
POLITECNICO DI TORINO
DIPARTIMENTO DI ELETTRONICA E TELECOMUNICAZIONI

Master of Science in Mechatronic Engineering

Master of Science Thesis

Modelling and Validation of
Socially-Aware Navigation

Algorithms for Mobile Robots in
Populated Environments

Supervisors
Prof. Alessandro Rizzo
Dr. Giada Galati

Candidate
Giacomo Vignolo
Student ID 302159

December 2023

Acknowledgements

All’inizio di questo elaborato, che rappresenta l’atto conclusivo del mio lungo e
impegnativo percorso universitario, desidero dedicare alcune righe a tutti coloro
che sono stati al mio fianco, rendendo più leggero e piacevole questo viaggio.

Un sentito ringraziamento va al mio relatore, Alessandro Rizzo, e alla Dott.ssa
Giada Galati, per la loro infinita disponibilità, pazienza e tempestività di risposta
ad ogni mio dubbio e perplessità. Un grazie speciale va ad Andrea, collaboratore
essenziale per il progetto di tesi, e a tutti i dottorandi e tesisti che ho conosciuto in
questi mesi al DET e nel laboratorio di robotica. Ogni giorno mi sono sentito parte
del gruppo, condividendo momenti utili per la mia crescita professionale, ma anche
divertenti, come il giorno in cui sono arrivato in ritardo per preparare le frittelle di
cipolla per tutti.

Senza il sostegno dei miei genitori e della mia famiglia, non sarei mai potuto
arrivare fin qui. Grazie per essere stati sempre al mio fianco, nonostante molte volte
l’ansia e la pressione mi abbiano reso antipatico soprattutto nei vostri confronti.
Grazie papà, per avermi dato l’opportunità di raggiungere questo traguardo. Grazie
mamma, per le borsate di cibo e perché è principalmente grazie a te se in molti
momenti non mi sono lasciato prendere dallo sconforto. Grazie Laura, che per
prima mi ha insegnato ad usare il pc e mi ha regalato il primo Arduino, e grazie
Matteo, sempre pronto a darmi consigli “politecnici”. Grazie nonna Anna per tutti
i sughi che mi hai preparato in questi anni e per avermi fatto sentire a casa ogni
domenica mattina, quando ero felice di smettere di studiare per venire a prenderti
in macchina per pranzare tutti insieme. Grazie anche a tutti gli altri.

Ringrazio anche tutti i miei colleghi, gli amici vecchi e quelli nuovi che in questi
anni hanno sopportato le mie lamentele e assecondato le mie pazzie, come le gite
in montagna dell’ultimo minuto o le cene improvvisate con quello che rimane nel
frigo per non sprecare nulla.

Grazie Alex, con te ho condiviso tutti i corsi della magistrale e siamo stati un
ottimo team. Il rapporto che si è creato va al di fuori delle mura universitarie, e
come sai, non sono molto bravo a esprimermi in questi casi. Ti ringrazio per avermi
spronato a dare il meglio ogni giorno e spero che anche per te sia stato così. Sto

ancora aspettando l’arbanella di pesto di pistacchio!
Grazie Dave, Luca, Silvia, Eli, Mauri e Asti. Via Pigafetta è stata per me un

luogo felice quanto la Liguria. Nonostante fossi entrato in casa da quasi sconosciuto,
mi avete subito fatto sentire bene e avete sempre avuto tempo di scambiare due
parole quando serviva. Auguro a chiunque di avere nella loro vita dei coinquilini
come voi. E poi, siete stati le mie cavie preferite per i miei esperimenti culinari.
Che si fa alla cena di Natale? Iniziate a pensarci che manca molto poco.

Grazie Gabriele, Giulio, Mariagrazia, Stelio, Mattia, Federico e a tutti i miei
colleghi e compagni di studio di questi anni. Dagli aperitivi con gnocchi alla
romana prima delle sessioni di fisica due, fino alle giornate passate ad insegnarci il
dialetto vicendevolmente, ho passato dei bei momenti con voi che sicuramente non
dimenticherò.

Grazie a Fra e Patty. Ci siete sempre state, anche se ci vediamo pochi giorni
all’anno. Grazie a Rachi, Bru, Ilyas, Bubi, Virgi, Bertu, Perro, Dodo, Fil, Toni,
Zuna, Stella, Dami. . . E a tutti gli amici che hanno condiviso con me dei bei
momenti negli ultimi anni e che qui non riesco a citare. Sono quello che sono e
sono riuscito ad arrivare fino a qui anche grazie ai momenti di svago passati con
voi e alle discussioni che abbiamo avuto. Sono cambiato molto negli ultimi anni ed
ognuno di voi mi ha trasmesso qualcosa. Spero di aver fatto altrettanto.

Infine, vorrei ringraziare tutti i miei amici "storici" di Pallare. A causa della
lontananza abbiamo perso un po’ i contatti, ma quando ci ritroviamo insieme alle
feste di paese o alle castagnate, mi fate sentire sempre parte di qualcosa che non ha
mai smesso di esistere. Ora che ho finito di studiare non ho più scuse e riusciremo
ad organizzare la tanto agognata pizzata!

Grazie a tutti, senza di voi non ce l’avrei mai fatta.
Ora inizia il difficile. Ora inizia il bello.

iii

Abstract

In our current era, robots have transcended industrial confines and are being
deployed across multiple sectors, necessitating a heightened degree of autonomy.
Anticipating the imminent future, it is plausible that human-robot interaction
will be part of our daily activities, and as a consequence, robotic entities will
inevitably manage their navigation within environments shared with humans. In
these contexts, a robot must engage in special behaviors designed to ensure safety
in its interactions with humans. This consideration extends beyond physical safety
to include psychological aspects associated with sharing an environment with an
automaton. To ensure that both aspects of the robot’s behavior are effectively
integrated, the robot should move with the aim of causing as little disturbance
as possible to moving pedestrians. This involves a commitment to being socially
accepted by respecting social and cultural norms imposed by society. Although
existing algorithms for socially-aware robot navigation ensure safety, many of them
generate unnatural trajectories and have limitations in predicting pedestrians’ future
movements. Thus, the primary objective of this thesis is to develop a navigation
algorithm for mobile robots capable of predicting human future movements, with the
aim of ensuring the generation of natural trajectories and guaranteeing comfort for
interacting humans. To achieve our goal, the modeling of human motion in a shared
environment, and consequently, the decision-making process during navigation, is
conducted by introducing Game theory. Game theory serves as a mathematical tool
in which players make decisions that may influence each other. Unlike the majority
of the solutions in the literature, game theory models the decision-making process
of humans, treating them and the robot as rational agents that interact with each
other. Therefore not only the interaction between the robot and the pedestrians
individually is modeled, but the prediction takes into account also the mutual
influence of the pedestrians. In our approach, named Game Theory Planner (GTP),
each agent aims to find an optimal sequence of actions to generate an optimal
trajectory to follow. The solution of the game is considered to be the attainment
of the well-known Nash equilibrium. Simulations have shown good performance,
but the time needed for computations makes the overall algorithm impractical for
real-time implementation on a real robot. To overcome this issue, the algorithm
is used to create a training dataset for a fully-connected neural network, which is
used in practice to replace the computation of the action decided by the GTP. The
proposed approach has been validated through a Monte Carlo numerical simulation
performed in Gazebo, reproducing a virtual representation of operating conditions.
Specifically, the GTP is compared with two other state-of-the-art algorithms: the
Social Force Model (SFM) and Optimal Reciprocal Collision Avoidance (ORCA).

The comparison has been performed using state-of-the-art metrics, focusing on the
naturalness of the movements and the perceived comfort. Each algorithm is inserted
as a local planner into the navigation stack of a simulated robot (Locobot wx250s
of Trossen Robotics), and several point-goal trials are performed in an environment
shared with simulated pedestrians. The evaluation procedure indicates that GTP
reaches a similar performance to the other approaches, opening the possibility of
reaching remarkable results with few predicted future improvements.

ii

Table of Contents

List of Tables iii

List of Figures iv

Acronyms vi

1 Introduction 1
1.1 Research context . 1
1.2 Thesis aim and our approach . 2
1.3 Thesis organization . 3

2 Robot navigation 6
2.1 Basics . 6

2.1.1 Path planning . 7
2.2 Popular paradigms . 9

3 Socially-aware robot navigation 11
3.1 Related work . 12

3.1.1 Human-robot interaction modeling 12
3.1.2 Solutions proposed in literature 15

4 Algorithms description 21
4.1 Social Force Model . 21

4.1.1 Basics . 21
4.1.2 Social forces definition . 22
4.1.3 Motion generation . 23

4.2 Optimal Reciprocal Collision Avoidance 23
4.2.1 Velocity Obstacles . 25
4.2.2 Reciprocal Velocity Obstacles 26
4.2.3 Optimization basics . 27
4.2.4 ORCA problem formulation 28

i

4.2.5 Implemented ORCA algorithm 35
4.3 Game Theory Planner . 39

4.3.1 Game theory basics . 40
4.3.2 GTP game formulation . 42
4.3.3 Implemented GTP algorithm 47

5 Software tools used and hardware description 53
5.1 ROS . 53

5.1.1 Basic concepts . 54
5.1.2 Navigation stack . 55
5.1.3 Rviz . 56

5.2 Gazebo . 57
5.2.1 SFM Gazebo plugin . 58

5.3 Tensorflow . 58
5.3.1 Basics . 59
5.3.2 Keras . 60
5.3.3 Details about GTP real-time implementation 61

5.4 Robot description: Locobot-WX250s 63
5.4.1 Main components . 63

6 Matlab simulations 69

7 Gazebo simulations and performance evaluation 73
7.1 Evaluation procedure and metrics 73

7.1.1 Metrics used . 74
7.2 Simulation test design and procedures 76

7.2.1 Virtual environment description 76
7.3 Obtained results . 78

8 Conclusions and future works 81

Bibliography 83

ii

List of Tables

4.1 Parameters used in the ORCA algorithm. 37
4.2 Parameters used in the GTP algorithm. 49

7.1 Mean and standard deviation values for the computed metrics. . . . 79

iii

List of Figures

1.1 Locobot WX250s from Trossen Robotics[10] 3
1.2 Sample representation of a simulation in Gazebo virtual environment 4

2.1 Robot navigation scheme . 7
2.2 Navigation pipeline[13] . 8
2.3 Navigation elements represented into a sample map[13] 8

3.1 Typical arrangement of humans observing reciprocally their personal
space, highlighted as blue circles [1]. 13

3.2 Representation of the intimate and personal zone [1]. 13
3.3 Representation of the information process space [1]. 14
3.4 Algorithm classifications proposed. 16
3.5 Navigation methods for robot social behavior[34]. 17

4.1 The Velocity Obstacle VOA
B(vB) of a disc-shaped obstacle B to a

disk-shaped agent A [32]. 25
4.2 The Reciprocal Velocity Obstacle RVOA

B(vB, vA) of agent B to agent
A [32]. 26

4.3 (a) A configuration of two agents. (b) The velocity obstacle VOτ
A/B.

(c) The set of collision-avoiding velocities CAτ
A/B(VB) for agent A

given that B selects its velocities from some set VB [9]. 30
4.4 Geometrical construction of ORCAτ

A/B and ORCAτ
B/A [9]. 31

4.5 A schematic overview of the sensing-acting loop performed by the
actor during a step [9]. 32

4.6 A scheme explicating the approximation of a circular set by means
of nedg half-planes. 35

4.7 Simple scheme explaining the Sequential Best Response Approach
applied in our context. 47

5.1 ROS communication paradigm [63]. 55
5.2 move_base package schematic overview [67]. 56
5.3 RViz interface. 57

iv

5.4 Gazebo simulation with pedestrian moving using SFM plugin. . . . 58
5.5 Different visual interpretations of a three axis tensor, with shapes

specified as [3, 2, 5] [62]. 60
5.6 Representation of a simplified Fully-connected Neural Network (FCNN).

It is composed by four input neurons, two hidden layers of five and
three neurons and three output neurons. 62

5.7 A schematic representation summarizing the procedure followed for
the GTP real-time implementation. Preliminarily a large number of
GTP Matlab simulations were conducted to generate a dataset. This
dataset was then utilized to train the FCNN, intended to replace the
trajectory planner of the simulated robot. The FCNN takes inputs
from direct sensing of the simulated environment, and its outputs
enable the motion planner to compute the commands to be sent
to the simulated robot. Subsequently, the Gazebo information is
updated, and the loop restarts. 63

5.8 Locobot WX250s [10]. 64
5.9 Create3 mobile base [10]. 65
5.10 RPLIDAR A2M8 [10]. 65
5.11 Intel Realsense Depth Camera D435 [10]. 66
5.12 Intel NUC 8i3BEH [10]. 67
5.13 WidowX 250 Robot Arm [78]. 68

6.1 Generated trajectories obtained considering four agents moving with
the proposed Game Theory prediction model. 69

6.2 Generated trajectories obtained considering six agents moving with
the proposed Game Theory Planner. 70

6.3 Generated trajectories obtained considering four agents moving and
seven possible actions. 71

6.4 Generated trajectories obtained considering four agents moving and
nine possible actions. 72

7.1 Spawn/goal zones in the simulation environment. 77
7.2 Results obtained expressed in terms of mean value and standard

deviation of the considered metrics. The tested algorithms are SFM
(Social Force Model), ORCA (Optimal Reciprocal Collision Avoid-
ance), GTP (Game Theory Planner). The performance metrics are
a) PLR (Path Length Ratio), b) CPD (Closest Pedestrian Distance),
c) AS (Average Speed) and d) PR (Path Regularity). 78

v

Acronyms

AI
artificial intelligence

AS
average speed

CNN
convolutional neural network

CPD
closest pedestrian distance

DOF
degree of freedom

DRL
deep reinforcement learning

FCNN
fully connected neural network

FL
fuzzy logic

GA
genetic algorithm

GTP
game theory planner

vi

HRI
human robot interaction

LP
linear program

ML
machine learning

MPC
model predictive control

NN
neural network

ORCA
optimal reciprocal collision avoidance

PLR
path length ratio

PR
path regularity

QP
quadratic program

ROS
robot operating system

RVO
reciprocal velocity obstacles

SBRA
sequential best response approach

SFM
social force model

VO
velocity obstacle

vii

Chapter 1

Introduction

The following sections will elucidate the research context, the goals, and the
methodology employed in this thesis. Subsequently, a detailed outline of the
organization of this work will be provided.

1.1 Research context
In our current era, robots have transcended industrial confines and are being
deployed across multiple sectors, necessitating a heightened degree of autonomy.
Looking toward the imminent future, it is plausible that human-robot interaction
will become a routine part of our daily activities. As a consequence, robotic
entities will inevitably navigate through environments shared with humans. In
these contexts, a robot must engage in special behaviors designed to ensure safety
in its interactions with humans. This consideration extends beyond physical safety
to include psychological aspects associated with sharing an environment with an
automaton. To ensure that both aspects of the robot’s behavior are effectively
integrated, the robot should move with the aim of causing as little disturbance
as possible to moving pedestrians. This involves a commitment to being socially
accepted by respecting social and cultural norms imposed by society.

This objective can be achieved by invoking the concept of Socially-aware navi-
gation, which is defined in [1] as: "the strategy exhibited by a social robot which
identifies and follows social conventions in order to preserve a comfortable interac-
tion with humans. The resulting behaviour is predictable, adaptable and easily
understood by humans".

Navigation, in this context, becomes an extremely intricate aspect of service
robot design, evolving into a complex interdisciplinary task rather than just a
technical one. To enhance the acceptability of the robot, Kruse et al. [2] suggest
three key features:

1

Introduction

• Comfort, or the absence of annoyance and stress for humans in interaction with
robots. It can be ensured by defining measurable constraints, and one of the
most utilized concepts is the personal space, a region of space around humans
that must be respected by the robot to ensure the comfort of individuals.

• Naturalness, or the similarity between robots and humans in low-level be-
haviour patterns. This concept represents the ability of the robot to mimic a
human-like trajectory, ensuring that the overall path will be more predictable.
Therefore, a human will interpret it as more friendly, resulting in higher social
acceptability. This concept is closely related to the idea of Anthropomorphism,
defined as humans’ tendency to attribute human-like characteristics to non-
human objects or entities [3]. Moreover, it can be measured by considering
the smoothness of the generated path.

• Sociability, or the adherence to explicit high-level cultural conventions. It
is closely related to the target culture and the tasks that the robot has to
pursue. For example, avoiding a collision by passing on the right side of a
hallway or waiting in a queue are aspects of this concept. Its evaluation is
more challenging and is often done through real-world experimentations. The
assessment of sociability, along with comfort and naturalness, is commonly
carried out using questionnaires in the literature.

In our research project, the focus is on the first two topics of this list as central
paradigms upon the design of a model able to predict future human movements.
This model could then be integrated into the navigation framework of the robot
by developing an appropriate algorithm, allowing it to be fully integrated and
socially-accepted into a crowded space.

1.2 Thesis aim and our approach
The primary objective of this thesis is to develop a navigation algorithm for mobile
robots capable of predicting human future movements, whose aims are to ensure
the generation of natural trajectories and to guarantee comfort for interacting
humans.

To achieve our goal, the modeling of human motion in a shared environment,
and consequently, the decision-making process during navigation, is conducted by
introducing Game Theory, a mathematical tool in which players make decisions that
may influence those of the others [4]. This approach is considered innovative, as
the majority of proposed models in literature often focus on individual predictions
for each moving entity. In contrast, game theory takes into account the influence
that each agent would have on the others. In our context, both the influence that

2

Introduction

the robot has on pedestrians and the influence that each pedestrian would have on
each other are considered. This concept is known as interaction-awarness [5].

Following the considerations explained above, the developed algorithm is named
Game Theory Planner (GTP). The proposed method has been validated through
a Monte Carlo numerical simulation performed in Gazebo [6] [7], reproducing a
virtual representation of operating conditions (as shown in Figure 1.2). Specifically,
the GTP is compared with two other state-of-the-art algorithms: the Social Force
Model (SFM) [8] and Optimal Reciprocal Collision Avoidance (ORCA) [9]. The
comparison has been performed using state-of-the-art metrics, in order to have a
quantitative evaluation of its performance in terms of naturalness of motion and
perceived user comfort during interactions. Therefore, each algorithm is inserted
as a local planner into the real-time simulation of the navigation stack of a real
robot (Locobot wx250s of Trossen Robotics [10], represented in Figure 1.1).

Figure 1.1: Locobot WX250s from Trossen Robotics[10]

1.3 Thesis organization
In the following, the thesis will be organized as explained below:

3

Introduction

Figure 1.2: Sample representation of a simulation in Gazebo virtual environment

• Chapter 2 will provide a comprehensive study of the fundamentals of au-
tonomous robot navigation.

• Chapter 3 will review the primary methods employed in recent years for
socially-aware robot navigation. It will include a detailed analysis of Human-
Robot Interaction modeling, with a focus on the concepts of Comfort, Natu-
ralness, and Sociability.

• Chapter 4 will offer detailed descriptions of the algorithms selected for
implementation on the simulated robot. It will provide an in-depth overview
of the proposed Game Theory Planner.

• Chapter 5 will outline the software tools used during the design and simulation
procedures. It will also describe the hardware components that compose the
simulated robot.

• Chapter 6 will focus on the preliminary simulations conducted in the Matlab
environment. It will highlight important parameters and discuss potential
future improvements.

• Chapter 7 will provide an overview of the conducted evaluation tests and
introduce the obtained results.

4

Introduction

• Chapter 8 is the concluding chapter, where an analysis of the results will
be presented along with conclusions drawn from them. Additionally, con-
siderations for potential future developments and upgrades to the proposed
approach will be discussed.

5

Chapter 2

Robot navigation

In the following sections, a comprehensive overview of the main components of
the navigation framework for an autonomous robot is presented. The focus is
primarily on path planning procedures proposed in the literature. This discussion
aims to provide a clearer overall view of the available solutions and outline the
considerations that led to the design of an approach based on Game Theory.

2.1 Basics
Robot navigation, in summary, is based on four central concepts [11]:

• Perception: the process in which the sensory system captures the environment.

