Bisi))) + Vi (2.14)
where Bi is called stiffness factor, Ci shape factor, Di peak value, Ei curvature

factor, Vi is the vertical offset, and finally si is the slip, and is function of the
velocities of the wheel: in particular, for the longitudinal force, the slip is known
as longitudinal slip, is a-dimensional and is evaluated as:

sx = σ = ω ·Rroll − vx,w

vx,w

(2.15)

while for the lateral force the slip is known as side-slip angle, has the dimensions
of an angle (radians) and is evaluated as:

sy = α = arctan
A
vy,w

vx,w

B
(2.16)

The expression 2.14 can take into account for different operative conditions, like
camber, vertical load, but is used only in steady state condition. The complete
formulation takes into account also for transient and non-linear behaviours, and
can be find in Pacejka’s book [5] and different published articles, like [6].

13

Vehicle Modeling

2.2.2 Chassis dynamics
The forces developed at the tyre-ground interface are transmitted to the vehicle
chassis, following 2.13. This forces act at the same time on the chassis, but in
different points of the vehicle, in particular on the suspended mass: in order to
evaluate the dynamic of the vehicle, the vehicle’s chassis is considered a rigid body,
that moves in the reference frame RF 0, considering only its planar motion in the
plane XY . In this way, the chassis has a total of only 3 degrees of freedom, that
are the linear motion along the X-axis and the Y -axis, and the rotation around
the vehicle’s z-axis, as discussed in 2.1. This 2D motion is caused by the action of
two different kind of forces:

• Wheel forces transmitted to the chassis F i
x,car and F i

y,car, where i is represents
one of the four wheels, i = FL, FR,RL,RR

• Aerodynamic force, which is acting on the center of pressure (CoP), and in
general has a longitudinal and a vertical components:

Fx,aero = 1
2ρScxv

2
x

Fz,aero = 1
2ρSczv

2
x

(2.17)

Where ρ is the air density, S is the effective surface of the aerodynamic devices,
cx is called drag coefficient, and vx is the longitudinal velocity.

The air density is considered constant and equal to 1.18 kg
m3 , that is the average air

density in Turin, while the surface and the drag coefficient have been previously
evaluated by the team via CFD simulation, being S = 1m2 and cx = 3.2 for
the VaLentina prototype. The forces contribution can be applied to the vehicle
model, represented in Figure 2.3, where the geometric parameters and the steering
geometry are taken into account.

Separating the longitudinal and lateral components of the force vectors, the
following system of three equilibrium equations can be derived:

max = F F R
x cos δF R + F F L

x cos δF L − F F R
y sin δF R − F F L

y sin δF L+
+FRR

x + FRL
x + Fx,aero

may = F F R
x sin δF R + F F L

x sin δF L + F F R
y cos δF R + F F L

y cos δF L+
+FRR

y + FRL
y

Izr = F F R
x

1
a sin δF R + t

2 cos δF R
2

+ F F L
x

1
a sin δF L − t

2 cos δF L
2

+
+F F R

y

1
a cos δF R + t

2 sin δF R
2

+ F F L
y

1
a cos δF L − t

2 sin δF L
2

+
+ t

2F
RR
x − t

2F
RL
x − bFRR

y − bFRL
y

(2.18)

14

Vehicle Modeling

Figure 2.3: Forces acting on the vehicle, overhead view.

Regarding the acceleration terms, they are the components of the acceleration
vector aCoG evaluated as derivative of the velocity vector vCoG. Since the reference
frame of these two vectors in a moving reference frame, the following is applied:

aCoG = dvCoG

dt
= d(vxi)

dt
+ d(vyj)

dt
= dvx

dt
i + vx

di
dt

+ dvy

dt
j + vy

dj
dt

(2.19)

aCoG = dvCoG

dt
= v̇xi + vxrj + v̇yj − vyri = (v̇x − vyr)i + (v̇y + vxr)j (2.20)

aCoG =
C
ax

ay

D
=
C
v̇x − vyr
v̇y + vxr

D
(2.21)

Finally, the system of equation 2.18 can be rewritten as:

15

Vehicle Modeling

v̇x = 1
m

è
F F R

x cos δF R + F F L
x cos δF L − F F R

y sin δF R − F F L
y sin δF L+

+FRR
x + FRL

x + Fx,aero

é
+ vyr

v̇y = 1
m

è
F F R

x sin δF R + F F L
x sin δF L + F F R

y cos δF R + F F L
y cos δF L+

+FRR
y + FRL

y

é
− vxr

ṙ = 1
m

è
F F R

x

1
a sin δF R + t

2 cos δF R
2

+ F F L
x

1
a sin δF L − t

2 cos δF L
2

+
+F F R

y

1
a cos δF R + t

2 sin δF R
2

+ F F L
y

1
a cos δF L − t

2 sin δF L
2

+
+ t

2F
RR
x − t

2F
RL
x − bFRR

y − bFRL
y

é
(2.22)

These quantities can be numerically integrated in the simulation environment,
obtaining in this way quantities vx, vy and r. From these quantities, that fully
describe the motion of the mobile reference frame RF 1 and of the CoG of the
vehicle, also the linear velocity of each wheel’s reference frame can be obtained by
simple geometric considerations:

vF R
x = vx cos δF R + vy sin δF R + r

1
a sin δF R + t

2 cos δF R
2

vF R
y = vy cos δF R − vx sin δF R + r

1
a cos δF R − t

2 sin δF R
2

vF L
x = vx cos δF L + vy sin δF L + r

1
a sin δF L − t

2 cos δF L
2

vF L
y = vy cos δF L − vx sin δF L + r

1
a cos δF L + t

2 sin δF L
2

vRR
x = vx + r · t

2
vRR

y = vy − r · b

vRL
x = vx − r · t

2
vRL

y = vy − r · b

(2.23)

This velocities are then passed to each wheel subsystem, so that the slips can be
evaluated. The last unknown is the vertical load acting on each wheel, that in the
Pacejka model has a great influence on the evaluation of the force developed at the
ground contact point. The vertical load is deeply influenced by the presence of the
suspension system. In order to fully describe them, two more degrees of freedom
should be added to the model chassis about the roll and pitch motion. Since this
would deeply complicate the model analysis, a simplified approach has been followed.

16

Vehicle Modeling

The load acting on each wheel is influenced by four components:

• The static load due to the mass of the vehicle when standing still;

• The longitudinal load transfer due to the presence of longitudinal acceleration;

• The lateral load transfer due to the presence of longitudinal acceleration;

• The aerodynamic devices presence, which contribution can be divided into a
longitudinal component with coefficient cx and a vertical one with coefficient
cz (2.17.

For the lateral load transfer, it is possible to easily take into account for the
presence of the suspension system without including the suspension kinematic:
following the methods presented in [7] , the roll stiffness distribution and roll axis
position have been evaluated by the team Squadra Corse, and parameters like
the front and rear roll stiffness kϕ,F and kϕ,R, and the height of the roll axis zϕ,F

and zϕ,F have been obtained. Now the lateral load transfer due to the lateral
acceleration can be evaluated, as presented in [8]:

∆F y
z,F = m

t

1
kϕ,F

kϕ,F +kϕ,R
dCoG + b

L
zϕ,F

2
ay

∆F y
z,R = m

t

1
kϕ,F

kϕ,R+kϕ,R
dCoG + a

L
zϕ,R

2
ay

(2.24)

where dCoG = hCoG − zCoG is the vertical distance between the center of gravity
and the roll axis, as shown in Figure 2.4

Figure 2.4: Ride Roll distances.

For what regards the longitudinal load transfer, the suspension effect is neglected,
obtaining:

∆F x
z,F = −mhCoG

L
|ax|

∆F x
z,R = +mhCoG

L
|ax| (2.25)

For what concerns the aerodynamic effect on the vertical load, the aerodynamic
force is considered as acting in the CoP following 2.17. Summing up, the load
distribution between the four wheels can be evaluated as:

17

Vehicle Modeling

F F R

z = mg b
L

− ∆F x
z,F + ∆F y

z,F + Fz,aero
bCoP

L
− Fx,aero

hCoP

L

F F L
z = mg b

L
− ∆F x

z,F − ∆F y
z,F + Fz,aero

bCoP

L
− Fx,aero

hCoP

L

FRR
z = mg a

L
+ ∆F x

z,R + ∆F y
z,R + Fz,aero

aCoP

L
+ Fx,aero

hCoP

L

FRL
z = mg a

L
+ ∆F x

z,R − ∆F y
z,R + Fz,aero

aCoP

L
+ Fx,aero

hCoP

L

(2.26)

2.3 Simulation Environment
Considering the complexity of the complete tyre model analysied in 2.2.1, being
the simulation model developed with MATLAB® Simulink, the MFeval library can
be used [9]: using a .tir file that describes the tyre behaviour and constitutive
parameters, it is possible to evaluate forces and moments acting on the wheel.

Figure 2.5: Wheel subsystem simulation model developed on MATLAB® Simulink.

The developed tyre subsystem is able to evaluate the forces Fx,w, Fy,w and the
rolling resistance moment My,w of 2.13, starting from the input motor torque and
the wheel’s hub velocity, which is derived from the chassis overall dynamics. A
look-up table for torque limits evaluation has been added, following the motor’s
map provided by the manufacturer. Moreover, all the signals are collected into a
signal routing block, so that all the tyre info are also available outside the model
for scope purposes.
The tyre forces are considered as acting on the car following 2.13, which effect on
the chassis motion can be evaluated with the dynamic equations 2.22. The chassis

18

Vehicle Modeling

model is developed, as in Figure 2.6 starting from the input force contributions.
The wheel’s hub velocities 2.23 and the vertical load on each wheel 2.26 are then
fedback to each wheel subsystem. Other useful signals are routed outside the model
in order to obtain easy access to the chassis dynamics, similar to what has been
done with each wheel.

Figure 2.6: Chassis subsystem simulation model developed on MATLAB®

Simulink.

The overall simulation model can be obtained, as shown in Figure 2.7. In order
to make the model easily portable and tunable with experimental data, a mask
has been created, that initialises all the constants and parameters used in the model.

