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Abstract

In the field of studying carbon release and sequestration by forests, Aboveground
Biomass (AGBM) is a popular measure for estimating how much carbon dioxide
forests are absorbing and releasing into the atmosphere. Remote sensing methods
provide a faster and less destructive approach for biomass estimation compared to
the more invasive technique called destructive sampling, specifically the permanent
removal of material from a specimen for analyses. Additionally, this information
enables landowners and policymakers to make more informed decisions for forest
conservation.

In this context, LiDAR is a remote sensing technique that offers precise infor-
mation about the Earth’s surface. When combined with on-the-ground sampling
methods, it allows for accurate biomass estimation. Unfortunately, the main disad-
vantages lie in the cost and time consumption associated with collecting data using
airborne LiDAR. On the other hand, Sentinel-1 and Sentinel-2 satellite imagery
provide a variety of spectral bands that can be effectively used to measure and
derive different metrics for forest management.

The objective of this work is to leverage deep learning techniques to estimate
the annual biomass of various sections in Finland’s forests using imagery from
Sentinel-1 and Sentinel-2, with ground truth data derived from airborne LiDAR
surveys and in-situ measurements. To achieve this, two models are proposed and
implemented: one is Swin UNETR, a Transformer-based UNet, and the other is an
Attention Unet: a Unet with a shared encoder that uses aggregation via attention.
Various experiments are conducted involving different types of loss functions for
training. Both models achieve good results in terms of Root Mean Square Error
(RMSE), considered as evaluation metric, demonstrating their good performance
in the biomass estimation task.
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Chapter 1

Introduction

Depending on their characteristics and local circumstances, forests can play different
roles in the carbon cycle, from net emitters to net sinks of carbon. Forests sequester
carbon by capturing carbon dioxide from the atmosphere and transforming it into
biomass through photosynthesis. Sequestered carbon is then accumulated in the
form of biomass, deadwood, litter and in forest soils. Release of carbon from
forest ecosystems results from natural processes (respiration and oxidation) as
well as deliberate or unintended results of human activities (i.e. harvesting, fires,
deforestation).[1]

Where carbon sequestration prevails, forests helps to reduce carbon emissions
by acting as a mechanism to sequester additional carbon with the creation of a
sink that it has previously retained. On the contrary, if the net of carbon emission
by forests is positive, forest accentuate and accelerate greenhouse effect processes,
contributing significantly to climate change.

On the other hand, climate change also impacts forest health. Rising tem-
peratures and rainfall, which could also bring beneficial effects to forests, cause
uncertainty about the role of forests in the carbon cycle as it could accelerate some
processes or could mitigate some negative factors.

To measure how much forests behavior change over time, scientists looks to
estimate Aboveground Biomass (AGBM). This is a widespread measure in the
study of carbon release and sequestration by forests, in order to understand how
much carbon a forest contains (its carbon stock) and how it changes (carbon
flux). This information plays an important role in making better decisions for
the conservation of forest by landowners and policy makers.[2] In more details,
Aboveground Biomass includes all biomass in living vegetation, both woody and
herbaceous, above the soil including stems, stumps, branches, bark, seeds and
foliage. Variations in it represents a key sign that the environment changes for the
effect of policies or benefits associated to carbon emissions.[3]

Over the years, various methods have been used to estimate this index, such as
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Introduction

destructive sampling methods, which are damning and very invasive techniques
for the environment: they consist of cutting a sample of trees and vegatation
to measure certain characteristics.[4] Although they provide for very accurate
measurements, coupled with the fact that it is a very pratical and cost-effective
method, these procedures cause extensive and permanent damage to the specimens
that are involved in the measurements.

Thus, efforts are being made to use fewer of the previously described techniques
in favor of remote sensing methods. In this sense, these methods offer a faster and
less destructive method of estimating AGBM in an extensively more significant
geographic area.[2] For example, measurements using LiDAR methods generate
very accurate three-dimensional measurements about the Earth’s surface.[2] A
LiDAR device, that is composed principally of a laser, a scanner, and a specialized
GPS receiver, uses the light in form of pulsar for its measures.[5]

Other important data for measuring vegetation and environmental health come
from the Sentinel-1 [6] and Sentinel-2 [7] space missions. They provide satellite
imagery by collecting information via C-band SAR [8] and MSI [9], respectively. In
this regard, by capturing bands at different frequencies, various phenomena such
as land use changes, winds and waves can be monitored.[2] In addition, satellites
imagery are more timely and has wider coverage with respect to LiDAR.

