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Summary
The Internet of Things (IoT) is a vast network connecting billions of devices through the Internet to
share data. Many of these devices have limited resources, so they store their data in the cloud, allowing
people to access it from anywhere. However, this cloud storage raises security concerns because data
owners have little control over how their data is managed.
To address these security concerns and accommodate the limited resources of IoT devices, we use
lightweight cryptographic methods. One such method is Elliptic Curve Cryptography (ECC) [1], a
type of public-key cryptography. ECC is becoming popular in IoT security, smart card security, and
digital signatures because it offers strong security with shorter keys compared to traditional methods
like RSA. ECC can be implemented with minimal hardware and low energy use, making it ideal for
securing low-power, low-memory IoT devices.

A significant advantage of elliptic curve cryptography is its resistance to current threats from quan-
tum computers. While quantum computers promise to quickly solve problems that are beyond the
capabilities of traditional computers, such as factoring large prime numbers, elliptic curves generate
computational challenges that require much more time and resources to be handled even by quantum
computers. This resilience makes it an attractive choice for the future of cryptography.

ECC can be integrated into small chips to provide fast data encryption and decryption. It also offers
secure key agreement protocols that prevent unauthorized access to wireless sensor networks (WSNs)
connected to IoT infrastructures. In RFID [2] technology, ECC-based authentication protocols en-
hance security in smart healthcare environments. Additionally, ECC-based digital signature schemes
like ECDSA [3] and EdDSA are used in wireless body area networks (WBANs) to secure real-time
health data, such as blood pressure and heart rate. Modern security protocols like TLS and DTLS
use these signature schemes for efficient authentication in IoT platforms.

For this purpose i propose an Crypto accelerator based on BEC, implemented reducing as much as
possible the area and the critical path for the point multiplication over Galois Prime Field GF(p)
implemented following the Montgomery Ladder Algorithm (left-to-right), are also proposed all ar-
chitectures resulting from meticulous evolution throughout the project of the intermediate modular
operation write in VHDL. Finally utilising Xilinx Vivado is done the synthesis for virtex-7 [4] FPGA
to obtain an initial approximation of the performance, considering that this result are affected by a
big delay of the interconnection and area limitation due to the clb organisation of the board, instead
better result are obtained in the last step of ASIC synthesis on silicon chip.

In conclusion, elliptic curve cryptography represents one of the most promising prospects in the direction
of cybersecurity in the post-quantum world. Its ability to provide robust data protection with shorter
keys and its resistance to quantum computers make it a key choice for ensuring the security of digital
communications.

Keywords: elliptic curve cryptography (ECC), elliptic curve point multiplication (ECPM), twisted
Edwards curve, unified point addition, unified point doubling, FPGA-ASIC synthesis
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Chapter 1

Introduction

1.1 Research Methodology
The objective of this work is starting from some implementation available in the literature and select
the more efficient then try to modify and combine them to obtain a better result in term of reducing
the number of allocated elementary block and maximize the frequency, all the idea that i have follow
are reported in careful way also to the point of view of the architecture also to the point of view the
simulation.

Synthesis analyses is done using Vivado and the Virtex-7 FPGA, the results are compared with
some result given by the paper, i try to modify the architecture and work with DSP integrated to
reduce as much as possible the area and increase the frequency up to the best possible,the setting and
the complexity of the software probably allow to obtain a better result in more advanced strategy and
with more powerful work-station, but for our purpose are just good.

In the end i syntheses the cryptocore on silicon generating an ASIC using 45 nm technology, to
have a complete view of the work, and also because for me is the most interesting way to culminate
the project.

1.2 Thesis Organization
The structure of the thesis it is as follow: in the chapter 2 is reported a brief review on the literature
about the word of cryptography [5] and some mechanism of secure data exchange, then more in detail
Elliptic Curve Cryptography (ECC) and some reference to the mathematical background 2.3 about
the arithmetic on the Twisted Edward Curve also for the case of affine coordinate 2.3.1 and also for
the specific case under consideration of projective coordinates 2.3.2. In section 2.4 are reported all
the parameter for the Twisted Edward Curve Ed25519 under analysis. Furthermore the chapter 3 is
completely dedicated to explain all the developed architecture for the hierarchic block, their timing
and software validation results also for the case of RADIX2 and RADIX4 multiplayer. In conclusion
the chapter 4 and 5 report the synthesis results both for the FPGA case and for the ASIC case.
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Chapter 2

Literature Review

2.1 Cryptography introduction

Cryptography is essential for information and security, can be divided into two different categories:
private key cryptography 2.1.1 and public key cryptography 2.1.2. These two approaches offer dif-
ferent solutions for guarantee the security of digital communications. Here is a brief overview of the
differences between them:

2.1.1 Symmetric Encryption

Figure 2.1. Symmetric Encryption

Private key cryptography is also known as symmetric cryptography, involves the use of a single secret
key to encrypt and decrypt data. The same key is used for both encryption and decryption, and it
is necessary for the sender and receiver to share this key in advance. The key feature of private key
cryptography is its efficiency and speed, as it requires fewer computations compared to public key
cryptography.
However, the primary problem of private key cryptography derive to the secure distribution of secret
keys between the sender and receiver. If the secret key fall into the wrong hands the data security
would be compromised. Additionally, this type of cryptography does not provide an authentication
mechanism, which means it does not guarantee the identity of the sender.

14



Literature Review

2.1.2 Asymmetric Encryption

Figure 2.2. Asymmetric Encryption

Public key cryptography, also known as asymmetric cryptography, employs two distinct keys: a public
key and a private key. The public key is used to encrypt data, while the private key is required to
decrypt it. The public key can be freely distributed to anyone, whereas the private key must be kept
secret by its owner.

This approach of key distribution, allow anyone to encrypt data using the public key, but only the holder
of the private key can decrypt it. Furthermore, public key cryptography supports authentication, as
the owner of the private key can digitally sign data and confirming his identity. However, public key
cryptography tends to be slower and is often primarily used to establish secure initial communication,
such as the key exchange process, then private key cryptography is frequently used to actually encrypt
data during communication.

In summary, private key cryptography is fast and efficient but requires secure channel for the key
distribution, whereas public key cryptography resolves the key distribution challenge but can be slower.
Often, these two approaches could be combined to have the best of both. Asymmetric cryptography is
the one over our interest for this research, we can distinguish basically two different implementation,
the RSA (Rivest–Shamir–Adleman) algorithm and the ECC (Elliptic-Curve-Cryptography), the firt
one is now outdated due to the fact that ECC guarantee more high security and less key length, but
is important to understand his functioning to better apprehend other one.

Rivest–Shamir–Adleman (RSA)

This algorithm is one of the first that use modular operation and it is based on number factorization
to generate the private key, the key length must be larger than 1024 bit to guarantee an acceptable
level of security, to contextualize with an example traditional computer require around one year to
violate the 1024 bit, it is clear that with the arrival of quantum computer this mechanism will not
safe also using more high parallelism. RSA algorithm is implemented as follow:

• One chooses two random prime number sufficiently large, typical greater than 1024 bit defined
as p and q.

• Now it is time to calculate the product n = p · q where n is the modulo value.
• Compute the Euler’s totient function defined as:

φ(n) = (p− 1)(p− 1) (2.1)

define the number of integers between 1 and n that are coprime to n, the factorization of n is
secret and also who know p and q can recognize.
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• Then is chosen another number e that is coprime with φ(n) and less the φ(n).

• Is computer d that is the private exponent such that its product with e is congruent to 1 modulo
φ(n) means ed ≡ 1 mod(φ(n))

Public-key is defined as (n, e) and the private-key as (m, d). The Power of this algorithm is due to the
fact that compute e and d or viceversa is not possible only knowing n but is necessary know φ(n) but
the only way to obtain this value is factorizing the number and this is a very long time and expencive
procedure.

Elliptic-Curve-criptography (ECC)

Elliptic Curve Cryptography is the modern evolution of RSA, give more high level of security and
require less key dimension. Private keys in ECC are integers in the range of the curve’s field size,
typically 256-bit integers are sufficient, as in our case of Twisted Edward Curve.

Generating keys in ECC cryptography is easy, involving the secure generation of a random integer
within a certain range, making it extremely fast. Any number within this range is a valid ECC
private key, then the public keys is represented as EC points, which is pairs of integer coordinates
(x, y) located on the curve. Due to their unique properties, EC points can be compressed into a single
coordinate with an additional bit indicating whether it’s odd or even, this is the public-key.

Many type of elliptic curve are available and each one give different result and allow to have
different level of security and parallelism, to the point of view of the implementation cost each curve
is governed by different equation and require different hardware to handle the operation, in section
2.3 are reported the mathematical specification for the curve over analysis in this research.

Elliptic Curve could be expressed with a generic equation in two dimension :

Ax2 + Bx2y + Cxy2 + Dy3 + Ex2 + Fxy + Gy2 + Hx + Iy + J = 0 (2.2)

but in cryptography are used simplified form, the more relevant are:

Weierstrass Curve

Montgomery Curve

Edward Curve

y2 = x3 + ax + b (2.3)

by2 = x3 + ax2 + x (2.4)

ax2 + y2 = 1 + dx2y2 (2.5)

In the following figure 2.3 is reported an example of Weierstrass curve that look good to explain
the operation on the EC.
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Figure 2.3. Example EC curve

This representation is on infinite field, but in ECC to have a strong level of security we work
on finite field Fp where p is the dimension of the prime field, differently from RSA both x and y

coordinates work on limited range [0, p − 1], the result is a set of integer coordinate point {x, y}.
Figure 2.4 is the visualization of 2.3 defined over a finite field

Figure 2.4. Example EC curve over finite field Fp (p = 19)

Notice that this example of curve is defined on a field of 4-5 bits in real implementation as we will see
there are 256 bit.
Very interesting property of this curve over finite field is cyclic algebraic group, if we add two point
belonging to the curve the result is another point on the curve: G + G = 2G , 2G + G = 3G and so
on, this is the base for the implementation of the Point Multiplication eq.2.8 that is the most relevant
operation on EC for the key computation. ECC cryptosystems define a unique pre-defined EC point

17
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known as the generator point G (or base point). This generator point has the remarkable property of
being able to produce any other point within its subgroup on the elliptic curve by multiplying it by
an integer within the range [0...r],where r is the order of the soubgroup.
As mentioned before we generate the public-key multiplying the generator point for the private-key
this operation is very fast but is not the same for the inverse operation called Discrete Logarithm
Problem ECDLP over Fp, is similar to the invers exponentiation in Zp, now the complexity of this
algorithm is around 2n/2, considering Ed25519 curve based on 256 bit means that are necessary 2256/2

operation, quantity not acceptable for actual technology, it means that to have k bit secure strength
we need 2k bit curve, in case of the curve just mentioned the secure strength is 128 bit.
This chapter is also an overview on the most relevant topic, in the next section are reported more
precisely all the equation and hardware implementation that allow to work with EC.

2.1.3 Diffie–Hellman Key Exchange (DHKE)

All this research work is dedicated to the implementation of the cryptocore for the key-generation
but it is also important define the mechanism that allow to exchange the key over insecure channel
in a safe way and use them to encrypt data. One of the most relevant method is based on the
Diffie–Hellman Key Exchange (DHKE), is based on the idea of excange the key between sender and
receiver in exponential form, and then combining the result both of them share the same coomon
encript/decript key.

The implementation is conceptually simplest, both part have a private-key we call a for the sender and
b for the receiver, is then defined the dimension of the prime field p, and g that is a primitive root of
p .

