
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Implementation of ROS-based
Multi-Agent SLAM Centralized and

Decentralized Approaches

Supervisors

Prof. Marina INDRI

Advisors

Ph.D Pangcheng David CEN CHENG

Candidate

Paolo VANELLA

December 2023

Abstract

With the advent of mobile robotics, new research fields were born. In particular,
one of the most interesting challenges regards the so-called Simultaneous Localiza-
tion and Mapping, also known as SLAM: it concerns the task that a mobile robot
accomplishes to accurately create a map of an unknown environment and localize
itself in it. Since mapping large environments may take too much time if only a
single agent is employed, SLAM frameworks that rely on a swarm of mobile robots
begin to be developed in order to not only shorten times for mapping but also
achieve higher accuracy. Thus, such methods aim at solving a multi-agent SLAM
problem. There are two main ways to map the environment and track the entire
squad of agents: either having a central server that does the whole computation
or implementing a distributed approach that requires exchange of data between
mobile robots. This work presents two different approaches that are inspired by
the previous two alternatives and are developed with the help of ROS2, i.e., an
open-source set of software tools for robotic applications. Moreover, the mapping is
limited to be two-dimensional, hence these methods are specially designed to work
with 2D LiDAR sensors. Both frameworks are tested in a simulated or real-time
scenario with two copies of TurtleBot3 Burger.

The first approach is a centralized setting where each agent independently
creates its own local map without exchanging additional data with others. Simply,
a single-agent SLAM algorithm runs locally on each agent and only processes the
laser scans of that agent. A central server merges the local maps through feature
matching, thus building a global map of the explored environment. Although this
naive approach still produces a good global map, the server needs some assumptions
on the initial poses of the mobile robots, otherwise the relative pose between the
local maps cannot be computed correctly and the feature matching may fail.

The second approach is a low-drift, fully-distributed method that incorporates
two modules. The single-robot front-end module supports any LiDAR-based SLAM
with inertial odometry. The collaborative aspect of the algorithm lies in the
distributed back-end module: during a meeting between two mobile robots, they
exchange scan data through LiDAR-Iris, i.e., a robust LiDAR descriptor that
lightens the load on the communication link and formats the point cloud into a
quickly processable piece of data, on which the distributed loop closure recognition
operates to find possible candidates for inter-robot loop closures. Even if the front-
end module does not support intra-robot loop closure, the system still provides such
a functionality. Furthermore, the distributed back-end module performs outlier
rejection and a graph optimization step in order to refine the global map.

Table of Contents

List of Tables iv

List of Figures v

1 Introduction 1

2 Simultaneous Localization and Mapping 3
2.1 Formulation and General Properties 4
2.2 State-of-the-Art for Single-agent SLAM 5

2.2.1 A Review of Filter-based SLAM Algorithms 7
2.2.2 Optimization-based Approaches for SLAM 11

3 A More Complex Topic: Multi-Agent SLAM 18
3.1 Characteristics of Multi-agent SLAM 19
3.2 Cooperative Solutions and State-of-the-Art 20

3.2.1 Cooperative Filter-based Solutions 22
3.2.2 Real-time Efficient Optimization-based Frameworks 24
3.2.3 The Future of Multi-agent SLAM 26

4 Introduction to ROS 28
4.1 ROS Basics . 29

4.1.1 ROS2 . 31
4.2 Software Utilities . 33

4.2.1 The tf2 Library . 33
4.2.2 RViz2 . 34
4.2.3 Gazebo . 35
4.2.4 Nav2 . 36
4.2.5 Computational Graph Visualization 36

4.3 TurtleBot3 . 37
4.3.1 TurtleBot3 Burger Topics and Frames 39
4.3.2 Namespacing TurtleBot3 Burger 41

ii

5 Centralized Setting for Multi-Agent SLAM 44
5.1 Evaluation for the Single-Robot Front-End 45
5.2 Single-Robot Front-End: SLAM Toolbox 48

5.2.1 Ceres Solver . 50
5.2.2 SLAM Toolbox Topics, Parameters and Namespace 51

5.3 Multi-Robot Back-End: Map Merging Node 52
5.3.1 Feature Matching for Map Merging 54
5.3.2 Merging Pipeline . 55
5.3.3 Support for SLAM Toolbox 56
5.3.4 An Example in a Simulated Scenario 57
5.3.5 Real-World Scenario for Centralized Multi-Agent SLAM . . 59

6 Distributed Implementation of Multi-Agent SLAM 64
6.1 Single-Robot Front-End: LIO-SAM 65

6.1.1 LIO-SAM Factor Graph . 65
6.1.2 LIO-SAM Code . 68
6.1.3 Adaptations for TurtleBot3 Burger 70

6.2 Multi-Robot Back-End: DCL-SLAM 71
6.2.1 LiDAR Descriptors for Distributed Loop Closure 73
6.2.2 Back-End Optimization . 74
6.2.3 DCL-SLAM Code . 76
6.2.4 Adaptations for LIO-SAM and TurtleBot3 Burger 78

7 Conclusions 80
7.1 Further Improvements . 81

Bibliography 85

iii

List of Tables

2.1 A summary of the discussed single-agent algorithms. 17

4.1 LDS-02 specifics. 39
4.2 IMU specifics. 39

5.1 Modified parameters for SLAM Toolbox. 52

iv

List of Figures

2.1 A rough classification of SLAM algorithms that are designed for a
single mobile agent. 6

2.2 Workflow of SLAM algorithms. 8

3.1 Workflow of multi-agent SLAM algorithms with two robots. 22

4.1 Typical organization of a ROS2 workspace. 31
4.2 A comparison between ROS1 and ROS2 architectures [42]. 32
4.3 The RViz2 GUI. 34
4.4 TurtleBot3 Burger [47]. 38
4.5 LDS-02 LiDAR sensor. 38
4.6 Transformation tree of TurtleBot3 Burger. 41
4.7 ROS computational graph after launching two copies of TurtleBot3

Burger. 43

5.1 TurtleBot3 House. 46
5.2 Mapping with tuned Cartographer. 47
5.3 Mapping with SLAM Toolbox. 47
5.4 Initial positions of Alice (red) and Bob (black). 58
5.5 An intermediate merged global map that is computed after a while. 58
5.6 The same map, but the approximate paths of Alice (red) and Bob

(black) are drawn. 58
5.7 Alice’s local map. 59
5.8 Bob’s local map. 59
5.9 Global map without the inter-robot loop closure. 60
5.10 Global map after the inter-robot loop closure. 60
5.11 Ground truth of the laboratory of DET and the corridor. The initial

position for the multi-robot experiment is marked. 61
5.12 First map merging in the real-world multi-agent experiment. 62
5.13 A bad map merging, caused by a low value of the confidence threshold. 62
5.14 A good map merging in the real-world multi-agent experiment. . . . 63

v

5.15 Global map without the inter-robot loop closure. 63
5.16 Global map after the inter-robot loop closure. 63

6.1 LIO-SAM architecture [61]. 67
6.2 Point cloud computed by LIO-SAM with a 3D Velodyne LiDAR. . . 69
6.3 LIO-SAM with TurtleBot3 Burger. 72
6.4 DCL-SLAM architecture [34]. 73
6.5 Block structure of H for DGS. 75

vi

Chapter 1

Introduction

As the usage of mobile robots started to spread during the last decades, one of
the most difficult tasks to accomplish for such devices concerns the mapping of
an unknown environment where the robot is able to move and orientate. Already
existing solutions such as GPS are not very reliable and accurate to determine
the exact position of a mobile robot, and building an accurate map would still be
problematic for high-precision tasks, particularly for indoor environments. Thus,
Simultaneous Localization and Mapping (in short, SLAM) began to grow as a
brand new topic of research that is still challenging nowadays. Shortly, SLAM
incorporates two tasks: localization and mapping. Localization aims at tracking
the robot’s trajectory as a sequence of poses, while mapping means building a map
of the environment where the robot is located.

Nowadays, SLAM is applied to a plethora of different real-time scenarios in
which mobile robots are involved. Industrial logistics applications rely on SLAM al-
gorithms in order to enhance automation for inventory management, thus materials
can be transported efficiently inside the factory. Some mobile robots that are de-
signed for daily use are also equipped with a SLAM algorithm, for example, modern
vacuum cleaners can map their surroundings in order to efficiently clean the entire
floor. Furthermore, SLAM is essential for ground exploration missions because
mobile robots can build a real-time map while wandering in unknown environments.
Recently, SLAM has evolved, thus making it possible to extend exploration to
underwater scenarios and for air drones. Last but not least, autonomous vehicles
such as self-driving cars would not exist if localization and mapping could not
be solved: even though many services already provide built maps that represent
the road and other features of interest, the vehicle must find its own position
and orientation within the map, because localization provides useful support for
decision making and motion planning.

1

Introduction

Another topic SLAM is strictly related to is navigation. While the map is being
built and updated, a navigation system intervenes and supports the mobile robot for
path planning and obstacle detection. Of course, the quality of navigation strictly
depends on the quality of both localization and mapping: this is why SLAM should
produce accurate results. This reason also explains why autonomous vehicles do
not rely only on GPS: eventual inaccuracies in localization and/or mapping can
translate into a bad decision making or misleading information for navigation.

An even more complex task concerns a swarm of mobile robots that aim at
building a global map of the same environment and tracking themselves within
it. In this case, it is more appropriate to speak about multi-agent SLAM or
collaborative SLAM: not only it extends the properties of single-agent SLAM but
additionally requires collaboration between mobile robots, hence agents must be
able to communicate with each other by exchanging their measurements. In general,
multi-agent SLAM algorithms follow two different approaches: they either deploy
low-cost agents with low computational power and demand the whole computation
to a central server, or instead exploit peer-to-peer communication between mobile
robots in order to exchange relative information about local maps. Multi-agent
SLAM algorithms that are based on the first approach are known as centralized,
while those that follow the second approach are called decentralized.

Such extension to SLAM improves exploration and logistics, because it enhances
collaboration between mobile robots, thus improving efficiency and taking less
time to accomplish a specific task. Moreover, having more than a single agent
improves accuracy and resilience. For example, it is faster to build a map if more
mobile robots are available, and if some of them have a failure or suddenly become
unavailable the global task can still go on.

This thesis work is structured as follows.
Chapter 2 describes the general properties of single-agent SLAM and includes a

digression of the state-of-the-art of single-agent SLAM.
Chapter 3 illustrates the extension of SLAM to collaborative scenarios, as well

as a review of the state-of-the-art of multi-agent SLAM.
Chapter 4 introduces the ROS framework and its main concepts and describes

the ROS-based hardware that will be used for testing the implemented multi-agent
SLAM algorithms.

Chapters 5 and 6 describe the idea behind the centralized multi-agent SLAM
approach and the distributed multi-agent SLAM algorithm, respectively. Details
about the implementation are also provided, as well as some results in a simulated
scenario. A demonstration on the centralized setting applied on a real-world
scenario is also available.

2

Chapter 2

Simultaneous Localization
and Mapping

The SLAM problem can be defined as the following: a mobile robot has to build a
map of an unknown environment and at the same time it has to keep track of its
position while it moves. During the years, researchers studied the SLAM problem
from a mathematical point of view and different formulations of the same problem
were made. In turn, these formulations gave birth to different algorithms that
process raw data and return the robot’s pose and the map of the environment.
As the years went by, research made progress in terms of efficiency and accuracy
for both localization and mapping, and in more recent times new needs emerged;
for instance, unusual domains such as underwater or underground environments
and faster solutions with more than one agent become object of interest for more
complex SLAM approaches. In particular, the extension of SLAM to a swarm of
mobile robots is a topic that has become very popular recently.

Regardless the context the SLAM is applied to, it is accomplished thanks to both
odometry and external information. Sensors are crucial because the mobile robot
can capture data from its surroundings. Visual information is acquired through
cameras or laser scanners such as LiDARs (Light Detection And Ranging). Another
type of sensor that is usually used for SLAM is the IMU (Inertial Measurement
Unit): it is able to measure a bunch of useful inertial measurements, such as angular
velocity, acceleration, Earth’s magnetic field and air pressure. Nowadays, IMUs
are essential for mobile robots, because they acquire lots of intrinsic and external
data despite being quite cheap devices, and most important IMU sensors work
everywhere while other sensors may have trouble under some specific conditions
(for example, cameras need light and GPS needs a connection).

3

Simultaneous Localization and Mapping

For now, it is assumed that only one mobile robot is involved into SLAM, hence
the task to accomplish is called single-agent SLAM (or equivalently, single-robot
SLAM). Following in this chapter, the first mathematical formulation for SLAM
algorithms and the main properties of SLAM are discussed. A digression about
the single-agent SLAM state-of-the-art follows, giving particular focus to how the
problem evolved over the years and introducing an exhaustive review of the most
known algorithms that were developed. In general, more emphasis is given to
laser-based approaches, since the real-world experiments are carried out by mobile
robots that are equipped with LiDAR sensors.

2.1 Formulation and General Properties
In order to build a map, a SLAM algorithm takes into account all the commands
u1, ...,ut received and the previous observations and measurements o1, ..., ot−1 from
the sensors and the odometry. Given the initial pose x0 of the mobile robot, the
algorithm returns its current pose xt and the map m: the output variables are
usually probabilistic values that are statistically independent in general.

P [m,xt|x0,u1:t, o1:t−1] (2.1)

This is not a rigid definition for all the algorithms, but it gives the idea of what
is required to achieve SLAM. Equation (2.1) clarifies the two tasks of SLAM: a
SLAM algorithm should be able to both recover the robot’s trajectory as a sequence
of poses and build a map of the environment.

Under some assumptions, it is sometimes possible to separate the two tasks in
such a way that localization and mapping become independent of each other. As
it will be clarified later in Section 2.2, modern approaches forgo this definition in
favour of more complex formulations that are usually based on the optimization
theory.

The most important properties that researchers had to comprehend in detail
before writing down practical solutions are convergence and sparsity.

Given the probabilistic nature of the problem, it is interesting to study under
what conditions the algorithm progressively corrects its estimates until the trajectory
and the map converge to reliable values. Similarly, optimization is strictly related
to convergence because this property ensures that a solution can be found and the
optimization theory guarantees that such solution is optimal.

To understand why sparsity is involved, it is important to anticipate that meth-
ods which rely on a formulation similar to (2.1) acquire probabilistic information
that are characterized by covariance matrices. As the objective of SLAM is to

4

Simultaneous Localization and Mapping

estimate the robot’s trajectory and the map, if these matrices are sparse the compu-
tation can be simplified [1]. Actually, some algorithms elaborate the observations in
order to extract the trajectory and/or the map estimate as a sparse state. Indeed,
the state may grow in dimension as the mobile robot wanders around and it is
sometimes not necessary to keep the whole trajectory since the beginning of the
algorithm. Sparsity is also involved in optimization problems where the optimal
state to be estimated is sparse.

An important property that is strictly related to convergence concerns the
suppression of the error accumulation over time. This phenomenon is known as
drift and occurs when the cumulative errors in the pose and map estimates tend to
grow as time progresses while the algorithm is running. Drift is usually caused by
intrinsic inaccuracies of sensors or uncertainties in mathematical models.

SLAM frameworks that can solve the drift problem are described as low-drift.
This means that low-drift algorithms are designed to minimize the cumulative
errors, thus producing more accurate trajectories and maps. Low-drift is essential
for autonomous navigation and long-running tasks. To achieve low-drift, most
algorithms implement loop closure detection. IMU sensors are able to further
reduce the drift, especially on the odometry.

2.2 State-of-the-Art for Single-agent SLAM
The concept of SLAM was born during the late 80’s [2]. The first solutions to
the SLAM problem were based on probabilistic filters: the uncertainty that af-
fects the map and the pose estimation is modeled as a probability distribution [3].
These methods were computationally heavy, thus researchers tried to find some
optimization for SLAM algorithms by studying some intrinsic properties of SLAM
such as convergence and sparsity [4]. This way, during the last decade optimized
algorithms that need less computational effort began to take hold. In recent years,
researchers aimed at implementing new algorithms that can deal with scalability
and work under unfavorable conditions concerning hardware limitations and/or
difficulties related to a specific environment.

As a consequence, SLAM algorithms can be classified into filter-based and
optimization-based algorithms. Filter-based algorithms rely on the theory of
probabilistic filters (also known as Bayes filters) and the SLAM problem is often
defined as a state estimation problem. On the other hand, optimization-based
algorithms tend to directly solve a constrained state estimation problem that is
usually modeled as a least-squares problem or a similar one, hence a sparse solver is

5

Simultaneous Localization and Mapping

often involved. Optimization-based algorithms differ from each other according to
the particular form of optimization that is adopted in order to find the trajectory
and build the map. This classification can be summarized in Fig. 2.1.

Figure 2.1: A rough classification of SLAM algorithms that are designed for a
single mobile agent.

In addition to this, some algorithms are specific for a category of sensors. RGB-D
cameras, stereoscopic vision and LiDAR sensors are the most used technology in
mobile robots to capture frames of the environment. Thus, SLAM algorithms can
be further divided into visual SLAM (or V-SLAM in short) [5] and LiDAR SLAM
[6].

Cameras are cheap and light devices with a long detection range, but they
are highly dependent on lighting. In particular, RGB-D cameras tend to capture
blurry frames if the mobile robot moves at high speed. On the other hand, laser
sensors are more accurate but less resilient, more expensive, heavier and suffer
from refraction phenomena. As time passed, LiDAR SLAM has taken over visual
SLAM, especially for indoor applications, and nowadays LiDAR sensors are more
implemented than RGB-D cameras as sensors on mobile robots. However, due to
the cheap nature of cameras and incoming advanced computer vision techniques,
visual SLAM is nowadays growing as a promising research field.

A worthy mention goes to deep learning: as it is a branch of research that
is constantly growing in interest, some brand new approaches try to apply deep
learning techniques on V-SLAM to improve its performance, since RGB-D cameras
are cheap devices and frames are trivial to be processed through deep learning

6

Simultaneous Localization and Mapping

techniques. Neural networks represent a powerful instrument for image processing:
in particular, the tasks of feature extraction, estimation (here, odometry and map
building are included) and loop closure can be replaced by approaches that are
respectively based on you-only-look-once algorithms, convolutional neural networks
and autoencoder-like networks [7]. Other modern approaches apply deep learning
to 3D point cloud data coming from LiDAR sensors: due to the sparse nature of
point clouds, some approaches prefer to concatenate LiDAR data and RGB frames
in order to ease the processing and achieve high accuracy [8].

The main advantages of deep learning include the capability of generalizing
for different scenarios, relying on past experiences for enhanced predictions and
exploiting the current observation for self-learning. Moreover, neural networks
can extract some "hidden" features and correlations that the mathematical theory
cannot retrieve.

Regardless of the category a SLAM algorithm belongs to, a characteristic that
brings together the majority of them is the general workflow. A scheme of the
workflow is reported in Fig. 2.2. Sensors capture raw data from the environment
and the algorithm processes it to extract salient details of the environment: this
operation is called feature extraction and allows to recognize corners, edges, colors,
shadows and depths. Feature matching takes more data inputs from sensors and
finds common features to better estimate the pose of the camera. After the pose is
estimated correctly, a loop closure detection system intervenes and allows the robot
to recognize previously visited features of the environment and enhances optimiza-
tion. Loop closure is a crucial concept of SLAM, because a mobile robot is able to
recognize a previously visited part of the environment to correct the estimated map.

2.2.1 A Review of Filter-based SLAM Algorithms
The first implemented SLAM algorithms relied on probabilistic filters. Two cate-
gories can be distinguished, depending on how the map is built: landmark-based
approaches and grid-based approaches.

Landmark-based algorithms focus on estimating the poses of some elements
of interest that are located in the environment. These approaches aim at finding
a good estimate of the state of the mobile robot, which includes the trajectory
and the poses of all the landmarks. Hence, SLAM becomes a state estimation
problem. The idea behind the solution for landmark-based SLAM exploits the
state estimation theory: as SLAM is usually set as a nonlinear problem, extended
Kalman filters (EKF) can be applied to build an observation model [3].

The system that represents SLAM can be resumed by (2.2): the state xk at time

7

Simultaneous Localization and Mapping

Figure 2.2: Workflow of SLAM algorithms.

k includes the robot’s motion (typically its coordinates and yaw angle) and the
position of all the landmarks. The state evolves according to the input commands
uk and the measurements ok from sensors during each time step. The estimated
map mk is considered as the system’s output and generally depends on the state
and the measurements. It is also supposed that Gaussian noises ξk, ηk affect the
system. If the mobile robot is provided with an IMU, the motion model can be
enhanced thanks to the measurements taken by the IMU sensor.xk+1 = f(xk,uk, ok) + ξk

mk = g(xk, ok) + ηk

(2.2)

EKF-SLAM [9] is one of the very first SLAM algorithms ever implemented.
Considering that the vehicle motion evolves during time but the landmarks are
stationary, the state could also be augmented whenever a new landmark has to
be added to the model. Algorithm 1 shows the general workflow of EKF-SLAM:
the prediction phase provides an initial estimate based on the odometry, then an
update step exploits the information from the sensors to further refine this estimate
[10]. The prediction step can be further improved if IMU sensors are available.

The main advantage of EKF-SLAM is its efficiency in terms of memory. How-
ever, it can be proven that the complexity of EKF-SLAM is O(n2) for a single
step of the algorithm and O(n3) in total, where n is the number of landmarks,

8

Simultaneous Localization and Mapping

hence EKF-SLAM becomes less sustainable as the size of the map increases [10].
Moreover, as can be seen from the computation of the Jacobian matrices, the EKF
applies linearization around the state estimate instead of the true state. This leads
to two inconsistency problems: at each update step the uncertainty grows according
to the variance of the heading angle, and for large uncertainties the estimated
trajectory may present discontinuities and jumps [9].