Awareness regarding the importance of the state of forests and the fight against
climate change has significantly helped research focus on such issues. For example,
in 2021 DrivenData [10] held a competition with the goal of providing a deep learning
and machine learning algorithm that estimates Aboveground Biomass annually of
Finnish forests. The data provided for estimation are satellite imagery from Sentinel-
1 and Sentinel-2 satellites that are used as input data for the algorithm, while
ground truth comes from LiDAR sensors combined with in-situ measurements.[2]

The goal of this thesis is therefore to try to contribute to the cause to offer a
method for predicting the conservation status of forests. For this purpose, deep
learning techniques were employed to process the available data, which came from
the competition mentioned earlier. The work then took the form of solving a
semantic segmentation task in which two very effective models were employed to
provide a yearly AGBM prediction over each patch of forest to process.

In fact, after carefully analyzing and processing the images in a way that made
it easier to train the deep learning models and at the same time trying to retain as
much information as possible, two architectures were identified that demonstrate
effectiveness in dealing with the type of task configured. One is a modified version
of the Attention UNet [11] model; the use of Attention modules was particularly
useful in aggregating the temporal dimension of the input. On the other hand,
it was chosen to implement Swin UNETR [12], in which the so-called "U-shaped"
architecture is made explicit using a Transformer-based backbone such as Swin
Transformer [13]. The experiments conducted involved different training strategies
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for the models, trying to minimize several loss functions that could prove effective
in achieving acceptable results.

After this brief introduction, the structure of the work consists of Chapter 2,
which includes an in-depth analysis on the background and related works specific to
the semantic segmentation tasks, which helped in the implementation choices, while
Chapter 3 focuses more on the description of the image data at hand, describing
their origin and the processing techniques performed. Chapter 4 presents in detail
the architectures and loss functions employed in the work. The setups and different
scenarios involved in different experiments conducted are described extensively in
Chapter 5, where the results achieved are also reported and discussed there. Finally,
in Chapter 6, a general discussion of all the work is provided with interesting hints
on future work that could be done to improve the results obtained.
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Chapter 2

Related Works and
Backgrounds

This chapter presents an introduction to the main deep learning techinques adopted
for this work. Firstly, it introduces a general presentation of the two models
adopted for the task, Swin UNETR [12] and Attention UNet [11], and consequently
it continues with a presentation of the Focal Frequency Loss Function implemented
for a handful experiments.

2.1 UNet
The UNet architecture [14] is a convolutional neural network (CNN) that is fre-
quently used for semantic segmentation tasks in biomedical image analysis, satellite
imagery, and other domains where exact delineation and understanding of object
boundaries inside pictures is critical. The name "UNet" is derived from the net-
work’s U-shaped architecture that consists of an expansive path and a contractive
path, as highlited in Figure 2.1, where the typical architecture is shown, mimicking
an encoder-decoder structure.

The expansive path has the major goal to extract hierarchical and abstract
features from the input image while gradually lowering its spatial dimensions.[14]
The encoder progressively transforms the input into a higher-level feature space,
where each subsequent layer captures more abstract and complex features compared
to the previous layers. This hierarchical representation is fundamental for successful
semantic segmentation. It typically consists of multiple convolutional and pooling
layers that progressively reduce the spatial dimensions and comprise informations
of the input while extracting features and helping the network to discard.[15]

On the other hand, the "decoder” path is the counterpart to the contractive path
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Figure 2.1: UNet architecture.[14]

(encoder). It plays a critical role in the UNet’s ability to generate the final high-
resolution segmentation map from the abstract and reduced-dimensional feature
representation obtained by the encoder. As it expands the feature maps, it aims to
recover and reconstruct spatial information that was lost during the contracting
path. This is achieved by gradually increasing the spatial resolution to match the
original input size. The decoder path reconstructs the high-resolution segmentation
map from the features obtained by the encoder. It comprises upsampling layers,
usually transposed convolutions or upsampling followed by convolutional layers, to
gradually increase the spatial dimensions back to the original size.