• Localization: the identification of the position of the robot within a map
created using the data acquired in the perception phase.

• Path-planning: the computation of a valid sequence of configurations that the
robot must follow in order to reach its goal without collisions.

• Motion control: the actuators of the agent are fed by proper commands in
order to follow the desired path.

The previously explained steps are organized following the scheme in Figure 2.1.
The whole process starts with a goal pose given to the robot. It starts the perception
process by scanning the environment and the data coming from different types of
sensors are combined together into a virtual representation of the environment. The
map created is used to localize the robot within the space in a process called SLAM
(Simultaneous Localization and Mapping) [12]. The actual pose just found is fed to
the path-planning algorithm along with the goal one and the map, obtaining a path
to be followed in order to avoid collisions and reach the desired location. Finally,

6

Robot navigation

the planned trajectory is given to the motion controller, which computes the needed
commands that generates the wanted movements of the actuators mounted on the
robot. After a certain amount of time, called time step of the motion process, the
process is repeated, with the dynamic update of the current position of the agent
into the environment.

Figure 2.1: Robot navigation scheme

2.1.1 Path planning
The aim of this project is to develop a human-aware algorithm that is able to plan
a feasible trajectory in a shared environment while ensuring safety, naturalness
and social acceptability. In order to reach that goal, we have to focus on the path
generation process performed by the path planning step. Normally, the planning
paradigm can be divided into two strongly connected steps [13]:

• Global planning: algorithm aimed to find a feasible course path from the
current pose to the given final goal pose.

• Local planning: algorithm aimed to generate the motion commands that the
robot has to perform in order to reach a local goal in the immediate vicinity,
that is given as input to the global planner.

The Global Planner uses a global representation of the world, usually generated
taking into account past data acquired during preliminary operations like mapping
the environment, in order to generate a feasible path that the robot is driven to
follow. The global path is normally divided in sections, whose limits are used as

7

Robot navigation

local goal points directly fed into the Local Planner. The latter uses a more detailed
representation of the environment, a local map, in order to generate the commands
needed to reach the given local goal. The process is subsequently repeated with
the next local goal computed until the global pose is reached. A detailed scheme
reporting the subdivision can be seen in Figure 2.2. On the other hand, a simple
representation of the different explained parts into a map is reported in Figure 2.3.

Figure 2.2: Navigation pipeline[13]

Figure 2.3: Navigation elements represented into a sample map[13]

In a practical implementation, all the main ingredients of a navigation pipeline
are coded in blocks linked together by a middle-ware able to provide assistance

8

Robot navigation

in data transfer, data acquisition and command actuation. In our case, we will
use ROS (Robot Operating System) and its framework to perform such tasks. A
deeper analysis of the ROS navigation stack will be available in Chapter 5.

2.2 Popular paradigms
During its movements, a mobile robot will primarily encounter two types of obstacles:
static obstacles, such as walls, stationary objects, or furniture, and dynamic
obstacles, including moving objects, opening doors, vehicles, or pedestrians. Over
the years, numerous algorithms have been proposed and evaluated as navigation
planners for mobile robots. The primary objective of these algorithms is to
determine a sequence of configurations that the robot should adhere to in order to
reach the desired goal, while also steering clear of collisions with obstacles. Generally,
it is less challenging to address static obstacles as opposed to dynamic ones. In
this section, we will concentrate on path-planning strategies that demonstrate the
capability to guide the robot through a dynamic environment.

In the literature, a distinction is made between classical strategies, which rely on
functional modeling of the environment to determine a path with the minimum cost
necessary to follow, and heuristic approaches, which are integrated with rules derived
from past experience or expert knowledge [11]. In general, classical approaches
tend to struggle when dealing with dynamic environments, with some exceptions.
Heuristic approaches, on the other hand, have gained significant importance in the
context of robot navigation within dynamic and complex environments. Below,
there is a group of examples that are well-recognized in literature.

Classical algorithms, in the context of robot navigation, may include methods
such as the Roadmap approach, Cell Decomposition, Mathematical Programming,
and the Artificial Potential Field (APF) technique [11]. The APF method is the
sole classical approach capable of handling dynamic and uncertain environments,
and it experienced a sudden surge in popularity among researchers. In 1985, O.
Khatib introduced the APF method as one of the pioneering concepts for real-time
collision avoidance in the field of robotics [14]. Initially, the approach was developed
for manipulators and was later adapted and extended for application in the realm
of mobile robots. In this method, the robot is essentially represented as a point
mass moving within a force field generated by both the goal (an attractive pole)
and the obstacles (repulsive poles). This field exerts forces on the robot, directing
it towards the desired goal while avoiding obstacles. An example of implementation
can be found in [15]. The primary limitation of this algorithm is its constrained
applicability due to the tendency to become stuck in deadlock situations when
encountering a local minimum within the force field. This issue, coupled with the
algorithm’s inability to anticipate the future movements of dynamic entities and

9

Robot navigation

its absence of interaction modeling with dynamic obstacles, makes the approach
unsuitable for social navigation, aligning with the majority of methods falling into
the classical classification.

Transitioning to the other classification group, heuristic approaches encompass
methods such as Genetic Algorithms (GA), Fuzzy Logic (FL), Neural Networks
(NNs), Particle Swarm Optimization (PSO), and a multitude of other techniques [11].
Among the examples provided, Fuzzy Logic (FL) is often regarded as the most
popular due to its readability and straightforward implementation process. This
paradigm operates on the assumption that some processes or decisions are more
accurately modeled using imprecise state descriptors like "warm", "cold", "big"
or "small", rather than binary states (True/False) [16]. The input data, which
is derived from sensors, is transformed into a state described in relation to its
membership within a specific "Fuzzy Set". In the context of navigation, these sets
could include descriptions like "dynamic obstacle approaching from the left" or
"obstacle remaining stationary". Subsequently, a series of logical operations are
executed to compute the fuzzy output, which, in this instance, might determine
the velocity required for the robot to safely navigate the environment. An example
of implementation can be found in [17].

Heuristic methods, such as the one previously described, are better suited
for mobile robot navigation in dynamic and complex environments compared
to classical approaches. Their unique characteristics also make them a suitable
baseline for the development of social navigation, with necessary modifications to
incorporate aspects of social acceptability and modeling of human-robot interaction.
The following chapter will delve into a comprehensive examination of state-of-the-
art approaches that have been utilized over the past decades within the realm of
socially-aware robot navigation.

10

Chapter 3

Socially-aware robot
navigation

Nowadays robots and automata have achieved remarkable levels of autonomy
and precision in their movements. Notably, among the most exemplary projects
currently under development and enhancement, we can point to the work of Boston
Dynamic [18]. From industrial manipulators to humanoid robots, their creations
exhibit remarkable reliability, enabling them to "address the most challenging
automation tasks of today and tomorrow". However, it is important to note that
their utilization in everyday environments remains somewhat restricted. In recent
years, there has been a notable increase in the availability of service robots designed
to assist with human tasks and enhance everyday life in domestic settings. These
solutions are becoming more readily attainable and accessible at competitive prices,
making it increasingly plausible to anticipate a rising presence of them in our
daily lives. Indeed, there are numerous examples of mobile robots being utilized
in environments where people share the same space. For instance, there has been
significant progress in the field of service robotics in healthcare, particularly in
response to challenges posed by COVID-19 [19] [20]. Additionally, robots have
found applications in sectors such as hotels [21], restaurants [22] [23] and elderly
assistance [24].

In these contexts, navigation has become an exceptionally challenging task due
to the dynamic nature of the environment. What is more, success in accomplishing
a given task is not solely reliant on the safety of the robot’s movements but is also
intricately linked to its social acceptability. Specifically, socially-aware navigation
is defined as the strategy exhibited by a social robot which identifies and follows
social conventions in order to preserve a comfortable interaction with humans [1].
The resulting movements of a robot using this concept as a starting point for
its navigation framework will be predictable, adaptable and easily understood by

11

Socially-aware robot navigation

humans.

3.1 Related work
As previously mentioned in Chapter 1, once an embodied agent starts moving
within a space shared with humans and engages in interactions, it must adhere not
only to safety regulations but also a multitude of social norms. These norms can
differ from one location to another and may be influenced by cultural factors or by
the users’ subjective perception of a robot [16].

To enhance the social acceptability of the robot, Kruse et al. [2] suggest Comfort,
Naturalness and Sociability as key features to be ensured (see Chapter 1). Modeling
human motion is a fundamental aspect in achieving these goals.

3.1.1 Human-robot interaction modeling
Considering the main goals of human-aware navigation expressed in the intro-
duction of this section, a deep look on the consideration behind human motion
modeling must be done. This step is crucial for highlighting the design and tuning
methodologies elucidated in subsequent sections of the work.

Proxemics

When a robot moves in a shared space, it can be the cause of discomfort in
encountered pedestrians. For instance, this intimate reaction can be caused by
moving too close or too fast. A fundamental aspect in this context is the so called
proxemics, defined as "the study of spatial distances that individuals maintain in
various social and interpersonal situations" [1]. This subject assume the existence
of certain unwritten rules that guide the definition of a personal space, defined as
"the region around humans that they actively maintain into which others cannot
intrude without causing discomfort" [1]. An example of the typical arrangement of
humans into a shared environment is reported in Figure 3.1.

This space can be translated into a distance, that is considered as the minimum
gap that a robot should maintain to its nearest person in the space in order to
ensure users’ comfort. In literature, we can found a model for human management
of space that divides it into concentric zones described by distances from the human
body [1] [2]. The most important zones are represented in Figure 3.2, whose limits
are listed below:

• public zone (> 3.6 m)

• social zone (1.2-3.6 m)

12

Socially-aware robot navigation

Figure 3.1: Typical arrangement of humans observing reciprocally their personal
space, highlighted as blue circles [1].

• personal zone (0.45-1.2 m)

• intimate zone (<= 0.45 m)

The robot must move in the space avoiding collisions, remaining at a distance
that ensures the comfort of the interacting pedestrians. In our work, we consider
acceptable a trajectory that avoids the personal zone of the pedestrian, using the
distances previously listed as a reference for the algorithms’ parameters tuning.

Figure 3.2: Representation of the intimate and personal zone [1].

Another interesting consideration about the human management of space is
related to the concept of information process space (IPS). It is defined as "the space
within which all objects are considered as potential obstacles when a pedestrian
is planning future trajectories" [25]. The paper points out that the shape of the
IPS is conic, and pedestrians do not pay attention in elements that draw an angle

13

Socially-aware robot navigation

more than 45 degrees from the walking direction [1]. A simple representation can
be found in Figure 3.3.

Figure 3.3: Representation of the information process space [1].

Following these considerations, our GTP algorithm is designed considering a
limited field of view of the robot during its computations, in order to reach an
higher human-likeness, aiming to an increase of social acceptability. More details
can be found in Chapter 4.

Natural motion

A fundamental assumption in the context of human robot interaction is that if a
robot mimics human (or animal) behavior, interactions become more straightforward
and intuitive for the individuals encountered. Therefore the concept of naturalness,
or human-likeness, should be considered in the design of methods employed in
robot navigation. This concept is strictly related to the interpretation that the
human being produces looking at the robot movements: a trajectory is considered
natural if it is predictable, understandable, readable or legible [2].

What is more, an important feature to be taken into account is the smoothness of
the trajectory generated by the considered path planning algorithm. It is related to
the geometry of the path, but also to the velocity profile [2]. A possible quantitative
measure of this concept is presented into Chapter 7, where a comprehensive summary
of the main evaluation metrics is done in order to define the one used in the final
experimental evaluation.

These concepts can be linked to the so called "anthropomorphism", defined as
the humans’ attitude to attribute human-like characteristics to non-human objects
or entities [3].

Similarity to human motion and acceptability are considered as proportional
to each other, but when the motion is too human-like in some manner the person
involved enters into the well known uncanny valley problem [26]. Basically, if the
robot is too similar to a human being in his behaviour or facets, the human will

14

Socially-aware robot navigation

enter into a discomfort condition that is difficult to eliminate. The fact that the
robot used in this work is not human-shaped obviously avoid totally this problem,
which however is worth mentioning.

3.1.2 Solutions proposed in literature
Considering the basics of HMI presented in the previous section, we can summarize
the requirements that a socially-aware path planning algorithm should have [2]:

• Respect personal zones, as studied in proxemics theory.

• Respect affordance spaces, identifying the regions of space where movement is
feasible and navigating by adhering to the cues and recommendations provided
by the environment.

• Avoid culturally disapproved behaviours.

• Avoid erratic motions or noises that cause distraction.

• Reduce velocity when approaching a person.

• Modulate gaze direction, that in a mobile robot context can be associated to
the pointing direction of the movement, trying to maximize the smoothness of
the path.

Following these main objectives, the scientific community relating to the study
of autonomous navigation of social robots in the past decades has attempted to
create numerous path planning algorithms. In the following sections we propose a
simple double independent classification of the main examples found in literature,
whose discriminant criteria are the period of time in which the procedure has
been proposed and the overall shape of the generated trajectories, underling a
specific behaviour in interaction. The learning-based approaches are here treated
as separate entities even if they can be inserted in both the classifications easily,
due to their particular declinable nature and for the sake of order.

Temporal classification

From a temporal point of view, the social navigation algorithms of autonomous
robots can be divided into two distinct temporal strands:

• Decoupled modeling

• Interaction modeling

15

Socially-aware robot navigation

Figure 3.4: Algorithm classifications proposed.

The first algorithms to be developed focused on decoupled models [27], where
individual agents in the environment are treated as self-contained and independent
entities. The pedestrians are treated as dynamic obstacles, without taking into
consideration any kind of prediction or interaction. One of the most famous
methods is the dynamic window approach [28], where the dynamic of the robot
is studied in order to define a set of reachable velocity in a short time interval,
known as dynamic window, among with the moving velocity is chosen by means of
an objective function minimization. Other examples that are worth mentioning
are the randomized kinodynamic planning approach [29] and the velocity obstacle
method[30], that is deeply discussed in Chapter 4.

The main problem of using decoupled models is the tendency to enter into
the serious problem of freezing robots[31], defined as the situation in which the
planner decides that all forward paths are unsafe, and the robot freezes in place
(or performs unnecessary maneuvers). This problem, along with the uncertainty
related to the future movements of pedestrians, ends up with oscillating trajectories
that are potentially unsafe and unnatural. To address these challenges, researchers
have concentrated on modeling interactions between humans and robots, as well as
the interactions among humans during navigation within shared spaces.

The most widespread algorithm that falls into this second group is the social
force model (SFM)[8], which tries to model the iterations by considering each agent
in the shared space as a material point subject to an attractive force from the goal
and repulsive forces generated by other individuals and obstacles. This is one of the
algorithm chosen for performance comparison with our proposed GTP, therefore

16

Socially-aware robot navigation

there is a deeper discussion in Chapter 4.
Another widely used algorithm is the reciprocal velocity obstacle (RVO) [32,

33], which is an evolution of the previously cited VO concept taking into account
the reciprocal interaction between the agents. The method is then upgraded
into the optimal reciprocal collision avoidance (ORCA)[9] algorithm. Also the
ORCA algorithm is chosen as a reference for performance comparison in the testing
procedure of this project. Therefore, also in this case a deeper analysis is done
in Chapter 4. Other examples that are worth mentioning are the learning-based
approaches [13], which are treated as a separate group in the last section of this
chapter.

Behavioral classification

From a behavioural point of view, the path planning algorithms of social robots
can be divided into two principal groups [34]:

• Reactive-based planning

• Predictive-based planning

A simple representation of the general concept behind this division is shown in
Figure 3.5

Figure 3.5: Navigation methods for robot social behavior[34].

Starting from the first group, a reactive-based planning algorithm generates a
trajectory in which the robot changes its moving direction when a human appears
to be colliding with it [34]. Generally in this type of approaches, there is not an
explicit prediction of human movement, but only a rough check about a possible
collision or not. Recalling proxemics theory, the robot moves in the space until the
distance between the closest pedestrian enters into a position near the personal zone,
inducing the computation of an avoidance manoeuvre. The resulting trajectory
is sickle-shaped, as it can be seen on the left side of Figure 3.5. Both SFM and
ORCA fall into this category. The pros of the reactive-based methods are the more
affordable computational complexity and the more reliable usage in unstructured
environments, rather than prediction-based ones. The main drawback is the

17

Socially-aware robot navigation

less friendly and human-like movement generated, making these approaches less
predictable from a human point of view. What is more, the absence of prediction
can cause freezing situations in which the robots enter too much into the personal
zone of the pedestrian and the robot must be stopped in order to ensure safety.
This situation has been experienced during the real testing of the algorithm on the
locobot, ending up with the consideration that a predictive-based algorithm should
be more suitable in indoor applications, where the space is limited and the map is
structured.

Focusing now on the second group, a predictive-based planning algorithm predicts
the future states of the people around the agent and then computes its trajectory by
taking into account that information to avoid collisions in advance [34]. Therefore
adopting this solution for navigation, the trajectory generated should be more
natural and the user should perceive high comfort. The main issue related to these
algorithms is the quite high computational complexity, that make necessary the
usage of dedicated hardware components, for instance a GPU, where performing
fast computations. The results analyzed in literature for these approaches are
generally better than reactive ones [34]. The GTP algorithm proposed in this
project falls into this category, as well as the reference works [4] [5], that point out
the idea of using game theory as a modeling base for interaction with humans and
prediction of their movements (more information can be found in Chapter 4).

Other prediction approaches use, for instance, probabilistic frameworks or
learning-based path planners. An example of probabilistic approach can be found
in [35], where the solution proposed, named RR-GP, uses Gaussian processes
(GP) to predict the movement of the opponents and the rapidly exploring random
tree (RRT) to identify probabilistically feasible paths. Taking into consideration
the learning-based predictors, one of the most cited ones is SocioSense [36]. This
approach uses Bayesian learning and Personality Trait theory in order to train
a CNN from real trajectories’ states of human motion recorded into surveillance
videos, ending up with a planner that improves significantly the performance of
long-term predictions by comparison with other approaches.

Overall, many authors in literature assert that prediction methods in future
applications should take precedence over the reactive ones [34], due to their smoother
and more natural trajectory generation.

Learning-based algorithms

In recent years, thanks to the advances in computational capabilities of mobile-
board computers mounted in service robots, algorithms that use machine learning
as a base for their decisions became very popular among researchers. Due to
their extremely various application field, learning algorithms can be treated as a
separate group, that may intersect the other classifications previously addressed.

18

Socially-aware robot navigation

The section will start with general considerations about ML processes and then
a quick evaluation of the most used approaches is presented, along with some
practical examples.

The usage of learning-based algorithms presents several advantages when used
in socially-aware robot navigation, that can be summarized as:

• Time consumed and computational complexity reduction: a proper trained ML
system can efficiently replace a very complex and time-consuming algorithm
used, for instance, as predictor or decision-making process.

• Reduction of human engineering effort.

• Overall increase in performance compared to classical navigation algorithm
based on direct programming of each functionality.

Along with the benefits, this solution comes with a group of disadvantages, sum-
marized as:

• Difficult interpretability: ML systems can be difficult to interpret, making it
challenging to understand the causes of a certain behaviour. As a consequence
debugging and making diagnosis of problems it’s more complicated than
traditional approaches.

• Data requirements: the learning process requires a huge amount of data, which
can be expensive or time to collect or generate. Additionally the quality of
the training sets influences the final results.

• Safety: connected to limited interpretability, in some cases it is possible to
experience unwanted behaviours, which can be dangerous in environment
shared with humans. It’s important to careful design recovery or emergency
behaviours in order to ensure that the robot’s movement remains safe and
socially acceptable in all situations.

• Lack of practice experience: many learning-based approaches have been studied
mostly in simulation and have occasionally been applied to simple real-world
environments.

• Bias: Machine learning methods can amplify existing biases in the data, leading
to unwanted behaviours. It is important to carefully curate the training data to
ensure that the robot is not inadvertently perpetuating biases. Not being able
to see similar goal configurations during training makes it hard to generalize
to arbitrarily specified goals.

• Difficult comparability: there is a lack of common metrics that makes it difficult
to compare classical and machine learning methods. A deeper discussion about
this topic can be found in Chapter 7.