Algorithm 1 EKF-SLAM algorithm.
1: procedure EKF-SLAM
2: ▷ Functions f , g refer to the system in (2.2).
3: ▷ x̂a|b is the state estimate at time a based on observations until time b.
4: ▷ It holds that x̂a|b = x̂a.
5: ▷ Similarly, Pk|k−1 represents the covariance matrix of the state.

6: ▷ Fk = ∂f
∂x

x̂k−1|k−1,uk

, Gk = ∂g
∂x

x̂k|k−1

are the Jacobian matrices.

7: ▷ zk represents the measurements at time k.
8: ▷ Qk, Rk are the covariances of the noises ξk, ηk.
9: ▷ Initialization

10: z0 initialized with the first taken measurements.
11: A first estimate x̂0 = x̂0|0 is initialized from z0.
12: ▷ Execution
13: for each step k do
14: x̂k|k−1 is obtained from odometry, as well as Fk, Gk.
15: Pk|k−1 = FkPkF T

k + GkQkGT
k

16: New measurements zk are taken and eventually associated to landmarks.
17: A new Jacobian Hk is computed from data association.
18: Sk = HkPk|k−1H

T
k + Rk ▷ Predicted covariance

19: Kk = Pk|k−1H
T
k /Sk ▷ Kalman gain

20: νk = zk − g(x̂k|k−1) ▷ Measurement residual
21: x̂k = x̂k|k−1 + Kkνk ▷ Updated state estimate
22: Pk = (I − KkHk)Pk|k−1
23: Eventually, a new landmark can be added here.
24: end for
25: return (x̂k,Pk) ▷ Now, the map can be computed!
26: end procedure

Grid-based algorithms represent an alternative to landmark-based approaches.
These methods map the unknown environment into a grid, which is initially empty
and can eventually be expanded. Each cell of the grid is associated with a probability

9

Simultaneous Localization and Mapping

that determines whether that cell is occupied or not. A grid representation of the
map is more intuitive and also contains useful information for navigation, at the
cost of being more expensive in terms of memory.

The algorithms used for this purpose are mainly based on the so-called particle
filters, hence these approaches are also defined as particle-based. Here, particle-
based and grid-based algorithms are treated as synonyms. Particle filters are
probabilistic filters that associate a possible trajectory with a weighted particle by
sampling a probability distribution: the weight has the meaning of probability and
a probabilistic map is associated to each particle.

Particle-based approaches perform four basic operations for each step of the
algorithm: sampling, weighting, resampling and map estimation. First, particles
are "sent forward" by integration of the probability distribution, thus computing
the possible predicted trajectories of the robot and then the weights are updated
according to the information coming from the sensors. Then, a resampling phase
reduces the number of particles by deleting those with low probability. Finally, a
map estimate is computed for each remaining particle. In the context of SLAM, the
particle filter method for localization is also known as Monte-Carlo scan matcher
[11].

An efficient way to employ particle filters is implemented in Rao-Blackwellized
Particle Filters (RBPF) [12], which represents a SLAM technique based on particle
filters. RBPF-SLAM aims at solving one of the biggest problems of such approaches,
which is the high number of particle filters that need to be carried on during the
time. Given the odometry measurements u1, ..., ut−1 during time, the observations
z1, ..., zt from sensors and the trajectory x1, ..., xt with initial position x0, RBPF-
SLAM factorizes the problem by decoupling the computation for the trajectory
and the map as shown in (2.3).

P [m,x1:t|z1:t, u1:t−1, x0] = P [m|x1:t, z1:t] · P [x1:t|z1:t, u1:t−1, x0] (2.3)

It is evident that the map strongly depends on the robot’s trajectory which is
exactly known, since the observations and the odometry measurements are known.
Two different probability distributions can be distinguished, one for the map and
one for the trajectory: this is the key aspect of the so-called Rao-Blackwellization
[12]. The result is that the trajectory can be computed separately and efficiently
by sampling, and the consequent map is analytically trivial to obtain.

An advanced particle-based approach goes under the name of GMapping [13]. It
is a laser-based, more efficient version than RBPF-SLAM and introduces adaptive
techniques in order to reduce the number of particles. GMapping aims at truncating
particles according to some intrinsic parameters that represent a trade-off between

10

Simultaneous Localization and Mapping

performance and computational load. In particular, some parameters are predom-
inant and affect the behavior of GMapping heavily: the maximum distance for
laser scanning, the number of particles and the threshold of confidence for particle
deletion are the most impactful parameters for the performance of the algorithm.
GMapping is suitable for high-accuracy tasks, but is specific for laser-based sensors
such as LiDARs.

Actually, a hybrid approach between landmark-based and particle-based algo-
rithms exists. FastSLAM [14] was born as a faster alternative to EKF-SLAM.
Given the number of landmarks n, it solves n+ 1 independent estimation problems:
one uses m particle filters to estimate the robot’s trajectory, while the remaining
n computes the position of the landmarks through Kalman filters, one for each
landmark. Actually, FastSLAM separates localization and mapping into two inde-
pendent tasks under the hypothesis that n is exactly known. The values of n and
m can be freely chosen: in general, having more landmarks requires less particle
filters in order to achieve a good accuracy for maps. As a result, it can be proven
that FastSLAM reduces the complexity of a single step of the algorithm to O(m ·n),
while a step of EKF-SLAM is quadratic with respect to n. This complexity can
be further improved up to O(m · log n) if the landmarks are indexed with a tree
structure, as it is shown in [14].

2.2.2 Optimization-based Approaches for SLAM
The first implemented SLAM algorithms were based on probabilistic filters, but
such SLAM formulation leads to some intrinsic problems. In fact, the dimension
of the state grows as the robot travels and acquires landmarks, hence the state
estimation problem may become unfeasible in real-time applications. Moreover,
many algorithms such as EKF-SLAM present inconsistency issues due to error
propagation during the time. A further problem concerns the drift, indeed such
algorithms do not rely on a strong loop closure detection, thus the error tends to
accumulate, especially on the odometry and for long-running tasks.

In order to overcome these two problems, researchers had to find a new paradigm
that could reward the coherence between the odometry measurements, the data
captured by sensors and the estimated map and trajectory, while avoiding adding
too much complexity from a computational point of view.

The previous considerations inspired researchers to move towards methods based
on optimization problems: in fact, such mathematical formulations are able to
penalize inconsistency and a solver can retrieve the robot’s trajectory, as well
as the map of the unknown environment. Thus, optimization-based algorithms

11

Simultaneous Localization and Mapping

represent an improvement for the SLAM research field. Such approaches also go
under the name of graph-based algorithms: in fact, differently from the proba-
bilistic formulation in (2.1), the localization task is represented by a graph whose
nodes are the poses and the edges are the constraints given by observations and
commands, while the map can be consequently computed as the most consis-
tent spatial configuration with respect to the measurements [15]. Algorithms
that belong to this category usually model SLAM as a least-square problem or
a regression problem. Different existing algorithms are able to solve constrained
optimization problems: an example is the iterative Gauss-Newton method [15].
A worthy mention goes again to IMU sensors: if available, the initial pose can
be determined with extreme precision, hence an inconvenient situation where the
error on the initial pose accumulates through the whole graph can be easily avoided.

One of the most known SLAM approaches in the literature belongs in this
category. Cartographer [16] is the algorithm developed by Google and is properly
designed for real-time tasks with high performance. However, Cartographer is
intended to be applied on mobile robots that are provided with LiDAR sensors.
Cartographer maintains a grid structure for the map and a probability is associated
to each cell, thus indicating whether a cell contains part of an obstacle or is free.
Technically speaking, cells can be classified in "hits" or "misses": these two sets
identify respectively occupied and unoccupied points in the point cloud that is
acquired by LiDAR scans.

Since particle filters would accumulate errors over time, Cartographer copes with
this issue by running a pose optimization instead. The pose ξ = (ξx, ξy, ξθ) contains
the translation and the motion angle of the robot: the optimization problem aims at
finding the optimized pose ξ∗ that is coherent with the scan points H = {hk} ∈ ℜ2,
k = 1, ..., K, taken in the scan frame. Hence, the optimization problem is set as a
scan matching problem, and Cartographer uses the so-called Ceres solver in order
to find a solution.

The formulation is a nonlinear least-squares problem as it is shown in (2.5). The
transformation Tξ(hk) (2.4) shifts a scan point hk into the submap frame according
to the scan pose ξ = (ξx, ξy, ξθ). The function Msmooth : ℜ2 → ℜ is a smooth filter
that maps a scan into a probability value: in the nonlinear optimization problem,
it applies to the transformed scan point.

Tξ(hk) =
A

cos ξθ − sin ξθ

sin ξθ cos ξθ

B
hk +

A
ξx

ξy

B
(2.4)

ξ∗ = arg min
ξ

KØ
k=1

[1 −Msmooth(Tξ(hk))]2 (2.5)

Actually, the scan matching problem includes the most recent scans only and

12

Simultaneous Localization and Mapping

some small error still accumulates. This is why Cartographer is composed of two
processes: one acts locally according to what it is said before, and the second one
achieves global loop closure. Another optimization problem is formulated as follows:
all the submap poses Ξm = {ξm

i } and all the scan poses Ξs =
î
ξs

j

ï
are optimized,

given some constraints defined by the covariance matrix Σij and the matched pose
ξij . This optimization problem is known as sparse pose adjustment (SPA) [17] and
is made explicit in (2.6). Here, ρ represents a generic loss function and E is the
residual of the constraints. The objective is to find the optimal sets Ξm,∗ = {ξm,∗

i }
and Ξs,∗ = {ξs,∗

i }.

(Ξm,∗,Ξs,∗) = arg min
Ξm,Ξs

1
2
Ø
i,j

ρ(E2(ξm
i , ξ

s
j ; Σij, ξij)) (2.6)

In order to enhance scan matching, a branch-and-bound method is applied to a
third optimization problem (2.7) that concerns pixel-accurate match according to a
smooth function Mnearest that considers the neighborhood of a pose in the feasible
set. Branch-and-bound starts from a pose in the feasible set and looks for a better
pose in the neighborhood of the current optimal solution. Thus, the branch-and-
bound scan matching builds a research tree whose root is the set of all possible
solutions and whose leaves are the single feasible solutions. Branch-and-bound is
interested in finding the optimal pose: visually, the deepest leaves in the tree lead
to high resolutions on the global map.

ξ∗ = arg max
ξ

KØ
k=1

Mnearest(Tξ(hk)) (2.7)

Further works on Cartographer aim at improving real-time performance and
quality of generated maps. For example, authors of [18] found out that an adaptive
multi-distance scheduler that affects the two main processes of Cartographer can
be implemented such that it decides which process has to run according to its own
internal parameters. Moreover, the local process tends to involve smaller scans that
are faster to process, while the global process is invoked when the error accumulates,
but it takes more time to complete. Overall, Cartographer represents a very robust
approach for single-robot SLAM and is not by chance one of the most commonly
implemented algorithms for real-time applications.

Other well-known algorithms that are used today in real-time applications
for mobile robotics are optimization-based. KartoSLAM [19] is another LiDAR-
specific SLAM algorithm whose basic principle is graph optimization. KartoSLAM
retrieves the initial pose from the odometry and then solves scan-to-map matching
through Cholesky matrix decomposition, which is a method for factorizing the
positive-definite constraint matrix in order to solve the matching. This optimization

13

Simultaneous Localization and Mapping

produces a front-end graph one step at a time, but a back-end loop closure is still
needed. Sparse Pose Adjustment (2.6) is involved in back-end optimization and
receives the constraints among all the poses in order to update the pose graph that
is built as a result of the front-end optimization.

In general, KartoSLAM is quite robust thanks to the back-end loop closure; it
can work at low scan frequencies and still achieve very good accuracy. However, the
Cholesky decomposition does not scale very well and mapping with KartoSLAM
becomes almost unfeasible when dealing with complex and wide environments [13].

Speaking about optimization-based and laser-based methods, an approach that
brings together some algorithms is LOAM [20] (abbreviation for LiDAR Odometry
And Mapping). It is a low-drift, low-computational algorithm that does not rely
on IMU nor on loop closure detection. LOAM is composed of two processes: one
performs odometry with high frequency (usually 10 Hz) but low accuracy for
LiDAR speed, while the other runs at a lower frequency (usually 1 Hz, hence once
every 10 scans) for scan matching and mapping, so as to distinguish between edges
and planar points within the point clouds perceived by LiDAR scans. These two
processes can run in parallel, hence LOAM is well-suited to be applied in a real-
time scenario. Moreover, LOAM allows to build a 3D map because it implements
the iterative closest point algorithm (ICP) [21] for point cloud matching: briefly
speaking, ICP solves a least-squares problem which minimizes the point-to-point,
point-to-plane and point-to-line distances between two point clouds.

Given its structure, LOAM is suitable for playing the role of front-end process for
more complex laser-based approaches: in fact, it does not rely on other components
than LiDAR sensors but it lacks a loop closure detection system. As a consequence,
researchers got inspired by combining LOAM with optimization-based loop closure
techniques, thus giving birth to algorithms such as LeGO-LOAM [6]. The main
difference resides in the presence of back-end optimization for both the odometry
and the global map. Additionally, LeGO-LOAM improves the matching tasks
by dividing the point cloud into ground and non-ground points and by detecting
and filtering small clusters as outliers that may mislead the matching. This way,
LeGO-LOAM represents a complete SLAM framework that can achieve low-drift
and high accuracy and at the same time the computation is eased by back-end
optimization.

LOAM may seem a solid front-end module for LiDAR odometry, but it still
lacks integration with other measurements, for example from IMU or GPS, and also
suffers from drift when the scan matcher deals with skewed point clouds. Nowadays,
other front-end alternatives aim at improving the efficiency of LOAM. FAST-LIO2
[22] is an alternative odometry framework for LiDARs: it is fast and robust and
also computationally efficient. FAST-LIO2 directly registers raw points to the map
without extracting features, but only using the subtle features of the environment

14

Simultaneous Localization and Mapping

to increase accuracy and adaptability to different scan scenarios; then, the map is
maintained by an incremental tree with dynamic updates and re-balancing. Just
like LOAM, FAST-LIO2 does not include a loop closure module.

Besides being a complete SLAM approach, LeGO-LOAM inherits some issues
from LOAM. LIO-SAM [23] is a highly accurate, real-time framework for trajectory
estimation and map building that does not match scans with a global map (as
for LOAM), but instead it performs scan-matching at a local scale with a sliding
window approach. LIO-SAM is also especially suitable for multi-sensor fusion and
includes a loop closure function based on Euclidean distance.

A back-end alternative that is suitable for LiDAR sensors is bundle adjustment
(BA) [24], which is the problem of jointly solving 3D structures and finding the
location of feature points and camera poses. Briefly speaking, BA is set as an
optimization problem with a least-squares objective function: given an observed
feature, the goal is to find its optimal pose T ∗, its vector n∗ (depending on the
feature, either the normal vector of the plane or the direction of the edge) and the
corresponding feature point q∗ on the 3D map, such that the distance between each
plane feature point pi (they directly depend on the pose) and the representative
feature point of the map is minimized. These quantities are all optimized at once.
An explicit formulation is given in (2.8).

(T ∗,n∗, q∗) = arg min
T ,n,q

1
N

NØ
i=1

(nT (pi − q))2 (2.8)

Algorithms that are based on BA are referred to as sparse bundle adjustment
(SBA). By combining LOAM with BA, the BALM algorithm (abbreviation for
Bundle Adjustment LiDAR Mapping) is obtained [24]. BALM runs three parallel
processes: odometry and map refinement (as for LOAM), as well as feature extrac-
tion. Adding feature extraction helps to correctly recognize edge and plane features,
similarly to what LeGO-LOAM does. BA is included in the map refinement process
that runs every five scans taken by the LiDAR sensor and the pose optimization is
applied with a sliding window approach that operates on the most recent scans.

The principle behind LOAM and its derivatives inspired other researchers to
implement brand-new algorithms that maintain the same advantages. MULLS [25]
is another low-drift 3D LiDAR SLAM algorithm that exploits efficient optimization
techniques to achieve very good real-time performance. MULLS does not rely on
IMU and contains two modules, one as front-end and the other as back-end.

MULLS front-end first performs motion compensation in order to efficiently
extract the point cloud from the current frame according to the previous one.
Then, the obtained point cloud is preprocessed by a dual-thresholding filter to
detect ground points. Non-ground points are further classified through principal
component analysis (PCA), that is a technique that is used in machine learning

15

Simultaneous Localization and Mapping

and data mining for classification of a dataset with a large number of features:
thus, non-ground points can be divided into facade, roof, pillar, beam and vertex
points. This partition is convenient for applying ICP, because the least-squares
problem becomes well-posed: in fact, point-to-point distances concern vertices
only, point-to-plane distances affect ground points and facade or roof points, and
point-to-line distances are computed between pillar and beam points. The front-end
module also contains a local map management module that maintains the feature
points of the last frame.

MULLS back-end involves a processing unit that periodically saves the submaps
that are generated at the front-end. Thus, a graph is computed: the robot’s poses
are its nodes and may be grouped to build a submap. Here, a loop closure system
is implemented, aiming at finding a correspondence between different submaps.
Once a loop closure is detected, a pose graph optimization (PGO) is performed
on the whole graph in order to correct the transformation between the reference
frames of the involved submaps and the individual poses within a submap.

A worthy mention goes to SLAM algorithms that are designed for stereoscopic,
monocular or RGB-D cameras. From a computational point of view, frames can
be easily manipulated through computer vision techniques that are simpler than
LiDAR techniques for point cloud processing. Efficient processing, combined with
optimization, gives birth to real-time visual SLAM algorithms that can compete with
laser-based approaches. To cite one, ORB-SLAM [26] is a well-known algorithm
that can accomplish visual SLAM. During that time, improved versions were
released such as ORB-SLAM2 [27] and ORB-SLAM3 [28].

In particular, ORB-SLAM2 [27] is composed of three parallel threads: tracking,
map management and loop closure. The first thread is dedicated to tracking and
camera localization, accomplished through feature matching with the local map
and enhanced by motion-only BA (i.e., only the trajectory and the camera poses
are optimized). The second concerns local mapping and performs it through trian-
gulation between keypoints, then an optimization step involves local BA applied to
a set of visible keypoints. The third thread contains loop closure functionalities:
after a loop is detected and validated, the global map is corrected by PGO and
then BA is applied to the global map. However, BA can take long, hence a fourth
thread starts and is dedicated to accomplish BA: an eventual incoming loop closure
would force this thread to interrupt and re-launch.

An advanced visual SLAM algorithm that also relies on deep learning techniques
is Orbeez-SLAM [29]. This very recent approach does not need pre-training but can
be trained from scratch at the target scene in a short period of time. Orbeez-SLAM
not only is able to generate dense maps in real-time and easily adapt to new scenes,
but also it can work with simple monocular cameras because the input is just

16

Simultaneous Localization and Mapping

required to be RGB.
The key concept behind Orbeez-SLAM is the Neural Radiance Field (also known

as NeRF): it is a neural network that does not require depth supervision during
training and can be trained from scratch, and its goal is to reconstruct 3D scenes
from 2D images taken from distinct points of view. As the name suggests, Orbeez-
SLAM inherits the workflow from ORB-SLAM approaches. The map points and
the optimized camera poses that are generated by the three threads are paired
with the RGB images and fed to the NeRF for the initial training.

A summary of the reviewed algorithms is reported in Table 2.1. Nowadays,
there is always a selection of suitable algorithms that are compatible with a specific
availability of sensors and hardware resources. Furthermore, depending on the
scenario where the SLAM algorithm is applied, some approaches may be more
suitable than others. For instance, simple environments can be mapped with
fast approaches such as KartoSLAM and Cartographer, while more sophisticated
algorithms such as LeGO-LOAM and similar are more indicated if 3D mapping
and/or very high precision are required.

Algorithm Category Sensor specificity
EKF-SLAM [9] Filter-based (on landmarks) None

RBPF-SLAM [12] Filter-based (on particles) None
GMapping [13] Filter-based (on particles) LiDAR only
FastSLAM [14] Filter-based (on particles) None

Cartographer [16] Graph-based LiDAR only
KartoSLAM [13] Graph-based LiDAR only
LeGO-LOAM [6] Graph-based LiDAR only

BALM [24] Graph-based LiDAR only
MULLS [25] Graph-based LiDAR only

ORB-SLAM2 [27] Graph-based Visual SLAM
Orbeez-SLAM [29] Graph-based + Learning Visual SLAM

Table 2.1: A summary of the discussed single-agent algorithms.

17

Chapter 3

A More Complex Topic:
Multi-Agent SLAM

Single-agent SLAM still leaves some open issues. In fact, if a fault happens on the
mobile robot the whole task fails, and wide environments require too much time to
be fully explored by only one agent. Moreover, even if a robot can still perform
loop closure, it is not strongly reliable because the agent may not visit the same
features multiple times in order to improve the map and trajectory estimates. As a
consequence, the need of developing collaborative solutions that are able to handle
more agents arose in recent times.

SLAM can be extended to a multi-agent scenario: a swarm of mobile robots
cooperates such that each robot is able to track its trajectory and collaborate with
others to build a global map of the unknown environment. In this context, mobile
agents are able to share their own raw and/or processed data with others accord-
ing to a pre-established network infrastructure or under particular circumstances.
Multi-robot SLAM brings some important advantages with respect to single-robot
SLAM: it makes the SLAM task faster and resilient against attacks on mobile
agents, because the application can continue to run even if a few robots become
unavailable for some reason. Moreover, it enhances loop closure because the agents
may perceive the same features from different points of view, thus the map estimate
can be corrected more effectively.

This chapter extends the previous one by integrating more concepts about
cooperative approaches for SLAM. First, the generalities of multi-agent SLAM are
explained, as well as the related issues that have to be dealt with. The possible
solutions to such problems are discussed in the excursiveness about the state-of-
the-art and some of the most efficient multi-agent algorithms are introduced to

18

A More Complex Topic: Multi-Agent SLAM

give a better idea of how such approaches work in practice.