The process of expanding the feature maps back to the original spatial dimen-
sions of the input image typically involves reversing the reduction performed by
the encoder through up-sampling operations, such as transposed convolutions or
simple interpolation techniques.[15] Another important key features of the Unet
structure are the skip connections, which link the corresponding levels from the
encoder to the decoder path. The network may integrate low-level and high-level
features for improved segmentation thanks to these connections, which let the
decoder incorporate high-resolution information from the contracting path with
the upsampled feature maps. The decoder path enables accurate localization by
utilizing data from the skip connections. In order to produce the final segmentation
map with greater accuracy, it refines the segmented regions and makes use of the
hierarchical features.
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2.2 Attention UNet
Convolutional Neural Networks (CNNs) have become known as an important tool
in image processing for a variety of applications. However, they show certain
limitations, such as the incapacity to capture long-range contextual information
and sensitivity to image noise. To overcome these issues, a concept called "atten-
tion mechanism" has become known, firtsly introduced as an improvement over
the encoder-decoder based systems in Natural Language Processing (NLP), then
adapted in other various domains, like computer vision.

In this field, attention mechanisms are used to allow the model to focus on
relevant regions of the input image, in order to better capture local and global data
relations and improve the model’s capacity for adaptive information processing.
Furthermore, the introduction of the mechanisms contribute to better network
generalization and lost of fewer computational resources on irrelevant activations.[16]

One of the architecture that exploits these concepts is Attention UNet [11]. As
shown in Figure 2.2, firstly it incorporates a UNet architecture [14], which consists
of an encoding path for feature extraction and a decoding path for generating pixel-
wise predictions. Secondly, it integrates attention modules within the architecture,
which dynamically modulate the importance of different spatial locations in the
feature maps.

Figure 2.2: Attention UNet architecture.[11]

2.3 Swin Transformer
In recent periods, the Transformer [17] model has become firmly established in the
field of natural language processing (NLP) because it is very effective attention
mechanism to model long-range dependencies in the data. Research over the years
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has then developed by trying to adapt the concepts introduced by them in the area
of Computer Vision, where excellent results have been demonstrated in certain
types of tasks such as image classification and joint vision-language modeling.[18]

One of the major problems to be solved in order to apply Transformers in
computer vision is that tokens, which are the basic element of Transformers in
NLP, can vary greatly in scale, which is not the case in language models. Another
issue to overcome lies in lowering the complexity of self-attention computation
for images, which is quadratic with respect to image size, especially in semantic
segmentation tasks where prediction is performed at the pixel level.[13] For these
reasons, the Swin Transformer [13] architecture was introduced, which succeeds in
generating hierarchical feature maps and has linear computational complexity to
image size. Specifically, the hierarchical representation is built from small patches,
which are gradually merged into the deeper layers of the architecture. Because
of this hierarchical design, which allows the model to capture local and global
context, it is very easy to consider this architecture as a backbone for models that
operate dense prediction such as UNet. An overview of the presented architecture
is available in Figure 2.3.

Figure 2.3: Overall architecture of Swin Transformer model.[13]

Linear complexity is achieved through the implementation of non-overlapping
windows that partition an image, as is highlighted in Figure 2.4.

Figure 2.4: Window partition mechanism between two consecutive layer.[13]
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Because the number of patches in each window is fixed, the complexity is propor-
tional to image size. Another important aspect relies on the shifting mechanism of
window partition between two consecutive self-attention layers: the shifted windows
connect the windows of the previous layer, giving connections that considerably
increase modeling capability and facilitates memory access in hardware. In con-
trast to prior Transformer-based designs like [19], which output feature maps of a
single resolution and have quadratic complexity, Swin Transformer is suitable as a
general-purpose backbone for many vision applications.

2.4 Swin UNETR
Transformer models have shown impressive abilities to capture extensive informa-
tion across various domains, such as natural language processing and computer
vision. In the context of computer vision, Vision Transformers (ViTs) have achieved
remarkable performance on various benchmarks. This success is attributed to their
self-attention module, which facilitates the modeling of long-range information
through pairwise interactions among token embeddings. Consequently, this ap-
proach results in more efficient representation of both local and global context. [19,
18]

In this regard, UNETR architecture [20], that draws inspiration from a populaur
"U-shaped" UNet architecture [14], it is the first model that implement ViT as
encoder, in order to better capture spatial relationships in images. More recently,
Swin Transformer [13] have been proposed as a hierarchical vision transformer that
computes self-attention in an efficient shifted window partitioning scheme, enabling
efficient processing of images of varying sizes.