19

Socially-aware robot navigation

Following the consideration expressed in [13], there are in general two starting
approaches when a ML system is designed in the field of mobile robot navigation.
The first one consists on the complete replacement of the navigation stack, the
latter one focuses on the replacement of only a single component of the framework.

Learning the entire navigation stack is equivalent to consider the navigation task
as a black box system with raw unprocessed perceptions signals as input and motion
commands as outputs. The process is relatively straightforward and the behaviour
depends primarily on the data used in the training process, which can be taken
from real records of human trajectories, like in the previously cited Sociosense [36],
or autonomously generated by means of numerical simulations. The most used and
replicated learning frameworks in this context are Reinforcement Learning (RL)
and Deep Reinforcement Learning (DRL), where the algorithms try to mimic the
way of learning of humans or animals. One of the first example of application of
DRL in navigation can be found in [37], that reach the goal to prevent collisions
with dynamic obstacles, but does not take into account social conventions. An
upgraded version of the algorithm is presented in [38]. Another worth to mentioned
example is [39], that primarily concentrates on modeling the interaction between
robots and crowds, utilizing information concerning the positioning of individuals
in relation to the agent, and therefore it also explores the interaction between
individuals as they engage with each other.

Passing to the alternative approach, that is learning navigation subsystems,
the main difference is that the overall framework remains fixed, maintaining its
fundamental features described in Chapter 2, while only the target functionality is
replaced by a ML system. The researchers have focused their attention primarily in
the local planner learning, with very few attempts on the global planner side [13].
In our work we use a fully connected neural network to replace the decision-
making process into the local planner algorithm in order to implement the real-time
version of the GTP, falling in a certain way in this presented learning-based
algorithm category (see Chapter 4 for more details). Another example that uses
this methodology is proposed in [40], where a classical global planner is used and a
local trajectory planner and velocity controller adjust the behavior of the robot
using simple deep attention mechanisms. In other examples found in literature,
also other subsystems can be replaced by a learned version. For instance, in [41]
there is a learning system aiming to produce the cost-maps used in the navigation
pipeline.

20

Chapter 4

Algorithms description

In order to have more significant results and comparisons, three algorithms are
developed and tested through the project. The first two, SFM and ORCA, are
state of the art algorithms that have been widely used as comparative baselines.
They can be defined as the two main representative algorithms for the last two
decades[27].

The third one, which is named Game Theory Planner (GTP), is a modified
version of a game theory based algorithm that takes inspiration from [4]. The
employed predictive method have been tested in [42] by our department research
group, using a qualitative questionnaire based evaluation procedure. It is expression
of an innovative strategy of socially-aware motion planning, since not so many
works are dedicated to game theory algorithms.

4.1 Social Force Model
The first algorithm presented, social force model (SFM), has been developed by
a collaborator of the project team. This section will explain the basics of the
algorithm functionalities and its main characteristics, leaving some technical details
and comments on the effective realization, since this is out of the scope of this
thesis redaction.

4.1.1 Basics
The SFM is a mathematical model describing the behaviour of a human moving
into a crowd. It has been firstly introduced in 1995 by Helbling et al.[8]. Moreover,
due to the low computational complexity, immediately it became one of the most
popular models. Today this model is considered one of the most representative
state-of-the-art models of social navigation.

21

Algorithms description

The fundamental functioning principle operates on the presupposition that an
individual exposed to a sensory stimulus will respond by adopting a behavior
influenced by their personal objectives. Normally a pedestrian is used to react in
an automatic way, following some rules built up personal experience. SFM tries to
put these rules into an equation of motion, assuming that human’s acceleration,
described as the variation of the preferred velocity, is related to a vectorial quantity
Fα(t) that can be interpreted as a social force [8].

Therefore, pedestrians are regarded as point-like entities within a field of fictitious
forces. These forces determines in them a tendency to move in a specific direction
and at a certain speed, influenced by their interactions with the environment and
other agents.

4.1.2 Social forces definition
Let us assume the presence of n ∈ N pedestrians moving into a bi-dimensional
environment, whose main aim is to reach the personal goal position pgoal

i while
avoiding obstacles and other agents. Following the explanations of the original
paper in which the model has been introduced in the research field [8], the main
social forces that determine the model motion are:

• Goal attraction force: the agent in position pi(t) is attracted by the goal
position pi(t) with a force equal to

Fgoal
i (t) =

vdesired
i

pgoal
i −pi(t)
∥pgoal

i −pi(t)∥ − vi(t)

αi

(4.1)

where αi ∈ R+ is called "relaxation time", tuning the attraction, and vdesired
i

is the velocity that the agent want to reach during his motion.

• Other pedestrians repulsive forces: premising that an individual in
motion heightens the feeling of discomfort when another person comes in
close proximity, a repulsive force is generated proportionally to the distance
among the actual agent and the others in the shared environment. The formal
definition [43] is

Frep
i,j (t) = Aiexp

ri + rj −
...pi(t)− pj(t)

...
Bi

F fov
i,j (t)ni,j(t) (4.2)

where j represents a generic opponent in the environment, Ai and Bi ∈ R+

tune the strength and range of the repulsion, ni,j(t) = pi(t)−pj(t)
∥pi(t)−pj(t)∥ is the

direction from the opponent position, ri and rj are the radii of the personal

22

Algorithms description

spaces and F fov
i,j (t) = λ+(1−λ)1+cos γi,j(t)

2 represents a time-varying anysotropic
factor that capture the effect of the limited field of view [25] (γ is the angle
between the actual direction of motion of i and the segment joining the
positions of i and j, while λ ∈ [0,1]).

• Obstacles repulsive forces: since the obstacle avoidance is another central
task that the model has to achieve, similar considerations can be done to the
force generated by the opponents in the environment. Therefore the force
sensed by the agent due to the nearest obstacle can be expressed as:

Fobs
i (t) = exp

I
1− ∥pi(t)− pobs(t)∥

R0

J
F fov

i,obs(t)ni,obs(t) (4.3)

where pobs is the nearest obstacle position, R0 is the minimum acceptable
distance, F fov

i,obs(t) is the anysotropic factor defined in the same way as the
previously analyzed and ni,obs(t) = pi(t)−pobs(t)

∥pi(t)−pobs(t)∥ is the direction from the
obstacle position.

4.1.3 Motion generation
Considering all the forces acting on the generic agent, applying the superposition
principle it is possible to compute the resultant force Fres

i (t) = Fgoal
i (t)+qj Frep

i,j (t)+
Fobs

i (t). From this resultant, assuming unitary mass and applying the laws of
Newtonian mechanics, we can find out the equations governing the agent’s motion.

vi(t + ∆t) = vi(t) + ∆tFres
i (t) (4.4)

pi(t + ∆t) = pi(t) + ∆tvi(t + ∆t) (4.5)

Equation 4.4 computes the velocity in the next step of the simulation, while
equation 4.5 updates agent’s position in the space.

4.2 Optimal Reciprocal Collision Avoidance
The Optimal Reciprocal Collision Avoidance (ORCA) algorithm has been introduced
in 2011 by Van Den Berg et al. [9]. It is based on the assumption that each moving
entity in the environment can be translated into a Velocity Obstacles (VO) for the
agent, which then computes a feasible velocity to assume in order to avoid all the
possible collisions. Over the years this approach has become increasingly important,
gaining the status of a state-of-the-art method. What is more, in recent years,
it is used as comparative baseline for algorithm evaluation [27] and as collision

23

Algorithms description

avoidance feature in more complex frameworks. For instance, in [44] ORCA is used
in addition to Deep Reinforcement Learning (DRL) to solve the collision avoidance
problem in complex scenarios full of interactive obstacles and in [45] it is combined
with MPC, reducing velocity vibrations.

Here are some of the algorithm’s principal characteristics:

• Decentralized: ORCA is a fully decentralized navigation algorithm, which
means that each robot or agent computes its own collision-free velocity based
only on its own sensor data and without explicit communication with other
robots.

• Velocity-based: ORCA is a velocity-based algorithm, which means that it
calculates collision-free velocities for the robot rather than specific paths or
trajectories. This allows the robot to adjust its movement in real-time based
on changing environmental conditions.

• Optimization-based: ORCA is an optimization-based algorithm, which means
that it computes an optimal solution to the navigation problem by minimizing
the risk of collisions between agents. In our reformulation, it uses a quadratic
program to calculate the optimal collision-free velocity for each agent.

• Reciprocal: ORCA is a reciprocal algorithm, which means that it takes into
account the velocity and trajectory of other agents in the environment when
computing its own collision-free velocity. It ensures that the velocities of all
agents are compatible, which helps to avoid deadlock situations where two or
more agents are blocked.

The core assumption behind the creation of a socially-aware motion planner
using this algorithm is that pedestrians facing the robot will react to its presence
by modifying their velocities. This modification follows a strategy comparable to
the one employed by the robot, which is based on selecting a velocity that avoids
collisions within a predefined time horizon.

The decentralized peculiarity of this algorithm make possible his direct transla-
tion as a planner into the navigation framework built in ROS. The computational
complexity can be tackled by the internal PC of the robot, the Locobot WX250s [10],
and there is no need to modify the main elements.

ORCA is used originally as a planner for a multi-agent navigation framework,
but in our case, the only agent that uses the ORCA logic is the robot, while the
pedestrians are assumed to be a kind of reactive dynamical obstacle. The prevision
of future human movement is done using the same strategy used by the robot to
select the next step velocity, but it is only a simple collision check. Therefore this
approach falls into the previously analyzed group of reactive-based planners.

24

Algorithms description

4.2.1 Velocity Obstacles

Figure 4.1: The Velocity Obstacle VOA
B(vB) of a disc-shaped obstacle B to a

disk-shaped agent A [32].

The basic geometric construct that is used by the algorithm to build the
mathematical description of the navigation problem is the velocity obstacle [30]
(VO), as shown in Figure 4.1. Such figure represents the set of velocities that would
result in a collision with the indicated obstacle (B in the figure), if the agent (A in
the figure) will maintain constant its actual velocity, given a certain time horizon.
Practically the set is defined by means of the relative velocity vrel between the
agent and the obstacle, computed as the difference between their actual velocities.

The same concept can be generalized considering two agents i and j. The VO
between them is defined as the set of all velocities vi of agent i that would result
in a collision with agent j, if its velocity vj will be maintained through the given
time horizon. The mathematical definition is expressed in Equation 4.6, where pi

and pj are the positions of the agents and r2
i,j is the squared sum of their radii.

VOi
j(vj) =

î
vi|(vi − vj)(pi − pj) ≥ 0, |vi − vj|2 ≤ r2

i,j

ï
(4.6)

The first equation defining the VO ensures that the relative velocity is in the
direction of the relative position between the two agents. This means that the
two agents are moving towards each other. The second equation ensures that the
distance between the two agents at the time of collision is less than or equal the
sum of their radii, including in the set all the velocities that will result in a collision.

This concept can be used for multi-agent or single-agent navigation, when each
agent regards the other agents as moving obstacles, choosing at each step a velocity

25

Algorithms description

that lies outside any of the velocity obstacles included by the other agents or
obstacles, but this approach results in undesirable oscillatory motions [32].

4.2.2 Reciprocal Velocity Obstacles
Reciprocal Velocity Obstacles (RVOs), represented in Figure 4.2, are a generalization
of VOs that can handle two-way interactions between agents [32]. VOs define a
set of velocities that would result in a collision between two agents if one agent
maintained its current velocity and the other agent moved with a velocity in the
VO. RVOs, on the other hand, consider both agents’ velocities and define a set of
not allowable velocities for both agents that would result in a collision scenario.
This means that RVOs take into account the "reciprocal" nature of the collision
avoidance problem.

Figure 4.2: The Reciprocal Velocity Obstacle RVOA
B(vB, vA) of agent B to agent

A [32].

The RVO takes into account the potential actions of both agents in a collision
avoidance scenario, which makes it more sophisticated than the original VO concept.
The mathematical definition is expressed in Equation 4.7, where pi and pj are the
positions of the agents and r2

i,j is the squared sum of their radii. The meaning of
the two equations is the same that was described in the previous subsection.

RVOi
j(vj, vi) =

î
(vi, vj)|(vi − vj)(pi − pj) ≥ 0, |vi − vj|2 ≤ r2

i,j

ï
(4.7)

Based on this concept, a multi-agent motion planner has been developed by Van
Den Berg et al. [32] and tested in simulation. The main steps that compose the
base algorithm are the following:

26

Algorithms description

1. Sense positions and velocities of all the agents in the scene and compute the
RVOs between each pair of agents in the environment.

2. Select as new velocity of each agent the vector pointing towards its goal and
is farthest from the union of all the RVOs computed with the other agents.
This is done by giving a score to each possible velocity and selecting as the
optimal one the velocity with maximum score [46].

3. The RVOs computation is repeated after a predefined time step and the process
continues until each goal position is reached.

Ideally, the multi-agent motion planner can be used also as a single-agent motion
planner, considering only one agent in the scene as the moving robot and assuming
that all the possible encountered pedestrians use a similar strategy of collision
avoidance, being considered as the other agents in the problem formulation.

This algorithm is fully decentralized and can handle complex environments with
many moving agents, using the local information sensed by itself. It ensures that
each agent moves towards its goal while avoiding collisions. Moreover, it guarantees
that motions are oscillations free. A further improvement has been introduced after
some years by the same authors, adding a completely reformulated optimization
computation that reached higher performance [9].

4.2.3 Optimization basics

Optimization is a technology that can be used to make decisions or predictions in
various contexts. It is based on a mathematical model of the problem that needs
to be analysed and then it is solved using suitable numerical algorithms. A model
requires the definition of a quantitative objective criterion of goodness in order to
make possible the decision by means of a mathematical computation: normally it
is expressed in the form of a cost function, that must be minimized, or as a score
function, that must be maximized. The criterion is completed with the definition
of constraints, which represents physical limits on the decision actions. Solve the
optimization means finding the best possible value of the quantitative objective
criterion of goodness while satisfying all the problem constraints.

From a verbal description of the problem, some decision variables x = (x1, ..., xi)
are selected and a cost function is built as a function of these variables f(x),
while the constraints are expressed as equality or inequality expressions on the
same variables. The standard form of an optimization problem is reported in
Equation 4.8 [47].

27

Algorithms description

min
x

f(x)
subject to gi(x) ≤ 0, i = 1, . . . , m

hj(x) = 0, j = 1, . . . , p

(4.8)

where:

• f(x) is the objective function to be minimized over the n-dimensional vector
x of decision variables xi

• gi(x) ≤ 0 are m inequality constraints

• hj(x) = 0 are p equality constraints.

If m and p are equal to zero, the problem is said unconstrained. In a constrained
problem m ≥ 0 and p ≥ 0. The set of vectors x that satisfies all the constraints is
called feasible set. If this set is empty, the problem has not a finite solution and is
said infeasible. The set of feasible points for which the objective function achieves
the optimal value is called optimal set. If the set is composed by a single point,
it is called minimizer and the value of the objective function correspondent is the
optimal value.

Among all the possible problem reformulations, the most interesting ones are
the convex ones [47]: these problems have a bowl-shaped graph that gives the
particular property that any local minimum found is a global one.

4.2.4 ORCA problem formulation
A further improvement in the RVO algorithm was done by introducing an optimiza-
tion reformulation of the collision avoidance problem as the core element to select
the velocities of the agents. The name that is associated with this new approach
is Optimal Reciprocal Collision Avoidance (ORCA). In 2011, the year of the first
scientific publication, J. Van Der Berg et al. introduced a method that represents
the first that can guarantee local collision-free motion for a large number of robots
in a cluttered workspace [9].

Overall description of ORCA

Here for simplicity, the problem will be described following the original purpose
of a multi-agent collision avoidance algorithm, and then there will be a detailed
translation of the main concepts to a single-agent collision avoidance algorithm.

Let there be a set of n disk-shaped agents sharing a 2D environment. Each
agent i is described by means of:

28

Algorithms description

• External state: current position pi (the center of its disk), current velocity vi

and radius ri

• Internal state: maximum speed vmax
i , preferred velocity vpref

i (velocity directed
towards the robot’s goal with a magnitude equal to the robot’s preferred speed).

The only parameters that can be sensed by the other agents in the environment
are the external ones, the others can be only assumed. Implicitly, all the agents
assume that the others are using the same collision avoidance strategy.

The objective of each individual i is to independently (and simultaneously) select
a new velocity vnew

i for itself such that all the participants are guaranteed to be
collision-free for at least a preset amount of time τ (time horizon of the movement
prevision), when they would maintain their selected new velocity. As a secondary
objective, the robots should select their new velocity as close as possible to their
preferred velocity.

Geometrical interpretation

Considering two robots A and B, the velocity obstacle, detailed in the previous
sections, for A induced by the presence of B considering a time window τ can be
expressed as in Equation 4.9, denoting with D(p, r) = {q| ∥q− p∥ ≤ r} an open
disc of radius r centered at p. The geometrical representation can be found in
Figure 4.3.

VOτ
A/B = {v|∃t ∈ [0, τ] : tv ∈ D(pB − pA, rA + rB)} (4.9)

The VO is interpreted as a truncated cone with its apex at the origin of the
velocity space (vx, vy) and its legs tangent to the disc of radius rA +rB and centered
at pB −pA. The truncating arc is part of a disk of radius (rA + rB)/τ and centered
at (pB −pA)/τ . The collision between the agents will happen if vA−vB ∈ VOτ

A/B,
or equivalently vB − vA ∈ VOτ

B/A.
Recalling that the VO are defined using the relative velocities and defining the

Minkowski sum of two generic sets X and Y as is shown in Equation 4.10, it is
possible to define the set of collision-avoiding velocities CAτ

A/B(VB) that A can
assume in order to avoid the collision with B (Equation 4.11), given that B assumes
a velocity from a given set VB (see Figure 4.3).

X ⊕ Y = {x + y|x ∈ X, y ∈ Y } (4.10)

CAτ
A/B(VB) =

î
v|v /∈ VOτ

A/B ⊕ VB

ï
(4.11)

A pair of sets VA and VB are called reciprocally collision-avoiding if VA ⊆
CAτ

A/B(VB) and VB ⊆ CAτ
B/A(VA). If the strict equality holds, they are called

29

Algorithms description

Figure 4.3: (a) A configuration of two agents. (b) The velocity obstacle VOτ
A/B.

(c) The set of collision-avoiding velocities CAτ
A/B(VB) for agent A given that B

selects its velocities from some set VB [9].

reciprocally maximal. Selecting as the only possible velocities sets for agents two
reciprocally maximal sets, it is theoretically guaranteed the collision avoidance
between them.

Among the infinite possible pair of reciprocally maximal sets, we are interested on
those sets that maximizes the amount of permitted velocities near some optimization
velocity vopt

i , for each agent. Such a pair of sets is defined formally in Equation 4.12,
meaning that the two sets are reciprocally collision-avoiding and maximal, and
Equation 4.13, meaning that they are the sets whose elements are nearest to vopt

A

and vopt
B .

CAτ
A/B(ORCAτ

B/A) = ORCAτ
A/B and CAτ

B/A(ORCAτ
A/B) = ORCAτ

B/A (4.12)

---ORCAτ
A/B ∩D(vopt

A , r)
--- =

---ORCAτ
B/A ∩D(vopt

B , r)
--- ≥

min(
---VA ∩D(vopt

A , r)
--- , ---VB ∩D(vopt

B , r)
---) (4.13)

The two sets can be geometrically constructed as shown in Figure 4.4.
Assuming that the two agents A and B are travelling with their optimization

velocities and a collision event will happen (vopt
A − vopt

B ∈ VOτ
A/B), let u be the

vector from vopt
A −vopt

B to the closest point on the boundary of the velocity obstacle
(Equation 4.14). Let n be the outward normal of the boundary of VOτ

A/B at the
point vopt

A − vopt
B + u.