Of course, even with this level of complexity of the model, parameter uncertainties
and unmodelled behaviours affect the accuracy of the model. Thanks to track-test
data collected by the team Squadra Corse Driverless, it is possible to perform
some parameters correction, in order to fit the experimental data and make the
simulation model more accurate. In the real time application, two of the vehicle
states can be directly measured or estimated: in particular, while the Yaw Rate r
can be directly measured by means of the IMU sensor installed, the longitudinal
velocity vx is estimated in real time thanks to a Fuzzy Logic estimator [2]. Since the
odometry information of the vehicle is derived by these two quantities, in order to
validate and tune the developed model a comparison between the actual track-test
data and the two states is addressed. The inputs of the model during the simulation

19

Vehicle Modeling

are the data registered during the track tests of the the TV controller and the
steering controller outputs: in this way, it is possible to take into account for control
input delays, unmodelled behaviours or disturbances of the real system directly
inside the model, fitting the experimental data by tuning global parameters. This
procedure allows to tune the model parameters up until obtaining a sufficiently
low error, and in future simulations it will be possible to directly attach the low
level controllers directly to the developed model.
The results of the fitting procedure are shown in Figure 2.8: in particular, the
longitudinal velocity reached an absolute maximum error of 0.1m/s over 5m/s
velocity, meaning a relative error of about 2% between the developed model and the
actual real time measurement; the Yaw Rate shows a maximum error of 0.05rad/s,
but a relative error can not be evaluated, since when the Yaw Rare goes to zero the
relative error would go to infinity. In order to evaluate a performance parameter
for the Yaw Rate accuracy, the integral value of the error can be observed: over a
complete circuit lap, the total error is of about 7.45 deg, which corresponds to a
2% relative error of the Yaw Angle evaluation.

Figure 2.7: Complete simulation model developed on MATLAB® Simulink.

2.4 Prediction model
As discussed in the outline of this thesis work, in order to develop a proper MPC,
a prediction model must be selected. Following similar works in the Formula
SAE environment, a single-track bicycle model has been evaluated as a possible
candidate. In the Formula Student Driverless competitions, the single-track bicycle
model has proved to be a good trade-off between simplicity, that helps keeping

20

Vehicle Modeling

Figure 2.8: Data comparison between the simulation model and track-tests data.

the computational effort of the MPC less heavy, and accuracy of the predicted
dynamic. In the particular case of the Squadra Corse Driverless team, this model
finds greater accuracy with respect to similar automotive applications, since the
low level TV already deployed in the prototype car adopts as reference dynamic
the single-track bicycle model one.
A detailed description of the single-track model is well-documented in literature:
in particular, in this work the book [10] as been taken as reference.

Figure 2.9: Bicycle Model representation in RF 0.

21

Vehicle Modeling

2.4.1 Kinematic equations
The single-track model adopted for this work considers only front-wheel steering and
combined longitudinal and lateral dynamic. The vehicle’s kinematic is described
by the motion of its center of gravity (CoG), in which the reference frame RF 1,
described in 2.1, is placed. This frame moves in the 3D space with velocity vCoG

that has coordinates (vx, vy, vz) expressed in the local reference frame RF 1, and
the controller must ensure its tracking of a reference trajectory, that is expressed
as the set of coordinates [(Xref , Y ref)] in the global reference system RF 0.
Based on the Formula Student prototype application on which this thesis work is
focusing as described in section 1.1, the first assumption is that the vehicle moves
in a planar 2D environment, thus neglecting its movement along the z-axis.
Called (Xk, Yk) the global coordinates of the origin of the reference frame RF 1

at time instant k, which moves with velocity vCoG = (vx, vy, 0), and being ψk the
angle between the two reference systems x-axis above described, the rate of change
of (Xk, Yk) expresses the velocity vector of the vehicle expressed in the inertial
frame. This can be obtained by applying 2.11 to vCoG, so the following set of
equations that generally describe the kinematic of the vehicle expressed in RF 0

can be obtained: C
Ẋ
Ẏ

D
=
C
vx cosψ − vy sinψ
vx sinψ + vy cosψ

D
(2.27)

2.4.2 Dynamic equations
Next step is to derive the dynamic equations that describe the laws of motion of
the single-track bicycle model. Since the vehicle is considered to move in the 2D
space, only three equations are needed to fully describe the dynamical system: two
forces equilibrium equations along the longitudinal x-axis and lateral y-axis, and
one moment equilibrium equation to describe the yaw dynamic around the z-axis.
The forces and moments that are considered to be acting on the bicycle model are:

• Longitudinal and lateral tire forces exchanged with the ground, as explained
in chapter 2.2

• Drag forces due to the presence of air

• An external moment, called τT V , that takes into account any additional
moment caused by the low-level torque vectoring algorithm

Other forces, like vertical load, rolling resistance and downforce due to the
aerodynamic devices are not considered in this analysis.

Starting from Figure 2.10 where all the forces above mentioned have been made
explicit, the equilibrium equations can be easily derived:

22

Vehicle Modeling

max = Fx,f cos δf − Fy,f sin δf + Fx,r − Fx,aero (2.28)

may = Fx,f sin δf + Fy,f cos δf + Fy,r (2.29)

Iz ṙ = Fx,f lf sin δf + Fy,f lf cos δf − Fy,rlr + τT V (2.30)

By including 2.21, and solving for v̇x, v̇y and ṙ, the following system of equations
can be obtained:v̇x

v̇y

ṙ

 =

1
m

(Fx,f cos δ − Fy,fsinδ + Fx,r − Fx,aero +mvyr)
1
m

(Fx,f sin δ + Fy,fcosδ + Fy,r −mvxr)
1
Iz

(Fx,f lf sin δ + Fy,f lf cos δ − Fy,rlr + τT V)

 (2.31)

Figure 2.10: Bicycle model with acting forces.

2.4.3 Linearized model
By putting together 2.27, 2.1 and 2.31, a single system of equation describing the
single-track bicycle model’s kinematic and dynamic can be obtained:

Ẋ
Ẏ

ψ̇
v̇x

v̇y

ṙ

=

vx cosψ − vy sinψ
vx sinψ + vy cosψ

r
1
m

(Fx,f cos δ − Fy,f sin δ + Fx,r − Fx,aero +mvyr)
1
m

(Fx,f sin δ + Fy,f cos δ + Fy,r −mvxr)
1
Iz

(Fx,f lf sin δ + Fy,f lf cos δ − Fy,rlr + τT V)

(2.32)

where m and Iz are mass and yaw inertia of the vehicle, lf and lr the distances
from the center of gravity to the front and rear wheels, Fx,i and Fy,i are the forces

23

Vehicle Modeling

due to the tyres interaction with the ground, Fx,aero is the aerodynamic drag.

Having defined the system equations, since the end goal is to derive a linear
MPC, the objective is to transform the system 2.32 into a linear system in the form

ẋ = Ax +Bu (2.33)

where the state vector x is

x =
è
X, Y, ψ, vx, vy, r

éT
(2.34)

and the input vector must be defined.

As it can be easily noticed, the system 2.32 is non-linear in its implicit form,
due to the presence of cosine and sine functions, and products between states.
The objective of this thesis work is to develop a linear MPC that can guarantee a
satisfying trade-off between computational effort and performance of the prototype.
Thus the next step is to make explicit all the variables 2.34 and obtain at the end
a linear system.
First, the low level controller of the prototype has a great influence on the system
to control, thus some preliminary considerations about it have to be done: due to
the specific application prototype described in previous chapters, a suitable TV
algorithm has been developed by the team Squadra Corse Driverless PoliTO, that
aims to translate the instantaneous power request and the actual steering angle
into suitable torques to each wheel’s motor. The TV algorithm main objective
is to provide traction force by translating a reference acceleration command into
an instantaneous torque request that has to be delivered by the motors, avoiding
traction loss and instability. The reference command can originate by the accelerator
pedal, if a physical driver is present inside the vehicle, or by a reference signal
provided by the high level control if it is driving in autonomous mode. Thus the
longitudinal forces Fx,i in (2.32) can be considered as acting directly on the center
of gravity of the model instead of being divided between front and rear, and rewrite
the total longitudinal force as

Fx,tot = Fx,f + Fx,r = Ptot

vx

(2.35)

Moreover, the TV second objective is to compensates for understeering or
oversteering behaviour of the car, by controlling the vehicle’s yaw rate, trying
to reach a suitable online computed reference. This has been set to be based
on the ideal behaviour of the single-track bicycle model. This allows to greatly
simplify the high level control, in particular the MPC problem, since it can be

24

Vehicle Modeling

assumed that the dynamics of the plant to control is predictable and actually sim-
ilar to the single-track model used, so also the contribution of τT V can be set to null.

Taking into account also the aerodynamic drag force, which expression has been
derived in chapter 2.2.2, the system of equations 2.32 can thus be rewritten as:

Ẋ
Ẏ

ψ̇
v̇x

v̇y

ṙ

=

vx cosψ − vy sinψ
vx sinψ + vy cosψ

r
1
m

(Ptot

vx
− Fy,f sin δ − 1

2ρScxv
2
x +mvyr)

1
m

(Fy,f cos δ + Fy,r −mvxr)
1
Iz

(Fy,f lf cos δ − Fy,rlr)

(2.36)

Notice that, following 2.35, the contribution of Fx,i disappears from both v̇y and
ṙ equations.
The lateral forces Fy,i can be derived by he Pacejka tyre model already analyzed in
chapter 2.2.1. As it has been described, the tyre behaviour is highly non-linear,
considering its dependence from the side slip angle, the vertical load, the road
adhesion coefficient etc. Since the objective is to derive a linear model of the system,
a possible solution is to use the linearized Pacejka model which is based on the
following assumptions:

• small side slip angles, that guarantee the model to remain in the linear region
of the characteristic curve;

• Fy is null for straight line driving;

• the cornering stiffness is considered constant, so it’s neglected its dependency
from the vertical load and the road adhesion coefficient.