Swin UNETR [12] represents a model that combines the two aforementioned
approaches: in fact, it consists in a U-shaped Network with a Swin Transformer
[13] as encoder, connected to a CNN-based decoder at different resolutions via skip
connections. With the help of the Figure 2.5, that describe explicitly the original
implementation of SwinUNETR in [12] designed for 3D multi-modal MRI images, it
can be seen that long-range data relationships can be captured by Swin Transformer
thanks to its multi-head attention capabilities, and its UNETR structure guarantees
that spatial information is effectively retained during processing. This architecture
has demonstrated outstanding performance in a variety of semantic segmentation
tasks in computer vision.
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Figure 2.5: Overall architecture of Swin UNETR, designed for segmentation of
3D multi-modal MRI images.[12]

2.5 Focal Frequency Loss
The remarkable progress and the immense success in recent years of generative
models highlights an open issue concerning the gaps between real and generated
images. In some cases, these gaps may only be revealed through the frequency
spectrum analysis: in reconstruction and synthesis tasks may be imputed to a
learning bias of neural network, called spectral bias [21], that is evidenced by Fourier
analysis. In this regard, generative models tend to eschew frequency components
that are hard to synthesize, i.e., hard frequencies, and converge to an inferior point.

Focal Frequency Loss [22] allows a model to adaptively focus on frequency
components that are hard to synthesize by down-weighting the easy ones. This ob-
jective function is complementary to existing spatial losses, offering great impedance
against the loss of important frequency information due to the inherent bias of
neural networks.

Specifically to this work, since that is not a task of reconstruction and synthesis,
we want analyze and close the gap between model’s output image and the ground
truth in the frequency domain.

Towards this goal, the usual discrete Fourier transform (DFT) is applied to both
samples to obtain their frequency representations.

F (u, v) =
M−1Ø
x=0

N−1Ø
y=0

f(x, y)ei2π( ux
M

+ vy
N

) (2.1)

Where:

• The image size is M × N
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• (x, y) denotes the coordinate of an image pixel in the spatial domain

• f(x, y) is the pixel value

• (u, v) represents the coordinate of a spatial frequency on the frequency spec-
trum

• F (u, v) is the complex frequency value;

Following Euler’s formula:

eiθ = cos θ + i sin θ (2.2)

The exponential funtion in 2.1 can be rewritten as:

ei2π( ux
M

+ vy
N

) = cos 2π(ux

M
+ vy

N
) + i sin 2π(ux

M
+ vy

N
) (2.3)

Due to to periodicity of trigonometric functions (highlighted in 2.3), images show
periodic qualities when broken down into sines and cosines and every coordinate
value on the frequency spectrum, which represents a particular spatial frequency,
is dependent upon every image pixel in the spatial domain.[22]

Each spectrum coordinate (u, v) value is mapped to a Euclidean vector in a
two-dimensional space, with both the amplitude and phase information of the
spatial frequency put under consideration. Assuming that Fp(u, v) be the spatial
frequency value at the spectrum coordinate (u, v) of the models’ prediction, and
the corresponding Fgt(u, v) has the same meaning for the ground-truth, we map
from these values two vectors: r⃗gt and r⃗t. The proposed loss function is defined by
the scaled Euclidean distance of these vectors:

d(r⃗gt, r⃗p) = ∥r⃗gt − r⃗p∥2
2 = |Fgt(u, v) − Fp(u, v)|2 (2.4)

At this point, the frequency distance between the two images can be written as
the average value over each pixel:

d(Fp, Fgt) = 1
MN

M−1Ø
u=0

N−1Ø
v=0

|Fgt(u, v) − Fp(u, v)|2 (2.5)

In order to down-weight easy frequencies, it is added to the formulation a
dynamic spectrum weight matrix, with each element denoted as w(u, v):

w(u, v) = |Fgt(u, v) − Fp(u, v)|α (2.6)

Where α represents a scaling factor. Intuitively, the matrix is updated on the
fly according to a non-uniform distribution on the current loss of each frequency
during training. Explicitly minimizing the distance of coordinate values on the
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Figure 2.6: Frequency distanze between two vectors r⃗p and r⃗gt.[22]

samples’ spectra can assist networks in quickly locating and focus tough portions
of the spectrum, i.e., hard frequencies. At the end, the final formulation of the
Focal Frequency Loss (FFL) is:

d(Fp, Fgt) = 1
MN

M−1Ø
u=0

N−1Ø
v=0

w(u, v)|Fp(u, v) − Fgt(u, v)|2 (2.7)
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Chapter 3

Dataset

3.1 Data Source
In recent years there has been a need to monitor the state of the Earth and the
environment, to mitigate the problem of climate change and monitor the possibility
of natural disasters. For this reason, European Commission (EC), jointly with
European Space Agency (ESA) [23], established the Copernicus programme [24] for
the implementation of information services dealing with environment and security.