3.1 Characteristics of Multi-agent SLAM

For a multi-agent framework, the previous formulation that is used to describe a
generic single-agent SLAM algorithm (2.1) can be generalized for n mobile robots
by considering a unique map that has to be updated and n trajectories that have
to be estimated from the initial poses, commands and observations of all the agents.
An example of generalization for n = 2 mobile agents is made explicit in (3.1). The
map m and the trajectories x

(1)
t , x

(2)
t are given as probabilistic values that depend

on the initial poses x
(1)
0 , x

(2)
0 , the command inputs u

(1)
1:t , u

(2)
1:t and the observations

o
(1)
1:t−1, o

(2)
1:t−1 over the time. Once again, graph-based approaches adopt a more

sophisticated formulation.

P
è
m,x

(1)
t ,x

(2)
t |x(1)

0 ,x
(2)
0 ,u

(1)
1:t ,u

(2)
1:t , o

(1)
1:t−1, o

(2)
1:t−1

é
(3.1)

The generalities that were described back in Section 2.1 still hold in a multi-agent
context. The concepts of convergence and sparsity are inherited with an extended
meaning. Since more mobile agents explore the same environment, the expected
outcome is that each estimate will converge to a global map that ideally represents
the whole environment: this convergence is reached if the mobile agents correctly
merge their data with information coming from others. For what concerns sparsity,
besides the simplifications that it brings to computation, it is better to have sparse
communication, in the sense that it is more efficient to exchange a few data at a
time and to have only a few agents that communicate at a time.

However, multi-agent SLAM approaches have to face two distinct problems:
scalability and communication. In fact, algorithms have to be generalized to more
than one agent without computation growing too much in complexity, and at
the same time, such methods have to guarantee some form of communication
between the mobile robots. These two requirements make it difficult to implement
a multi-agent SLAM framework that is able to achieve good real-time performance
in a real-world scenario, and that’s why multi-agent SLAM is still a challenging
field of research nowadays and it will be in the future.

19

A More Complex Topic: Multi-Agent SLAM

3.2 Cooperative Solutions and State-of-the-Art
As it was anticipated, scalability and communication are the biggest issues that
multi-agent SLAM approaches have to overcome.

The scalability problem can be solved by either using optimized computation
or having better on-board processors for the mobile agents, but for cheap devices,
some hardware restrictions exist. As a consequence, multi-agent algorithms tend to
be founded on concepts that can be efficiently treated from a mathematical point
of view such as optimization problems.

Speaking about communication, two alternative solutions may be implemented.

• A centralized client-server approach depends on a server that (approximately)
knows the location of all the agents and elaborates the data that the sensors
collect during time. This solution can use very cheap agents, because the
computation comes from the server and it is resilient against client losses, but
the server itself represents a single-point-of-failure of the whole system.

• A distributed approach does not need a server and is based on peer-to-peer
communication between the agents. In the absence of prior assumptions,
the relative position between agents on the map is computed by on-board
processors and robots exchange their own maps each time a rendezvous
happens.

Although the client-server setting brings very convenient advantages, the single-
point-of-failure problem is a too big drawback and must be avoided, hence multi-
agent SLAM algorithms tend to adopt a distributed approach, even if this entails
that each agent should dispose of a non-trivial processing unit. Moreover, dis-
tributed frameworks respect the sparsity property because there is no need to
maintain constant communication among agents. On top of that, centralized
solutions tend to perform poorly as the number of mobile agent increases, while
distributed algorithms are more suitable for missions with a numerous swarm of
robots. The distinction between centralized and distributed approaches extends
the single-agent algorithm classification in Fig. 2.1.

Another problem that comes together with peer-to-peer communication is rep-
resented by the map merging task. While for a client-server approach each agent
indirectly updates the global map individually by sending data to the server, in a
distributed setting the issue is much more complicated. During a rendezvous, two
mobile robots meet, compute their relative pose and match the two maps. The
merging operation details may differ from algorithm to algorithm. For distributed
approaches, convergence is a key aspect to take into account: more precisely, the

20

A More Complex Topic: Multi-Agent SLAM

time required for all the agents to converge their own maps to the original global
one has to be evaluated. An intelligent navigation system may help in this case: if
designed properly, mobile robots will tend to move towards unexplored locations of
the environment.

The single-agent algorithms that were described in Section 2.2 can be extended
in a multi-agent scenario by developing a centralized setup where the server knows
the prior initial position of the agents or has a valid hypothesis about it. This way,
map merging becomes easier. Since distributed algorithms bring more advantages,
most of the multi-agent SLAM algorithms were designed as brand new approaches.
Nevertheless, map merging has to be managed properly whenever two mobile agents
have a rendezvous.

Cooperative SLAM algorithms are mostly graph-based: in fact, merging the
maps that each mobile agent builds is not a difficult task, because the observations
are combined into a unique graph and recurring nodes determine a loop closure.
This especially holds for centralized frameworks, but it is also valid for distributed
algorithms under the hypothesis that mobile robots will eventually encounter each
other, thus having a rendezvous. Such frameworks can also afford to support
relatively cheap agents thanks to optimized computation.

On the other hand, multi-robot filter-based SLAM approaches have some issues
related to filter processing: it is not only computationally heavy, but also such
filters are usually not compact in terms of memory. Hence, it is not guaranteed
that regular on-board processor can manage such complex computation. Addi-
tionally, it is worth to clarify that not only the agents have to process their own
data, but also they may have to incorporate additional information from others,
thus leading to a latency due to the high quantity of data to be transferred, and
such latency cannot be neglected. That’s why filter-based solutions are usually
avoided when implementing multi-agent SLAM frameworks in a real-world scenario.

Speaking about the general workflow, each mobile robot individually runs a
single-agent local SLAM algorithm on its own, remarking the generic workflow that
was shown back in Fig. 2.2. This usually constitutes the front-end of the multi-
agent framework and includes the intra-robot loop closure, i.e., the loop closure
detection referred to a single mobile robot. If a single-agent SLAM algorithm
does not provide intra-robot loop closure, such functionality must be implemented.
The back-end core of the framework comes into play during a rendezvous in a
distributed setting or continuously for a central server: here, the inter-robot loop
closure detection is performed and a further optimization step acts on the global
estimates. This is not a rigid workflow for all algorithms, but it gives a better idea
of what operations the agents carry out in a collaborative framework.

21

A More Complex Topic: Multi-Agent SLAM

The following scheme in Fig. 3.1 reports the described workflow for multi-agent
SLAM algorithms when two mobile robots are involved. Of course, it can be
generalized to an arbitrary number of agents. For distributed algorithms, the
exchange of data between agents during a rendezvous is included in the inter-robot
loop closure module.

Figure 3.1: Workflow of multi-agent SLAM algorithms with two robots.

3.2.1 Cooperative Filter-based Solutions
Although it does not sound convenient to develop multi-agent SLAM frameworks
that are based on particle filters, the theory on probabilistic filters has been mature
in the last decade, hence the first multi-agent approaches had their foundations
in particle filters. Old and filter-based algorithms can be adapted in order to
work in multi-robot systems. Of course, it is pointless to take poorly performing
algorithms that would not be used anyway to accomplish single-agent SLAM and
build a multi-agent framework, because the resulting solution will inherit the same

22

A More Complex Topic: Multi-Agent SLAM

problems of the original approach.

A multi-agent SLAM framework that is inspired by RBPF-SLAM exploits the
principle of Rao-Blackwellization and particle filters generalities in order to build
a map with the help of two or more mobile robots [30]. The factorization that
was introduced in (2.3) can be extended, in this case to two distinct mobile agents,
by separating the computation of the two trajectories that are assumed to be
independent. Once again, as (3.2) shows, a mobile robot can exactly recover its
own trajectory, since the command inputs and the observations are known, and the
initial pose is supposed to be known. When two robots meet, their measurements
are fed to the filter and fused into a common map. The quantities m, x, u and
z respectively refer to the map, the trajectories, the command inputs and the
observations.

P [m,x1
1:t,x

2
1:t|z1

1:t,u
1
1:t−1,x

1
0, z

2
1:t,u

2
1:t−1,x

2
0] =

P [m|x1
1:t, z

1
1:t,x

2
1:t, z

2
1:t] · P [x1

1:t|z1
1:t,u

1
1:t−1,x

1
0] · P [x2

1:t|z2
1:t,u

2
1:t−1,x

2
0]

(3.2)

Actually, this model works only if each mobile robot knows the initial pose of
the others. Moreover, the resulting approach would deal with a large state that the
mobile robots have to sample as sparse. In the most generic situation, the initial
poses of the mobile robots are unknown to others: for the case of two mobile agents,
this can be modeled as an additional unknown ∆i

s that represents the relative pose
of the robot i with respect to the other at time s. The factorization gets more
complicated and basically generates an additional, anticausal instance for each
mobile robot which corresponds to its reversed motion, because it takes ∆i

s as
initial pose with t = s− 1 as initial and t = 1 as final time instants (the normal
motion instance is defined as causal). Based on this idea, a real-time particle-based
multi-robot SLAM algorithm is implemented as follows: each mobile robot keeps
a queue of its own observations and during a rendezvous it augments its particle
filter by acquiring the relative pose and both causal and anticausal instances of
the other robot, then it splits the queue into data recorded after and before the
rendezvous timestamps in order to progressively incorporate older observations into
the map filter.

This extension of RBPF-SLAM for a multi-robot setup is a primitive distributed
algorithm that has some structural problems. First of all, particle filters are
expensive in terms of memory and mobile agents must have enough storage for
both the observation queues and the filters related to the trajectory and the map.
Additionally, a considerable latency is introduced during a rendezvous due the great
amount of data that is exchanged between two robots. This example demonstrates
how many problems filter-based collaborative algorithms have to face in practical
terms.

23

A More Complex Topic: Multi-Agent SLAM

Another extension of grid-based SLAM adopts a single-agent algorithm that was
not discussed before known as VinySLAM [31]. In short, VinySLAM uses odometry
and laser scans to build a map through a Monte-Carlo scan matcher and evaluates
a cost function that minimizes the map discrepancy in order to better improve
the map estimate; additionally, a transferable belief model (TBM) enhances the
mapping robustness and accuracy by classifying the map’s cells as occupied, free,
conflictual or unknown. Authors of [32] extended VinySLAM into a multi-robot
context, thus giving birth to Monte-Carlo Multi-Agent SLAM: it is a distributed
approach that is designed for low-cost platforms with low computational capacity.

Each agent individually runs VinySLAM as the core algorithm to build its own
map. As usual, cooperation comes into play whenever a robot detects another
one in its proximity. During a rendezvous, the two robots must remain close
and for enough time: as the data transfer concerns the robot’s observation and
an occupancy map with TBM cells, the process of exchanging data may take a
few seconds and involve some megabytes. After the data has been exchanged,
both agents compute the relative position individually through the Monte-Carlo
scan matcher. All robots also run the map merging task on their own: since the
two maps are basically bi-dimensional arrays, the map merging takes the form of
combining two arrays according to common points and eventual ambiguities are
solved by TBM.

The resulting algorithm is computationally easy and does not require high-
performing on-board processors. Moreover, the TBM is able to avoid merging
problems if the maps have few common cells or conflicts and/or the single-robot
scan matching has somehow failed and the map is partially incomplete. The main
reason why Monte-Carlo Multi-Agent SLAM seems to be quite effective is the
fact that it relies on modern results of the probabilistic particles theory such as TBM.

3.2.2 Real-time Efficient Optimization-based Frameworks
Modern solutions to multi-agent SLAM prefer to base computation on optimization
rather than particle filters. In particular, LiDAR sensors are mainly deployed for
real-time experiments thanks to their robustness and high resolution, but frame-
works tend to be more general, if possible, in terms of supported sensors.

LAMP [33] is an example of a centralized multi-agent SLAM algorithm. It
deploys mobile agents that are equipped with both LiDAR sensor and RGB-D
camera. Each robot first takes the point cloud data to perform localization, then
the RGB-D camera looks for known objects in the area called artifacts to improve
odometry. A pose graph optimization (PGO) further improves the trajectory and

24

A More Complex Topic: Multi-Agent SLAM

the map estimate of the single mobile robot. LAMP requires a base station that
serves as a centralized back-end: it tracks a common global reference frame that
the agents initially share. When possible, a mobile robot sends its estimates to the
base station. The centralized back-end module looks for inter-robot loop closures
in the global frame and performs PGO on a larger scale. LAMP also allows for a
human operator to manually detect an unobserved loop closure if the base station
is not aware of it.

DCL-SLAM [34] is a recent fully-distributed collaborative LiDAR-based 3D
SLAM framework that relies on local communication to avoid bandwidth problems.
As usual, each robot is free to operate autonomously if there are no nearby
collaborators. DCL-SLAM is characterized by three components: single-robot
front-end LiDAR odometry, distributed loop closure and a distributed back-end
module. The distributed components come into play during a rendezvous.

The single-robot front-end module consists on estimating the robot’s odometry
through a LiDAR-based approach such as LOAM [20] and FAST-LIO2 [22] and also
includes an intra-robot loop closure module; as an alternative, both odometry and
intra-robot loop closure can be replaced by a complete LiDAR-based single-robot
framework such as LIO-SAM [23].

The distributed loop closure performs place recognition according to a data
descriptor. Many LiDAR-based descriptors exist, but one with great descriptive
power is needed for a collaborative task. The choice fell on LiDAR-Iris [35]: it is
a state-of-the-art global descriptor for LiDARs which is robust against sparse or
inconsistent point clouds and rotation-invariant. LiDAR-Iris projects the point
cloud to its bird’s eye view and encodes it by means of simple thresholding; this is
done for each incoming point cloud from nearby robots. The loop closure module
further divides the bird’s eye view in columns and the best one is shared with the
other robot. A scan-to-map matching verifies whether the inter-robot loop closure
was successful.

The distributed back-end module is dedicated to outlier rejection and PGO.
Outliers are recognized as couples of spurious inter-robot loop closures whose
related transformations lead to a consistency value, expressed in terms of l2-norm,
that is lower than a likelihood threshold. The PGO aims at refining the trajectory
estimates by solving a maximum likelihood problem of the robot’s poses according
to the measurements. The problem is solved by a two-stage distributed Gauss-Seidel
method that first estimates the optimal rotations of the trajectories and then uses
such estimates to find the optimized poses.

Another collaborative framework for SLAM that is worth to be mentioned is
Swarm-SLAM [36]: it is a decentralized framework that fully satisfies scalability,
sparsity and hardware flexibility for sensors. The Swarm-SLAM architecture is

25

A More Complex Topic: Multi-Agent SLAM

composed of three modules: one for single-robot odometry and mapping, a front-end
intra-robot and sparse inter-robot loop detection, and a back-end PGO.

Both the front-end and back-end modules are involved during a rendezvous: one
involved mobile robot is randomly selected for computation in order to maintain a
one-way data passage. The loop closure detection acts with a two-stage approach
for optimization: after one agent sends its own data descriptors, the other mobile
robot (i.e., the one that is elected for computation) selects the possible candidates
within the global pose graph, then both agents compute their relative 3D pose by
exchanging their local pose graphs while avoiding sending vertices in common. Ac-
tually, the inter-robot loop closure detection can be completed without exchanging
further data. The back-end module estimates the most likely map through a PGO
that collects the odometry and both intra-robot and inter-robot loop closures, then
both agents are assigned the same reference frame in order to ensure convergence.

3.2.3 The Future of Multi-agent SLAM
Nowadays, the trend of the research on SLAM is moving towards the design of
collaborative special-purpose frameworks that are intended to improve performance
in specific scenarios.

Even though many multi-agent SLAM algorithms are LiDAR-based or offer
support to heterogeneous types of sensor, the necessity to project frameworks that
can afford to rely on a poor infrastructure arose. Maplets [37] is a representative
example: it is intended to work on cheap agents with RGB-D cameras and limited
computational power and under communication constraints. Here, the intuitive
idea is to avoid sharing raw data: instead, mobile robots exchange overlapping
map elements that are used to enrich their own local maps (also called maplets)
and for loop closure with PGO.

As deep learning is constantly growing as a field of research, a promising appli-
cation of such techniques concerns multi-agent SLAM as well. Already existing
frameworks that mix optimization and learning-based approaches include SegMap
[38]. A learning-based descriptor that consists of a deep neural network with an
autoencoder-like structure is in charge of the processing of the 3D point cloud. As
the point cloud is fed to the descriptor, the encoder performs segmentation and
the decoder is able to perform both map reconstruction and localization. thanks
to transfer learning and the usage of two different loss functions. The extension
of SegMap for a multi-agent context results in a centralized approach. where a
central machine simulates the system via multi-threading: each thread accumulates
measurements and feeds them to the descriptor that is able to be run multiple times

26

A More Complex Topic: Multi-Agent SLAM

in parallel. Even though SegMap may suffer from bandwidth problems, the idea be-
hind it will surely inspire future works on SLAM applications based on deep learning.

The most challenging aspect of the future of SLAM is the possibility of achieving
SLAM even under restrictive conditions where the task seems to be unfeasible. Some
recent works aim at implementing special-purpose multi-agent SLAM frameworks
that can operate in these hostile scenarios.

For example, subterranean environments present repetitive patterns that usually
make loop closure detection harder and the uneven terrain may alter the odometry
of mobile agents. On top of that, it is difficult to dispose of a network setup with
high bandwidth for communication in such environments. LAMP [33] is able to
face these issues, thanks to the support of landmark detection to both odometry
and intra-robot loop closure. Although the setup requires quite expensive hardware
for the mobile agents, thus losing one of the advantages of a centralized algorithm,
the operations that are carried out by the agents are designed to cope with the
characteristics of subterranean scenarios.

Another challenge for 3D SLAM concerns underwater environments. The biggest
limitation that has to be overcome is the signal transmission because underwa-
ter robots usually communicate through acoustic signals that usually have low
bandwidth and low resolutions and also lack of 3D information. Another prob-
lem concerns the lack of initial information on mobile agents because GPS is not
reliable here, hence only distributed approaches should be considered. On top
of that, cameras perform poorly due to low lighting, especially in turbid waters.
DRACo-SLAM [39] is the first solution in this regard: it uses sonar imaging, i.e.,
robots transmit sound pulses and convert the returning echoes into digital images.
The point clouds are built as 2D images with acoustic intensity values and then
compressed in order to fit in the data link. Pose graphs are based on sequential
scan matching on such point clouds and the same histogram-based descriptor is
used by all the agents to detect inter-robot loop closures. DRACo-SLAM also
includes an outlier rejection for erroneous loop closure according to point cloud
comparison.

27

Chapter 4

Introduction to ROS

ROS stands for Robotic Operating System and is an open-source framework that
includes software libraries and other tools that support the development of robot
applications. ROS is not properly an operating system, but it still provides some
functionalities that are typical for operating systems: ROS is responsible for hard-
ware abstraction, low-level device control, message-passing between processes and
package management. For this reason, ROS is usually properly defined as a meta-
operating system. Initially, ROS was used for academic and research purposes,
but nowadays the robotics industry tends to produce commercial robots that are
implemented with ROS. Here, the abbreviation ROS refers to the generalities, while
a clear distinction is made between the two existing versions (ROS1 and ROS2).

The first distribution of ROS1 [40] was released in 2007. As ROS1 was quite old,
developers decided to rewrite the whole framework from the ground up: thus, ROS2
[41] was released in 2017 in order to solve the structural problems that affected
ROS1. Nowadays, many existing projects have been developed through ROS1, even
though the community is willing to migrate towards ROS2.

In general, ROS needs a massive usage of a CLI (Command Line Interface) in
order to run tools and other programs. From a coding point of view, ROS follows
an OOP (Objected Oriented Programming) approach, hence the code is usually
written in C++ and Python. As a meta-operating system, ROS requires an actual
operating system to run on: ROS1 is compatible only with Linux-like operating
systems, while ROS2 offers additional support for others such as Windows and iOS.

Besides the choice between ROS1 and ROS2, there are some basic concepts
that have to be explained in order to better comprehend ROS. In this chapter,
these common concepts will be illustrated, as well as the main innovations brought
by ROS2 with respect to ROS1. A description of the software tools that will be

28

Introduction to ROS

fundamental for explaining the setup for the real-time experiments follows. Finally,
the chapter closes with an overview of the hardware devices that have been used
to perform the experiments and collect the results. Before starting, it is crucial
to specify that some ROS commands will be introduced in order to give a better
workflow and eventually a practical feedback for readers: such commands are
intended to work on ROS2, because it is the ROS version that will be used for the
implementation of the multi-agent SLAM frameworks.

4.1 ROS Basics
Conceptually, ROS follows a "divide and conquer" approach: each task is divided
into smaller programs that communicate with each other. Thus, a complex task
can be represented as a computational graph that contains modules and inter-
communication channels. ROS defines a proper terminology to describe the main
components of a program.

A node corresponds to a sub-program of the task and represents a single process
that is responsible for the behavior of a unique sub-task. Nodes are defined through
ROS libraries that are compatible with C++ and Python, and they are able to send
and/or receive data from others. In ROS1, the so-called master node is responsible
for naming other nodes and tracking the communication link between them: it
enables other nodes to locate each other such that they can communicate peer-
to-peer. For this reason, it is said that ROS1 uses a master-slave communication
protocol. The master node is deprecated in ROS2.

The data that nodes exchange goes in the form of a message. In ROS, a mes-
sage represents a compact, aggregate and typed piece of data. A message may
include some data with standard types (e.g., boolean, integer, string) or more
complex ones that are defined by ROS libraries and are strongly specific for cer-
tain applications. Custom types may be defined as well, usually in textual .msg files.

Topics are directed inter-communication channels through which nodes send
and/or receive data (i.e., messages). Given a topic, a node can either publish on
this topic or subscribe to it: the node of the first type is called publisher, while
the latter is known as subscriber; it is possible to have more than one publisher
and/or subscriber for a single topic. A message that a publisher sends on a topic is
received by all the subscribers to that topic. When subscribers receive a message,
they might execute a callback function.