30

Algorithms description

Figure 4.4: Geometrical construction of ORCAτ
A/B and ORCAτ

B/A [9].

u = (arg min
v∈∂VOτ

A/B

...v− (vopt
A − vopt

B)
...)− (vopt

A − vopt
B) (4.14)

The vector u can be interpreted as the smallest change required to the relative
velocity to avoid the collision within the time horizon τ . In order to share the
responsibility of avoiding collisions among the agents is possible to insert a multi-
plicative parameter γ in the set definition. Considering as reference Figure 4.4, the
set ORCAτ

A/B is formally expressed as the half-plane pointing in the direction of n
and passing through the point vopt

A + γu (Equation 4.15). The set ORCAτ
B/A can

be constructed on a symmetrical way.

ORCAτ
A/B =

î
v|(v− (vopt

A + γu) · n) ≥ 0
ï

(4.15)

In multi-agent motion planning γ = 1/2 in order to equally share the respon-
sibility among all the agents [9]. In our case, we are developing a planner for a
robot moving in an environment populated by humans. The value of γ has been
increased to 0.7-0.8 after some practical trials.

What is more, the optimization velocity presented in the previous equations is
a tool that allow to generalize the calculations. Developing the planner, it is set
equal to the actual velocity of the robot, in order to minimize the variation of the
velocity required through two subsequent steps of calculations. It automatically
adapts to the situations: it is near the preferred velocity in absence of obstacles and

31

Algorithms description

near zero in high-density conditions. Further details are discussed in the following
sections and can be found in [9].

Optimization problem formulation

The collision avoidance for each agent is performed following four main steps, and
it is repeated until the goal position is reached (Figure 4.5):

1. Sensing: the agent acquires the radius, the current position and the current
velocity of all the other individuals present into the environment and of itself

2. ORCAτ
A/B computation with respect to each of the other agents present into

the shared environment

3. vnew
A selection, by means of solving an optimization problem constrained using

the computed half-planes

4. Acting: apply the new velocity to the robot actuators updating the actual
position.

Figure 4.5: A schematic overview of the sensing-acting loop performed by the
actor during a step [9].

After the sensing step, the acquired information are used to compute the half-
panes of permitted velocities, recalling that each opponent determines a constraint
on the velocity selection in the form of an half-plane in the velocity space, expressed
as ORCAτ

A/B. Considering all the computed constraints and an additional one
concerning the maximum attainable velocity by the robot, it is possible to define
the set of the permitted velocity for A at the time of the computation ORCAτ

A

(Equation 4.16).

32

Algorithms description

ORCAτ
A = D(0, vmax

A) ∩
Ü

B /=A

ORCAτ
A/B (4.16)

The agent A under consideration selects a new velocity vnew
A for itself that is

closest to the preferred one amongst all the allowed velocities, by means of an
optimization problem resolution, as it can be seen in Equation 4.17.

vnew
A = arg min

v∈ORCAτ
A

...v− vpref
A

... (4.17)

Assuming that we are using a sufficiently small time step ∆t, we can simplify
the computations using the uniform rectilinear motion to update the robot position
(Equation 4.18).

pnew
A = pA + vnew

A ∆t (4.18)

In our reformulation, the time step used is 0.1 s.

Optimization problem solution

The fundamental step in the ORCA motion planner algorithm is the solution of
the optimization problem for the selection of the new velocity for the considering
agent. This is done by the authors of [9] reformulating the problem as a linear
program (LP) and following the numerical algorithms detailed in [48].

In order to implement the algorithm into a real robot there is the need of a
different reformulation, that can be solved using a programming language that is
compatible with ROS (robot operating system), that is the middle-ware used by
the robot to communicate between its components (further details can be found in
the following chapters). Using as a reference the results presented in [9] [48] and
the convex optimization concept revised in [47], it is found out that an efficient way
of solve the problem is to reformulate the model as a quadratic program (QP) [49].
Even if it is a more complex reformulation than the presented one in the original
article [9], the running time of the code developed is compatible to the time step
used during the practical experiments, and no problems arises for what concerns
computational speed or complexity.

The cost function of the ORCA optimization problem (Equation 4.17) is an
euclidean distance between the velocity that we want to compute and the preferred
velocity, that is recomputed at each iteration before entering into the optimization
resolution. It is a nonlinear function, that can be rewritten in a quadratic one,
as it is requested by a QP formulation. The fundamental passages are reported
in Equation 4.19. The function is squared, since this operation will not change
the argument of the optimization problem [47], and the norm is exploited. Note

33

Algorithms description

that the last element of the equation (vpref
A)T vpref

A will be eliminated in the next
expressions, since it is a constant and does not affect the solution of the problem.

1...v− vpref
A

...
2

22
= vT v− 2(vpref

A)T v + (vpref
A)T vpref

A

= 1
2

A
vT

C
2 0
0 2

D
v +

C
−2vpref

xA

−2vpref
yA

D
v
B

+ (vpref
A)T vpref

A

(4.19)

The preferred velocity vpref
A can be expressed as a vector directed from the current

position pA to the goal position pG, with modulus equal to a percentage of the
maximum attainable velocity, expressed by means of the parameter α. The complete
expression can be found in Equation 4.20, taking inspiration from [32] [46] [33].

vpref
A = pG − pA

∥pG − pA∥2
vmax

A α (4.20)

The constraints of the ORCA optimization problem (Equation 4.17) define a
feasible set that is the union of two convex sets (Equation 4.16). Therefore, as a
consequence, the feasible set is convex for construction. The union of the half-planes
can be directly transformed into a series of linear constraints [9] [48], one for each
other agent or pedestrian present into the environment.

aT
i v ≤ bii = 1, . . . , nped (4.21)

The constraint on the maximum attainable velocity is a quadratic constraint.
In principle it transforms the problem into a Quadratic Constrained Quadratic
Program (QCQP), but using simple geometrical considerations it is possible to
approximate it with a certain amount of linear constraints, giving up to some
accuracy in calculation for the sake of faster computation. As it can be seen in
Figure 4.6, a circular set in two dimensions can be approximated using an nedg

regular polygon, delimited in the space by means of nedg lines, or in terms of
inequalities by means of nedg half-planes. Each half-plane is delimited by the line
passing through the points expressed in Equation 4.22, whose explicit formulation
is reported in Equation 4.23.

(x1, y1) = (ρ cos iθ, ρ sin iθ) (x2, y2) = (ρ cos (i + 1)θ, ρ sin (i + 1)θ)
i = 0, . . . , nedg

(4.22)

C
1

− y1−y2
x1−x2

D
v = x1y2 − x2y1

x1 − x2
→ aT

c v = bc (4.23)

34

Algorithms description

Figure 4.6: A scheme explicating the approximation of a circular set by means of
nedg half-planes.

Considering all the previously explained reformulations, the optimization prob-
lem is finally rewritten as a QP, directly tractable with a solver library for a selected
programmable language (Equation 4.24).

vnew
A = arg min

v

1
2

A
vT

C
2 0
0 2

D
v +

C
−2vpref

xA

−2vpref
yA

D
v
B

subject to: aiv ≤ bi, i = 1, . . . , nped

(ac)jv = (bc)j, j = 1, . . . , nedg

(4.24)

4.2.5 Implemented ORCA algorithm
The aim of the development is to use the algorithm as a planner in the simulation
of a real robot that uses ROS as communication middleware. Thus, the algorithm
must be written into a programming language that is completely compatible and
that can exploit all its functionalities. The choice process ends with the decision
of utilize C++, since it is completely compatible with ROS and can directly be
integrated into the already developed navigation framework of ROS. Considering
as a reference the public GitHub repository [50] and the original article [9], the
algorithm has been developed integrating in it the ALGLIB library [51], which
is a cross-platform numerical analysis and data processing library able to solve
efficiently QP. Further details can be found on the official documentation [51].

Trying to be as close as possible to the overall description of the problem
written in the first subsection, the algorithm has been summarized in the form of
pseudo-code as can be seen in Algorithm 1.

35

Algorithms description

Algorithm 1 ORCA algorithm
1: ProblemInitialization
2: M←MapInitialization
3: t← 0
4: for i = 1 : n_agents do
5: pi, vi, pgoal

i ← AgentsInitialization
6: traj(t)← pi

7: end for
8: end_sim← False
9: while not(end_sim) and (t ≤ t_sim) do

10: for i = 1 : n_agents do
11: ngoal

i ← GoalDirectionComputation(pi, pgoal
i)

12: vpref
i ← V elPrefComputation(ngoal

i , vmax)
13: pobs

i ← ObsPosComputation(pi, M)
14: end for
15: for agent = 1 : n_agents do
16: if SingleGoalReachingCheck(agent) == False then
17: vnew

agent ← V elocityComputation(p, v, vpref , vmax, pobs, agent)
18: vagent ← vnew

agent

19: pagent ← pagent + vagent∆t
20: end if
21: end for
22: t = t + ∆t
23: for i = 1 : n_agents do
24: traj(t)← pi

25: end for
26: end_sim← GoalReachingCheck
27: end while

36

Algorithms description

Observing the code, it is possible to notice a division into functions, whose
purpose is detailed below:

• ProblemInitialization sets the parameters describing the problem and
tuning the behaviour of the agents. The most important ones are reported in
Table 4.1, along with a synthetic description.

Parameter Name Value Description
∆t 0.1 s Time step of the velocity computation.
n_edg 20 Number of edges that are used in the circular constraint approximation.
τ 3 s Time horizon considered into the constraints computation.
γ 0.8 Responsibility parameter.
n_ped 3 Number of pedestrians in the simulated environment.

n_agents 4 Defined as the number of pedestrians plus one,
representing the robot that we want to control.

rrobot 0.25 m Radius of the disk-shape representation of the simulated robot.

rped 0.6 m Radius of the disk-shape representation of the pedestrians,
representing their personal space.

robs 0.3 m Minimum allowable distance between the moving robot and static obstacles.
vmax

robot 0.5 Maximum attainable velocity by the robot.
vmax

ped 0.8 Maximum attainable velocity by the pedestrians.
goal_tolerance 0.2 m Tolerance distance considered in the goal-reaching check procedures.
xdim 8.5 m Dimension of the map along the x axis of the fixed reference frame.
ydim 5.5 m Dimension of the map along the y axis of the fixed reference frame.
t_sim 40 s Fixed upper-bound on the duration of each simulation.

Table 4.1: Parameters used in the ORCA algorithm.

• MapInitialization generates a virtual representation of the R2 space in
which the agents are supposed to move, that is translated into a matrix data
structure named M. This structure is composed by a discrete set of points,
aimed to mimic a sensor acquisition data structure. The generated map is a
rectangular room 8.5 m X 5.5 m, that has a square footage comparable to
those used in experiments found in the literature [52].

• The time t is set to zero and the AgentInitialization function is responsible
for the agents’ starting point pi and goal point pgoal

i attribution. Therefore,
the starting and goal points in numerical simulations are randomly selected.
What is more, the initial positions are used to initialize the traj data structure,
whose aim is to store in memory the generated trajectories.

• Then, a while loop ensures the correct simulation procedure.
GoalDirectionComputation computes the unitary vector pointing from
the current position pi to the goal position pgoal

i for each agent, by means of
the fraction present into the equation 4.20.

• VelPrefComputation exploits the preferred velocity vpref
i for each agent.

It also uses equation 4.20.

37

Algorithms description

• ObsPosComputation computes the nearest static obstacle point as the
point in the set M that has the closest euclidean distance with the current
position pi. This is performed for all the agents.

• At this point all the information necessary for the velocity computation are
stored in memory. A for loop ensures the computation for all the agents.
Therefore, the function VelocityComputation is called for the individuals
that has not reached their personal goal yet. A deeper explanation of the
central function of the ORCA algorithm is later reported, along with its
pseudo-code (Algorithm 2).

• Every time a new velocity for an agent is computed, its actual position is
updated following equation 4.18, representing a rectilinear uniform constant
velocity movement. Once all the actors in the scenario have updated their
positions, the code exits from the for loop and a time update is set. The
computed new positions are then inserted into the trajectory storing data
structure traj, and finally the GoalReachingCheck function performs the
goal-reaching check for all the simulated pedestrians, ending the simulation
if all of them are close enough to their goal positions, considering a given
goal_tolerance value.

Algorithm 2 VelocityComputation function
1: function V elocityComputation(p, v, vpref , vmax, pobs, agent)
2: vnew ← 0
3: Cvel = CircularSetApproximation(vmax, n_edg)
4: Chyp = ConstraintComputation(p, v, vpref , vmax, pobs, agent)
5: vnew ← AlglibSolverCall(Cvel, Chyp, vpref

agent)
6: vnew ← V elocityCheck(vnew)
7: return vnew

8: end function

The main functionalities of the algorithm are inserted into a function named
VelocityComputation (See Algorithm 2). Such function receives as inputs the
current positions p, the current velocities v, the preliminarily computed preferred
velocities vpref , the maximum velocity vmax, the nearest obstacle positions pobs,
one with respect to each agent, and the discriminant index agent, used to point
out the current considered individual for the next-step velocity computation. The
only output of the function is the velocity that has to be applied in order to avoid
collisions vnew. A detailed outlook of the code is given below:

• The target velocity vnew is preliminarly set to zero (line 2). Subsequently, two
distinct functions perform the optimization problem constrains’ computation.

38

Algorithms description

CircularSetApproximation (line 3) performs the mathematical procedure
represented in figure 4.6, by means of the equations 4.22 and 4.23, aimed
to linearize the quadratic constraint on the maximum attainable velocity.
What is more, the ConstraintComputation function (line 4) performs the
feasible velocity sets ORCAτ

A/B computation and translation into half-planes,
as they have been described into equation 4.15.

• The constructed constraints, memorized into the matrix data structures Cvel

and Chyp, are then fed into AlglibSolverCall (line 5), along with the tar-
get agent’s preferred velocity. The latter cited application translates the
constraints into a compatible ALGLIB library [51] format, as expressed in
equation 4.24. Subsequently, the library optimization solver is called and the
computed solution is stored in vnew.

• The final step consists on a check procedure performed by the VelocityCheck
function (line 6). If the solver finds out that the problem is infeasible, due to
a very crowded navigation situation or the presence of too close pedestrians in
the environment, the solution is set to NaN by the solver. It results into code
execution issues. In order to solve this problem, is such cases the velocity of
the agent is set to zero. Finally, the solution is returned by the function (line
7).

This section explains the code used to run performance tests before integrating
it into our simulated robot’s navigation system. The code serving as a local
planner for experimental simulated tests follows similar procedures. However, it
directly gathers information about positions, speeds, and nearby obstacles from the
robot’s simulated sensors via the ROS network, without prior computation. More
details about the general structure of the ROS navigation stack will be discussed
in Chapter 5.

4.3 Game Theory Planner
The majority of the approaches reviewed in the literature, as discussed in Chapter 3,
primarily focus on predicting human motion. However, these approaches often
neglect the interaction among humans themselves, concentrating solely on the
interaction between the unmanned agent and individuals within the shared envi-
ronment. The incorporation of game theory, as outlined by Galati in his thesis [53],
facilitates the modeling of human motion by considering interactions between our
robot, pedestrians, and interactions among pedestrians. In contrast to prevalent
reactive behaviors employed by many state-of-the-art motion planning methods,
which prioritize obstacle avoidance without effective trajectory prediction, our work
adopts a different paradigm. We are developing a model capable of addressing

39

Algorithms description

these peculiarities, being then integrated into a predictive-based path planner. This
approach seeks to overcome the challenges associated with reactive-based planners,
as discussed in detail in Chapter 3.

The concept of studying human motion through a game-theoretic point of view,
considering only two players and incorporating human-like obstacle avoidance,
originated from [4] and [5]. This approach, regarded as one of the most compelling
in the literature, underwent an attempt of reformulation in our department at
Politecnico di Torino. In a prior Master Thesis by Galati [53], the model was
extended to include a different cost function, accommodating multiple individuals
and detecting groups. Recently, this approach has been evaluated in terms of
social acceptability [42] through a modified Turing test [54] [55], administered as a
survey questionnaire to 691 participants. The test aimed to discern between game-
theoretical trajectories and human trajectories, with little distinctions emerging.
In this thesis, we are taking a further step by implementing the game theoretical
predictive approach into a motion planner, referred to as the Game Theory Planner
(GTP). This implementation is applied to a simulated robot, enabling a direct
evaluation of its performance through a practical simulation experiment, as detailed
in Chapter 7. Importantly, the developed planner is designed for potential use in
a real-world version of the robot, paving the way for future trials to assess social
acceptability in real-world scenarios.

4.3.1 Game theory basics

Game theory is a branch of economics, mathematics, and social sciences that
studies the strategic behavior of individuals or decision-making agents who interact
with each other, being independent and self-interested [56]. This theory focuses
on situations where the choices of one individual affect the outcomes obtained by
other participants, and vice versa. In other words, game theory seeks to analyze
the decisions and interactions among people when each of them seeks to maximize
their objectives, taking into account the responses of the other actors.

One of the first scientific articles published about modern game theory is [57],
where J. Von Neumann in 1928 proposed a mathematical solution for the zero-sum
cooperative game. The work is has been improved in 1944 with [58], then J. Nash
in 1951 published a solution for non-cooperatives games [59] that established one of
the most famous solving approach, note as Nash equilibrium theory. This method,
which will be more deeply explained later, is the decisional strategy adopted by
the game theory planner (GTP) that is developed in this thesis.

In order to have a clearer comprehension of the problem description, it is
necessary to point out the terminology adopted. In the next subsection, there will
be a concise introduction to the words that will be used here.

40

Algorithms description

Description of a game

Game theory studies what happens when self-interested agents interact [56]. These
agents in the GTP problem are both the pedestrians or the mobile robot moving
following the implemented motion planner, that in a game description are called
players. They are considered rational individuals, aimed to maximize their profit
that can be modeled using an utility function (i.e. cost function) that maps
characteristics of the environment, like the distance with the nearest obstacle, with
a number that quantify a gain or a cost.

During the game, each player follows a strategy, that is a procedure in which the
agent decides what to do at each possible situation of the game: it must specify
an action for each possibility, taken one from the action set, that is a discrete set
of possible outcomes. We can distinguish two main types of strategies (formal
definitions can be found in [56]):

• Pure strategy: the action specification is deterministic. At each stage an
action is selected and played as a response to the particular situation.

• Mixed strategy: it is specified a probability distribution for each action in
the action set. At each stage an action is selected randomizing over the set of
available actions according to the given distributions.

A stage is an event for which the player must take a decision. The state of the
game includes all the information about all the players at a particular stage.

The games can be classified according to their main characteristics, like the
number of players or actions and the way in which the information is shared among
them. The most important discriminant characteristics are listed below [56].

• Non-cooperative or cooperative: in non-cooperative game theory the
basic modeling unit is the individual, while in cooperative game theory the
basic modeling unit is the group. This means that in non-cooperative games
each agent put its own interest before the group interest, and a collaboration
may happen, but with the goal of maximize its individual profit. On the
other hand, in cooperative games the group’s interest is always put over the
individual one.

• Zero-sum or non-zero-sum: in zero-sum games the profit of a player is
equal to the loss of the other participants. Meanwhile, in non-zero-sum games
this may not happen and the sum of the payoffs can be different from 0.

• Static or dynamic game: in a static game the players make decisions
simultaneously, without theoretically know the current move of the opponents,
while in a dynamic game they act sequentially, having asymmetric information
about the opponents’ moves.

41

Algorithms description

Other two important concept useful to describe our problem are:

• Perfect information game: each player during a decision knows all the
previous step actions of all the opponents.

• Finite game: the number of players and the number of actions are both
taken from a finite set.

Nash equilibrium

The aim of each player as a rational agent is to find an optimal strategy that
maximize his payoff for a given environment and utility, or cost, function. The
most used approaches are the Pareto optimality criterion [56] and the Nash equilib-
rium [56] [59]. Our navigation problem can be treated as a non-cooperative static
non-zero-sum game, with perfect information and finite number of players and
actions set. The most famous and used approach for solving a non-cooperative
game is the Nash equilibrium concept. It is a combination of strategies where no
agent can reduce its own cost by changing its action if the other agents stick to
their actions [5]. In other words, it is a condition in which the considered agent
cannot increase its profit alone, but only if the opponents will make a decision that
changes the environment conditions.

In our context the Nash equilibrium is the discriminant situation that we consider
in order to choose the action that the robot has to perform in the considered time
step. Further details can be found in the following sections, where a complete
description of the algorithm is done.