These information are based on satellite and in-situ measurements for delivering
near-real-time open access data on a global level which can be used for local
and regional need. In reference to the firsts, Copernicus is served by a set of
satellites, the Sentinel family, engineered to operate in a pre-programmed, conflict-
free operation mode, providing high-resolution imagery of every content on Earth,
as well as coastal zones, shipping routes, and the entire ocean.[6]

Specifically to this work, image data that comes from satellites Sentinel-1 and
Sentinel-2 are chosen as input for implemented models. This work also deals with
LiDAR airborne data (combined with in-situ methods) to collect ground-truth
precise Aboveground Biomass (AGBM) measurements.

The dataset of images that was used in this work came from "The BioMassters"
[2] competition held by DrivenData [10].

3.1.1 Sentinel-1
The Copernicus Sentinel-1 (S1) mission of the European Space Agency consists
of a constellation of polar-orbiting satellites that operate day and night to carry
out C-band Synthetic Aperture Radar (SAR) imagery.[6] Thanks to this technique,
satellites are allowed to collect data on a site in any weather condition because
they operate at wavelengths that are unaffected by clouds or lack of illumination.
SAR satellites migrate from the north pole towards the south pole for half of their
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trajectory. This direction is called descending orbit. On the other hand, when the
satellite is travelling from south pole to north pole, it is referred to be in ascending
orbit.[2]

Since the mission is composed by two satellites, Sentinel-1A and Sentinel 1-B,
data comprises two bands ("VV" and "VH") for each satellites, for a total of four
bands. A description of Sentinel-1 bands is provided in in Table 3.1, while in Figure
3.1 are presented a visual representation of S1 bands employed in this work. These
bands are captured from sensors that emits energy via vertically polarized signals
(represented by the first "V" in bands’ name), and then they record the amount of
energy reflected back after interaction with Earth, receiving either vertically (V) or
horizontally (H) polarized signals. Thanks to this aspect, scientists can learn more
about the surface of the region being sensed by analyzing the signal strength of
these various polarizations.[25]

Band Description Resolution

VV ascending C-band SAR 10m
VH ascending C-band SAR 10m
VV descending C-band SAR 10m
VH descending C-band SAR 10m

Table 3.1: Description of Sentinel-1 Bands.[26]

Figure 3.1: Sentinel-1 images for chip 001b0634, by band.[27]
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3.1.2 Sentinel-2
Sentinel-2 (S2) mission provides wide-swath, high-resolution, multi-spectral imagery
to monitor vegetation, soil, water cover, inland waterways and coastal areas. The
mission includes two satellites that orbit with the same trajectory but phased at
180°: this allows for a high revisit frequency of five days at the Equator.

S2 satellites measurements are provided by a Multispectral Instrument (MSI)
that collects data in the visible, near-infrared, and short-wave infrared portions
of the electromagnetic spectrum. This instrument contributes to land studies and
provides valuable data for land cover classification, atmospheric correction and
cloud masks.[7]

In particular, the optical instrument samples 13 spectral bands, and the principal
difference compared to Sentinel-1 is that SAR instrument uses wavelengths that
range from centimeters to meters, while Sentinel-2’s MSI measures shorter spectral
bands that range from 400 to 2400 nanometers. In Table 3.2 is reported a summary
of bands collected, with the correspondent resolution and a brief description. It’s
important to pay attention on CLP band, that represents cloud probability: since
S2 sensors cannot penetrate clouds, this layer indicates the percentage probability
of cloud cover for each pixel, and it has values that range from 0 to 100.[27]

In addition, Sentinel-2 bands were used because they provide higher resolution
than those captured by Sentinel-1.

Band Description Resolution

B1 Coastal aerosol, 442.7 nm (S2A), 442.3 nm (S2B) 60m
B2 Blue, 492.4 nm (S2A), 492.1 nm (S2B) 10m
B3 Green, 559.8 nm (S2A), 559.0 nm (S2B) 10m
B4 Red, 664.6 nm (S2A), 665.0 nm (S2B) 10m
B5 Vegetation red edge, 704.1 nm (S2A), 703.8 nm (S2B) 20m
B6 Vegetation red edge, 740.5 nm (S2A), 739.1 nm (S2B) 20m
B7 Vegetation red edge, 782.8 nm (S2A), 779.7 nm (S2B) 20m
B8 NIR, 832.8 nm (S2A), 833.0 nm (S2B) 10m

B8A Narrow NIR, 864.7 nm (S2A), 864.0 nm (S2B) 20m
B9 Water vapour, 945.1 nm (S2A), 943.2 nm (S2B) 60m
B11 SWIR, 1613.7 nm (S2A), 1610.4 nm (S2B) 20m
B12 SWIR, 2202.4 nm (S2A), 2185.7 nm (S2B) 20m
CLP Cloud probability, based on s2cloudless 160m

Table 3.2: Description of Sentinel-2 Bands.