• sender compute the exponentiation A = ga mod(p)

• receiver compute the exponentiation B = gb mod(p)

• sender receive B and compute s = Ba mod(p)

• receiver receive A and compute s = Ab mod(p)

As we can see both part have calculate s that is the shared key, and it is possible because:

s = Ba = (gb)a = gab mod(p), s = Ab = (ga)b = gab mod(p) (2.6)

Is important to notice that a and b are secret instead p and g are know to everyone, but as explained
in section before to retrieve the private-key value is necessary implement the inverse logarithm that
is extremely expansive, this guarantee a secure strategy to exchange key.

Elliptic Curve Diffie–Hellman Key Exchange (ECDH)

ECDH is the same as DHKE but is adapted to work with Elliptic Curve, the mechanism is the same
but instead of working whit modular exponentiation we use the operation of point multiplication, that
is the aim of all this work, in the figure 2.5 is reported a schematic of ECDH working.
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Figure 2.5. ECDH working schematic

Notation used is Apriv and Apub to denote the private-key and public-key of the sender, and Bpriv,Bpub

for the receiver, p is the field size and G is the generator point defined for each curve.

• Sender compute Apub = Apriv ·G

• Receiver compute Bpub = Bpriv ·G

• Sender receive Apub and compute s = Apub ·Bpriv

• Receiver receive Bpub and compute s = Bpub ·Apriv

Both part shared the same key s now :

s = Apub ·Bpriv = Apriv ·G ·Bpriv, s = Bpub ·Apriv = Bpriv ·G ·Apriv (2.7)

This mechanism for ECDLP allow to have high level of security without share the private-key
of both part. There is another interesting thing to notice, encrypting the data with the shared key
s allow to have double layer of protection because instead of encrypt also whit the private key and
decrypt with public key what we do implicitly is encrypt with our private key and then re-encrypt
with public key of the receiver, in the same way at the receiver the decryption is done using the private
key of the receiver and the public key of the sender and this is a sort of signature that confirm the
source authenticity .

2.2 ECC Cryptography Hierarchy

This section is dedicated to analyse the typical hierarchy of the ECC cryptocore processor, is composed
of a sequence of four hierarchical levels, as depicted in Figure 2.6.
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Figure 2.6. Cryptography hierarchy

The low tier contain the finite field calculations, including modular addition 3.2.1,modular subtraction
3.2.2,modular multiplication 3.3, and modular inversion 3.4. Moving on to the second level are covered
operations related to elliptic curve groups, such as point addition 3.5 and point doubling 3.6, which
implement various modular arithmetic operations reported in section 2.3. The third level is concerned
with elliptic curve point/scalar multiplication (ECPM/ECSM), a process that integrates elliptic curve
group operations sequentially that allowing to compute the public-key. Finally, the top-level includes
ECC protocols, such as the elliptic curve digital signature algorithm (ECDSA) and EdDSA that are
not treated in this research work.

Most predominant and time-consuming operation in ECC is ECPM, defined as:

Q = K ·G (2.8)

where G represents a Generator base point on an elliptic curve, k is a scalar and depict the private-key,
and Q is another point on the same curve that symbolize the publik-key. The primary objective of
ECPM is to generate the public key multiplying the private-key with the base point on the curve.
Mathematically, It’s very tough to figure out the secret key by reversing the ECPM, as:

K = Q · (G−1) (2.9)

The process of solving k from points G and Q is commonly referred to as the elliptic curve discrete
logarithm problem (ECDLP)[6], which serves as an indicator for the security of ECC schemes. The
security of an elliptic curve cryptosystem leveraging on the difficulty of the ECDLP and the secretly of
the private key. Various algorithms are employed for ECPM, including the binary method, double-and-
add method, non-adjacent form (NAF) method, the Montgomery ladder algorithm, sliding window
method, and fixed-base comb method, but many of these are susceptible to side-channel attacks, In
contrast, the Montgomery ladder technique enables parallel execution of point addition and point
doubling, making it indistinguishable by the bit pattern of the key and thus resilient to side-channel
attacks.
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2.3 ECC Mathematical Background
It’s time to explore the more relevant equation that govern all the operation over the elliptic curve
that are the result of a very complex mathematical background, but is not relevant for our scope,
it’s crucial analyze the difference between the affine and jacobian coordinate to understand why the
second is more efficient and allow to reduce the area and the complexity of the algorithm and tacking in
consideration the fact that each little savings is important considering the nature of 256 bit parallelism
of the field.

The generic equation for the Edward curve define over a prime field Fp is:

Ea,d = ax2 + y2 = 1 + dx2y2 (2.10)

were the coefficient a,b are defined on Fp and ∈ {0,1}, if a = 1 the curve is called Untwisted Edward
Curve, in other hand if we are in the opposite situation and a = −1 the curve is called Twisted Edward
Curve, this second case is the one over our interest as we will see.

2.3.1 Twisted Edwards Curve - affine coordinates on Galois Binary Field
GF (2n)

Working on Galois Binary Field GF (2n) is one of the first approach used in ECC, the operation over
the elliptic curve are done in two dimension starting from two point defined as A(x1, x2) and B(x2, y2)
belonging to Ea,d . Basic operation necessary for the ECPM implementation are the point-addition
and the simplified version point-doubling when the input are equal, both explained better in the
following:

Unified Point-Addition

This operation allow to add two different affine point on the curve Ea,d

Figure 2.7. graphic point addition on EC Figure 2.8. graphic point addition on EC over
finite field Fp

P (x1, y1) + Q(x2, y2) = R(x3, y3) (2.11)

x3 = x1y2 + y1x2

1 + dx1x2y1y2

y3 = y1y2 − ax1x2

1− dx1x2y1y2

(2.12)
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Unified Point-Doubling

This operation allow to add two equal affine point, give the nature of their equality the equation could
be simplified as follow:

Figure 2.9. graphic point doubling on EC

2P (x1, y1) = R(x2, y2) (2.13)

x2 = 2x1y1

y2
1 + ax2

1

y2 = y2
2 − ax2

1
2− y2

1 − ax2
1

(2.14)

2.3.2 Twisted Edwards Curve - projective coordinates on Galois Prime
Field GF (p)

Galois Prime Field GF (p) is the second possible approach, is slightly more complex to the point
of view of math derivation but allow to obtain better result in term of hardware implementation,
fundamentally how is possible see in the equation reported below there is not the operation of modular
inversion for each operation of PA and PD as in the case of affine coordinates, in light of the fact that
is a very expensive operation as we will see in 3.4 (take n+n/4 clock cycle to the calculation), but we
use it only in te final step of convert the public key result from projective to affine.

The limitation of this approach is due to the fact that working in projective coordinate means work
on three dimension and is necessary implement more complex logic and more harware, but this allow
to obtain better result in the end. Now we analyze what are the conversion step to move from affine
to jacobian word, as reported in 2.15 the conversion is very simple and the Z coordinate is forced to
Z = 1 instead X and Y are the same.

X = x, Y = y, Z = 1 (2.15)

The relationship between the quantities is the following, this is especially important for the final
conversion from jacobian to affine.
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x = X/Z, y = Y/Z (2.16)

The projective form of Edward curve is obtained substituting 2.16 in 2.10:

Ea,d : (aX2 + Y 2)Z2 = Z4 + dX2Y 2 (2.17)

Considering the case of Twisted Edward curve a = −1 and the final form is:

Ed : (−X2 + Y 2)Z2 = Z4 + dX2Y 2 (2.18)

Unified Point-Addition

Point addition of two point A(X1, Y1, Z1) and B(X2, Y2, Z2) on Ea,d is give by the formula:

P (X1, Y1, Z1) + Q(X2, Y2, Z2) = R(X3, Y3, Z3) (2.19)

where

X3 = Z1Z2(Z2
1 Z2

2 − dX1X2Y1Y2)(X1Y2 + Y1X2)

Y3 = Z1Z2(Z2
1 Z2

2 + dX1X2Y1Y2)(X1X2 + Y1Y2)

Z3 = (Z2
1 Z2

2 + dX1X2Y1Y2)(Z2
1 Z2

2 − dX1X2Y1Y2)

(2.20)

Unified Point-Doubling

In case in which the input are equal is possible use the simplified version equation:

2P (X1, Y1, Z1) = R(X2, Y2, Z2) (2.21)

where

X2 = (2X1Y1)(Y 2
1 −X2

1 − 2Z2
1 )

Y2 = (X2
1 − Y 2

1 )(X2
1 + Y 2

1 )

Z2 = (Y 2
1 −X2

1 )(Y 2
1 −X2

1 − 2Z2
1 )

(2.22)

2.4 Twisted Edward Curve Ed25519
All the work developed is based on the definition of Elliptic Curve, as explained in the literature
review exist different types of curve and for each one are defined different coefficient and equation,
but the math say that is possible convert one in to the other using birational map.

2.4.1 parameter derivation
For our purpose the curve Twisted Edward Curve Ed25519 is used, this curve is derived by a Mont-
gomery curve Curve25519 defined over prime field Fp expressed in form:

Ea,b : y2 = x3 + ax2 + x (2.23)
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That curve is characterized by 128 bit security level and a prime field of 2255 − 19, in table 2.1 are
reporter all parameter.

Parameter Value
p 2255 − 19
b 256 bit

order 2252 + 0x14def9dea2f79cd65812631a5cf5d3ed
cofactor 8

a 486662
Gx 0x0000000000000000000000000000000000000000000000000000000000000009
Gy 0x20ae19a1b8a086b4e01edd2c7748d14c923d4d7e6d7c61b229e9c5a27eced3d9

Table 2.1. Curve25519 parameter

Using the birational map equation reported in 2.24 and 2.25 we can transform this curve into the
corespective Twisted Edward

(u, v) =
3

1 + y

1− y

ò
(−486664) · u

x

4
(2.24)

(x, y) =
3ò

(−486664) · u

v
,

u− 1
u + 1

4
(2.25)

2.4.2 Parameter Ed25519
The Twisted Edward Curve Ed25519 derived by 2.10 is:

Ed : −x2 + y2 = 1 + dx2y2 (2.26)

The parameter obtained by the birational map are reported in table 2.2.

Parameter Value
p 2255 − 19
b 256 bit

order 2252+27742317777372353535851937790883648493
d -121665/121666 =

0x52036cee2b6ffe738cc740797779e89800700a4d4141d8ab75eb4dca135978a3
a -1

Gx 0x216936d3cd6e53fec0a4e231fdd6dc5c692cc7609525a7b2c9562d608f25d51a
Gy 0x6666666666666666666666666666666666666666666666666666666666666658

Table 2.2. Ed25519 parameter

Now is possible implement the ECPM architecture to obtain the 256 bit Public Key.
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Chapter 3

Proposed Hardware Architectures

An elliptic curve cryptosystem can be realized through either hardware or software approaches. In
this research, our exclusive focus is on the hardware approach, as hardware implementation offers
significantly enhanced performance in comparison to software implementation. However, achieving
a hardware implementation of ECC with minimal hardware consumption and low time complexity
presents a substantial challenge. Area and time represent two conflicting parameters for an ECC
processor, requiring a compromise between them to achieve heightened efficiency in terms of the other.
To optimize performance, the area-time (AT) product of the processor should be minimized. This
research effort aims to design an ECC processor well-suited for high-speed, low-power cryptographic
devices by reducing both computation time and the area footprint required for ECPM.