29

Introduction to ROS

Services are an alternative method of communication between nodes. A service
involves a node that plays the role of the server and one or more other nodes that
are called clients. Similar to how client-server communication works, a client node
sends a request to the server that elaborates it and sends a response back. This
represents a way to implement a synchronous communication between nodes and
is not intended to be used for exchanging messages continuously. ROS2 supports
asynchronous services as well.

Speaking about continual communication, the last kind of communication that
can be implemented in ROS is called action. Indeed, actions are intended for long-
running tasks and employ a server node and one or more client nodes, similarly
to services. Actions also include a goal, a result and a feedback. Actions not only
provide a standard client-server communication, but they are also preemptable and
can provide constant feedback if requested.

ROS uses a build system in order to compile the packages and eventually resolve
dependencies between them. ROS1 uses catkin, while ROS2 uses ament: they
both add API to an underlying build system which is usually CMake. A ROS
workspace generally includes different folders.

• The source space (src subdirectory) includes the source code of the packages.

• The build space (build subdirectory) contains cache files and other temporary
information related to the build system;

• The development space (devel subdirectory) represents the folder where built
targets are placed before being installed, and it is particularly useful for testing.
It is deprecated in ROS2.

• The install space (install subdirectory) contains the installed targets; in
practice, it is not used at all in ROS1 because packages can be built without
installing them. However, installation is mandatory in ROS2 and this is why
ROS2 does not support a development space. In ROS2, the install space also
inherits the utilities of the deprecated development space.

• The log space (log subdirectory) includes the logging information from console
output during building. It is mainly present in ROS2.

Each single ROS package follows a similar hierarchical structure as well. It is
good practice to use different subfolders for distinct file types. A ROS package
may contain Python or C++ scripts, launch files, configuration files, C++ headers
and so on. In general, all the packages contain two essential files: a build file
CMakeLists.txt that contains instructions to be passed to CMake and a package

30

Introduction to ROS

metadata file package.xml that includes dependencies from other packages. Once
ROS packages are built, the install/setup.bash file has to be sourced. Then,
executables can be run by a run command, or through a launch command if a
launch file is provided. A complete example of the organization of a workspace in
ROS (in particular, ROS2) is reported in Fig. 4.1.

Figure 4.1: Typical organization of a ROS2 workspace.

4.1.1 ROS2
ROS2 was born to solve some problems that were left open in ROS1: these include
security, real-time issues, single point of failure for the master node and so on, and
such problems were crucial for the development of real-time robotic applications.
As mentioned before, this led the developers to rewrite the entire framework, thus
giving birth to ROS2.

The basic elements are conceptually left untouched. The biggest difference lies in
the architecture: ROS1 relies on a master-slave architecture at application level and

31

Introduction to ROS

the middleware layer uses ROSTCP/ROSUDP (i.e., adaptations of TCP/UDP for
ROS1) as communication protocol; on the other hand, ROS2 follows a peer-to-peer
approach at application layer and adopts DDS (Data Distribution Service), thus
granting higher efficiency, low latency, scalability and providing Quality of Service
policies in order to better support real-time robotics applications. Moreover, since
more mobile robots may communicate through the Internet, DDS provides security
guarantees. The absence of a master node in ROS2 also opens to the possibility of
developing fully-distributed applications. This substantial difference is highlighted
in Fig. 4.2.

Figure 4.2: A comparison between ROS1 and ROS2 architectures [42].

ROS2 also introduces the concept of lifecycled nodes. Basically, they are nodes
that can assume one of the following states: unconfigured, inactive, active and
finalized; these states are regulated by a finite state machine. This feature aims
at solving real-time problems: in fact, a life cycle grants that each node has been
correctly instantiated before the application is executed. A node is initially un-
configured until publishers and subscribers (or other types of communication) are
established, then it becomes inactive and does not send and/or process data: this
state allows re-configuration without compromising the application. When the
node is active, it processes data, publishes on topics, produces console output and
so on. Before the node is destroyed, it translates into the finalized state: this is
useful for debugging and also ensures that the node is shut down correctly. In
particular, it is fundamental for real-time applications.

Besides the structural differences, the API for C++ and Python is similar
between ROS1 and ROS2. Of course, there are some small differences that mostly

32

Introduction to ROS

concern libraries, definitions and solving dependencies. However, since the support
for ROS2 is not as consistent as for ROS1, it may be needed to rewrite some
packages from ROS1 in order to be fully compatible with ROS2.

This thesis work uses ROS2 Foxy Fitzroy as ROS distribution. ROS2 Foxy
Fitzroy was released in June 2020 and is mainly supported on Ubuntu 20.04 (Focal),
Mac macOS 10.14 and Windows 10. However, it reached its end of life in June 2023,
hence it will not receive official support from developers anymore. Although ROS2
Foxy Fitzroy suffers from several bugs and issues and has become an end-of-life
distribution, there is still a lot of documentation and support from the community.

4.2 Software Utilities
ROS includes some useful libraries, software, plugins and simulation tools that are
crucial for debugging, modeling, simulation and setup for real-time tasks. Many
types of file may exist in a ROS package, each with a different purpose. Here, more
focus is given to ROS2, since it is the framework that will be used for the real-time
experiments in Chapters 5 and 6, although the corresponding software tools exist
in ROS1 as well and with small differences.

4.2.1 The tf2 Library
The tf2 ROS2 library [43] concerns the transformations between the different
reference frames that are tracked by the framework over time. These transformations
are kept as a tree that graphically shows the relationship between the coordinate
frames. This is important for two reasons: this way, it is possible to check whether
ROS is recognising all the joints of a robot (in fact, a joint usually corresponds to
a reference frame on its own) and whether the transformations have been correctly
set. The transformation tree can be generated by running the following command,
then it is automatically saved into a file called frames.pdf.

ros2 run tf2_tools view_frames.py

Another useful command allows to listen to the transformation between two
arbitrary topics.

ros2 run tf2_ros tf2_echo <from_frame> <to_frame>

Whenever tf2 is involved, it creates two topics called /tf and /tf_static: their
objective is to compute the translation and the rotation (expressed in quaternions)

33

Introduction to ROS

between two reference frames. The difference is that /tf_static only tracks static
transformations between two reference frames whose relative position should not
change during time. On the other hand, /tf computes only dynamic transforma-
tions: for example, the transformations between the odometry frame of a mobile
robot and its base frame is dynamic and the associated translation and rotation
vary while the robot moves. The previous command listens to the data that is
published to the /tf and /tf_static topics.

4.2.2 RViz2
RViz2 [44] is a visualization plugin for ROS2. Its functionalities are inherited from
RViz (i.e., the version for ROS1) and provide a graphical interface that displays the
robot and the environment in which it is located, as well as the reference frames and
other features of interest such as the trajectory. RViz2 also supports visualization
for point clouds, sensing, body tracking, object detection and other ROS topics. It
works in both real-world scenarios and simulations, provided that a real robot is
connected or a simulated environment is given.

Figure 4.3: The RViz2 GUI.

The graphical environment is highly customizable through a .rviz file that

34

Introduction to ROS

can be passed when launching RViz2 either directly from the command line or
through a launch file that executes RViz2. According to the user’s preferences,
visualization for topics can be enabled or disabled through the dedicated GUI while
the application runs. If there is an issue related to the visualization of a topic,
RViz2 also shows a warning or an error message: this represents a naive way of
debugging topics while the application runs. In the context of SLAM, RViz2 is
necessary because it visually gives a map estimate that the robot computes in
real-time and its trajectory while it wanders in an unknown environment.

4.2.3 Gazebo

Gazebo [45] is a 3D open-source simulation software for robotics. It provides
modeling of robotic systems and indoor and outdoor environments, as well as a
physical simulation that offers support for different sensors and accurate models for
physics. Scenarios can be highly customized: Gazebo comes up with a wide choice
of terrains and obstacles such that the user is able to build an environment that is
suitable according to his/her needs. These characteristics make Gazebo a reliable,
realistic simulation tool for testing robotics algorithms and designing robots before
moving on a real-world scenario. On top of that, Gazebo includes a user-friendly
GUI that allows to manually edit the environment by adding obstacles, robot
models and other elements to the scene. Alternatively, the environment can be
encoded in a textual .urdf file. Shortly, a .urdf file follows a syntax that is very
similar to XML files such as the package.xml that contains the package metadata.

Gazebo is also integrated with ROS, thus enhancing the development of ROS-
based robotic systems and applications. It is good practice to test a ROS application
in a simulated environment first. For what concerns SLAM, a simple indoor
environment is enough to test the basic behavior of the algorithm, but more
complex scenarios can be designed in order to see the response of the SLAM
algorithm in certain situations. For example, an environment with a repetitive
pattern could be useful in order to check the quality of loop closure.

A last note that concerns ROS is related to time. In fact, ROS applications can
either use a simulated clock or the local system clock for timing. This is crucial when
dealing with timers, frame transforms and synchronous calls. The use_sim_time
parameter determines which clock should be used as reference. While testing in a
simulated environment, it is required to pass use_sim_time:=true as an additional
argument when executing a launch file. Otherwise, use_sim_time:=false should
be set.

35

Introduction to ROS

4.2.4 Nav2
Nav2 [46] is the ROS2 Navigation Stack. It provides a plethora of plugins with
different purposes that are related to navigation. Nav2 offers software tools for
loading and storing maps, localization, path planning, costmap building, obstacle
perception and recovery in case of failure. For example, in order to localize a
robot within a map, Nav2 implements AMCL (Adaptive Monte-Carlo Localization),
that is an improvement of the Monte-Carlo scan matcher that some particle-based
SLAM algorithms adopt. Citing other features, Nav2 relies on behavior trees for
point-to-point path planning and integrates a smoother such that the global path
tends to be continuous. Nav2 also integrates the concept of lifecycled node that
was introduced with ROS2: this way, undeterministic behaviors that may affect
the performance in real-time applications are avoided. The entire navigation stack
can be launched with some default options by running the following command.

ros2 launch nav2_bringup navigation.launch.py

This is enough to send goal poses to the mobile robot through the RViz2 GUI
to support the SLAM process. Before starting to navigate, it is crucial to initialize
the robot’s pose. More complex applications that strictly rely on path planning
and motion control need a proper tuning.

Many of these tools are originally intended to work in static scenarios, i.e., in
situations where the map is pre-built and the navigation servers control the motion
of a mobile robot inside the environment. This implementation is useful for logistics
and transport because it enhances the mobile robot’s autonomy. Going towards
additional support for SLAM algorithms, it is possible to design applications that
lean on Nav2 and allow autonomous exploration for a mobile robot in an unknown
environment: for example, such an application may send the mobile robot towards
zones that are not explored yet, according to the local map that the robot builds
during time.

4.2.5 Computational Graph Visualization
When launching a ROS executable, an effective way to understand the correct
functioning of the program is to analyze which nodes and topics are present in
the system, and it may be useful to understand the specific connections between
nodes, i.e., to detect those topics where a process publishes or receives data. Such
information is contained in the ROS computational graph. The RQT plugin
(also known as ROS Qt GUI toolkit) is able to visualize the ROS computational
graph at the current state. RQT also groups topics and nodes according to their
namespace. Visualizing the computational graph gives an intuitive idea on the

36

Introduction to ROS

high-level workflow of a ROS executable. The following command invokes RQT
and returns the ROS computational graph.

rqt_graph

4.3 TurtleBot3
TurtleBot is a series of low-cost ROS-based mobile robots that are mainly used
for education and research purposes. Each TurtleBot version (the latest one is
TurtleBot4) supports open-source packages for initialization, navigation and map-
ping and is equipped with a motion system and proper hardware that is capable
of capturing and processing data. For each version, some models that differ in
hardware specifics exist.

In order to carry out the real-world experiments for multi-agent SLAM, two
copies of TurtleBot3 Burger are used. TurtleBot3 Burger [47] is a three-wheel
mobile robot with two front wheels that are commanded by two separate motors
and a rear caster wheel. A RaspBerry 4 acts as a single board computer (SBC)
and should contain both the underlying OS and the ROS environment, as well as
the essential packages that are designed for TurtleBot3 [48]. The SBC is connected
through USB cables to the other two main hardware components of the robot: the
LiDAR sensor and an electronic board. RaspBerry 4 is also provided with onboard
wireless networking, hence it is possible to control the mobile robot remotely from
another host (for example, through a ssh command). However, another step is
required for ROS2 in order to have complete accessibility to the ROS functionalities
that are related to TurtleBot3. In fact, DDS computes the UDP ports that are used
for communication between ROS2 processes according to a ROS environment vari-
able called ROS_DOMAIN_ID. Both the remote host and TurtleBot3 must be assigned
the same ROS_DOMAIN_ID, otherwise, the devices cannot communicate through ROS.

An electronic board is also required as an interface between the SBC and the
wheels of the mobile robot. OpenCR1.0 is specifically developed to support ROS em-
bedded systems and provides open-source hardware and software. As an electronic
board, it includes LEDs, switches, GPIOs, pins and supports external interrupts.
OpenCR1.0 directly commands the two disjointed DYNAMIXEL motors that
control the two front wheels: this way, wheels can be commanded independently
and the robot is able to spin.

As it was already explained, LiDAR and IMU sensors are crucial for accomplish-
ing SLAM. While LiDAR sensors provide visual information with high frequency,
IMU sensors acquire useful measurements that can be also processed for motion

37

Introduction to ROS

Figure 4.4: TurtleBot3 Burger [47].

correction. It is important to report the sensors’ specifics because some SLAM algo-
rithms may be not compatible with TurtleBot3 Burger and require some adaptation.

A LDS-02 LiDAR sensor (also known as LD08) is mounted atop the mobile
robot. It is a 2D mechanical laser, hence it is based on a rotational mechanic that
allows to reach a 360° field of view in the horizontal direction and can scan at a fast
speed. As a laser sensor, it is resilient against light interference. The open-source
packages for TurtleBot3 Burger also provide drivers for LDS-02. Detailed specifics
are reported in Table 4.1.

Figure 4.5: LDS-02 LiDAR sensor.

The ICM-20648 IMU sensor is integrated in the OpenCR1.0 board. It includes a
3-axis gyroscope, a 3-axis accelerometer, a 3-axis magnetometer and an embedded
digital motion processor that gathers and processes data from the other components

38

Introduction to ROS

Characteristic Value
Distance Range 1608̃000 mm
Scan Frequency 5.0 Hz
Angular Range 360°

Angular Resolution 1°
LiDAR Channels 8

Table 4.1: LDS-02 specifics.

in order to offload timing requirements and computational power from the SBC
processor. Overall, ICM-20648 is a high-precision 9-axis IMU sensor, but it can be
integrated with additional components. More details are reported in Table 4.2.

Characteristics Value
Accelerometer Noise 0.00230 m/s2

Gyroscope Noise 0.015 rad/s
Accelerometer Bias 0.00025 m/s2

Gyroscope Bias 0.005 rad/s
IMU Frequency 200 Hz

Table 4.2: IMU specifics.

4.3.1 TurtleBot3 Burger Topics and Frames
The essential packages for TurtleBot3 Burger [48] are required to correctly work
with a real copy of the mobile robot. Even though it is not important to go
into detail for such packages, some generic concepts have to be remarked because
they not only recall the basics of ROS but also are crucial to understand the
implementation of multi-agent SLAM frameworks later on.

After the robot is assembled, switched on and correctly set up according to
the official documentation [47], it has to be correctly recognized by the ROS en-
vironment. The turtlebot3_bringup package acts as a wrapper that initializes
the mobile robot into the ROS framework. Three essential packages are called:
turtlebot3_node sets up the different devices and their related ROS topics, while
turtlebot3_description and robot_state_publisher provide a physical de-
scription of the TurtleBot3, as well as the various reference frames and their relative
transformations. The command that initializes the TurtleBot3 Burger is reported
below and must be executed on the TurtleBot3 Burger terminal.

39

Introduction to ROS

ros2 launch turtlebot3_bringup robot.launch.py

After the command is launched correctly, it is possible to recognize that some
topics have been added. The complete list of the active ROS topics can be visualized
by running ros2 topic list.

• /parameter_events and/rosout are standard ROS2 topics: the former as-
signs the lifecycle of ROS parameters to the related node, while the latter is
responsible of some core ROS functionalities such as publishing and subscrib-
ing.

• /battery_state tracks the battery state of TurtleBot3 Burger.

• /cmd_vel is the topic where linear and angular velocities can be published
as command inputs to the mobile robot. turtlebot3_teleop is an essential
package that creates a node that publishes to this topic, thus making it possible
to remotely control the motion of TurtleBot3 Burger through a keyboard.
The linear and angular velocities are capped to 0.22 m/s and 2.84 rad/s,
respectively.

• /imu contains the information that the IMU sensor perceives: orientation,
angular velocity and linear acceleration. The type sensor_msgs::msg::Imu
describes IMU messages.

• /joint_states tracks the wheels’ position with respect to the base and their
velocity.

• /magnetic_field shows the measured intensity of the magnetic field.

• /odom contains the information about the dynamic transformation between
the odometry frame and the robot’s base footprint on the floor. Odometry
data are collected in messages of type nav_msgs::msg::Odometry.

• /robot_description is a deprecated topic that physically describes the mobile
robot according to a .urdf file.

• /scan shows data that the LiDAR sensor captures as laser scan messages.
LDS-02 publishes data as scan points that are represented by messages of type
sensor_msgs::msg::LaserScan. Some LiDAR-based algorithms may need
to process data in a point cloud format (sensor_msgs::msg::PointCloud2),
unless they internally provide a conversion. Conceptually, a laser scan is a set
of points in a polar coordinate system, while a point cloud is expressed in a
Cartesian coordinate system.

• /sensor_state shows information about the sensors’ state.

40

Introduction to ROS

• /tf and /tf_static are the topics that contain the information about the
transformations between the reference frames that characterize TurtleBot3
Burger. /tf_static tracks the static transforms, while /tf refers to dynamic
transformations for reference frames whose relative position should change
during time.

Along with the topics, some reference frames are generated and are related
to the components of TurtleBot3 Burger. The information about the joints, the
frames and their relative transformation is stored in a .urdf file that is provided by
the essential packages. The only transformation that is not defined by the .urdf
file is the odom → base_footprint one, because the odom frame is defined by the
odometry system during the hardware initialization. The odometry system tracks
the motion of the mobile robot on the floor, and base_footprint represents the
projection of the robot’s base on the ground.

The transformation tree in Fig. 4.6 shows the relationship between the frames
that characterize TurtleBot3 Burger. Besides the odom frame, the others refer to
the physical components of the mobile robot. The base_link frame refers to the
physical base of TurtleBot3 Burger. A reference frame exists for each wheel and
for each main sensor (i.e., the IMU and the LiDAR).

Figure 4.6: Transformation tree of TurtleBot3 Burger.

4.3.2 Namespacing TurtleBot3 Burger
As long as the SLAM task involves a single copy of TurtleBot3 Burger, basic
packages do not need any change. However, multi-agent SLAM requires that each
physical mobile robot is distinguishable from others. In general, ROS offers the
possibility to assign a namespace to nodes, topics and reference frames. There
are two strategies to implement namespacing: it can either be hard-coded by
manually adding a namespace to strings in the source code, or alternatively it

41

Introduction to ROS

can be implemented in launch files through the remapping functionality. Shortly,
remapping helps to rename topics that ROS nodes publish or subscribe to. Of
course, remapping is strongly recommended because it requires less time and
leaves the source code unaltered. However, remapping does not affect reference
frames. Here is an example about adding a remapping on a launch file that invokes
turtlebot3_node.

Listing 4.1: Adding a namespace to TurtleBot3 Burger in the launch file.
1 re turn LaunchDescr ipt ion ([
2 # [Other nodes to be launched here . . .]
3 Node (
4 package=’ turt lebot3_node ’ ,
5 executab l e=’ tur t l ebot3_ros ’ ,
6 namespace=’ A l i c e ’ ,
7 remappings =[(’ /imu ’ , ’ / A l i c e /imu ’) ,
8 (’ /odom ’ , ’ / A l i c e /odom ’) ,
9 # [And other t o p i c s . . .]

10] ,
11 # [Other opt ions i f needed here . . .]
12)
13]

This way, TurtleBot3 Burger and its topics are correctly registered under the
namespace Alice. A similar concept also holds for robot_state_publisher in or-
der to add a namespace to reference frames. The package robot_state_publisher
provides a namespacing functionality for reference frames through the parameter
frame_prefix: hence, it is sufficient to put ’frame_prefix’=’Alice/’ in the
launch file as parameter of the robot_state_publisher node.

An important observation concerns the topics related to the transformations: in
fact, it is recommended to not add a namespace to /tf and /tf_static, otherwise
the functionalities from the tf2 library might not work properly; instead of remap-
ping such topics, reference frames should be given a namespace as explained before.
However, it is sometimes necessary to add a namespace to the transformation topics,
especially when there are two SLAM nodes that should publish transformations
between homonymous frames: in this case, it can be avoided to remap frames
because the two SLAM nodes would publish to different /tf and /tf_static
topics. In the end, these two solutions are almost equivalent in theory, but some
ROS-based SLAM algorithms would require only one of them according to their
implementation.

In this work, the second method for namespace is used: hence, there are more
couples of transformation topics, one for each robot.

In the following chapters, it is assumed that the two copies of TurtleBot3
Burger have their own unique namespace. During the explanation of the two

42

Introduction to ROS

multi-agent SLAM approaches, they are denoted as Alice and Bob for more ease
of understanding. In the real implementation, the namespaces a and b have been
used. When both robots are launched, the ROS computational graph captures
nodes and topics under their respective namespaces. The graph that appears after
running RQT is reported in Fig. 4.7.

Figure 4.7: ROS computational graph after launching two copies of TurtleBot3
Burger.

