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Summary

Nowadays robots, and in particular mobile manipulators, can assist humans to
accomplish common tasks, behaving as smart assistants for the operators sharing
the same workspace. Keeping this in mind, the objective of this thesis is to expand
the capabilities of a mobile manipulator (Locobot WX250s) in order to make it able
to: (i) localize itself in a partially known environment, (ii) avoid obstacles in it, (iii)
recognize and estimate the pose of known objects, (iv) localize the most dangerous
part of the requested item and (v) pick and place it in order to minimize the risk for
humans. The indoor environment where the robot operates can be, for example, a
warehouse or a laboratory, where objects are stored on shelves, cabinets and drawers
whose fixed positions can be considered as prior knowledge by the robot. The entire
software infrastructure has been implemented on Ubuntu 20.04 using ROS Noetic
as base to let the different modules communicate with each other. ROS is the most
used middleware when it is necessary to develop any software for robots of any kind.
It is full of packages implementing the most recent algorithms and it is also readily
expandable to enrich the capabilities of the system. The SLAM task is achieved
using the RTAB-Map package that, starting from the information coming from
both the RGB-D camera and the Lidar mounted on the robot, is able to construct a
map together with two costmaps (Global and Local), used to move the mobile base
avoiding undesired contacts. Obstacle avoidance is further expanded by building
a 3D occupancy grid exploiting the Octomap capabilities to reinterpret the point
cloud coming from the camera. For what concerns the motion control, the mobile
base is controlled using the Move Base package along with the Dijkstra’s algorithm
as the global planner and TEB as the local planner, while the arm’s controller has
been designed using the MoveIt! framework and planners belonging to Open Motion
Planning Library (OMPL). In addition, a custom trajectory planner that considers
the arm and the base together as a holistic system has been realized. This allow to
better position and correct the robot’s gripper placement when picking an object.
The robot is also able to recognize and estimate the pose of known items thanks
to the use of a YOLO v5 neural network. It has been trained to classify images
belonging to a specific types list and to compute the bounding boxes to understand
their space occupation. By fusing this information together with the depth data of
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the camera, it is possible to estimate the pose of the requested item. The network
has been trained using a fully custom dataset built from scratches specifically
for this purpose; it contains images of common objects that can be found in any
laboratory. Pick-an-place operations are executed following a human-in-the-loop
approach similar to what is done in Interactive Machine Learning algorithms. The
robot can recognize dangerous objects basing on their class and ask the human a
feedback about the most dangerous part. Once this latter section has been found, it
grasps the object from there. To test the designed infrastructure, some experiments
have been conducted in both a simulated environment, thanks to Gazebo and Rviz,
and on the real Locobot WX250s inside the laboratory.

iv





Table of Contents

List of Tables ix

List of Figures x

Acronyms xvii

1 Introduction and Problem Statement 1
1.1 Type of robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Industrial Robots . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Mobile Robots . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Service Robots . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Robots and AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Thesis Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Environment Description . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Requested Functionalities . . . . . . . . . . . . . . . . . . . 8

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 State of the art 9
2.1 Recent Mobile Manipulator Applications . . . . . . . . . . . . . . . 9
2.2 Arm and Base Motion Planning . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Independent Planners . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Object detection and 3D pose estimation . . . . . . . . . . . . . . . 18

2.3.1 Object detection and semantic segmentation . . . . . . . . . 18
2.3.2 3D pose estimation techniques . . . . . . . . . . . . . . . . . 20

2.4 Grasp pose generation . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Interactive machine learning . . . . . . . . . . . . . . . . . . . . . . 23

3 ROS state-of-the-art 24
3.1 ROS project structure . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Main components . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Working in simulation . . . . . . . . . . . . . . . . . . . . . . . . . 27

vi



3.2.1 Gazebo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Rviz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Perception and localization . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 Octomap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 RTAB-Map . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.3 Navigation stack . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Motion Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.1 MoveIt! framework . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.2 Move Base package . . . . . . . . . . . . . . . . . . . . . . . 40

4 Locobot WX250s description 43
4.1 Manipulation Hardware . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Mobile Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 On-board computer . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5 Lidar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Software architecture 49
5.1 Communication Manager node . . . . . . . . . . . . . . . . . . . . . 51

5.1.1 Object request and search . . . . . . . . . . . . . . . . . . . 51
5.1.2 Camera movements handling . . . . . . . . . . . . . . . . . . 53
5.1.3 Pre-grasp and grasp poses . . . . . . . . . . . . . . . . . . . 54
5.1.4 Pick and place pipeline . . . . . . . . . . . . . . . . . . . . . 54
5.1.5 Components status handling . . . . . . . . . . . . . . . . . . 58

5.2 Base Handler node . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3 Arm Handler node . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3.1 MoveIt! settings and parameters . . . . . . . . . . . . . . . . 62
5.3.2 Arm group and named poses . . . . . . . . . . . . . . . . . . 64
5.3.3 Arm states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.4 Arm status service . . . . . . . . . . . . . . . . . . . . . . . 70

5.4 Remote Image Getter node . . . . . . . . . . . . . . . . . . . . . . . 70
5.4.1 Implementation details . . . . . . . . . . . . . . . . . . . . . 71
5.4.2 Remote Image and Camera Info service . . . . . . . . . . . . 72
5.4.3 Exception to the communication graph structure . . . . . . 72

5.5 Grasping Point Generator node . . . . . . . . . . . . . . . . . . . . 73
5.5.1 Node implementation . . . . . . . . . . . . . . . . . . . . . . 73
5.5.2 Object detection . . . . . . . . . . . . . . . . . . . . . . . . 74
5.5.3 Grasping point generation . . . . . . . . . . . . . . . . . . . 75

5.6 LoCoBot Extended Planner node . . . . . . . . . . . . . . . . . . . 76
5.6.1 Node’s interface . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.6.2 Node’s states . . . . . . . . . . . . . . . . . . . . . . . . . . 78

vii



5.6.3 Planning pipeline . . . . . . . . . . . . . . . . . . . . . . . . 80
5.7 Dangerous Part Feedback Getter node . . . . . . . . . . . . . . . . 82

5.7.1 Feedback infrastructure . . . . . . . . . . . . . . . . . . . . . 82

6 Custom Dataset and YOLO training 84
6.1 Objects dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Training results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7 Simulation environment and results 92
7.1 Gazebo world . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.1.1 Occupancy Grid . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.1.2 Environment mapping . . . . . . . . . . . . . . . . . . . . . 96

7.2 Experiments in the simulated environment . . . . . . . . . . . . . . 97
7.2.1 Search phase . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.2.2 Pick-and-place routine . . . . . . . . . . . . . . . . . . . . . 100

8 Experiments on the real robot and results validation 106
8.1 Environment description . . . . . . . . . . . . . . . . . . . . . . . . 106

8.1.1 Obstacle avoidance . . . . . . . . . . . . . . . . . . . . . . . 108
8.1.2 SLAM problem . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.2 Robots’ descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.2.1 Mobile Base space occupancy . . . . . . . . . . . . . . . . . 110

8.3 Searching phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.4 Pick-and-place pipeline . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.4.1 Dangerous part feedback . . . . . . . . . . . . . . . . . . . . 122

9 Conclusions and Future works 125

Bibliography 127

viii



List of Tables

4.1 Summary table of the WidowX 250 6-DOF robotic arm. . . . . . . 45
4.2 Summary table of the Kobuki mobile base. . . . . . . . . . . . . . . 46

5.1 Summary table with the mobile base possible states. . . . . . . . . 60
5.2 Summary table of the main MoveIt! parameters set by the Arm

Handler Node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Joints values defining the arm_default pose. . . . . . . . . . . . . . 64
5.4 Joints values defining the arm_secure pose. . . . . . . . . . . . . . 65
5.5 Joints values defining the arm_sleep pose. . . . . . . . . . . . . . . 65
5.6 Summary table of the main camera parameters and those used by

the Remote Image Getter Node. . . . . . . . . . . . . . . . . . . . . 71
5.7 Summary table with the limits of the virtual joints. . . . . . . . . . 77
5.8 Table with the parameters used by the extended planner. . . . . . . 80
5.9 List of joints building the locobot_ext_all group. . . . . . . . . . . 81

6.1 Summary table of all YOLOv5 architectures. . . . . . . . . . . . . . 85
6.2 Summary table of the hyperparameters used to train the YOLOv5

network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.1 Coordinates of the known locations in the Gazebo world. . . . . . . 93
7.2 Summary table of the configuration parameters used by Octomap

to run the simulations. . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.1 Table describing the pose of the real locations used for testing. . . . 108
8.2 Parameters of the mobile base’s space occupancy. . . . . . . . . . . 111

ix



List of Figures

1.1 Example of Robotic Manipulator [2]. . . . . . . . . . . . . . . . . . 3
1.2 Representation of AMRs and their applications. . . . . . . . . . . . 3
1.3 Examples of both types of mobile robots. (a)Wheeled Robot [6]. (b)

Legged Robot [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Classification proposed by ISO 8373:2012 for Service robots [8]. . . 5
1.5 Example of a wheeled mobile manipulator [9]. . . . . . . . . . . . . 6
1.6 Interactive Machine Learning (IML) model [11]. . . . . . . . . . . . 7

2.1 Illustration of the two subsystems-separate planner motion planning 13
2.2 Visualization of the motion obtained using a holistic planner. . . . . 17
2.3 R-CNN architecture, one of the first two-stage detectors [48]. . . . . 19
2.4 Internal architecture of YOLO, a single-stage detector [48]. . . . . . 19
2.5 Left: visualization of the goal grasping pose. Right: best grasping

pose found on the depth image and its parameters [62]. . . . . . . . 22
2.6 Full pipeline of grasping pose estimation [62]. . . . . . . . . . . . . 22

3.1 Simulated warehouse in created in Gazebo [67]. . . . . . . . . . . . 28
3.2 Example of the Rviz interface used to interact with a robotic arm [69]. 29
3.3 Rviz interface for the costmap used by a mobile manipulator to

navigate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Occupancy grid of the experimental environment created using Oc-

tomap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Comparison between a coarse map (a) and the refined one (b). . . . 32
3.6 Visualization of a costamp created using costmap_2d. Red pixels

indicate the exact position of the obstacles, while blue ones constitute
the inflated obstacle regions. . . . . . . . . . . . . . . . . . . . . . . 34

3.7 Path planned from the global planner (in green) and from the local
one (in red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.8 MoveIt! planner in Rviz [77]. . . . . . . . . . . . . . . . . . . . . . . 37
3.9 Representation of the move_group’s communication graph [78]. . . 39
3.10 3D perception pipeline available in MoveIt! [78]. . . . . . . . . . . . 40

x



3.11 Description of the move_base node’s communication structure [79]. 41
3.12 Visualization of the recovery behaviours pipeline provided by the

move_base package [79]. . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 Front view of the LoCoBot WX250s [80]. . . . . . . . . . . . . . . . 43
4.2 WidowX 250-6DOF Robot Arm used on the LoCobot WX250s. . . 44
4.3 Rear view of the Kobuki mobile base. . . . . . . . . . . . . . . . . . 45
4.4 Mini Pc mounted on the LoCoBot WX250s. . . . . . . . . . . . . . 46
4.5 Views of the Intel RealSense D435 depth camera (extern 4.5a, intern

4.5b) [82]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.6 View of a possible camera orientation [80]. . . . . . . . . . . . . . . 47
4.7 Lidar mounted on the LoCoBot WX250s [80]. . . . . . . . . . . . . 48

5.1 Diagram representing the overall software architecture developed. . 49
5.2 Interface between the communication manager and the person. . . . 51
5.3 Flow chart of the pipeline executed to search an item. . . . . . . . . 53
5.4 Example of pre-grasp pose computed in the simulated environment. 55
5.5 Flow chart of the place pipeline . . . . . . . . . . . . . . . . . . . . 56
5.6 Flow chart of the pick pipeline. . . . . . . . . . . . . . . . . . . . . 57
5.7 Base Handler interface through the Communication Manager . . . . 58
5.8 Flow of the Base Handler states. . . . . . . . . . . . . . . . . . . . . 60
5.9 Representation of the Arm Handler interface . . . . . . . . . . . . . 61
5.10 Side view of the arm_default pose (in Rviz 5.10a and real 5.10b). . 65
5.11 Front view of the arm_default pose (in Rviz 5.11a and real 5.11b). . 66
5.12 Side view of the arm_default pose (in Rviz 5.12a and real 5.12b). . 66
5.13 Front view of the arm_secure pose (in Rviz 5.13a and real 5.13b). . 67
5.14 Side view of the arm_sleep pose (in Rviz 5.14a and real 5.14b). . . 67
5.15 Front view of the arm_sleep pose (in Rviz 5.15a and real 5.15b). . . 68
5.16 Evolution of the Arm Handler states. . . . . . . . . . . . . . . . . . 69
5.17 Remote Image Getter node’s interface. . . . . . . . . . . . . . . . . 70
5.18 Grasping Point Generator interface. . . . . . . . . . . . . . . . . . . 73
5.19 Visualization of the grasp pose orientation with respect to the /lo-

cobot/camera_depth_link frame (Rviz). . . . . . . . . . . . . . . . 74
5.20 Communication interface of the LoCoBot Extended Planner node. . 78
5.21 Flow chart describing the evolution of the LoCoBot Extended Plan-

ner states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.22 View of the locobot_ext_all kinematic chain (5.22a) corresponding

to the pose 5.22b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.23 Communication interface of the Dangerous Part Feedback Getter

node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

xi



5.24 Example of the communication interface through which the human
operator can provide a feedback message about dangerous point. . . 83

6.1 YOLO networks architecture [85]. . . . . . . . . . . . . . . . . . . . 86
6.2 Some examples of the images composing the custom dataset. . . . . 87
6.3 Some examples of the detected bounding boxes and the class associ-

ated to them. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4 Graphs showing the evolution of the metrics used to evaluate the

performances of the trained network. . . . . . . . . . . . . . . . . . 91
6.5 Evolution of the loss functions. . . . . . . . . . . . . . . . . . . . . 91

7.1 Representation of the Gazebo world used in simulation. . . . . . . . 93
7.2 Visualization of the known location in the Gazebo world. . . . . . . 94
7.3 Occupancy grid of the simulation environment. . . . . . . . . . . . . 95
7.4 Map of the simulation environment created using the RTAB-map

package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.5 The LoCoBot starts from the home position and waits a request

from the human. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.6 As soon as a request from the user is received, the first location is

extracted from the dictionary. In this case, the first location where
to search is Location 2, hence a global (green) and a local (red)
trajectories are computed to reach this position. . . . . . . . . . . . 98

7.7 LoCoBot reached Location 2 pose. . . . . . . . . . . . . . . . . . . . 98
7.8 After the desired location is reached, the Communication Manager

starts moving the camera to locate the object. Four different po-
sitions corresponding to four tilt angles are used and shown here:
tilt = 0.3 (a), tilt = 0.4 (b), tilt = 0.5 (c), tilt = 0.6 (d) . . . . . . . 99

7.9 During this simulation, the object has been positioned in Location 1.
For this reason, from Location 2 it is not possible to find the desired
item, and as a result, the next point is reached. . . . . . . . . . . . 99

7.10 LoCoBot reached Location 1. Again, the Communication Manager
will move the camera trying to locate the requested item. . . . . . . 100

7.11 After the search phase, if the requested item is found, the grasp and
pre-grasp poses are computed and a motion plan to the LoCoBot
Extended Planner node is requested. As a result, the mobile base is
moved to reach the pose resulting from the plan. The Figure shows
how the base is repositioned (b) with respect to the arrival pose (a). 101

7.12 Pre-grasp pose reached as a result of the execution of the planned
trajectory. Here the voxels occupied by the object are marked in
red. Notice that, due to the voxel size, the occupied space is greater
than the real one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xii



7.13 After having reached the pre-grasp pose, the gripper is opened and
an object is attached to the mobile manipulator’s fingers. . . . . . . 102

7.14 In this figure it is possible to see the object attached to the gripper
and the grasp position reached. Moreover, as a result of attaching
the object, the occupancy grid around the object is cleared. . . . . . 102

7.15 After the success of the grasping actions, the arm is taken to the
arm_secure_pose: this is done by requesting a plan to the Arm
Handler node by specifying the name corresponding to the desired
pose. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.16 Once the object has been grasped and the manipulator has reached
the arm_secure_pose, the Communication Manager retrieves the
depot’s position and requests a plan for the mobile base. . . . . . . 103

7.17 Once the depot position is reached, the Arm Handler node requests
a plan to reach the placing pose of the end-effector and open the
gripper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.18 After the gripper opens, the object is detached from the robot’s
gripper. This leads to have the voxels present in the planning scene
again. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.19 After having successfully retracted the arm to reach the arm_-
secure_pose, the robot reaches again the Home location waiting for
other requests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.1 Real environment where experiments have been done. . . . . . . . . 107
8.2 Starting position of the LoCoBot next to the person’s desk. . . . . . 107
8.3 Occupancy grid of the real environment. . . . . . . . . . . . . . . . 109
8.4 Map of the real environment. . . . . . . . . . . . . . . . . . . . . . 109
8.5 Comparison between the default mobile base collision region (a) and

the augmented one (b). . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.6 View of the known locations in the laboratory environment. . . . . 112
8.7 After the Communication Manager receives a request, it extracts

the first known location where it is possible to find the requested
item. In this case, the first place is the Dataset Location, hence its
coordinates are extracted and the control is demanded by the Base
Handler that computes a path to reach the target. . . . . . . . . . . 113

8.8 The LoCoBot reaches the target location. Here the object detection
task is executed, involving the Grasping Point Generator node to
compute the predictions using the trained YOLOv5 network. . . . . 113

8.9 Front and rear views of the camera movements during the searching
phase. In order to show the complete searching phase, the requested
item is a 3D-printed red gear that has been removed from any of
the corresponding known locations. . . . . . . . . . . . . . . . . . . 114

xiii



8.10 The requested object has not been found, The communication Man-
ager extracts the second known location, that is the General Location,
and its coordinates, and sends them again to the Mobile Handler. . 115

8.11 The General Location is reached and the object detection pipeline
starts again. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.12 The target item was not found either in the last known point. The
Communication Manager recognizes the termination condition of the
searching phase and requests a path to return to the Home Position. 116

8.13 The LoCoBot always starts from the Home Position, right next to
the desk of the human it is assisting. It is possible to notice how
the arm is retracted in order to not exceed the collision shape of the
mobile base, thus not generating unexpected collisions. . . . . . . . 117

8.14 After a request is received, the searching phase starts, and the
mobile manipulator goes to the first known location. Here the
Object detection phase starts, and if the requested item is present in
the current location, the LoCoBot Extended Planner node is called
to find a suitable trajectory to reach the pre-grasp pose. . . . . . . 118

8.15 Result of the object detection task. It is possible to observe the
bounding boxes computed and the predictions’ confidence. . . . . . 118

8.16 After the planner has found a suitable trajectory, the mobile base
final pose is extracted and assigned to the Base Handler node. As a
result, the mobile base is moved to a different position with respect
to the one where the object detection pipeline started. . . . . . . . 119

8.17 After the mobile base has reached the correct position, the trajectory
computed for the arm is executed and the pre-grasp pose is reached.
In this figure, it is possible to see the pre-grasp pose right above the
object and the gripper open. . . . . . . . . . . . . . . . . . . . . . . 119

8.18 Once the pre-grasp pose is reached, the Communication Manager
requests to the Arm Handler a plan to reach the grasp pose. When
in this pose, the gripper is closed to grasp the object. . . . . . . . . 120

8.19 After the object has been grasped, the Arm Handler plans a trajectory
to go back to the arm_default_pose. This latter pose reduces any
risk of collision with the humans, ensuring their safety. . . . . . . . 120

8.20 After the success of the grasp action, the mobile manipulator ap-
proaches the depot location to release the object. . . . . . . . . . . 121

8.21 Once there, the robotic arm reaches the placing position and the
gripper is opened. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.22 As last step, the arm goes back to the arm_secure_pose and the
LoCoBot will return to its Home position. . . . . . . . . . . . . . . 122

8.23 Interface through which the human operator can indicate the grasp-
ing point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

xiv



8.24 Visualization of the point clicked by the user (blue) and the real
grasping point that will be used (green). . . . . . . . . . . . . . . . 123

xv





Acronyms

AI
artificial intelligence

AMR
Autonomous Mobile Robots

API
Application Programming Interface

BB
Bounding Box

CHOMP
Covariant Hamiltonian optimization for motion planning

CML
Classical Machine Learning

CNN
Convolutional Neural Network

CSP
Cross Stage Partial

DOF
Degree of Freedom

EE
End Effector

xvii



EST
Expansive Search Tree

GA
Genetic Algorithm

GG-CNN
Generative Grasping CNN

GPU
Graphic Processing Unit

HRI
Human Robot Interface

IK
Inverse Kinematics

IML
Interactive Machine Learning

IoU
Intersection Over Union

IRRT*
Informed RRT*

mAP
Mean Average Precision

ML
Machine Learning

MPC
Model Predictive Control

NN
Neural Network

xviii



NUC
Next Unit of Computing

OMPL
Open Motion Planning Library

PRM
Probabilistic Roadmaps

PSO
Particle Swarm Optimization

QP
Quadratic Problem

R-CNN
Region-based Convolutional Neural Network

RL
Reinforcement Learnig

ROS
Robot Operating System

RRT
Rapidly-exploring Random Tree

RTAB-Map
Real-Time Appearance-Based Mapping

SGD
Stochastic Gradient Descent

SLAM
Simultaneous Localization And Mapping

SRDF
Semantic Robot Description

xix



STOMP
Stochastic Trajectory Optimization for Motion Planning

TEB
Timed Elastic Band

URDF
Universal Robot Description File

VSLAM
Visual-SLAM

YOLO
You Only Look Once

xx



Chapter 1

Introduction and Problem
Statement

During the last two decades, Robotics has attracted the attention and aroused
the interest of lots of people, not only researchers or experts, but also non-expert
people and curious. The spread and increasing fame of this young discipline is
entirely due to its naive purpose: robots have been designed and created with the
main aim of replacing humans in heavy work. Nowadays, robots can be found
in lots of places with different purposes, starting from facilities, where they are
employed in the production chains or to move products around, and ending with
houses and public places, where they are employed as service robots.