In this chapter i will present all the hardware block implemented and eventually their evolution during
the design, tacking special care for the timing that is essential to achieving the better performance as
possible in the moment in which the overall architecture is assembled. The presentation is organized
in a hierarchic way, start with the presentation of the adder architecture that is the elementary block
used to implement modular arithmetic operation, conversely are used to implement point addition
and point doubling that converge in the top ECPM block.
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3.1 elementary adder
First section is dedicated to the adder,is very important search better implementation since the core
work with 256 bit key and contribute in massive way to the critical path and on the area balancing.
Two subsection are dedicated because of the fact that the first one is for the ASIC implementation
and require all the specification for on-silicon realization, second one have as target the utilization of
DSP integrated on the FPGA to optimize the syntheses and reduce the allocation of LUT.

3.1.1 Carry Look Ahead(CLA) - for ASIC implementation
For the implementation of the Adder that will be synthesize on silicon is necessary have fast adder
that execute all the operation in only one clocks cycle, this is essential to limited the latency of the
core, because there is the risk that we are not able to maintain a critical path comparable with the
one of the elementary adder in the other part of the architecture, and considering the large amount
of clock cycle necessary, the total execution time could be very worst.

According to this the choice the architecture selected is the Carry-look-Ahead Adder (CLA),his
force is the ability to generate carry in parallel, enabling fast bit addition. This approach differs from
the ripple carry adder (RCA), where the carry is sequentially propagated from one bit to another.
The carry-look-ahead adder employ a series of carry generate and propagate to predict the carry value
in advance at each position, without having to wait for propagation from the least significant bit to
the most significant one. This parallel design makes CLA significantly faster than the ripple carry
adder, especially when we are working with strong word lengths.

CLA implementation

For the Hardware implementation there are fundamentally two approach, i try to implement both of
them but then i preferred the second one because allow to obtain better performance and less area.

First approach use also elementary block called A and B, in block A is computed the generate g and
propagate p of two bit, block B instead compute the combination of two generate and two propagate
, in figure 3.1, and 3.2 are reported the schematic and the implemented equation, combining this two
block in a proper tree way is possible implement very large adder as will explain later. Second approach
instead using also another block called C that compute the combination generate and propagate of
four p and g input, obviously the equation used are studied a doc to optimize the process, figure 3.3
illustrate the the schematic.

How is possible to see the block work in two phase, first the computation of signal generate and
propagate move from top to the bottom, second the carry start is propagation from bottom and move
to the top, this means that the tree is traversed two time in both direction
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Figure 3.1. architecture A block

gi = ai bi

pi = ai ⊕ bi

Si = ai ⊕ bi ⊕ Ci

(3.1)

Figure 3.2. architecture B block

Gi = gi + gi−1 pi

Pi = pi Pi−1

ci = gi−1 + pi−1 Ci

ci−1 = ci

(3.2)

Figure 3.3. architecture C block

defined the elementary blocks is time to develop the overall tree architecture, the architecture proposed
is relate to the second approach , the first one follow the same logic but instead of using 4-input block
as mono-block create it using three B block. Implementation follow a hierarchic approach, in practise
is implemented first of all a 4-bit Adder as in fig. 3.4, and combining four of this block is obtained a
16 bit adder fig.3.5
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Figure 3.4. architecture 4bit CLA Figure 3.5. architecture 16bit CLA

Four of this block are combined to create a 64-bit adder as in figure 3.6 and in conclusion in turn
other four block are combined to create a 256-bit adder as in figure 3.7

Figure 3.6. architecture 64bit CLA Figure 3.7. architecture 256bit CLA

Analyzing the architecture proposed in next section is clear that to take in consideration sign and
overflow are not sufficient 256 bit but is necessary extend the parallelism to 257 bit for the modular
adder/subtractor, and 258 bit for the modular multiplier and modular inversion, it is therefore nec-
essary increase the parallelism of the adder in this two case, to do this is possible extend the tree to
the right or to the left without distinction but For convenience and to minimize changes i have chose
the left approach as explained in figure 3.8, 3.9

Figure 3.8. architecture 257bit CLA Figure 3.9. architecture 258bit CLA
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3.1.2 Carry Select Adder(CSA) using DSP - for FPGA synthesis

In this section is threated the implementation of the elementary adder using DSP available on the
Virtex-7 FPGA, this is necessary to reduce the utilization of the LUT and in consequence area and
the speed, to reach the better implementtation i tra different way starting from the more simplest,
the Ripple Carry Adder As in RTL figure 3.10
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Figure 3.10. RTL view of RCA adder implemented with DSP

As is possible to see are allocated six DSP in which five are implemented with the maximum parallelism
of 48 bit, and the last one with 17 bit for a total of 257 bit, the same is done for the 258 bit. Being
an RCA adder simply the carry in output from the first stadium propagate along the chain block per
block, final result is a very long propagation delay, i notice that i have disabled all the six default
pipeline level to respect the timing of overall system. Aware of the fact that is a worst result i try
to implement the Carry-Select-Adder (CSA), also in this case i develop may idea in successive step,
initially using three level architecture, because i think that increasing the number of multiplexer could
be counterproductive considering the high working parallelism, but after the compilation the results
are better respect to the RCA but not satisfying, although i decide to implement four-level architecture
that is the maximum possible using 48-bit DSP and now the result is good, around 2.7ns of critical
path. In figure 3.11 is reported the generic architecture of 4-level CSA, in which the carry is identified
by the green line and result by the black, instead in fig. 3.12 the RTL implementation,
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Figure 3.11. architecture CSA 4-level
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Figure 3.12. RTL view of CSA 4-level adder implemented usng DSP

Using this approach each block calculate the result in both case of carry = 1 or and carry = 0, then
using multiplexer only the correct result according to the carry in output from previous stage can pass
trough, this idea could be extended following a tree to high parallelism, to have better performance
i dedicate a one-bit multiplexer for the carry, doing this carry propagation is more fast respect pass
trough the MUX of the result and enabling the next level of multiplexer to start earlier.
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3.2 modular addition/subtraction
In this section are analyzed the modular operation of addition ad subtraction, the concept is very
simple, in practice every time we need addition or subtract two number is necessary that the result
is confined inside the prime field Fp that could be seen as a watch, every time is reached the end we
restart from the beginning and so on.

3.2.1 modular addition

Architecture proposed in fig. 3.13 is used to implement the modular addition, first operation is the
addition of two input using the adder proposed in section 3.1, parallelism is extended to 257 bit to
preserve the integrity of the result, next step is finite field Fp dimension p subtraction, then a sign
check is done, if the sign is negative means MSB = 1 the multiplexer enable the passage of S1 result
because means that it is just confined over the field, otherwise if the sign bit is 0 multiplexer give S2
to become the output. Done signal is start signal retarded of one clock cycle to allow the alignment
with the result.

Figure 3.13. schematic modular addition

features:
Cost: 2 Adder + 1 MUX(256to1) + 1 Inv. + 4 Reg.
Critical Path: 2 Tadd + TMUX + Treg

Latency : 1 Tck + 1
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3.2.2 modular subtraction

In this second section is presented the Modular Subtractor fig. 3.14, the working is very similar to
the Modular Adder, first step is compute the subtraction of the input also in this case the parallelism
is extended to 257 bit to preserve the integrity of the result, his MSB is used as the selector for the
multiplexer, if the sign bit is 0 means that the result is positive and in consequence is defined on the
prime field Fp for definition and it comes out directly as definite output, otherwise if sign = 1means
that the subtraction give negative result and it need to be reported on the prime field adding one time
his dimension p.

Figure 3.14. schematic modular subtraction

features:
Cost: 2 Adder + 1 MUX(256to1) + 1 Inv. + 4 Reg.
Critical Path: TInv + 2 Tadd + TMUX + Treg

Latency : 1 Tck + 1
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3.2.3 modular sum-subtraction

Third and last part of this section is dedicated to another circuit that combine the operation of
Modular Addition and Modular Subtraction, i decide to define this architecture because my research
is strongly focused on reducing the number of allocated resources, as we will see wen we talk about
the operation of Point Addition and Point Doubling i have done an accurate scheduling job and to
reduce more and more the resources block this architecture provide assistance.

Figure 3.15. schematic modular additon/subtraction

The working of this circuit is the same as explained for Mod. Addition and Subtraction but there
is one additional signal the as if as = 1 mux1 let it pass the negate version of B and it means we
implement the subtraction, next step is check if the result is positive or negative according to the
sign bit of the result, and in case it is negative mux2 define the second input of S2 as the not negate
value of p and we add it to report the result on the finite field otherwise if the sign is positive the
result is already over the field, then the result go in output thank to mux3 derived by the sign.
opposite situation is when as = 0 in this case mux1 let it pass unaltered version of B and it means we
implement the addition, next step is check if is out of the filed and in case subtract the field dimension
P and then tanks to mux4 is decided which is the correct result. In both case mux5 driven by as

select the correct output.
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features:
Cost: 2 Adder + 5 MUX + 3 Inv. + 5 Reg.
Critical Path: TInv + TMUX + 2 Tadd + 2 TMUX + Treg

Latency : 1 Tck + 1

Apparently could be worst this architecture but considering the cost of the single adder this structure
save two adder instead of allocate two different structure for the implementation of Mod. Addition
and Subtraction. Obviously could operate only one operation per time and is necessary have the
scheduling possibility to work in this condition

timing

in this paragraph is reported the timing diagram of all the three architecture propose in this section,
Modular Addition 3.2.1, Modular Subtraction 3.2.2 and Modular Addition/Subtraction 3.2.3 in which
are reported the behaviour of the most relevant signal.

Figure 3.16. timing Modular Addition/Subtraction

VHDL simulation and Matlab validation

In this section is reported the Matlab validation code used to verify the correctness and the simulation
of VHDL code done using Modelsim

1
2 % field dimension 0x52036cee2b6ffe738cc740797779e89800700a4d4141d8ab75eb4dca135978a3
3 p = sym(’57896044618658097711785492504343953926634992332820282019728792003956564819949’);
4 %input
5 a = sym(’26826903516534128576205990732449246204549756080988166989461034734729464335973’);
6 b = sym(’57896044618632535464341535436436578412269754886254878645315168469699635187546’);
7 %output
8 out = dec2hex(mod(a+b, p)); %result converted in hexadecimal
9 %--------

10 %out = 3B4F7D4345F8078BB201CEBF9AE65CDE6D55CB91B7A23DC13380EB8009A35DD2

Figure 3.17. VHDL Modular Addition simulation

Results are the same, means Modular Adder works well
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3.3 modular multiplication
In this section is explained the architecture of Modular Multiplication, fundamentally the research
work is starting with the implementation of the RADIX-2 interleaved modular multiplication but
according to the fact that are necessary n clock cycle to handle the operation i try to implement the
RADIX-4 architecture that use only the half of clock cycle n/2 about the critical path tanks to a
precomputation stadium and revision of the architecture i obtain a result very similar to the one given
by RADIX-2, is clear that the best choice is the RADIX-4 but i implement all the operation using
both of them to have a better comprehensive comparison.

3.3.1 RADIX2 - interleaved modular multiplication

In this architecture is prresented the RADIX-2 implementation , schematic is reported in 3.19, the
idea behind is compute partial product multiplying each clock cycle factor A by bit a bit B, to do
this A is memorized in a register, factor B is saved in a shift register that each clock cycle shift left of
one position and the gap is filled with ’0’, there is also a ’1’ added to the LSB this is useful because
to detect the end of the multiplication is allocated a OR port that take in input T[n− 1 to 0] output
bit of the shift register and the result is 1 until the ’1’ go out of this set, at this point OR output is
0 and means the multiplication in finish instead done signal is asserted to ’1’. MUX1 is driven by
the output bit of shift register let it pass or the value of previous partial result D multiply by two
according to the multiplication rule proposed in pseudo-code Algorithm 1 if the bit in ’0’, otherwise
if the bit is ’1’ the MUX output is the addition of the previous partial result D and the factor A.
Last step is report the result over the finite field Fp to do this is necessary remember that partial
result could be at maximum three time the field dimension p it means that in this case to report the
result on the field is necessary subtract two time p otherwise one only one time or noting, all of this
operation are done in parallel, then according to the sign of the result MUX2 let pass only the correct
result defined on the field. REG2 sample each time instead the OR output is one, but in last cycle
signal in 0 and the correct result of multiplication stays memorized on the output.