43

Chapter 5

Centralized Setting for
Multi-Agent SLAM

The first implementation of a multi-agent SLAM approach is a naive, centralized
setting where the two mobile agents do not exchange any information. Instead, a
single-agent SLAM algorithm is chosen as front-end of the complete approach. The
selected algorithm runs locally as a ROS2 node that is related to a single mobile
robot. While the two robots move around and build their own map, a back-end
map merging node takes the local maps and merges them into a unique, global one.
Any computer vision technique that is able to detect and match visual common
features from two distinct images can do the job quite well.

Remarking some of the characteristics of centralized multi-agent SLAM al-
gorithms, such approaches require that the initial pose of the mobile agents is
(approximately) known. Client-server settings are also easier to develop, because
the only component that brings complexity is the map merging node. However,
it must not be forgotten that centralized multi-agent SLAM algorithms have a
structural problem: indeed the central server still represents a single-point-of-failure
and its stability must be guaranteed during the whole task.

The presented solution can be easily generalized for each SLAM algorithm that
is based on grid maps. Following in this chapter, the choice of the single-agent
SLAM algorithm to run and its implementation in ROS2 are discussed. Then, the
back-end map merging node is explained and different options for feature matching
are compared. A demonstration in a simulated scenario is described as well.

44

Centralized Setting for Multi-Agent SLAM

5.1 Evaluation for the Single-Robot Front-End
A suitable single-agent SLAM algorithm has to be selected according to the avail-
able mobile agents. Since TurtleBot3 Burger supports LiDAR sensors, there is a
wide choice for what concerns the single-robot front-end module. Some algorithms
that were discussed back in Section 2.2 are valid candidates to serve this purpose.

A first evaluation discards filter-based approaches in favor of graph-based solu-
tions. In fact, filter-based algorithms may perform poorly, because they lack of an
in-built loop closure functionality, and in general they get outperformed by SLAM
techniques that rely on optimization. Furthermore, an essential requirement for the
back-end centralized map merging node is that the single-robot SLAM algorithm
must generate a grid map. This is why it is a better option to select a graph-based
SLAM algorithm, especially if this requires a real-world showcase. Alternatives
that rely on grid maps but not on graph optimization yet such as GMapping and
FastSLAM can be contemplated. However, they certainly do not represent the
most suitable choice because particles are heavier to process.

At this point, two different alternatives can be implemented as front-end algo-
rithms of the centralized multi-agent SLAM framework. These algorithms build a
grid map, and most importantly a ROS integration exists for both.

• Cartographer [16] was exhaustively discussed in Subsection 2.2.2. ROS includes
some packages that allow to tune Cartographer’s parameters and run it in
simulation and real world. TurtleBot3 Burger standard packages also include
an interface for Cartographer and a first set of parameters that respect the
specifics of LDS-02.

• KartoSLAM [13] shares some common characteristics with Cartographer such
as the application of SPA [17] for loop closure and back-end pose graph
optimization. Currently, KartoSLAM’s basic algorithm includes a Ceres
solver that enhances pose graph optimization. The open-source ROS package
slam_toolbox [49] provides such functionalities, as well as two operation
modes: synchronous mapping keeps a buffer of measurements to gradually
process, thus improving mapping but slowing real-time processing, while
asynchronous mapping elaborates real-time measurements and does not in-
clude other valid scans until the previous elaboration has ended, hence it is
more suitable for real-time tasks [50]. SLAM Toolbox is used as an evolu-
tion of KartoSLAM that improves performance during scan matching and
optimization.

Nowadays, there are some works [51], [52] that compare the performance of

45

Centralized Setting for Multi-Agent SLAM

Cartographer and KartoSLAM during localization, mapping and autonomous ex-
ploration. Focusing on the tasks that are concerned by the SLAM, it is shown
that KartoSLAM outperforms Cartographer for both localization and mapping.
However, these comparisons take an out-of-the-box version of Cartographer that is
not properly tuned. Hence, some parameters that influence the Ceres solver for
scan matching and the SPA for pose graph optimization have been modified, such
that the Ceres solver tends to reject scan matches that differ too much from those
that were taken in a prior pose, and the back-end computational load is reduced
for a better real-time loop closure. SLAM Toolbox is run without any essential
modification and the asynchronous mode is selected.

Since the real-world experiments take place in an indoor environment, a good
proving ground for the evaluation is the TurtleBot3 House that comes with Turtle-
Bot3 Burger essential packages. The layout of the simulated environment in Gazebo
is shown in Fig. 5.1 and the initial position of the simulated mobile robot is high-
lighted. The following command runs this simulated environment and spawns the
robot.

ros2 launch turtlebot3_gazebo turtlebot3_house.launch.py

Figure 5.1: TurtleBot3 House.

Cartographer is launched first, then TurtleBot3 Burger is controlled by keyboard
after launching the following command. The same procedure applies for SLAM
Toolbox after restarting Gazebo.

ros2 run turtlebot3_teleop teleop_keyboard

46

Centralized Setting for Multi-Agent SLAM

During the two experiments, almost the same trajectory is kept. Furthermore,
the imposed commands do not exceed 0.15 m/s for the linear velocity and 0.5 rad/s
for the angular velocity: this is particularly useful for SLAM Toolbox because the
scan matching is usually slow (and most importantly, it is not recommended to
move the robot at high speed, especially while rotating). Another possibility could
be running the navigation stack and interacting within the RViz2 environment by
sending goals to the mobile robot. The results given by Cartographer in Fig. 5.2
and SLAM Toolbox in Fig. 5.3 are compared.

Figure 5.2: Mapping with tuned
Cartographer.

Figure 5.3: Mapping with SLAM
Toolbox.

It can be seen that the quality of mapping is quite similar. The difference is
that Cartographer assigns an occupation probability to cells, while SLAM Toolbox
only distinguishes between free and occupied cells. This is why the map on the left
contains different shades of grey. For what concerns localization, Cartographer is
designed to work for real-time tasks, hence it draws a continuous trajectory on the
map. Instead, SLAM Toolbox keeps a pose graph whose nodes represent the poses
that the robot assumes at the time that a scan matching step succeeds. The reason
is that slam_toolbox implements tools that save the pose graph for manipulation
in post-processing, offline localization and even resuming the mapping task in a
second moment. In both algorithms, the mobile robot is successfully tracked and

47

Centralized Setting for Multi-Agent SLAM

no drift occurs in the odometry.
However, the most critical point is the scan matching. Looking at the Cartogra-

pher map, there is a small misalignment on the left: this is caused by the Ceres
solver accepting a scan that is not compatible enough with the prior pose, and
this happened even though the weights of the Ceres solver have been increased in
order to discard such scans. This is a structural problem of Cartographer, since the
scan matching problem only considers the most recent scans: if the solver is not
capable of detecting these outliers, the resulting map would present a distortion. A
loop closure slightly corrects this error, but the submap is still distorted due to
the scan matching procedure. For what concerns SLAM Toolbox, the scan match-
ing is a bit slow and takes a while to process new scans, but the map is built correctly.

In the end, although Cartographer and SLAM Toolbox have their pros and cons,
the most relevant factor is the correctness of the generated map. As a consequence,
SLAM Toolbox was chosen as front-end algorithm. Nevertheless, as it will be
clarified later, the back-end module is substantially independent of the specific
front-end algorithm if this can provide a grid map.

5.2 Single-Robot Front-End: SLAM Toolbox
The slam_toolbox package contains an evolution of KartoSLAM. As said before,
this is quite different from the original formulation [13]. Unlike other SLAM algo-
rithms such as Cartographer, KartoSLAM has undergone a series of improvements
during time. Originally, the pose graph optimization was formulated as a sparse
pose adjustment problem (SPA), similar to the one that was shown in (2.7). Due
to the SPA complexity, another formulation of KartoSLAM replaced SPA with a
sparse bundle adjustment problem (SBA) (2.8). In order to grant more flexibility
and faster optimization, the latest implementation of KartoSLAM integrates a
Ceres solver to find the solution of a non-linear least-squares problem on the pose
graph. Since the Cholesky matrix decomposition is a slow method, the scan matcher
has been improved as well. The slam_toolbox package refers to such a version of
KartoSLAM.

Before viewing some interesting details of the implementation, there is a concept
that holds for all the SLAM algorithms that are implemented with ROS. When
simulated and real mobile robots are launched, a transformation tree that is similar
to Fig. 4.6 is generated. The odometry system is initialized, but the robot is not
correctly localized yet, because the odometry could still drift. Hence, it is good
practice that SLAM algorithms publish an additional transformation map→odom;

48

Centralized Setting for Multi-Agent SLAM

this also applies to other localization system such as the Nav2’s AMCL tool. This
introduces a new reference frame: map. It should be a fixed coordinate system and
its position can be arbitrary. Furthermore, map can act as reference coordinates for
tracking and map building.

SLAM Toolbox sets this transformation to identity, i.e., the map and odom
frames coincide, and publishes it continuously. In general, this is not recommended
because it does not solve the drift problem. Fortunately, SLAM Toolbox provides
a back-end optimization with loop closure, hence if the odometry eventually suffers
from drift the measurements are corrected. For a more reliable solution, the map
frame should be located in a fixed position, for instance in the initial pose of the
mobile robot.

The code is completely open-source. Here, the most salient components of
SLAM Toolbox are reported to explain the main workflow of SLAM Toolbox.

• The scan matcher works in a restricted area of the map called correlation grid.
A C++ object called ScanMatcher defines methods for grid initialization,
matching, correlation and validation. It keeps a buffer with all the previous
scans that marked cells in the grid as occupied. The scan matcher acts in the
robot’s neighborhood for local matching: it centers the grid in the robot’s pose
and tries to match the current scan with others within the grid. After finding
a match, the scan matcher computes the relative pose between the scans.
Furthermore, it looks for eventual loop closures by using a bigger correlation
grid.

• The pose graph is represented by a MapperGraph object. The scan poses are
its vertices and chains of consecutive scans are connected by edges. When the
graph generates a loop, a loop closure is achieved.

• Originally, the scan solver was based on Cholesky decomposition matrix. In
SLAM Toolbox, the ScanSolver object only provides some basic operations
such as adding and removing nodes and constraints. The CeresSolver object
extends these functionalities through C++ inheritance.

• A Mapper object wraps the scan matcher, the pose graph and the Ceres solver.
When a scan is received, the mapper processes it within the correlation grid
for local scan matching. If the scan is validated, the corresponding pose is
added to the graph and the mapper invokes the scan matcher again to find
loop closures in a larger correlation grid. The Ceres solver aims at correcting
the poses to optimize the graph.

There are other functionalities that SLAM Toolbox offers such as map serializa-
tion and deserialization, optimizer customization and pose graph manipulation. A

49

Centralized Setting for Multi-Agent SLAM

last mention goes to the compatibility with Nav2 tools: thus, the user can command
the mobile robot by sending goals on the map displayed by the RViz2 GUI.

5.2.1 Ceres Solver
A C++ library defines the property of a Ceres solver [53] and the public documen-
tation is available at [54]. In general, Ceres solver aims at solving nonlinear least-
squares optimization problems. Given a vector x ∈ ℜn, a function F : ℜn → ℜm

and lower and upper bounds L and U for x, a nonlinear least-squares problem is
usually set as (5.1) shows.

arg min
x

1
2 ||F (x)||2 s.t. L ≤ x ≤ U (5.1)

Such a problem is not feasible. Hence, the strategy is to find a local minimum by
applying a small correction ∆x to x. By defining the Jacobian matrix J(x) ∈ ℜm,n

of F (x), it is possible to approximate F (x) ≈ F (x+∆x)+J(x)∆x by linearization.
Thus, the optimization problem in (5.1) becomes linear as (5.2) shows. Here, ∆x
defines a step size to look for a local minimum.

arg min
∆x

1
2 ||F (x) + J(x)∆x||2 s.t. L ≤ x ≤ U (5.2)

However, it is not guaranteed that the algorithm will converge. Hence, a trust
strategy is involved: a trust region radius µ is defined around an initial point
x. This way, each step applies a ∆x that is bounded within the trust region.
Depending on the quality of the decrease of the objective function, µ can be
increased (if good) or decreased (if bad) after a single step. SLAM Toolbox’s Ceres
solver adopts a trust strategy that relies on the Levenberg-Marquardt algorithm:
it solves an unconstrained optimization problem that augments (5.2) by adding a
square term that penalizes too large steps. The Levenberg-Marquardt algorithm
aims at solving the linear least-squares problem in (5.3): here, µ is the trust region
radius and D(x) ∈ ℜn,n is the diagonal matrix of J(x)T J(x). Ceres solver may
adopt any linear solver to find the local minimum of this optimization problem.

arg min
∆x

1
2 ||F (x) + J(x)∆x||2 + 1

µ
||D(x)∆x||2 (5.3)

In C++, the original nonlinear least-squares problem is formulated as a general-
ization of (5.1) and is shown in (5.4). Here, ρ is a generic loss function, fi is also
known as a cost function and the term ρ(||fi(x)||2) is called residual block and
includes both the cost and loss functions. If ρ is an identity function and there is
only one cost function, (5.1) is obtained.

50

Centralized Setting for Multi-Agent SLAM

arg min
x

1
2
Ø

i

ρ(||fi(x)||2) s.t. L ≤ x ≤ U (5.4)

Adding a loss function may help to detect outliers. In fact, loss functions tend
to reduce the influence of residual blocks that lead to high values on the objective
function. For Ceres solver, Huber loss is usually employed for outlier detection: it
is differentiable, convex and can efficiently handle small and huge errors. Given a
threshold δ > 0 and the value y of a residual, Huber loss combines a linear and
a quadratic function, and the threshold discriminates what part of the function
should be applied to the residual.

Lδ(y) =

1
2y

2 |y| < δ

δ(|y| − 1
2δ) |y| ≥ δ

(5.5)

The optimization problem, the cost function and the loss function are respectively
defined by the following C++ objects: Problem, CostFunction, LossFunction.

SLAM Toolbox models the optimization problem as follows.
1. After a correlation between two scans is found (i.e., an edge on the pose graph

is generated), the relative position between them is computed.

2. Ceres solver creates a cost function: in SLAM Toolbox, this cost function
represents the displacement of the relative pose between the scans. Then, it
compacts the cost function and the loss function into a residual block that is
added to the problem. The choice of the loss function is one of the parameters
of SLAM Toolbox.

3. Ceres solver also generates a constraint that represents the correlation between
the matched scans. The constraint is then added to the problem.

5.2.2 SLAM Toolbox Topics, Parameters and Namespace
SLAM Toolbox needs to receive data from LiDAR scans: hence, it subscribes
to /scan (i.e., the scan topic of TurtleBot3 Burger). SLAM Toolbox does not
rely on additional data from the odometry: the only requirement is a valid
odom→base_footprint transformation that is used to create nodes on the map
for the pose graph.

Given these prerequisites, SLAM Toolbox creates some topics and publishes
data on them. The most relevant ones are reported here.

• /map and /map_metadata contain the information about the grid map. More
precisely, /map includes the detailed grid with occupied and unoccupied cells,
while /map_metadata stores some generalities such as the size, the resolution
and the origin.

51

Centralized Setting for Multi-Agent SLAM

• /slam_toolbox/graph_visualization saves the nodes of the pose graph.
These nodes can be also displayed on RViz2, thus giving a visual idea of the
robot’s trajectory.

The parameters that SLAM Toolbox uses are stored in a textual .yaml file.
Solver options and parameters for local scan matching and loop closures can be
properly tuned. For example, it is possible to extend the correlation grid to a wider
area and/or modify the grid resolution. As a preparation for the centralized multi-
agent SLAM framework, it is recommended to increase the size of the correlation
grid that is used for local scan matching.

Table 5.1 shows a list of the modified parameters with respect to the default
settings. The new set of parameters aims at being compatible with LDS-02, reducing
the chance of spurious scan matching and increasing the area for local matching in
order to build a larger grid since the first steps. It is not recommended to enlarge
the local correlation grid too much, otherwise, it may lead to slowness during the
scan matching.

Parameter Default value New value
ceres_loss_function None HuberLoss

resolution 0.05 m 0.04 m
minimum_travel_distance 0.5 m 0.4 m

link_scan_maximum_distance 1.5 m 1.2 m
correlation_search_space_dimension 0.5 m 0.7 m

distance_variance_penalty 0.5 m 0.2 m

Table 5.1: Modified parameters for SLAM Toolbox.

Adding a namespace to support more robots running SLAM Toolbox is quite
trivial. As usual, SLAM Toolbox topics can be remapped in the launch file. Since
in this case remapping applies also to the transform topics, reference frames do not
need any change. It is also important to add a namespace to the topics and the
header in the .yaml file.

5.3 Multi-Robot Back-End: Map Merging Node
Now, the single-robot front-end component is correctly set up. Loop closure
detection is already included, hence there is no need to develop this functionality.

To complete the centralized multi-agent SLAM framework, a node that merges
the maps of the involved mobile robots is required. Since this is a centralized
approach, direct communication between the mobile robots is not needed, but

52

Centralized Setting for Multi-Agent SLAM

each agent must be able to communicate with the central node. Another impor-
tant characteristic is the initial guess on the pose of the mobile robots: the map
merging node should know, exactly or approximately, the initial position of all
the agents. In this scenario, a failure of the central node leads to the fault of
the whole task. Typically, the central node should not receive too many data,
otherwise, processing could be difficult and such complications may lead to a failure.

Based on these characteristics, a valid option that can play the role of the
centralized node for map merging is offered by the multirobot_map_merge ROS
package. However, this package was originally designed for ROS1 and nowadays
only an unofficial version exists for ROS2 [55]. Furthermore, the ROS2 version is
compatible with GMapping and Cartographer, but support for SLAM Toolbox is
still under development, hence it requires some changes in the code. Nonetheless,
multirobot_map_merge represents a naive way to implement a centralized multi-
agent SLAM setting.

Actually, multirobot_map_merge meets all the traits that a central node for
multi-agent SLAM should have. First of all, it is independent of the number of
mobile robots. Furthermore, if the initial poses are not exactly known, it is sufficient
that the agents start close to others. The only information that the central node
needs to compute the global map is the grid map that can be easily encoded in
a simple ROS message. On top of that, multirobot_map_merge can potentially
work to support any single-robot front-end approach that builds a grid map.

The central node is called MapMerge and is a ROS node object. While active, it
runs the following tasks periodically.

• It accomplishes robot discovery: simply, it looks for /*/map1 topics. Then,
MapMerge subscribes to such topics, as well as the /*/map_updates topics, if
available. SLAM Toolbox does not provide map updates, but Cartographer
defines such a topic.

• If the initial poses are unknown, the central node operates a pose estimation.
It feeds a MergingPipeline object with the grids that the mobile robots send
through their /*/map topic. Then, the pipeline estimates the transformation
between the map frames through a feature matching technique.

• MapMerge commands the pipeline that executes the map merging, based on the
transformations that were previously estimated by the pipeline, or according
to the initial position of the mobile robots (if known).

1The signature /*/map refers to any map topic with a namespace. Example: /a/map.

53

Centralized Setting for Multi-Agent SLAM

This procedure does not require any data from odometry. Simply, the merging
node receives the grid maps as nav_msgs::msg::OccupancyGrid messages. More
precisely, a message of this type includes a header with ROS information (times-
tamp and reference frame), map metadata (resolution, width, height and origin)
and a vector with a value for each cell. Possible values are: 0 if unoccupied, 1 if
definitely occupied, and -1 if unknown.

The resulting centralized multi-agent approach follows the workflow that was
described in Fig. 3.1. In fact, an inter-robot loop closure is achieved when a
robot sees the feature that another robot has already visited. Furthermore, it will
be explained later how the pipeline performs some optimization on the relative pose.

5.3.1 Feature Matching for Map Merging
The map merging node does not operate on the scans taken by the agents. Instead,
it only requires the grid maps that the agents send through the /*/map topics.

The OpenCV C++ library [56] offers open-source tools for computer vision and
machine learning, including image processing techniques. OpenCV also includes
different feature matching options and methods to estimate the pose of a camera.
These elements are crucial to perform map merging, because the feature matching
aims at finding common keypoints on the maps and the camera estimation allows
to optimize the map merging. Actually, this works for LiDAR sensors as well.

The multirobot_map_merge supports three different feature matching tech-
niques. All of them require a confidence threshold that has to be defined properly.

• AKAZE [57] builds a nonlinear scale space in order to analyze the image
at different scales while maintaining its structure. Then, AKAZE detects
keypoints at different sizes and assigns an orientation and a descriptor to each.
AKAZE descriptor is robust against rotation and scaling. Given two images,
AKAZE exploits the information on keypoint orientation to find matches
between features. Thanks to the feature orientation computation, AKAZE
is suitable for image stitching, i.e., the process of combining multiple images
through a partial overlap.

• SURF [58] detects features by following an approach based on the Hessian
matrix on a low-dimensional feature space, hence it is fast and well suited for
real-time application. For each feature, SURF calculates a vector that defines
the orientation and the light intensity. A fast matching simply compares
feature vectors: Euclidean distance is a valid metric for feature matching.
SURF is invariant to rotation, and can become insensitive to changes in

54

Centralized Setting for Multi-Agent SLAM

lighting as well if the feature vectors are normalized. The accuracy of the
feature matching can be further improved by outlier rejection.

• ORB [59] is mainly based on corner detection: in computer vision, a corner is
typically represented by an abrupt change in intensity on the image. ORB
computes the orientation to each corner as well, according to the intensity
pattern around the keypoint, and labels that keypoint with a descriptor that
is unaffected by changes in illumination. ORB matches keypoints between
distinct images by comparing descriptors according to a metric, typically
Hamming distance. Outlier integration can be integrated for better results.

In this context, some characteristics are fundamental to choose a good feature
matching algorithm: resilience against rotation, computational efficiency and some-
times also scale invariance. Indeed, the map frames may be rotated with respect
to each other, and the feature matching should not struggle for a high number
of features. A comparison between the three techniques [60] shows that ORB
generally outperforms AKAZE and SURF. Hence, ORB will be used as feature
matching algorithm.