The increasing success and employment of different kinds of robots, especially
in the production field, can be found in their main advantages:

• versatility, meaning that they can be easily reprogrammed to be used in a
different part of the plant or to complete a different work;

• accuracy: they are able to complete a specified job with a precision way
higher than the one of a human worker;

• speed, since a process can be completed by a robot in much less time than
usual;

• robots can be used for repetitive jobs, increasing the quality of the work
done by humans.

Another important advantage of using robots is that they can be teleoperated:
they can be controlled remotely, allowing them to achieve an objective without
requiring a person to be in the same place. This aspect is particularly useful if we
think of all those dangerous situations where robots replace humans, increasing
the safety of the operator. From most recent years, it is possible to find robots
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employed also in the service field: they can be found while welcoming guests at
conferences, or as waiters in restaurants/hotels. Robots today are increasingly
being seen as humans’ assistants, helping them in different ways and for achieving
different objectives together. This is the reason why modern robots are way smaller
and built with materials and shapes suitable for the human-robot cooperation,
constituting the well-known Collaborative Robots.

As it is possible to understand from this brief description, robots nowadays are
used in a wide variety of fields and with lots of purpose. In order to respond to
this increase in request and usage, Robotic research field has grown and changed,
leading researchers to develop different solutions based on the specific usage of a
robot.

1.1 Type of robots
Since robots can be found in different scenarios, in order to better understand what
is their purpose and their working environment it is possible to group them into
three macro-groups:

1. industrial robots
2. mobile robots
3. service robots

1.1.1 Industrial Robots
Robots used in the industrial fields are mainly Robotic Manipulators. The most
usual aspect of a manipulator is the one of a Robotic Arm: essentially it is a
mechanical structure made of a sequence of rigid bodies called links, connected
together by means of joints; joints usually are the actuated parts of a manipulator,
so they are in charge of the relative motion between links and, indirectly, of
the entire robotic arm [1]. An example of a robotic manipulator can be seen in
Figure 1.1. Two main types of joints can be used to build the desired kinematic
configuration of the robot. Prismatic joints allow the traslation of one rigid link
with respect to a predefined direction of another, while Revolute joints allow the
relative rotation of the 2 connected links. Based on which joints are used and
with which orders, it is possible to build different kinematic chains. Each of them
is characterized by a number of Degree of Freedom (DOF), that can be seen as
the number of independent parameters or variables that determine the state or
configuration of the robot. Directly attached to the end of the manipulator by
means of a Mechanical Wrist it is possible to find the End Effector (EE): it is a
tool used by the robot for the specific purpose it is employed for. Several types of
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end effectors exist, and, usually, it is possible to change them in order to reuse the
robot.

Figure 1.1: Example of Robotic Manipulator [2].

These types of robots are characterized by high accuracy and speed and a high
repeatability rate, combined with the ability to deal with a wide variety of pay-
loads. Thanks to these benefits, robotic manipulators are used to complete lots of
operations in the production pipeline, like handling, welding, assembly, painting,
processing [3].

Together with the robotic arms and manipulators, another type of robots
belonging to the category of Industrial Robots are the Autonomous Mobile Robots
(AMR) (Figure 1.2).

Figure 1.2: Representation of AMRs and their applications.

They are used in lots of facilities to load, unload and move goods and products
from one location to another easily [4]. They are characterized by a large number

3



Introduction and Problem Statement

of sensors and a high degree of independence thanks to their ability of autonomous
localization and navigation. Moreover they are interconnected with each others,
allowing rerouting and path planning according to the position and path being
followed by others AMRs, or even collaborating to transport large objects [5].

1.1.2 Mobile Robots

Mobile robots are characterized by a mobile base that allow them to move inside
the environment where they are placed (terrestrial, aerial, underwater). They are
mainly exploited for all those jobs that require the ability of autonomous movement.
This skill is strongly connected to the capability of the robot to sense the external
environment, as well as all the internal component that constitute it. Indeed these
robots are characterized by a strong Sensing Subsystem: different sensors are neces-
sary to let the robot localize itself, build a map, perceive the obstacles and avoid them.

It is possible to distinguish two types of mobile robots based on the locomotion
system: wheeled robots (Figure 1.3a), where the mobile base can move thanks to
some actuated wheels, and legged robots (Figure. 1.3b), able to move thanks to the
alternate movement of 2 or more kinematics chains.

(a) (b)

Figure 1.3: Examples of both types of mobile robots.
(a)Wheeled Robot [6]. (b) Legged Robot [7]

1.1.3 Service Robots

Service Robots can be considered as part of the Advanced Robotics area. Giving
a precise definition of a Service Robot may result difficult, since there are several
application fields of these systems and the components characterizing them vary
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[8]. Following the most general definition, Service Robots are all those robots char-
acterized by a high level of automation that perform useful tasks for the humans
and collaborate with them.

A deeper classification has been proposed by the ISO 8373:2012. As it can be
seen from Figure 1.4, service robots can be further divided into 2 sub-classes: those
designed for personal use and others designed for professional use. To the first
class belong all the robots that are used to address everyday tasks, mainly in the
domestic and assistance field. Professional robots, instead, are all those robots
designed for a specific professional field and objective, and usually works as tool
used by professionals.

Figure 1.4: Classification proposed by ISO 8373:2012 for Service robots [8].

To the category of service robots it is possible to assign also the Mobile
Manipulators. They are characterized by a mobile base (driven by wheels,
tracks or legs) on top of which are mounted one or more robotics arms. The
contemporary presence of both a moving base and a manipulator gives to this type
of robot the characteristic mobility of mobile robots and the dexterity and agility of
manipulators. They are characterized also by high versatility and efficiency, making
them the perfect tool to complete pick-and-place and material handling tasks in
a large workspace, including a high level of security for other robots or humans.
Thanks to the fusion of all the advantages of the two main categories of robots,
mobile manipulators can be used as service robots for personal and professional
uses: they can be used in logistic and warehousing fields, since they can pick,
transport, and stack goods on shelves, in offices and houses, for education reason
or even space exploration. Mobile Manipulators also come with challenges, such as
control complexity, power management, and navigation in dynamic environments.
However, ongoing advancements in robotics and Artificial Intelligence (AI) continue
to improve their capabilities, making them more and more user-friendly.
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Figure 1.5: Example of a wheeled mobile manipulator [9].

1.2 Robots and AI
Robotics and AI are two closely connected research fields. The major scope in
which AI is involved in the Robotics fields includes vision, grasping, motion control,
fusing data coming from different sensors, making decisions and interacting with
people. Machine Learning (ML) techniques are used together with cameras to help
robots understand what they see, to recognize and treat unknown items. AI is also
used to improve the grasping performances of manipulators; lots of algorithms can
be found in literature that help the robots to understand the pose of a given object
in the 3D space, while others are able to control EEs with several DOFs, and some
of them have been trained exploiting Reinforcement Learning in order to emulate
the human approach to grasping [10].

A relatively new and interesting approach to ML in the Robotics research fields
is the Interactive Machine Learning (IML) [11]. IML represents a new way to train
ML algorithms by inserting humans in the training loop. How these algorithms
work can be easily understood by analyzing the main differences with respect
to classical machine learning approaches. In Classical Machine Learning (CML)
a human expert is responsible only of designing a suitable and efficient Neural
Network (NN), selecting a Data Set representative of the data that will be present
in the real application, choosing a suitable set of hyperparameters and learning
functions. The training loop is entirely responsible for extracting knowledge from
the data and examples provided: starting from a labeled or unlabeled samples
(Supervised ML / Unsupervised ML), by processing input data and applying a
training algorithm (usually based on the Gradient Descent), the NN learns how to
assign the correct meaning to the received input. It is possible to notice how in
CML humans are not part of the learning phase, in opposition to what happens
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during the learning phase of IML algorithms. Indeed in the latter type of ML
humans are part of the learning phase. They provide feedback that is useful to
select the best data and results and facilitate the learning phase by reducing the
amount of time needed to train the network and to reach the desired performances.
A simple diagram explaining how the training loop changes in IML can be seen in
Figure 1.6.

Figure 1.6: Interactive Machine Learning (IML) model [11].

1.3 Thesis Goal

The goal of this thesis is to expand the functionalities of an already-built Mobile
Manipulators so that it can serve as a smart assistant for humans and accomplish
the tasks of locating, recognizing, estimating the pose of an object, grasping it and
delivering it into a depot near the human operator that requested it. Together
with all these functionalities, the robot must be able to work in environments
shared with humans. This aspect adds another challenging layer, since the robot
must be able to identify the most dangerous parts of the requested objects and
grasp them in a way such to not hurt people around it while navigating. The
Mobile Manipulator must be able to perform recovery actions in case a major
failure happens so as to be able to complete the assigned task even in the case
of a non-catastrophic event. In order to exploit the last results coming from the
State of the Art, the control system for the mobile base and the robotic arm has
been designed considering them as a holistic system. The entire software structure
has been realized using the Robot Operating System (ROS) environment made of
packages that provide different functionalities, and using the typical structure built
on top of nodes, topics and services.
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1.3.1 Environment Description
The target environment is a Laboratory or a Warehouse, where mobile manipulators
can be used by humans to retrieve known objects needed to complete the task they
are working on without leaving their position. This environment is characterized by
static obstacles like walls, shelves and cabinets, and dynamic obstacles like people
and other mobile robots. In order to better reproduce their real use in such an
environment, some fixed positions have been defined; the robot is aware of these
predefined positions. Objects to pick-and-place are those that can be found in a
common laboratory and that do not violate the constraint on the maximum payload:
pens, scissors, screwdrivers, rulers and highlighters. The robot will construct and
store a map of the environment where it will move before being able to reach the
desired positions.

1.3.2 Requested Functionalities
The robot must be able to receive a request from the user through appropriate ROS
topics, localize the item inside the environment, pick it and place it in a proper
depot. It must evaluate the dangerousness of the requested item and identify its
most hazardous part. This latter task is achieved by exploiting a mechanism similar
to the one used in IML, with a human operator in the pipeline.

1.4 Thesis Structure
This thesis has a structure organized as follows. In Chapter 2 the state of the art
about the requested functionality will be analyzed. An overview of what is ROS,
its structure and a description of the used packages can be found in Chapter 3.
Chapter 4 contains a description of the Mobile Manipulator used, focusing on both
the hardware and software aspects. In Chapter 5, the structure of the software
developed is detailed, while Chapter 6 depicts a description of the Data Set used
and how it has been obtained. In Chapter 7, we are going to address the results
obtained in a simulated environment, while the results obtained with the real robot
will be discussed in Chapter 8. Finally, conclusions and future works can be found
in Chapter 9.
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State of the art

2.1 Recent Mobile Manipulator Applications

During the last years, several steps have taken to extend the capabilities of mo-
bile manipulators to let them collaborate with humans in increasingly complex
tasks. An interesting example of the application of such versatile robots can be
found in [12], where the authors developed a software architecture for a legged
mobile manipulator to work in a human-scaled kitchen shared with humans. This
environment is more challenging if compared to factories, because the latter can
be precisely designed to fit the robot’s needs, while kitchens, laboratories and
offices are designed taking into account the human’s needs. In order to successfully
work in such an environment, the robot must be able to handle articulated objects
and at the same time evaluate its constraints and those coming from the dynamic
environment. The proposed solution is articulated in two different stages: first, an
object-centric planner is exploited in order to understand which is the correct and
best way to interact with the item, then an agent-centric planner is used to account
all dynamics constraints while the interaction is taking place. The first planner
provides some proposal about the interaction with the object without considering
any information from the scene or from the robot itself: its aim is to find a suitable
interaction point and an EE path to follow. Starting from the information coming
from the RGB-D camera the robot constructs a 3D map of the environment in
order to have all the important information to plan. Regarding the agent-centric
planner, the authors propose a benchmark of methods to control the agent, and
most of them allow to control the entire robot simultaneously, so considering the
robot as a unique holistic system. The main technique used to control the robot
is based on Model Predictive Control (MPC): starting from the robot’s state and
the map, the algorithm solves an optimization problem that includes the robot’s
dynamics, joints and collision avoidance constraints in order to minimize the cost
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associated to the EE path through a cost function.

Another interesting application can be found in [13]. Here a mobile manipulator
was designed to work as a socially assistive robots in the health care field, working
in hospitals and domestic settings. It is able to interact with human patients
through different types of Human Robot Interfaces (HRIs) such as brain-signal-
based, eye-gazed and tangible interfaces. The main objective of the robot is to
ensure the blood bag matching during transfusions and general logistics assistance.
Regarding the first kind of task, the robot reads the NFC tag of the patient or
interacts with he/she through a tablet to ensure the correct match between blood
bags; it can also store vital parameters in the meantime. As a logistic assistant,
the robot carries tools and materials from one part of the hospital to another: this
ability can be particularly useful when the hospital faces an emergency. In order to
accomplish such challenging tasks, the mobile manipulator must be able to navigate
in cluttered scenes, avoid dynamic obstacles and interact with both people and
objects. To address these requirements, the authors employed an omnidirectional
mobile base named PAQUITOP. The omnidirectional wheels allow the motion
along any direction instantly, without any need of complex maneuver. On top of
the base it is possible to find a Kinova Gen3lite collaborative robotic arm [14]. It
is a 6 DOF manipulator specifically designed with materials and shapes suitable
for the human contact with a 2-fingered gripper used to grasp objects. It has
been located in an off-centered position to increase the success rate of operations
involving interaction with objects, and it also enhances the stability of the entire
system. This robotic arm is controlled using the manufacturer’s software framework
that is based on ROS. An RGB-D camera is mounted on top of the sixth arm link
and allows the robot to create a precise and detailed map of its surroundings. In
addition to the camera, the system comprises a 2D RPLidar. Data coming from
these two sensors are combined to solve the SLAM and the Visual-SLAM problem
(VSLAM). To move in cluttered scenarios it is crucial to solve the obstacle detection
problem. Researchers inserted some proximity sensors to enrich the data already
available from the map. ROS is then used to combine all data coming from all
the sensors, manage the motion planning and handle specific requests from the users.

From these two papers, it is possible to notice how the robotic research field is
increasingly considering mobile manipulators as effective human assistants. Crucial
is the use of a suitable set of sensors that allow the robot to correctly sense the
environment to avoid collision and, more importantly, to not hurt people. Also
evident is the use of ROS as middleware used to construct the software architecture,
thanks to its distinctive expandability by means of all available packages.
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2.2 Arm and Base Motion Planning
In this section, a review about the strategies and algorithms currently composing
the state of the art for path and motion planning of the arm and base is provided.
First of all, it is important to understand which is the difference between path
planning and motion planning. Path planning purely aims at finding a geometric
path to be followed by a representative point of the robot (i.e. the center of the
mobile base or the EE of the robotic arm) that satisfies some constraints, including
obstacle avoidance and kinematic constraints coming from the robot structure. As
a result, the computed path usually is a function of a scalar variable s ranging
from 0 to 1 providing the percentage of the path that has been completed; no
time-related variables are considered. Instead, motion planning extends the planned
path including the time evolution of all kinematic variables that describe the motion
of the representative point, such as velocity and acceleration.

Before entering into the details of the state-of-the-art planners, it is important
to define what this planner controls and which variables are affected. Essentially,
path and motion planners design the evolution of the variables describing the state
of both the arm and the base; path planners decide which value each variable must
assume at a given point of the path, while motion planner better expresses the time
evolution of these variables that are related to the kinematic laws. The state of
the robotic arm is usually described by a set of real values representing the joint’s
angle. So, if an arm is made of n + 1 links and n joints, its state can be expressed
as:

qa = (θ1, θ2, ..., θn), (2.1)

where each θi, i ∈ [1, n] is the joint angle value assumed by the i-th joint. In a
similar way, the state of the mobile base that moves in a 2D space is described by
a set of 3 variables:

qb = (x, y, δ), (2.2)

where (x, y) are the coordinates of a representative point of the base with respect
to a fixed reference frame, while δ is the orientation of the base with respect to
the z-axis of this frame. Since a mobile manipulator is composed by a manipulator
located on top of a mobile base, its complete state q can be expressed as:

q = (x, y, δ, θ1, θ2, ..., θn) (2.3)

Depending on how the mobile manipulation is treated, it is possible to group
the planning algorithms in two classes:

• two subsystems-separate planners: in this type of algorithm, the ma-
nipulator and the mobile base are treated as two separate and independent
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systems, so a specific planner is used for the arm and another one is used for
the mobile base.

• holistic planners: these algorithms consider the mobile manipulator as a
unique system, planning for both the arm and the base simultaneously; the
base’s DOFs are considered an extension to those of the arm, introducing a
layer of redundancy.

2.2.1 Independent Planners
The advantage of using two different planners, one for the mobile base and the
other for the manipulator, is that the complete movement can be decoupled and
divided into two sub-tasks [15]. Using this approach, it is easier to debug and
understand which problem occurs and on which sub-module, but the position to
be reached by the mobile base such that the goal pose of the EE belongs to the
manipulator’s workspace must be prerecorded [16, 17], or computed separately,
exploiting the knowledge about how the robot is made.

Figure 2.1 represents how the complete motion planning pipeline is divided when
using two separate planners. It is possible to distinguish three separate phases:

1. definition of the EE and the mobile base goals (Figure 2.1a);
2. motion planning and movement of the mobile base (arm is kept stationary)

(Figure 2.1b);
3. motion planning and movement of the manipulator (base keeps its pose)

(Figure 2.1c).

In the following sections, a summary about the main algorithms used as planners
for the mobile base and the manipulator is provided.

Mobile Base Planners

One of the oldest yet the most used path planning algorithm for mobile bases is
the well-known Dijkstra’s algorithm [18]. It allows us to find the shortest path
connecting two nodes, source and destination, or the source node and all the
other nodes in a (weighted) graph. This algorithm is often used as global planner
[17],[19],[20]. Here the algorithm is used as a high-level algorithm to find a path
connecting the base’s starting and ending poses, only considering the free space:
free space is divided into cells of predefined size, and each cell’s corner constitutes
a node in the graph. The global planner usually does not consider the space
occupation of the base, instead represents it as a point; to avoid collisions with
other obstacles, it is used a local planner that, considering the mobile base volume,
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(a)

(b)

(c)

Figure 2.1: Illustration of the two subsystems-separate planner motion planning

tries to follow the path designed by the global planner adapting it to the shape of
the encountered obstacles.

Another famous algorithm used as a global planner is A* [21]. It is an informed
search algorithm similar to Dijkstra (it works on a weighted graph), but its evolution
is driven by a heuristic function: at each iteration, the function is computed for all
nodes, and the one with minimum values is further explored. This heuristic cost
function usually has the following expression:

f(n) = g(n) + h(n), (2.4)

where f(n) is the value computed for node n, g(n) is the cost currently known
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to reach node n from the start node, and h(n) is the true heuristic function that
estimates the cost to reach the destination starting from node n. A* algorithm is
again commonly used as global planner [20], [22], [23]. Some extended version of
the A* algorithm exists: in [24], authors used the Anytime Repairing A* (ARA*)
algorithm [25]. It is an evolution of the A* algorithm, based on heuristic functions,
designed to quickly find the shortest path between two nodes; at each iteration, it
refines the computed path using the last information acquired.