Algorithm 1 Radix-2 Interleaved Modular Multiplication
Require: A =

qn−1
i=0 ai2i, B =

qn−1
i=0 bi2i, p =

qn−1
i=0 pi2i; ai, bi, pi ∈ {0, 1}

Ensure: D = (A ·B) mod p
1: D ← 0;
2: T ← B& ’1’;
3: while T (n− 1 downto 0) /= ’0’ do
4: D ← 2C;
5: if Tn = 1 then
6: D ← D + A;
7: end if
8: D ← D mod p;
9: T ← (Tn−1 downto T0)& ’0’; // left-shift operation

10: end while
11: return D;
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Figure 3.18. timing modular multiplication RADIX-2

The parallelism is defined on 258 bit to preserve the integrity of the signal, one extra bit is for the
overflow, and it is sufficient to represent at maximum three time the field dimension Fp, other one
extra bit is for the sign used by MUX2

features:
Cost: 3 Adder + 2 MUX + 2 Inv. + 4 Reg + 1 Shift Reg.
Critical Path: Tadd + TMUX + Tadd + TMUX + Treg

Latency : n + 1 Tck = 257 Tck

timing

In fig. 3.19 is reported the timing diagram of Modular Mult. RADIX-2

Figure 3.19. schematic modular multiplication RADIX-2
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Matlab validation

In this section is reported the Matlab validation code used to verify the correctness

1
2 % field dimension 0x52036cee2b6ffe738cc740797779e89800700a4d4141d8ab75eb4dca135978a3
3 p = sym(’57896044618658097711785492504343953926634992332820282019728792003956564819949’);
4 %input
5 a = sym(’8147683625340390487245337256582588226224617713433078006524389531107657873571’);
6 b = sym(’15112221349535400772501151409588531511454012693041857206046113283949847762202’);
7 %output
8 out = dec2hex(mod(a*b, p)); %result converted in hexadecimal
9 %--------

10 %out = 803644543CFA1951232C9C47ED0EA89B11ECB00D70501C0B2AAFC2E24C541E4

Figure 3.20. VHDL Modular RADIX-2 Multiplication simulation

Results are the same, means Modular Multiplier works well

3.3.2 RADIX4 - interlived modular multiplication

In this architecture is presented the RADIX-4 implementation, the idea behind is the same described
before but with a little change, compute partial product multiplying each clock cycle A by a couple of
bit at time from B. to do this A is memorized in a register, factor B is saved in a shift register that
each clock cycle shift left of two position and the gap is filled with ’0’, there is also a ’01’ added to the
LSB this is useful because to detect the end of the multiplication is allocated a OR port that take in
input T[n - 1 to 0] output bit of the shift register and the result is ’1’ until the ’1’ go out of this set, at
this point OR output is ’0’ and means the multiplication in finish instead done signal is asserted to 1.
MUX1 is driven by two output bit of shift register, this allow to have four case, if sel is ’00’ means
that the new partial result is D, the same as cycle before but shifted left of two position according
to the multiplication rule explained in Algorithm 2, in case of sel =’01’ means that to the partial
result we add one time the factor A, the same rule is valid for sel=’10’ means addition two time A

and in the end sel=’11’ means adding three time A. Bottom half of the implementation is reported
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in two different version explained in paragraph below. Another important consideration is relative
to the precomputed value in input to S1, S2, S3 adder, i implement a dedicated block reported in
fig. 3.21 for their computation, because inserting another adder block in series increase the critical
path of the overall core since of this block is the globally critical one, as we will see in timing for the
precomputation there is one clock cycle dedicate.

Figure 3.21. precomputation modular multiplication RADIX-4

Algorithm 2 Proposed Radix-4 Interleaved Modular Multiplication
Require: A =

qn−1
i=0 ai2i, B =

qn−1
i=0 bi2i; ai, bi ∈ {0, 1}

Ensure: D = (A ·B) mod p
1: D ← 0;
2: T ← B&”01”;
3: while T (n− 1 downto 0) /= 0 do
4: D ← 4D;
5: if T (n + 1 downto n) = ”01” then
6: E ← D + A;
7: else if T (n + 1 downto n) = ”10” then
8: E ← D + 2A;
9: else if T (n + 1 downto n) = ”11” then

10: E ← D + 3A;
11: else
12: E ← D;
13: end if
14: D ← E mod p;
15: T ← (Tn−1 downto T0)&”00”; // left shift operation
16: end while
17: return D;

first implementation This is the first version [7], proposed in fig. 3.22 as in the case of RADIX-2 is
necessary report the partial result on the finite field Fp but now the partial result could be at maximum
seven time the field dimension p, it means that is necessary define all the possible intermediate case
in which we subtract one time the field dimension p, two time, and so on up to six, doing this we
guarantee to have the partial result over the field. at this point using MUX2 is necessary allow to
pass only the correct result, to do this the idea is drive the selector with the three most significant bit
of the partial result in output to MUX1 if are ’000’ means that we are already over the field and the
partial result pass without change, if sel=’001’ output is the partial result less p, and so on for each
other case. R4 sample each result in output instead of the OR output become ’0’ at this point the
modular multiplication is terminated.
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Figure 3.22. VHDL Modular Multiplication first version

This architecture proposed have a problem that i discover during the test with high input close to the
maximum field value, in practise the multiplexer MUX2 use only the three MSB to decide which is
the output, but the finite field dimension P has a value of 2255 − 19, it means that does not saturate
the 256 bit dynamic and if the output of the MUX1 is a little bit grater respect this value the three
MSB are the same but the value is in the next cycle of the field. In conclusion the output result could
be defined on two time p and not only on p to solve this problem is necessary allocate another block
in proximity of the symbol "≡" nearness to the output in fig.3.22. Extra block in exam is reported
in fig.3.23. it is simply an adder that subtract the field dimension p and then if the sign is positive
means that the result was out of bound and now is reported over the field, in case it is negative means
that it was just defined over the field and no modification are needed.

Figure 3.23. check extra block
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The parallelism is defined on 258 bit to preserve the integrity of the signal, one extra bit is for the
overflow, and it is sufficient to represent at maximum three time the field dimension Fp, other one
extra bit is for the sign used by MUX2

features:
Cost: 10 Adder + 3 MUX + 7 Inv. + 5 Reg + 1 Shift Reg. + 1 OR gate.
Critical Path: Tadd + 1 TMUX + Tadd + TMUX + Treg

Latency : n
2 + 2 Tck = 130 Tck

second implementation In this second implementation is presented an optimized architecture
finalized to reduce the area, the upper half of the architecture is the same as before but the modification
is applied to the bottom half, instead of having six adder allocate i use the MUX2 only to select the
correct value of field multiple mp to subtract from the partial result in output to MUX1 and in
consequence there is only one adder allocate instead of six, considering the huge cost in term of area
of the elementary adder there is a reduction of the overall area around 45% that is a very good result.
Also in this case in correspondence of symbol ≡ is located the block 3.24 to conduct a validation check
of the result inclusion within the field.

Figure 3.24. modular multiplication RADIX4 second version(definitive)
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features:
Cost: 5 Adder + 3 MUX + 7 Inv. + 5 Reg + 1 Shift Reg. + 1 OR gate.
Critical Path: Tadd + 2 TMUX + Tadd + Treg

Latency : n
2 + 2 Tck = 130 Tck

About parallelism is defined on 256 bit for the same reason as RADIX-2

timing

In fig. 3.25 is reported the timing diagram of Modular Mult. RADIX-4. How is possible to see
there is one dedicated clock cycle to the precomputation of the factor, then n

2 + 1 clock cycle for the
computation of the multiplication.

Figure 3.25. timing RADIX-4 multiplication

VHDL and Matlab validation

In this section is reported the Matlab validation code used to verify the correctness and the result of
the VHDL test done with Modelsim

Figure 3.26. VHDL Modular RADIX-4 Multiplication simulation
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1
2 % field dimension 0x52036cee2b6ffe738cc740797779e89800700a4d4141d8ab75eb4dca135978a3
3 p = sym(’57896044618658097711785492504343953926634992332820282019728792003956564819949’);
4 % input
5 a = sym(’57896044618658097711785492504343953926634992332820282019728792003956564819948’);
6 b = sym(’57896044618658097711785492504343953926634992332820282019728792003956564819948’);
7 B = dec2bin(b,256);
8 reg_x4 = 0;
9 n=0;

10
11 for i = 1:2:256
12 if i + 1 <= 256
13 bits = B(i:i+1);
14 %fprintf(’Bits estratti: %s\n’, bits);
15 fprintf(’partial result: %d\n’,n);
16
17 if bits == ’01’
18 mux1_out = a+reg_x4;
19 fprintf(’mux_1: %s mux1_out: %s \n’,bits,dec2hex(mux1_out));
20 fprintf(’mux1_out: %s \n’,dec2bin(mux1_out,258));
21 end
22 if bits == ’10’
23 mux1_out = 2*a+reg_x4;
24 fprintf(’mux_1: %s mux1_out: %s \n’,bits,dec2hex(mux1_out));
25 fprintf(’mux1_out: %s \n’,dec2bin(mux1_out,258));
26 end
27 if bits == ’11’
28 mux1_out = 3*a+reg_x4;
29 fprintf(’mux_1: %s mux1_out: %s \n’,bits,dec2hex(mux1_out));
30 fprintf(’mux1_out: %s \n’,dec2bin(mux1_out,258));
31 end
32 if bits == ’00’
33 mux1_out = reg_x4;
34 fprintf(’mux_1: %s mux1_out: %s \n’,bits,dec2hex(mux1_out));
35 fprintf(’mux1_out: %s \n’,dec2bin(mux1_out,258));
36 end
37
38 mux2_out = mod(mux1_out,p);
39 fprintf(’ %s\n\n’, dec2hex(mux2_out));
40 reg_x4 = mux2_out*4;
41 n=n+1;
42
43 else
44 bits = B(i);
45 fprintf(’remaining bit: %s\n\n’, bits);
46 end
47 end
48
49 %--------
50 %out = 000000000000000000000000000000000000000000000000000000000000001

In this test i try the test with two input value at the bound of maximum dimension of the field p

to verify the correct working also in worst case condition, and result are the same as the software
simulation, means that circuit work well. Notice also the plot of precomputated value nominate a,
ax2 and ax3.
Matlab code is implemented following exactly the same algorithm used in the hardware and proposed
in the pseudocode to have all the intermediate value available and test in the better way as possible.
Final consideration is that with RADIX-4 multiplier we have halved the number of clock cycle nec-
essary and the critical path is accurately maintained the same as before, is clear that this one is the
best implementation.
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3.4 modular inversion

In this section is presented the modular inversion block, how we can see is very expensive and require
many clock cycle to perform the calculation, and this is one of the reason why we have move in
the direction of working with projective coordinate and not with the affine that require one of this
operation for each point addition and point doubling.