The first assumption can be considered valid for small lateral velocity and yaw
rate: since this is a first approach to a controller that will be tested on a full scale
prototype, the tests will not be conducted trying to reach high dynamics, so the
assumption can be considered valid. The second assumption is always valid, since
in the real vehicle, being double-track, the pneumatics are usually mounted so
that offsets in lateral force is compensated between right and left wheel. The last
assumption is probably the most critical, since the vertical load changes based on
the weight transfer during motion and on the presence of aerodynamic devices that
generate downforce. It also must be considered that, during cornering in a dual
track vehicle, vertical load significantly changes between left and right side of the
vehicle, as largely discussed in 2.2. In order to keep the model simple, an average
value of the cornering stiffness has been evaluated, based on the average vertical

25

Vehicle Modeling

load on each wheel. The lateral tire forces are then modelled as:
Fy,f = 2Cfαf ,

Fy,r = 2Crαr

(2.37)

As analysed in chapter 2.2.1, the side slip angle can be evaluated as the angle
between the total velocity of the wheel and the longitudinal direction: this can be
translated in the following function:

αw = arctan
A
vy,w

|vx,w|

B
(2.38)

Considering that the vehicle is moving with velocity (vx, vy) and rotating with
angular velocity r, and that a steering angle δ is present at the front wheel, the
following expressions for the side slip angles can be found by simple algebraic
manipulation (the longitudinal velocity is considered always positive since the
vehicle is forbidden from Formula SAE regulations to move in reverse):

αf = δ −
A

arctan vy + lfr

vx

B
,

αr = −
A

arctan vy − lrr

vx

B (2.39)

In the hypothesis of small side slip angles, the following approximation can be
made:

αf ≃ δ − vy + lfr

vx

,

αr ≃ −vy − lrr

vx

(2.40)

The lateral forces can then be written as:
Fy,f = −2Cf

vy

vx

− 2Cf lf
r

vx

+ 2Cfδ,

Fy,r = −2Cr
vy

vx

+ 2Crlr
r

vx

(2.41)

Finally, the original system of equations 2.32 can be written in its explicit form
as

Ẋ
Ẏ

ψ̇
v̇x

v̇y

ṙ

=

vx cosψ − vy sinψ
vx sinψ + vy cosψ

r
Ptot

mvx
− 2Cf

m

1
− vy

vx
sin δ − lf

r
vx

sin δ + δ sin δ
2

− ρScx

2m
v2

x + vyr
2Cf

m

1
− vy

vx
cos δ − lf

r
vx

cos δ + δ cos δ
2

+ 2Cr

m

1
− vy

vx
+ lr

r
vx

2
− vxr

2Cf lf
Iz

1
− vy

vx
cos δ − lf

r
vx

cos δ + δ cos δ
2

− 2Crlr
Iz

1
− vy

vx
+ lr

r
vx

2

(2.42)

26

Vehicle Modeling

where it have been made explicit the dependencies from the states of the system
defined in 2.34

x =
è
X, Y, ψ, vx, vy, r

éT
(2.43)

and the external inputs:
u =

è
Ptot, δ

éT
(2.44)

Having derived the explicit dynamic equations and both the state and input
vectors, the next step is to obtain a linear system in the form defined in 2.33. The
followed approach is the Jacobian linearization method ([11]), that approximates
the non-linear equation with its Taylor expansion to the first order evaluated in
the operating point (x,u). In this way, each non-linear equation can be written as:

fi(x,u) = fi(x,u) + ∂fi

∂xj

x,u

(xj − xj) + ∂fi

∂uk

x,u

(uk − uk) (2.45)

and by defining the deviation variables ∆x and ∆u as

∆xj = xj − xj

∆uk = uk − uk

(2.46)

the equation 2.45 becomes linear with respect to the new state vector ∆x and the
new input vector ∆u. The linearization method allows to obtain a linear model,
but it only approximates the non-linear one around the considered working point,
in other words it is only valid for small deviations of the states and the inputs.
For this reason the operating point selection has a great influence on the quality
of approximation. By comparison with the objective linear system 2.33, the only
difference is the presence of the term fi(x,u). In this cases, the usual approach
is to try to find a suitable point (x,u) such that this term goes to zero. This
particular point (or set of points) of the system is called equilibrium point, and
can be found by imposing

fi(x,u) = 0, i = 1 : 6 (2.47)

that, for the system in analysis, translates into solving the system of equations:

vx cosψ − vy sinψ = 0
vx sinψ + vy cosψ = 0
r = 0
Ptot

mvx
− 2Cf

m

1
− vy

vx
sin δ − lf

r
vx

sin δ + δ sin δ
2

− ρScx

2m
v2

x + vyr = 0
2Cf

m

1
− vy

vx
cos δ − lf

r
vx

cos δ + δ cos δ
2

+ 2Cr

m

1
− vy

vx
+ lr

r
vx

2
− vxr = 0

2Cf lf
Iz

1
− vy

vx
cos δ − lf

r
vx

cos δ + δ cos δ
2

− 2Crlr
Iz

1
− vy

vx
+ lr

r
vx

2
= 0

(2.48)

27

Vehicle Modeling

In a non-linear system of equations, where the number of equations to be solved
is less than the number of variables, the goal of finding equilibrium points could
result in the impossibility of finding an algebraic solution, or even in having an
infinite number of solutions. In the particular case of the system 2.48, there are six
equations and eight variables in total, that are:

(x,x) = (X,Y , ψ, vx, vy, r, Ptot, δ) (2.49)

First, an existing condition on the system must be imposed: it can be noticed
in fact that in some equations the velocity vx is present at the denominator, thus
the existing condition that must always be verified is:

vx /= 0 (2.50)

This represents a common problem of the single track model, that is said to be
ill-formed, since the definition of lateral slip has vx at the denominator. In this cases,
usually a simpler kinematic model is adopted at low velocities, where the interaction
between pneumatic and ground is not considered, then a blending procedure can be
adopted to smooth the transition between the kinematic model and the dynamic
one ([12]). For the particular implementation of the MPC developed in this thesis
work, the controller is designed to act when the car is already moving, and the
longitudinal velocity is always different from zero. Anyway, as it will be discussed
later on, also the problem of low velocity will be addressed and solved.
Having set the existing condition for all the equations, the system 2.48 can be
solved. The first equation to take into account is the third one, r = 0, that admits
of course a unique solution for the yaw rate variable:

r = 0 (2.51)

This solution implies that the vehicle should move rigidly in the 2D space without
any rotation around the vehicle’s z-axis. Intuitively, this condition alone corresponds
to a straight line driving with null steering, but this can also be demonstrated
analytically. Substituting r = 0 in the fifth and sixth equation, a subsystem of two
equations can be obtained:

2Cf

m

1
− vy

vx
cos δ + δ cos δ

2
+ 2Cr

m

1
− vy

vx

2
= 0

2Cf lf
Iz

1
− vy

vx
cos δ + δ cos δ

2
− 2Crlr

Iz

1
− vy

vx

2
= 0

(2.52)

By means of simple algebraic manipulation, the following system is derived:vy

1
Cr

Cf

1
vx

2
= δ cos δ − vy

vx
cos δ

vy

1
− Crlr

Cf lf

1
vx

2
= δ cos δ − vy

vx
cos δ

(2.53)

28

Vehicle Modeling

By means of substitution, the following result is obtained:

vy

A
Cr

Cf

1
vx

B
= vy

A
−Crlr
Cf lf

1
vx

B
(2.54)

In the hypothesis that vx is non null and non infinite (the first condition would
lead to a standing still vehicle, that is not an interesting condition to study, while
the second one is infeasible in reality), the only solution that satisfies 2.54 is

vy = 0 (2.55)

The two solutions 2.51 and 2.55 can be used to evaluate directly the equilibrium
condition for δ: by simply substituting them in either the fifth or sixth equations
of 2.48, and taking into considerations that the physical angle δ on a road vehicle is
limited, in the specific case of the Formula Student prototype in analysis is limited
to ±20°, the only feasible solution is:

δ = 0 (2.56)

The equilibrium states derived until now 2.51, 2.55 and 2.56 describe a straight
line driving condition as the equilibrium for the considered system. The fourth
equation of 2.48 can now be solved, that easily drives to:

Ptot = ρScx

2 v3
x = Pdrag (2.57)

Which is the dissipated power due to the aerodynamic drag force. Note that, from
the same equation, a dissipated power due to the side slip presence in case of
steering condition can be identified:

Palpha = 2Cf

3
−vy

vx

sin δ − lf
r

vx

sin δ + δ sin δ
4
vx = 2Cfαfvx sin δ (2.58)

Which is of course not influencing the equilibrium state Ptot since in straight driving
condition Palpha is null.
The remaining conditions on ψ and vx should be derived from the first and second
equations of 2.48, but unfortunately no solution can be obtained that satisfies both:
considering 2.55, the two simultaneous conditions to be satisfied are:vx cosψ = 0

vx sinψ = 0
(2.59)

which are both true only if vx = 0, condition that is in contrast with 2.50. It
derives that no equilibrium condition can be defined for both vx and ψ, together

29

Vehicle Modeling

with X and Y that do not appear in the system of equations.

Summing up, the expression of the dynamic equations at equilibrium fi(x, u)
are:

Ẋ
Ẏ

ψ̇
v̇x

v̇y

ṙ

x,u

=

vx cosψ
vx sinψ

0
0
0
0

(2.60)

The linearized equations can be now derived following 2.45, then the equilibrium
states of the vectors ∆x and ∆u can be multiplied by the Jacobian matrix, obtaining
the following formulation derived form 2.45:

fi(x,u) = fi(x,u) + ∂fi

∂xj

x,u

(xj − xj) + ∂fi

∂uk

x,u

(uk − uk) =

= ∂fi

∂xj

x,u
xj + ∂fi

∂uk

x,u
uk +

fi(x,u) − ∂fi

∂xj

x,u
xj − ∂fi

∂uk

x,u
uk

 (2.61)

where the first two terms are the elements of the matrix representation 2.33,
while the last term is constant but acts as a sort of disturbance to the system.

Ẋ = vx cosψ +

0
0

−vx sinψ − vy cosψ
cosψ

− sinψ
0

T

x,u

X −X
Y − Y
ψ − ψ
vx − vx

vy − vy

r − r

+
C
0
0

DT

x,u

C
Ptot − Ptot

δ − δ

D
=

=
è
0, 0,−vx sinψ, cosψ,− sinψ, 0

é
x +

è
0, 0

é
u − ψ(−vx sinψ)

(2.62)

30

Vehicle Modeling

Ẏ = vx sinψ +

0
0

vx cosψ − vy sinψ
sinψ
cosψ

0

T

x,u

X −X
Y − Y
ψ − ψ
vx − vx

vy − vy

r − r

+
C
0
0

DT

x,u

C
Ptot − Ptot

δ − δ

D
=

=
è
0, 0, vx cosψ, sinψ, cosψ, 0

é
x +

è
0, 0

é
u − ψ(vx cosψ)

(2.63)

ψ̇ =

0
0
0
0
0
0
1

T

x,u

X −X
Y − Y
ψ − ψ
vx − vx

vy − vy

r − r

+
C
0
0

DT

x,u

C
Ptot − Ptot

δ − δ

D
=

=
è
0, 0, 0, 0, 0, 0, 1

é
x +

è
0, 0

é
u

(2.64)

v̇x =

0
0
0

− Ptot

mv2
x

− 2Cf

m

1
vy

v2
x

sin δ + lf
r

v2
x

sin δ
2

− ρScx

m
vx

2Cf

m

1
1

vx
sin δ

2
+ r

2Cf lf
m

1
1

vx
sin δ

2
+ vy

T

x,u

X −X
Y − Y
ψ − ψ
vx − vx

vy − vy

r − r

+

+
C 1

mvx

−2Cf

m

1
− vy

vx
cos δ − lf

r
vx

cos δ + δ cos δ + sin δ
2DT

x,u

C
Ptot − Ptot

δ − δ

D
=

=
è
0, 0,−3

2
ρScx

m
vx, 0, 0, 0

é
x +

è
1

mvx
, 0
é

u + ρScx

m
vx

2

(2.65)