In [16] and [26], the motion planning for the mobile base is achieved using a
Rapidly-exploring Random Tree (RRT) algorithm [27]. The key idea behind this
algorithm is to build a tree covering the free space by collecting some random
samples. At each iteration a random sample qb,rand representing a possible pose for
the mobile base is computed and, if it belongs to the free space (that is if it does not
lead the robot into a collision state) it is added to the current tree. The algorithm
searches for the nearest node already belonging to the tree qb,nearest inside a region
(usually a circle or a sphere) defined by a parameter ρ: if this node exists, then the
qb,rand is connected to qb,nearest, otherwise the farthest point qb,new from qb,nearest

along the line connecting qb,nearest and qb,rand is added to the tree. The algorithm
continues until qb,goal is added to the tree or when the time limit is reached; in this
latter case one last attempt to connect qb,goal is done. The advantage of this type of
algorithm is that the tree can be further expanded at each use. Several extensions
and evolutions of this algorithm have been proposed during the years. RRT* used
in [28] optimizes the tree structure in order to obtain a balanced trade-off between
the exploration and exploitation of the tree, while Informed RRT* (IRRT*) adds
to RRT* some heuristics to better guide the algorithm evolution. RRT-Connect
in [26], [29] and [30] has been specifically designed to build and simultaneously
update two separate trees until they connect.

In recent years another type of algorithm started spreading. They all belong
to the class of the Genetic Algorithms (GAs). They have been designed taking
inspiration from the natural selection governing nature. At each iteration, a new
population of possible solutions is created, and the "chromosome" (a possible
solution) with the best characteristics, defined by some evaluation functions, is
chosen to generate a new population. In this way, at each step the algorithm
refines the solution, converging to the (sub)optimal one. Applications of this type
of algorithm as mobile robot planners can be found in [31] and [32].

With the latest advances made in the AI fields, some researchers started using
these models to drive some mobile robots, like in [33]. In particular Reinforcement
Learning (RL) techniques have been used to train the model. They are based
on rewards and penalties: the robot interacts with the environment and these
interactions affect the environment; based on how it changes and on some other
rules defined by the programmer, a reward or a penalty is generated. This method
can be very useful in particular when the task to accomplish is very complex, but
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usually the result is not robust, because of the unstable nature of the algorithm.

Manipulator Planners

Regarding the manipulator trajectory and motion planning, there are several meth-
ods developed during the last two decades for industrial manipulators. Common
solutions for robot manipulators in the industrial fields make use of algorithms
based on the solution of the Inverse Kinematics (IK) problem: it requires to
determine the joint angles or positions needed to reach a desired end-effector pose.
The solution found, together with the initial joint states, can be used to generate a
path and subsequently a trajectory in the joint state space. The IK problem can
be really difficult to solve, especially if the number of joints increases. Moreover,
the presence of revolute joints further complicates the problem solution: in robots
built only using prismatic joints there’s a one-to-one correspondence between joints
values and cartesian coordinates, but this correspondence begins to break down
as revolute joints are introduced until it is completely lost in manipulator robots
made entirely using this joints. The procedure used to solve the inverse kinematics
also depends on the joint’s position and links characteristics, and an analytical
solution is not always found. Although solving this problem is not so easy and
may require a lot of resources, several solutions are based on it. In recent years,
some steps have been taken in order to improve its resolution. In [34] the authors
proposed several algorithms to speed up the process using both analytical and
numerical methods. Thread level parallelism and the Particle Swarm Optimization
(PSO) are used in [35] to reduce the time cost of the algorithm needed to find a
solution. PSO is a technique inspired by the natural movement of some animals
like birds or fish: each particle (potential solution) moves in the solution search
space by adjusting its position and velocity, exploiting its personal best and the
one found globally by all particles together.

More recent developments in the RL field led to apply this learning method to
control the motion of a robotic manipulator as well as mobile robots. Some methods
to train such a model are presented in [36], but their performances and stability
suggest that this approach is still far from being adopted for real-world applications.

Although it is possible to adapt these solutions to the robotic arms on mobile
manipulators, not many of them have actually been tested on this type of robot. On
the contrary, methods like the RRT one and its variant are largely used and have
been tested on mobile manipulators. In [19] and [20], the RRT-Connect algorithm
has been used to plan the motion of the robotic arm, because of its efficiency and
the possibility of including some collision avoidance constraints and to use it in
real-time control loops. Other algorithms used to plan the motion of the arm, as
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well as the mobile base, are all those belonging to the class of GAs. In [37] authors
used a Self-Adjust GA to control the continuous motion of the EE by calculating
the intermediate configurations for the given trajectory; this algorithm is able to
tune its own parameters during the optimization phase to find a near-optimal
solution and to converge faster.

Several solutions make use of some pre-built framework available in ROS like the
Open Motion Planning Library (OMPL) [38], Stochastic Trajectory Optimization
for Motion Planning (STOMP) [39] and the Covariant Hamiltonian optimization
for motion planning (CHOMP) [40] libraries. They are often used through the
MoveIt! package because of their effectiveness and their ease of use and integration
with the most commonly used sensors.

Holistic Planners

Separately planning for a mobile base a manipulator is convenient, but using two
independent planners leads to sub-optimal plans: combining the optimal plan for
the mobile base and the optimal one for the manipulator does not necessarily lead
to a global optimal solution for the entire robot. To overcome this problem, it is
possible to consider a mobile manipulator as a high DOF system. This allows us to
obtain an optimal plan for both the base and the arm that can move simultaneously,
thus reaching the mobile base goal and the ones of the manipulator at the same time
instant, as shown in Figure 2.2. This way the movement is more fluid, harmonious
and natural. The downside of planning considering the whole system at once is the
computational complexity and time required to investigate the state space searching
for a feasible solution, which means checking for collisions in an augmented state
space.

Despite the larger complexity of this planning method, several searchers used it
in their studies. In [41] and [42], the authors explicitly computed the free space in
which the robot moves and then, by sampling it, computed the desired goal pose
of the mobile manipulators. Explicitly computing the free space representation is
computationally expensive and it also requires to be updated for any changes in
the environment. For this reason, this method is not suitable for highly dynamic
environments.

In [29], path planning is considered as a trajectory optimization problem to be
solved using the CHOMP library. The developed holistic planner is based on a
gradient descent algorithm that tries to minimize a cost function, accounting for
both path smoothness and collision avoidance to transform a simple trajectory in a
collision-free executable path.

The STOMP planner is presented in [39] and it has been tested on the Willow
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Figure 2.2: Visualization of the motion obtained using a holistic planner.

Garage PR2 mobile manipulators. This planner is based on a derivative-free stochas-
tic optimization technique that refines some initial trajectories, while minimizing a
cost function that includes both collision avoidance and EE pose constraints.

Sampling-base planners like RRT and its variants, Probabilistic Roadmaps (PRM)
[43] and Expansive Space Tree (EST) [44] algorithms are also commonly used [45],
[46].

Peter Corke et al. in [47] proposed a novel optimization-centered planner based
on the solution of a Quadratic Problem (QP) to maximize arm dexterity and to
obtain fast, smooth and graceful movements. A more natural motion is achieved
by considering a 9 DOF system (6 DOFs from the arm, 3 DOFs from the mobile
base), where the mobile base is not used only to position the robot manipulator,
but it is taken into account also while performing pre-grasp and grasp operations.
The algorithm takes as input the desired end-effector pose with respect to the
mobile base reference system, converts it into a spatial displacement and exploits
differential inverse kinematic to obtain the desired joint-speed, both real and virtual
(virtual joints are then converted in speed to be applied by the base’s wheels using
the kinematic model of the base). The important aspect of this controller is that
final joint speed references are computed as a result of a Quadratic Program. The
objective function of QP takes into account the joint velocity and the manipulability,
trying to minimize the first while maximizing the latter. Moreover, constraints
formulation takes into account joints’ position limits and their minimum-maximum
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joint velocities. A major issue of the discussed approach is that the motion planner
is used in an open-loop fashion: planning and moving phases strongly rely on the
initial estimation of the real-world environment and on the ability of the robot to
follow the designed path. This aspect makes the approaches of this type not usable
in dynamically changing environments.

2.3 Object detection and 3D pose estimation

Object detection is a crucial task for a mobile manipulator that has to work as a
smart human assistant: the ability to recognize and classify surrounding items is
fundamental to correctly address the request of a human. Some tasks also require
to understand what parts an object is made of and which actions can be performed
with a single part. These requirements can be addressed using some Semantic
Segmentation algorithm on top of which a further logic is built to link together
parts and actions. Moreover, the robot must be able to understand the position
and orientation of the object in the 3D world to correctly grasp and handle the
requested item: this is why 3D pose estimation is also needed. Nowadays all
these tasks are mostly accomplished using AI and ML models that take images or
even videos as the input source. An overview of the main algorithms is proposed
hereafter.

2.3.1 Object detection and semantic segmentation

Several works and papers have been proposed in the research field of object
recognition and semantic segmentation; their analysis shows how many steps have
been done in order to make the used models more and more lightweight and usable
on computers with low-performance resources. A first classification can be done
by considering how the input images are treated before extracting some useful
knowledge from them. To the first category, called Two-stages detectors, belong
all the models that pre-process an image to generate region proposals, that are
regions on which the detector has to focus to find known objects; an example of
a two-stage detector’s architecture can be seen in Figure 2.3. On the contrary,
Single-stage detectors are able to extract knowledge from the inputs in a single shot,
without pre-processing the image or focusing on specific parts of it (Figure 2.4).
Nearly all the models belonging to both the categories are based on Convolutional
Neural Networks (CNNs): they are characterized by convolutional layers made of
weights arranged in matrices where information carried into pixels is combined and
elaborated.
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Figure 2.3: R-CNN architecture, one of the first two-stage detectors [48].

Figure 2.4: Internal architecture of YOLO, a single-stage detector [48].

Two-stages detectors

One of the first models belonging to this category is the Region-based CNN (R-CNN)
[49]; its success is related to having demonstrated that convolutional layers are
very effective in object detection tasks. The input image is first passed through the
region-proposal module, then all the parts it found are elaborated by a CNN that
computes a 4096-dimension vector for each proposal using the one-hot encoding.
Training this network could be very hard: first, the CNN is trained using a
classification dataset, then it is fine-tuned to be applied to the specific task and to
work on the region extracted by the region proposal algorithm.

To solve this latter difficulty, a new model called Fast R-CNN [50] has been
proposed. This NN can be trained following an end-to-end approach. Although
the architecture is quite similar to the one of R-CNN, Fast R-CNN presents some
improvements regarding the computational speed. A further improvement has been
done by presenting the Faster R-CNN. The main difference with respect to its
predecessor is that the region proposal module is way faster, so the overall time
required to compute all the predictions has been reduced.

Faster R-CNN has been further improved, giving birth to the Mask R-CNN
model [51]. It extends Faster R-CNN by adding a mask prediction branch to not
only detect objects but also precisely outline their shapes in images, making it a
powerful tool for tasks like image segmentation besides object recognition. Some

19



State of the art

recent applications of this model can be found in [52–54].
Among the state-of-the-art models, there are also the ResNet and its variants

[55]: they are fully convolutional NNs that make use of residual block and skip
connections to propagate low-level information to a deeper layer. An example of
its application can be found in [56].

One-stage detectors

VGG model [57] and its variants have been used for several years to address
the tasks of image detection and segmentation. They are CNNs characterized
by small filters (convolutional layers) that make them easy to understand and
use. Despite their ease of use, VGG networks can be very deep and with a high
number of parameters, and this results in slowness of prediction. Moreover, these
types of networks are difficult to train form scratch, and easily overfit on small
datasets. Their overall performances in terms of accuracy and time needed have
been outlasted by more recent works.

A surprisingly high-performance model was the You Only Look Once (YOLO)
network [58]. It gained widespread popularity in the computer vision field thanks
to its high accuracy and fast predictions. In particular, the short time required to
compute a prediction leads to the use this network in real-time algorithms [59] or
inside feedback control loop like robotic visual servoing [60]. The reasons behind
such a high-speed performance are related to the fact that the entire image is
processed only one time, and as a direct result, the network can provide labels for
the entire image, bounding boxes and the label associated with the object inside
of them, semantic regions of interest and their meaning. Such a versatile NN led
researchers to further investigate its potential, and as a result of this several variants
have been developed. YOLOv3, YOLOv4 and YOLOv5 nowadays represent the
state-of-the-art networks used in the computer vision research field and are being
used also in industrial products by several companies.

2.3.2 3D pose estimation techniques
The problem of 3D pose estimation refers to the task of determining the position
and orientation of an object in a given scene. It is an important task to face in
several search fields, like autonomous driving, augmented reality and above all
in robotics. To better grasp and manipulate objects robots must perceive them
completely, that is determining where an item is positioned, how it is oriented
and the amount of space it occupies. Several methods are based on AI and ML
models. As illustrated in [61], several 3D detection methods are actually 2D-driven:
they use 2D detectors like R-CNN, Fast R-CNN and YOLO to compute the 2D
bounding box of an object, and then this information is lifted to the 3D space using
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data coming from sensors about the depth. Also, those detectors able to directly
generate 3D poses are built on top of them, so their performance is strongly related
to those of the 2D predictor.

2.4 Grasp pose generation
Grasp pose generation is a fundamental task in robotics, especially in all those
applications where a robot has to manipulate some objects by means of one or
more arms. The final goal of the grasp generation task is to find a complete pose
for the robot’s end-effector in order to properly grasp an item. Different approaches
to this problem can be found in literature, but some of the most recent ones make
use of NNs to possibly generate the best grasping pose.

In the literature, it is possible to find several papers where the task of grasping
an object is solved by adapting CNNs designed for object recognition, and in most
cases, they sample and rank a set of possible candidates. This usually results in
very complex networks with a very high number of parameters and requiring a
computational time ranging from couples to tens of seconds. The slow response
time leads to treat the simple grasping problem as an open-loop problem.

In [62], authors exploited the advantages of a custom CNN to face this task and
to overcome the slowness of other adapted methods. They built a Generative
Grasping CNN (GG-CNN), whose main purpose is to directly generate possibly
the best grasping pose, starting from images collected by an RGB-D camera.
The most important result is the size of the final GG-CNN: it has about 60.000
parameters and the entire grasping pipeline needs 16 ms to perform a grasping
action. The goal pose has the z-axis oriented along the z-axis of the object to grasp.
The designed GG-CNN takes as input the RGB-D image of the object to grasp
and outputs a grasping map. Each pixel of this grasping map contains 3 key values
that characterize the corresponding grasp pose:

1. ϕ is the gripper’s rotation angle around the z-axis of the camera’s reference
frame;

2. w is the gripper width: it indicates how much the gripper must be opened to
complete the grasping of a given part of the object;

3. q indicates the probability of completing the grasping task successfully by
using that pose.

The best pose in the camera reference frame is then retrieved considering the posi-
tion (u, v) of the pixel with the highest value of q. From this brief description, it is
possible to understand how a GG-CNN is used as a mapping function M that maps

21



State of the art

the RGB-D image I to the grasping-map G. Figure 2.5 shows a visualization of the
input and output obtained using this GG-CNN, while Figure 2.6 depicts the com-
plete pipeline developed to convert an RGB-D image into a grasp pose using a CNN.

Figure 2.5: Left: visualization of the goal grasping pose. Right: best grasping
pose found on the depth image and its parameters [62].

Figure 2.6: Full pipeline of grasping pose estimation [62].

Other works face the task of finding a suitable end-effector grasp pose by
conditioning the grasping task to the action that must be carried out. This particular
task is known as Robotic Object Affordance, and it is based on understanding the
functional parts of an object. Several solutions that can be found in the literature
are based on CNNs, which takes images or point clouds representing the scene
inside which the object to grasp is present.

Paper [63] describes a method used not only to predict the functional part
of an object, but also which is the best interaction point to complete a given
task. Authors proposed a NN that uses both 2D images and 3D models of objects
to interact with: images contain a representation of a human interacting with a
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given object and each of them has a label indicating which kind of task is being
fulfilled. The training phase of this network aims to reproduce a sort of learning by
demonstration where images constitute the representation from which the robot
has to learn.

In [64], a new grasp pose generation algorithm is proposed. It studies the
synergy between picking and placing of an object in a cluttered scene to develop an
algorithm for task-aware grasp estimation. With task-aware grasp estimation, the
authors mean that how the object is grasped depends on placement conditions, and
such that the object can be placed in the most convenient way for future grasps.
First, the RGB-D camera mounted on the wrist of the robotic arm collects a series
of images to reconstruct a 3D render of the placement scene, by means of a series
of 3D convolutional layers, and then a single depth image of the object to grasp
is collected in order to reconstruct a 3D model of it. This information is then
cross-correlated to produce an affordance placement map. The manipulator pick
pose is obtained using a function determined through a reinforcement learning
process, but the authors specifically designed it starting from the object position
in the scene, in order to avoid problems that could occur during the training
phase. Despite the high accuracy and success rate obtained, this method is really
time-consuming, because of the number of depth images that have to be collected
for scene reconstruction before each grasping task.

2.5 Interactive machine learning
Several ML techniques require the supervision of humans to build datasets and
to organize the prior knowledge used by models to learn how to complete a given
task. A novel way of training AI algorithms involves humans to directly supervise
and filter the information that are being learned: this human-in-the-loop approach
is known as Interactive Machine Learning (IML) [11]. IML can be used in the
robotic field in different ways. One of the most used is the so-called learning
by demonstration: a robot observes the actions of a human operator and learns
how to replicate them, or a human controls the robot to instruct it to complete
a specific task and the robot progressively learns how to work autonomously. A
better understanding of how this complex task can be achieved together with some
applications can be found in [65].
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Chapter 3

ROS state-of-the-art

Robot Operating System (ROS) is the most used middleware for robotic applications
in both the academic researche and industrial fields. It is an open-source framework
rich of drivers, libraries and packages implementing state-of-the-art algorithms [66].
New developers can count on detailed documentation and a large community with
which to discuss problems or new solutions. ROS can be used for several robotic
applications, like indoor, outdoor, automotive and space exploration. Also, it is
available for different platforms ranging from Linux to Windows and macOS and
even some embedded platforms.

Another important characteristic of ROS is that the software can be easily devel-
oped to run on a single computer or multiple computers at the same time without
having to implement many changes. This is essentially due to its architecture:
it is sufficient for two computers to be connected to the same network to share
information and data.

The goal of this chapter is to analyze software developed using ROS works and
to provide the main information about the packages available for solving specific
tasks.

3.1 ROS project structure
One of the basic features of ROS is that the same installation and packages can
be used for multiple projects. Indeed, it is possible to create several projects
and select the desired one just by sourcing its configuration file. The projects’
independence and isolation are granted by building a workspace for each project:
a ROS workspace is a directory where custom packages, configurations files and
high-level code are contained. It is organized following a specific structure: the
src folder contains all packages and code needed, the devel folder is where are
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located all files generated after building the project, and the build stores some
intermediate-build files. Other folders, like the log one, can appear in a ROS
workspace, depending on how it is built.

3.1.1 Main components
The most interesting thing about using ROS on a real robot is how the entire code
structure is organized to deal with each module that constitutes the system. The
main components of any ROS software architecture are nodes, topics and services.

Nodes

A ROS node is a running process specifically designed to address a task. Usually, a
robot control system is made of several nodes that are part of a communication
graph: each node provides a specific Application Programming Interface (API)
thanks to which communications take place. All these nodes are meant to operate
at a fine-grained scale, meaning that each of them has been thought to face a given
task or control a specific part of the robot.

Each node is uniquely identified thanks to its graph resource name. It is also
possible to create a new node in a hidden state, by adding a string randomly
generated every time the node is created; in this way, it is not possible to know the
specific name. ROS nodes are also characterized by a node type that essentially
corresponds to the name of the executable file associated with the running process;
node types are specified within each ROS package and identified by their names.

The use of ROS nodes provides several advantages if compared with monolithic
codes:

• any problem or crash can be detected and located more quickly:
• code complexity is reduced and it is also possible to change implementations

easily;
• node’s details can be hidden thanks to the interface each node provides.

Messages

The simplest data that two nodes can exchange by means of the ROS communica-
tion graph is a ROS message. ROS messages simply are data structures comprising
from one to several fields of different types. They can be identified by their message
type: it defines the fields composing the message, their types, names and meaning.
Usually, each package specifies its own message type that can also be used as field
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types by the developer to create its own custom type; both standard and custom
message types are defined in msg files, which are simple texts files with the .msg
extension.

To ensure data integrity and compatibility, every time a node sends a message
to another one, it adds a hash code called MD5 that represents the type of the
message. A message is correctly sent only if both the sender and the receiver have
the same MD5.

Topics

ROS topics can be seen as the roads on which messages run from one node to an-
other. They have been designed to work following an anonymous publish/subscribe
semantics: usually, nodes do not need to know who they are communicating with,
they only care about the type of operation to request or they have to execute. For
this reason, a node that wants to send a message to another one has to publish
onto a given topic, while the receiver has to subscribe to the same one. Each topic
can have multiple publishers and subscribers, and a node can act as both of them.

A topic is uniquely identified by means of its name. They are created as soon
as a node expresses its will to subscribe to or to publish onto it, but differently
from nodes, topics cannot be created in a hidden state (anonymously). Topics
are characterized by a specific topic type that corresponds to the type of message
exchanged through it.

Regarding the distributed structure of ROS, topics constitute a way of exchanging
messages between nodes running on different computers, thanks to TCP/IP-based
and UDP-based connections.