3.4.1 Modular inversion Architecture

Algorithm 3 Proposed Modular Inverter
Require: B =

qn−1
i=0 bi2i; bi ∈ {0, 1}

Ensure: C = B−1 mod p
1: C ← 0, q ← B, r ← p, s← 1, t← 0;
2: while q /= 1 do
3: while q(0) = 0 do
4: q ← q/2;
5: if s(0) = 0 then
6: s← s/2;
7: else
8: s← (s + p)/2;
9: end if

10: end while
11: while r(0) = 0 do
12: r ← r/2;
13: if t(0) = 0 then
14: t← t/2;
15: else
16: t← (t + p)/2;
17: end if
18: end while
19: if q > r then
20: q ← q − r;
21: if s > t then
22: s← s− t;
23: else
24: s← s + p− t;
25: end if
26: else
27: r ← r − q;
28: if t > s then
29: t← t− s;
30: else
31: t← t + p− s;
32: end if
33: end if
34: end while
35: return s mod p;
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The algorithm behind this architecture is very complex and it would require a very in-depth math-
ematical analysis, but that is not the purpose of this research, and i only present the pseudo-code
in Algorithm 3 and the implementation. Generally this schematic is divided in four different block,
each one with with a register called respectively RegQ, RegR, RegS, RegT and the are done some
calculation according to the algorithm, input multiplexer MUX1, MUX2, MUX3, MUX4, select
the first value to charge in the register and then switch to connect the feedback for next iteration,
then there is the final block adder S9 that perform a check to verify if q < 2 if this condition is reached
means that the result of inversion is ready, otherwise means that is necessary do other calculation.
S10 as usual compute the check to verify that the result is defined on the finite field Fp subtracting
the field dimension p and the tacke the decision using the sign.

Figure 3.27. Datapath modular inverter
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How in presented in the block abstraction the architecture is drive by a FSM, this is necessary
because i have split the circuit in two part using pipeline register reg1, reg2, reg3 to reduce the
critical path, now the two half part work simultaneously and this allow to have the same latency as
the original circuit but with a Cp less.
In the 3.28 is reported the flow chart that describe logic sequence and for each state define the control
signal send to the datapath.

Figure 3.28. FSM Modular Inverter

features:
Cost: 10 Adder + 9 MUX + 7 Inv. + 8 Reg .
Critical Path: 2 Tadd + TMUX + Treg

Latency : n + n
4 Tck = Max. 320 Tck

The parallelism is defined on 258 bit to preserve the integrity of the signal, one extra bit is for the
overflow, and it is sufficient to represent at maximum three time the field dimension Fp, other one
extra bit is for the sign.

3.4.2 timing

In fig. 3.25 is reported the timing diagram of Modular Inverter. How is possible to see there is a
timing pattern described in the FSM that is repeated many time instead of the output of S9 give a
result that is negative, at this point q < 2 means q=1 considering the positive nature of the partial
results. At maximum n + n

4 clock cycle are necessary for the inversion.
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Figure 3.29. timing Modular Inverter

3.4.3 VHDL and Software validation

1
2 ###########################
3 # python mod_inversion.py
4 ###########################
5
6 from sympy import mod_inverse
7
8 number = 32574380800717110134092858959791422721477056992005136709695267593247745763631
9 modulus = 57896044618658097711785492504343953926634992332820282019728792003956564819949

10
11 inverse = mod_inverse(number, modulus)
12 print("Inversione Modulare:", inverse)
13
14 #------------
15 # out = 3B096388255DB31880D26F49D83D9129118727536B2C8ADFAB2CB245C2BC67E4

Figure 3.30. VHDL Modular inverter simulation

How is possible to see the result are the same, also in this case the architecture work well, this time
the software simulator is a Python code that use specific library to compute the inversion.
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3.5 Point Addition

Starting from this section we initiate assembling the more relevant block that are essential for compu-
tation of point multiplication, to do this are used all the modular block defined in the past paragraph.
Also in this case the algorithm for the Point Addition is a derivation of a very complex math problem,
but we develop our research around a set of formula that are just given and are just reported in
eq. 2.12 if we consider affine coordinate, but we work in projective to be more efficient therefore the
reference are 3.3.

3.5.1 Point Addition Architecture

Starting point is define the scheduling of the resources to implement the equation in the more efficient
way reducing as much as possible the hardware allocated and the time necessary, in fig. 3.31 is
reported the scheduling flow-chart.

Figure 3.31. resource scheduling Point Addition

X3 = Z1Z2(Z2
1 Z2

2 − dX1X2Y1Y2)(X1Y2 + Y1X2)

Y3 = Z1Z2(Z2
1 Z2

2 + dX1X2Y1Y2)(X1X2 + Y1Y2)

Z3 = (Z2
1 Z2

2 + dX1X2Y1Y2)(Z2
1 Z2

2 − dX1X2Y1Y2)

the block take in input two different value that will added following the Elliptic Curve Ed25519,
each point is defined on three dimension A(x, y, z) and B(x, y, z) then there is a third input that is
the constant d defined in eq.2.26.
Each graphic circle is a modular operation respectively is the modular additio, is the modular
multiplication, by the way i have implemented both case RADIX-2 multiplier and RADIX-4 multiplier
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although we just say that RADIX-4 is the best one, then is the modular subtraction and is the
modular square root.

Figure 3.32. architecture Point Addition
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One of the Target of this research is reduce as much as possible the area, to do this i try to schedule
the block in the best possible way reusing all the resource many time, near each block is possible see
a label that i will associate to the allocated block in the point_addition_Datapath fig. 3.32 block
that have same label means that share the same component, obviously the sharing is done in such a
way that the level of computation are always five and the execution time is the less as possible.
As is possible to see the resource allocated are strongly reduced respect the scheduling diagram, but
we see better:

features:
Scheduling Resource: 4 Mod. Adder + 12 Mod. Multiplier + 1 Mod. squarer.
Datapath Resource: 1 Mod. Adder + 1 Mod. Adder/Subtractor + 5 Mod. Multiplier

Datapath Cost: Datapath Resource + 14 MUX + 5 AND + 3 Reg.
Critical Path: Critical Path Mod. Multiplier
Latency using RADIX-2 : (n + 1) · 4 Tck + 2 Tck + 1 Tck (L1_A) = 1031Tck (1030 in cycling working)
Latency using RADIX-4 : ( n

2 + 2) · 4 Tck + 2 Tck + 1 Tck (L1_A) = 523Tck (522 in cycling working)

Is clear that using scheduling we have saved seven multiplier and two adder, now it is more clear the
reason why i have decide to implement the block of addition/subtraction, because instead of having
only two adder we would have also another subtractor, that occupies area. About the working of
datapath there are two multiplexer for each arithmetic block, according to the level in which we are
the FSM drive the respective selector to let pass the correct input, to define the end of a level five
AND gate are allocated and their input are asserted to ’1’ only in the moment in which all the block
on the level are finish and his done is high, at this point the FSM enable to start the next level. About
the three register they are the same visible in the scheduling flow chart and are used to memorize data
that require pass trough more than one level. In the following fig. 3.34 and fig. 3.35 are reported the
FSM of respectively both RADIX-2 implementation and RADIX-4 implementation, and in 3.33 the
starting non optimized version.
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Figure 3.33. FSM Point Addition RADIX-2 non-optimized

In this implementation the switch between two state is defined by the assertion of the done signal,
and in case is zero we continue to loop instead of the calculation are finished.
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Figure 3.34. FSM Point Addition RADIX-2

Now differently from before we do not have the done signal to define the end of the level, but we
use a counter, this allow to start the following level across the last one without loosing clock cycle.
Then there is the possibility to work in cycling way passing in the fork.
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Figure 3.35. FSM Point Addition RADIX-4

How is possible to see are very similar, RADIX-4 differ fundamentally from having more state and
this is due to the fact that there is the precomputation stadium that occupy one clock cycle, and then
the counting discriminant are different because require half iteration respect RADIX-2. globally for
both the generic idea is enable each level one at time and when the done signal of the level is asserted
we can start the next one. Notice that that the FSM is projected taking in consideration the fact that
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in the point multiplication the point addition is the bottle neck because the point doubling require
less number of iteration, moreover the PA iterate many and many time consequentially, therefore is
necessary optimize the FSM to allow the best performance as possible, and this is done making sure
that when the Level.5 is completed in the next clock cycle the Level.1 is just in execution, to do that
is necessary anticipate the done signal in state L5_A of one clock cycle as we will see in the timing
and define a fork to verify if the start is asserted and exceed directly to the L1_B state without
wasting time. Proof of that is the latency reported in the feature chapter,first implementation require
525 iteration, then optimized version require 522 Tck for one computation and one less for the cyclic,
means 521 Tck.

3.5.2 timing

In fig.3.36 3.37 and 3.38 are reported the timing diagram in which are distinguishable the five level
denominate with the letter L and the number of the level, then each one is subdivided in step defined
before in the FSM. In the first implementation 3.36 that is non optimized for cyclic working is possi-
ble to see that each iteration end when the done of the level is asserted, then in next state the start
become high and the next iteration start, this is correct but the problem is that every time we loose
one clock cycle for the restart and other two for the passage for the IDLE state. Is also necessary
optimize this architecture to reduce as much as possible the number of iteration primarily to the point
of view of the cyclic working as in 3.37 and 3.38 , to do this first improvement is define a counter
because is necessary anticipate the assertion of the done, but using also the done signal of each level
is impossible due to the fact that we are not able to predict the future, second improvement is define
a fork of the flow in which if the start is high the flow is redirect to state L1_B saving other two
clock cycle, otherwise it return to the IDLE state. In conclusion with this betterment’s the latency
is reduced of three clock cycle and as we will see being the PA the bottle neck of the ECPM in total
we have saved 3 · 255 iteration = 765 clock cycle in point multiplication operation.
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Figure 3.36. timing Point Addition RADIX-2 non-optimized
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Figure 3.37. timing Point Addition RADIX-2
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Figure 3.38. timing Point Addition RADIX-4

How is possible to see in reed are highlighted the precomputation stadium, in both case i report
the case of cyclic working stress the attention on the done signal that is anticipate respect the valid
output of one clock cycle to allow the restarting without loosing time, i also report the state of the
ECPM FSM to have a more clear overview of the time scheduling.
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3.5.3 VHDL simulation and Matlab validation

In the following are reported the Matlab validation code and VHDL simulation using Modelsim

1 % field dimension 0x52036cee2b6ffe738cc740797779e89800700a4d4141d8ab75eb4dca135978a3
2 % constant d 0x52036cee2b6ffe738cc740797779e89800700a4d4141d8ab75eb4dca135978a3
3 p = sym(’57896044618658097711785492504343953926634992332820282019728792003956564819949’);
4 d = sym(’37095705934669439343138083508754565189542113879843219016388785533085940283555’);
5 %input
6 x1 = sym(’15112221349535400772501151409588531511454012693041857206046113283949847762202’);
7 y1 = sym(’46316835694926478169428394003475163141307993866256225615783033603165251855960’);
8 z1 = sym(’1’);
9 x2 = sym(’22227142146053615383686711456592054533481723065238328079491086165754688571991’);

10 y2 = sym(’23132612897935763947376118816302936961945753855592497212527330206034714001367’);
11 z2 = sym(’47730969525411543486323345491594608200968822454103728746637676179095643807339’);
12 % level 1
13 m11 = mod((x1*x2),p);
14 m21 = mod((y1*y2),p);
15 m31 = mod((z1*z2),p);
16 m41 = mod((x1*y2),p);
17 m51 = mod((x2*y1),p);
18 % level 2
19 m12 = mod((m11*m21),p);
20 s12 = mod((m11+m21),p);
21 m22 = mod((m31*m31),p);
22 s22 = mod((m41+m51),p);
23 % level 3
24 m13 = mod((d*m12),p);
25 m43 = mod((s12*m31),p);
26 m53 = mod((m31*s22),p);
27 % level 4
28 s14 = mod((m13+m22),p);
29 s24 = mod((m22-m13),p);
30 % level 5
31 y3 = mod((s14*m43),p);
32 dec2hex(y3)
33 z3 = mod((s14*s24),p);
34 dec2hex(z3)
35 x3 = mod((s24*m53),p);
36 dec2hex(x3)
37
38 %------------
39 % x3 = 6B8E2FBC776B7E13CE4AA95335C6B1F390A06B8F524BAF4EC23753B1C9EB9985
40 % y3 = 169A317C0CBFFF7865588CE7671602170B9DF112A9F752EEDF75F68803EC7664
41 % z3 = 61E9BE98A68F5565E79965B0C47B14857CBD699B053F91018B5F4B631D02D8E9

Figure 3.39. VHDL simulation point addition RADIX-4

After simulation the result are the same, circuit work well.
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3.6 Point Doubling

In this second section is treated the Point Doubling operation, the implementation follow everything
described for point Addition, unique difference is in the more easiest equation implemented.