A formal definition of the concept can be found in [4]. The Nash equilibrium is
a N-tuple (group of N elements) of strategies

1
sj∗

1 , sj∗
2 , . . . , sj∗

N

2
∈ Si such that the

inequalities in 4.25 hold.

J1
1
sj∗

1 , sj∗
2 , . . . , sj∗

N

2
≤ J1

1
sj

1, sj∗
2 , . . . , sj∗

N

2
J1
1
sj∗

1 , sj∗
2 , . . . , sj∗

N

2
≤ J1

1
sj∗

1 , sj
2, . . . , sj∗

N

2
. . .

J1
1
sj∗

1 , sj∗
2 , . . . , sj∗

N

2
≤ J1

1
sj∗

1 , sj∗
2 , . . . , sj

N

2
(4.25)

Where the subscript i refers to the players, the subscript j refers to the considered
stage and Ji are the utility (or cost) functions correspondent to each player in the
game.

4.3.2 GTP game formulation
The proposed model for pedestrian motion is a non-cooperative, static, finite, and
general-sum game with many players [42]. What is more, the game is based on

42

Algorithms description

perfect information, that means that each player know the last decisions made
by the opponents. This is primary a multi-agent motion planner, but focusing
on one agent as the real robot that we want to control and assuming that the
pedestrians use a similar collision avoidance method to move in the environment,
this model can be used to create a planner that can be uploaded into our simulated
locobot [10]. For simplicity we does not perform group recognition, that has been
considered instead in the original work developed by Galati et al. [42].

Each agent i, belonging to a finite agent set N , performs his action θ(t) at each
time t choosing from a finite action set Θ, that is equal for all the agents. The
navigation is modeled as a movement into the R2 space, where pi denotes the agent
position, and the action θ(t) corresponds to a rectilinear movement at a constant
velocity v along the direction represented by θ(t), that is interpreted as an heading.

In order to find the best response that each agent should have at each stage we
consider an approach similar to [4] and [5]. The best possible action that an agent
can perform at each time t is the action that allow him to be in a Nash equilibrium
situation [59], where every possible action change will increase the correspondent
cost function value if the opponents will maintain their selected action. In our
situation the existence and uniqueness of a Nash equilibrium is not guaranteed [42],
thus it is necessary to use numerical approaches for an approximation. Therefore,
in order to compute the equilibrium in each stage the Sequential Best Response
Approach (SBRA) presented in [60] is used, requiring the recursive resolution of an
optimization problem.

In the next sections a deeper analysis of the optimization problem formulation
and resolution is given, along with a practical description of the SBRA.

Optimization problem formulation

All players seek for the Nash equilibrium applying the SBRA, solving their inde-
pendent optimization problem considering the observed behavior of the opponents.
Solve these optimization problems, whose basic considerations are presented in
section 4.2, means to find for each agent i ∈ N the best sequence of actions
θ∗

i = [θi(t), θi(t + ∆t), θi(t + 2∆t), . . . , θi(t + T∆t)] over the specified finite predic-
tion horizon T∆t. Considering ∆t = 1 for a better readability and taking as
reference [42], the optimization problem that need to be solved can be expressed as

θ∗
i = min

θi

J(θi)

subject to
...pi(t, θi(t))− pj(t)

...
2
≥ β ∀t,∀i, j ∈ N , i /= j

pi(t, θi(t)) /∈ Oobs ∀t, ∀i ∈ N

(4.26)

where:

43

Algorithms description

• pi(t, θi(t)) = pi(t− 1, θi(t− 1)) + ∆p(θi(t), v) is the position of the agent at
time t, defined as the position of the agent in the previous time step plus the
movement done in one step as straight motion at a constant velocity v in the
selected optimal direction θi(t).

• pj(t) is the position of the opponent j at time t. An opponent is any other
agent with respect to the one that is performing the computation. These
positions are sensed by the agent, recalling the principle of perfect information
game.

• J(θ)i is the cost function correspondent to agent i, that is composed by three
addends J(θi) = Φgoal(θi) + Φsmoothness(θi) + Φobstacle(θi), that have different
meanings that are discussed later.

The optimization problem has two constraints. The first one is an hard constraint
responsible for the collision avoidance, imposing a minimum bound on the distance
between two distinct agents, in order to respect a circular region around them as
their personal space, recalling the theory of Proxemics [1] [16]. The second one
ensures that the agent position is coherent with the space that is free in the 2D
environment in which it navigates.

The cost function J(θ)i is composed by three terms. The first one is expressed in
Equation 4.27 and it models the goal-oriented attitude of the player. The objective
of this part of the cost function is to reduce the total path length.

Φgoal(θi) =
TØ

t=1
γ(t) ∥pi(t, θi(t))− p∗

i ∥ (4.27)

The parameter γ is a time-varying weighting factor, pi(t, θi(t)) is the position of the
agent at time t that is computed considering the selected optimal direction and p∗

i

is the agent’s goal position. The goal of the pedestrian, when it is not explicated, is
assumed as the point that he would reach if his velocity and his direction remains
constant in the considered time horizon T .

The second addend is expressed in 4.28 and it is responsible for the generation
of a smoother trajectory, penalizing excessive rotations during the motion. It is a
behaviour followed by humans in order to minimize their energy consumption [61].

Φsmoothness(θi) =
TØ

t=1
(1− γ(t)) |θi(t)− θi(t− 1)| (4.28)

The terms θi(t) and θi(t− 1) represent the orientations of the agent at time t and
t− 1. What is more, also in this term a weighting factor has been inserted, whose
value is complementary to the one previously observed in equation 4.27. This
is the results of the assumption that attraction of the goal and smoothness of

44

Algorithms description

the generated trajectory are two navigation peculiarities that assumes different
importance during the completion of the task: approaching the goal point, the
attraction became more important than the smoothness of the trajectory, and
vice-versa.

The third element is expressed in Equation 4.29 and it is responsible for the
behaviour of the agent facing a static obstacle. Like a human, it is imposed that
the player must not travel too close to obstacles, unless it is necessary. It is done
by using a soft constraint that penalizes short distances between the agent and the
nearest obstacle, which is expressed as a point in the space.

Φobstacle(θi) =
TØ

t=1

ρ

∥pi(t, θi(t))− pobs∥
(4.29)

The parameter ρ is a weighting factor representing the minimum allowed distance
and pobs is the position of the closest static obstacle at time t.

Optimization problem solution

As previously explained, the navigation of each agent is performed by means of the
Nash equilibrium computation in each time instant in order to find the optimal
direction to be followed. The solution is reached using the SBRA [60]. This is
formulated as the solution of many optimization problems as the one expressed in
the previous subsection. Consequentially, it is important to find a solution for the
optimization in the more efficient way and in the faster way possible.

The first step in whatever optimization problem solution is the problem classifi-
cation. In our case the problem expressed in equation 4.26 is overall a nonlinear
and non convex one. This means that we cannot use efficient convex optimization
algorithms as it has been done in the ORCA algorithm’s implementation. In
principle, the solution can be found considering nonlinear and non-convex solvers,
but the time required for each problem solution would bee too large to be compliant
with the time step required into a real time simulation of the navigation scenario.
After some initial reformulation trials, the solution considered follows the approach
presented in [53] and tested in [42], that represent a discrete approximation of the
exact continuous solution.

As previously stated, the agent picks up its optimal action, here on denoted
as ui(t), from a finite set Θ. The solution of the proposed problem is a sequence
of headings θ∗

i , whose i-th element is the heading of the agent at time t and its
update follows the equation 4.30.

θi(t) = θi(t− 1) + ui(t− 1) (4.30)

The values populating the action set has been chosen considering a limited field of
view of 180° comprehensively, recalling the principle of the Information Process

45

Algorithms description

Space [25]. This angular sector is then further subdivided in four parts, obtaining
an action set equal to Θ = {−π/2,−π/4, 0, π/4, π/2}.

A generic sequence of headings θi, addressed to be the optimal one during the
optimization problem solution, generates a trajectory in the R2 space describing
the environment. Starting from the actual position of the agent pi, n_acstep_hor

trajectories are possible considering the number of possible actions n_ac and the
number of time steps aiming to be predicted step_hor = T

∆t
. The best sequence θ∗

i

is chosen among this possible ones, computing the cost of the feasible trajectories
by utilizing the utility function J(θi) explained in equation 4.26.

Although measures have been taken into consideration while writing the code
to reduce computational complexity, such as dynamically eliminating infeasible
trajectories during the cost computation phase, the time required for the discrete
resolution of the optimization problem is, however, incompatible with the time
step required for real-time simulation or implementation. Therefore, preliminary
simulations concerning the predictive model have been performed using Matlab
and the results has been summarized in Chapter 6. Subsequently, these simulations
have been utilized to generate a training dataset for a fully-connected NN using the
Tensorflow application [62]. In this way ML is employed to speed up the decision-
making process within the algorithm, making possible its subsequent integration
into the real-time robot simulation model. However, a more accurate explanation
is given in Chapter 7, where the test procedure and framework are introduced.

Nash equilibrium computation

After discussing the solution to the optimization problem, this procedure is employed
to calculate the Nash equilibrium, determining the action that the robot should
take in the step following the computation. As previously asserted, the Nash
computation is performed using the SBRA [60], whose practical procedure is now
explained.

In summary, each agent solve its optimization problem in order to find its own
best strategy, given the last actions chosen by the opponents. Then a control action
is performed, checking if the action selected for each player is equal to the one
computed at the previous iteration. If the equality holds, we have found a Nash
equilibrium, otherwise the computed action is chosen for the considering agent and
the optimization problem is solved by another agent. This is repeated for all the
agents until the equilibrium situation is met, and the actions correspondent to the
equilibrium are selected as the best response in this particular stage. Then, a time
step action is imposed and the procedure restarts considering the new positions
reached by the agents. This is repeated until the goal position for all the agents is
reached.

46

Algorithms description

Figure 4.7: Simple scheme explaining the Sequential Best Response Approach
applied in our context.

Motion generation

Once the Nash equilibrium is numerically computed, the best sequence of actions θ∗
i

is used to perform the motion. In particular, the direction chosen for the one-step
movement is the first predicted entry of the vector. Therefore, the position update
of each player i follows the Equation 4.31, that represent a rectilinear movement at
constant velocity v.

pi(t + 1, θi(t + 1)) = pi(t, θi(t)) + vi(t)∆t (4.31)

In the equation above vi(t) express the velocity vector that has constant module
v during the step time ∆t and direction expressed by the chosen action θi(t) by
means of the Nash equilibrium just solved.

4.3.3 Implemented GTP algorithm
Recalling the verbal description presented in the previous subsections, the complete
algorithm used in trajectories generation, developed in Matlab, is reported in the
form of pseudo-code in Algorithm 3.

A complete overview of the code is given below, following its division in functions:

• The ProblemInitialization module (line 1) is responsible for configuring
the parameters that define the problem and fine-tune the behavior of the
agents. The critical parameters are summarized in Table 4.2, accompanied by
a concise description.

• MapInitialization (line 2) is responsible for creating a virtual representation
of the R2 space in which the agents operate. This representation is translated
into a matrix data structure named M. The structure consists of a discrete

47

Algorithms description

Algorithm 3 GTP algorithm
1: ProblemInitialization
2: M←MapInitialization
3: U← ComputePossibleStrategies
4: t← 0
5: for i = 1 : n_pl do
6: pi, θi, pgoal

i ← PlayersInitialization
7: τ (t)← pi, θi

8: end for
9: end_sim← False

10: while not(end_sim) and (t ≤ t_sim) do
11: nash_iter ← 0
12: P, Θ← FirstEstimation(p, θ)
13: nash_iter ← NashEquilibriumComputation(P, Θ, M, U)
14: t = t + ∆t
15: τ (t)← nash_iter[1]
16: end_sim← GoalReachingCheck
17: for i = 1 : n_pl do
18: pi, θi ← τ (t)
19: end for
20: end while

48

Algorithms description

Parameter Name Value Description
∆t 0.3 s Time step of the position update.
T 1.8 s Time horizon of the predictions.
step_hor 6 Number of predicted time instants.
max_iter 30 Maximum allowable iterations in the Nash equilibrium computation.
n_ped 3 Number of pedestrians in the simulated environment.

n_players 4 Defined as the number of pedestrians plus one,
representing the robot that we want to control.

rrobot 0.25 m Radius of the disk-shape representation of the simulated robot.

rped 0.6 m Radius of the disk-shape representation of the pedestrians,
representing their personal space.

robs 0.3 m Minimum allowable distance between the moving robot and static obstacles.

vmax
robot 0.5 Maximum velocity attainable by the simulated robot.

Upper-bound used only in Gazebo simulations.
vmax 0.8 Maximum attainable velocity by the simulated players in Matlab.
n_ac 5 Number of actions among which the agents can choose at each stage, in their FOV.
fov π Agents’ FOV.
β 0.7 Minimum allowable distance between pedestrians.

γ 0.6− 0.9 Weighting factor between goal-reaching and smoothness part of the cost function.
The value is increased while approaching the goal.

ρ 0.6 Weighting factor of the distance from obstacle part of the cost function.
goal_tolerance 0.1 m Tolerance distance considered in the goal-reaching check procedures.
xdim 8.5 m Dimension of the map along the x axis of the fixed reference frame.
ydim 0.1 m Dimension of the map along the y axis of the fixed reference frame.
t_sim 40 s Fixed upper-bound on the duration of eaach simulation.

Table 4.2: Parameters used in the GTP algorithm.

set of points designed to simulate a sensor acquisition data structure. The
generated map depicts a rectangular room measuring 8.5 m x 5.5 m, offering
a square footage comparable to those used in experiments documented in the
literature [52].

• In the problem settings, there exists a constant number of potential choices
at each stage denoted as n_ac, and a fixed number of predicted steps de-
noted as step_hor. Consequently, at each decisional stage, we have the same
n_acstep_hor possible strategies. These strategies are generated by the applica-
tion of ComputePossibleStrategies and stored in a data structure named
U (line 3). Later in the code, when a decision needs to be made, the possible
trajectories are derived by considering these pre-computed strategies, thereby
optimizing computational efficiency.

• At the outset, the time t is set to zero (line 4). Subsequently, within a for loop,
the PlayersInitialization function is responsible for assigning the agents’
starting points pi and goal points pgoal

i (lines 6). In numerical simulations,
the initial selection of starting and goal points is random. However, these
points undergo subsequent modifications to more accurately depict navigation
behavior. This adjustment is crucial as the generated data serves as a training
dataset for a neural network intended to replicate navigation functionalities.

49

Algorithms description

Additionally, the initial positions are used to initialize the τ data structure (line
7), designed to store the generated trajectories in memory. These trajectories
encompass both position pi and orientation θi.

• Subsequently, a while loop governs the progression of the simulation, regulated
by the flag variable end_sim, initially set to False (line 9). Additionally,
a time limit t_sim is established to halt the simulation in the event of
issues during parameter tuning. The nash_iter matrix data structure is
initialized with all zero values (line 11). This structure is designed to store
the positions and orientations of the agents during the Nash equilibrium
computation, executed through the Sequential Best Response Approach, as
depicted in section 4.3.2. In particular, this structure stores both the current
and predicted time instants.

• As an initial step, preceding the actual equilibrium computation, the antici-
pated future movements of the agents within the environment are approximated
using FirstEstimation. This involves projecting rectilinear movements in
the current direction that agents have over the time horizon (line 12). The
function takes as input the positions and orientations of all agents stored in
the structures p and θ, respectively, and records the estimations into P and
Θ, containers for position and orientation trajectories of all agents over the
time horizon. These data structures are implemented in a dense format for
ease of translation into a .csv format dataset.

• The core functionality of this code is encapsulated in the function
NashEquilibriumComputation, primarily designed to efficiently compute
an approximation of the Nash equilibrium using the SBRA (line 13). The
key inputs for this function include the initial trajectory estimations stored
in P and Θ, the map data generated in M, and the pre-computed possible
strategies U. The output, which contains all trajectories (strategies) of
positions and orientations of the agents at Nash equilibrium, is returned in
the matrix nash_iter. A comprehensive overview of the function is presented
in Algorithm 4, followed by a verbal description.

• The simulation time is updated (line 14), followed by the upgrade of trajectories
stored in τ . This procedure takes into account the first estimated step stored
in the nash_iter structure (line 15).

• Finally, the GoalReachingCheck function executes a goal-reaching check
for each individual, considering a specified goal_tolerance (line 16). If all
players have reached their goal positions, the simulation is halted by changing
the end_sim flag to True. If not, the final for loop reinitializes the initial

50

Algorithms description

positions pi and orientations θi (line 17). The simulation procedure will then
restart and continue iterating until all agents have reached their goal positions.

Algorithm 4 NashEquilibriumComputation function
1: function NashEquilibriumComputation(P, Θ, M, U)
2: nash_iter ← P, Θ
3: nash_prec_iter ← 0
4: nash_reached← False
5: iter = 1
6: while (iter ≤ max_iter) and not(end_sim) and not(nash_reached) do
7: for agent = 1 : n_pl do
8: if SingleGoalReachingCheck(agent) == True then
9: nash_iter ← FreezePosition(nash_iter)

10: else
11: nash_iter ← EvaluatePossibleTraj(nash_iter, M, U)
12: end if
13: end for
14: if NashReachingCheck(nash_prec_iter, nash_prec) == True then
15: nash_reached← True
16: else
17: iter = iter + 1
18: nash_prec_iter ← nash_iter
19: end if
20: end while
21: return nash_iter
22: end function

In Algorithm 4, you can find the pseudocode for the function associated with
Nash equilibrium computation. A detailed description of the main steps is provided
below:

• Initially, the first-try estimations of future positions and orientations, stored
in P and Θ, are employed to initialize the previously described nash_iter
structure (line 2). A similar structure, named nash_prec_iter, is created and
set to all zeros to store predictions from the previous iteration (line 3). The
index iter is initially set to one (line 4).

• The while loop, which implements the SBRA, is initiated with a three-way
condition: the flag nash_reached needs to be kept as False, the global boolean
end_sim must remain False, and an upper limit on possible iterations is set
to max_iter to restrict the number of interactions (line 6).

51

Algorithms description

• An inner for loop instantiates the agent index, used for individual goal-
reaching checks performed by SingleGoalReachingCheck (line 8). If the
goal is reached by the target individual, the FreezePosition function is
called, setting the predicted position equal to the actual one. This results in
a trajectory composed of identical points saved in nash_iter (line 9). If the
goal is not reached, the EvaluatePossibleTraj function is called (line 11).
It takes the map M, the nash_iter structure, and the possible strategies U
as inputs. Initially, possible trajectories are computed by extracting actual
positions from nash_iter and considering the strategies U. Each feasible
trajectory, meaning those without collisions with predicted movements of other
agents or static obstacles in the map M, is then evaluated by computing the
associated cost based on the optimization function presented in Equation 4.26.
Finally, the trajectory with the minimum cost is saved in nash_iter for each
agent (line 11).

• Subsequently, the control action, aiming to check the Nash equilibrium reach-
ing, is performed by the NashReachingCheck function (line 14). It precisely
compares the nash_iter structure with its counterpart, nash_prec_iter,
where the computed trajectories of the last iteration are stored. If equality
holds, the simulation is stopped by changing the boolean end_sim to True
(line 15). If not, the index iter is incremented (line 17), and the currently
computed trajectories are inserted into nash_prec_iter (line 18). Finally, the
nash_iter structure is returned as the sole output of the overall function (line
21).

Simulations executed using this algorithm, along with corresponding comments
on the overall performance, are documented in Chapter 6. As previously mentioned,
this code is employed to generate trajectories for constructing a dataset referred
to as datasetGTP. The purpose of this dataset is for training a fully-connected
neural network aimed to replace the trajectory planning of the ROS navigation
stack, as detailed in Chapter 5.