For what concerns map merging, a suitable confidence threshold has to be
defined properly. Its value should be neither too high nor too low. Indeed, if the
threshold is too high then the feature matching may not find the initial pose, unless
there are lots of features since the first scans; this matters for SLAM Toolbox,
and even more in simple environments. On the contrary, if the threshold is too
low then erroneous transformations are applied and the global map will be distorted.

The feature matching also acts as a module for inter-robot loop closure. At a
certain point, a mobile robot may visit some features, for example, a room, that
other agents may have already seen. If this happens, the feature matching between
the maps finds a correspondence and corrects the transformation between the grid
maps. Inter-robot loop closure ensures that the global map is computed correctly
in the end, even though some critical failures happened in feature matching during
the task.

5.3.2 Merging Pipeline
The MergingPipeline object defines some core functionalities that better explain
the workflow of multirobot_map_merge. It is an object that stores the grid
maps, the images and the transformations. When MergingPipeline receives a
nav_msgs::msg::OccupancyGrid, it converts the grid map into an image.

55

Centralized Setting for Multi-Agent SLAM

MergingPipeline is commanded by the MapMerge node to estimate transforma-
tion and merging the grids. Hence, two important functions can be distinguished.

• The estimateTransforms() function receives the type of feature matching
technique and its confidence threshold. First of all, it invokes feature matching
and filters the matches that do not have enough confidence. Then, OpenCV
offers tools that estimate the transformation. OpenCV also supports back-end
optimization of the transformations: it minimizes the sum of the reprojection
error squares, similarly to bundle adjustment in (2.8).

• The composeGrids() function merges the maps. Once the transformations are
successfully computed, it warps the images and finds proper regions of interest
to overlap the images, consistently with the computed transformations.

The transformation estimation makes sense only if the initial poses are not
exactly known; otherwise, the information about the relative position between
robots can be directly used for map merging.

In the case of unknown poses, it is strictly required that the mobile robots are
initially close enough, such that the feature matching algorithm finds common
characteristics and the transformations can be computed from the beginning. After
that, mobile robots can move in autonomy and a rendezvous is not strictly required
to close the loop.

If the mobile agents start from different points in the environment, the feature
matching algorithm struggles to find common features, and also may lead to false
matches. As a consequence, the relative pose is not computed, or even worse,
estimateTransforms() returns a bad transformation, and a wrong and distorted
global map is generated.

5.3.3 Support for SLAM Toolbox
Unfortunately, multirobot_map_merge lacks official support for SLAM Toolbox
and the basic code does not work. There are several reasons why SLAM Toolbox
is problematic for this map merging solution. First of all, SLAM Toolbox does
not return a grid map with probability values, but instead, it marks cells only
as occupied or unoccupied. As a consequence, unless the local correlation grid
size is increased drastically, thus slowing scan matching too much, the initial grid
maps are relatively small, and it might be difficult to compute the initial pose
of the mobile robots. Hence, common features between maps are initially hard
to be detected. The second issue concerns the size of such grid maps. Indeed,
SLAM Toolbox dynamically increases the length and the width of the map while
the mobile robot explores the environment. This means that the feature matching

56

Centralized Setting for Multi-Agent SLAM

algorithm may deal with images of different scales, hence it will likely fail.

Nevertheless, these two problems can be solved without degrading the per-
formance of SLAM Toolbox. It is possible to get around the first problem by
starting from a region in the environment where the robots can clearly observe
a common feature such as a corner or an obstacle. Thus, the feature matching
algorithm computes initial transformations that can be updated at later times by
the pipeline. If the initial grid maps are too small, it is recommended to move the
mobile robots a bit before starting to explore separate parts of the environment.
For what concerns the second issue, a piece of code is added: before passing the
maps to the pipeline, each grid is resized to an arbitrary dimension. Simply, the
metadata of the nav_msgs::msg::OccupancyGrid message is edited to fit the new
height and width, and many values equal to -1 (i.e., cells with unknown status) are
pushed into the vector. This rescaling of the grid maps is also called padding, due
to the fact that many unknown cells are pushed into the maps.

5.3.4 An Example in a Simulated Scenario
Here is a quick demonstration of some of the most important functionalities of this
centralized multi-agent SLAM approach. TurtleBot3 House (Fig. 5.1) is used again
as a proving ground. The initial positions of Alice2 and Bob3 are not exactly known,
but both agents start close to each other. The initial scenario is marked in Fig.
5.4. The confidence threshold is set to 0.6: this value was chosen by trial-and-error
procedure, starting from simple scans.

Alice is sent to circumnavigate the table, while Bob is sent towards the "upper"
part of the house (i.e., towards the big room with the other table). Both Alice and
Bob see the garbage bin with their first scan, hence a first transformation between
the grid maps is computed. After Alice and Bob move a bit, the global map in Fig.
5.5 is obtained. Fig. 5.6 highlights the approximate path that Alice and Bob took.

The global map is still distorted. The reason behind this is that the robots
follow the same path. In particular, Bob sees Alice as an obstacle and vice versa.
This is why there are black dots on the map on the left. Thus, the feature matching
associates this phenomenon to a displacement that creates a distortion.

Then, Alice and Bob aim at exploring two distinct areas of the house. Alice
refines the current room and explores the "lower" part, while Bob crosses the
corridor and explores the "upper" part. When Alice and Bob have finished, their

2Alice is the name that is given to the first TurtleBot3 Burger, with namespace a.
3Bob is the name that is given to the second TurtleBot3 Burger, with namespace b.

57

Centralized Setting for Multi-Agent SLAM

Figure 5.4: Initial positions of Alice (red) and Bob (black).

Figure 5.5: An intermediate merged
global map that is computed after a
while.

Figure 5.6: The same map, but the
approximate paths of Alice (red) and
Bob (black) are drawn.

58

Centralized Setting for Multi-Agent SLAM

local maps appear as follows, respectively in Fig. 5.7 and Fig. 5.8.

Figure 5.7: Alice’s local map. Figure 5.8: Bob’s local map.

During this time, the back-end optimization from the pipeline adjusts the relative
pose between maps. However, an inter-robot loop closure did not happen yet,
because after Alice and Bob took separate paths none of them was sent back
towards the remaining area to explore, according to the local map. Fig. 5.9 shows
the status of the global map after the map merging of the two previous local maps.

As a final step, since Alice took less time than Bob to map the given part of
the house, Alice was sent towards the "upper" part of the house. By the time
Alice captures the same features that Bob perceived features (the shape of the
room, the table and the shelves), the feature matching finds correspondences with
high confidence, thus leading to a correct transformation between the maps. The
resulting map is reported in Fig. 5.10.

5.3.5 Real-World Scenario for Centralized Multi-Agent
SLAM

The proposed centralized multi-agent SLAM has also been tested in a real-world
environment. Two physical copies of TurtleBot3 Burger have been placed in the
laboratory of Department of Electronics and Telecommunications (DET) at the
third floor in Politecnico di Torino. The planimetry is not available, but instead

59

Centralized Setting for Multi-Agent SLAM

Figure 5.9: Global map without the
inter-robot loop closure.

Figure 5.10: Global map after the
inter-robot loop closure.

a ground truth has been recovered by running SLAM Toolbox as a single-robot
SLAM algorithm in the laboratory and the corridor at the exit of the room. The
ground truth is shown in Fig. 5.11: only one part of the corridor has been explored,
otherwise the environment would be too big and localization may struggle. The
area where the two mobile robots start for the multi-agent SLAM testing is marked
by the blue circle.

The parameters of SLAM Toolbox are equal for the two mobile robots: the same
modifications in Table 5.1 have been applied. For what concerns the parameters
of multirobot_map_merge, the initial confidence threshold for feature matching
is set to a low value (0.2). Each time the feature matching returns a successful
transformation, the confidence threshold increases by 0.05, up to a maximum of 0.7:
this way, the central node can perform an initial map merging (even if bad), and
tries to improve its previous transformation estimate during time. The maximum
value 0.7 is chosen empirically as a good threshold that ensures the correctness of
the transformation.

Here, the evolution of the map merging procedure is described. The two mobile

60

Centralized Setting for Multi-Agent SLAM

Figure 5.11: Ground truth of the laboratory of DET and the corridor. The initial
position for the multi-robot experiment is marked.

robots start near to each other in the area that Fig. 5.11 shows. Alice is sent to
explore the laboratory, while Bob is sent towards the exit of the laboratory to
explore the corridor. After a short time after the departure, Alice and Bob enrich
their local maps and the map merging node already finds a transformation, due to
the low initial confidence threshold. Fig. 5.12 captures this situation: the top left
local map is built by Alice, Bob’s map is the lower left one, while the big map on
the right is the global merged one.

This initial transformation is very good. However, due to the low threshold, the
feature matching may find another transformation with enough confidence that
does not represent the global map at all. For example, during the experiment, after
Alice and Bob have explored part of the unknown environment, the bad merging
in Fig. 5.13 is obtained. As the trajectories are difficult to be recognized due to
the quality of the images, the approximate paths have been marked.

After some spurious map mergings, the threshold grows and reaches its maxi-
mum value. When the confidence threshold approaches 0.7, the feature matching
estimates the transformation that is shown in Fig. 5.14. This is not a clean
transformation, but the feature matching has understood the connection between
the maps.

However, due to the limited localization capability of SLAM Toolbox, Bob
struggles to localize itself in the corridor. Hence, Bob is stopped. This issue is
related to SLAM Toolbox, but it does not affect the performance of the map
merging. Alice can proceed to explore the rest of the laboratory. After Alice has
finished, the central node computes the global map as it is shown in Fig. 5.15.

61

Centralized Setting for Multi-Agent SLAM

Figure 5.12: First map merging in the real-world multi-agent experiment.

Figure 5.13: A bad map merging, caused by a low value of the confidence
threshold.

In order to establish inter-robot loop closure, Alice is sent towards the exit of
the laboratory. Thus, the global map in Fig. 5.16 is obtained: the quality of the
merging has improved a lot, and the global map looks similar to the ground truth
in Fig. 5.11.

62

Centralized Setting for Multi-Agent SLAM

Figure 5.14: A good map merging in the real-world multi-agent experiment.

Figure 5.15: Global map without
the inter-robot loop closure.

Figure 5.16: Global map after the
inter-robot loop closure.

63

Chapter 6

Distributed Implementation
of Multi-Agent SLAM

A distributed multi-agent SLAM approach exploits cooperation between mobile
robots. In a centralized setting, the swarm collaborates on the same task, but the
agents are not required to establish a communication channel. On the other hand,
distributed approaches require that robots exchange their local information on the
environment, such that the agents reach a consensus and their local maps will
eventually converge into the global one.

Differently from the previous approach, having a single central node is not enough.
Instead, some form of communication between robots should be implemented. In
practical terms, the distributed back-end module should define proper topics that
concern local loop closures, estimates and eventually data descriptors: since these
topics refer to the single robot, a proper namespace has to be added. The resulting
communication is defined as follows.

1. The distributed back-end module allows a mobile robot to publish data to the
topics that are under its namespace.

2. Then, each mobile robot subscribes to the topics that are related to all the
other agents. This way, when another mobile robot computes or corrects its
estimate, other agents are warned and execute a callback function.

For example, given the two robots named Alice and Bob, Alice publishes on its
local topics and subscribes to Bob’s topics, and vice versa. Other details about the
inter-robot loop closure detection, global optimization and other functionalities are
specific to the particular multi-agent SLAM algorithm.

This chapter presents the ROS implementation of DCL-SLAM [34], a distributed
multi-agent SLAM algorithm that was discussed in the state-of-the-art review in

64

Distributed Implementation of Multi-Agent SLAM

Subsection 3.2.2. First, LIO-SAM [23] is introduced as the chosen single-robot
SLAM algorithm and its main features are described. Then, the distributed
back-end module that DCL-SLAM provides is analyzed into detail.

The complete distributed approach is suitable for 3D LiDAR sensors and does not
officially support TurtleBot3 Burger. An attempt to adapt the code has been made
in order to make DCL-SLAM compatible with TurtleBot3 Burger. Unfortunately,
concrete results in a real-world scenario are not available, due to some unresolved
conflicts between libraries.

6.1 Single-Robot Front-End: LIO-SAM
LIO-SAM [23] stands for LiDAR inertial odometry via smoothing and mapping.
It is a low-drift, graph-based 3D SLAM algorithm that completes the standard
LOAM approach [20] by adding loop closure detection and integrating IMU mea-
surements for optimization. Since IMU data are used in the optimization process,
LIO-SAM can be categorized as a tightly-coupled system: such terminology refers
to algorithms that improve accuracy by fusing IMU and odometry data to optimize
point cloud registration and the pose graph. Actually, LIO-SAM does not only
include the robot’s poses in the graph: as it will be explained later, other factors
contribute to build the graph as well.

Differently from approaches such as Cartographer, LIO-SAM does not build
a grid map. Instead, it performs point cloud registration and builds a map as a
set of point clouds. Algorithms that provide a 3D point cloud map perform more
complex operations with respect to those that elaborate 2D laser scans, due to the
three-dimensional nature of the problem. This leads to the necessity of extracting
edge and planar features from the environment.

Furthermore, another characteristic that distinguishes LIO-SAM from other
algorithms is scan matching: rather than matching old scans on a global scale,
LIO-SAM only performs local scan matching, thus significantly improving real-time
performance.

6.1.1 LIO-SAM Factor Graph
LIO-SAM defines a state variable x for a mobile robot. Given the world frame W
and the body frame B of the robot, the state incorporates the rotation matrix R
from B to W , the relative position vector p, the speed vector v and the IMU bias
b. Equation (6.1) wraps the state definition for LIO-SAM. Scans are taken in the
body frame B.

65

Distributed Implementation of Multi-Agent SLAM

x =
è

RT pT vT bT
éT

(6.1)
In LIO-SAM, the concept of pose graph is extended to not only support LiDAR

odometry to define the robot’s pose, but also include other measurements and
results. When a node is inserted into the graph, the robot’s state is associated to
it at that time. Graph edges contain a state estimate as well, and edges usually
represent constraints between the nodes in the graph. LIO-SAM refers to these
elements (i.e., nodes and edges) as factors. Hence, the pose graph is also called
factor graph in LIO-SAM. In general, the factor graph is nonlinear. A factor is
added to the graph when the change in the robot’s pose exceeds a given threshold.

According to the different information that a factor may contain, there are four
types of factors.

• The IMU preintegration factor pre-processes IMU data to infer the motion
of the robot. It integrates the IMU measurements with respect to the time
over small intervals. This way, the state can be estimated better, because
the motion model is already predicted. In LIO-SAM, the measurements of
angular velocity and linear acceleration are affected by IMU preintegration.
Such factors model constraints in the factor graph.

• The LiDAR odometry factor captures LiDAR scans and extract planar and
edge feature according to the point cloud local roughness: if high, an edge
is detected, otherwise the feature is planar. Not all the LiDAR scans can
be added in the graph. A LiDAR odometry factor is added to the graph as
a node when the change in the robot’s pose exceeds a given threshold: the
related scans are called keyframes. In order to estimate the state, a sliding
window approach selects the most recent keyframes that are transformed to
the world frame W . Then, scan matching comes into play: local scans in
successive times are transformed to the world frame W and matched against
the set of keyframes, and a match happens if a correspondence between planar
or edge features is found. The computed relative transformation between the
matched scan and the set of keyframes improves the state estimate.

• The GPS factor tends to reduce drift, because GPS gives absolute measure-
ments. When data are received, they are transformed to the robot’s frame B.
GPS adds further constraints to the factor graph.

• The loop closure factor gets into action where a state is added to the factor
graph. The closest previous state according to the Euclidean distance is
returned, as well as the scans associated to that node. Local scan matching is
invoked again between such scans and the recent ones after transforming all
of them to the world frame W : if it is successful, a new constraint is added
between the new inserted state and the closest one.

66

Distributed Implementation of Multi-Agent SLAM

Figure 6.1: LIO-SAM architecture [61].

The state estimation problem is finally solved by optimizing the factor graph.
In LIO-SAM, the iSAM2 algorithm [62] is adopted to estimate the state. The main
data structures that are involved in the algorithm are the factor graph F , the set Θ
of state variables and a Bayes tree T that stores incremental measurements taken
by the mobile robot. Shortly, a single step of iSAM2 is characterized by an update
vector ∆ and is composed of the following operations.

1. New factors are added into F .

2. New variables are inserted into Θ.

3. Each state variable is linearized according to the update vector ∆. Cliques
of T that involved updated variables are marked: the set of these cliques is
denoted as M.

4. T is updated: all the cliques that are marked or affected by the new factors
are recalculated, as well as their parents and so on.

5. The Bayes tree is solved: starting from the root and descending each time, a
partial update ∆k is computed for each child of the current clique. The direc-
tion to follow while descending is determined by thresholding: the processing
stops when the update does not exceed the threshold. This procedure returns
the new update vector ∆ that will be used in the next iSAM2 step.

6. State variables in Θ are updated according to the current ∆.

67

Distributed Implementation of Multi-Agent SLAM

6.1.2 LIO-SAM Code
LIO-SAM code is open-source [61]. The code was originally written with ROS1, but
nowadays a version for ROS2 exists. Almost all the original characteristics of the
algorithm are maintained in the code. Loop closure is enhanced by an adaptation
of ICP [21] that is also used for loop closure detection in LeGO-LOAM [6].

LIO-SAM is composed of four main C++ modules. The system architecture
and the main functions of these modules are summarized in Fig. 6.1.

• imuPreintegration.cpp instantiates two nodes. IMUPreintegration man-
ages raw IMU data and applies preintegration as described before: this way,
the motion of the robot is inferred. Furthermore, this ROS node is responsible
of estimating IMU bias, creating IMU factors and adding them to the factor
graph. TransformFusion handles the IMU data that have been integrated
with the LiDAR odometry.

• imageProjection.cpp creates a ImageProjection node. It receives the point
cloud and the IMU information (both raw and preintegrated). Raw IMU data
is used for debugging: this is useful to check the correct setup for the IMU
sensor. When a point cloud is received, ImageProjection applies a deskewing
action according to the estimates of roll, pitch and yaw angles from raw IMU
data and the initial guess on the transformation from the preintegrated IMU
data combined with LiDAR odometry. The deskewed point cloud is passed to
other nodes as a ROS message.

• featureExtraction.cpp defines a FeatureExtraction node that receives
ROS messages from ImageProjection and enriches them with additional
data about eventual planar or edge features that are detected. SURF [58] is
used for feature extraction. Augmented ROS message are sent forward.

• mapOptimization.cpp contains the main operations that concern map build-
ing, trajectory, loop closure and optimization. The MapOptimization node
receives the processed point clouds, along with their features. It stores point
clouds and their poses into a k-dimensional tree, extracts their features and
downsamples the visualized points before publishing point clouds on the global
map. Loop closure is based on ICP that evaluates the Euclidean distances be-
tween point clouds. Optimization not only concerns the factor graph, but also
the quality of feature detection is improved, according to the estimates related
to the IMU. Speaking about factor graph optimization, MapOptimization
defines LiDAR odometry, GPS and loop closure factors. The iSAM2 algorithm
aims at solving the state estimation problem and correcting the robot’s poses.

68

Distributed Implementation of Multi-Agent SLAM

LIO-SAM does not use a standard sensor_msgs::msg::PointCloud2 message
to transport information between modules. Instead, it defines a more complex mes-
sage lio_sam::msg::CloudInfo that incorporates a standard header, estimates
from IMU, initial guess, the deskewed point cloud and its corner and surface features.

Processing point clouds includes operations that are not trivial. The support for
such functions is offered by the Point Cloud Library (PCL) [63]. PCL is open-source
and fully compatible with ROS and C++. It provides functionalities for processing
2D and 3D point clouds. These include filters, registration, visualization, feature
matching, segmentation and lots of structures such as k-d trees. In particular, PCL
offers an implementation for SURF feature matching and the ICP algorithm.

The definitions of factors, factor graph and the iSAM2 algorithm are included
by GTSAM [64]. It is a C++ library that supports robotics and computer vision
applications. GTSAM is based on factor graphs and Bayes trees for graph opti-
mization, contrary to more classic approaches that rely on sparse matrices.

In the end, LIO-SAM should be able to build a three-dimensional point cloud
map. However, there is no availability of 3D LiDAR sensors. Fortunately, a quick
simulation with a 3D Velodyne LiDAR that is available at [65] has been set up,
and the point cloud is shown in Fig. 6.2. Drivers for Velodyne are available at [66].

Figure 6.2: Point cloud computed by LIO-SAM with a 3D Velodyne LiDAR.

69

Distributed Implementation of Multi-Agent SLAM

6.1.3 Adaptations for TurtleBot3 Burger
Actually, LIO-SAM code is not compatible with TurtleBot3 Burger without any
modification. The reason is obvious: indeed, TurtleBot3 Burger does not publish
data in a point cloud format, the configuration parameters are not suitable, GPS
is not supported, and LDS-02 is a two-dimensional LiDAR. Nonetheless, it is
possible to adapt the code to make it work for TurtleBot3 Burger. However, some
functionalities have to be cut off.

First of all, a new ROS node called ScanConverter that converts laser scans
into point clouds has been inserted into the original code. The laser_geometry
ROS package [67] provides the transformLaserScanToPointCloud() function that
executes the conversion. This function has to be invoked each time the LiDAR
sensor publishes a sensor_msgs::msg::LaserScan message.

As a consequence, ScanConverter should subscribe to the /scan topic and
invoke the conversion through a callback. Furthermore, ScanConverter should
make available such point clouds, thus publishing on a /cloud topic.

Hence, new C++ file scanConversion.cpp is added to the LIO-SAM package.
It defines the ScanConverter ROS node with such functionalities. The instantiation
of ScanConverter should contain the following code that creates a subscription to
the /scan topic and a publisher on the /cloud topic.