3.6.1 Point Doubling Architecture
Starting point is define the scheduling of the resources to implement the equation in the more efficient
way reducing as much as possible the hardware allocated and the time necessary, in fig. 3.31 is
reported the scheduling flow-chart.

Figure 3.40. resource scheduling Point Doubling

X2 = (2X1Y1)(Y 2
1 −X2
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1 + Y 2
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Z2 = (Y 2
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1 −X2

1 − 2Z2
1 )

the block take in input only one coordinate that will added to herself following the Elliptic Curve
Ed25519, the point is defined on three dimension A(x, y, z) , in this case there is not the constant d

because this equation are the result of point Addition equation simplification
Each graphic circle is a modular operation respectively is the modular additio, is the modular
multiplication, by the way i have implemented both case RADIX-2 multiplier and RADIX-4 multiplier
although we just say that RADIX-4 is the best one, then is the modular subtraction and is the
modular square root.
One of the Target of this research is reduce as much as possible the area, to do this i try to sched-
ule as in the case of point Addition the block in the best possible way reusing all the resource
many time, near each block is possible see a label that i will associate to the allocated block in
the point_Doubling_Datapath fig. 3.41 block that have same label means that share the same com-
ponent, obviously the sharing is done in such a way that the level of computation are always 4 and
the execution time is the less as possible. Notice that in this implementation the level are only four
and two are just addition operation means 2 Tck.
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Figure 3.41. Datapath Point Doubling

features:
Scheduling Resource: 3 Mod. Adder + 3 Mod. Sub. + 4 Mod. Multiplier + 1 Mod. squarer.
Datapath Resource: 2 Mod. Adder + 2 Mod. Subtractor + 4 Mod. Multiplier

Datapath Cost: Datapath Resource + 10 MUX + 4 AND + 4 Reg.
Critical Path: Critical Path Mod. Multiplier
Latency using RADIX-2 : (n + 1) · 2 Tck + 2 Tck + 2 Tck (L1_A/done) = 520Tck

Latency using RADIX-4 : ( n
2 + 2) · 2 Tck + 2 Tck + 2 Tck (L1_A/done) = 264Tck

As we have presented for the point Addition, i implement the architecture also using both RADIX-2
and RADIX-4 multiplier to have a comparison although we just say that RADIX-4 is the best one.
In paragraph feature are reporter the data about the resources necessary ad the number of iteration,
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using RADIX-2 are needed 520 Tck instead using RADIX-4 264 Tck that are more or less the half.
About cyclic optimization is not necessary because in the ECPM as we will see Point Doubling and
Point Addition work in parallel, but given that PA require 520 Tck and PD 264 Tck it would just
be a waste of resource considering that is necessary allocate a counter and define more logic for the
extra status in the FSM.

Figure 3.42. FSM Point Doubling RADIX-2
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How for the case of Point Addition Datapath require the support of the FSM to work properly.
Also in this case FSM manage the state transition according to the four level f the flow chart and
enable the switch between two state only in the moment in which the done signal of the level is
asserted, in general each state of the machine is defined according to the signal scheduling defined in
the timing diagram proposed in next section.
3.42 and 3.43 report respectively the FSM implemented using RADIX-2 multiplier and RADIX-4 that
need precomputation stadium.

Figure 3.43. FSM Point Doubling RADIX-4
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3.6.2 timing

I have reported two timing diagram the first using RADIX-2 multiplier and second one using RADIX-4
multiplier and precomputation cycle are highlighted in red.

Figure 3.44. timing Point Doubling RADIX-2
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Figure 3.45. timing Point Doubling RADIX-4
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3.6.3 VHDL simulation and Matlab validation

In the following are reported the Matlab validation code and VHDL simulaton using Modelsim

1 % field dimension 0x52036cee2b6ffe738cc740797779e89800700a4d4141d8ab75eb4dca135978a3
2 % constant d 0x52036cee2b6ffe738cc740797779e89800700a4d4141d8ab75eb4dca135978a3
3 p = sym(’57896044618658097711785492504343953926634992332820282019728792003956564819949’);
4 d = sym(’37095705934669439343138083508754565189542113879843219016388785533085940283555’);
5 %input
6 x1 = sym(’15112221349535400772501151409588531511454012693041857206046113283949847762202’);
7 y1 = sym(’46316835694926478169428394003475163141307993866256225615783033603165251855960’);
8 z1 = sym(’1’);
9 % level 1

10 m11 = mod((y1*y1),p);
11 m21 = mod((x1*x1),p);
12 m31 = mod((z1*z1),p);
13 m41 = mod((x1*y1),p);
14 % level 2
15 a12 = mod((m11+m21),p);
16 s12 = mod((m21-m11),p);
17 s22 = mod((m11-m21),p);
18 a22 = mod((m31+m31),p);
19 % level 3
20 s23 = mod((s22-a22),p);
21 a23 = mod((m41+m41),p);
22 % level 4
23 m14 = mod((a12*s12),p);
24 y2 = dec2hex(m14)
25 m24 = mod((s22*s23),p);
26 z2 = dec2hex(m24)
27 m34 = mod((s23*a23),p);
28 x2 = dec2hex(m34)
29
30 %------------
31 % x3 = 31241DDB9A7C254AEA224B87B7B0F909886EC1DDFA71625B7ABA864C18300A57
32 % y3 = 3324984C6CC933DB69B782FC3AC951F60A47AA662BBE321C924B2CD95E2D7FD7
33 % z3 = 6986C5796B577C574098D1FA3B426292EBD36100339299D16374A93D0278DE6B

Figure 3.46. VHDL simulation point Doubling RADIX-4

Result are the same, circuit work well
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3.7 Elliptic Curve Point Multiplication(ECPM)

In this last section we are arrived to assemble the Elliptic Curve Point Multiplication ECPM using
Point Addition and Point Doubling defined before, what we do finally is define the value of the public-
key Q starting from a generative point G and multiply it for a Private-key K on the Ed25519 curve,
as we have explained more in detail in the introductory chapter.

Q = K · P

Basic idea of this algorithm is adding P to itself K − 1 time:

Q = G + G + ... + Gü ûú ý
k−1 times

(3.3)

or equally doubling P log2 K time if K is even:

Q = ...2(2(2(G)))ü ûú ý
log2 K times

(3.4)

There are many algorithm that perform this operation in different way using the Point Doubling
and Point Addition following the bit pattern of K. ECPM can be performed using the double-and-
add method, as demonstrated in Algorithm 4. In this method, point doubling is executed in each
iteration, and point addition occurs only when Ki = 1. This approach exhibits two different timing and
power consumption profiles: one involving only point doubling and the other involving point addition
following point doubling. However, analyzing the power consumption profiles through Simple Power
Analysis (SPA) 3.47 reveals that the binary bit pattern of the secret key can be easily extracted,
consequently this method is susceptible to Side-Channel Attacks (SCAs).

Algorithm 4 Double-and-Add Point Multiplication (Left to Right)
Require: P, k = (

ql−1
i=0 ki2i)10; ki ∈ {0, 1}, kl−1 = 1

Ensure: Q
1: Q← P ;
2: for i from l − 2 downto 0 do
3: Q← 2Q; //Point Doubling
4: if ki = 1 then
5: Q← Q + P ; //Point Addition
6: end if
7: end for
8: return Q;
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Figure 3.47. power profile DAA algorithm for ECPM

For enhanced security against SCAs, i have proposed the ECPM scheme employs the Montgomery
ladder algorithm Algorithm 5. In this algorithm, point addition and point doubling are executed simul-
taneously to introduce uncertainty into the secret key. 3.48 validates the resistance of the Montgomery
algorithm-based ECPM against SCAs by displaying its power tracing profile. In each iteration, the
initial power consumption results from the combined power consumption of both the point addition
(PA) and point doubling (PD) modules due to their parallel operation. Since the latency of point ad-
dition is greater than that of point doubling, point doubling is completed before point addition. Once
the point doubling operation is finished, power is just consumed by the PA module. This approach
effectively conceals the bit pattern of the secret key, making it impossible to deduce through power
analysis.

Figure 3.48. power profile Montgomery Ladder algorithm for ECPM

Algorithm 5 Montgomery Ladder Point Multiplication (Left to Right)
Require: P, k = (

ql−1
i=0 ki2i)10; ki ∈ {0, 1}, kl−1 = 1

Ensure: Q
1: Q1← P ; Q2← 2P ;
2: for i from l − 2 downto 0 do
3: if ki = 1 then
4: Q1← Q1 + Q2; //Point Addition
5: Q2← 2Q2; //Point Doubling
6: else
7: Q2← Q1 + Q2; //Point Addition
8: Q1← 2Q1; //Point Doubling
9: end if

10: end for
11: return Q1;
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3.7.1 ECPM architecture

Consolidated that Montgomery Ladder Multiplication is the best in the following is proposed the
developed architecture that implement the algorithm, as presented in the abstraction there are both
the datapath and the FSM that work together.

Figure 3.49. Architecture Montgomery Ladder algorithm

In fig. 3.49 is proposed the hardware implementation for the datapath, according to the Algorithm 5,
pay attention to the fact that architecture work with value defined on three dimension (X, Y, Z) it
means that each wire must be triplicate and also each multiplexer and register. Before describe the
circuit i present the idea behind this algorithm, in practise we can write the constant K in binary
form:

K = K0 + 2K1 + 22K2 + +2lKl where l = [log2 K] (3.5)

at this point we start to initialize two variable to the value of the generating point G and his double
2G then according to the value of the K1 bit this points are doubled ore added, as follow i report the
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first step of the algorithm also to understand why we start from the Kl−1 bit, notice that i have used
K =’11’.

Q1 = O

Q2 = G

Q1 = O + G = G //Kl = 1 point addition

Q2 = G + G = [2]G //Kl = 1 point doubling

Q1 = [2]G + G = [3]G //Kl−1 = 1 point addition

Q2 = [2]G + [2]P = [4]G //Kl−1 = 1 point doubling

... ...