14



Dataset

Figure 3.2: Sentinel-2 images for chip 001b0634, by band.[27]
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3.1.3 LiDAR ground truth data
LiDAR, acronym for Light Detection and Ranging, is a remote sensing technique
that provides 3D information about the terrain and vegetation by measuring
variable distances to the Earth with light in form of pulsed laser. In particular,
when the laser points a targeted area on the ground, the beam of light is reflected
by the surface it encounters. The reflection is collected with a sensor that, in
combination with position and orientation data generated from integrated GPS
and Inertial Measurement Unit systems, generate detail-rich point clouds. These
point clouds are then used to generate precise and three-dimensional informations
about Earth surface and shape.[5]

The main components of a LiDAR instrument are a laser, a scanner and a GPS
receiver, with airplanes and helicopters that are the most widely used platforms to
collect LiDAR data over a broad area. Scientists and cartographers may analyze
natural and artificial settings with flexibility, accuracy, and precision thanks to
LiDAR equipment.

Figure 3.3: LiDAR image for chip 001b0634.[27]

3.2 Data processing
The data for this thesis is imagery collected by Sentinel-1 and Sentinel-2 satellites,
together with LiDAR airborne AGBM measurements for Finnish forests. In the
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following subsections, a detailed explanation of how the feature data are gathered to
input the deep learning models implemented in this work (more details in Chapter
4), followed by a presentation of pre-processing methods applied to data.

3.2.1 Dataset information
The input dataset is composed from images coming from Sentinel-1 and Sentinel-2
missions for 8,689 patches of forest in Finland. Each patch, or chip, represents
an area of forest of 2,560 × 2,560 square meters. To be compliant with Sentinel-2
bands resolution, these images have been resized to 10 meters resolution by using
geometric and radiometric corrections, for this reason each image is 256x256 pixels
in size, with each pixel that represents an area portion of 10 square meters. Images
are monthly aggregations delivered as GeoTIFFs with any associated geolocation
data deleted.[27] It is highlighted that of the 13 bands that Sentinel-2 samples,
only 11 were used in subsequent experiments: these bands are B2, B3, B4, B5, B6,
B7, B8, B8A, B11, B12, and CLP.

For every patch in the dataset, there are captures that cover an entire year
period, specifically from September to August. It is now evident that the dataset
should includes 24 images associated with the same patch, 12 of which originate
from Sentinel-1 and the remaining 12 from Sentinel-2, but there are some of them
that do not have full year coverage due to some outage, which is why some data
for some months are missing.

Information about each satellite image, including its corresponding patch, satel-
lite, and the month in which it was captured, is recorded in a CSV file called
features_metadata.csv. It also provides file location of the image in the public
S3 bucket in the Europe, US East and Asia Pacific regions. A brief description of
all fields is presented in Table .

Field name Description
chip_id Identifier for a single patch
filename Filename of the corresponding image
satellite The source satellite that captured the image
month Month in which the image was collected
size The file size in bytes
cksum A checksum value to verify the data are correct
s3path_us The S3 file location of the image in US East
s3path_eu The S3 file location of the image in Europe
s3path_as The S3 file location of the image in Asia Pacific

Table 3.3: Description of fields in metadata file.[27]
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Focusing on ground-truth data, these are provided in a similar way of input
ones in terms of correction and size. In fact, for each patch is represented by an
image that cover 2,560 meter by 2,560 meter areas at 10 meter resolution (256x256
pixels), with every pixel in the satellite data that corresponds to a pixel in the
same position in the LiDAR data for the same chip.

To reach the objective of this thesis, one biomass prediction per chip is generated.
In order to consider all the useful information that comes from full-year imagery, it
was determined to construct the input in a multi-temporal manner by combining
all of the two satellites’ bands, for each month, into a single input tensor.