52

Chapter 5

Software tools used and
hardware description

Taking into consideration the objectives expressed in the introductory chapter of
this thesis, it was necessary to carefully choose the simulation and implementation
tools to be used during the project. As previously anticipated, ROS [63] was
used as a nerve center for communication between the various simulation and
implementation components. In addition to this, Gazebo [6] was chosen as a virtual
testing environment to be able to evaluate the performance of the algorithms and
to carry out preliminary debugging. As regards the actual implementation of
the algorithms, the basic navigation stack of ROS was used. The default local
planner plugin, which uses an algorithm attributable to the Dynamic Window
Approach (DWA) [28], is replaced with the planners implemented using the C++
programming language. Furthermore, some preliminary tests and some phases of
the development of the algorithms were possible thanks to the use of the Matlab
application.

In the sections below the main tools used will be analyzed with a brief introduc-
tion to the concepts necessary to understand the simulation and implementation
methods followed. In the end, a brief overview of Tensorflow is given since it is
used to overcome the time-consuming issue that came out on GTP decision-making
process.

5.1 ROS
ROS (Robot Operating System) [63] is an open-source software middleware de-
veloped by Open Robotics that controls the communications between different
functionalities of a robotic project, providing libraries and tools to help software
developers. For instance, it provides hardware abstraction for simulations, low-level

53

Software tools used and hardware description

device drivers in order to act on an actuator or receive data from a sensor, software
libraries to develop personalized applications, message transfer management and
many more features. The ROS framework is based on a peer-to-peer network of
processes, that can be distributed among different machines, which are linked using
the ROS communication infrastructure. In the following subsections, the main
components of ROS are analyzed, focusing on the most important functionalities
that have been used in the development of this project, taking as reference the
official documentation [64].

5.1.1 Basic concepts
The ROS communication infrastructure, organized in the file-system level into
software packages, relies on a few essential concepts, summarized as follows:

• Nodes: These are processes that perform computations. Each node encap-
sulates a single functionality, and a typical control system is composed of
multiple nodes. A ROS node is essentially code programmed in common
languages like C++ or Python using the corresponding ROS client library.
Nodes can be grouped into packages, and packages can, in turn, be organized
into stacks.

• ROS master: This is a crucial process that provides name registration and
facilitates communication among different nodes. It includes a parameter server
where fixed data can be stored by key and retrieved within the framework.

• Messages: These are data packages exchanged between nodes. Messages
are essentially data structures specified in a .msg text file within the package
where they are used.

• Topics: These are names used to identify the content of a transferred message,
analogous to specific types of buses. Communication between nodes is based
on a publish-subscribe mechanism, where a node sends a message by publishing
it to a certain topic, and another node receives the message by subscribing to
the same topic.

• Services: These involve pairs of message structures defining a slightly different
communication paradigm based on request-response interactions. A node,
called the server, provides a service response message when a node, called the
client, sends a request message.

• Bags: This file format enables the storage of a data stream in the network,
encompassing all moving messages or only specific ones. This storage method
is crucial for testing and evaluation purposes.

54

Software tools used and hardware description

Figure 5.1: ROS communication paradigm [63].

A summary scheme of the communication paradigm is represented in Figure 5.1.
Throughout the project, the ROS1 version, specifically the ROS Noetic distribu-

tion, was utilized, running on Linux Ubuntu 20.04. This choice was driven by the
abundance of online resources and documentation regarding modifications to the
navigation framework for ROS1 compared to ROS2. Furthermore, the decision was
influenced by the fact that the robot employed for simulation testing is equipped
with a set of drivers and ROS wrappers specifically designed for compatibility with
ROS1.

5.1.2 Navigation stack
The navigation pipeline, detailed in Chapter 2, is implemented in the ROS frame-
work through several functional nodes, which are organized for clarity into a stack
named the Navigation Stack [65]. The Navigation Stack exhibits notable conceptual
simplicity. It receives data from odometry and sensor streams, then generates
velocity commands for transmission to a mobile base. While utilizing the stack in
a generic robot can be challenging without proper low-level software integration,
Trossen Robotics provides its Locobot-WX250s [10] with pre-installed low-level
wrappers [66] that alleviate this issue. The following subsection provide a brief and
high-level overview of the main component of the stack.

move_base package

The move_base package [67] is comprised of multiple interconnected nodes, as
depicted in Figure 5.2, where the utilized topics and messages are specified. Es-
sentially, it implements the goal-reaching functionality of a mobile robot within
the ROS framework. The goal pose, consisting of the desired position in space and
orientation, is provided to the move_base node. This node interacts with sensors

55

Software tools used and hardware description

to determine its actual position and, employing a costmap representation of the
environment, computes a feasible path using a global planner. Subsequently, it
generates the necessary movement commands using a local planner.

Figure 5.2: move_base package schematic overview [67].

Both the global and local planners can be modified by creating a ROS plugin
to be imported into the move_base node. ROS plugins are dynamically loadable
classes loaded from a runtime library [68]. In simpler terms, these are pieces of
code that can be loaded into a node by specifying a parameter in the relevant
configuration file within the move_base package. Each algorithm presented in
Chapter 4 is translated into a plugin following the procedure outlined in the official
ROS tutorial [69].

5.1.3 Rviz
RViz [70], short for ROS Visualization, is a robust 3D visualization tool that
enables users to visualize and interact with various types of data from a robot’s
sensors and state. It offers a graphical interface for displaying sensor data, robot
models, and other information in a three-dimensional space. Additionally, RViz
can communicate with a real robot in practical experiments and with the virtual
implementation built using Gazebo, whose functional description can be found in
the next section. The tool’s layout is fully customizable, allowing users to enable
or disable several possible display channels.

Throughout the project, this tool is utilized to:

• Visualize the robot into the self-generated environment map, with the possi-
bility to enable the vision of the costmap used by the global planner.

56

Software tools used and hardware description

Figure 5.3: RViz interface.

• Visualize the frame of reference tree, a crucial element for defining the data
transformations required in each algorithm implementation, especially as a
local planner ROS plugin for the move_base package.

• Conduct point-goal tests using built-in interactive interfaces.

5.2 Gazebo

Simulation plays a crucial role in robotics research. Instead of dedicating engineering
effort directly to creating application prototypes, modern computational capabilities
allow researchers to conduct simulations in environments that replicate the operating
conditions where the device being developed will ultimately function. Among the
numerous tools available in the literature [71], one of the most widespread and
commonly used in recent years is Gazebo [6] [72], an open-source three-dimensional
simulator that enables the recreation of dynamic environments, considering the
physical properties of individual elements within it. In Gazebo, the robot base,
along with all the sensors and actuators that constitute its body, is loaded into
this virtual world, allowing interaction with objects and moving entities.

The standout feature of Gazebo is its seamless integration with ROS. All
nodes, topics, and message streams function in the same way as with a real robot.
This characteristic provides an ideal environment for preliminary testing and,
importantly, enables data generation for numerical validation.

57

Software tools used and hardware description

5.2.1 SFM Gazebo plugin
To replicate real operational conditions as closely as possible, it is essential to adopt
realistic human pedestrian modeling in simulations. Gazebo provides the option to
insert dynamic objects in the environment and also includes human representations
referred to as "Actors." These Actors can be configured to move from a starting point
to a goal point, passing through a sequence of waypoints. While this solution serves
as an initial debugging framework, the generated trajectories do not inherently
consider the presence of the robot or obstacles in the environment. To overcome
this issue and introduce a reactive behaviour to the model of pedestrian used in
simulation, we have adopted the Gazebo SFM plugin [73]. The plugin is based on
the original formulation presented in [8]. The trajectories are generated following
the algorithm briefly explained in Chapter 4. What is more, the parameters that
regulate the SFM are different for each pedestrian, aiming to emulate the variability
of human behaviours in real scenarios.

Figure 5.4: Gazebo simulation with pedestrian moving using SFM plugin.

5.3 Tensorflow
TensorFlow is an end-to-end open-source platform for machine learning maintained
by Google Brain [62]. It provides a comprehensive set of tools, libraries, and
community resources for quickly building machine learning models. The application

58

Software tools used and hardware description

boasts a flexible and scalable architecture, enabling computations to be deployed on
various platforms, including CPUs, GPUs, and mobile devices. This adaptability
makes it suitable for a broad spectrum of applications. High-level APIs like Keras
are integrated into it, simplifying the process of building and training deep learning
models. The platform benefits from a large and active community that contributes to
its extensive ecosystem, which includes pre-trained models, additional libraries and
various tools for model interpretation and deployment. What is more, TensorFlow
is open source, allowing developers to access and contribute to its codebase. This
openness has played a significant role in its popularity and widespread adoption in
both research and industry.

As previously mentioned, the GTP algorithm requires a computational time for
decision-making that exceeds the admissible time interval for real-time implemen-
tations. To address this issue and achieve the time step required by the chosen
prediction interval in the algorithm design, which is ∆t = 0.3s, the TensorFlow
library is selected and employed to train a fully-connected neural network, whose
objective is to replace the decision-making process within the algorithm itself.

In the following subsections, a concise overview of the key elements compris-
ing TensorFlow is provided, with a focus on the aspects utilized in our GTP
implementation.

5.3.1 Basics
In TensorFlow, numerical computations are executed on specific multidimensional
arrays known as tensors. These tensors are characterized by:

• Data type: The category of data stored in it, such as float numbers or strings.

• Rank: The number of axes that compose the tensor. For instance, a scalar
has rank 0, a vector has rank 1 and a matrix is rank 2.

• Shape: The lengths of the axes, summarizing the data organization. It is
usually expressed as a vector.

• Size: The number of items in the tensor, expressed as the product of the
elements in the shape vector.

Normally a tensor has a fixed structure. A modifiable data structure is recalled as
a variable. There are multiple ways to visualize a tensor, and an example of a
three-dimensional tensor visualization can be seen in Figure 5.5.

These tensors undergo modifications and multiple computations during the
definition and training of a machine learning model. To expedite these procedures,
each computation is structured within a TensorFlow graph, separating TensorFlow
computations from other platform-related processes, such as Python functions.

59

Software tools used and hardware description

Figure 5.5: Different visual interpretations of a three axis tensor, with shapes
specified as [3, 2, 5] [62].

A graph is a data structure that includes operation objects, representing com-
putational units, and tensor objects, representing the data streams between the
operations. This structure enables the application to execute machine learning-
related procedures quickly, in parallel and efficiently. A function is a link between
an actual python function and its graph representation.

5.3.2 Keras
In TensorFlow, when engaging in machine learning (ML) tasks, it’s common to
define, save, and restore a model. A model comprises a set of variables that can be
updated during training, and a function that computes something on input tensors
based on these variables. Due to the complexity of the underlying mathematical
procedures, manual execution is not practical. Keras, serving as the high-level API
of the TensorFlow platform, offers a user-friendly and highly productive interface
for addressing ML challenges. Covering every aspect of the ML workflow, from
data processing to hyperparameter tuning and deployment, Keras is designed to
facilitate rapid experimentation.

A Keras model is an object that organizes layers and can undergo training on
provided data. The data needs to be in tensor format and can be imported using
specific functions from .csv files. In our scenario, the trajectories generated by
the GTP algorithm are stored in a .csv format dataset, which is then imported
into a Keras model as the training dataset. For our purposes, a fully-connected
neural network is instantiated using the sequential model, where each layer has
exactly one input tensor and one output tensor that may have different shapes.
This Keras model is employed to train the neural network, evaluate its performance
on a validation dataset, and subsequently save the neural network parameters.
This allows loading the model onto the implemented local planner on the robot to
expedite computations during navigation.

60

Software tools used and hardware description

5.3.3 Details about GTP real-time implementation
The datasetGTP, obtained by processing the trajectories generated by the Matlab
formulation of the GTP algorithm presented in Chapter 4, is employed to train a
fully-connected neural network (FCNN). This neural network is then utilized by
the navigation algorithm to perform the Nash equilibrium computation, enabling
the selection of the optimal action at each stage of the game, within a time step
that aligns with the real-time requirements for implementation into the locobot
WX250s, as described earlier.

A FCNN, also known as a feed-forward neural network, is a type of artificial
neural network architecture. In this architecture, neurons are organized in layers,
and each neuron in one layer is connected with all the neurons in the subsequent
layer. The layers are typically divided into an input layer, hidden layers, and
an output layer. Hidden layers are responsible for learning complex patterns
and representations from the input data. Each connection between neurons is
associated with a multiplicative weight applied to the information passing through
it. Additionally, each neuron has its own activation function that is applied to its
input data. During the learning process, these weights are adjusted based on the
error between the predicted output and the actual target. This process, known
as back-propagation, utilizes optimization algorithms such as gradient descent to
minimize the error and enhance the network’s performance. For more information
about FCNN and the learning process, refer to [74].

Our neural network involves the usage of 22 input quantities, which include:

• Current positions and current orientations of the robot and the other three
simulated pedestrians.

• Current position of the closest static obstacle to the robot.

• Current velocity of the robot.

• Information about the map, in the form of coordinate limits
{xmin, xmax, ymin, ymax}.

• Goal position given to the robot.

The outputs of the system are the predicted positions, orientations, and velocities
of the robot at six future time instants from the current time instant, resulting in
a total of 30 outputs.

The structure of the implemented FCNN comprises an input layer composed
of 22 neurons, which is fed by inputs that undergo a normalization procedure to
achieve higher performance metrics. This normalization is implemented because
the ranges of the values assumed by the inputs are quite different. For instance, the
velocity values and the map-related information differ by one order of magnitude,

61

Software tools used and hardware description

which could pose challenges during the training process. Normalization helps
correctly weight the influence of the input values and facilitates effective learning
during the training phase. Additionally, the internal structure consists of four
hidden layers with a variable number of neurons, organized as 600-500-260-180-80.
These values were chosen through a trial and error procedure, revealing that using
this configuration enables higher performance in prediction. The neurons in these
layers use the Sigmoid function as an activation function to combine the data
from the previous layer. The total number of trained parameters is 508450. A
representation of a simplified version of a FCNN can be seen in Figure 5.6

Figure 5.6: Representation of a simplified Fully-connected Neural Network
(FCNN). It is composed by four input neurons, two hidden layers of five and
three neurons and three output neurons.

The training phase is conducted using the pre-built adam optimizer of Ten-
sorFlow, which implements a stochastic gradient descent method to solve the
optimization processes needed. The loss function employed for the training phase is
Mean Squared Error (MSE), while the performance evaluation is carried out using
both this metric and the Mean Absolute Error (MAE). The dataset comprises
31519 labeled data, and the training epochs are set to 80. The final performance
metrics obtained are a value of 0.0180 for MSE and 0.0647 for MAE.

A scheme that summarize the procedure followed in order to realize the GTP
real-time implementation is reported in Figure 5.7.

62

Software tools used and hardware description

Figure 5.7: A schematic representation summarizing the procedure followed for
the GTP real-time implementation. Preliminarily a large number of GTP Matlab
simulations were conducted to generate a dataset. This dataset was then utilized
to train the FCNN, intended to replace the trajectory planner of the simulated
robot. The FCNN takes inputs from direct sensing of the simulated environment,
and its outputs enable the motion planner to compute the commands to be sent to
the simulated robot. Subsequently, the Gazebo information is updated, and the
loop restarts.

5.4 Robot description: Locobot-WX250s

Before delving into the details of the algorithms’ testing and validation performed in
simulation, let’s provide a general overview of the utilized robot model. Additionally,
it’s worth noting that the described agent is present in the facilities of the robotics
lab, allowing for some simple real-world trials. The utilized agent in this context
is the Locobot WX250s, a ground-wheeled robot developed and maintained by
Trossen Robotics [10]. It is equipped with a well-configured set of sensors, enabling
a comprehensive perception of the surrounding environment. Furthermore, it
features a 6-degree-of-freedom (6DOF) robotic arm, which, in principle, can be
used for simple grasping operations.

5.4.1 Main components

In the subsequent subsections, a high-level description of the components is provided,
with a specific focus on the functionalities they offer for the navigation task.

63

Software tools used and hardware description

Figure 5.8: Locobot WX250s [10].

Create3 mobile base

The hardware component responsible for the robot’s movement is the mobile base,
specifically the iRobot® Create® 3 Educational Robot [75]. This base is equipped
with a comprehensive suite of onboard sensors and actuators and operates within a
software environment built entirely on the ROS2 framework. The paradigms of
ROS2 are utilized for data transfer and command reception. The robot is wired
to the NUC computer using an Ethernet cable, and Trossen Robotics [10] has
successfully interconnected ROS1 with ROS2 using a software bridge, enabling
ROS1 development.

The movement of the robot is controlled by two independent drive wheels, and
a front caster functions as a balancing element. Both wheels are equipped with
proper odometry sensors, allowing for the estimation of the robot’s position in
space during motion. Additionally, optical and infrared sensors provide the base
with the capability to perceive the nearest obstacles.

RPLIDAR A2M8

The RPLIDAR A2M8 is an indoor 360-degree 2D LIDAR (Light Detection and
Ranging) sensor. Its primary role is to perceive the environment through laser

64

Software tools used and hardware description

Figure 5.9: Create3 mobile base [10].

scanning, achieved by capturing a high rate of point-wise measurements during a
rotational movement. It can acquire up to 8000 samples of laser ranging per second.
Moreover, the onboard system can perform scans within a range of 12-18 meters.
The generated 2D point cloud data can be utilized for mapping, localization, and
object/environment modeling [10].

Figure 5.10: RPLIDAR A2M8 [10].

During the experiments, the LIDAR enables the generation of the environment
static map, a crucial task for the testing phase. The generated 2D point cloud,
directly visualizable in RViz, is processed in each algorithm implementation to
compute the nearest obstacle, a fundamental data for the functionalities to be

65

Software tools used and hardware description

provided.

Intel Realsense Depth Camera D435

Another crucial built-in sensor used complementarily to the LIDAR for SLAM is
a stereocamera, the RealSense Depth Camera D435, developed by Intel Corpora-
tion [76]. Its fundamental role is to reconstruct the three-dimensional environment
and provide real-time depth data. This is achieved by capturing data from two
cameras positioned at slightly different positions, enabling the reconstruction of
the third dimension through specific mathematical procedures. Details about the
specific algorithms implemented by the device are left uncovered, as they are beyond
the scope of this thesis.

Figure 5.11: Intel Realsense Depth Camera D435 [10].

The stereocamera is positioned right in front of the Locobot, allowing it to
perceive nearby obstacles or moving entities. During our testing phases, its primary
usage is in mapping operations.

Intel NUC 8i3BEH Mini PC

The central computational unit of the robot is a mini-computer developed by Intel
Corporation, specifically the Intel NUC 8i3BEH [77]. It features the following
specifications: 8th Gen Intel Dual-Core i3, 8GB DDR4 RAM, 240GB Solid State
Drive (SSD), Intel Iris Plus Graphics 655, WiFi, Bluetooth 5.0, Gigabit Ethernet,
4k Support, Card Reader, Dual Monitor Capability, HDMI, USB, Thunderbolt 3,
and runs on Ubuntu 20.04 [10].

All the sensors are directly connected to the NUC by means of USB cables. The
Create3 base is connected over an Ethernet cable. Sensors, NUC, and robotic arm
are powered by an external 5000 mAh battery pack, while the Create3 has its own
separate power source.

66

Software tools used and hardware description

Figure 5.12: Intel NUC 8i3BEH [10].

WidowX 250 Robot Arm

The WidowX 250 Robot Arm is a 6DOF manipulator driven by the dynamic
DYNAMIXEL-X Series actuators [78]. It is designed for education and research,
with support for ROS Noetic, Gazebo, and MATLAB. The robot has a 75cm
horizontal reach from the center of the base to the gripper, with a total span
of 150cm. The working payload is 250g. It represents the weight that the arm
should not exceed under normal working circumstances and is measured by the
arm’s ability to repeatedly lift an object at roughly half extension without failure.
Additionally, gripper carriages are designed for users to quickly and easily change
the gripper fingers for different projects.

Given that grasping and pick-and-place procedures are beyond the scope of our
research, the arm is not utilized in our experimentations. However, it could be
an interesting feature to be employed in addition to the mobile base navigation,
enabling the robot to accomplish more complex tasks involving manipulation.

67

Software tools used and hardware description

Figure 5.13: WidowX 250 Robot Arm [78].

68

Chapter 6

Matlab simulations

The effectiveness of the proposed human prediction method has been tested and
validated by Galati et al. [42]. In our work, we implemented the same procedure
in Matlab and demonstrated that performances can be enhanced through proper
parameter tuning. This chapter provides a brief analysis of the attained perfor-
mances, highlighting the key features of the algorithm and identifying potential
areas for improvement.