Services

The publish/subscribe mechanism provided by means of topics is a flexible and
easy-to-use paradigm, but it is not appropriate for all the interactions that are
generated by sending a request and for which a reply is expected. This common
type of interaction is supported in ROS by means of a service. Services in ROS
are defined by a pair of messages, one for the request and one for the reply. The
request/reply mechanism through services involves a provider and a client:

1. the provider is the node that offers the service and, as a callback to the receipt
of a request, sends the reply;

2. the client is the node that sends the request to the service whose name it
knows, and waits for the reply to be sent back.
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ROS services are used for all those tasks where the client node needs feedback
on the requested action to understand how to proceed, but not only. Another
typical application is to retrieve data that are continuously published on a specific
topic: subscribing to such a topic would mean executing the callback repeatedly,
without the possibility to make any other computation. A solution to this problem
is to design a node that subscribes to the continuously updated topic and manages
the data stream, and in the meanwhile offers a request/reply mechanism by means
of a service. In this way, all nodes that need to retrieve data in a specific time
instant can send a request to this node and wait for the reply.

Master node

The Master Node is maybe the most important node of a ROS project, and for
this reason, it is the first one to be created when the code starts. It provides
naming and registration services to the rest of the nodes in the ROS system, tracks
publishers and subscribers to topics and services, and it builds the ROS Parameter
Server. Essentially, it is in charge of enabling each node to find one another and of
establishing communication among all the nodes.

Parameter Server

The ROS Parameter Server is a dictionary shared with all the nodes and resources.
It is used to store and retrieve parameters at runtime. It is mainly used to store
static data, such as configuration parameters and robot’s details.

3.2 Working in simulation
Every time a new robotic project has to start, one of the phases a developer has to
face is the simulation of the expected environment and of the robot’s behaviour.
Working in a simulated environment has several advantages: first of all, the robot
may be not available to conduct experiments directly on it, so simulating its be-
haviour is the only chance, but even in cases where it is possible to use the real
robot there are lots of reasons to conduct preliminary experiments in simulation.
Robotics often require to use and test robots one is not familiar with, resulting in a
not well-controlled system that can be dangerous; simulating the robot’s behaviour
allows one to understand how it operates, which are its characteristics and limits
improving safety. It is also possible to build a controlled environment to investigate
how a given robotic system reacts to it and how it could be possible to improve it
to face new challenges. Simulation is also used for its rapid response to any kind of
change: it is possible to quickly test different configurations, collect the results and
make decision on what to do next, and this fast iteration helps to find the best
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solution in a shorter time.

Because of its importance, ROS provides some useful tools to build a simulated
and controlled environment to see how the robot behaves in it. In addition, it is
also possible to understand how the robot perceives the environment and which is
the knowledge extracted from it.

3.2.1 Gazebo

Gazebo [67] is the most used robotic simulator. It allows us to create a complete
and complex 3D world and to simulate the dynamics of different robots and their
interaction with the environment. Figure 3.1 shows a simulated warehouse created
with Gazebo. It appears clear how it is possible to insert any kind of object in it
together with one or more robots.

Figure 3.1: Simulated warehouse in created in Gazebo [67].

Gazebo uses physics engines, such as Open Dynamics Engine and Bullet, to
simulate the physical behavior of objects and robots. This allows for accurate
modeling of robot dynamics and interactions with the environment. It also sup-
ports various sensors, including cameras, LiDAR, IMUs, and more, and they are
simulated within the environment, providing sensor data as if they were mounted
on a physical robot. Several plugins are available and can be used to extend the
simulation environment and to obtain a more realistic behaviour.

Gazebo’s fame is mainly due to its integration with ROS: nodes can access
simulated resources and data as they would do on the real robot. This aspect leads
to easily use algorithms and complex solutions tested in simulation on the physical
system.
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3.2.2 Rviz
Rviz [68] is a 3D visualization environment that displays what a robot is seeing,
thinking and doing; exactly understanding how the robot is perceiving the world
allows to faster up the the debuggin process and solve problems. This powerful
tool supports a lot of sensors like cameras, LiDARs, laser scans and others and
allows to analyze all the data by means of specialized monitors and to customize
how data are visualized thanks to their settings.

Figure 3.2: Example of the Rviz interface used to interact with a robotic arm
[69].

Thanks to all the plugins and ROS packages supported, Rviz allows to under-
stand how the robot intends to solve a given task. For instance, the presence of
visualization markers in the form of arrows and lines led different motion planning
researchers to use them to show goals, poses and even trajectories followed to
accomplish the motion task. Even the navigation stack can be easily understood,
thanks to the possibility of displaying costmaps and dynamically-updated paths
followed by mobile robots, as it is possible to see in Figure 3.3.

3.3 Perception and localization
The capability of understanding how the surrounding world is made is crucial for a
robot, especially for mobile robots that have to move within this world. Moreover,
to properly navigate a robot has to understand its positions with respect to a
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Figure 3.3: Rviz interface for the costmap used by a mobile manipulator to
navigate.

reference frame. For these reasons, some ROS packages to map and create different
representations of the environment are available.

3.3.1 Octomap
Regarding the environmental perception, one of the best tools available in ROS
package is Octomap [70]. It is used to create a 3D occupancy grid such that
the robot can use it to address the collision avoidance problem. Each voxel (3D
generalization of the well-known pixel in the 2D domain) of the 3D occupancy grid
can be free, occupied or unknown: if any point of the robot touches any of the
occupied voxels then a collision takes place, while unknown voxels can be used for
autonomous space exploration.

Occupancy grids created using Octomap (Figure 3.4) are based on the octree
data structure: it is an efficient data structure that partitions the 3D space into
hierarchical subdivisions, similar to a binary tree but in three dimensions. They
are updatable, meaning that every time the occupancy grid is used it is possible to
add new information or correct previous ones. Updating is done in a probabilistic
fashion such as to deal with measurements noise and dynamic changes or obstacles.
Grids created with Octomap are characterized by different resolutions, meaning
that the number of voxels used to represent a portion of the space may change;
a high-level planner could use a coarse map to speed up the planning, while a
local planner uses a finer one. The most interesting feature of Octomap is that all
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Figure 3.4: Occupancy grid of the experimental environment created using
Octomap.

generated grids can be expanded by several robots at the same time and lots of
motion planners can use them in order to directly generate collision-free paths.

3.3.2 RTAB-Map
RTAB-Map [71], an acronym that stands for Real-Time Appeareance-Based Map-
ping, is a well-known package widely used to solve the Simultaneous Localization
and Mapping (SLAM) problem. It creates a precise map of the environment while
the robot is moving. The generated map itself is then used to understand the exact
position of the mobile robot, to determine the position of obstacles and hence pos-
sible and forbidden points that can or cannot be reached. On top of the generated
map, planners work to find the most suitable path that satisfies a given set of criteria.

This package exploits an approach based on the similarity that can be noticed
between different images coming from the scene: they are used to feed a global
Bayesian loop-closure detection algorithm that incrementally expands and refines
the map created. The main focus of this loop-closure detection is to find out how
likely a new image comes from a previously seen scene or from a totally new one.
Similarity detection is based on globally saving a set of core features, called bag
of words, coming from every already processed image in order to compare them
with those coming from new frames. According to the update frequency of the
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loop-closure detection algorithm, a new hypothesis is formulated to understand
whether the image describes a completely new scene or not: core elements are
analyzed and a decision is taken. If a new area is discovered, a new set of core
elements is stored and will be used later together with the others.

Loop-closure is fundamental to solve the SLAM problem: algorithms like the
one used by RTAB-Map essentially refine information coming from the odometry of
the robot using information coming directly from the world to correct the intrinsic
error of the robot actuators. The key ideas of loop-closure algorithms is to explore
a new area, compute the position of the robot based on the odometry and then
correct the error accumulated by looking at a previously visited location. Thanks
to this redundant analysis it is possible to retrieve the scene’s known bag of words
(set of elements characterizing that scene) and by analyzing their detected positions
it is possible to correctly localize the robot.

Regarding RTAB-Map, loop-closure is also used to refine and clean the map
while the robot moves. This is necessary because of the probabilistic nature of the
algorithm behind this package. Data coming from RGB-D or RGB camera and
Lidars are used to classify each point in the 3D world, where the robot moves, as
free or occupied, following a Bayesian procedure. As a result of this procedure,
map delimiters appear to be noisy if a given scene is not analyzed enough times
and if not involved in a sufficient number of loop-closure iterations. In Figure 3.5
it is possible to see how a noisy map of a certain area is firstly generated and how
it is refined as the mobile robot keeps including it in loop-closure detection.

(a) (b)

Figure 3.5: Comparison between a coarse map (a) and the refined one (b).
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Slam Toolbox

An alternative to the RTAB-map package is the Slam Toolbox. It is a comprehensive
set of tools for 2D SLAM that includes various features, including standard 2D
SLAM algorithms for mobile robots with additional utilities like map saving. It also
allows ongoing refinement, remapping, or continuation of mapping using a saved
pose-graph. The toolbox supports lifelong mapping, enabling the loading of a saved
pose-graph to continue mapping while removing unnecessary information from new
scans. Additionally, there is an optimization-based localization mode based on the
pose-graph, with the option to run localization mode without a prior map for "lidar
odometry" mode, incorporating local loop closures. The toolbox operates in both
synchronous and asynchronous mapping modes and offers kinematic map merging,
including a forthcoming elastic graph manipulation merging technique. It includes
plugin-based optimization solvers, featuring a newly optimized Google Ceres-based
plugin, an RVIZ plugin for user interaction, and graph manipulation tools in RVIZ
for adjusting nodes and connections during mapping. Furthermore, it supports
map serialization and lossless data storage.

3.3.3 Navigation stack
An important component that allows every mobile robot to effectively move and
navigate is the so-called Navigation Stack, usually abbreviated as Navstack [72].
This element can be considered as a meta-component, meaning that it is based on
several other components to work. First of all, it needs a map of the environment:
without a precise map it would be impossible to correctly navigate. On top of that,
some other maps with different meanings are built: they are called costmaps and
represent the diverse positions the robot can reach without colliding with different
kinds of obstacles. All these maps are then used by path planners, both global and
local, to compute feasible collision-free paths that the mobile robots must follow.

Costmaps

These kinds of maps are usually built in the form of inflation layers or occupancy
grids. Their aim is to extend the basic map of the environment to mark whether a
point can be effectively reached by the robot or not, rather than simply saying if a
point is free or an object (or part of it) is located there. In order to accomplish
this task, costmaps must take into consideration not only data from the sensors,
but also the robot’s physical characteristics.

One of the most used ROS packages to create this type of map is the costmap_2D
package [73]. With this package costmaps are built in the form of inflation layers
and stored as 2D occupancy grids. Inflation layers are simply created considering
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the static map and the obstacle position and the geometry of the robot: a geometric
shape that best suites the real robot’s shape and space occupation slides along the
walls and the obstacles, and the surfaces that are created as result are marked as
forbidden, because they would result in a collision. In such a way, all free points
in the static map that do not belong to any inflation layers are considered as
feasible points that the robot can possibly reach. Costmap_2D exploits both the
information coming from the static map and from any supported sensor: this allows
to not only include static obstacles but also dynamic ones.

Figure 3.6: Visualization of a costamp created using costmap_2d. Red pixels
indicate the exact position of the obstacles, while blue ones constitute the inflated
obstacle regions.

Global and Local Planners

The navigation stack needs two planners to correctly work: a global planner that
is in charge of finding a suitable path for the mobile robot to go from the start-
ing position to the destination, and a local planner that dynamically adapts the
planned path according to what is happening near the robot. Regarding the global
planner, it usually exploits only knowledge coming from the static map created as
a result of the SLAM problem, i.e. the coarse information about free and occupied
points, differently from the local planner that uses mainly information coming
from the costmaps, meaning that it also considers proper characteristic of the robot.

As already described in subsection 2.2.1, several algorithms do exist and work
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as global path planners, including A*, Dijkstra’s algorithm, D*, Genetic algorithms.
Regarding ROS, there exists a package that allows the selection of the desired
planner among some of those cited before: it is the global_planner package [74].
Using this package, it is possible not only to choose the planner, but also how the
path should be generated. In this thesis work A* has been used as a global planner.
Regarding the local planner, several choices are available, like the Dynamic Window
Approach, Trajectory Rollout and Elastic Band. A particularly useful and fast one is
a timed version of the Elastic Band algorithm: the teb_local_planner package [75]
provides an implementation of this algorithm for the 2D navigation stack. Timed
Elastic Band (TEB) is an online optimal local trajectory planner for navigation
and control of mobile robots able to deal with non-holomonic robots while avoiding
both static and dynamic obstacles. The idea behind this planner is to modify the
original path planned by a global planner by connecting two points of the path
in order to reduce the time required to complete the path; other metaheuristics
and cost functions can also be taken into account. Using the TEB, when a path
simplification is possible, the trajectory effectively followed by the mobile robot
results to be smoother and faster with respect to the original one; an example can
be found in Figure 3.7.

Figure 3.7: Path planned from the global planner (in green) and from the local
one (in red).

3.4 Motion Planning
As illustrated in Subsection 2.2.1, to completely control the movement of a mobile
manipulator it is needed to use a motion planer for the manipulator and another
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one for the mobile base, or alternatively a single planner for both of them if the
robot is considered as a holistic system. Here, two of the most used packages to
control the two separated parts are described.

3.4.1 MoveIt! framework
MoveIt [76] is an open-source planning framework developed and widely used for
robotic manipulators of any kind; it has been used to develop and test movement
packages for over 100 different robots, from the deep sea to outer space, from
hobbyist to industrial applications. It is a flexible way to generate a complete
motion plan considering different constraints. Several plugins are available to
further inspect a specific planning objective.

Starting from the Universal Robot Description File (URDF), that contains all
information about the physical properties and constraints of the robot, it is possible
to create a custom version of the MoveIt! package precisely designed to work with
the desired robot. The moveit setup assistant is in charge of loading the URDF file,
extracting all important information and creating the entire package following the
requests provided by the user through a convenient graphical interface. Through
this interface, exploiting the information coming from the URDF, it is possible to
generate all information needed for the self-collision checking, i.e. which parts of
the robot are adjacent, hence they collide by default, and those who may collide
while moving. It is also possible to define some planning groups, sets of joints and
links to control simultaneously; for each group, it is possible to define a set of known
poses, called named poses, that can be assigned as desired poses for the planning
pipeline. An end-effector can be identified and used in the planning process: it
is enough to express which are the constitutive joints and to which link they are
attached. MoveIt! makes available different cutting-edge planning algorithms from
different libraries; robotics developers and researchers can switch easily from one
to another to compare them and select the best one or for benchmark purposes.
Several plugins are available to further include data coming from sensors and extend
the planning abilities, updating the environment with which the robot interacts
and making it a fundamental part of the planning pipeline.

Enhancing robot description

MoveIt! gives the possibility to slightly modify the robot description to make it
able to move in the environment, with low effort. The key for this change is to
exploit virtual joints: a virtual joint can be introduced between the root joint of
the robot and the world frame to state the motion ability of the entire robot. The
virtual joint movement can be exploited to update the robot’s position with respect
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Figure 3.8: MoveIt! planner in Rviz [77].

to the world reference frame as a result of an indirect movement coming from
a mobile base. This kind of joints can also be involved in the planning pipeline
actively: planning algorithms are able to consider the virtual joints in order to
extend the working space of the robot. They are able to generate a plan that
includes the movement of the entire robot, thanks to the presence of virtual joints,
even if the movement of the robot is then demanded to another planner or controller.

Regarding the movements that can be given to a robot thanks to virtual joints,
they strongly depend on the type is being used. There are 3 types of virtual joints
available in the MoveIt! framework:

1. fixed joints are used only to express that the robot is attached to the world
through a specific joint;

2. planar joints give the robot the ability to move in a 2D surface; so they are
able to move along the x and y directions, and rotate around the z axis;

3. floating joints make the robot able to move in the 3D, so they provide 6 new
DOFs (translation along the x,y and z axes, and rotation about the x, y and
z axes).

Motion Plan request

The motion plan request specifies what you would like the motion planner to do.
Since the MoveIt! framework is usually employed to control manipulators, it gives
the possibility to request to move the arm from one point to another one in the
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joint space or to reach a given end-effector pose.

The motion plan request can also include constraints:

• position constraints force a link to be in a precise region of the space;
• orientation constraints restrict the orientation of a link to lie within specified

roll, pitch or yaw limits
• visibility constraints restrict a given link to rely on the visibility cone of a

specific sensor;
• joints constraint force a joint to lie between two values.

Motion Plan result

The result that will be generated is a trajectory that satisfies all the submitted
constraints; the trajectory can be executed by a proper controller. It is important
to notice that the result is not simply a path, but it is a trajectory, so it includes
acceleration and velocity constraints specified.

Planning pipeline

The entire motion planning pipeline is contained in a unique ROS node called
move_group: it pulls together all the plugins (including the motion libraries) to
provide a set of ROS actions and services for users to use.

Regarding the user interface, the user can access all services and actions provided
by the move_group node by means of three different interfaces:

• C++ interface, thanks to the move_group_interface;
• in Python through the moveit_commander interface that simply is a wrapper

for the C++ one;
• graphical interface in Rviz.

The first node with which move_group communicates is the ROS parameter
server. They are connected because some important configuration parameters used
in the planning pipeline are contained there, including the robot’s URDF and SRDF
(Semantic Robot Description File), together with proper MoveIt! configuration
files. The other important player that directly communicates with the planning
node is the robot itself: information like joint states and environment information
are needed to obtain a suitable plan. This communication is possible thanks to a
set of topics and actions:
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• joint states information are obtained by listening to the /joint_states topic
that essentially indicates the state (in terms of position, velocity and effort)
of each joint;

• information about joint states is not enough; for this reason, the move_group
also communicates with the robot_state_publisher : it provides information
about the location of each link with respect to the world reference frame, but
also gives the possibility to the motion planner to update the tf tree while
moving;

• the planning scene monitor is part of the move_group node itself and contains
a representation of the world surrounding the robot, so it is used for collision
checking.

An important note about the planning scene monitor is that it also allows to
consider the object with which the robot may interact. Considering a pick-and-place
task, after the robot picked a given object, it is possible to consider the new state
of the robot with the object thanks to the planning scene monitor by attaching
the object to the robot, and hence by including it in the planning scene. As a
result, until the object is not removed from the planning scene the planner will also
account for collisions of the object with other parts of the scene.

Figure 3.9: Representation of the move_group’s communication graph [78].

39



ROS state-of-the-art

Plugins

One last thing that is worth to point out is that MoveIt! gives the possibility to
use several plugins to enhance the planning capabilities. One of the most useful
plugin available is the one that allows the interaction with the occupancy map
created using Octomap. This information is then passed to the library used for
collision checking to extend the perception of the world, and possibly deal with
dynamic obstacles.

Figure 3.10: 3D perception pipeline available in MoveIt! [78].

3.4.2 Move Base package
A widely used package to control the movement of mobile robots is the move_base
package [79]. It provides a flexible framework that implements an action server
that, given a goal, will attempt to find a path to reach it while avoiding obstacles;
different sensors can be included in the path planning. The move_base node links
together a global and local planner to accomplish its global navigation task and
they work on the global and the local costmaps thanks to the costmap_2d package.

Everything that is needed to control the movement of a mobile robot using
the move_base package is contained in the move_base node: it provides a con-
venient interface with the navigation stack of the robot. Figure 3.11 shows the
communication structure of this node. As it is possible to see, this node takes as
input:

1. information coming from the tf tree and the odometry sensor of the robot to
precisely determine where the robot is;
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2. the static map of the environment;
3. other information coming from different sensors used to augment the sensing

of the robot itself.

This information is then combined together with the goal pose to plan a path;
the sensor’s information and the static map are used to build the global costmap,
while the local one is updated only using data coming from sensors. These maps
are then fed to the planners, where the global is in charge of computing the path
from the starting point to the destination, while the local one updates it according
to what happens around the robot.

Figure 3.11: Description of the move_base node’s communication structure [79].

What is interesting to notice is the presence of a recovery_behaviors component:
it is need because it may happen that the robot get stuck while moving for multiple
reasons (sensor data are too noisy, the goal becomes temporary unreachable). To
face this challenge, the move_base package provides a plan to recover the planned
movement; Figure 3.12 shows the intended pipeline executed every time the robot
gets stuck or a fail occurs. Initially, the robot removes all obstacles that are beyond
a region specified by the user on its map. Next, if possible, the robot performs a
rotation maneuver to create additional free space. In case this rotation maneuver is
unsuccessful, the robot will take a more assertive approach, removing all obstacles
located outside a rectangular area where it can rotate in place. Next, the robot
performs another rotation in place. If all of these attempts are unsuccessful, the
robot will deem the intended goal unattainable and inform the user of the mission
abort. Configuration of these recovery behaviors can be done via the "recovery_-
behaviors" parameter and disabled via the "recovery_behavior_enabled" parameter.
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Figure 3.12: Visualization of the recovery behaviours pipeline provided by the
move_base package [79].