3.2.2 Data preprocessing
In general, in the context of training Deep Neural Networks (DNNs), one of the
main challenge that arise is the acceleration and stabilization of training process.
In this regard, many techinques has been investigated by researchers over the
year, with normalization that is proved very effective in improving the stability,
efficiency, and generalization performance of deep neural networks, making them
more powerful in a wide range of applications.[28]

Normalization usually entails changing the data in order to adhere to a specific
scale or norm: when features have different scales, some features may dominate the
learning process, while others may have little influence. By standardizing the data,
all features are brought to a common scale, making them equally important during
training and mitigate the impact of outliers in the data. Since neural networks
deal with optimization algorithms such as gradient descent, normalizing the data
definitely leads to faster and more reliable algorithm convergence, as bringing the
data to the same scale leads the optimization to not get stuck in local optima.
Furthermore, it allows to a better stabilization of the gradient during training with
the aim to mitigate the problem of vanishing or exploding gradient.[29]

Specifically to the dataset proposed in this work, where data comes from different
data source and can can vary widely among them, normalization can make the
models more robust to variations in data, allowing it to handle different types of
inputs effectively.

Regarding the features data, the normalization method chosen is Z-score normal-
ization [30]. Z-score is a statistical measurement that describes a value’s relationship
to the mean of a group of values. The formula to calculate the Z-score for a data
point X in a dataset with mean µ and standard deviation σ is:

Z = X−µ
σ

Standard deviations from the mean are used to quantify the Z-score:

• If a Z-score is 0, it indicates that the data point’s score is identical to the
mean score.
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• A Z-score of 1.0 would indicate a value that is one standard deviation from
the mean.

The normalization has been computed separately for each band of the images, by
calculating a per-channel mean and per-channel standard deviation. In Table 3.4 are
recorded mean and standard deviation values for each band taken in consideration.

Data Source Band Min Max Mean Standard Deviation
Sentinel-1 VV asc. -22.98 -2.25 -11.44 3.17
Sentinel-1 VH asc. -37.69 -9.93 -18.05 4.36
Sentinel-1 VV desc. -25.00 0.00 -12.98 5.39
Sentinel-1 VH desc. -70.00 0.00 -24.13 17.26
Sentinel-2 B2 0.00 11872.00 1632.95 2497.89
Sentinel-2 B3 0.00 11295.00 1614.64 2310.34
Sentinel-2 B4 0.00 11734.00 1604.33 2387.07
Sentinel-2 B5 0.00 12205.00 1922.97 2387.09
Sentinel-2 B6 0.00 12018.00 2486.80 2206.29
Sentinel-2 B7 0.00 11792.00 2598.97 2099.76
Sentinel-2 B8 0.00 12498.00 2746.67 2189.80
Sentinel-2 B8A 0.00 11708.00 2693.65 2025.58
Sentinel-2 B11 0.00 7644.00 1029.67 927.44
Sentinel-2 B12 0.00 6838.00 700.24 753.51
Sentinel-2 CLP 0.00 100.00 12.94 24.59

LiDAR / 0.00 425.72 63.24 70.89

Table 3.4: Summary of data statistics for Sentinel-1 and Sentinel-2 data sources.

On the other hand, label data has normalized by applying MinMax normalization
[31]. In statistics and data processing, MinMax normalization is a method used to
rescale numerical variables within a given range, typically between 0 and 1. This
kind of feature scaling modifies the data to make it fall inside a given range. The
formula for MinMax normalization is:

Xnormalized = X−Xmin

Xmax−Xmin

where:

• X is an individual data point

• Xmin is the minimum value in the dataset for that specific feature.

• Xmax is the maximum value in the dataset for that specific feature.
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Data Source Min Max Mean Standard Deviation
LiDAR 0.00 425.72 63.24 70.89

Table 3.5: Summary of data statistics for ground-truth data.

Statistics about ground-truth data are summarized in Table 3.5.
Furthermore, to make the training of the chosen models less sensitive to outliers,

it was decided to remove them before calculating the statistics and applying
preprocessing.
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Chapter 4

Methodology

In this chapter the methodology adopted is described, starting from a definition
of the problem addressed, followed by a definition of the network architecture
employed and loss functions utilized to perform further experiments.

4.1 Problem statement
The work is focused on estimating yearly Aboveground Biomass (AGBM) for
Finnish forests using satellite imagery from Sentinel-1 and Sentinel-2 satellite
missions.