31

Vehicle Modeling

v̇y =

0
0
0

2Cf

m

1
vy

v2
x

cos δ + lf
r

v2
x

cos δ
2

+ 2Cr

m

1
vy

v2
x

− lr
r

v2
x

2
− r

−2Cf

m

1
1

vx
cos δ

2
− 2Cr

m

1
1

vx

2
−2Cf lf

m

1
1

vx
cos δ

2
+ 2Crlr

m

1
1

vx

2
− vx

T

x,u

X −X
Y − Y
ψ − ψ
vx − vx

vy − vy

r − r

+

+
C

0
2Cf

m

1
vy

vx
sin δ + lf

r
vx

sin δ + cos δ − δ sin δ
2DT

x,u

C
Ptot − Ptot

δ − δ

D
=

=
è
0, 0, 0, 0,−2(Cf +Cr)

mvx
,−2(Cf lf −Crlr)

mvx
− vx

é
x +

è
0, 2Cf

m

é
u

(2.66)

ṙ =

0
0
0

2Cf lf
Iz

1
vy

v2
x

cos δ + lf
r

v2
x

cos δ
2

− 2Crlr
Iz

1
vy

v2
x

− lr
r

v2
x

2
−2Cf lf

Iz

1
1

vx
cos δ

2
+ 2Crlr

Iz

1
1

vx

2
−2Cf l2f

Iz

1
1

vx
cos δ

2
− 2Crl2r

Iz

1
1

vx

2

T

x,u

X −X
Y − Y
ψ − ψ
vx − vx

vy − vy

r − r

+

+
C

0
2Cf lf

Iz

1
vy

vx
sin δ + lf

r
vx

sin δ + cos δ − δ sin δ
2DT

x,u

C
Ptot − Ptot

δ − δ

D
=

=
è
0, 0, 0, 0,−2(Cf lf −Crlr)

Izvx
,−2(Cf l2f +Crl2r)

Izvx

é
x +

è
0, 2Cf lf

Iz

é
u

(2.67)

In conclusion, the linearized model obtained for the single-track vehicle model

32

Vehicle Modeling

equations 2.42 can be expressed in matrix form as:

Ẋ
Ẏ

ψ̇
v̇x

v̇y

ṙ

=

0 0 −vx sinψ cosψ − sinψ 0
0 0 vx cosψ sinψ cosψ 0
0 0 0 0 0 1
0 0 0 −3

2
ρScx

m
vx 0 0

0 0 0 0 −2(Cf +Cr)
mvx

−2(Cf lf −Crlr)
mvx

− vx

0 0 0 0 −2(Cf lf −Crlr)
Izvx

−2(Cf l2f +Crl2r)
Izvx

X
Y
ψ
vx

vy

r

+

+

0 0
0 0
0 0
1

mvx
0

0 2Cf

m

0 2Cf lf
Iz

C
Ptot

δ

D
+

−ψ(−vx sinψ)
−ψ(vx cosψ)

0
ρScx

m
vx

2

0
0

(2.68)

Where the state matrix A and the input matrix B can be identified, and are
parametric since they still depend on the choice of vx and ψ. The additional
disturbance vector is not dependant by any state of the system, only by their initial
value of the state of the system. Since this disturbances have a mathematical expres-
sion that can be evaluated, this vector is usually called measured disturbance vector.

Being the linearized system an approximation of the original non-linear model, its
accuracy must be analysed: since for this thesis work the controller to be designed
will provide lateral dynamic control, in order to track a desired reference trajectory,
the accuracy about the three states X, Y , and ψ are analysed: simulating multiple
times the two systems, the non-linear and the linearized one, over different time
intervals, giving constant Ptot = Ptot and δ for each simulation, but changing the
steering nput between simulations, it is possible to evaluate the differences between
the final state (X, Y, ψ) reached by the two models. In particular, this analysis has
been developed for 1 second and 1.5 seconds time intervals, which are interesting
intervals for later anaysis.

As shown in Figure 2.11, the error about the X and Y position is below 1 meter
if simulating for 1 second, values that grow exponentially for higher time intervals,
for example they are more than doubled after just 0.5s. This results will be useful
when discussing the prediction horizon of the MPC controller.

33

Vehicle Modeling

Figure 2.11: Prediction error over 1 second and 1.5 seconds at constant inputs.

34

Chapter 3

MPC Problem Formulation

Being the MPC a discrete time controller, acting on a physical system that therefore
is continuous, some preliminary considerations about the real time implementation
have to be made. On the prototype for which the MPC is designed, it is already
deployed a electronic control unit (ECU) which objective is to collect data from
all sensors on the car (except the environment perceptive ones) via CANbus
communication, elaborate the control inputs for the actuators and send suitable
signals to them. In particular, for the steering actuator, the reference position is
set by the ACU, on which the MPC will be deployed, and the ECU translates this
reference into actual control input signal. This control unit runs at higher speeds
with respect to the ACU, in the particular Squadra Corse Driverless car it runs at
200Hz. When a target steering input is received from the ACU, the ECU applies
a zero-order-hold technique to the reference signal and keeps it constant until a
new reference is received from the ACU. An high level representation of the actual
steering control pipeline is shown in Figure 3.1.

The series of low-level steering control, steering actuator and vehicle, also thanks
to the presence of torque vectoring algorithm acting in parallel, can be considered
as a single-track vehicle model, as discussed in chapter 2.4.3, which overall dynamic
is represented by the system 2.36.

3.1 Discrete time prediction model

3.1.1 Local frame model formulation
In order to realise an efficient Model Predictive Controller, it is fundamental to
study the prediction model, adjust it to he desired problem formulation and evaluate
a proper cost function that is the key element for the optimization problem.
Starting from the prediction model, as discussed in chapter 2.4, in order to keep

35

MPC Problem Formulation

Figure 3.1: High level overview of the control scheme in which the MPC will be
deployed.

the controller simple and computationally efficient, a linear representation has been
chosen in the form

ẋ(t) = Acx(t) +Bcu(t) (3.1)

Where Ac and Bc are the continuous time system matrices.
The derived dynamic model, obtained through the Jacobian linearization method,

is expressed as

Ẋ
Ẏ

ψ̇
v̇x

v̇y

ṙ

=

0 0 −vx sinψ cosψ − sinψ 0
0 0 vx cosψ sinψ cosψ 0
0 0 0 0 0 1
0 0 0 −3

2
ρScx

m
vx 0 0

0 0 0 0 −2(Cf +Cr)
mvx

−2(Cf lf −Crlr)
mvx

− vx

0 0 0 0 −2(Cf lf −Crlr)
Izvx

−2(Cf l2f +Crl2r)
Izvx

X
Y
ψ
vx

vy

r

+

+

0 0
0 0
0 0
1

mvx
0

0 2Cf

m

0 2Cf lf
Iz

C
Ptot

δ

D
+

−ψ(−vx sinψ)
−ψ(vx cosψ)

0
ρScx

m
vx

2

0
0

(3.2)

It can be noticed that the two systems are similar, except for the contribution
of the previously defined measured disturbance vector. This disturbance can lead
to unmodelled dynamics in the prediction model, because the MPC approach

36

MPC Problem Formulation

that will be followed can not take into account for a measured disturbance. It is
possible to get rid of this undesired contribution by slightly changing the approach
to the trajectory reference tracking problem. The initial working conditions of the
controller to be designed has been set to the global reference frame RF 0, because
the reference trajectory is expressed as a vector in the inertial fixed frame. By
simply changing the reference frame in which the controller operates, going from
the fixed frame RF 0 to the local one RF 1, it is possible to locally set the initial
state to be null:

X = x = 0,
Y = y = 0,
ψ = 0

(3.3)

making possible also to bring to zero two of the measured disturbance contributions,
and simplifying the system matrices too. This result can be obtained by applying,
at the beginning of each prediction interval of the MPC routine, a roto-translation
of the reference vector to the local reference frame, using the transformation matrix
T1

0,k derived in chapter 2.1, taking the initial state of the vehicle X0, Y0, ψ0 as
parameters of the matrix.
Moreover, the objective of this thesis is to design a lateral dynamics controller
for the problem in analysis, and this implies that the longitudinal behaviour of
the vehicle is not being actually controlled. By making the hypothesis of constant
longitudinal velocity along the prediction horizon, thus making null its rate of
change v̇x, the prediction model can be formulated in a simpler and more convenient
expression:

ẋ
ẏ

ψ̇
v̇x

v̇y

ṙ

=

0 0 0 1 0 0
0 0 v0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 −2(Cf +Cr)

mv0
−2(Cf lf −Crlr)

mv0
− v0

0 0 0 0 −2(Cf lf −Crlr)
Izv0

−2(Cf l2f +Crl2r)
Izv0

x
y
ψ
vx

vy

r

+

0
0
0
0

2Cf

m
2Cf lf

Iz

è
δ
é

(3.4)
Note that this prediction model is the same of 2.68, so also the analysis on its

range of validity shown in 2.11 is still valid, since it has been conducted at constant
velocity.
The simplified prediction model obtained can now be used in the linear MPC
formulation adopted, since it can be fully expressed in the form described in 3.1.
It can be noticed that the matrix Ac is still not constant, since it depends on
the initial longitudinal velocity v0, making the system a linear parameter varying
(LPV) system.

37

MPC Problem Formulation

3.1.2 Physical constraints

In order to address the formulation of the MPC problem, the constraints of the
actual system must be taken into account first. Starting from the state constraints,
the first three states x, y, ψ have no actual constraint, since in principle the vehicle
is free to move in the 2D space, and the tracks limits are considered above, when
evaluating the desired trajectory to be followed. For what regards the other system
states, as vx, vy, r, their limitations are not of interest for the designed controller,
since its objective is to track a reference trajectory, and the vehicle limits of velocity
and handling are taken into account before the MPC routine, in the evaluation of
the desired trajectory. Summing up, the states constraints to be taken into account
in the MPC problem can be all put to infinite, this is also useful for the actual
real time implementation, since the solver, recognising the infinite value, avoids
checking limits on the states and therefore the computational time can be reduced.
For what regards the input constraints, in particular for the steering input δ, there
are two types of constraints that must be imposed: the first one is on its range of
motion, that is limited to ±20°, the second on its speed of actuation: the deployed
actuator on the prototype shows a low pass behaviour, with cut-off frequency at
4Hz. The rate of change of the input will be made explicit when deriving the
discrete time prediction model.