Figure 6.1: Generated trajectories obtained considering four agents moving with
the proposed Game Theory prediction model.

69

Matlab simulations

The detailed description of the code used can be found in Chapter 4, along with
the primary parameters used (reported in Table 4.2). Figure 6.1 illustrates the
generated trajectories obtained by considering four agents, each having five possible
actions to choose from in order to navigate in the shared environment.

Upon observing the trajectories, the initial impression is positive: the agents
successfully avoid collisions with each other, generating relatively smooth trajecto-
ries, even though the movement modeling considers only five possible actions that
agents can choose at each stage of the game. In Figure 6.2, the number of simulated
pedestrians is increased to six. The overall behavior highlights that the model can
effectively predict human movements even in highly crowded environments without
significant difficulty.

Figure 6.2: Generated trajectories obtained considering six agents moving with
the proposed Game Theory Planner.

Analysing the model via numerous simulations with variations in all pertinent
parameters, we have identified that the parameter predominantly influencing per-
formance is the number of actions, denoted as n_ac. Increasing its value results in
smoother trajectories and heightened precision in predicting movements. Figure 6.3
illustrates a simulation with four actors and seven actions, while Figure 6.4 depicts
another simulation with the same number of actors and nine actions. The trajecto-
ries generated exhibit a visually smoother quality and are subjectively perceived as

70

Matlab simulations

more natural and human-like with an augmented number of actions.

Figure 6.3: Generated trajectories obtained considering four agents moving and
seven possible actions.

Starting from the outlined predictive model and following the procedure men-
tioned in the preceding chapters, we have implemented our Game Theory Planner
(GTP) as a C++ ROS plugin for the move_base package, as detailed in Chapter 5.
The primary challenge encountered in real-time implementation is associated with
the considerable time required by the code to solve the Nash Equilibrium, as
elaborated in Chapter 4. To address this issue, we employ a Fully-connected Neural
Network trained with a dataset comprising trajectories generated by the afore-
mentioned predictive model. To generate a relatively high number of trajectories
necessary for the neural network training, the parameter n_ac is maintained at a
value of five. While this choice may impose limitations on achievable performance,
it is considered a preliminary starting point, recognizing the potential for higher
performance levels with further optimization in the code.

The implemented planning algorithm will undergo simulation in Gazebo and
evaluation based on criteria such as the naturalness of motion and perceived comfort
from the human perspective, as delineated in Chapter 7. This evaluation aims to
demonstrate the feasibility of utilizing Game Theory as the foundational predictive
model for Human-Robot Interaction within a path planner designed for a robot
navigating among pedestrians.

71

Matlab simulations

Figure 6.4: Generated trajectories obtained considering four agents moving and
nine possible actions.

72

Chapter 7

Gazebo simulations and
performance evaluation

A simulated testing procedure has been devised to compare the proposed GTP
approach for socially-aware motion navigation with two state-of-the-art methods,
namely SFM and ORCA algorithms.

In the following sections, a comprehensive overview of the chosen metrics, the
procedure for simulative testing, and the obtained results are provided.

7.1 Evaluation procedure and metrics
As mentioned in Chapter 3, a socially-aware path planner algorithm must generate
trajectories that are natural and ensure user comfort during interactions. To assess
these aspects, it is crucial to identify the most suitable metrics used in state-of-
the-art evaluation frameworks. In this section, a concise overview of evaluation
methods is provided, highlighting the chosen metrics for practical experiments in
Gazebo.

While research on methods used in socially-aware robot navigation has expanded
over the last years, there are no established standards for evaluation protocols [52].
Each proposed approach tends to be evaluated using scenarios and metrics chosen
by the researchers based on their specific implementations, making it challenging
to compare different approaches in an objective and quantifiable way [27]. The
motivations for this can be connected to the subjective concept of success in
evaluating a proposed functionality and the heavy dependency on contextual
factors, such as location, available space, variable human behaviors, robot body
conformation and cultural biases.

Considering the extreme variety of test procedures found in the literature [52],
Biswas et al. [27] proposed the concept of an ideal test. In such a test, given

73

Gazebo simulations and performance evaluation

infinite resources, the strategy would involve running thousands of trials of a
robot navigating through crowds in many different real-world locations. The ideal
metric, directly connected to the previous concept, would involve the people who
interacted with the robot rating their experiences using an HRI state-of-the-art
questionnaire. Some examples of already tested and used questionnaires can be
found in [79] [80] [81] [82]. However, the cost of running such a study is impractical,
so researchers have used various testing strategies and metrics to approximate the
ideal test.

One of the latest developed frameworks proposed in the literature is the Soc-
NavBench simulation framework [27]. It reproduces a virtual representation of
different real-world scenarios and tests the robot algorithms by implementing them
on a fictional robot moving into such environments, where pedestrians move fol-
lowing real-world recorded trajectories. This approach addresses the variability
of human behaviors and provides the powerful possibility of generating a large
number of simulated test cases. Another useful aspect of this software tool is the
automatic computation of metrics, covering a wide range of evaluation parameters
that also address our central concepts of naturalness and comfort. The main
drawback of SocNavBench is that its agents do not consider the mutual interaction
of pedestrians with the robot presence, as the recorded data are fixed, and the
pedestrians move in fixed trajectories. Furthermore, the integration with the ROS
framework is challenging, making a direct connection between our framework and
this evaluation tool impractical.

Essentially, we have selected our metrics based on the diverse library offered by
SocNavBench, choosing the ones most relevant to our objectives. We generated
the required data through Gazebo simulations, recording information about the
positions of pedestrians as well as the positions and orientations of the robot.
The data was saved as ROS bag files and later analyzed using the Matlab ROS
toolbox [83].

7.1.1 Metrics used
The chosen metrics computed for a comprehensive evaluation of the naturalness
and comfort assurance of the algorithms are:

• Path Length Ratio (PLR). It is defined as the ratio between the minimum
travel trajectory, represented by the straight line between the initial and final
position of the robot, and the actual travelled path length, computed as a
discrete series of straight lines between the recorded positions. The formal
definition can be summarized as:

PLR = ∥probot(Tgoal)− probot(0)∥qTgoal

t=1 ∥probot(t)− probot(t− 1)∥
(7.1)

74

Gazebo simulations and performance evaluation

where Tgoal is the number of time steps needed to reach the goal.
This can be considered as an overall performance metric, describing the
efficiency of the path planner in reaching the goal position. It takes values
from 0 to 1. A high value indicates that the planner tends to minimize the
length of the path, resulting in an efficient goal-oriented behavior.

• Closest Pedestrian Distance (CPD). It is the measure of the closest
distance to the robot attained by one of the pedestrians involved in the
simulated tests. Formally it can be stated as:

CPD = min
t,i
∥probot(t)− pi(t)∥ (7.2)

It can be considered a comfort-related evaluation metric. Following the
previously mentioned theory of proxemics, a higher value of CPD ensures a
higher level of comfort perceived by the facing humans.

• Average Speed (AS). It is the average speed of the robot over the recorded
trajectory, calculated as the sum of the attained velocities divided by the
number of steps taken to traverse the trajectory:

AS =
qTgoal

t=1 vrobot(t)
Tgoal

(7.3)

The metric can be considered both an overall performance metric and a
comfort-related metric. A higher average speed indicates that the robot is
moving more efficiently and reaching its goal in less time. However, a faster-
moving robot might be perceived as more aggressive, potentially leading to
discomfort. Therefore, a balance between these two aspects must be considered
in the final evaluation.

• Path Regularity (PR). It is a measure of the smoothness of the generated
trajectory, defined as one minus the normalized sum of the variations in
orientation over the considered path:

PR = 1−
qTgoal

t=1 |θ(t)− θ(t− 1)|
maxalg

qTgoal

t=1 |θ(t)− θ(t− 1)|
(7.4)

where θ(t) represents the robot orientation and the denominator is the max-
imum value found of the sum over the trials performed using the three
considered algorithms.
Such metric is directly connected to the naturalness of the generated trajectory.
Taking values from 0 to 1, it is preferred to reach a high value, meaning that
the robot has not performed an excess of rotations.

75

Gazebo simulations and performance evaluation

7.2 Simulation test design and procedures

The metrics outlined in the preceding section are designed to assess the perfor-
mance of the proposed GTP path planner concerning naturalness and comfort.
This evaluation aims to provide an initial, comprehensive assessment of social
acceptability. To establish a reference baseline, two additional algorithms, namely
the Social Force Model (SFM) [8] and the Optimal Reciprocal Collision Avoidance
(ORCA) [9], have been implemented and employed in these tests.

Our performance evaluation campaign is executed through a Monte Carlo
numerical simulation within a virtual environment established in the previously
mentioned Gazebo simulator [6] [72]. The simulation encompasses 180 point-goal
trials for each method under consideration. These trials are further categorized into
two sets, with 90 trials each, featuring varying numbers of simulated pedestrians:
the first set involves three actors within the simulated environment, while the
second set comprises four pedestrians. The environmental dimensions replicate
real-world trial ones found in the literature [52]. What is more, to enhance the
realism of pedestrian behavior, as detailed in Chapter 5, the SFM Gazebo plugin
is utilized. This plugin imparts a reactive behavior to the simulated pedestrians,
aligning with a fundamental assumption guiding the design of the GTP algorithm.

The outcomes are presented and discussed in the concluding section of this
chapter.

7.2.1 Virtual environment description

All trials were conducted within a virtual room measuring 8.5m x 5.5m. To
ensure the smooth execution of the automated simulation procedure and avoid
potential issues arising from the robot spawning too close to pedestrians or two
pedestrians spawning in close proximity, the environment was divided into six
zones, as illustrated in Figure 7.1. Zone F serves as the spawning area for the robot,
while zones A, B, C, and D are designated for pedestrian spawning. Each zone can
be occupied by only one agent at a time. Additionally, goal points are selected
among two possible alternatives, determined by the starting zone of each agent in
the environment. For instance, an agent spawning in zone A can randomly choose
between D and E as goal zone. The other starting-goal zones associations are
(B → D, F) , (C → E, F) , (D → A, B) and (F → C). Spawn and goal positions
are deliberately set on opposite sides of the room, a choice aimed at encouraging
interactions between the robot and the moving humans.

Both spawning and associated possible goal zones are randomly selected con-
sidering a uniform distribution. Defining the zones by coordinates limits as
Zi = {xmin

i , xmax
i , ymin

i , ymax
i } and selecting one of them as Zi, the initial and

76

Gazebo simulations and performance evaluation

Figure 7.1: Spawn/goal zones in the simulation environment.

goal positions are set using the following equations:

xspawn/goal = xmin
i + rand(0,10)xmax

i − xmin
i

10

yspawn/goal = ymin
i + rand(0,10)ymax

i − ymin
i

10

(7.5)

where rand(0,10) represents a uniform random number between 0 and 10. This
procedure sets random spawn or goal coordinates within the defined zones.

77

Gazebo simulations and performance evaluation

7.3 Obtained results
Subsequent to the experiments conducted in Gazebo, the data processed through
Matlab’s ROS toolbox yielded the results depicted in Figure 7.2.

Figure 7.2: Results obtained expressed in terms of mean value and standard
deviation of the considered metrics. The tested algorithms are SFM (Social Force
Model), ORCA (Optimal Reciprocal Collision Avoidance), GTP (Game Theory
Planner). The performance metrics are a) PLR (Path Length Ratio), b) CPD
(Closest Pedestrian Distance), c) AS (Average Speed) and d) PR (Path Regularity).

Analyzing the graph, it can be concluded that our implementation of the GTP
achieves comparable performances in terms of Path Length Ratio (PLR) and Closed
Pedestrian Distance (CPD) with the state-of-the-art SFM and ORCA algorithms.
Specifically, considering the data summarized in Table 7.1, GTP attains a PLR
mean value higher than SFM and only slightly lower than ORCA. The same trend
is observed with CPD values. This suggests that the overall performance in terms of
goal-oriented behavior and efficiency is quite satisfactory, resulting in a theoretical
comfort level for encountered pedestrians that surpasses SFM and is slightly below
ORCA. While this marks a positive starting point, it cannot be definitively asserted
that our approach has surpassed the presented state-of-the-art methods. This
statement is further emphasized by the standard deviation values of GTP, which
remain higher than those of the state-of-the-art approaches. This implies that the

78

Gazebo simulations and performance evaluation

overall behavior is satisfactory but is highly dependent on the specific scenario
addressed.

Examining the third metric reported in Table 7.1, GTP achieves the lowest
average speed, displaying a more cautious and deliberate behavior, particularly
when compared to ORCA, whose overall behavior can be perceived as aggressive.
In principle, this is advantageous in terms of comfort, as encountered pedestrians
will perceive a robot that moves slowly and exhibits a non-aggressive behaviour.
However, in terms of overall efficiency, the time required to reach the goal is
indeed greater than the other approaches. Analyzing the standard deviations, it is
noteworthy that the lowest value is associated with GTP. This indicates that the
velocity values during path traversal will remain within a short range, resulting
in a natural and consistent feature. One thing that is worth mentioning is that
all velocity-related data are influenced by the physical limits of the robot, which
is unable to move faster than 0.5 m/s, making these values noticeably lower than
average human speeds.

In terms of path regularity, our GTP approach demonstrates a slight improvement
over ORCA in terms of the mean value, attributed to its intrinsic predictive behavior.
However, the PR value is slightly lower than SFM, indicating that there is no
tangible increase in performance concerning the naturalness of movements. However,
considering the standard deviations, GTP has a lower value than SFM, suggesting
that its reached level of smoothness is lower but more reliable. The lowest value
presented by the ORCA method is explainable by its tendency to enter deadlock
situations and rotate in order to find a feasible velocity for the optimization problem
that governs its movements.

Algorithm Metric Mean Standard deviation
SFM PLR 0.8825 0.0582
ORCA PLR 0.9366 0.0600
GTP PLR 0.9224 0.0754
SFM CPD 0.9727 0.1697
ORCA CPD 1.0408 0.1523
GTP CPD 1.0269 0.2606
SFM AS 0.2743 0.0370
ORCA AS 0.3609 0.0584
GTP AS 0.2264 0.0252
SFM PR 0.3140 0.0960
ORCA PR 0.1287 0.0557
GTP PR 0.1890 0.0738

Table 7.1: Mean and standard deviation values for the computed metrics.

79

Gazebo simulations and performance evaluation

These results align with our expectations. The selected parameters of the GTP,
used to generate the training data for the neural network, intentionally reduce the
algorithm performance by selecting a lower value of possible actions during game
solution to expedite trajectory computation. It is anticipated that enhancing the
complexity of the model and expanding the range of possible actions for the players
in the scenario will contribute to an overall performance improvement.

For the purpose of this thesis, these tests are regarded as a foundational step,
serving as a starting point for future improvements. The directions for these
enhancements will be elucidated in the final chapter, where a comprehensive
discussion will be presented.

80

Chapter 8

Conclusions and future
works

In this thesis, we have examined the concept of autonomous robot navigation, with
a specific focus on socially-aware navigation. Social path planners aim to generate
trajectories that are perceived as socially acceptable by humans. Recent research
efforts have prominently concentrated on algorithms capable of predicting future
pedestrian movements, emphasizing the importance of Human-Robot Interaction.
Furthermore, the growing interest in Artificial Intelligence and Machine Learning,
fueled by the increasing computational power of modern devices, has prompted
numerous research groups to propose socially-aware navigation algorithms based
on these topics. The prevailing trend is to increasingly center on models of this
nature. Within this context, we explored a promising human behavior modeling
approach based on game theory [53]. Our objective was to take a step further by
creating a real-time implementation of a path planner that integrates this idea into
a simulated environment, employing a Fully-Connected Neural Network to address
the computational complexity associated with such approach.

Our predictive path planner, named the Game Theory Planner (GTP), underwent
evaluation through the computation of state-of-the-art metrics based on 180 trials
conducted in a Monte Carlo numerical simulation using the Gazebo software. The
results affirm that our real-time planner exhibits satisfactory behaviors in terms
of naturalness and comfort. It achieves values of Path Length Ratio and Closest
Pedestrian Distance that are comparable with the state-of-the-art algorithms
evaluated, namely the Social Force Model (SFM) [8] and the Optimal Reciprocal
Collision Avoidance (ORCA) [9]. Therefore, GTP can be considered a promising
path planner, especially considering that this initial real-time implementation
represents just a preliminary effort, and there are ample opportunities for further
enhancements and refinements.

81

Conclusions and future works

A comprehensive analysis of the different facets of the design and implemen-
tation process reveals that the primary bottleneck in this modeling method is
the computation of Nash Equilibrium, particularly in the prediction of pedestrian
movements. This involves evaluating a substantial number of potential traversable
trajectories using a high number of actions within the action set of the game
that models navigation. To address this challenge, the current implementation
employs a relatively low value of five possible actions from which each player can
choose during the decision-making process of their strategy. An apparent avenue
for improvement in future upgrades would be to increase the value of the possible
actions, which could enhance the modeling accuracy and overall performance of
the system.

Another potential direction for extending our work is to explore the utilization
of a different type of end-to-end Machine Learning system to simulate the Nash
Equilibrium computation. Alternatively, one could investigate other methods for
finding solutions to the game that models the navigation process, such as the Pareto
Optimal approach [58].

In conclusion, the natural progression of this work could involve the direct
implementation of the GTP into a physical robot. The procedures followed in
this thesis are designed to create a real-time path planner capable of functioning
in the real-world version of the simulated locobot WX250s [10]. By doing so, a
qualitative evaluation of the algorithm’s performance can be conducted through
a real-world experiment that imitates the procedures of our simulated trials. To
assess social acceptability in terms of perceived comfort and the naturalness of the
robot’s behavior, a questionnaire could be administered to volunteers. Established
questionnaires in the literature, such as Godspeed [79], RoSAS [81], or HRIES [82],
could serve as a framework for this assessment.

82

Bibliography

[1] J. Rios-Martinez, A. Spalanzani, and C. Laugier. «From proxemics theory
to socially-aware navigation: a survey». In: International Journal of Social
Robotics, 7 (Sept. 2014), pp. 137–153 (cit. on pp. 1, 11–14, 44).

[2] T. Kruse, A. K. Pandey, R. Alami, and A. Kirsch. «Human-aware robot
navigation: A survey». In: Robotics and Autonomous Systems, 61 (Dec. 2013),
pp. 1726–1743 (cit. on pp. 1, 12, 14, 15).

[3] A. Waytz, J. Cacioppo, and N. Epley. «Who sees human? The stability and
importance of individual differences in anthropomorphism». In: Perspectives
on Psychological Science, 5 (May 2010), pp. 219–232 (cit. on pp. 2, 14).

[4] A. Turnwald, D. Althoff, D. Wollherr, and M. Buss. «Understanding human
avoidance behavior: interaction-aware decision making based on game theory».
In: International Journal of Social Robotics, 8 (Apr. 2016), pp. 331–351 (cit.
on pp. 2, 18, 21, 40, 42, 43).

[5] A. Turnwald and D. Wollherr. «Human-like motion planning based on game
theoretic decision making». In: International Journal of Social Robotics, 11
(July 2019), pp. 151–170 (cit. on pp. 3, 18, 40, 42, 43).

[6] N. Koenig and A. Howard. «Design and use paradigms for Gazebo, an open-
source multi-robot simulator». In: IEEE/RSJ International Conference on
Intelligent Robots and Systems, 3 (Sept. 2004), pp. 2149–2154 (cit. on pp. 3,
53, 57, 76).

[7] K. Takaya, T. Asai, V. Kroumov, and F. Smarandache. «Simulation environ-
ment for mobile robots testing using ROS and Gazebo». In: International
Conference on System Theory, Control and Computing (Oct. 2016), pp. 96–
101 (cit. on p. 3).

[8] D. Helbing and P. Molnar. «Social force model for pedestrian dynamics». In:
Physical Review E, 51 (May 1995) (cit. on pp. 3, 16, 21, 22, 58, 76, 81).