One last thing that is important to notice is that in Figure 3.11 some components
are marked using a light blue color. They are platform-dependent and must be
provided by the user, meaning that the developer is in charge of providing and
configuring them such that they can work together.
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Chapter 4

Locobot WX250s description

The mobile manipulator used in this thesis work is the LoCoBot WX250s from
Trossen Robotics [80]. It is equipped with a 6 DOFs arm directly on top of a
holonomic base, an RGB-D camera and a 2D Lidar mounted on top of it; Figure
4.1 shows a front view of this mobile manipulator.

Figure 4.1: Front view of the LoCoBot WX250s [80].

The objective of this chapter is to provide a description of the robot’s main com-
ponents, starting from the characteristics of the two main constitutive components
(the arm and the base) and ending with the sensor with which it is equipped.
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4.1 Manipulation Hardware

The robotic arm is one of the two principal components that build up the LoCoBot.
Several configurations are available on the Trossen Robotics website: it is possible to
mount an arm with 4, 5 or 6 DOFs, or even choose to not include the manipulation
functionalities. The manipulator mounted on the used robot is a WidowX 250-6DOF
Robot Arm (Figure 4.2); all details can be found in [81].

Figure 4.2: WidowX 250-6DOF Robot Arm used on the LoCobot WX250s.

This robotic arm is characterized by 6 degrees of freedom, actuated by a total of
9 Dynamixel servos. These servos are particularly known for their industrial-level
precision, accuracy and versatility; thanks to them, the repeatability of the arm is
about 1 millimeter. The manipulator is able to reach points at a maximum height
of 680 mm, while the overall span is of about 1360 mm, leading to a workspace cor-
responding to a portion of a sphere (when the mobile base is fixed); the workspace
is limited by the presence of the tower on top of which the Lidar and the camera
are mounted, the mobile base and the floor. Thanks to the use of lightweight
but rigid materials mainly composed of aluminum, this robotic arm is able to
interact with and handle objects with a maximum weight of 250 grams. An open-
source model of this arm is available and can be used by developers and researchers
to work with several software and ROS packages like Gazebo, Moveit and MATLAB.

Regarding the grasping abilities, the default gripper is made of two parallel
fingers actuated by an electric servo to open and close them. Besides the default
setting is more than enough for most applications, the constitutive details and the
schematic of the gripper can be easily found, leading to the possibility of 3D-printing
sophisticated and purpose-driven end-effectors. The main characteristics of this
manipulator considering the default gripper can be found in Table 4.1.
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Degrees of Freedom 6
Reach 680 mm
Span 1306 mm

Repeatability 1 mm
Accuracy 5 mm - 8 mm

Working Payload 250 g

Table 4.1: Summary table of the WidowX 250 6-DOF robotic arm.

4.2 Mobile Base
The LoCoBot WX250s is available with two possible mobile bases that allow it to
move: the Kobuki mobile base from Yujin Robotics, and the Create3 from iRobot.
The mobile manipulator used for this thesis work uses the Kobuki mobile base
(Figure 4.3). Its compact rounded design makes it perfect for indoor navigation and
for fast prototyping. It is driven by two powered wheels located on diametrically
opposite sides of the base, while stability is granted by 2 caster wheels, one on the
front side and the other on the back one. Kinematic and geometric characteristics
give the Kobuki base the differential drive properties; because of this aspect, it is
necessary to add further constraints to the base controller. Regarding the autonomy,
this mobile base is equipped with its own rechargeable battery that allows it to
autonomously navigate for up to 90 minutes. Main features of the Kobuki base are
summarized in Table 4.2.

Figure 4.3: Rear view of the Kobuki mobile base.

4.3 On-board computer
All computations and operations required by the robot are executed on an on-board
Intel NUC NUC8i3BEH Mini PC. Next Unit of Computing (NUC) is a line of
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Diameter 335 mm
Actuated wheels 2

Omni wheels None
Caster wheels 2

Differential drive Yes
Wireless Yes

Battery autonomy 90 minutes

Table 4.2: Summary table of the Kobuki mobile base.

small-form-factor computers and barebone computer kits designed by Intel. The
idea behind the concept of this mini PC is similar to the one governing the laptop,
that is having all computation capabilities in a reduced amount of space. The
on-board computer of the LoCoBot WX250s mounts an 8th Gen Intel Dual-Core
i3 CPU with a total of two cores and 4 threads. The memory compartment is
composed of 32 GB of DDR4 RAM and a an SSD of 256 GB. Regarding the
graphical processing capabilities, the NUC present on the robot is equipped with
an Intel Iris Plus Graphics 655 GPU (Graphic Processing Unit).

From this brief description, it is possible to understand that the NUC computer
used is able to provide all the computational resources needed to control the robot.
The main problem of this system is the reduced available power to address graphical
tasks. Due to this limitation, it is not possible to make predictions implement
any kind of neural networks on it, hence it is necessary to rely on a distributed
architecture where these algorithms are needed. Although it is possible to process
data coming from all sensors directly on the on-board computer, overheating and
congestion are other major issues concerning the NUC; to avoid these problems, it
is preferable to adopt a distributed setting and use the on-board mini PC only to
collect data and run the necessary low-level controllers.

Figure 4.4: Mini Pc mounted on the LoCoBot WX250s.
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4.4 Camera

The LoCoBot WX250s primarily senses its environment using the Intel RealSense
D435 depth camera mounted on top. This RGB-D camera is widely used in robotic
research, providing high-quality images for environmental scanning and object
recognition. Depth information generates a 3D representation and occupancy grid
of the world. This camera system consists of two cameras spaced approximately
5 cm apart, creating 3D images through stereo vision. The depth measurements
are improved by combining data from these cameras with information from an
infrared projector situated between them. Additionally, an RGB module captures
colored scenes, which, when combined with depth data, create a more realistic
representation similar to human visual perception.

(a) (b)

Figure 4.5: Views of the Intel RealSense D435 depth camera
(extern 4.5a, intern 4.5b) [82].

It is important to notice that the orientation of the camera is not fixed: a
Dynamixel 2XL servo allows the rotation around two different axes, while controlling
both movements simultaneously. Considering a fixed reference frame located in the
center of the servo, with the z-axis pointing upwards, the x-axis coming out of the
camera and the y-axis such to complete the right-handed coordinate system, the
camera can rotate around the z-axis and the y-axis; rotation angles are respectively
called pan and tilt.

Figure 4.6: View of a possible camera orientation [80].
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4.5 Lidar
The sensing capabilities of the LoCoBot WX250s can be optionally completed by
a 2D Lidar. In particular, the sensor mounted on the very top of the robot is
the RPLIDAR A2M8 - 360 Degree Laser Scanner (Figure 4.7). It exploits a laser
triangulation system which, combined with the 8000 samples captured each second,
ensures high performance for diverse indoor applications. This system performs
high-resolution 2D 360-degree scans within a 12-meter range, generating crucial
2D point cloud data essential for mapping, localization, and detailed object and
environmental modeling. This Lidar delivers a typical scanning frequency of 10 Hz
(600rpm) and a resolution of 0.9°; the frequency can be adjusted within the 5-15 hz
range as per user requirements. It automatically adjusts angular resolution based
on the actual rotation speed, ensuring precision in various applications, like obstacle
avoidance, autonomous mapping, route planning, and navigation in robotics and
autonomous systems.

Figure 4.7: Lidar mounted on the LoCoBot WX250s [80].

The LoCoBot used for this thesis is equipped with the described Lidar. Despite
the several advantages, the mounting point of this sensor presents a possible issue:
since it is located at a height of about 620 mm, all lower obstacles are not detected.
Usually, Lidars are used for localization and mapping, but if prevalent obstacles
in the environment are below this height, the generated map will not be precise
enough to ensure collision-free navigation.

48



Chapter 5

Software architecture

The objective of this chapter is to provide an overview of the software developed
and tested. The entire structure follows the modularity principle in order to make
it easier to develop, modify, debug and expand when necessary. Following this
fashion, different modules controlling different parts and tasks of the robot have
been realized, according to the high-level structure reported in Figure 5.1.

Figure 5.1: Diagram representing the overall software architecture developed.

The topology used for the entire structure is inspired by the one known as star
topology in the computer network field. It is characterized by a center node, called
star center or hub, connected to all other nodes which cannot communicate with
another one directly. The center node acts as a message handler and transmitter:
it receives all messages coming from the peripheral nodes and, depending on the
requested operation, it processes and redirects them to the destination. Usually, two
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major problems of this type of topology are the low fault tolerance, due to the fact
that if the communication manager breaks down the entire communication graph
collapses, and the high probability of traffic congestion and latency, because of all
messages pass through the center node. In the developed software architecture, all
nodes building up the communication graph are ROS nodes, and thanks to their
nature and how messages are directed to the communication manager, the two
major issues pointed out before can be neglected. Each node spends a great part of
the time waiting for messages, and only once a message is received, it processes it
and eventually sends back a response; in this way, it is very unlikely to have a node
sending a continuous stream of messages to the communication manager. Moreover,
messages exchanged among different nodes represent asynchronous requests and
replies sent to start a specific action, hence the probability of high congestion on
the center node further decreases.

The communication graph is made of a total of 7 nodes:

1. Communication Manager constitutes the center node of the communication
structure and it is in charge of coordinating messages coming from all nodes.
It also has to handle the action pipelines needed to complete the different
tasks, coordinating all modules and checking for action success. This node
represents the interface between the robot and the human it is assisting;

2. LoCoBot Extended Planner is in charge of planning the motion for the
entire mobile manipulator considering it as a holistic system. The reason
why it is called "extended" is because the robot description has been slightly
modified to ease trajectory planning using the MoveIt! framework;

3. The Arm Handler node is in charge of requesting the real movement of the
robotic arm according to what has been planned by the extended planner,
or in order to reach a desired pose without moving the mobile base. It also
provides feedback on the actual status and result of the movement. Actions
to be done by the gripper’s finger are controlled using this node;

4. Base Handler is a node that essentially handles all requests regarding base
movements: it receives a desired pose, sends it as a goal to the base controller
and provides feedback on the status of the operation;

5. The Remote Image Getter is a crucial node used to complete the object
detection task. Essentially, it is connected to the camera’s topic and every
time a new frame is available, it is stored so as to provide the last captured
pictures only when requested;

6. The Grasping Point Generator estimates the point where to position the
gripper in order to pick the requested object. It makes use of a trained YOLO
network to find the object, and it combines its abilities with data coming from
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a depth sensor to complete the assigned task;
7. Dangerous Part Feedback Getter comes into action every time the object

to grasp is considered dangerous for the human operator. It is responsible of
warning the person that the requested item is dangerous and which object’s
part the robot should consider to safely handle it.

Each node has its own interface through which it can exchange messages with
the communication manager or the human operator. Updates and changes are
possible also maintaining the designed interfaces untouched; this is the key to
modularity, changes affect only the interested part without having to change other
modules or how information among them is passed. In the following sections each
node is deepened, also discussing how the interface is built.

5.1 Communication Manager node
The role of the communication manager, as briefly explained before, is to act as
the coordinator among all nodes used to control the mobile manipulator. It is
directly connected to all other nodes in the communication graph in order to have
a single node in charge of executing complex actions by dividing them in simpler
ones, collecting their results and adapting the robot’s behaviour according to them.

5.1.1 Object request and search
The first task solved by the communication manager is to provide an interface
through which a person can request a specific item. Using the ROS structure, the
easiest way to build such an interface is by using a set of topics. Indeed, as shown
in Figure 5.2, the interface used by a person to request a specific item and to get a
feedback message about the operation is composed of two different topics.

Figure 5.2: Interface between the communication manager and the person.

The human can request a specific object by publishing a message on the "/com-
munication_manager/request_object" topic. It accepts a std_msgs/UInt32 message,

51



Software architecture

that simply contains an integer number as a unique field. The value of this field is
then used by the communication manager to understand which item the person
requested and where to find it. Indeed, a one-to-one correspondence exists between
each integer number ranging from 1 to 15 and a specific object category. In order
to successfully request the desired item, the person must know which is the integer
ID corresponding to it and that has to be published on a message. The ID is used
by the communication manager in two ways: to understand where the item is
possibly stored, and to check if it is present in the designed location. Regarding the
positions where it is possible to find a specific object, the communication manager
stores a dictionary representing the mapping between locations and objects. Each
entry in the dictionary has two fields:

• the key of each entry is an integer number corresponding to the ID of the
requested item;

• the value field is a set of strings containing the name of the locations where
an object is possibly stored.

A second dictionary is used to map the locations’ names to the corresponding
positions and orientations with respect to the world reference frame. In this case,
the key value is the string corresponding to the name of the location, and the value
field is an array of three float numbers representing the position in terms of (x, y)
coordinates, and orientation θ in terms of rotation angle around the z-axis. The use
of dictionaries speeds up the process of retrieving data, thanks to the possibility of
accessing directly the desired entry searching by value.

The sequence of actions taken to search an object is described in the flow diagram
in Figure 5.3. It is important to notice that some actions are not directly executed
by the communication manager; they are inserted in a light red box in the flow
chart. To better understand how the pipeline is executed, a brief comment of each
stage is given:

1. the Communication Manager receives a message on the designed topic and
the corresponding callback is executed;

2. first of all the dictionary containing the mapping between the item id and the
set of locations is accessed to retrieve the latter;

3. then, the first location’s name is extracted and used to access the second
dictionary to convert the string into a pose to be reached by the mobile base.
The desired goal is sent to the Base Handler ;

4. once the destination has been reached, the search phase starts. The communi-
cation manager moves the camera towards a new position, sends a request to
the
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Figure 5.3: Flow chart of the pipeline executed to search an item.

Remote image Getter node to receive the last picture acquired and then sends
it to the Grasping Point Generator node. It first checks if the object is present
and sends the result back to the Communication Manager;

5. if the item is present the pick and place pipeline starts. If another possible
location can be reached, the algorithm iterates from point 4, otherwise, a fail
message is published on the "/communication_manager/request_result" topic.

5.1.2 Camera movements handling
Another job done by the communication manager is to modify the camera orien-
tation. This can be simply done by requesting a specific angle to be reached by
the pan and tilt controllers. Requests are sent by the Communication Manager
simply publishing a message on the specific topics; they slightly change if working
in simulation or on the real robot. Regardless of their names, these topics accept a
std_msgs/Float message, a simple structure containing as a unique field a float
number representing the desired angle.

Camera movements are necessary in two cases:
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1. while looking for an object in the scene: the robot’s field of view is limited,
thus by changing it the result of the searching phase may completely change;

2. during the environment navigation. Indeed, visual SLAM algorithms like
those used in RTAB-Map require keeping the camera orientation fixed in order
to correctly localize the robot. For this reason, it is crucial to restore the
camera’s pose used while mapping before navigating.

Regarding the movements done during the object search phase, since a continuous
motion is not possible due to the time taken by the object detection algorithm, a
set of angles ranging from 0.3 to 0.9 rad with a step equal to 0.1 has been defined.

5.1.3 Pre-grasp and grasp poses

After an object has been requested, the search pipeline described before takes place,
and the desired item can be found. The node in charge of scanning the image frame
and determining whether an object is present or not is the Generate Grasping Point
one. To complete the task demanded to it, this node provides also an estimation
of the 3D pose of the grasping point. As part of the pick and place pipeline, the
Communication Manager is also in charge of computing the pre-grasp and grasp
poses to be reached by the gripper. Starting from the result given by the grasping
generator node, and considering the origin of the gripper’s reference frame perfectly
centered between the two fingers, the computed poses have the x-axis (red ones)
towards the object, the z-axis (blue ones) exit from the upper part of the gripper,
and the y-axis (in green) oriented in a way to complete the right-handed system.
What really changes is the origin of this reference frame: the pre-grasp pose has
the origin 0.3 meters far from the origin of the grasping point along the negative
part of its x-axis, while the grasp pose has the origin perfectly coincident with the
one of the grasp point. Figure 5.4 shows an example of a pre-grasp pose.

5.1.4 Pick and place pipeline

The main operation carried out by the mobile manipulator requires to pick objects
requested by the user and to place them in designed locations. In order to
successfully complete this task, a pick-and-place pipeline has been designed, and
the Communication Manager node is the one in charge of managing it, since it
requires to talk with all other nodes that solve specific parts of the pipeline. The
complete sequence of operations is shown in Figure 5.5 and Figure 5.6, where red
blocks indicate that the operation involves at least one node different from the
Communication Manager. Further details about the pick pipeline are reported
below:
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Figure 5.4: Example of pre-grasp pose computed in the simulated environment.

1. the user sends a request containing the ID of the desired object by publishing
a message on the /communication_manager/request_object topic;

2. the item’s ID is extracted from the received message;
3. the searching phase starts to check if the object is stored in at least one of

the known locations. During this step, the Base Handler, the Remote Image
Getter and the Grasping Point Generator nodes are involved;

4. if the object has been found, the end-effector’s grasp and pre-grasp poses are
computed, otherwise an error message is returned;

5. a motion plan for the entire mobile manipulator is requested to the LoCoBot
Extended Planner node by publishing a message on the /locobot_extended_-
planner/desired_pose topic;

6. after a waiting phase for the results, if a suitable trajectory has been found,
the base is moved to its final pose, otherwise an error message is returned;

7. the planned arm trajectory is executed and a collision box around the object
position is set;

8. the gripper is opened, then the grasp pose is reached and the gripper is closed.
The gripper is controlled directly by publishing a message on the robot’s topic
designed to control single joints;

9. a box is attached to the gripper and the arm is retracted to the secure position.
This latter operation is demanded to the Arm Handler node;
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10. the environment is scanned to check if the requested item is still present (pick
failure) or not (pick success);

11. on the basis of the previous result, the place pipeline is executed or an error
message is returned;

12. the final phase includes return to the home location and wait for the next
request.

It is important to notice that before and after grasping the object, some boxes
are added to the scene. In the first case, it is necessary to specify to the motion
planner that collisions with the object are allowed, and this is done by adding a
collision box around the object’s location. After having picked the item, a collision
box is added to expand the collision area of the robot’s gripper: in this way, the
motion plan generated to reach the secure pose will take into consideration a larger
collision volume, and this is necessary to avoid collision between the object itself
and the environment.

Figure 5.5: Flow chart of the place pipeline
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Figure 5.6: Flow chart of the pick pipeline.
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5.1.5 Components status handling
In order to properly adapt the behaviour of the robot, the Communication Manager
needs to know the current status of all nodes involved in a specific action. This
need is satisfied by subscribing to specific nodes’ services; in this way, not only
the center of the communication graph can retrieve the state of the desired node
asynchronously, but it can request it and wait for a response in a control loop or
during the execution of a task. Received states are also used to determine if a
recovery action is needed before continuing, and also to understand if the entire
request succeeded or not. Although the description of the services and of the
type of messages exchanged using them are demanded to the following sections,
it is important to point out that in the developed software architecture only the
Communication Manager can request the access to the current state of a node or
component.

5.2 Base Handler node
The node that is in charge of handling all actions that must be done by the mobile
base are handled by the Base Handler node. Its objectives are to collect all requests
coming from the Communication Manager node regarding the movement of the
base and to redirect them to the mobile base controller.

The interface through which the Communication Manager node and the Base
Handler communicate is sketched in Figure 5.7.

Figure 5.7: Base Handler interface through the Communication Manager

As it is possible to see, this interface is composed of a topic (in red) and a
service (in yellow):

• the Communication Manager publishes a message on the /base_handler/re-
quest_move topic to communicate the desired mobile base pose to be reached.
On this topic, geometry_msgs/Pose messages can be published. The structure
this message wraps contains two fields: position field is characterized by three
float values corresponding to the x, y and z coordinates, while the orientation
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fields are made of the four floats components of the quaternion representing
the desired rotation. It is important to notice that this type of message does
not contain a header or any other information where to store the id of the
frame with respect to which the desired pose has been defined. In order to
solve this problem, as soon as a message is published on the "/base_handler/re-
quest_move" topic, the Base Handler executes the corresponding call back
where it extracts the position and orientation fields contained in the received
message and wraps them onto a geometry_msgs/PoseStamped message. The
only difference between the type of the received message and the new one is
that the latter allows the specification of the ID of the frame with respect to
which the pose has been defined. As a matter of standardization, all desired
poses published on the /base_handler/request_move topic are defined with
respect to the fixed frame world or map.

• the Base Handler node informs the Communication Manager about the status
of the mobile base by means of a ROS service named /base_handler/base_-
status. The reason behind the use of a service rather than a topic is that in
this way it can be used in an asynchronous way: every time the Communication
Manager needs to know the state of the message, it can call this service and
wait for the response. Service calls can be inserted inside loops if it is necessary
to wait for a specific status of the base before continuing.