3.1.3 Discrete time model

In order to set up the optimization problem for the MPC algorithm, the prediction
model must be expressed in its discrete time equivalent. In signal processing theory,
the discretization of a continuous time signal is made by sampling the signal in a
uniformly-spaced time intervals, called sampling period Ts. This creates a sequence
of values that constitute the discrete time signal. When going in the opposite
direction, that is when converting a discrete signal into a continuous one, not
knowing at priory the entire sequence of the signal, usually the zero-order hold
conversion method is used, which simply holds the value of the discrete sequence
for the period Ts, creating a stair-like continuous time signal. Of course, this
"deconstruction" and "reconstruction" procedure modifies the original signal, in
particular information is lost between sampling intervals.
When dealing with dynamical systems expressed in matrix form 3.1, the goal is to
obtain an equivalent discrete time system:

x[k + 1] = Adx[k] +Bdu[k] (3.5)

that better approximates the continuous one, where k is the sampled time instant
[13]. It follows that the derivative of the state at time t is approximated as its

38

MPC Problem Formulation

value after a period Ts: being the general solution of the system 3.1:

x(t) = eActx(0) +
Ú t

0
eAc(t−τ)Bcu(τ)dτ (3.6)

the discrete matrices Ad and Bd can be obtained as:

Ad = eAcTs

Bd =
AÚ Ts

0
eAcτdτ

B
Bc

(3.7)

The expressions 3.7 represent the exact solution to the problem of finding the
discrete matrices of an LTI system.
Generally, the matrix exponential is a complex operation that is difficult to evaluate
numerically, resulting in a computationally expensive task to be performed. In the
specific case in analysis, where the system matrices are not constant and change in
time, the operation of matrix discretization must be computed online based on the
actual state of the model, in this case based on the initial longitudinal velocity vx.
Different numerical approaches are present to obtain a close approximation of the
matrix exponential, but they usually are numerically expensive. In this thesis work,
the Euler Backward method is applied, which approximates a function derivative
over the interval Ts as

ẋi ≃ xi[k] − xi[k − 1]
Ts

(3.8)

avoiding numerical instabilities of the state vector which can arise with similar
methods, like Forward Euler. By means of substitution, the following is obtained:

(I − TsA)x[k] = x[k − 1] + TsBcu[k] (3.9)

and finally the discrete time system, forward-shifting of one sample instant the
expression 3.9, can be expressed as:

x[k + 1] = Adx[k] +Bdu[k + 1] (3.10)

where
Ad = (I − TsAc)−1

Bd = TsAdBc

(3.11)

Note that, using the backward Euler formulation 3.10, the input vector is no more
u[k] as in 3.5, but is forward-shifted of one time instant in u[k+ 1]. By considering
that

u[k + 1] = u[k] + ∆u[k] (3.12)

39

MPC Problem Formulation

and changing the system discrete formulation asC
x[k + 1]
u[k + 1]

D
=
C
Ad Bd

0 I

D C
x[k]
u[k]

D
+
C
Bd

I

D
∆u[k] (3.13)

the final discrete time representation of the controlled system can be obtained,
called augmented system since u[k] is now a state of the system, and the actual
input has become ∆u. The augmented formulation allows to take into account also
for constraints about the rate of change of the input, which in the specific case of
this thesis work is of great importance as discussed in 3.1.2.

3.1.4 Reference trajectory discretization
The objective of the MPC, as discussed in chapter 1.2.3, is to track a reference
trajectory expressed as a set of coordinates [(Xref

i , Y ref
i)] in the global reference

frame RF 0. In chapter 3.1.1 the change of reference frame from global into local
has been discussed, then the actual reference trajectory is passed to the MPC in
the local frame RF 1 by applying to every set of coordinates the transformation 2.8.
The overall trajectory to be tracked, in the environment where the MPC will be
deployed, is generated by a ROS2 node developed outside the controller routine,
and it is evaluated when the full map has been acquired, that is after the first
lap is finished. This can be obtained with different methods, with the aim to
evaluate the optimal trajectory in order to optimize the lap time. At the end,
a matrix containing the global set of coordinates [(Xref

i , Y ref
i)] for the reference

trajectory is passed to the MPC node, but its points do not take into account
for vehicle dynamics along the track, in particular its instantaneous velocity. The
reference trajectory is in fact discretized with a constant distance of 10cm between
consecutive points. In order to have the MPC tracking a feasible trajectory and
achieve an optimal control input sequence, the reference trajectory must be suitably
modified taking into account how the controller evaluates the input sequence and
the predicted states.
The MPC uses a discrete time model, evaluated in the previous chapter, to predict
the future states in which the vehicle is going to be if the evaluated input sequence
is applied. At the beginning of each prediction interval, the vehicle is not said to
be already in track: it is almost always present a Cross Track error CrossTrack,
that is the distance between the vehicle’s CoG and the reference trajectory, as
shown in Figure 3.2. This error will also be a fundamental parameter to evaluate
the performances of the controller, since a low Cross Track error translates into a
vehicle being near to the desired trajectory. In order to evaluate this error, instead
of taking the closest point of the reference trajectory matrix, that as shown in
Figure 3.2 could lead to an error due to the original trajectory discretization, an
approximation of it CrossTrack∗ is evaluated, by finding the linear interpolation

40

MPC Problem Formulation

between the two closest points and its perpendicular passing through the vehicle’s
CoG. The intersection point is also used as first point of the reference vector passed
to the MPC (Xref

0 , Y ref
0).

Figure 3.2: Cross Track Error between the vehicle and the reference trajectory

Being the prediction model evaluated at constant longitudinal velocity, that
in each prediction interval is equal to the initial velocity v0, for every predicted
state the covered distance will be therefore constant, equal to v0 · Ts. Based
on this consideration, each reference point (Xref

i , Y ref
i) is evaluated by tracing a

circumference of radius v0 · Ts and center in the previous point, and computing
its intersection with the linear piece-wise interpolation of the points following
(Xref

0 , Y ref
0) along the original reference trajectory. By recursively applying this

procedure, a set of N points can be obtained that constitute the discretized reference
state passed to MPC. This set of points are then transformed in the local reference
frame by applying the transformation 2.8 obtaining the set of local coordinates
[(xref

j , yref
j)], j = 1 : N .

3.2 Optimization problem
The optimization problem formulation is the core of the MPC development, since
it requires a well established knowledge of the system to be controlled and the
parameters that influence it, so it is directly linked with the performances of the
final controller.
Summing up what has been obtained until now:

41

MPC Problem Formulation

• The continuous time prediction model 3.4:

ẋ =

0 0 0 1 0 0
0 0 v0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 −2(Cf +Cr)

mv0
−2(Cf lf −Crlr)

mv0
− v0

0 0 0 0 −2(Cf lf −Crlr)
Izv0

−2(Cf l2f +Crl2r)
Izv0

x +

0
0
0
0

2Cf

m
2Cf lf

Iz

δ (3.14)

• The discrete time matrices Ad and Bd, obtained following the Backward Euler
method 3.8:

Ad = (I − TsAc)−1

Bd = TsAdBc

(3.15)

• The augmented system formulation, where the input can be directly written
as δ: C

x[k + 1]
δ[k + 1]

D
=
C
Ad Bd

0 1

D C
x[k]
δ[k]

D
+
C
Bd

1

D
∆δ[k] (3.16)

• The states to be controlled are only y = [(xi, yi)], that can be obtained as:

yk =
è
1 1 0 0 0 0 0

é
xk = Cxk (3.17)

• The local reference trajectory yref = [(xref
i , yref

i)], obtained by re-discretizing
the global reference trajectory based on the actual velocity of the vehicle and
roto-traslating the objective points to the local reference frame by applying
2.9 in the point (X0, Y0, ψ0):

T1
0 =

cosψ0 sinψ0 0 −X0 cosψ0 − Y0 sinψ0

− sinψ0 cosψ0 0 +X0 sinψ0 − Y0 cosψ0
0 0 1 0
0 0 0 1

 (3.18)

• The system constraints:
δ = −20° ≤ δ ≤ 20° = δ

∆δ = −2πflim · Ts ≤ ∆δ ≤ 2πflim · Ts = ∆δ, flim = 4Hz

• The state is either measured or estimated outside the MPC:
x0 = x̂
δ0 = δ̂

42

MPC Problem Formulation

Finally, the desired optimization problem (OP) can be derived, which in its
general formulation is expressed as:

min
∆u1:N

qN
k=0

3...xk − xref
k

...2

Q
+ ∥uk∥2

Ru
+ ∥∆uk∥2

R∆u

4
s.t. xk+1 = Adxk + Bduk+1 k = 0, . . . , N

uk+1 = uk + ∆uk k = 0, . . . , N
∆u0 = 0
x0 = x̂
u0 = û
x ≤ xk ≤ x k = 1, . . . , N
u ≤ uk ≤ u k = 1, . . . , N
∆u ≤ ∆uk ≤ ∆u k = 1, . . . , N.

(3.19)

Where matrices Q, Ru and R∆u are the weight matrices, which contain the tuning
parameters that influence the final performances of the controller in therms of
reference tracking and input amplitude.
Since only the tracking of the coordinates (x, y) is of interest and the input vector
has only one element δ, 3.19 can be specifically formulated for the problem in
analysis as:

min
∆δ1:N

qN
k=0

3...yk − yref
k

...2

Qy
+Rδ2

k +R∆∆δ2
k

4
s.t. yk = Cxk

xk+1 = Adxk +Bdδk+1 k = 0, . . . , N
δk+1 = δk + ∆δk k = 0, . . . , N
∆δ0 = 0
x0 = x̂
δ0 = δ̂
δ ≤ δk ≤ δ k = 1, . . . , N
∆δ ≤ ∆δk ≤ ∆δ k = 1, . . . , N.

(3.20)

The optimization problem as been expressed by means of a quadratic cost function
and some linear constraints. In control theory, the formulation 3.20 is also addressed
as Finite-Horizon Optimal Control problem.

3.3 Real Time Implementation

3.3.1 Solver choice
The MPC optimization problem that has been derived has the relevant characteristic
of being well-suited for the Formula Student problem in analysis and of easy real
time implementation, since as of today a large number of solvers have been developed
that are able to efficiently solve a quadratic control problem.

43

MPC Problem Formulation

In particular, these solvers can find the optimal solution over a Finite Time Horizon
of a quadratic program (QP) expressed in the form:

minimize 1
2zT Pz + qT z

subject to bl ≤ Az ≤ bu
(3.21)

Where:

• z is the optimization variable

• P is called quadratic objective and is a positive semi-definite matrix

• q is the linear objective and is a positive semi-definite vector

• A is the linear constraint matrix

• bl and bu are the lower and upper bound vectors.

Between the most used linear solvers, especially in Formula Student applications,
some relevant ones are for example OSQP [14], qpDUNES [15], HPIPM [16],
qpOASES [17]. Between these solutions, OSQP has been adopted, since it is
computationally fast, can be easily implemented in different programming languages
such as C++ or MATLAB®, and has plenty of documentation and examples in
GitHub.