Out = Q1

(3.6)

It is now clear that the first step is starting from the infinite point that is not easy to manage therefore
we compute the first iteration assuming and indirectly impose that K − l must be equal to ’1’.In the
datapath MUX1 and MUX2 are used to charge as starting value G and 2G then shift register load
the value of the constant K and tanks to MUX0 let pass out only one bit at time wen the past
iteration are ended, then there are the two core block Point Addition and Point Doubling that are
managed by the FSM, MUX4 and MUX5 instead are used to discriminate if we are in the condition
of Ki = 1 or Ki = 0 and according to this refresh the Q1 and Q2 value necessary for the next iteration,
and also in the end the REG_Q is loaded to fix the result in output. Notice that the loop between
the input and the output of PA is pure cobinatorial, this allow to optimize the timing to reduce as
much as possible the number of iteration and work in a more efficient cycling way, and this is not a
problem for the critical path because inside the block there are just register in input and output, this
allow to isolate the Cp.

feature:
Datapath Cost: 6 MUX + 1 Point Add. + 1 Point Doub. + 5 Reg. + 1 AND.
Critical Path: Critical Path Mod. Multiplier
Latency using RADIX-2 : PD_latency · 255 + 1 Tck (DONE) = (1030 · 255) + 1 = 262651Tck

Latency using RADIX-4 : PD_latency · 255 + 1 Tck (DONE) = (522 · 255) + 1 = 133111Tck

In fig. 3.50 is reported the FSM, as is possible to see seems very articulate because according to the
algorithm each iteration is done checking the value of Ki to drive MUX1, MUX2 , MUX3, but not
also to manage the MUX4 and MUX5 is necessary have the previous value Ki−1 according to the
fact that in the meantime the value is updated, this create a net of decision that depend on both value
creating many fork of the process. each level is iterate 255 time according to the fact that we start
to the Kl−1 bit, the number of iteration is memorized by a counter and when reach value ’0’ means
that the cycle is ended and is possible to start new iteration.

69



Proposed Hardware Architectures

Figure 3.50. FSM ECPM
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3.7.2 timing

Figure 3.51. timing ECPM using RADIX-4 multiplier

3.7.3 VHDL simulation and Matlab validation
In this paragraph is proposed the Matlab code use to test the implemented hardware.

Figure 3.52. simulation ECPM using RADIX-4 multiplication

In the code are used the function point_addition and point_doubling that contain the code
proposed in the section before, all the intermediate results are plotted to have e better comparison
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and test of the hardware, in the end i also implement a test to verify the belonging of the output
point Q to the curve Ed25519 substituting the point in the equation end verify the equality of both
member.

1 % field dimension 0x52036cee2b6ffe738cc740797779e89800700a4d4141d8ab75eb4dca135978a3
2 % constant d 0x52036cee2b6ffe738cc740797779e89800700a4d4141d8ab75eb4dca135978a3
3 p = sym(’57896044618658097711785492504343953926634992332820282019728792003956564819949’);
4 d = sym(’37095705934669439343138083508754565189542113879843219016388785533085940283555’);
5 % PUBBLIC KEY : f9AB30F9F6E0DB3D6A254BCA6D272BE910F5616DA13E1F6707298F25E13E94B5
6 K = ’11111001101010110011000011111001111101101110000011011011001111010110101000100101010
7 0101111001010011011010010011100101011111010010001000011110101011000010110110110100001001
8 1111000011111011001110000011100101001100011110010010111100001001111101001010010110101’;
9 %generation point G(x,y,z)

10 Gx =sym(’15112221349535400772501151409588531511454012693041857206046113283949847762202’);
11 Gy =sym(’46316835694926478169428394003475163141307993866256225615783033603165251855960’);
12 Gz =sym(’1’);
13
14 [G2x,G2y,G2z]=point_doub(Gx,Gy,Gz);
15
16 %initialization
17 Q1x = Gx;
18 Q1y = Gy;
19 Q1z = Gz;
20 Q2x = G2x;
21 Q2y = G2y;
22 Q2z = G2z;
23
24 % Montgomery Ladder Point Multiplication
25 for i = 2:length(K) %ilbit 255 e’ escluso dall’algoritmo
26 extractedBit = str2double(K(i));
27 fprintf(’counter : %d \n’,i);
28
29 if extractedBit == 1
30
31 [Q1x,Q1y,Q1z]=point_add(Q1x,Q1y,Q1z,Q2x,Q2y,Q2z);
32 [Q2x,Q2y,Q2z]=point_doub(Q2x,Q2y,Q2z);
33
34 fprintf(’Q1x: %s \n’,dec2hex(Q1x,64));
35 fprintf(’Q1y: %s \n’,dec2hex(Q1y,64));
36 fprintf(’Q1z: %s \n’,dec2hex(Q1z,64));
37 fprintf(’Q2x: %s \n’,dec2hex(Q2x,64));
38 fprintf(’Q2y: %s \n’,dec2hex(Q2y,64));
39 fprintf(’Q2z: %s \n’,dec2hex(Q2z,64));
40
41 elseif extractedBit == 0
42 [Q2x,Q2y,Q2z]=point_add(Q1x,Q1y,Q1z,Q2x,Q2y,Q2z);
43 [Q1x,Q1y,Q1z]=point_doub(Q1x,Q1y,Q1z);
44 fprintf(’Q1x: %s \n’,dec2hex(Q1x,64));
45 fprintf(’Q1y: %s \n’,dec2hex(Q1y,64));
46 fprintf(’Q1z: %s \n’,dec2hex(Q1z,64));
47 fprintf(’Q2x: %s \n’,dec2hex(Q2x,64));
48 fprintf(’Q2y: %s \n’,dec2hex(Q2y,64));
49 fprintf(’Q2z: %s \n’,dec2hex(Q2z,64));
50 end
51 end
52 %% checks that the point belong to the curve
53 lsh = mod((-(Q1x)^2+(Q1y)^2)*(Q1z)^2,p);
54 rhs = mod((Q1z)^4+d*(Q1x)^2*(Q1y)^2,p);
55 if lsh == rhs fprintf(’THE POINT BELONG TO THE CURVE \n’); end
56 % --------------------------
57 % Q1x: 29ECABFBD1E39AAA5DD78829146D4EC74206BB28C886256E5C213F3080CE2095
58 % Q1y: 4704A8F2EF7592DDEF13BDCD474490FB1CA8A4661892BA50773452F68FF4614C
59 % Q1z: 480472383562FAAE60C678EB912565D5964A3943C70A27BC093362072DC9E92F
60 % THE POINT BELONG TO THE CURVE

As is possible to see the result of the Matlab simulation is the same as the VHDL simulation,
means work well.
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3.8 Conversion Projective to Affine coordinates

In this last section of hardware implementation is presented final harware in wich is managed also
the conversion of the result from projective to affine in practise the result defined on three dimension
Q(X, Y, Z) is transposed in Q(x, y) to do this we apply the eq. 2.16

x = X

Z
y = Y

Z

In figure 3.53 is proposed a brief recap of the ECC process

Figure 3.53. ECC proces

3.8.1 implementation

About the implementation is necessary allocate the inversion block described in section before use
to compute Z−1, then with two modular multiplier is computed the affine conversion of Qx and Qy

multiplying projective value for the inverted Z coordinate. For this implementation is not necessary
define an FSM .

feature:
conversion Cost: 1 Point Inversion + 2 mod. mult RDIX-4 + 1 Reg.
Critical Path: Critical Path Mod. Multiplier
Latency using RADIX-4 : (n + n

4 ) + ( n
2 + 1) + 1(Done) Tck = (320 + 129) + 1 Tck = 450 Tck
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Figure 3.54. Architecture projective to affine conversion

3.8.2 timing

The three step work in sequence because is necessary have the result of previous stage to proceed,
time require for modular inversion is very high and this is the reason why using projective coordinate
we spend this time only once.

Figure 3.55. timing projective to affine conversion
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3.8.3 software validation

This time for the validation we ca use the result of the inversion implemented in Matlab in the
dedicated section or otherwise i propose a java code that implement the overall ECPM taking in input
the private-key K and use some library for the parameter of generating point, constant, and overall
algorithm for the Ed25519, the output is public-key defined in affine coordinate Qx and Qy.

java validation

1
2 /////////////////////////////////
3 // apt install npm
4 // npm install elliptic
5 //
6 // node ECC.js
7 /////////////////////////////////
8
9 const elliptic = require(’elliptic’);

10 const ed25519 = new require(’elliptic’).eddsa(’ed25519’);
11 const BN = require(’bn.js’);
12
13 function printPointInfo(desc, P) {
14 console.log();
15 console.log(‘${desc}: x-coord: 0x‘ + P.getX().toString(16));
16 console.log(‘${desc}: y-coord: 0x‘ + P.getY().toString(16));
17 console.log();
18 }
19 //generating point
20 let G = ed25519.curve.g;
21 //public-key
22 let K = ’f9ab30f9f6e0db3d6a254bca6d272be910f5616da13e1f6707298f25e13e94b5’;
23
24 printPointInfo(’G’, G);
25 printPointInfo(’2G’, G.mul(new BN(2)));
26 printPointInfo(’5G’, G.mul(new BN(5)));
27 printPointInfo(’KG’, G.mul(new BN(K, 16)));
28 //----------------------------------------------
29 //G: x-coord: 0x216936d3cd6e53fec0a4e231fdd6dc5c692cc7609525a7b2c9562d608f25d51a
30 //G: y-coord: 0x6666666666666666666666666666666666666666666666666666666666666658
31
32 //2G: x-coord: 0x36ab384c9f5a046c3d043b7d1833e7ac080d8e4515d7a45f83c5a14e2843ce0e
33 //2G: y-coord: 0x2260cdf3092329c21da25ee8c9a21f5697390f51643851560e5f46ae6af8a3c9
34
35 //5G: x-coord: 0x49fda73eade3587bfcef7cf7d12da5de5c2819f93e1be1a591409cc0322ef233
36 //5G: y-coord: 0x5f4825b298feae6fe02c6e148992466631282eca89430b5d10d21f83d676c8ed
37
38 //KG: x-coord: 0x6040cfb1c92d97a508a4a25260e0c9fdf1a737af9bc20b0816a88d2c89266f44
39 //KG: y-coord: 0x63b3e360cf5aeee53678ecd967a4c119b895a37f3f39e7c2fb2be3cdd2611108

There are also other test calculation for intermediate check during the development of the archi-
tecture, for this verification KG result are the Target.
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VHDL simulation

Figure 3.56. ECPM projective to affine conversion

As is possible to see the result are the same it means that the overall architecture of crypto-core
based on Edward elliptic curve Ed25519 work well and all the improvement ad modification applied
are good. In next chapters are presented the FPGA synthesis and some result comparison with other
implementation taken in some paper, and in conclusion an owerview of a possible ASIC synthesis.
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Chapter 4

Virtex-7 FPGA synthesis

In this chapter is proposed the FPGA syntheses of the Crypto-core implemented in VHDL and using
Xilinx Vivado tool, synthesis is done for the Virtex-7 (XC7V2000TFLG1925-1) FPGA, then the results
are compared with other implementation proposed in some paper.

4.1 implementation results
in this section are reported the results of the synthesis, these are just an overview of the general trend
of the architecture because is necessary remember that FPGA are composed by preallocated block
called CLB that contain in turn other elementary block as adder, multiplier and some other that are
called DSP. The big problem of this device is that is necessary interconnect all this block using LUT,
it means very long interconnection due to the fact that different CLB could be far apart from each
other and according to the scheduling approach used by the software to synthesize the hardware code
this block could allocate in many way and each approach generate very different result in term of
critical path and area, in conclusion it means that this analysis is just done to have an idea of the
performance of the devise.

In table 4.1 there is a summery of more relevant block syntheses.