Regarding the type of responses received using the service described above, it is a
custom type named BaseStatus.srv. It contains one field named base_status, that
is simply a std_msgs/String message with the current status of the mobile base
that can be:

1. MOVE_BASE_NOT_CONNECTED, which represents the fact the
Base Handler node is still waiting for the move_base action server to come
up, hence it is not able to handle any request yet;

2. IDLE, meaning that the base completed any previous job or it has not received
any task yet, thus it is waiting for a request;

3. PLANNING, indicating that a request has been received and the corre-
sponding message is being handled before being sent to the base controller;

4. MOVING, saying that the desired pose has been received and sent to the
controller for the execution;

5. EXECUTED_SUCCESS which indicates that the mobile base reached
the desired pose;

6. EXECUTED_FAILURE, meaning that the request has been executed but
the controller failed.
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State’s name Meaning
MOVE_BASE_NOT_CONNECTED Base controller not ready

IDLE Waiting to receive a request
PLANNING Request is being handled
MOVING Request sent to the base controller

EXECUTED_SUCCESS Goal pose reached
EXECUTE_FAILURE The controller failed

Table 5.1: Summary table with the mobile base possible states.

The flow of the Base Handler states is depicted in Figure 5.8: blue boxes indicate
the states can be assumed by the Base Handler node, grey ones are the events
that make the state pass from one to another, and the one in red is the pipeline
executed by the move_action group, that includes both the planning and the real
execution.

Figure 5.8: Flow of the Base Handler states.

As said before, the actual control of the mobile is demanded by the move_base
action group. This action group is built using the move_base ROS package, and it
allows to use a controller able to deal with the non-holomonic constraints of the
differential drive; in this way, it is sufficient to send the goal pose to this controller to
obtain a complete path planning and the execution of the corresponding trajectory.
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To communicate the desired base pose, the Base Handler publishes the geometry_-
msgs/PoseStamped computed as a result of the callback on the /move_base_-
simple/goal topic. The Base Handler interacts with the move_base action group
to receive the results of the movement. It subscribes to the "/move_base/result"
topic where, once the movement has been completed, a MoveBaseActionResult
message is published: it contains all information regarding the last executed plan,
including the result of the operation. By subscribing to this topic and handling the
messages received through it, the Base Handler node is able to update its status
and communicate it to the Communication Manager.

5.3 Arm Handler node
In a similar way to what has been done to deal with requests concerning the base
of the mobile manipulator, all those tasks that must be completed by the robotic
arm are handled by the Arm Handler node. Its role is to collect all requests coming
from the Communication Manager and to request a motion planning built for the
robotic arm.

The interface thanks to which this node is able to communicate with the center
node of the communication graph is shown in Figure 5.9.

Figure 5.9: Representation of the Arm Handler interface

The complete interface is made of a total of four topics and one service; three of
the topics can be used to reach a desired end effector pose but in different ways.
Further details are given below:
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1. the "/arm_handler/request_pose" topic allows to reach a desired pose passing
to the Arm Handler node a joint trajectory. The messages exchanged on this
topic are of type moveit_it/RobotTrajectory: it is a quite complex message
containing several fields needed to encode a joint trajectory. Messages of this
type are generated by MoveIt! framework as a result of a planning request;

2. the "/arm_handler/request_named_pose" topic is used to request the motion
plan needed to lead the arm in a configuration that has been defined by the
developer and that is denoted by its name. The MoveIt! ROS package gives
the possibility to associate a name to a given joint configuration, and this
name can be directly used to request a motion plan. Keeping this in mind, it
is sufficient to communicate the name of a predefined arm configuration to
get a plan as a response, and this is why messages exchanged through this
topic are simple strings wrapped into the std_msgs/String type.

3. the "/arm_handler/desired_eef_pose" permits to obtain a trajectory describ-
ing the time evolution of the arm’s joints needed to reach a desired pose
for the LoCoBot’s gripper. MoveIt! gives the possibility to define motion
groups, that are sets of joints for which a planning can be requested, and to
express if an end-effector is attached to one of them and through which link
the connection is made. Having defined the correct connection, it is possible to
specify a desired pose for the end-effector and obtain the corresponding plan.
To request the motion plan it is sufficient to publish a geometry_msgs/Pose
message on this topic in order to express the desired position and orientation
of the end-effector link.

4. "/arm_handler/start_movement" is the topic used to start the real movement:
the three topics discussed above are used only to request the path planning,
but they do not start the real arm motion control. The Communication
Manager publishes this topic every time a successful path-planning tasks is
completed.

5. service "/arm_handler/arm_status" allows to retrieve the current status of
the robotic arm. The asynchronous mechanism given by this ROS service can
be exploited by the Communication Manager within the grasping pipeline:
every time a task regarding the manipulator is needed, a request is sent to
the Arm Handler node, and before continuing the current state of the arm is
requested and checked in order to understand which type of action is needed.

5.3.1 MoveIt! settings and parameters
Planning tasks are completed by MoveIt! package. A custom version of this package
has been created in order to have a complete control and the ability to customize
any settings. Regarding the Arm Handler node, Table 5.2 summarizes which are
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the main configuration parameters that have been set.

Parameter name Value
joint_states topic /locobot/joint_states

Robot description paramater /locobot/robot_description
Planning library OMPL

Planner used RRT∗

Maximum planning time 30s
Maximum planning attempts 5

Goal tolerance 0.01 rad

Table 5.2: Summary table of the main MoveIt! parameters
set by the Arm Handler Node.

A brief description of the parameters follows:

• /locobot/joint_states is the name of the topic that publishes all the updates
about the current state of the joints;

• /locobot/robot_description is the name of the parameter on the parameter
server that contains the description of the robot model. Important to notice
the presence of the namespace "locobot" in these first two parameters;

• the Arm Handler node uses the RRT∗ planner from the OMPL to solve all
the planning tasks it is in charge of;

• to limit the time required by the planner to find a solution, the maximum
planning time available has been set to 30 seconds. This amount of time
results to be reasonable to find a path for the manipulator all the times the
desired arm configuration or the end-effector pose is reachable;

• the maximum number of planning attempts was fixed to 5: in this way,
the planner will try to find a suitable path five times before returning a failure
result;

• in order to deal with the tolerance of the servo actuating the arm’s joints, the
goal tolerance has been set to 0.01 rad.

All these parameters and the planning requests are sent to the "move_group"
action server using the MoveGroup Python Interface available. In this way, it is
possible to programmatically control the requests and actions demanded to the
Arm Handler node, and it is also possible to change the parameters on the fly
without the need to recompile and rebuild the entire workspace (as would have
happened if C++ had been used).
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5.3.2 Arm group and named poses
The Arm Handler node controls the robotic arm thanks to an action group named
"locobot_arm". This action group comprehends the entire kinematic chain charac-
terizing the arm, that contains:

• the waist, shoulder and elbow joints and the links connecting them, making
the "arm" of the manipulator;

• the forearm_roll, wrist_angle and wrist_rotate joints that build up the wrist
of the manipulator.

The LoCoBot’s gripper has been attached to this kinematic chain in order to
request the motion plan for a desired pose of the end-effector.

Regarding the named arm poses, three configurations have been defined:

1. the arm_default pose is used while the robot is not moving, hence while
it is waiting for a request by the user. This pose can be seen in Figures 5.10
and 5.11, while in Table 5.3 joints value characterizing this configuration are
reported;

2. while the mobile manipulator is moving, the arm assumes the pose shown in
Figures 5.12 and 5.13b named arm_secure_pose; joints values defining it
are listed in Table 5.4. This configuration is not used only while navigating,
but also every time an object is grasped and the robot has to go from one
location to another. Two main reasons lead to define this pose: the first reason
is that while navigating the arm must not be outside the shape of the mobile
base, otherwise accidental collisions may happen while navigating, and the
second is the need of reducing the possibility of hurting people while moving
with an object in the gripper;

3. arm_sleep_pose (Figures 5.14 and 5.15, Table 5.5) is a configuration used
to reduce accidental damage when turning off the arm controller: as soon as
the controllers are stopped, the arm falls down uncontrolled. To overcome this
problem, before stopping the Communication Manager node, the arm assumes
this configuration.

Joint name Value Joint name Value
waist 0.0 rad forearm_roll 0.0 rad

shoulder -0.8299 rad wrist_angle 0.0 rad
elbow 1.456 rad wrist_rotate 0.0 rad

Table 5.3: Joints values defining the arm_default pose.
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Joint name Value Joint name Value
waist -0.955 rad forearm_roll -1.7189 rad

shoulder -0.8452 rad wrist_angle 1.4695 rad
elbow 1.354 rad wrist_rotate 0.4676 rad

Table 5.4: Joints values defining the arm_secure pose.

Joint name Value Joint name Value
waist 0.0 rad forearm_roll 0.0 rad

shoulder -1.1294 rad wrist_angle 0.4504 rad
elbow 1.5787 rad wrist_rotate 0.0 rad

Table 5.5: Joints values defining the arm_sleep pose.

(a) (b)

Figure 5.10: Side view of the arm_default pose (in Rviz 5.10a and real 5.10b).
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(a) (b)

Figure 5.11: Front view of the arm_default pose (in Rviz 5.11a and real 5.11b).

(a) (b)

Figure 5.12: Side view of the arm_default pose (in Rviz 5.12a and real 5.12b).
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(a) (b)

Figure 5.13: Front view of the arm_secure pose (in Rviz 5.13a and real 5.13b).

(a) (b)

Figure 5.14: Side view of the arm_sleep pose (in Rviz 5.14a and real 5.14b).
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(a) (b)

Figure 5.15: Front view of the arm_sleep pose (in Rviz 5.15a and real 5.15b).

5.3.3 Arm states
In order to properly communicate the current status of the arm and of the requested
motion, several states have been defined and can be assumed by the Arm Handler
node:

• the IDLE status means that all requests have been completed or no requests
have been submitted yet;

• SETTING_TARGET_POSE indicates that a planning task has been
published on one of the three topics available in the interface, and that it is
being handled;

• the WAITING_TO_MOVE status highlights that a collision-free trajec-
tory has been found and the arm controller is waiting to execute it;

• MOVING states is set right after a message is received on the /arm_-
handler/start_movement topic, meaning that the arm is currently moving;

• EXECUTED_SUCCESS says that the trajectory execution finished suc-
cessfully, while EXECUTED_FAILURE means that the trajectory execu-
tion failed for some reason.

To better understand to which request the last two states refer to, a string is added
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to the last two states. The flow chart representing how the Arm Handler states
evolve is reported in Figure 5.16

Figure 5.16: Evolution of the Arm Handler states.
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5.3.4 Arm status service
The only communication channel going from the Arm Handler towards the Com-
munication Manager is based on the /arm_handler/arm_status service; all other
messages flow in the opposite direction. These service responses are simple String
messages contained inside a custom service type, named ArmStatus.srv, from
the core package; their only field is a string reporting the value of the current
Arm Handler status.

5.4 Remote Image Getter node
The pick-and-place pipeline requires to understand if a certain object is present in
the scene and where it is located. Both these tasks need to use the images coming
from the LoCoBot’s camera. In order to satisfy this need, the Remote Image Getter
node has been designed.

The role of this node is to collect all image bundles coming from the RGB-D
camera mounted on top of the mobile manipulator and to forward them to the
requesting node. The interface thanks to which this node is able to communicate
with the Communication Manager is depicted in Figure 5.17. It is possible to notice
that the interface is made of only two services:

• /remote_image_getter/remote_image_srv is used to retrieve the last RGB-D
image bundles received;

• /remote_image_getter/get_camera_info_srv is called every time the infor-
mation about the intrinsic parameters of the LoCoBot’s camera is needed.

Figure 5.17: Remote Image Getter node’s interface.

This node simply acts as a forwarder for those nodes requiring any data regarding
the camera. There is another way to obtain the same data directly from the camera,
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but it requires to subscribe to the camera topics. The reason why this strategy
should be avoided is that the RGB-D sensor continuously publishes on those topics:
any node subscribed to them would execute the callback repeatedly, without the
possibility of doing any other operation. This is also the reason why the Remote
Image Getter node has been designed: its only purpose is to subscribe to the topics
on which the camera publishes the data and to store them by repeatedly executing
the callbacks.

5.4.1 Implementation details
The topics from which the node takes all data needed are:

• "/locobot/camera/color/image_raw" topic for the RGB images;
• "/locobot/camera/aligned_depth_color/image_raw" topic where depth images

are store.

Both the images have a resolution of 640x480 pixels, and streams are updated with
a frequency of 30 frames per second (fps). In addition, depth image errors are
corrected using a set of spatial filters and a hole filler that fills gaps in depth data
(caused by sensor limitaions), enhancing the overall accuracy and completeness of
the depth map. Table 5.6 summarizes the main parameters used by the Remote
Image Getter node and those regarding the images acquired.

For what regards how the Remote Image Getter node handles image bundles,
where an image bundle is a pair of RGB images and the corresponding depth image,
two queues are used: one stores all color images, while the second store all the
depth images. These data structures have a fixed length equal to 10 items, hence,
also because of the nature and implementation of a queue, only the last 10 image
couples are stored. Whenever a node sends a request to receive the last acquired
frame, the last image bundle inserted into the queue is returned.

Parameter Value
Width 640 px
Height 480 px

Refresh rate 30 fps
Hole filling algorithm used Weighted Least Squares filtering

Data structure used Fixed length queues
Queue length 10

Table 5.6: Summary table of the main camera parameters
and those used by the Remote Image Getter Node.
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5.4.2 Remote Image and Camera Info service
As previously discussed, the only communication channel thanks to which nodes
can retrieve RGB-D images from the camera is through a service built by the
Remote Image Getter and named "/remote_image_getter/remote_image_srv".
The responses sent using this topic are of a custom type called RemoteImage.srv:
it wraps together two fields of type sensor_msgs/Image, one for the last RGB
image captured and the other for the depth one. In this way, every time a service
request is sent, the Remote Image Getter node takes the last bundle acquired by the
camera, inserts the two images in the correct field and then sends the response back.

In a similar way, all the camera’s intrinsic information needed can be retrieved
through the "/remote_image_getter/camera_info_srv". Every time a request
is received, a response of type GetCameraInfo.srv is sent back. This service
response type is a custom one, and it contains a sensor_msgs/CameraInfo field
that is set equal to the message received from the /camera/camera_info topic of
the Realsense Camera mounted on the LoCoBot.

5.4.3 Exception to the communication graph structure
Section 5.1 describes how the Communication Manager node is the only one in
charge of talking with different nodes, and that two nodes cannot communicate
with each other without passing through the Communication Manager. Actually,
an exception to this rule holds: in order to reduce the communication overhead,
and hence the time required to get the needed information, the Grasping Generator
node and the Remote Image Getter one are directly connected. The grasp generator
can request image bundles without asking the Communication Manager. Although
the time required to publish messages on a topic is very short, the number of
messages required to retrieve an image pair exploiting the manager node would
increase the overall time unnecessarily, and for this reason, a direct link between
the two nodes is used.
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5.5 Grasping Point Generator node
The Grasping Point Generator node is used to scan the environment and understand
where to grasp a given object form. This node is in charge of:

• scanning the environment using the RGB-D camera to check whether a specific
object is present or not;

• estimating the pose of an item;
• generating a grasping point with respect to the world reference, frame from

which to position the gripper and execute the grasp task.

To complete all these tasks, the Grasping Point Generator node uses a CNN trained
on a custom dataset in order to recognize common objects that can be found in a
laboratory or in a warehouse.

5.5.1 Node implementation
This node receives requests from the Communication Manager and provides re-
sponses to it thanks to the interface shown in Figure 5.18.

Figure 5.18: Grasping Point Generator interface.

It is possible to notice that there are three ways to establish communication to and
from this node:

• /grasp_generator/req_prediction topic allows to search for a specific object.
Messages published on this topic are of type std_msgs/UInt32, whose only
field is an integer number representing the ID of the desired object;

• /grasp_generator/pose_result is the second topic of the interface. If the desired
object is found in the current scene, the pose of the grasping point is published
here; messages characterizing this topic are of type geometry_msgs/Pose;
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• service /grasp_generator/gen_grasp_result is used to get the results of the
last task.

Pose messages published on the /grasp_generator/pose_result topic do not contain
any information regarding the reference system against which the pose is defined,
hence a convention is used: all poses published on this topic by the Grasping Point
Generator are defined with respect to the /locobot/camera_depth_link frame. As
shown in Figure 5.19, a reference frame with the origin fixed in the grasping point
is computed just as a translation of the /locobot/depth_camera_link frame along
its z-axis; x-axes are shown in red, y-axes are green and z-axes are blue. As a result,
the orientation of the axes of the object_to_grasp reference frame with respect to
the world reference frame is the same as the one of the depth camera.

Figure 5.19: Visualization of the grasp pose orientation with
respect to the /locobot/camera_depth_link frame (Rviz).

5.5.2 Object detection
In order to succeed in the generation of a suitable grasping point, this node is also
in charge of scanning the environment and completing the object detection task.
To face this challenge, the Grasping Point Generator node makes use of a YOLOv5
CNN trained on a custom dataset, containing objects that can be easily found in
a laboratory. The trained network is then used to check if an item is present by
considering the class labels obtained, and to compute the correct bounding boxes
(BBs) of the object; they indicate the location of an item with respect to the image
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frame.

Class predictions are computed together with a confidence that estimates how
accurate the prediction is. All predictions coming from the YOLO network are
sorted by their confidences following a descending order, and to deal with erroneous
predictions, a confidence threshold equal to 80% has been set: in this way all
predictions with a confidence lower than this value are neglected, and only the best
ones are effectively used.

5.5.3 Grasping point generation

Information about the BB of an object is used to compute an estimation of its
center of mass, that is assumed to be equal to the center of the bounding boxes;
information about the real mass distribution is neglected because it would have
required to code them for any specific object or to train another network to solve
this challenge. The center of mass is considered to be the origin of the grasp pose.

Using only the bounding box prediction it is possible to compute the grasping
point in a 2D reference frame that corresponds to the image frame, so it is necessary
to integrate this data with others coming from the camera to obtain its coordinates
in the 3D world. To do that, depth image coming from the camera is exploited.
This kind of data can be easily transformed into a 2D matrix using the intrinsic
parameters of the camera. To complete the grasping point generation, the node in
charge executes the following steps (Algorithm 1):

1. retrieve the last image bundle coming from the camera by requesting it to the
Remote Image Getter;

2. use the RGB image as input for the CNN to perform the object detection task
and obtain the BB associated to an object (if present);

3. compute the center of the BB.
4. request the intrinsic parameters of the camera to the Remote Image Getter

Node and transform the depth image in a 2D matrix;
5. retrieve the depth value corresponding to the computed center of mass.

Knowing the position of the center of mass with respect to the camera 2D reference
system and the corresponding depth value, it is possible to compute the origin
position of object’s reference system, that is then published to the topic in charge
of computing the transformations between the different frames (/tf ) indicating the
/locobot/camera_depth_link as parent frame.
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Algorithm 1 Algorithm executed to generate the grasping point.
1: Retrieve the last image bundle from the Remote Image Getter
2: Retrieve intrinsic camera’s parameters
3: Convert the depth image in a 2D matrix
4: Compute the predictions
5: Create an empty list for the predictions
6: for pred in all_preds do
7: Print info about the prediction
8: Append pred to the list
9: end for

10: found = FALSE
11: while not FOUND do
12: Extract one item from the list
13: if confidence ≥ 0.8 then
14: Save the element
15: found = TRUE
16: end if
17: end while
18: Retrieve depth value
19: Compute the 3D coordinates
20: Publish the 3D coordinates on /tf topic

5.6 LoCoBot Extended Planner node
This node is in charge of generating a suitable path to allow the end-effector to
reach the desired grasping point considering the mobile manipulator as a holistic
system. The main advantage of considering this type of system instead of planning
for the mobile base and the manipulator separately is that it is possible to reposition
the base, and consequently the robotic arm, in order to reach the best pose for the
entire system.

In order to obtain such a motion planning, it is necessary to extend somehow
the DOFs of the robotic manipulator to inform the planner that it is able to move
in a 2D reference frame. Indeed, the three DOFs added allow the manipulator to
translate along the x and y axes and to rotate about the z-axis. As a result, the
planner is able to generate a trajectory starting from a desired end-effector pose
that can be also outside the workspace of the manipulator, and that involves the
movement of the base.

The planning abilities of the LoCoBot Extended Planner node are provided
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by configuring MoveIt! appropriately. Although the planning framework gives
the possibility to add a planar virtual joint to the configuration, this type of
joint is not considered while planning; virtual joints are converted to fixed joints
before planning. Adding a virtual joint only would result in planning abilities that
would consider the arm as fixed in the current position. To overcome this problem,
the URDF has been modified by adding three joints at the base of the mobile
manipulator:

1. a prismatic joint that extends along the x-axis of the mobile base reference
frame;

2. a second prismatic joint attached at the end of the first that extends along
the y-axis;

3. a revolute joint able to rotate around the z-axis.

These three joints together give the possibility to request a planning for the holistic
system using the planning abilities of MoveIt! framework. Table 5.7 reports the
joint limi of these three virtual joints added.

Joint name Type Limit type Value
move_all_x Prismatic Translation [-10.0;10.0] [m]

Velocity 1 [m/s]
Effort 5 [N]

move_all_y Prismatic Translation [-10.0;10.0] [m]
Velocity 1 [m/s]
Effort 5 [N]

move_all_theta Revolute Rotation [−π;π] [rad]
Velocity π [rad/s]
Effort 5 [Nm]

Table 5.7: Summary table with the limits of the virtual joints.