3.3.2 MPC problem casting to a QP problem

In order to develop the actual code for the MPC controller, the Optimal Control
Problem 3.20 has to be translated in the Quadratic Problem 3.21.
The optimization variable z of the QP problem is the vector that includes all the
states and inputs of the Finite Time Horizon, starting from k = 0 to k = N . For
the designed MPC controller, the optimized variable is expressed as:

z =
è
x0, x1, ... xN , δ0, δ1, ... δN , ∆δ1, ... ∆δN

é
(3.22)

While P is a block-diagonal matrix containing the weight matrices associated
to the states and inputs of z, and q contains the weighted reference state:

44

MPC Problem Formulation

P =

Q0
. . .

QN

Ru,0
. . .

Ru,N

R∆u,1
. . .

R∆u,N

(3.23)

q =

−Q0xref
0

−Q1xref
1

...

−QNxref
N

0nu

0ndu

(3.24)

This formulation for the objective function takes into account only for the
non-constant terms of the cost function in 3.19: it can be shown that, for the
generic simplified case of single state and single input (similar reasoning can be
applied to multiple state and input), the two cost function formulations for N = 0
become:

OP Cost Function = (x0 − xref
0)Q0(x0 − xref

0) + u0Ru,0u0 =
= Q0x

2
0 +Q0(xref

0)2 − 2Q0x0x
ref
0 +Ru,0u

2
0

QP Cost Function = 1
2zPz + qT z =

= 1
2(Q0x

2
0 − 2Q0x0x

ref
0 +Ru,0u

2
0)

(3.25)

The two formulations are equivalent, except for the constant term Q0(xref
0)2 that

is discarded and the multiplying factor 1/2. This has no influence in the problem
solution since the QP aims to minimize the cost function, and the minimum of the
function is found for the same control sequence in both cases, the only difference is
in the value of the cost function in the minimum.
The linear constraint matrix A is composed of two sub-matrices: the first is defined
as Equality Matrix, and evaluates the dynamic evolution of the system by solving

45

MPC Problem Formulation

for each time step the system of equations 3.13:

Inxx[0] = x0

Inuu[0] = u0

−Adx[k] + x[k + 1] − Bdu[k] − Bdx∆u[k] = 0
−Inuu[k] + Inuu[k + 1] − Indu∆u[k] = 0

(3.26)

The lower part is defined as Inequality Matrix, which is an identity diagonal
matrix and applies the inequality constraints of the QP formulation to check for
state and input constraints.

A =

Inx

Inu

−Ad Inx −Bd −Bd

. . .
. . . −Inu Inu −Indu

. . .
. . .

. . .
. . .

. . .

−Ad Inx −Bd −Bd

−Inu Inu −Indu

Inx

. . .

Inx

Inu

. . .

Inu

Inu

. . .

Inu

(3.27)

In the particular case of the OSQP solver, for the Equality part of the matrix,
instead of evaluating the solution of the equations 3.26 the solver applies to each
equation the simultaneous set of inequalities:

x0 ≤ Inxx[0] ≤ x0

u0 ≤ Inuu[0] ≤ u0

0nx ≤ −Adx[k] + x[k + 1] − Bdu[k] − Bdx∆u[k] ≤ 0nx

0nu ≤ −Inuu[k] + Iu[k + 1] − I∆u[k] ≤ 0nu

(3.28)

46

MPC Problem Formulation

As a result, the vectors bl and bu are derived as:

bl =
è
x0 u0 0nx 0nu 0ndu x u ∆u

éT
bu =

è
x0 u0 0nx 0nu 0ndu x u ∆u

éT (3.29)

47

Chapter 4

HiL Simulation and
Controller Tuning

4.1 ROS2 integration and simulation
As anticipated in chapter 1.2.3, the MPC algorithm is developed in a ROS2 en-
vironment using the C++ language. In order to obtain a first feedback about
the developed controller, a simulation model on the same environment must be
developed. Since the objective of this simulation model is not to validate and
properly tune the MPC parameters, but rather to check if the followed procedure
is correct, it is not necessary to develop an highly non-linear and accurate model
as in chapter 2.3. For this purpose, a single-track bicycle model has been adopted,
similarly to what has been done for the prediction model, following 2.31. In order
to have a first approach to the effects of the model mismatch between prediction
and simulation model, the non-linear formulation is adopted, where the lateral
forces Fy,f and Fy,r are evaluated following the Pacejka formulation 2.14, for which
the parameters can be obtained from the .tir file of the actual pneumatics mounted
on the prototype. Since the magic formula parameters are function of the vertical
load and the friction coefficient, instead of taking into account for their variation
both on the ROS2 simulation model and on the prediction model, constant values
are assumed. In particular, unitary friction coefficients are assumed in both longi-
tudinal and lateral direction, while for the vertical load, straight driving conditions
at constant vx = 10m/s are assumed (taking the higher velocity of the expected
operative range for the actual prototype, and therefore higher vertical load, the
lateral force will be higher too, in the attempt to partially compensate for the
prediction model error described in figure 2.11).

Notice that, when using a single-track model, the lateral force resulting from

48

HiL Simulation and Controller Tuning

Parameter Front wheel (i = f) Rear wheel (i = r)
Fz,i [N] 657 769
By [-] 8.9290 8.9475
Cy [-] 1.2441 1.2441

Dy [N/rad] 886.48 1029.90
Ey [-] 0.0128 0.0200
Vy [N] 28.3 31.8

Cα,i [N/rad] 9847 11464

Table 4.1: Tyre parameters of the Pacejka "Magic Formula" equation, evaluated
with static load experienced by each vehicle wheel during straight driving at
vx = 10m/s.

2.14 must be doubled, but the vertical offset Vy is null: in real vehicles, the tyres
are mounted symmetrical between right and left side, in order to balance the
vertical offset during straight driving. From 2.14 it can also be found that the
cornering stiffness Cα is the derivative of the function for null slip, and is equal to
Cα = ByCyDy.
The MPC C++ code has been developed, following the OP derived in 3.19 and
translated into a QP following 3.21. The MPC node has been integrated into
the ROS2 workspace developed by the Squadra Corse Driverless team, which
contains the real time workspace deployed on the ACU and a simulation model
which simulates the real prototype behaviour. The simulation model has been
developed as a single track bicycle model, as the one used for the prediction
model, with the difference that it is implemented in its non-linear formulation
2.32, using the Pacejka "Magic Formula" 2.14 to evaluate the Fy,i contributions.
This different model formulation allowed to have a first approach to the differences
between the prediction model of the MPC and a more realistic behaviour of the
real system. Moreover, the simulation workspace includes the entire software stack
of the RTI implementation, including environmental perception, state estimation,
SLAM algorithms, and communication. In particular, the feedback state used by
the MPC comes from the SLAM algorithm and not directly from the simulation
model: this will allow to take into account for noise and disturbances acting on
the real time signals, and to make the overall project easily portable to the target
ACU. This made possible to follow a software in the loop (SiL) validation approach,
having developed the controller directly in C++ language as it will be deployed in
the target hardware.
For an MPC algorithm, as a preliminary step, the controller frequency Ts and

49

HiL Simulation and Controller Tuning

an initial value for the prediction horizon N must be chosen. For the sampling
time Ts, its value depends on the signals that are processed by the algorithm.
The SLAM algorithm uses the odometry information running at 100Hz, which is
corrected using environmental perception data available at 10Hz frequency and
data association algorithms. Between two optimization instants, the information
about the state can be integrated with the odometry data. As a result the state
information can be obtained up to 100Hz if the odometry error is sufficiently low,
otherwise at 10Hz if only the optimized state is considered reliable. After some
simulation and real time tests conducted by the Squadra Corse Driverless PoliTO
team, the update frequency of the SLAM algorithm has been set to 20Hz, that
has proved to be a good compromise between data accuracy and computation cost
of the overall pipeline on the ACU target hardware. This sets the limit for the
controller frequency to 20Hz, that translates into a sampling time of Ts = 0.05s,
since higher frequencies means that the state is not updated between two sampling
instants. For what regards the prediction horizon N , based on the analysis about
the prediction model error of chapter 2.4.3, an upper bound of 1s has been evaluated
for the prediction model to be sufficiently accurate. Based on the initial value set
for the sampling time, the upper bound for the prediction horizon is set to N = 20.
The initial SiL tuning procedure of the controller’s parameters Q, Ru and Rdu has
been performed on the ROS2 simulation environment in two different conditions:
first, using nominal conditions both for the plant and the localization algorithm,
then including Gaussian noise on different levels of the simulation, in particular for
the simulated sensors such as LiDAR, Cameras (used by the SLAM localization
algorithm), IMU and steering sensor, with standard deviations typical of the real
prototype.

Here are presented the results and performances achieved by the controller. The
performance is evaluated using the CrossTrack∗ error absolute value as parameter,
and its RMS value during 1 lap of the circuit. The SiL tuning procedure has
been conducted at constant longitudinal velocity, since in the linearized model
the influence of longitudinal acceleration has been neglected. In the next tuning
process, involving a more complicated simulation model with disturbances, the
velocity will be not constant as it is in the real time prototype scenario, with the
objective to obtain a final value for the design parameters that try to achieve robust
stability and performance of the controller.
About the weight matrices, some preliminary considerations have to be made.
Based on the applied cost function 3.19 to be minimized, since the tracking of
the xref coordinate has the same importance of the tracking of yref , equal weight
qxy is assigned to the first two elements of the Q matrices. Since no reference is
provided for the remaining states, null weight is assigned for the remaining elements.
Moreover, the trade-off between performances and actuation cost is not expressed
as the absolute value of the weights but rather as the ratio between these values

50

HiL Simulation and Controller Tuning

Figure 4.1: Simulation race track, with cones (in blue and yellow) and Reference
Trajectory (in red), 5 meters for each grid’s square.

rδ

qxy
and r∆δ

qxy
. The weight matrices are then expressed and tuned as:

Q =

qxy

qxy

0
0

0
0

,Ru =

è
rδ

é
,R∆u =

è
r∆δ

é
(4.1)

Notice that qxy refers to a state, the distance, that is of the order of magnitude
of 1 − 10, while the steering and its rate are of the order of magnitude of 0.01 − 0.1.
For this reason it is preferred to adopt qxy = 1, so that the weights rδ and r∆δ can
be integers greater than 1 in order to have comparable contributions on the cost
function 3.19.
Based on the prototype application, the steering actuator full range does not
represent a problem to be controlled, but referring to the analysis made in 2.4.3 a
large value for the steering increases the presence of errors between the prediction
model and the actual system. In principle it derives that keeping the steering
input low will decrease the prediction error, but the effect on the CrossTrack∗
error is not defined yet. Simulations in nominal conditions have been conducted
in order to establish the effects of a positive weight rδ on the CrossTrack∗ error,
shown in Figure 4.2: increasing the command input weight, allows to obtain an

51

HiL Simulation and Controller Tuning

overall smaller steering input δ as expected, but the performance parameter rapidly
increases.