Operation Clock cycles Number of Number of Maximum Time Area x time Throughput
slice (k) LUTs/DSP frequency(MHz) (ms) (AT) (bps)

elem. Adder (258 bit) 1 0.02 11 LUT,11 DSP 324.6 3.08 · 10−6 61.6 · 10−9 8.30 · 1010

modular ADD/SUB 2 0.434 1197 LUT,22 DSP 105.19 19.01 · 10−6 8.25 · 10−6 1.346 · 1010

mod. Mult. RADIX-4 129 1.258 2550 LUT,66 DSP 95.1 1.356 · 10−3 1.68 · 10−3 1.88 · 108

Point Addition 523 4.230 12908 LUT,374 DSP ∼ 95 5.5 · 10−3 2.32 · 10−2 4.65 · 107

Point Doubling 264 1.135 5378 LUT,352 DSP ∼ 95 2.77 · 10−3 3.15 · 10−3 9.21 · 107

ECPM 133111 8.375 25685 LUT,726 DSP ∼ 95 1.40 11.725 1.82 · 105

ECPM + PtoA conv. 133561 8.970 26350 LUT,1078 DSP ∼ 95 1.405 12.602 1.82 · 105

Table 4.1. implementation results of ECC synthesis on FPGA

Results are overall slightly good but in some part are enough different from paper as we will see
probably because paper use more advanced constraint to obtain better result to contain as much as
possible the area and in consequence also the critical path could be more content, i have tried a few
strategies, keeping in mind that they take very long time but more or less the result are very close, in
general i can say that i am satisfied.
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4.2 performance comparison

Operation Publishing Platform CCs Number of Maximum Time Area x time Throughput
year slice (k) freq.(MHz) (ms) (AT) (kbps)

My-ECPM - Virtex-7 133561 8.970 ∼ 95 1.405 12.602 182.09
Mainul et al.[7] 2020 Virtex-7 198700 6.5 104.39 1.9 12.35 134.49
Mainul et al.[8] 2019 Virtex-7 262700 8.9 177.7 1.48 13.17 173.2
Shah et al.[9] 2018 Virtex-6 153200 65.60 327.00 0.47 30.83 546.42
Liu et al.[16] 2017 Virtex-4 459900 12.00 36.50 12.60 151.20 20.32
Asif et al.[13] 2017 Virtex - 7 215900 24.20 72.90 2.96 71.63 1816.20
Javeed et al.[14] 2017 Virtex - 4 191600 20.60 49.00 3.91 80.55 65.47
Hossain et al.[11] 2016 Virtex-7 397300 11.30 121.50 3.27 36.95 78.28
Marzouqi et al.[12] 2016 Virtex-5 361600 8.70 160.00 2.26 19.66 113.27
Javeed et al.[15] 2016 Virtex - 4 200000 13.20 40.00 5.00 66.00 51.00
Javeed et al.[16] 2016 Virtex - 4 207100 35.70 70.00 2.96 105.67 86.53
Loi et al.[17] 2015 Virtex - 4 993700 7.00 182.00 5.46 38.22 46.88
Lee et al.[18] 2014 Virtex - II Pro 163200 8.30 37.00 4.41 36.60 58.04
Marzouqi et al.[19] 2013 Virtex - 5 442200 10.20 66.70 6.63 67.63 38.61
Ghosh et al.[20] 2011 Virtex - II - Pro 337700 12.00 36.00 9.38 112.56 27.29
Ghosh et al.[21] 2009 Virtex - 4 331100 20.10 43.00 7.70 154.77 33.25
Ananyi et al.[22] 2009 Virtex - 4 414000 20.80 60.00 6.10 126.08 37.10
Schinianakis et al.[23] 2009 Virtex - E 156800 16.40 39.70 3.95 64.78 64.82
McIvor et al.[24] 2006 Virtex - II Pro 151400 15.80 39.50 3.86 60.98 66.74

Table 4.2. implementation comparison

in table 4.2 are reported some results of other implementation using different approach and syntheses
strategy and also different board , paper [7] and [8] are the two most relevant reference also used to
understand and project my ECPM, they use the Projective coordinate approach, this means result
comparison is more relevant. In the following i have proposed three bare graph to have a better
overview on the performance comparison, graph 4.1 report the number of clock cycle necessary for
the completion of ECPM and conversion of the result from projective to affine.

Figure 4.1. Clock Cycle comparison graph
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4.2 report the time Area product, is a parameter of quality that take in consideration two of the
more relevant design parameter.

Figure 4.2. Area x Timing comparison graph

In the end the third graph 4.3 the throughput is the amount of work that can be completed in a
given amount of time and also this case is a goodness parameter.

Figure 4.3. Throughput comparison graph

As is possible to see the result are good in particular to the point of view of the number of clock
cycle, this is because I invested a lot of time trying to get the best count possible, the area as i say
before is not the best as possible but for our scope in any case is good and despite of this i have
obtained also a very good result in term of time area product and throughput.

More in general seeing the trend can be observed that over the year the performance become more
and more better also thank to the fact that the board and the software become more complex and
efficient and also because are introduced new mathematical approach as i have described in dedicated
paragraph.

Next and last step is the implementation on silicon ASIC of the crypto-core, in this case we expect
a very good improvement of the performance.
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Chapter 5

Application Specific Integrated
Circuit (ASIC)

In this last chapter i have propose the synthesis made with Synopsys using Nangate45 library, instead
of using an FPGA the result we will expect should be better because of the fact that in this case we
do not have LUT and CLB, that are fixed unit, but we can customize so much the hardware only
allocate the standard cell that are very small elementary block, and defining all the interconnection
on many layer, this allow to obtain very small area and in consequence reducing the path length we
reduce also the critical path, means high frequency.

5.1 Synthesis with Synopsys
First step is charging the developed V HDL code of the crypto-core and the Nangate45 library in
Synopsys, then before starting the syntheses is necessary applying constraint to the clock and load
buffer for each output. About the load for each output i have used a buffer defined in the technology
library called BUFF_X4 this allow to have more realistic report results, instead about the clock i
have fixed for first iteration the period to 0 ns, doing this i will obtain a negative slack that is exactly
equal to the critical path, i substitute it and i relaunch the synthesis to obtain a slack equal to 0.

In table 5.1 is reported the Timing report abstract, with clock feature

clock uncertainty 0.07 ns

library setup time 0.04 ns

input delay 0.5 ns

output delay 0.5 ns

Critical path 3.73 ns

Maximum frequency 268.09 Mhz

Table 5.1. Timing report

The clock uncertainty is fixed to 0.07 ns, very small value respect the clock period, this allow to
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implement a circuit whit better performance as possible, about the input/output delay of the signal
respect to the clock, much more is reduced much more the path are optimized.
In table 5.2 is reported the report Area abstract

Number of ports 844404

Number of nets 1231141

Number of cells 392246

Number of combinational cells 316722

Number of sequential cells 37113

Number of buff/inv 71425

Combinational Area 333923.631657 µm2

Buf/Inv area 43279.795835

Non combinational area 188463.666081 µm2

Total cell area 522387.297738 µm2

Table 5.2. Report area

As is possible to notice the results are so better respect the FPGA synthesis, about the critical path
there is a reduction of 64.5% , from 10.52 ns of the FPGA to 3.73 ns, also about the area the there
is a substantial reduction but is not directly comparable view the nature of the FPGA, computing
approximately the dimension we could say that is ∼ 730µm × 730µm which is certainly much less
respect the FPGA implementation.

5.2 Place and Rout with Cadence Innovus

In this last step is implemented the physical circuit on silicon, the technology used is always the 45 nm,
after having generated the netlist we import that in Innovus and proceed with the ASIC synthesis.
About the dimension of the core is used an aspect ration of 1, means square chip, about the utilization
is fixed to 0.6 and the boundary of the core is forced to 5 µm. After having inserted the power rings
with a width of 0.8 µm i decide also to insert Stripes considering the dimensions not exactly small
o the core, this allow to improve the power supply distribution and have more controlled and better
performance. Then the placement is done on eight layer using the standard cell implemented in the
library, doing two optimization both before the clock tree synthesis and after, about the clock the
maximum transition time is fixed to 0.08 ns and the maximum skew at 0.5 ns. Then is done the
routing and another optimization of the design, in the end is done a place filler to guarantee all the
continuity interconnection between n+ and p+ wells in each row.

Also in this case there are the reports of the timing and area of the physical on silicon Core in 5.3
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Gate area 0.7980 µm2

Number of gates 585040

Number of cells 300992

Total area 466861.9 µm2

Critical path 3.910 ns

Max frequency 255.75 Mhz

Table 5.3. Report Place and Rout

The value reported are very similar to those obtained in the previous synthesis phase, critical path is
slightly increased probably due to the fact that now the parasitic due to the interconnection are more
well defined and overall delay suffer from it, about the are now we can approximate the square core
to ∼ 683µm× 683µm in this case it is slightly reduced respect the one approximate in synthesis step.

For what concern the Power in 5.4 are reported all the contribution of sequential, combinational and
clock power, how is possible to see the ∼ 67.91% of the total power is due to the combinational path
and only ∼ 4.7

Internal Switching Leakage Total Percentage
Power [mW ] Power [mW ] Power [mW ] Power [mW ] [%]

Sequential 71.88 22.59 3.062 97.53 27.38

Combinational 113.9 121.5 6.536 241.9 67.91

Clock 1.508 15.25 0.01685 16.77 4.708

Total 187.3 mW 159.3 mW 9.615 mW 356.2 mW 100 %

Table 5.4. Report Power
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In conclusion is reported the overall ASIC layout synthesized with Innovus in fig. 5.1

Figure 5.1. ASIC layout
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Chapter 6

conclusion and future work

6.1 Conclusion
In conclusion this thesis work It was complex but interesting, allowing me to discover new things
and refine my knowledge in the field of digital design, much of the work was done on the dedicated
architectures for the various blocks, trying to optimize them as best as possible by reducing as much
as possible the number of iterations necessary for completing the operations, and at the same time,
through careful scheduling work, also reducing the number of resources allowing to have an area as
small as possible. Both objectives have been achieved and the results are quite satisfactory, the core
has been implemented with both a RADIX-2 and a RADIX-4 multiplier, in the second case 133111
Tck are needed to complete the algorithm. Then synthesizing with Vivado and using a virtex-7 FPGA
we have obtained medium good performances, as we expected, having an execution time of around
1,405 ms and a maximum working frequency of 95 MHz, then I have resynthesized with Synopsys
and I have implemented the on silicon ASIC with a 45 nm technology the results were decidedly
better, as we expected, obtaining an overall execution time of 0.52 ms about a third of the FPGA
implementation, working at a maximum frequency of 255.75 Mhz with a silicon core of approximately
∼ 683µm× 683µm

6.2 future work
Possible improvement could be done on both front,starting from this implementation first trying to
modify the modular multiplier reducing the critical path considering that is the bottle neck of the
architecture, possible way is unrolling the architecture and inserting a level of pipe in the middle this
allows the critical path to be reduced and the new critical block becomes the modular inverter, in this
case this one is just developed with one level of pipe, it means that is necessary again try to unroll
and test the performance. About the synthesis possible improvements could be done trying to reach
better constraint in Vivado to have a more better allocation of the CLB a and DSP and trying to
change the technology in the ASIC synthesis.
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Acronym

ECC Elliptic Curve Cryptography

EC Elliptic Curve

ECDLP Elliptic Curve Discrete Logarithm Problem

ECDSA Elliptic Curve Digital Signature Algorithm

EdDSA Edwards curve Digital Signature Algorithm

ECPM Elliptic Curve Point Multiplication

ECSM Elliptic Curve Scalar Multiplication

DHKE Diffie–Hellman Key Exchange

ECDH Elliptic Curve Diffie–Hellman Key Exchange

ASIC Application Specific Integrated Circuit

DSP Digital Signal Processing

FPGA Field Programmable Gate Array

GF Galois Field

LUT Look Up Table

NIST National Institute of Standards and Technology

PA Point Addition

PD Point Doubling

SCAS Side-Channel Attacks

IoT Internet of Things

P Prime field dimension

Gx, Gy Generators point coordinates EC
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