5.6.1 Node’s interface
The interface through which the Communication Manager communicates with the
LoCoBot Extended Planner node is shown in Figure 5.20. It is possible to see that
it is composed of one topic and one service:

1. /locobot_extended_planner/desired_pose is the topic through which it is
possible to communicate the desired pose to be reached by the end-effector
and to obtain a trajectory as a result. Indeed, messages exchanged through
this topic are of type geometry_msg/Pose;
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2. the /locobot_extended_planner/planner_status service is used to retrieve both
the node status and the planning results.

Figure 5.20: Communication interface of the LoCoBot Extended Planner node.

The responses obtained through the service are of type LocobotExtPlannerSta-
tus.srv, that is a custom service type defined inside the core package. It contains
three fields:

1. the planner_status field is a message of type std_msgs/String containing
the current state of the planner;

2. base_final_pose field is a geometry_msgs/PoseStamped message indicating
the final pose to be reached by the mobile base;

3. the arm_trajectory field is a message of type moveit_msgs/RobotTrajectory.
It is a quite complex message containing the complete joint trajectory to be
executed by the manipulator in order to reach the grasping pose, and it
specifies all the values at each time instant for the joint positions, velocities
and accelerations, besides the time instants themselves.

It is important to notice how the result of the motion planning is split in two
separate parts, one for the mobile base and the other for the robotic arm. This
is due to the need of assigning these targets to two different controllers, one for
the mobile base and the other for the arm, since a unique controller able to govern
both parts has not been implemented.

5.6.2 Node’s states
Similarly to the other nodes, the LoCoBot Extended Planner node has a set of
states that provide information about the current operation it is completing, and
they are:

1. IDLE, that indicates the node is waiting to receive a request or that all the
others requests have been completed;
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2. PLANNING indicating that a desired pose has been received and the
planning process is actually running;

3. PLANNING_SUCCESS, indicating that a plan for both the arm and the
mobile base has been found;

4. PLANNING_FAILURE denoting that the planner failed while searching
for a feasible trajectory.

5.21 describes how the states of the node change according to the different events.

Figure 5.21: Flow chart describing the evolution of the
LoCoBot Extended Planner states.
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5.6.3 Planning pipeline

The only role demanded by the LoCoBot Extended Planner node is to find a path
for the mobile manipulator considering it as a holistic system. The parameters of
the MoveIt! planner are reported in Table 5.8.

Parameter Value
Joints state publisher /locobot/joints_state

Robot description /locobot/robot_description
Planning group name locobot_ext_all

Planning library OMPL
Planner RRTConnect

Planning time 30 s
Planning attempts 5

Pose reference frame map

Table 5.8: Table with the parameters used by the extended planner.

It is important to point out that the robot description considered by this planner
is the one with the three custom virtual joints added by hand. Moreover, the
locobot_ext_all planning group, that is part of the custom MoveIt! package
created, is constituted by the kinematic chain going from the fixed joint of the
mobile base (it is a virtual joint used by the planning framework to attach the
robot to the world fixed frame) to the wrist joints, including obviously the three
custom virtual joints created; Figure 5.22 shows the kinematic chain described
before, while a complete list of the joints can be found in Table 5.9.

(a) (b)

Figure 5.22: View of the locobot_ext_all kinematic chain (5.22a) corresponding
to the pose 5.22b.
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Joint name Type
move_all_x virtual prismatic
move_all_y virtual prismatic

move_all_theta virtual revolute
waist revolute

shoulder revolute
elbow revolute

forearm_roll revolute
wrist_angle revolute
wrist_rotate revolute

Table 5.9: List of joints building the locobot_ext_all group.

Algorithm 2 describes all the steps executed by the node to find a suitable trajectory.

Algorithm 2 Algorithm executed by the LoCoBot Extended Planner
1: Extract the pose of the end-effector
2: Added trajectory constraints
3: Set the target pose
4: Start the motion planning
5: if plan = FOUND then
6: Retrieve final mobile_base pose
7: Extract the arm’s joints trajectory
8: else
9: Return error

10: end if

It is possible to notice that some trajectory constraints are added in Algorithm
2. Besides those coming from the occupancy grid created by Octomap, a further
constraint regarding the orientation of the mobile base, and hence the value of the
move_all_theta joints is added: the current value of this joint is retrieved and set
as a goal for the planning. In this way, the mobile base is forced to have the same
orientation it had before planning, that is the one that allows the manipulator to
be directly in front of the object to grasp. This latter orientation is the one used
to scan the environment while searching for the desired object.
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5.7 Dangerous Part Feedback Getter node
The role of this node is to create a structure for the human to provide the robot
with feedback on the most dangerous part of the object to be handled. Every time
the human sends a request to the Communication Manager, it first checks whether
the ID is present in a hard-coded list containing all identifiers of the dangerous
objects, and if the requested item is considered somehow dangerous, then the
Dangerous Part Feedback Getter node is involved.

The communication interface of this node can be seen in Figure 5.23. It is
composed of:

1. a topic named "/dangerous_part_getter/request". It is used by the Communi-
cation Manager to give the Feedback Getter node the last RGB frame with
the object to be handled, hence, messages published on this topic are of type
sensor_msgs/Image;

2. the "/dangerous_part_getter/result" service is used to retrieve the status of
the node together with the feedback provided by the human.

Figure 5.23: Communication interface of the Dangerous Part
Feedback Getter node.

The service type is totally custom and contains three message fields: a std_ms-
gs/String message called node_status representing the current state of the node,
and two std_msgs/UInt32 messages (danger_point_x,danger_point_y) for
the coordinates (u, v) of the point indicated as dangerous by the human.

5.7.1 Feedback infrastructure
The most important functionality of this node is the implementation of a structure
through which the human can select the most dangerous part of the object. In order
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to complete this task, the OpenCV library [83] has been used: it is an open-source
computer vision and image processing library that allows to manage and interact
with images rapidly.

As soon as a sensor_msgs/Image message is received, the Dangerous Part
Feedback Getter node executes the callback that simply consists of converting the
Image message in a format that can be handled by OpenCV using a cv_bridge,
and displays it in order to collect the feedback from the person. This feedback is
provided by the human through a mouse click: a callback to read and store the
coordinates of the clicked point has been defined. In this way, every time the result
service is called, the response that will be sent will contain the coordinates of the
last point indicated on the image. Figure 5.24 shows an example of the feedback
structure and the result provided to the robot.

Figure 5.24: Example of the communication interface through which the human
operator can provide a feedback message about dangerous point.
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Chapter 6

Custom Dataset and YOLO
training

In order to successfully generate the grasping point for an object, it is necessary
to check if the requested object is present in the current scene or not. This task
is called object detection: understanding which objects surround the robot is
fundamental to find the correct way to interact with them.

Several techniques can be exploited to complete this task, using different meth-
ods like the analysis of the image gradients (Histogram of Oriented Gradients or
HOG), detection of edges (where they are and how they are connected), color-based
methods and others. With the last advancements made in the ML and AI fields,
several new approaches have been proposed, and nowadays the most common way
to face the object detection task is based on CNN: they are very versatile and
lots of different models can be found to be adapted to a specific case of study.
The type of architecture and the number of parameters characterizing the network
strongly depends on the hardware available and impacts on the time required to
make each single prediction. Taking into consideration that the hardware capa-
bilities of the LoCoBot are limited and a GPU is not available, and keeping in
mind also that the inference time must short since object recognition is just a step
of a more complex pipeli, the Grasping Point Generator makes use of a YOLOv5 NN.

YOLOv5 has different architectures characterized by different sizes and parame-
ter numbers; in this way, it is possible to choose and use the one that best suits
one’s own needs. From the Ultralytics website [84], it is possible to download and
train five different types of architectures, and each one has its own characteristics;
Table 6.1 summarizes their main features.
Thanks to its reduced number of parameters and the small amount of time required
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Model’s name Size Parameters [M] CPU [ms] GPU [ms]
YOLOv5n Nano 2.6 73.6 1.06
YOLOv5s Small 9.1 120.7 1.27
YOLOv5m Medium 25.1 233.9 1.86
YOLOv5l Large 53.2 408.4 2.50
YOLOv5x Extra-large 97.2 763.2 3.81

Table 6.1: Summary table of all YOLOv5 architectures.

to compute the results, YOLOv5s has been chosen: it takes about 120.7 ms to com-
pute the required predictions, making the object detection task fast and lightweight.

All versions of this CNN have the same structure, what changes is the number
of convolutional layers characterizing each part. As can be seen from Figure 6.1,
the entire architecture can be divided into three main parts:

1. the CSP-Darknet backbone, that is a deep CNN to which the authors
applied the Cross Stage Partial (CSP) network strategy. YOLO makes use
of residual and dense blocks in order to enable the flow of information to
the deepest layers and to overcome the vanishing gradient problem. On the
contrary, the use of these types of blocks introduces the redundant gradients
problem, and this is where the CSP strategy comes into action: it helps
tackling this problem by truncating the gradient flow;

2. the neck of the architecture is further divided into two parts: PANet (Path
Aggregation Network) that enhances instance segmentation by utilizing multi-
path aggregation, adaptive feature pooling, and instance-aware convolution
for accurate object delineation, and Spatial Pyramid Pooling (SPP), used to
capture features at multiple scales, improving object recognition in varying
spatial contexts.

3. the head of the network, composed of three sets of convolution layers that
predict the location of the bounding boxes in terms of their positions (x, y)
and extensions (height and width), the scores and the objects classes.

6.1 Objects dataset
To properly train the YOLOv5 neural network, a custom dataset containing objects
that can be commonly found in laboratories has been realised employing the useful
tools made available by Roboflow [86]. This dataset contains a total of 804 images
of objects belonging to 15 different classes that are:
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Figure 6.1: YOLO networks architecture [85].

1. blades
2. box
3. charger
4. cutter
5. eraser
6. glue_stick
7. large_box
8. level
9. marker

10. object
11. pen
12. pliers
13. screwdriver
14. tape_roll
15. whiteboard_pen
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Some images taken from the dataset are shown in Figure 6.2. It is important to
notice that, in order to make the images as similar as possible to those collected
while running the entire grasp pipeline, elements present in the dataset have been
captured directly from the camera mounted on the LoCoBot; in this way, the field
of view and the size of the images are almost identical to those really used by the
robot itself.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.2: Some examples of the images composing the custom dataset.

Understanding whether an object is present or not in the scene is not sufficient: it is
necessary to compute its exact position with respect to the image frame. YOLOv5
architecture is able to compute the bounding box of an object if it is present in the
image, but to properly work it has to be trained accordingly. In order to compute
the correct positions as a result of the predictions, bounding boxes corresponding
to the images in the dataset have been manually created and the corresponding
classes associated with them. Bounding boxes of the images in Figure 6.2 are shown
in Figure 6.3.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.3: Some examples of the detected bounding boxes
and the class associated to them.

6.2 Training results
The YOLOv5 loss function is a comprehensive combination of different components
tailored for optimizing accurate object detection and bounding box prediction
during training. It includes:

1. Objectness Loss: This term evaluates the model’s ability to accurately
predict whether an object exists within a given bounding box.

2. Classification Loss: This component measures the error in predicting the
class of the object contained within the bounding box.

3. Localization Loss: The accuracy of predicting the coordinates (x, y, width,
height) of the bounding box is assessed through the localization loss.

4. Confidence Loss: Combining objectness and classification losses, the confi-
dence loss emphasizes correct localization and precise class prediction.

The formulation of the YOLOv5 loss function can vary slightly depending on the
specific variant being used (e.g., YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5x) and
the objectives of the training process. The overarching goal is to minimize errors in
predicting object presence, class labels, and bounding box coordinates, contributing
to the overall effectiveness of the model in object detection tasks.
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YOLOv5 has been trained to recognize and localize objects belonging to the
custom dataset using the Stochastic Gradient Descent (SGD) optimizer. SGD
performs the optimization task on a subset of the training data (a mini-batch)
rather than the entire dataset. This introduces randomness, which can help to
escape local minima and speed up convergence. Hyperparameters used to train the
network are reported below and summarized in Table 6.2:

• the network has been trained for a total of 150 epochs;
• at each epoch, a total of 320 images organized in mini-batch of 32 elements

have been used;
• lr0 (Learning Rate at Start) is the initial learning rate at the beginning of

training and was set equal to 0.01;
• lrf (Final Learning Rate), which is the learning rate at the end of training,

was also set to 0.01. Different values of lr0 and lrf are used to change the
learning rate during the training process according to the behaviour of the
loss function; here they have been set both equal to 0.01, thus keeping the
learning constant for the entire training process;

• momentum value used for the SGD optimizer was 0.937. Momentum helps
accelerate gradient descent in the relevant direction and dampens oscillations
of the loss function;

• weight decay is L2 regularization term (set to 0.0005), which penalizes large
weights to prevent overfitting;

• bounding box loss weight equal to 0.05;
• class loss weight was set to 0.5;
• the objectness loss weight was 1.0.

The entire dataset has been split into 3 sets, training, validation and test sets,
containing respectively 644 (80%), 80 (10%) and 80 (10%) images. The number
of elements constituting the training was increased using an image augmentation
process where elements can be flipped horizontally and used to create a mosaic in
order to have more than one object in each image; this latter technique allows to
train the network to recognize and localize objects also in cluttered scenes.

Figure 6.4 shows the results obtained after the training phase. It is possible to
see the metrics used to evaluate the performances obtained are:

1. precision, computed as

Precision = True positives

True positives + False positives
, (6.1)
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Hyperparameter Value
training epochs 150
mini-batch size 32
learning rate 0.01
momentum 0.937

weight decay 0.0005
bounding box loss weight 0.5

class loss weight 0.5
objectness loss weight 1.0

Table 6.2: Summary table of the hyperparameters
used to train the YOLOv5 network.

where a prediction is considered a True positive when it is correct, while it is
a False positive when the actual class of the object is different with respect to
the one predicted. The precision metric measures how many predictions on
images belonging to the test set have been computed correctly, and a value of
93% has been reached;

2. recall, computed as

Recall = True positivies

True positives + False negatives
, (6.2)

where false negatives are all those elements belonging to a class that have not
been detected. Recall measures how many of the actual images containing an
object have been correctly predicted. The maximum value reached for the
recall metric is 95%;

3. mean average precision (mAP) is a comprehensive metric that considers
the precision and recall across different confidence thresholds, providing a
more nuanced evaluation of the model’s performance. In order to obtain a
metric that is more related to the bounding box detection task, the mAP_0.5
has been used, where the subscript 0.5 denotes the intersection over union
(IoU) threshold used to consider a detection as correct; a final value of 95%
has been obtained for the mAP_0.5 metric.
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(a) (b) (c)

Figure 6.4: Graphs showing the evolution of the metrics used to evaluate the
performances of the trained network.

Figure 6.5 shows the evolution of the loss functions with respect to the number
of epochs. It is possible to notice how they all decrease smoothly towards zero.

Figure 6.5: Evolution of the loss functions.
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Chapter 7

Simulation environment and
results

The first step to understand whether the software developed allows to reach the
thesis goal is to create a simulation environment and perform some tests using it.
The objective of this chapter is to provide an overview of the simulation world
created to conduct the first experiments, and the analysis of the assumptions made
and of the results obtained.

7.1 Gazebo world
Since the objective of the simulation is to test the code developed and to inspect
how to robot behaves, it is important that the simulation environment is close to the
real one, in which the mobile manipulator is expected to work. In order to satisfy
this constraint, a fake world in Gazebo has been realized, and a representation of it
can be found in Figure 7.1. It is possible to see that it reflects all the characteristics
of the real environment where a LoCoBot should be used, which are:

1. indoor environment. This requirement is needed because of the mobile base
used, that is not reliable on surfaces that are too rough and steep;

2. structured or semi-structured environment, that allows the creation of a
map used for both navigation and localization;

3. presence of shelves and drawers that act as obstacles to be avoided while
navigating, but at the same time are used to store objects to grasp;

4. presence of humans with whom the robot has to share its workspace.

Referring to the search pipeline (Figure 5.3), it is important to recall that the
Communication Manager uses two dictionaries to map the locations, where a given
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Figure 7.1: Representation of the Gazebo world used in simulation.

object can be found, and the coordinates of the locations themselves. In order to
test the complete search phase, three known locations have been defined; Figure
7.2 shows their positions and names, while Table 7.1 contains their coordinates
with respect to the world reference frame. It is possible to see that there are four
known locations:

1. Home point is the position where the mobile manipulator waits to receive
any request;

2. Location 1 and Location 2 are the positions where objects can be stored,
hence they are used as targets for the mobile base during the search phase;

3. Depot is the base’s target position during the place pipeline.

Name Position [m] Orientation [rad]
Home (0, 0, 0) (0, 0, 0)

Location 1 (1.2, 0, 0) (0, 0, 0)
Location 2 (-0.8, -0.5, 0) (0, 0, -2.44)

Depot (0, 1.2, 0) (0, 0, 1.57)

Table 7.1: Coordinates of the known locations in the Gazebo world.
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Figure 7.2: Visualization of the known location in the Gazebo world.

7.1.1 Occupancy Grid

To let the robot sense the environment and have the knowledge needed to navigate
and obtain collision-free trajectories, an occupancy grid has been created using
Octomap. Figure 7.3 shows the resulting occupancy grid of the main locations
visited by the robot. It is important to point out that building a fine-grained
occupancy grid is an expensive process from a computational point of view, es-
pecially if a GPU is not available. By running different simulations with diverse
configurations of Octomap, the most impactful parameters seemed to be the vision
range, that is the maximum distance at which it is possible to detect obstacles,
and the voxel size, that is the size of the cells of the occupancy grid. Using a
distributed architecture to enhance the performance available, it has been possible
to set max_vision_range = 5.0 m and voxel_size = 0.02 m. The occupancy
grid resulted to be fine-grained enough to give a suitable estimation of the space
occupied by the objects to grasp, and also to have a perception of the empty spaces
of the drawers containing the items.
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Figure 7.3: Occupancy grid of the simulation environment.

Another important consideration regards the filtering of the ground voxels. Due to
the camera orientation and inclination with respect to the ground, the occupancy
grid would have contained also a representation of the ground, leading the motion
planners to consider the robot in a constant collision state. To solve this problem
the voxels belonging to the ground have been deleted by setting a parameter
of the Octomap server called occupancy_min_z equal to 0.03 m. Here the
assumption is that all obstacles having a maximum height that is less than 0.03 m
are considered as part of the floor and, hence, neglected.

Parameter name Value
Point cloud topic /locobot/camera/depth_registered/points

Frame_id map
max_vision_range 5.0 [m]

voxel_size 0.02 [m]
occupancy_min_z 0.03 [m]

Table 7.2: Summary table of the configuration parameters used by Octomap to
run the simulations.
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7.1.2 Environment mapping
The robot needs to have a clear map of the environment in order to successfully
navigate in it and to localize itself. To solve this task, the RTAB-map ROS package
has been used to create the map shown in Figure 7.4. Is it possible to notice
how smoothly the wall surfaces have been detected, and the clear presence of
the drawers’ projections on the map’s flat surface, although the presence of some
(simulated) noise that affects the vision sensor.

Figure 7.4: Map of the simulation environment created using
the RTAB-map package.
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7.2 Experiments in the simulated environment
The main goal of the experiments conducted in the simulated environment was to
test the search phase and the grasp pipeline, and to measure how much time they
require.

7.2.1 Search phase
To test the search phase, the mobile manipulator is requested to find an eraser,
that has ID equal to 4; a proper whiteboard eraser model is not present to be
loaded in the Gazebo world, hence a box with the same size as the real object that
is detected as an eraser is used. The main steps characterizing the search phase
are depicted in Figures from 7.5 to 7.10: the description of the various phases is
directly provided in the figures’ descriptions.

Figure 7.5: The LoCoBot starts from the home position and waits a request from
the human.
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Figure 7.6: As soon as a request from the user is received, the first location is
extracted from the dictionary. In this case, the first location where to search is
Location 2, hence a global (green) and a local (red) trajectories are computed to
reach this position.

Figure 7.7: LoCoBot reached Location 2 pose.
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(a) (b)

(c) (d)

Figure 7.8: After the desired location is reached, the Communication Manager
starts moving the camera to locate the object. Four different positions corresponding
to four tilt angles are used and shown here: tilt = 0.3 (a), tilt = 0.4 (b), tilt = 0.5
(c), tilt = 0.6 (d) .

Figure 7.9: During this simulation, the object has been positioned in Location 1.
For this reason, from Location 2 it is not possible to find the desired item, and as
a result, the next point is reached.
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Figure 7.10: LoCoBot reached Location 1. Again, the Communication Manager
will move the camera trying to locate the requested item.

Depending on the result of the object detection done from the last known location,
the robot would start the pick-and-place pipeline or it would return to its home
position. In the worst case, that is the one where all locations must be explored
before finding the object, the entire search phase requires about 2.5 minutes to
be completed, and a total distance covered of about 5 meters. The main overhead
is due to the poor simulation performances of the computer used, while the mobile
paths computation can be neglected and the time required to process a single image
with the trained YOLOv5 network is of 0.309 seconds, leading to a total of 2.5
seconds spent processing the images.