Listing 6.1: Creating a subscription and a publisher for ScanConverter node.
1 scan_sub =
2 c r ea te_subsc r ip t i on <sensor_msgs : : msg : : LaserScan >(
3 " scan " , qos_l idar ,
4 std : : bind(&ScanConverter : : ca l lback , th i s ,
5 std : : p l a c e h o l d e r s : : _1) , scanConvOpt) ;
6 point_cloud_pub =
7 create_publ i sher <sensor_msgs : : msg : : PointCloud2 >(" c loud " , 100) ;

The definition of the callback follows: transformLaserScanToPointCloud()
requires the scan reference frame (i.e., base_scan for TurtleBot3 Burger), a
sensor_msgs::msg::LaserScan message, the sensor_msgs::msg::PointCloud2
message (passed by reference) and the buffer that gives access to tf2 transformations.

Listing 6.2: Definition of the callback for the scan subscription.
1 void c a l l b a c k (sensor_msgs : : msg : : LaserScan : : SharedPtr scan) {
2 sensor_msgs : : msg : : PointCloud2 cloud ;
3 p r o j e c t o r . transformLaserScanToPointCloud (
4 " base_scan " , ∗ scan , cloud , ∗ t f B u f f e r
5) ;
6 point_cloud_pub−>publ i sh (c loud) ;
7 }

70

Distributed Implementation of Multi-Agent SLAM

The issue that concerns parameters can be solved by referring to IMU and
LiDAR specifics that were reported in Tables 4.1 and 4.2. Topics and frames
should be adapted to those that TurtleBot3 Burger defines. The transformation
from the IMU frame to the LiDAR frame can be retrieved with tf2: it is static
and does not change during time. The debug procedure for IMU data in the
imageProjection.cpp file helps to check whether the parameters have been set
correctly. Other parameters are left untouched.

A last mandatory modification concerns feature matching from the point cloud.
As the LiDAR sensor is two-dimensional, it does not make sense to find edge or pla-
nar features from a 2D point cloud. Hence, the only processing that is required for
the incoming point cloud is deskewing. Feature optimization has to be cut off as well.
This heavily affects the structure of LIO-SAM, because the FeatureExtraction
node does not play any role for 2D SLAM. Hence, FeatureExtraction is cut off,
and the deskewed point cloud is directly passed to the MapOptimization node.
Moreover, all the functions that are related to GPS have to be commented, because
TurtleBot3 Burger does not receive any GPS data.

After applying these adaptations, LIO-SAM is able to work correctly with a
TurtleBot3 Burger that is equipped with LDS-02. Fig. 6.3 shows the map that is
built by registration of the deskewed point clouds. The path is correctly tracked as
well. Once again, the simulation takes place in TurtleBot3 House.

6.2 Multi-Robot Back-End: DCL-SLAM
DCL-SLAM [34] represents a complete fully-distributed LiDAR 3D SLAM ap-
proach. It includes three main modules: single-robot front-end LiDAR odometry
with intra-robot loop closure, distributed loop closure and back-end optimization.
LIO-SAM plays the role of the first module, even though other LiDAR inertial
odometry algorithms or LOAM-based approaches can be used. The back-end
component of the multi-agent SLAM framework is described in the following pages
and incorporates both inter-robot loop closures and global optimization. The
architecture of DCL-SLAM is summarized in Fig. 6.4.

Inter-robot loop closure is based on recovering the relative pose between two
mobile robots through place recognition. Such method for inter-robot loop closure
aims at correcting the accumulated drift and finding correspondences between local
maps. Place recognition is accomplished by sending LiDAR descriptors between
robots. DCL-SLAM uses LiDAR Iris [35], but support for other descriptors is also
provided. These LiDAR descriptors aim at finding good candidates for distributed

71

Distributed Implementation of Multi-Agent SLAM

Figure 6.3: LIO-SAM with TurtleBot3 Burger.

loop closures by comparing the features that are extracted from the point clouds.
After a matching is found, it goes through a validation stage that evaluates the
relative pose using ICP [21].

The back-end optimization performs outlier rejection and pose graph optimiza-
tion (PGO). Spurious inter-robot loop closures may alter the robot’s estimated
trajectory. Hence, outlier rejection needs to check the consistency between pairs
of loop closures: this is done by evaluating the Euclidean distance, that should
not exceed a likely threshold. Then, PGO acts and refines the global map and the
robots’ trajectories.

72

Distributed Implementation of Multi-Agent SLAM

Figure 6.4: DCL-SLAM architecture [34].

6.2.1 LiDAR Descriptors for Distributed Loop Closure
In general, a data descriptor is a data structure that enriches the information about
a piece of data with features or other attributes. LiDAR descriptors provide useful
information of a point cloud and are usually lightweight, i.e., they contain compact
data that can be easily shared between robots. This makes place recognition easier
and more feasible in a multi-robot SLAM scenario.

Nowadays, the state-of-the-art of LiDAR descriptors is represented by LiDAR
Iris [35]. It is a global LiDAR descriptor, i.e., it is able to extract features from big
point clouds in a compact way. The first step of LiDAR Iris is the projection of
the point cloud to its bird’s eye view. According to the radial and angular range of
the LiDAR sensor, the projection is encoded into bins that track how many points
fall within them. These bins create a two-dimensional image of the corresponding
point cloud.

However, such a descriptor is still not invariant with respect to translation,
and the matching between two translated images may fail. As a second step,
the translation estimate is recovered by means of Fourier transform: given two
images I1(x, y) and I2(x, y) such that I1(x, y) = I2(x− δx, y − δy) (i.e., they differ
by a translation (δx, δy)), their normalized cross power spectrum is computed by
applying the ratio between the Fourier transform of the two images Î1(wx, wy) and
Î2(wx, wy).

ˆCorr = Î2(wx, wy)
Î1(wx, wy)

= exp [−i(wxδx + wyδy)] (6.2)

The inverse Fourier transform to ˆCorr returns the correlation Corr between
the two LiDAR-Iris descriptors. The last step improves the descriptive power of

73

Distributed Implementation of Multi-Agent SLAM

LiDAR Iris by analyzing the image at different resolutions. A LoG-Gabor filter
with center frequency f0 and width σ is applied to each row of the image, thus
building a feature vector that describes the image. A LoG-Gabor filter assumes
the expression in Equation (6.3).

G(f) = exp
C
− log2(f/f0)

2 log2(σ/f0)

D
(6.3)

A vector collects the LoG-Gabor frequency responses of each row of the LiDAR-
Iris image. The matching between two images is evaluated in terms of Hamming
distance between the corresponding feature vectors. If the distance does not exceed
a given threshold, place recognition is accomplished and the two images represent
a loop closure between two point clouds.

DCL-SLAM also offers support for M2DP [68] and Scan Context [69] as LiDAR
descriptors for place recognition. M2DP projects the point cloud into multiple 2D
planes that represent different points of view, and for each plane the spatial density
distribution is extracted as a signature matrix. The singular value decomposition
on the signature matrix extracts the left and right singular vectors that act as
descriptors of a signature of the point cloud. On the other hand, Scan Context
encodes the point cloud into a single matrix, similarly to LiDAR Iris, and performs
matching between point clouds by means of first neighbor search.

LiDAR Iris not only outperforms Scan Context and M2DP, but it also covers the
drawbacks of both: indeed, Scan Context lacks descriptive power due to the absence
of a feature extraction step, and M2DP is also not invariant with respect to rotation.

6.2.2 Back-End Optimization
As a distributed multi-agent SLAM algorithm, DCL-SLAM provides a module for
back-end optimization that includes outlier rejection and pose graph optimization
(PGO) at a global scale. The distributed back-end module receives keyframes from
the single-robot front-end, loop closures and odometry measurements, and returns
a global map that is optimized, as well as the robots’ trajectories.

For a more robust map merging, outlier rejection is involved to check if the
inter-robot loop closures are consistent. DCL-SLAM combines a random sample
consensus procedure (RANSAC) [70] with a method called pairwise consistent
measurement set maximization (PCM) [71].

First, RANSAC aims at refining measurements and building a mathematical
model that is based on the robots’ trajectories. This way, outliers that do not fit
such a model are recognized and filtered.

74

Distributed Implementation of Multi-Agent SLAM

Then, PCM checks the consistency between pairs of loop closures. Given the
set Z̃ of loop closures, a threshold γ and a consistency metric C, PCM evaluates
the consistency between loop closures as it is shown in (6.4). DCL-SLAM uses the
Euclidean distance as a metric. Inconsistent loop closures are rejected as outliers.

C(zi, zj) ≤ γ ∀zi, zj ∈ Z̃ (6.4)
After outliers have been cut off, PGO refines the trajectories by solving a

maximum likelihood problem. Such problem is built as follows: given a measurement
z

βj
αi taken by the robot α at time i with respect to the robot β at time j (for example,

an inter-robot loop closure), and given the set of all the trajectories x = [xα, xβ, ...],
the solution is given by the optimal trajectories x∗ =

è
x∗

α, x
∗
β, ...

é
that maximize

the product of the probabilities to measure zβj
αi . Equation (6.5) summarizes the

maximum likelihood problem for a probability density function ψ(·).

x∗ = arg max
x

Ù
ψ(zβj

αi
|x) (6.5)

The algorithm that solves (6.5) is known as two-stage distributed Gauss-Seidel
(DGS) method [72]. It is an iterative algorithm that aims at optimizing the rotations
of the trajectories first, and then it estimates the trajectories with all the poses.
The objective is to reach a global consensus for all the mobile robots, according to
the constraints that are represented by loop closures.

The algorithm starts from the initial estimates y(0) =
è
y(0)

α ,y
(0)
β , ...

é
, where

{α, β...} = Ω is the set of mobile robots. Here, y can represent either the rotations
or the complete trajectories that are estimated by all the robots. DGS first improves
rotations, and then it estimates the global trajectories. According to the constraints
between poses (for example, loop closures), a matrix H is built. This matrix is
divided into blocks that correspond to intra-robot and inter-robot loop closures. A
practical example about the structure of H is reported in Fig. 6.5.

Figure 6.5: Block structure of H for DGS.

At each iteration k, one robot improves its estimate y(k+1)
α , and the others are

kept as fixed. Hence, during an iteration, only one robot at a time improves its

75

Distributed Implementation of Multi-Agent SLAM

estimate. Thus, the set Ω can be split into two subsets: Ω+ contains the robots
that have already computed their (k + 1)-th estimate, while Ω− includes those
that have not updated their estimate yet. Furthermore, a vector g is defined with
respect to the global reference frame, and it can represent either the rotations or
the full poses in the global frame. Following this notation, Equation (6.6) shows
the update step that is applied for each α ∈ Ω.

y(k+1)
α = H−1

αα (−
Ø

δ∈Ω+

Hαδy
(k+1)
δ −

Ø
δ∈Ω−

Hαδy
(k)
δ + gα) (6.6)

The procedure runs until all the robots reach an agreement. It can be proven
that DGS will converge from any initial estimate y(0).

6.2.3 DCL-SLAM Code
A repository for DCL-SLAM exists [73]. However, this is a ROS1 package and
does not compile on ROS2. The C++ source code has been modified in order to
support ROS2 API, the launch files have been rewritten as Python files, and the
dependencies have been exported for compatibility with ROS2 build system. At
the current state, the DCL-SLAM ROS2 package can be compiled correctly on
ROS2 Foxy.

DCL-SLAM defines three custom types of messages that mobile agents can
exchange for inter-robot loop closure and global optimization.

• A dcl_slam::msg::GlobalDescriptor message wraps a header (i.e., times-
tamp and reference frame), an index on the factor graph and a vector of values
that characterize the global descriptor that is chosen for place recognition.
For example, if LiDAR Iris is used as a global descriptor, these values would
correspond to the bird’s eye view image that is stretched into a vector.

• A dcl_slam::msg::LoopInfo message contains the information about loop
closures of any type. It contains a header, the names of the two mobile robots
and their corresponding indices, the poses of the two agents and the relative
transformation. For intra-robot loop closures, such a message refers to only
one robot.

• A dcl_slam::msg::NeighborEstimate message provides the estimates that
a mobile robot computes with respect to its neighbors. It includes a header,
the index of the current robot, some flags that concern global optimization,
the indices of the neighbors, and a vector with the estimated values. Such a
message can contain either the relative rotation matrices between neighbors
or the relative 6D poses (i.e., translation and roll, pitch and yaw angles).

76

Distributed Implementation of Multi-Agent SLAM

Many functionalities of DCL-SLAM are related to the DistributedMapping
ROS node. Since DCL-SLAM is a distributed multi-agent SLAM algorithm, a
DistributedMapping node should exist for each mobile robot that is involved.

When created, it reads the namespace of the current mobile robot and configures
the publishers and the subscriptions, according to the principle that was intro-
duced at the start of this chapter. The DistributedMapping node also implements
intra-robot loop closure: this way, DCL-SLAM can support single-agent SLAM
algorithms that do not perform loop closure such as LOAM [20]. Intra-robot loop
closure is based on factors and iSAM2 [62], similarly to LIO-SAM. Inter-robot loop
closure follows the same steps that were described for LiDAR-Iris: after a matching
between descriptors is found, it calculates the relative pose through ICP. Then, the
two corresponding point clouds can be aligned to close the loop between agents.

The other purpose of DistributedMapping is to manage the distributed back-
end module for PGO and outlier rejection. In ROS1, the distributed_mapper
package exists: it implements both PCM for outlier rejection and the two-stage DGS
algorithm for global PGO. In order to provide support for ROS2, the source code
and the list of dependencies have been modified, such that distributed_mapper
can correctly compile on ROS2 Foxy.

DistributedMapping contains some C++ objects that are required to implement
PCM and the two-stage DGS algorithm.

First, all the local measurements and intra-robot loop closures should be stored
into a RobotLocalMap object, and the pose estimates from neighbors should be
saved as Trajectory objects into a local map. A Trajectory includes the poses
and the corresponding indices to the pose graph. The outliersFiltering() class
method takes the measurements from neighbors and applies PCM, thus removing
any outlier and updating the consistent inter-robot loop closures.

For what concerns the two-stage DGS algorithm, distributed_mapper defines
a DistributedMapper object (not to be confused with the DistributedMapping
ROS node!) that integrates the global graph and an optimizer based on two-stage
DGS. It stores and updates the global pose graph that contains the robots’ mea-
surements and the loop closures. DistributedMapper also differentiates between
rotation and pose optimization, coherently with the two-stage approach of the
algorithm: this is why a dcl_slam::msg::NeighborEstimate message can refer
either to relative rotation or displacement. Indeed, global optimization runs each
time a mobile robot receives such messages from another.

DCL-SLAM establishes a ROS-based peer-to-peer communication between
robots that relies on topics. As it was mentioned before, each agent publishes the
topics under its namespace and subscribes to the topics of other agents.

Two topics are required for inter-robot loop closure.

77

Distributed Implementation of Multi-Agent SLAM

• /*/d_m/global_descriptors1 is used for exchanging global descriptors in
the form of dcl_slam::msg::GlobalDescriptor messages.

• /*/d_m/loop_info is the communication channel for intra-robot and inter-
robot loop closures that are compressed into dcl_slam::msg::LoopInfo mes-
sages.

However, these communication channels are not sufficient to implement global
optimization. Hence, other topics that allow to exchange the estimates between
mobile robots have to be defined. Furthermore, some information about the state
of the optimizer and the progress of the distributed algorithm is required.

• /*/d_m/optimization_state is a communication channel for simple messages
that contain an integer that encodes the state of the optimizer for a mobile
robot.

• Two channels are exploited by mobile robots to pass their estimates to
neighbors. /*/d_m/neighbor_rotation_estimates contains the rotation es-
timates, while /*/d_m/neighbor_pose_estimates is used for pose estimates.
Both topics accept messages of type dcl_slam::msg::NeighborEstimate.

• /*/d_m/rotation_estimate_state and /*/d_m/pose_estimate_state are
other two simple topics that permit to exchange integers. They are used to
synchronize the progress of the two-stage DGS algorithm. Such a message
either contains 1 (equivalent to true) or 0 (false): if true, the incoming estimate
has already gone through the update step of the algorithm at the current
iteration. Once again, two separate topics are used, because the algorithm is
two-stage and computes the global rotation and pose estimates separately.

6.2.4 Adaptations for LIO-SAM and TurtleBot3 Burger
The DistributedMapping C++ object also includes an intra-robot loop closure
procedure. However, LIO-SAM is enhanced with loop closure as well. Hence,
LIO-SAM code should be modified, such that the loop closure functionalities are
replaced by those that the DistributedMapping node offers.

To do so, LIO-SAM has to instantiate a DistributedMapping object. Since
this node affects loop closure, it should be created along with the LIO-SAM
MapOptimization node. Hence, the only module that needs some adjustments is
mapOptimization.cpp. The DistributedMapping node can already create and

1The asterisk in /*/d_m/global_descriptors is a generalization of the topic for any names-
pace. Furthermore, d_m is an abbreviation that stands for distributed_mapping. Example:
/a/distributed_mapping/global_descriptors.

78

Distributed Implementation of Multi-Agent SLAM

manage the factor graph by adding factors, and it also invokes iSAM2 for state
estimation. In LIO-SAM, loop closure and optimization are invoked each time
that a lio_sam::msg::CloudInfo is received from the feature extraction module.
Following the same logic, DistributedMapping should add factors and perform
optimization in the same callback.

The same reasoning can be applied to any other LiDAR inertial odometry SLAM
algorithm. The idea is to call the optimization method of the DistributedMapping
object after the SLAM algorithm has performed feature extraction on the current
point cloud. This way, the DistributedMapping node is strictly related to that
robot: it adds factors to the graph and solves the state estimation problem.

There is no need to perform any adaptation to the code to support TurtleBot3
Burger. Since the point cloud is already two-dimensional, the projection to the
bird’s eye view is trivial. This is why it is convenient to use LiDAR Iris as the
global descriptor, besides its advantages with respect to Scan Context and M2DP.

79

Chapter 7

Conclusions

In this thesis work, two ROS-based solutions for multi-agent SLAM have been
discussed.

The centralized approach emulates inter-robot loop closure and back-end op-
timization with computer vision techniques that are based on feature matching.
This way, the central node only needs the local maps that are passed by the mobile
agents through a simple ROS message. This also makes the central node totally
independent of the specific single-robot SLAM algorithm that locally runs on each
mobile robot. However, due to its centralized nature, the map merging node must
not have any failure during the task.

The distributed algorithm is taken from the DCL-SLAM formulation. It has a
structure that is based on three modules: single-robot loop closure, inter-robot loop
closure and distributed back-end optimization. DCL-SLAM introduces peer-to-peer
communication between mobile robots and implements complex functionalities that
perform inter-robot loop closure and back-end optimization, according to the theory
of factor graphs. DCL-SLAM can support different choices for the single-robot
front-end, but a LiDAR inertial odometry SLAM algorithm is required to run on
each mobile robot. Furthermore, only LiDAR sensors are currently supported.

There are some interesting aspects that make multirobot_map_merge a suit-
able choice for a multi-robot back-end module for multi-agent SLAM. It can
support different single-robot front-end SLAM algorithms, as long as these publish
nav_msgs::msg::OccupancyGrid messages. This also means that heterogeneous
agents may be used: if a mobile robot is equipped with an RGB-D camera and a
visual SLAM algorithm exists, then it can be added to the swarm of mobile robots
even if the others are equipped with LiDAR sensors. Furthermore, the feature
matching techniques are robust enough to grant convergence of the algorithm, i.e.,
at a certain point the local maps will be merged correctly. If the transformations
are estimated correctly since the beginning of the task, the mobile robots can be

80

Conclusions

sent to different areas of the environment, thus shortening the time to accomplish
mapping. If n agents are employed for a task that would require a time T , the
total time to complete the task can be decreased to T/n in the best-case scenario.

However, multirobot_map_merge brings some downsides as well. It is still a
central node, and the computational load is aggravated by the OpenCV functions
that require many operations. During the task, it can happen that an OpenCV
function returns a C++ exception due to out-of-memory issues, and a fix to such
a problem has not been found yet. If such failure happens, all the progress of
the transformations is lost. Hence, if a good merging is found but the central
node crashes, it cannot be recovered. The map merging node can be launched
again, but without the benefits of reducing the time to complete the task, because
the feature matching may need an inter-robot loop closure to recover the optimal
transformation.

On the other hand, DCL-SLAM is a good solution to implement a fully-
distributed multi-agent SLAM algorithm. As a distributed approach, it does
not suffer from the single-point-of-failure issue that may affect a central server that
is involved into multi-robot SLAM. Instead, the mobile agents enrich their data by
gathering information from neighbors, such that the same global map is built by the
whole team of robots. The peer-to-peer communication that is built on ROS topics
does not suffer from bandwidth issues, thanks to the usage of a compact descriptor
such as LiDAR Iris. Although the back-end functionalities may seem complex,
the implementations of PCM and two-stage distributed Gauss-Seidel algorithm
are offered by the distributed_mapper package. Thanks to the robustness of the
distributed back-end module against outliers, DCL-SLAM is able to reconstruct a
global map and estimate the global trajectories with very high accuracy. It is also
shown how to add support to any LiDAR inertial odometry SLAM algorithm in
order to be compatible with DCL-SLAM.

The only drawback of DCL-SLAM is that it lacks versatility: currently, DCL-
SLAM only supports mobile agents that are equipped with LiDAR sensors, and it
does not work properly with single-robot SLAM algorithms that do not rely on
LiDAR inertial odometry. Furthermore, DCL-SLAM builds a point cloud map that
does not provide any useful information for navigation, differently from a grid map.

7.1 Further Improvements
For what concerns the centralized multi-agent SLAM approach, this thesis work
has presented a comparison for the single-robot front-end and some improvements
for SLAM Toolbox, and it also has added additional support for SLAM Toolbox to
the multirobot_map_merge package. Furthermore, some results have explained

81

Conclusions

how such a framework operates, and tests have been provided in simulated and
real-world scenarios. However, there are still some points that were left behind,
and a solution to such problems has not been found yet.