0 5 10 15 20 25 30 35 40

Time [s]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

C
ro

s
s
 T

ra
c
k
 e

rr
o

r
[m

]

r = 0

r = 1

r = 5

0 5 10 15 20 25 30 35 40

Time [s]

-15

-10

-5

0

5

10

15

 a
n

g
le

 [
d

e
g

]

Nominal conditions, v
x
 = 7.5 m/s

r = 0

r = 1

r = 5

Figure 4.2: Effects of rδ on the control input and on the performance parameter
Cross Track error in nominal conditions.

In Figure 4.3 the simulation results are displayed, over a single lap of the circuit
of Figure 4.1, in nominal conditions with constant longitudinal velocity. In Figure
4.4 the comparison between the nominal and disturbed conditions are shown.

0 5 10 15 20 25 30 35 40

Time [s]

0

0.05

0.1

0.15

0.2

C
ro

s
s
 T

ra
c
k
 e

rr
o

r
[m

]

r

 = 0

r

 = 1

r

 = 5

0 5 10 15 20 25 30 35 40

Time [s]

-15

-10

-5

0

5

10

15

 a
n

g
le

 [
d

e
g

]

Nominal conditions, v
x
 = 7.5 m/s

r

 = 0

r

 = 1

r

 = 5

Figure 4.3: Effects of r∆δ on the steering angle δ and on the performance parameter
Cross Track error in nominal conditions.

It can be noticed that, while in nominal conditions rδ = 0 provides the best
performances, when Gaussian disturbance is added on the overall simulation

52

HiL Simulation and Controller Tuning

0 5 10 15 20 25 30 35 40

Time [s]

0

0.05

0.1

0.15

C
ro

s
s
 T

ra
c
k
 e

rr
o

r
[m

]

Nominal vs Disturbed conditions, v
x
 = 7.5 m/s

Nominal

Disturbed

0 5 10 15 20 25 30 35 40

Time [s]

-15

-10

-5

0

5

10

15

 a
n
g

le
 [

d
e

g
]

Nominal vs Disturbed conditions, v
x
 = 7.5 m/s

Nominal

Disturbed

0 5 10 15 20 25 30 35 40

Time [s]

-2

0

2

4

 [
d

e
g

/s
]

Nominal vs Disturbed conditions, v
x
 = 7.5 m/s

Nominal

Disturbed

Figure 4.4: Comparison between Nominal and Disturbed conditions.

environment small corrections have to be made on δ. In order to filter out this
contributions, that are feasible for the real actuator but are undesired and can
lead to an excessive number of corrections, r∆δ is increased, making the actuation
smoother in exchange for a slightly greater CrossTrack∗ error. The RMS values
for the CrossTrack∗ errors are displayed in table 4.2

0 5 10 15 20 25 30 35 40

Time [s]

0

0.05

0.1

0.15

C
ro

s
s
 T

ra
c
k
 e

rr
o
r

[m
]

Disturbed conditions, v
x
 = 7.5 m/s

r

 = 0

r

 = 2

0 5 10 15 20 25 30 35 40

Time [s]

-15

-10

-5

0

5

10

15

 a
n

g
le

 [
d

e
g

]

Disturbed conditions, v
x
 = 7.5 m/s

r

 = 0

r

 = 2

0 5 10 15 20 25 30 35 40

Time [s]

-2

0

2

4

 [

d
e

g
/s

]

Disturbed conditions, v
x
 = 7.5 m/s

r

 = 0

r

 = 2

Figure 4.5: Effects of r∆δ on the performance parameter and noise rejecting in
disturbed conditions.

The results obtained from the SiL controller tuning process show that, while
in nominal plant conditions it is not necessary to take into account for the input
contribution in the tuning process, thus keeping null rδ and r∆δ, when considering

53

HiL Simulation and Controller Tuning

Cross Track Error [m]
Nominal Conditions Disturbed Conditions

r∆δ = 0 0.025 0.026
r∆δ = 1 0.027 0.029
r∆δ = 2 0.033 0.034
r∆δ = 5 0.045 0.053

Table 4.2: Cross Track error comparison between nominal and disturbed conditions
during SiL simulation

a disturbed plant, much more similar to the real system and with higher differences
with respect to the prediction model, the simulated noise effect on the steering
angle can be filtered by weighting the steering rate.
After a trial and error procedure, the following weight matrices are considered as
the best trade-off between performances and disturbance filtering:

Q =

1
1

0
0

0
0

,Ru =

è
0
é
,R∆u =

è
2
é

(4.2)

4.2 HiL Simulation and Tuning
The last part of the tuning process presented in this thesis work consists in perform-
ing an hardware in the loop simulation, where the controller is deployed directly on
the target ACU inside the ROS2 workspace that runs on the prototype. In this way,
Real Time performances can be evaluated in therms of computational cost of the
controller code. The data stream of the LiDAR and Cameras are simulated by a
dedicated ROS2 node, that is the same of the Simulator used in the previous chap-
ter, which based on the actual state of the vehicle simulates the cones perception
including disturbance about their position, similar to the one actually measured
from the real prototype on-track tests. The evaluated outputs of the ACU are sent
via the Serial-to-CAN interface to the dSPACE ECU, in the same configuration
as in real prototype. As shown in Figures 1.5 and 3.1, the real time ECU runs
the low level controller (LLC) used on the prototype, which includes TV, Steering
Controller and State Estimation, together to other fundamental applications like
the State machine, I/O communication and CANbus communication. All of this
components of the LLC have been developed and fully tested on the prototype

54

HiL Simulation and Controller Tuning

by the SCD team, using the MATLAB Simulink environment. The LLC runs
on a single Task, which is the set of operations that have to be performed by
the micro-controller (µC) inside a predifined time window, corresponsing to the
fundamental time at which the LLC is desired to run. If the Task is executed inside
that window, the hardware is said to be running on real time, while if the Task
can not be completed inside the time window, an Overrun occurs and the platform
is not running in real time. For the VaLentina prototype, the fundamental time of
the ECU has been set to 200Hz.
In order to perform HiL validation, the vehicle must be simulated on a real time
hardware, using a simulation model that is as close as possible to the real sys-
tem. Usually, the vehicle model runs on a separate real time hardware, which
fully simulates the prototype’s on-board communication from the ECU to all the
subsystems (like boards, sensors, actuator drivers) and includes the system model
which returns the system dynamics. This validation process can be expensive
since it requires a separate Real Time Hardware for the simulation. In the case
of the VaLentina prototype, the on-board ECU is a real time system that is also
used for prototyping and testing both in-vehicle and on-bench, thus it has high
computational capabilities: in particular the dSPACE MicroAutoBox III runs
on a quad-core processor, where each core can run a different Task to which a
different MATLAB Simulink model can be assigned, and each one can communicate
between each other and access the I/O interface. Since the LLC currently running
on the ECU has been developed on a single Task running at 200Hz, the simula-
tion environment can be developed on a separated Task on the same hardware,
avoiding the use of a separate Real Time system thus reducing the HiL validation
process’ cost. The two MATLAB Simulink models can communicate internally
on the dSPACE, so only additional blocks have to be added to the original LLC
to enable internal communication, thus keeping it almost unchanged with respect
to the real configuration. Of course, a suitable state machine has been developed
on the Simulation Task model in order to emulate the start-up procedure of the
vehicle. The full hardware setup has been reproduced on the test bench shown in
Figure 4.6: the NVIDIA Jetson AGX Orin (the ACU) communicates via Kvaser
Leaf Light V2 (the serial-to-CAN interface) to the dSPACE MicroAutoBox III
(the ECU), and a monitor is used for debug purpose and system functionality checks.

The vehicle model used in the Simulation Task is the one developed in chapter
2.3, where the input torques come directly form the torque vectoring deployed on
the LLC, while the steering angle is converted from the Steering controller output,
that is expressed in increments of the stepper motor used from the steering actuator,
to steering wheel degrees that is the actual sensor measure on the prototype and is
the input of the simulation model. The Simulation Task runs at 200Hz because the
model complexity, in particular the MFeval functions, do not allow lower execution

55

HiL Simulation and Controller Tuning

Figure 4.6: HiL setup: the NVIDIA Jetson AGX Orin (in the middle) communi-
cating with the dSPACE MicroAutoBox III (on the left) via Kvaser Leaf Light V2
(on the bottom).

times on the dSPACE without experiencing Overrun.
The first simulation is conducted with the same parameters as in the SiL best
simulation with weight matrices 4.2, constant longitudinal velocity, simulated
Gaussian error on perception sensors and odometry, and prediction horizon N = 20.

The first and most important difference between the two simulations occurs
on the steering angle signal which is higher in tight curves for the HiL simulation
with respect to the SiL case. This is explained by the understeering behaviour of
the real vehicle, which is well represented by the Simulation model on MATLAB
Simulink since it has been tuned using track test data. The understeering of
the real prototype is partially compensated by the torque vectoring algorithm,
which uses as reference yaw rate the single track model one, but of course the TV
controller correction is not instantaneous. Anyway, the MPC compensates for this
mismatch between the prediction model and the actual controlled system increasing
the control input if the expected dynamic is not satisfied.
The Cross Track error behaviour is very similar between the two simulation condi-
tions, with a RMS value of 0.035m with respect to the 0.034m of the SiL simulation,

56

HiL Simulation and Controller Tuning

0 5 10 15 20 25 30 35 40

Time [s]

0

0.05

0.1

0.15

C
ro

s
s
 T

ra
c
k
 e

rr
o
r

[m
] SiL vs HiL comparison, r = 0, r

 = 2, v

x
 = 7.5 m/s

SiL Simulation

HiL Simulation

0 5 10 15 20 25 30 35 40

Time [s]

-10

0

10

 a
n
g
le

 [
d
e
g
]

SiL vs HiL comparison, r = 0, r

 = 2, v
x
 = 7.5 m/s

SiL Simulation

HiL Simulation

0 5 10 15 20 25 30 35 40

Time [s]

-2

0

2

 [
d
e
g
/s

]

SiL vs HiL comparison, r = 0, r

 = 2, v
x
 = 7.5 m/s

SiL Simulation

HiL Simulation

Figure 4.7: Comparison between SiL simulation and HiL simulation.

so the obtained performances are similar in both cases. For the sake of completeness,
simulations have been conducted with the rate input weight r∆δ in the range 0 : 5
and the results compared to Table 4.2: also in the HiL case the value r∆δ = 2 has
proved to be the best trade off between performances and disturbance filtering.
In order to compensate for the understeering behaviour previously discussed, a
possible approach could be to tune also the rδ parameter in order to obtain smaller
steering angles: similar to the results obtained in the SiL case and shown in Figure
4.2, the obtained results is to have a more similar behaviour to the SiL case, but
the Cross Track Error increases. Since the objective is to optimize performance
and disturbance rejection, the actual behaviour of the steering angle is not relevant,
as soon as it remains in the actuation limit of ±20 deg.