7.2.2 Pick-and-place routine
In this section, the main steps executed to complete the grasping pipeline are
reported. In this case, it is also important to point out that the objects to grasp
must have dimensions, shape and weight compatible with the gripper and robotic
arm properties. In order to test whether the pick-and-place pipeline described in
Chapter 5 works well, and to satisfy all the constraints that the desired object must
meet, the same object used to evaluate the search pipeline has been used. Figure
from 7.11 to 7.5 describe how the entire routine is executed; details are provided in
the captions.
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(a) (b)

Figure 7.11: After the search phase, if the requested item is found, the grasp
and pre-grasp poses are computed and a motion plan to the LoCoBot Extended
Planner node is requested. As a result, the mobile base is moved to reach the pose
resulting from the plan. The Figure shows how the base is repositioned (b) with
respect to the arrival pose (a).

Figure 7.12: Pre-grasp pose reached as a result of the execution of the planned
trajectory. Here the voxels occupied by the object are marked in red. Notice that,
due to the voxel size, the occupied space is greater than the real one.
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Figure 7.13: After having reached the pre-grasp pose, the gripper is opened and
an object is attached to the mobile manipulator’s fingers.

Figure 7.14: In this figure it is possible to see the object attached to the gripper
and the grasp position reached. Moreover, as a result of attaching the object, the
occupancy grid around the object is cleared.
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Figure 7.15: After the success of the grasping actions, the arm is taken to the
arm_secure_pose: this is done by requesting a plan to the Arm Handler node by
specifying the name corresponding to the desired pose.

Figure 7.16: Once the object has been grasped and the manipulator has reached
the arm_secure_pose, the Communication Manager retrieves the depot’s position
and requests a plan for the mobile base.
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Figure 7.17: Once the depot position is reached, the Arm Handler node requests
a plan to reach the placing pose of the end-effector and open the gripper.

Figure 7.18: After the gripper opens, the object is detached from the robot’s
gripper. This leads to have the voxels present in the planning scene again.
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Figure 7.19: After having successfully retracted the arm to reach the arm_-
secure_pose, the robot reaches again the Home location waiting for other requests.

The performances of the pick-and-place pipeline are again measured in terms of
the time needed to complete this task. The main impact is due to the time given
to the planner to find a suitable trajectory. During the experiments conducted
in simulation, the considered planner was the OMPL RRTstar. A total of 30
seconds for each plan and a maximum of 5 attempts are available. The RRTstar
planner takes all the planning time to find a solution, even if a suitable trajectory
is found in less time. The total amount of time results to be mainly affected by the
number of planning attempts that are actually performed: the LoCoBot Extended
planner usually requires all the available attempts (5) before trying a suitable plan,
while the Arm Handler, that controls only the arm’s joints, requires from 1 to
2 attempts. Since the entire pick-and-place pipeline requires one plan from the
LoCoBot Extended Planner node and two from the Arm Handler (one to reach the
grasp pose starting from the pre-grasp pose, and the other one to place the object
on the drawer), in the worst case a total of about 2.5 minutes are necessary.
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Chapter 8

Experiments on the real
robot and results validation

This chapter illustrates how the code tested by running different simulations has
been adapted, in order to make a real mobile manipulator able to search for and
safely handle objects present in a workspace shared with humans. A description
of the real environment used for testing, together with the assumptions made are
deepened hereafter.

8.1 Environment description
The mobile manipulator, for which the software architecture described in Chapter 5
has been developed, is intended to work in indoor environments shared with humans,
in which objects are stored on shelves, drawers and cabinets. A perfect example of
such a context is the Robotic Laboratory at the Department of Electronics and
Telecommunications Engineering (DET) at Politecnico di Torino, the place where
tests described in this chapter have been conducted. As can be seen from Figure
8.1, it is an indoor and semi-structured environment, where robots and people
work together, and it is characterized by the presence of obstacles (both static and
dynamic) and, above all, storage places that can contain any kind of objects.

The first assumption that has been made regards the robot’s starting position:
keeping in mind that the mobile manipulator considered has to work as a human
assistant, it is supposed to stand right next to the place where a person works.
For this reason, how it is shown in Figure 8.2, the starting and ending location of
the LoCoBot used here is right next to a person’s desk, in a position where the
person’s movements are not hindered.
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Figure 8.1: Real environment where experiments have been done.

Figure 8.2: Starting position of the LoCoBot next to the person’s desk.

As it has been done in the simulation environment, some well-known spots have
been defined; a brief description of them and of their uses follows:

1. home location is the position where the robot stands right next to the desk
of the person it is assisting. This spot is the one where the searching phase
starts and also the one where the mobile manipulator goes back once it has
completed the request it received;

2. dataset location is right in front of a cabinet containing some objects the
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person can ask for. The name of this location highlights that is the point from
where images building the dataset described in Chapter 6 have been taken;

3. general location is another spot containing objects the robot is able to
recognize;

4. depot location is the location of a container inside which grasped objects
are released.

Table 8.1 reports the positions and orientations with respect to the world reference
frame of the locations described above.

Location’s name Position [m] Orientation [deg]
Home (0, 0, 0) (0, 0, 0)

Dataset (0.6, -0.8, 0) (0, 0, 180)
General (4.34, 1.68, 0) (0, 0, 0)
Depot (2.86, -2.21, 0) (0, 0, -90)

Table 8.1: Table describing the pose of the real locations used for testing.

8.1.1 Obstacle avoidance
To solve the problem of obstacle avoidance, an occupancy map created using
Octomap was used (like during the simulations). It is important to notice that the
occupancy map generated is not stored; hence, every time a new run starts the
occupancy grid is empty and it is updated as the experiment continues. Although
this aspect may be redundant, it allows to deal with new static obstacles that were
not present before. From Figure 8.3, it is possible to see the presence of a large
free area in the center of the laboratory, while the main obstacles appear at the edges.

It is important to point out that the obstacle grid is crucial while picking objects
from a cabinet: it is a closed space where different objects are present, hence
the motion planning must take into consideration the boundaries and generate a
suitable trajectory. For these reasons, the occupancy grid generated is fed to the
motion planners used.

8.1.2 SLAM problem
In order to correctly navigate the environment it is necessary to build a map of
it and to localize the robot. To solve the SLAM problem during the real exper-
iments, the RTAB-map used during simulations has been substituted with the
Slam Toolbox. The main reason is that, since the first package uses pictures
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Figure 8.3: Occupancy grid of the real environment.

to build a map and localize the robot, the entire process resulted to be really
slow. Moreover, the real camera is quite different from the simulated one, and
this results in the presence of a lot of noise, especially for far points, that would
require to visit the same locations several times to refine the map enough. In
order to solve these problems, instead of using both the camera and the lidar,
only the latter has been used by the Slam Toolbox. The Lidar appears, overall,
more precise and it presents less noise, hence the map obtained appear to be
cleaner; Figure 8.4a shows the map used to navigate. Although the map obtained
is more than suitable, it has been post-processed to delete all the noise (Figure 8.4b).

(a) (b)

Figure 8.4: Map of the real environment.
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Every time a new run starts, the refined map is loaded and used to localize the
LoCoBot. It is also important to point out that if new obstacles appear, or those
that were present while creating the map have been removed, the map is updated
accordingly, but these changes are not permanently stored.

Regarding the initial position of the robot with respect to the map, from Table
8.1 it is possible to understand that the Home Location coincides with the origin
of the map. This aspect is related to the fact that when the robot is turned on
the Slam Toolbox needs to know its starting location, that has been fixed to be
coincident with the origin of the map frame. The created map could also be used
by other robots, simply setting their correct starting positions.

8.2 Robots’ descriptions
As previously explained, the URDF file contains the description of the robot in
terms of joint positions and limits, link lengths, and defines the reference frame
characterizing the robot. It is important to point out that the LoCoBot Extended
Planner node works with a modified model of the robot, which includes the three
fake joints added in order to have a plan for the mobile manipulator as a unique
holistic system. On the contrary, the robot’s movements are possible thanks to two
different controllers realised by the manufacturer, one for the base and the other
for the arm, hence it is not possible to directly execute the planned trajectory. To
overcome this problem two descriptions of the same robot are loaded at runtime:

1. the vanilla description is used together with the controllers to correctly govern
the entire system;

2. the extended one is used to let the LoCoBot Extended Planner node to find a
suitable trajectory for the holistic system.

Thanks to these two descriptions it is possible to both control the robot using the
already-developed controllers and request a plan to the MoveIt! planner, which
is then split into two parts, one to be sent to the arm controller and the other to
the one of the base. It is important to point out that a crucial step to let these
two descriptions exist contemporary is the definition of two different namespaces.
Here the locobot namespace refers to the virtual robot, the extended one, and the
locobot_real contains all the parameters and topics belonging to the real robot.

8.2.1 Mobile Base space occupancy
Another important change made with respect to the settings used to run the
simulations regards the geometric model representing the mobile base. Indeed, the
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cylinder modelling the base is used by:

1. the mobile_base package to generate the inflation layers on which the global
and local costmaps needed by the navigation stack are generated,

2. the LoCoBot Extended Planner to find a suitable collision-free trajectory.

Using the default values of height and radius, reported in Table 8.2 under the "old"
column, the motion planner for the holistic system is able to find a collision-free
trajectory, but the planned pose of the mobile base cannot be effectively reached.
This is essentially due to the fact that the motion planner considers the occupancy
grid to avoid collisions, but it may place the base right next to an obstacle, without
considering a minimum distance from them; such a distance should correspond to
the size of the inflation layer of the costmaps. As a result, it happens that the
mobile base’s goal position falls within the inflation layer itself, hence is considered
as forbidden and unreachable by the navigation stack, leading to a movement failure.

In order to solve this problem, the extended robot description belonging to
the locobot namespace has been further modified by changing the radius of the
cylinder representing the collision region of the mobile base; the new parameters
are reported in Table 8.2 under the "new" column. It is possible to notice that
only the radius has been increased. Since the mobile_base package uses the robot
description belonging to the locobot_real namespace, coming from the default and
unchanged URDF file, the inflation layers have a default size corresponding to
the normal space occupancy of the mobile base. On the contrary, the motion
planner used for the entire mobile manipulator uses the extended robot description,
thus the one with the augmented mobile base’s space occupancy: in this way, the
collision-free trajectory planned places the mobile base right next to an obstacle,
but since the collision shape is larger, the position of the real mobile base will be
far from the obstacle, outside the inflation layer. Figure 8.5 shows the comparison
between the occupancy space of the mobile base coming from the default robot
description (8.5a) and the augmented one (8.5b).

Parameter Old Value [m] New Value [m]
height 0.10938 0.10938
radius 0.178 0.3

Table 8.2: Parameters of the mobile base’s space occupancy.
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(a) (b)

Figure 8.5: Comparison between the default mobile base collision region (a) and
the augmented one (b).

8.3 Searching phase
As soon as the human sends a request to find a specific object, the search starts.
Here the focus is to point out the main aspects of this phase tested on the real
robot, and to comment the results obtained. Figure 8.6 shows the position of the
known locations, while Figures from 8.7 to 8.12 depict all the steps executed by
the LoCoBot while searching for an object. Details are provided, as usual, directly
in the captions.

Figure 8.6: View of the known locations in the laboratory environment.
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Figure 8.7: After the Communication Manager receives a request, it extracts the
first known location where it is possible to find the requested item. In this case,
the first place is the Dataset Location, hence its coordinates are extracted and the
control is demanded by the Base Handler that computes a path to reach the target.

Figure 8.8: The LoCoBot reaches the target location. Here the object detection
task is executed, involving the Grasping Point Generator node to compute the
predictions using the trained YOLOv5 network.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.9: Front and rear views of the camera movements during the searching
phase. In order to show the complete searching phase, the requested item is a
3D-printed red gear that has been removed from any of the corresponding known
locations.
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Figure 8.10: The requested object has not been found, The communication
Manager extracts the second known location, that is the General Location, and its
coordinates, and sends them again to the Mobile Handler.

Figure 8.11: The General Location is reached and the object detection pipeline
starts again.
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Figure 8.12: The target item was not found either in the last known point. The
Communication Manager recognizes the termination condition of the searching
phase and requests a path to return to the Home Position.

The entire searching phase shown in the figures is executed in about 1 minute,
and the major contribution is given by the base movements needed to go from
one place to another. Regarding the object detection, 4 different camera positions
are considered, with a tilt angle that goes from 0.3 rad to 0.6 rad, with a step
equal to 0.1 rad, and each prediction requires about 0.6 seconds. It is possible to
notice a slight difference with respect to the time needed to compute a prediction
during simulations, and the main reason is that more nodes run during the real
experiment, due to the presence of two different descriptions of the same robot.
What is important to notice is that the trained YOLO v5 network is used on a
distributed system, where no GPUs are present, highlighting the lightweight of this
CNN.
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8.4 Pick-and-place pipeline

The second part of the tests performed on the real robot regards the pick-and-
place pipeline. The objective of this part was to understand the real speed of the
entire pipeline and the limitations of the grasping actions. Two different planners
belonging to the OMPL are used:

1. the RRTstar planner is used to obtain a complete trajectory considering the
mobile manipulator as a holistic system. The number of attempts available
was set to 5, while the maximum planning time was set to 30 seconds;

2. the RRTConnect algorithm is instead used by the Arm Handler to find suitable
trajectories for the arm only. In this case, the total number of planning
attempts was 5, while the maximum time to find a solution was set to 10
seconds.

The values of the settings reported above are based on some experiments conducted
before having the possibility to test the entire behaviour of the robot. Figures from
8.13 to 8.22 show the entire pick-and-place pipeline, with details in the captions.

Figure 8.13: The LoCoBot always starts from the Home Position, right next
to the desk of the human it is assisting. It is possible to notice how the arm is
retracted in order to not exceed the collision shape of the mobile base, thus not
generating unexpected collisions.
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Figure 8.14: After a request is received, the searching phase starts, and the mobile
manipulator goes to the first known location. Here the Object detection phase
starts, and if the requested item is present in the current location, the LoCoBot
Extended Planner node is called to find a suitable trajectory to reach the pre-grasp
pose.

Figure 8.15: Result of the object detection task. It is possible to observe the
bounding boxes computed and the predictions’ confidence.
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Figure 8.16: After the planner has found a suitable trajectory, the mobile base
final pose is extracted and assigned to the Base Handler node. As a result, the
mobile base is moved to a different position with respect to the one where the
object detection pipeline started.

Figure 8.17: After the mobile base has reached the correct position, the trajectory
computed for the arm is executed and the pre-grasp pose is reached. In this figure,
it is possible to see the pre-grasp pose right above the object and the gripper open.
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Figure 8.18: Once the pre-grasp pose is reached, the Communication Manager
requests to the Arm Handler a plan to reach the grasp pose. When in this pose,
the gripper is closed to grasp the object.

Figure 8.19: After the object has been grasped, the Arm Handler plans a trajectory
to go back to the arm_default_pose. This latter pose reduces any risk of collision
with the humans, ensuring their safety.

120



Experiments on the real robot and results validation

Figure 8.20: After the success of the grasp action, the mobile manipulator
approaches the depot location to release the object.

Figure 8.21: Once there, the robotic arm reaches the placing position and the
gripper is opened.

121



Experiments on the real robot and results validation

Figure 8.22: As last step, the arm goes back to the arm_secure_pose and the
LoCoBot will return to its Home position.

The entire pipeline is executed in about 2.5 minutes. Again, the main con-
tributions is due to the navigation, while the object detection task appears to
be negligible, although it is executed on a GPU-free system, and it is requested
twice to mitigate the effect of the noise affecting the depth camera; the impacts
of this task, considering also the delay introduced to reduce the noise effect, is
of about 10 seconds for 8 predictions (4 camera positions and predictions are
requested twice). It is also important to point out that the maximum planning
time given to the holistic planner has been decreased to 15 seconds, since, if a
trajectory is available, the RRTstar algorithm is able to find it in less than that.
On the contrary, this algorithm uses the entire amount of planning time available,
even if a suitable trajectory is found in few seconds. Differently from RRT∗, the
RRTConnect algorithm used by the Arm Handler to find paths related only to the
manipulator stops searching as soon as a plan is found: in this way, the 10 seconds
available to this planner are seldom totally used.

8.4.1 Dangerous part feedback
After the object detection phase and before the grasp action, if the requested item
belongs to the hard-coded list of dangerous ones, the Dangerous Part Feedback
Getter node takes into action. The user receives a picture representing the scene
seen by the LoCoBot, together with an indication of the object that is going to be
grasped and the computed grasping point. Figure 8.23 shows the image received
by the human: it contains the bounding box of the requested item, and a red point
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indicating the grasping point computed.

Figure 8.23: Interface through which the human operator can indicate the
grasping point.

Once the image above appears, the person can click on the most dangerous point
that should be grasped: the callback "get_feedback", realized using Python and
the OpenCV library, saves the coordinates of the clicked point. As a result, the
mean point between the predicted grasp point and the one indicated by the human
is computed (Figure 8.24), and will be used as an effective grasping point.

Figure 8.24: Visualization of the point clicked by the user (blue) and the real
grasping point that will be used (green).
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This interface is intuitive and easy to use, and allows to correctly handle
dangerous objects. Regarding the grasping performances, the properties of the used
gripper lead to some major issues with some objects in the dataset: long objects
with the center of mass located near to one end of the object, like the screwdrivers,
are seldom successfully grasped, while others with a regular shape and the center
of mass near to the real grasping point are picked correctly most of the times.
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Chapter 9

Conclusions and Future
works

This thesis work gave me the possibility to explore the state-of-the-art regarding
mobile manipulators and the robotic research fields in general, to deepen the
knowledge of what ROS is and how it works, and which are the packages that
perfectly suit a specific need. In addition, the need to create a custom dataset and
to select, train and use a custom CNN gave me the possibility to further deepen my
knowledge about AI and its applications. Problem-solving skills have been honed,
particularly regarding how a robot should think in order to correctly behave in
environments shared with humans, and which actions it should take to emulate
them.

The objective of this thesis was to develop a software architecture which aims
at improving the overall performance of a mobile manipulator, in order to make it
more autonomous and flexible, and to make it able to behave as a smart assistant
for humans. In order to achieve these objectives, the code structure has been
organized as a communication graph, where each node is a ROS one and it is in
charge of controlling a specific task or part of the robot. In addition, such an
architecture allows to easily expand or modify the robot’s behaviour without having
to make heavy changes. It is also oriented towards a distributed settings, allowing
to use the different computational resources present on the different computers, a
characteristic that has been already exploited to ease the computations demanded
by the on-board PC and to use a CNN for object detection. This latter feature
gave the robot more autonomy and flexibility, making it able to recognize different
objects in cluttered scenes, without having to mark them with specific labels.
Moreover, the use of the reduced (small) version of YOLOv5 leads to predictions
that are done in less than a second, speeding up the recognition process. To better
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exploit the manipulability space of a mobile manipulator, a holistic planner has
been realized and used: this allows to obtain motion plans leading the gripper to
poses that would not be reachable keeping the arm’s origin frame fixed. The entire
pick-and-place pipeline benefits from this planner, since less recovery behaviours
and base movements are required. In addition, it is no longer needed to fix a
base’s pose from which the grasping task starts; instead, it is possible to define
a location from where the robot starts searching for a given object, and if it is
present in the current scene, the holistic planner will automatically find a suit-
able position for the mobile base from where the grasping task can be accomplished.

Working with the LoCoBot, some limitations that may regard also other mobile
manipulators have been detected. First of all, the performances and the computa-
tional resources of the on-board PC are crucial: although some problems can be
overcome by exploiting the distributed settings provided by ROS, some tasks must
be executed on the on-board system. Controllers and data coming from sensors
must be handled by that hardware, hence low performances may limit the entire
process. A further limitation of the robot that has been used is the RGB-D camera
it mounts, especially the depth sensor: it is affected by a lot of noise, forcing to
take several depth frames before obtaining a reliable one. Regarding the mobile
base and the arm’s movements, they result to be highly inaccurate, leading to have
to perform several attempts before executing a successful grasp. For what concerns
the grasping abilities of the robot, besides the inaccurate positioning of the gripper
itself, the parallel fingers system presents lots of limitations: too thin objects are not
grasped correctly, and items with a non-uniform mass distribution tend to fall down.

As future works, the overall performance of the robot can be improved by
adding some recovery behaviours, especially when a pick task fails. Regarding the
dangerous part handling, to use a human in the loop is a first step towards the
training of the robot using IML algorithms, making it completely autonomous also
in this task. To further improve the grasping results, besides changing the parallel
fingers gripper with a three fingers one or even a humanoid hand, it would be
possible to use the point cloud coming from the depth camera to further refine the
3D pose estimation of an object, and use this information to train a NN able to
generate the best grasping point that also considers the orientation of the object,
and not only its position. Finally, considering the mobile manipulator as a holistic
system for the motion plan resulted to be really useful to exploit the total abilities
of this type of robot, but some advancements can be made in this direction, by
designing a custom planner for mobile manipulators.
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