[9] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha. «Reciprocal n-Body
Collision Avoidance». In: Springer Tracts in Advanced Robotics, 70 (2011),
pp. 3–19 (cit. on pp. 3, 17, 23, 27, 28, 30–35, 76, 81).

83

BIBLIOGRAPHY

[10] Trossen Robotics. Documentation for locobot-WX250s. Available on line,
accessed in nov. 2023. url: docs.trossenrobotics.com/interbotix%5C_
xslocobots%5C_docs (cit. on pp. 3, 24, 43, 55, 63–67, 82).

[11] H. S. Hewawasam, M. Y. Ibrahim, and G. K. Appuhamillage. «Past, present
and future of path-planning algorithms for mobile robot navigation in dynamic
environments». In: IEEE Open Journal of the Industrial Electronics Society,
3 (June 2022), pp. 353–365 (cit. on pp. 6, 9, 10).

[12] K. J. Singh, D. S. Kapoor, K. Thakur, A. Sharma, A. Nayyar, S. Mahajan,
and M. A. Shah. «Map making in social indoor environment through robot
navigation using active SLAM». In: IEEE Access, 10 (Dec. 2022), pp. 134455–
134465 (cit. on p. 6).

[13] X. Xiao, B. Liu, G. Warnell, and P. Stone. «Motion planning and control for
mobile robot navigation using machine learning: a survey». In: Autonomous
Robots, 46 (Mar. 2022), pp. 569–597 (cit. on pp. 7, 8, 17, 20).

[14] O. Khatib. «Real-time obstacle avoidance for manipulators and mobile robots».
In: Proceedings. 1985 IEEE International Conference on Robotics and Au-
tomation (Mar. 1985), pp. 500–505 (cit. on p. 9).

[15] D. Bodhale, N. Afzulpurkar, and N. T. Thanh. «Path planning for a mobile
robot in a dynamic environment». In: 2008 IEEE International Conference
on Robotics and Biomimetics (Feb. 2009), pp. 2115–2120 (cit. on p. 9).

[16] R. Möller, A. Furnari, S. Battiato, A. Härmä, and G. M. Farinella. «A survey
on human-aware robot navigation». In: Robotics and Autonomous Systems,
145 (Nov. 2021) (cit. on pp. 10, 12, 44).

[17] A. Pandey and D. R. Parhi. «Optimum path planning of mobile robot
in unknown static and dynamic environments using Fuzzy-Wind Driven
Optimization algorithm». In: Defence Technology, 13 (Feb. 2017), pp. 47–58
(cit. on p. 10).

[18] Boston Dynamics. Boston Dunamics home page. Available on line, accessed
in nov. 2023. url: bostondynamics.com (cit. on p. 11).

[19] S. F. Ramadhan, M. Taufik, D. Novita, and A. Turnip. «Design of 2D
LiDAR-based Indoor SLAM for Medical Robot Covid-19». In: AIMS 2021 -
International Conference on Artificial Intelligence and Mechatronics Systems
(Apr. 2021) (cit. on p. 11).

[20] H. Q. T. Ngo, V. N. Le, V. D. N. Thien, T. P. Nguyen, and H. Nguyen.
«Develop the socially human-aware navigation system using dynamic window
approach and optimize cost function for autonomous medical robot». In:
Advances in Mechanical Engineering, 12 (Dec. 2020), pp. 1–17 (cit. on p. 11).

84

docs.trossenrobotics.com/interbotix%5C_xslocobots%5C_docs
docs.trossenrobotics.com/interbotix%5C_xslocobots%5C_docs
bostondynamics.com

BIBLIOGRAPHY

[21] R. Pinillos, S. Marcos, R. Feliz, E. Zalama, and J. Gómez-García-Bermejo.
«Long-term assessment of a service robot in a hotel environment». In: Robotics
and Autonomous Systems, 79 (May 2016), pp. 40–57 (cit. on p. 11).

[22] S. Ivanov and C. Webster. «Restaurants and robots: public preferences for
robot food and beverage services». In: Journal of Tourism Futures, 9 (May
2023), pp. 229–239 (cit. on p. 11).

[23] D. Ruiz-Equihua, J. Romero, S. M. C. Loureiro, and M. Ali. «Human–robot
interactions in the restaurant setting: the role of social cognition, psychological
ownership and anthropomorphism». In: International Journal of Contempo-
rary Hospitality Management, 36 (May 2023), pp. 1966–1985 (cit. on p. 11).

[24] N. Koceska, S. Koceski, P. B. Zobel, V. Trajkovik, and N. Garcia. «A
telemedicine robot system for assisted and independent living». In: Sensors
(Switzerland), 19 (Feb. 2019) (cit. on p. 11).

[25] K. Kitazawa and T. Fujiyama. «Pedestrian vision and collision avoidance
behavior: Investigation of the information process space of pedestrians using
an eye tracker». In: Pedestrian and evacuation dynamics (2009), pp. 95–108
(cit. on pp. 13, 23, 46).

[26] M. Mori. «The uncanny valley». In: Energy, 7 (1970), pp. 33–35 (cit. on
p. 14).

[27] A. Biswas, A. Wang, G. Silvera, A. Steinfeld, and H. Admoni. «Socnavbench:
A grounded simulation testing framework for evaluating social navigation».
In: ACM Transactions on Human-Robot Interaction, 11 (July 2022), pp. 1–24
(cit. on pp. 16, 21, 23, 73, 74).

[28] D. Fox, W. Burgard, and S. Thrun. «The dynamic window approach to
collision avoidance». In: IEEE Robotics and Automation Magazine, 4 (Mar.
1997), pp. 23–33 (cit. on pp. 16, 53).

[29] S. M. LaValle and J. J. Kuffner. «Randomized Kinodynamic Planning». In:
The International Journal of Robotics Research, 20 (May 2001), pp. 378–400
(cit. on p. 16).

[30] P. Fiorini and Z. Shiller. «Motion planning in dynamic environments using
velocity obstacles». In: The International Journal of Robotics Research, 17
(July 1998), pp. 760–772 (cit. on pp. 16, 25).

[31] P. Trautman and A. Krause. «Unfreezing the robot: Navigation in dense, in-
teracting crowds». In: 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems (Oct. 2010) (cit. on p. 16).

[32] J. Van Den Berg, M. Lin, and D. Manocha. «Reciprocal velocity obstacles for
real-time multi-agent navigation». In: 2008 IEEE International Conference
on Robotics and Automation (May 2008) (cit. on pp. 17, 25, 26, 34).

85

BIBLIOGRAPHY

[33] J. Snape, J. Van Den Berg, S. J. Guy, and D. Manocha. «The hybrid reciprocal
velocity obstacle». In: IEEE Transactions on Robotics, 27 (Aug. 2011), pp. 696–
706 (cit. on pp. 17, 34).

[34] C. M. Sánchez, M. Zella, J. Capitán, and P. J. Marrón. «From perception to
navigation in environments with persons: An indoor evaluation of the state
of the art». In: Sensors, 22 (Feb. 2022) (cit. on pp. 17, 18).

[35] G. S. Aoude, B. D. Luders, J. M. Joseph, N. Roy, and J. P. How. «Proba-
bilistically safe motion planning to avoid dynamic obstacles with uncertain
motion patterns». In: Autonomous Robots, 35 (May 2013), pp. 51–76 (cit. on
p. 18).

[36] A. Bera, T. Randhavane, R. Prinja, and D. Manocha. «Sociosense: Robot
navigation amongst pedestrians with social and psychological constraints». In:
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(Dec. 2017) (cit. on pp. 18, 20).

[37] Y. F. Chen, M. Liu, M. Everett, and J. P. How. «Decentralized non commu-
nicating multiagent collision avoidance with deep reinforcement learning».
In: 2017 IEEE international conference on robotics and automation (2017),
pp. 285–292 (cit. on p. 20).

[38] Y. F. Chen, M. Everett, M. Liu, and J. P. How. «Socially aware motion
planning with deep reinforcement learning». In: 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (Dec. 2017), pp. 1343–1350
(cit. on p. 20).

[39] C. Chen, Y. Liu, S. Kreiss, and A. Alahi. «Crowd-robot interaction: Crowd-
aware robot navigation with attention-based deep reinforcement learning». In:
2019 International Conference on Robotics and Automation, 26 (Aug. 2019)
(cit. on p. 20).

[40] A. Pokle, R. Martín-Martín, P. Goebel, V. Chow, H. Ewald, J. Yang, Z. Wang,
A. Sadeghian, and D. Sadighand S. Savarese et al. «Deep local trajectory
replanning and control for robot navigation.» In: 2019 international conference
on robotics and automation (2019), pp. 5815–5822 (cit. on p. 20).

[41] N. Perez-Higueras, F. Caballero, and L. Merino. «Human-aware robot navi-
gation: A survey». In: 2018 IEEE International Conference on Robotics and
Automation (2018), pp. 5897–5902 (cit. on p. 20).

[42] G. Galati, S. Primatesta, S. Grammatico, S. Macrì, and A. Rizzo. «Game
theoretical trajectory planning enhances social acceptability of robots by
humans». In: Scientific Reports, 12 (Dec. 2022) (cit. on pp. 21, 40, 42, 43, 45,
69).

86

BIBLIOGRAPHY

[43] F. Zanlungo, T. Ikeda, and T. Kanda. «Social force model with explicit
collision prediction». In: Europhysics Letters, 93 (Mar. 2011), p. 68005 (cit.
on p. 22).

[44] R. Han, S. Chen, S. Wang, Z. Zhang, R. Gao, Q. Hao, and J. Pan. «Rein-
forcement learned distributed multi-robot navigation with reciprocal velocity
obstacle shaped rewards». In: IEEE Robotics and Automation Letters, 7 (July
2022), pp. 5896–5903 (cit. on p. 24).

[45] H. Cheng, Q. Zhu, Z. Liu, T. Xu, and L. Lin. «Decentralized navigation of
multiple agents based on ORCA and model predictive control». In: IEEE
International Conference on Intelligent Robots and Systems (Sept. 2017),
pp. 3446–3451 (cit. on p. 24).

[46] J. Van Den Berg, S. Patil, J. Sewall, D. Manocha, and M. Lin. «Interactive
navigation of multiple agents in crowded environments». In: Proceedings
of the 2008 symposium on Interactive 3D graphics and games (Feb. 2008),
pp. 139–147 (cit. on pp. 27, 34).

[47] S. P. Boyd and L. Vandenberghe. «Convex optimization». In: Book (2004)
(cit. on pp. 27, 28, 33).

[48] M. De Berg. «Computational geometry algorithms and applications». In:
Book, Springer (2000) (cit. on pp. 33, 34).

[49] A. Turlach and S. J. Wright. «Quadratic programming». In: Wiley Inter-
disciplinary Reviews: Computational Statistics, 7 (Mar. 2015), pp. 153–159
(cit. on p. 33).

[50] M. Nazecic-Andrlon. Public Github repository - PyORCA. Available on line,
accessed in nov. 2023. url: github.com/Muon/pyorca (cit. on p. 35).

[51] S. Bochkanov et al. Documentation for ALGLIB - C++ library. Available on
line, accessed in nov. 2023. url: alglib.net/docs.php (cit. on pp. 35, 39).

[52] Y. Gao and C. M. Huang. «Evaluation of socially-aware robot navigation».
In: Frontiers in Robotics and AI, 8 (Jan. 2022) (cit. on pp. 37, 49, 73, 76).

[53] G. Galati. «Learning from humans to improve socially-aware motion planning».
In: Marter of Science Thesis, Politecnico di Torino (2019) (cit. on pp. 39, 40,
45, 81).

[54] A. M. Turing. «Computing machinery and intelligence». In: Mind, 59 (1950),
pp. 433–460 (cit. on p. 40).

[55] A. P. Aygin, I. Cicekli, and V. Akman. «Turing test: 50 years later». In:
Minds and Machines, 10 (Nov. 2000), pp. 463–518 (cit. on p. 40).

[56] K. Leyton-Brown and Y. Shoham. «Essentials of game theory: a concise
multidisciplinary introduction». In: Synthesis lectures on artificial intelligence
and machine learning, 2 (2008), pp. 1–88 (cit. on pp. 40–42).

87

github.com/Muon/pyorca
alglib.net/docs.php

BIBLIOGRAPHY

[57] J. Von Neumann. «On the theory of games of strategy». In: Annals of
mathematics (1928), pp. 295–320 (cit. on p. 40).

[58] J. Von Neumann and O. Morgenstern. «Theory of games and economic
behavior». In: Book (1944) (cit. on pp. 40, 82).

[59] J. Nash. «Non-cooperative games». In: Annals of mathematics (1951), pp. 286–
295 (cit. on pp. 40, 42, 43).

[60] S. Sagratella. «Algorithms for generalized potential games with mixed-integer
variables». In: Computational Optimization and Applications, 68 (July 2017),
pp. 689–717 (cit. on pp. 43, 45, 46).

[61] A. R. MaNeill. «Energetics and optimization of human walking and running:
The 2000 Raymond Pearl Memorial Lecture». In: American Journal of Human
Biology, 14 (Sept. 2002), pp. 641–648 (cit. on p. 44).

[62] Google Brain. TensorFlow official guide. Available on line, accessed in nov.
2023. url: tensorflow.org/guide/basics (cit. on pp. 46, 58, 60).

[63] Open Robotics. ROS overview. Available on line, accessed in nov. 2023. url:
ros.org (cit. on pp. 53, 55).

[64] Open Robotics. Documentation for ROS. Available on line, accessed in nov.
2023. url: wiki.ros.org (cit. on p. 54).

[65] Open Robotics. Documentation for ROS navigation stack. Available on line,
accessed in nov. 2023. url: wiki.ros.org/navigation (cit. on p. 55).

[66] Trossen Robotics. Github repository for interbotix-ros-rovers. Available on
line, accessed in nov. 2023. url: github.com/Interbotix/interbotix%5C_
ros%5C_rovers (cit. on p. 55).

[67] Open Robotics. ROS package - move_base. Available on line, accessed in nov.
2023. url: wiki.ros.org/move%5C_base?distro=noetic (cit. on pp. 55,
56).

[68] Open Robotics. ROS package - pluginlib. Available on line, accessed in nov.
2023. url: wiki.ros.org/pluginlib (cit. on p. 56).

[69] Open Robotics. ROS navigation tutorials. Available on line, accessed in nov.
2023. url: wiki.ros.org/navigation/Tutorials (cit. on p. 56).

[70] Open Robotics. Documentation for RViz. Available on line, accessed in nov.
2023. url: wiki.ros.org/rviz (cit. on p. 56).

[71] P. Kaur, Z. Liu, and W. Shi. «Simulators for mobile social robots: state-of-the-
art and challenges». In: 2022 Fifth International Conference on Connected
and Autonomous Driving (MetroCAD) (Apr. 2022), pp. 47–56 (cit. on p. 57).

[72] Open Robotics. Documentation for Gazebo. Available on line, accessed in nov.
2023. url: gazebosim.org/home (cit. on pp. 57, 76).

88

tensorflow.org/guide/basics
ros.org
wiki.ros.org
wiki.ros.org/navigation
github.com/Interbotix/interbotix%5C_ros%5C_rovers
github.com/Interbotix/interbotix%5C_ros%5C_rovers
wiki.ros.org/move%5C_base?distro=noetic
wiki.ros.org/pluginlib
wiki.ros.org/navigation/Tutorials
wiki.ros.org/rviz
gazebosim.org/home

BIBLIOGRAPHY

[73] Open Robotics. Documentation for Gazebo SFM plugin. Available on line,
accessed in nov. 2023. url: github.com/robotics-upo/gazebo%5C_sfm%
5C_plugin (cit. on p. 58).

[74] V. K. Ojha, A. Abraham, and V. Snášel. «Metaheuristic design of feedforward
neural networks: A review of two decades of research». In: Engineering
Applications of Artificial Intelligence, 60 (Apr. 2017), pp. 97–116 (cit. on
p. 61).

[75] Intel Corporation. Documentation for Create3 mobile base. Available on line,
accessed in nov. 2023. url: iroboteducation.github.io/create3%5C_docs
(cit. on p. 64).

[76] Intel Corporation. Documentation for depth-camera-d435. Available on line,
accessed in nov. 2023. url: intelrealsense.com/depth-camera-d435 (cit.
on p. 66).

[77] Intel Corporation. Documentation for nuc8i3beh. Available on line, accessed
in nov. 2023. url: intel.com/content/www/us/en/products/sku/126150/
intel-nuc-kit-nuc8i3beh/specifications.html (cit. on p. 66).

[78] Trossen Robotics. Documentation for widowx-250-robot-arm-6dof. Available
on line, accessed in nov. 2023. url: trossenrobotics.com/widowx-250-
robot-arm-6dof.aspx (cit. on pp. 67, 68).

[79] C. Bartneck, D. Kulić, E. Croft, and S. Zoghbi. «Measurement instruments
for the anthropomorphism, animacy, likeability, perceived intelligence, and
perceived safety of robots». In: International Journal of Social Robotics, 1
(Nov. 2008), pp. 71–81 (cit. on pp. 74, 82).

[80] M. Joosse, A. Sardar, M. Lohse, and V. Evers. «BEHAVE-II: The Revised
Set of Measures to Assess Users’ Attitudinal and Behavioral Responses to a
Social Robot». In: International Journal of Social Robotics, 5 (June 2013),
pp. 379–388 (cit. on p. 74).

[81] C. M. Carpinella, A. B. Wyman, M. A. Perez, and S. J. Stroessner. «The
robotic social attributes scale (RoSAS) development and validation». In:
Proceedings of the 2017 ACM/IEEE International Conference on Human-
Robot Interaction (Mar. 2017), pp. 254–262 (cit. on pp. 74, 82).

[82] N. Spatola, B. Kühnlenz, and G. Cheng. «Perception and evaluation in
human–robot interaction: The Human–Robot Interaction Evaluation Scale
(HRIES) — A multicomponent approach of anthropomorphism». In: Inter-
national Journal of Social Robotics, 13 (Jan. 2021), pp. 1517–1539 (cit. on
pp. 74, 82).

89

github.com/robotics-upo/gazebo%5C_sfm%5C_plugin
github.com/robotics-upo/gazebo%5C_sfm%5C_plugin
iroboteducation.github.io/create3%5C_docs
intelrealsense.com/depth-camera-d435
intel.com/content/www/us/en/products/sku/126150/intel-nuc-kit-nuc8i3beh/specifications.html
intel.com/content/www/us/en/products/sku/126150/intel-nuc-kit-nuc8i3beh/specifications.html
trossenrobotics.com/widowx-250-robot-arm-6dof.aspx
trossenrobotics.com/widowx-250-robot-arm-6dof.aspx

BIBLIOGRAPHY

[83] MathWorks. Documentation for ROS toolbox. Available on line, accessed in
nov. 2023. url: mathworks.com/help/ros/index.html?s%5C_tid=CRUX%
5C_lftnav (cit. on p. 74).

90

mathworks.com/help/ros/index.html?s%5C_tid=CRUX%5C_lftnav
mathworks.com/help/ros/index.html?s%5C_tid=CRUX%5C_lftnav

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Research context
	Thesis aim and our approach
	Thesis organization

	Robot navigation
	Basics
	Path planning

	Popular paradigms

	Socially-aware robot navigation
	Related work
	Human-robot interaction modeling
	Solutions proposed in literature

	Algorithms description
	Social Force Model
	Basics
	Social forces definition
	Motion generation

	Optimal Reciprocal Collision Avoidance
	Velocity Obstacles
	Reciprocal Velocity Obstacles
	Optimization basics
	ORCA problem formulation
	Implemented ORCA algorithm

	Game Theory Planner
	Game theory basics
	GTP game formulation
	Implemented GTP algorithm

	Software tools used and hardware description
	ROS
	Basic concepts
	Navigation stack
	Rviz

	Gazebo
	SFM Gazebo plugin

	Tensorflow
	Basics
	Keras
	Details about GTP real-time implementation

	Robot description: Locobot-WX250s
	Main components

	Matlab simulations
	Gazebo simulations and performance evaluation
	Evaluation procedure and metrics
	Metrics used

	Simulation test design and procedures
	Virtual environment description

	Obtained results

	Conclusions and future works
	Bibliography