The issues that are related to sporadic failures are not solved, but it is a good
idea to further investigate into the low-level operations that OpenCV functions
carry out, and understand the origin of such exceptions. Another improvement
would concern the confidence threshold: a fixed value has been set in the simulated
environment, while the real-world experiment has been based on a strategy that
starts from a low threshold to get an initial transformation, and then it increases
its value to correct the initial guess, until a maximum value is reached. Other
strategies may be implemented as well, and their effectiveness could be evaluated
on the basis of a simulated scenario. Outlier detection is still an option to improve
the quality of the transformations, and it would be interesting to study how outlier
rejection affects the result of a single map merging. Furthermore, the solution to
the grid size issue for SLAM Toolbox can be improved by dynamically assigning
the size of the biggest map to the others, such that larger environments can be
mapped without problems. This improvement could not be implemented, due to
OpenCV exceptions during the padding.

A last upgrade on the centralized multi-agent SLAM approach may rely on
Nav2 to make the whole system completely autonomous. This requires a central
navigation server that should synchronize with the map merging node: when
the transformations are correctly set, the navigation server should send goals to
the agents towards unexplored areas of the environment. In order to optimize
time, these goals should stimulate the robots to initially explore different zones:
eventually, they will retrace their steps and visit the same area of another agent,
thus having an inter-robot loop closure.

The main contribution of this thesis work on the existent formulations of LIO-
SAM and DCL-SLAM regards the adaptation of LIO-SAM with TurtleBot3 Burger
and the compatibility of DCL-SLAM and its dependencies with ROS2 Foxy. Some
results have been shown for LIO-SAM. At the current state, the code of DCL-SLAM
and the distributed_mapper package have been successfully ported to ROS2.

Unfortunately, due to difficulties encountered in migrating the code from ROS1
to ROS2, DCL-SLAM has not been tested yet. Hence, it was not possible to
provide a practical application of DCL-SLAM on two copies of TurtleBot3 Burger.
Nevertheless, it was shown that LIO-SAM works with such a mobile robot. Due to
the lack of testing, there are not any other known issues.

A further work on DCL-SLAM would surely include some testing on TurtleBot3
Burger, in both simulation and a real-world scenario. First of all, an implementation
of DCL-SLAM that works correctly for TurtleBot3 Burger would not only amplify
the educational purpose of TurtleBot3 Burger, but it would be a huge contribution

82

Conclusions

for the ROS community as well. Moreover, it would be interesting to evaluate the
efficiency of DCL-SLAM, for example, in terms of time required for the distributed
two-stage Gauss-Seidel algorithm to converge for all the agents.

83

Acknowledgements

Finalmente, dopo aver concluso questo splendido percorso presso il Politecnico di
Torino, posso prendermi un attimo di tempo per esprimere la mia più profonda
gratitudine nei confronti di tutte le persone che mi hanno accompagnato, sostenuto,
e che soprattutto hanno creduto in me fino alla fine di questi due anni.

Ringrazio la professoressa Marina Indri per avermi dato l’opportunità di mettermi
in gioco e per avermi seguito dall’inizio fino all’ultimo giorno. E ringrazio anche
David, che è sempre stato disponibile per chiarimenti e consigli sul prossimo passo
da compiere, anche quando avevo difficoltà e non avevo un piano chiaro in mente.

Ringrazio la mia famiglia e i miei parenti vicini e lontani, perché è anche merito
del loro supporto e del loro affetto se sono arrivato fino in fondo. E soprattutto
ringrazio mio fratello Alessandro, non solo per avermi confortato in quei momenti
in cui avevo perso il controllo, ma anche perché la sua presenza mi ha fatto sentire
meno solo, meno fragile e più determinato.

Ringrazio i colleghi che ho incrociato lungo il mio percorso, per aver reso la
nostra esperienza al Politecnico più lieve e più entusiasmante, e perché dopo i
due anni di pandemia mi hanno fatto sentire parte di quella comunità di cui ogni
studente del Poli fa parte.

Ringrazio i miei amici, compagni di uscite, di risate e di bevute, perché mi
hanno insegnato a non mollare, ad affrontare le difficoltà con il sorriso, ma anche a
prendersi qualche momento di pausa quando serve.

Voi tutti avete lasciato un’impronta importante nella mia vita, e farò tesoro di
ciò che mi avete trasmesso.

Grazie.

84

Bibliography

[1] T. Bailey and H. Durrant-Whyte. «Simultaneous localization and mapping
(SLAM): part II». In: IEEE Robotics & Automation Magazine 13.3 (2006),
pp. 108–117.

[2] X. Zhou and R. Huang. «A State-of-the-Art Review on SLAM». In: Intelligent
Robotics and Applications. Ed. by H. Liu, Z. Yin, L. Liu, L. Jiang, G. Gu,
X. Wu, and W. Ren. Springer International Publishing, 2022, pp. 240–251.

[3] H. Durrant-Whyte and T. Bailey. «Simultaneous localization and mapping:
part I». In: IEEE Robotics & Automation Magazine 13.2 (2006), pp. 99–110.

[4] L. Zhao, Z. Mao, and S. Huang. «Feature-Based SLAM: Why Simultaneous
Localisation and Mapping?» In: July 2021.

[5] I. Abaspur Kazerouni, L. Fitzgerald, G. Dooly, and D. Toal. «A survey of
state-of-the-art on visual SLAM». In: Expert Systems with Applications 205
(2022).

[6] B. Zhou, D. Xie, S. Chen, H. Mo, C. Li, and Q. Li. «Comparative Analysis of
SLAM Algorithms for Mechanical LiDAR and Solid-State LiDAR». In: IEEE
Sensors Journal 23.5 (2023), pp. 5325–5338.

[7] Y. Zhang, Y. Wu, K. Tong, H. Chen, and Y. Yuan. «Review of Visual
Simultaneous Localization and Mapping Based on Deep Learning». In: Remote
Sensing 15.11 (2023).

[8] Y. An, J. Shi, D. Gu, and Q. Liu. «Visual-LiDAR SLAM Based on Unsuper-
vised Multi-channel Deep Neural Networks». In: Cognitive Computation 14
(July 2022), pp. 1–13.

[9] T. Bailey, J. Nieto, J. Guivant, M. Stevens, and E. Nebot. «Consistency of
the EKF-SLAM Algorithm». In: 2006 IEEE/RSJ International Conference
on Intelligent Robots and Systems. 2006, pp. 3562–3568.

[10] L. M. Paz, J. D. TardÓs, and J. Neira. «Divide and Conquer: EKF SLAM in
O(n)». In: IEEE Transactions on Robotics 24.5 (2008), pp. 1107–1120.

85

BIBLIOGRAPHY

[11] K. Krinkin, A. Filatov, A. Filatov, A. Huletski, and D. Kartashov. «The Scan
Matchers Research and Comparison: Monte-Carlo, Olson and Hough». In:
Conference of Open Innovation Association, FRUCT. 2017, pp. 99–105.

[12] G. Grisetti, C. Stachniss, and W. Burgard. «Improved techniques for grid
mapping with Rao-Blackwellized particle filters». In: IEEE Transactions on
Robotics 23.1 (2007), pp. 34–46.

[13] S. Liu, Y. Lei, and X. Dong. «Evaluation and Comparison of Gmapping and
Karto SLAM Systems». In: 2022 12th International Conference on CYBER
Technology in Automation, Control, and Intelligent Systems (CYBER). 2022,
pp. 295–300.

[14] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. «FastSLAM: A Fac-
tored Solution to the Simultaneous Localization And Mapping Problem».
In: Proceedings of the National Conference on Artificial Intelligence. 2002,
pp. 593–598.

[15] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard. «A Tutorial on
Graph-Based SLAM». In: IEEE Intelligent Transportation Systems Magazine
2.4 (2010), pp. 31–43.

[16] W. Hess, D. Kohler, H. Rapp, and D. Andor. «Real-time loop closure in 2D
LIDAR SLAM». In: Proceedings - IEEE International Conference on Robotics
and Automation. Vol. 2016-June. 2016, pp. 1271–1278.

[17] K. Konolige, G. Grisetti, R. Kümmerle, W. Burgard, B. Limketkai, and
R. Vincent. «Efficient Sparse Pose Adjustment for 2D mapping». In: 2010
IEEE/RSJ International Conference on Intelligent Robots and Systems. 2010,
pp. 22–29.

[18] A. Dwijotomo, M. A. A. Rahman, M. H. M. Ariff, H. Zamzuri, and W. M. H. W.
Azree. «Cartographer SLAM Method for Optimization with an Adaptive
Multi-Distance Scan Scheduler». In: Applied Sciences (Switzerland) 10.1
(2020).

[19] B. Liu, Z. Guan, B. Li, G. Wen, and Y. Zhao. «Research on SLAM Algorithm
and Navigation of Mobile Robot Based on ROS». In: 2021 IEEE International
Conference on Mechatronics and Automation (ICMA). 2021, pp. 119–124.

[20] J. Zhang and S. Singh. «LOAM: Lidar Odometry and Mapping in Real-time».
In: (2014).

[21] S. Rusinkiewicz and M. Levoy. «Efficient variants of the ICP algorithm».
In: Proceedings Third International Conference on 3-D Digital Imaging and
Modeling. 2001, pp. 145–152.

86

BIBLIOGRAPHY

[22] W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang. «FAST-LIO2: Fast Direct
LiDAR-Inertial Odometry». In: IEEE Transactions on Robotics 38.4 (2022),
pp. 2053–2073.

[23] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus. «LIO-
SAM: Tightly-coupled lidar inertial odometry via smoothing and mapping».
In: IEEE International Conference on Intelligent Robots and Systems. 2020,
pp. 5135–5142.

[24] Z. Liu and F. Zhang. «BALM: Bundle Adjustment for Lidar Mapping». In:
IEEE Robotics and Automation Letters 6.2 (2021), pp. 3184–3191.

[25] Y. Pan, P. Xiao, Y. He, Z. Shao, and Z. Li. «Mulls: Versatile LiDAR SLAM
via Multi-metric Linear Least Square». In: Proceedings - IEEE International
Conference on Robotics and Automation. Vol. 2021-May. 2021, pp. 11633–
11640.

[26] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos. «ORB-SLAM: a Versatile
and Accurate Monocular SLAM System». In: CoRR (2015).

[27] R. Mur-Artal and J. D. Tardos. «ORB-SLAM2: An Open-Source SLAM
System for Monocular, Stereo, and RGB-D Cameras». In: IEEE Transactions
on Robotics 33.5 (2017), pp. 1255–1262.

[28] C. Campos, R. Elvira, J. J. G. Rodrìguez, J. M. M. Montiel, and J. D. Tardòs.
«ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial
and Multi-Map SLAM». In: CoRR (2020).

[29] C.-M. Chung, Y.-C. Tseng, Y.-C. Hsu, X.-Q. Shi, Y.-H. Hua, J.-F. Yeh, W.-C.
Chen, Y.-T. Chen, and W. H. Hsu. Orbeez-SLAM: A Real-time Monocular
Visual SLAM with ORB Features and NeRF-realized Mapping.

[30] S. Saeedi, L. Paull, M. Trentini, and H. Li. «Multiple robot simultaneous
localization and mapping». In: 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems. 2011, pp. 853–858.

[31] A. Huletski, D. Kartashov, and K. Krinkin. «VinySLAM: An indoor SLAM
method for low-cost platforms based on the Transferable Belief Model». In:
2017-September (2017), pp. 6770–6776.

[32] A. Filatov and K. Krinkin. «Multi-Agent SLAM approaches for low-cost
platforms». In: 2019-April (2019), pp. 89–95.

[33] K. Ebadi et al. «LAMP: Large-Scale Autonomous Mapping and Positioning
for Exploration of Perceptually-Degraded Subterranean Environments». In:
Proceedings - IEEE International Conference on Robotics and Automation.
2020, pp. 80–86.

87

BIBLIOGRAPHY

[34] S. Zhong, Y. Qi, Z. Chen, J. Wu, H. Chen, and M. Liu. DCL-SLAM: A
Distributed Collaborative LiDAR SLAM Framework for a Robotic Swarm.
2023.

[35] Y. Wang, Z. Sun, C. .-. Xu, S. E. Sarma, J. Yang, and H. Kong. «LiDAR iris
for loop-closure detection». In: IEEE International Conference on Intelligent
Robots and Systems. 2020, pp. 5769–5775.

[36] P.-Y. Lajoie and G. Beltrame. Swarm-SLAM : Sparse Decentralized Collab-
orative Simultaneous Localization and Mapping Framework for Multi-Robot
Systems. 2023.

[37] K. M. Brink, J. Zhang, A. R. Willis, R. E. Sherrill, and J. L. Godwin.
Maplets: An Efficient Approach for Cooperative SLAM Map Building Under
Communication and Computation Constraints. 2020.

[38] R. Dubé, A. Cramariuc, D. Dugas, H. Sommer, M. Dymczyk, J. Nieto, R.
Siegwart, and C. Cadena. «SegMap: Segment-based mapping and localization
using data-driven descriptors». In: International Journal of Robotics Research
39.2-3 (2020), pp. 339–355.

[39] J. McConnell, Y. Huang, P. Szenher, I. Collado-Gonzalez, and B. Englot.
«DRACo-SLAM: Distributed Robust Acoustic Communication-efficient SLAM
for Imaging Sonar Equipped Underwater Robot Teams». In: IEEE Interna-
tional Conference on Intelligent Robots and Systems. Vol. 2022-October. 2022,
pp. 8457–8464.

[40] ROS1 Official Website and Documentation. https://www.ros.org/.
[41] ROS2 Foxy Fitzroy Official Website and Documentation. https://docs.ros.

org/en/foxy/index.html.
[42] Y. Maruyama, S. Kato, and T. Azumi. «Exploring the performance of ROS2».

In: Oct. 2016, pp. 1–10.
[43] tf2 Documentation. http://wiki.ros.org/tf2. (Visited on 11/04/2023).
[44] RViz2 Repository. https://github.com/ros2/rviz. (Visited on 11/04/2023).
[45] Gazebo Homepage. https://gazebosim.org/home. (Visited on 11/04/2023).
[46] Nav2 Documentation. https://navigation.ros.org/. (Visited on 11/04/2023).
[47] TurtleBot3 Documentation. https://emanual.robotis.com/docs/en/

platform/turtlebot3/overview/. (Visited on 01/05/2023).
[48] TurtleBot3 Essential Packages Repository. https://github.com/ROBOTIS-

GIT/turtlebot3. (Visited on 01/05/2023).
[49] SLAM Toolbox Repository. https://github.com/SteveMacenski/slam_

toolbox. (Visited on 04/09/2023).

88

https://www.ros.org/
https://docs.ros.org/en/foxy/index.html
https://docs.ros.org/en/foxy/index.html
http://wiki.ros.org/tf2
https://github.com/ros2/rviz
https://gazebosim.org/home
https://navigation.ros.org/
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
https://github.com/ROBOTIS-GIT/turtlebot3
https://github.com/ROBOTIS-GIT/turtlebot3
https://github.com/SteveMacenski/slam_toolbox
https://github.com/SteveMacenski/slam_toolbox

BIBLIOGRAPHY

[50] S. Macenski and I. Jambrecic. «SLAM Toolbox: SLAM for the dynamic
world». In: Journal of Open Source Software 6.61 (2021), p. 2783.

[51] X. S. Le, L. Fabresse, N. Bouraqadi, and G. Lozenguez. «Evaluation of out-
of-the-box ROS 2D slams for autonomous exploration of unknown indoor
environments». In: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
10985 LNAI (2018), pp. 283–296.

[52] K. Trejos, L. Rincón, M. Bolaños, J. Fallas, and L. Marín. «2D SLAM
Algorithms Characterization, Calibration, and Comparison Considering Pose
Error, Map Accuracy as Well as CPU and Memory Usage». In: Sensors 22.18
(2022).

[53] S. Agarwal, K. Mierle, and T. C. S. Team. Ceres Solver. Version 2.2. Oct.
2023. url: https://github.com/ceres-solver/ceres-solver.

[54] Ceres Solver C++ Documentation. http://ceres-solver.org/.
[55] multirobot_map_merge ROS2 Repository. https : / / github . com / robo -

friends/m-explore-ros2. (Visited on 10/06/2023).
[56] OpenCV Documentation. https://opencv.org/.
[57] P. Fernández Alcantarilla. «Fast Explicit Diffusion for Accelerated Features

in Nonlinear Scale Spaces». In: Sept. 2013.
[58] H. Bay, T. Tuytelaars, and L. Van Gool. «SURF: Speeded up robust features».

In: Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics) 3951 LNCS
(2006), pp. 404–417.

[59] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. «ORB: An efficient
alternative to SIFT or SURF». In: 2011 International Conference on Computer
Vision. 2011, pp. 2564–2571.

[60] S. A. K. Tareen and Z. Saleem. «A comparative analysis of SIFT, SURF,
KAZE, AKAZE, ORB, and BRISK». In: 2018 International Conference on
Computing, Mathematics and Engineering Technologies (iCoMET). 2018,
pp. 1–10.

[61] LIO-SAM Repository. https://github.com/TixiaoShan/LIO-SAM. (Visited
on 04/09/2023).

[62] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Dellaert.
«iSAM2: Incremental smoothing and mapping with fluid relinearization and
incremental variable reordering». In: 2011 IEEE International Conference on
Robotics and Automation. 2011, pp. 3281–3288.

[63] PCL Official Website. https://pointclouds.org/.

89

https://github.com/ceres-solver/ceres-solver
http://ceres-solver.org/
https://github.com/robo-friends/m-explore-ros2
https://github.com/robo-friends/m-explore-ros2
https://opencv.org/
https://github.com/TixiaoShan/LIO-SAM
https://pointclouds.org/

BIBLIOGRAPHY

[64] GTSAM Official Website. https://gtsam.org/.
[65] Simulation Environment for LIO-SAM with 3D Velodyne. https://driv

e.google.com/drive/folders/15RzJOWTHs74MB8u_LxLM5RkA4gvQjYHj.
(Visited on 12/11/2023).

[66] ROS2 Velodyne Drivers. https://github.com/ros-drivers/velodyne.
(Visited on 12/11/2023).

[67] laser_geometry ROS2 Repository. https://github.com/ros-perception/
laser_geometry.

[68] L. He, X. Wang, and H. Zhang. «M2DP: A novel 3D point cloud descriptor and
its application in loop closure detection». In: 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2016, pp. 231–237.

[69] G. Kim and A. Kim. «Scan Context: Egocentric Spatial Descriptor for Place
Recognition Within 3D Point Cloud Map». In: 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2018, pp. 4802–4809.

[70] M. A. Fischler and R. C. Bolles. «Random Sample Consensus: A Paradigm
for Model Fitting with Applications to Image Analysis and Automated Car-
tography». In: Commun. ACM 24.6 (1981), pp. 381–395.

[71] J. G. Mangelson, D. Dominic, R. M. Eustice, and R. Vasudevan. «Pairwise
Consistent Measurement Set Maximization for Robust Multi-Robot Map
Merging». In: 2018 IEEE International Conference on Robotics and Automa-
tion (ICRA). May 2018, pp. 2916–2923. doi: 10.1109/ICRA.2018.8460217.

[72] S. Choudhary, L. Carlone, C. Nieto, J. Rogers, H. I. Christensen, and F. Del-
laert. «Distributed Trajectory Estimation with Privacy and Communication
Constraints: a Two-Stage Distributed Gauss-Seidel Approach». In: IEEE
International Conference on Robotics and Automation 2016. 2016.

[73] DCL-SLAM ROS1 Repository. https://github.com/PengYu-Team/DCL-
SLAM/.

90

https://gtsam.org/
https://drive.google.com/drive/folders/15RzJOWTHs74MB8u_LxLM5RkA4gvQjYHj
https://drive.google.com/drive/folders/15RzJOWTHs74MB8u_LxLM5RkA4gvQjYHj
https://github.com/ros-drivers/velodyne
https://github.com/ros-perception/laser_geometry
https://github.com/ros-perception/laser_geometry
https://doi.org/10.1109/ICRA.2018.8460217
https://github.com/PengYu-Team/DCL-SLAM/
https://github.com/PengYu-Team/DCL-SLAM/

	List of Tables
	List of Figures
	Introduction
	Simultaneous Localization and Mapping
	Formulation and General Properties
	State-of-the-Art for Single-agent SLAM
	A Review of Filter-based SLAM Algorithms
	Optimization-based Approaches for SLAM

	A More Complex Topic: Multi-Agent SLAM
	Characteristics of Multi-agent SLAM
	Cooperative Solutions and State-of-the-Art
	Cooperative Filter-based Solutions
	Real-time Efficient Optimization-based Frameworks
	The Future of Multi-agent SLAM

	Introduction to ROS
	ROS Basics
	ROS2

	Software Utilities
	The tf2 Library
	RViz2
	Gazebo
	Nav2
	Computational Graph Visualization

	TurtleBot3
	TurtleBot3 Burger Topics and Frames
	Namespacing TurtleBot3 Burger

	Centralized Setting for Multi-Agent SLAM
	Evaluation for the Single-Robot Front-End
	Single-Robot Front-End: SLAM Toolbox
	Ceres Solver
	SLAM Toolbox Topics, Parameters and Namespace

	Multi-Robot Back-End: Map Merging Node
	Feature Matching for Map Merging
	Merging Pipeline
	Support for SLAM Toolbox
	An Example in a Simulated Scenario
	Real-World Scenario for Centralized Multi-Agent SLAM

	Distributed Implementation of Multi-Agent SLAM
	Single-Robot Front-End: LIO-SAM
	LIO-SAM Factor Graph
	LIO-SAM Code
	Adaptations for TurtleBot3 Burger

	Multi-Robot Back-End: DCL-SLAM
	LiDAR Descriptors for Distributed Loop Closure
	Back-End Optimization
	DCL-SLAM Code
	Adaptations for LIO-SAM and TurtleBot3 Burger

	Conclusions
	Further Improvements

	Bibliography