Having tuned the controller’s parameters and obtained robust performances in
the case of disturbed plant, a further step is to include the the velocity profiler as a
reference generator for the longitudinal velocity. In this way the MPC robustness can
be tested also in non-null longitudinal acceleration conditions, which is in contrast
with the prediction model hypothesis (as discussed in 3.1.1), thus representing an
unmodelled disturbance.

The obtained results are shown in Figure 4.8, with the longitudinal velocity
shown in Figure 4.9. First important result is that, while the Cross Track Error
RMS value has slightly increased, from 0.035m for the constant velocity case to
0.037m, due to the unmodelled longitudinal acceleration that the MPC can not
properly evaluate, its maximum value has decreased instead. The maximum Cross
Track Error could be found in the tightest turn of the circuit, where the vehicle

57

HiL Simulation and Controller Tuning

0 5 10 15 20 25 30 35

Time [s]

0

0.05

0.1

0.15

C
ro

s
s
 T

ra
c
k
 e

rr
o
r

[m
] HiL simulation with non-constant v

x

0 5 10 15 20 25 30 35

Time [s]

-10

0

10

 a
n
g
le

 [
d
e
g
]

HiL simulation with non-constant v
x

0 5 10 15 20 25 30 35

Time [s]

-2

0

2

 [
d
e
g
/s

]

HiL simulation with non-constant v
x

Figure 4.8: Complete HiL Simulation including longitudinal and lateral control,
MPC performances.

0 5 10 15 20 25 30 35

Time [s]

5

6

7

8

9

10

v
x
 [
m

/s
]

HiL simulation with non-constant v
x

Figure 4.9: Complete HiL Simulation including longitudinal and lateral control,
longitudinal dynamics.

was forced to turn at 7.5m/s, while with the velocity profiler the longitudinal
velocity is kept lower, providing more controllability of the system. Even with
higher velocities, the designed MPC has proved to achieve robust performances in
the presence of non-null longitudinal acceleration, which is the most realistic case
for the real prototype.

Having obtained satisfying performances and noise rejection, the prediction
horizon N can be also tuned, with the objective to reduce the computational
time of the optimization problem. This procedure is conducted by gradually
decreasing the prediction horizon, that will have as a consequence a decrease in the
performances, that will be acceptable up until a certain value of N . The obtained
values for RMS cross track error and Computational time of the whole MPC node
exhecution are shown in Table 4.3.

It is easily shown that the rate of performance degradation is very low up to
N = 10, while the computational time is proportional to N . When further reducing

58

HiL Simulation and Controller Tuning

CrossTrack RMS [m] Computational time [10−3 s]
N = 20 0.037 1.029
N = 15 0.037 0.831
N = 10 0.039 0.585
N = 5 0.054 0.294

Table 4.3: Cross Track error and computational time comparison when decreasing
the prediction horizon.

the prediction horizon up to N = 5, the Cross Track Error experiences a rapid
increase. In order to keep the performances in a "linear region" of the performance
degradation rate, with a sufficient margin for further tuning in the real prototype,
it is preferred to keep N = 15, since the computational time of the controller is
very low, especially if compared with other nodes running on the ACU.

59

Chapter 5

Conclusions

5.1 Results

In this thesis work, a simple but effective solution for the problem of path tracking
of an autonomous vehicle has been presented, with the particular objective of
implementing the controller on a real Formula SAE prototype. The problem has
been solved by implementing a linear model predictive controller which satisfies
both requirements of computational efficiency (1.029 ∗ 10−3s on the target hard-
ware) and performances (expressed in therms of mean Cross Track Error on a
simulated circuit). The controller has been tested extensively in two steps. The
first validation has been conducted using a software in the loop approach, by
deploying the controller as a ROS2 node developed in C++ language, in the final
configuration as in the target hardware, and performing the controller parameters
tuning using a virtual simulator inside the ROS2 simulation workspace. The second
validation step has been conducted using an hardware in the loop approach, where
the MPC has been deployed on the workspace of the target hardware (called ACU),
recreating the actual communication with the downstream architecture of the
prototype, using the same Real Time Hardware (called ECU) that is deployed in
the prototype. The simulation environment has been developed using the same
electronic control unit, since it has high computational capabilities suitable for
real time testing, which allowed to keep the costs for an HiL simulation to the
minimum, where the self-developed vehicle model (which has been validated using
track test data) has been integrated downstream the control pipeline.This process
allowed a full validation of the software stack starting from the cones identification
to the low level control action.
The result of this thesis work is a fully tuned and integrated MPC on the target
hardware, which is ready for testing on the real prototype, and has been already

60

Conclusions

tested in stressed conditions to evaluate the controller’s robust stability and perfor-
mances in the presence of the disturbances that have been observed are affecting
the real prototype.

5.2 Future works
The results presented in this thesis work are well promising in terms of Real Time
application on the Formula Student prototype of the Squadra Corse Driverless team.
Next step for the controller is to organize track tests and have a final validation for
the proposed solution.

One of the major drawbacks found during HiL simulation was the understeering
behaviour of the Simulation model and the actuation delay of the TV. In order to
overcome this, a possible future development could be to use the predicted yaw
rate of the prediction model as yaw reference, instead of the ideal yaw rate of a
single track model to which is applied the actual steering angle. If properly tuned,
this change of the yaw reference can guarantee a "predictive" behaviour of the TV
when the MPC is running, allowing more predictable performances and a more
realistic prediction model if compared with the real system.

Another possible future approach can also be to develop a MPC that accounts
for both lateral and longitudinal dynamic control, with the objective to optimize
lap time and have a single controller instead of two different pipelines.

Finally, the designed controller has proved to be computationally efficient and
adapt for Real Time applications, but to achieve this goal the prediction model has
been linearized and simplified, and this process brings errors in the predicted dy-
namic. Since there is wiggle room for improvements in terms of available computing
power, a possible future step is to implement non-linear solutions, supported by last
generation non-linear solvers (ACADOS) that present slightly higher computational
times in exchange for higher accuracy.

61

Bibliography

[1] S. Thrun, Y. Liu, D. Koller, A.Y. Ng, Z. Ghahramani, and H. Durrant-Whyte.
«Simultaneous Localization and Mapping With Sparse Extended Information
Filters». In: International Journal of Robotics Research (2004) (cit. on p. 4).

[2] Angelo Bonfitto, Stefano Feraco, Marco Rossini, and Francesco Carlomagno.
«Fuzzy Logic Method for the Speed Estimation in All-Wheel Drive Electric
Racing Vehicles». In: 23 (Jan. 2021), B117–B129 (cit. on pp. 6, 19).

[3] Steven M. LaValle. Planning Algorithms. Cambridge, England: Cambridge
University press, 2006 (cit. on p. 7).

[4] Guiggiani M. The science of vehicle dynamics. Springer Nature, 2019 (cit. on
p. 13).

[5] Pacejka H.B. Tyre and Vehicle Dynamics. Oxford, UK: Butterworth-Heinemann,
2006 (cit. on p. 13).

[6] Pacejka H.B. Besselink I.J.M. Schmeitz A.J.C. «An improved Magic Formu-
la/Swift tyre model that can handle inflation pressure changes». In: Taylor
Francis 48 (2010), pp. 337–352 (cit. on p. 13).

[7] Metz L.D. Milliken D.L. Kasprzak E.M. Race Car Vehicle Dynamics. SAE
International, 2013 (cit. on p. 17).

[8] Crocombe A. Sanpo’ E. Sorniotti A. «Chassis Torsional Stiffness: Analysis
of the influence on Vehicle Dynamics». In: SAE International 0094 (2010)
(cit. on p. 17).

[9] Furlan M. MFeval. 2021. url: https://www.mathworks.com/matlabcentra
l/fileexchange/63618-mfeval (cit. on p. 18).

[10] Genta G. Motor Vehicle Dynamics: Modelling and Simulation. Singapore:
World Scientific Publishing Company, 1997 (cit. on p. 21).

[11] Horowitz Packard Poola. «Dynamic System and Feedback». In: Barkeley,
California: Department of Mechanical Engineering University of California,
2002. Chap. 19 (cit. on p. 27).

62

https://www.mathworks.com/matlabcentral/fileexchange/63618-mfeval
https://www.mathworks.com/matlabcentral/fileexchange/63618-mfeval

BIBLIOGRAPHY

[12] Juraj Kabzan et al. «AMZ Driverless: The Full Autonomous Racing System».
In: CoRR abs/1905.05150 (2019). arXiv: 1905.05150. url: http://arxiv.
org/abs/1905.05150 (cit. on p. 28).

[13] D’Andrea. Signals and Systems. Zurich, Switzerlanda: ETH Zurich, 2018
(cit. on p. 38).

[14] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. «OSQP: an op-
erator splitting solver for quadratic programs». In: Mathematical Programming
Computation 12.4 (2018), pp. 637–672 (cit. on p. 44).

[15] M. Diehl J. V. Frasch S. Sager. «A parallel quadratic programming method
for dynamic optimization problems». In: Mathematical Programming Compu-
tation, 2003.02547 (2015) (cit. on p. 44).

[16] M. Diehl G. Frison. «HPIPM: a high-performance quadratic programming
framework for model predictive control». In: arXiv preprint 7.3 (2020), pp. 289–
329 (cit. on p. 44).

[17] M. Diehl J. V. Frasch S. Sager. «A parametric active-set algorithm for
quadratic programming». In: Mathematical Programming Computation, 6.4
(2014), pp. 327–636 (cit. on p. 44).

63

https://arxiv.org/abs/1905.05150
http://arxiv.org/abs/1905.05150
http://arxiv.org/abs/1905.05150

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Formula SAE
	Squadra Corse Driverless Team
	The Team
	The prototype: VaLentina
	Use of the MPC algorithm

	Vehicle Modeling
	Reference frames and transformations
	Vehicle Dynamics Equations
	Wheel dynamics
	Chassis dynamics

	Simulation Environment
	Prediction model
	Kinematic equations
	Dynamic equations
	Linearized model

	MPC Problem Formulation
	Discrete time prediction model
	Local frame model formulation
	Physical constraints
	Discrete time model
	Reference trajectory discretization

	Optimization problem
	Real Time Implementation
	Solver choice
	MPC problem casting to a QP problem

	HiL Simulation and Controller Tuning
	ROS2 integration and simulation
	HiL Simulation and Tuning

	Conclusions
	Results
	Future works

	Bibliography