Specifically, for each patch of forest comprised in the dataset, that represent
an area of 2,560 × 2.560 meter at 10 meter resolution, one biomass prediction per
chip is generated. Predictions include a yearly peak AGBM value for each 10 by
10 pixel in the chip.[2]

Since there is a need to predict a value for each pixel of each patch, semantic
segmentation, a deep learning technique that predicts a label for each pixel of the
input image, was proposed to handle the problem. Having one satellite image for
each month covering the period of a full year from two different satellites, it was
chosen to aggregate the bands of both satellite images for each month in order to
have a multi-temporal and multi-modal input. Consequently, the prediction will
consist of a single image that at each pixel has a predicted AGBM value.

4.2 Network architectures

4.2.1 UNet with Attention Pooling
Taking inspiration from the Attention UNet model [14], this work sought a semantic
segmentation model that takes into account not only the spatial relations of the
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image but also the temporal dimension of the input. In fact, the proposed model
enriches an UNet model with an aggregation of the temporal dimension at the
encoder level via self-attention module.

The proposed model incorporates the various aspects of “U-shaped" architecture
and also adds an attention mechanism, not only to enhance the model’s ability
to focus on relevant image features during the segmentation process, but also to
perform temporal aggregation through a self-attention module. The attention gate
is applied to the skip connections between the encoder and decoder paths in the
UNet architecture, as exploited in [11]. These connections play a crucial role in
information flow, and the attention gate selectively modulates the information
passed through these connections. In fact, the attention gate helps the model to
selectively focus on important characteristics, improving the segmentation process,
by modifying the relevance of features using attention scores. More accurate
segmentation and enhanced contextual understanding are made possible by this
increased information flow.[32]

In semantic segmentation tasks, it is common practice to use pre-trained neural
network architectures as backbones for the encoder in a UNet. Since pre-trained
models are trained on large-scale datasets for tasks like image classification, they
can actually significantly improve the performance of the UNet model. Examples
of pre-trained backbones with proven feature extraction capabilities are VGG [33],
ResNet [34], or EfficientNet [35]. These models have deeper layers that capture more
abstract and complicated information, while the early layers are skilled at learning
low-level features. The pre-trained backbone can be used to extract features in the
input image.

After introducing the key points of the model with its strengths, one the of
architecture that is proposed to approach the task at hand: it consists of a UNet
with attention gates that perform time dimension aggregation via self-attention
modules at the encoder level. Specifically, the latter is implemented with a pre-
trained backbone of the EfficientNetV2 [35] model.

4.2.2 Swin UNETR
The Swin UNETR (Swin Transformer for UNet based Architecture) [12] is an ad-
vanced model that integrates the Swin Transformer [13] with the UNet architecture
[14]. It combines the strengths of the UNet’s encoder-decoder structure with the
powerful self-attention mechanism of the Swin Transformer, resulting in a model
tailored for semantic segmentation tasks.[12]

Regarding architectural aspects, the model takes as input X ∈ RH×W ×D×S that
has a patch resolution (H ′, W ′, D′). A sequence of 3D tokens is created by leveraging
a patch partition layer, which divide the input image into non-overlapping patches,
then they are projected into an embedding space of dimension C. For effective token
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interaction modeling, the self-attention is calculated into non-overlapping windows
during the partitioning step that are efficiently computed with a 3D-cycling shifting
[12] at each encoder layer, with the self-attention performed as:

Attention(Q, K, V ) = Softmax(QKT

√
d

)V (4.1)

where Q, K, V represents respectively query, key and value, whereas d is the size of
query and key.

The Swin UNETR encoder comprises 4 stages with 2 transformer blocks at
each one. In particular, the first stage layer create H

2 × W
2 × D

2 3D tokens, that
are reduced in dimension at each encoder stage by a factor 2 exploiting a patch
merging layer. The latter also groups patches and concatenates them resulting
in a 4C-dimensional feature embedding, with a subsequent reduction in a 2C
embedding space towards a linear layer. In this specific case, C is set to 24. Other
hyperapameters, such as the size of the window, are available in Table 4.1.

The decoder follows a more canonical configuration. In fact, at each stage
i ∈ {1, 2, 3, 4} the outputs are reshaped into H

2i × W
2i × D

2i and then passed to a
residual block followed by an instance normalization layer [36]. The resolution is
increased by a deconvolutional layer and the output are then concatenated to the
outputs of the previous stages and fed to another residual block. At this point of
the network, the output has a shape o H × W × D × 24: since we want to predict
single yearly AGBM for each pixel, a mean over the third dimension is performed,
in order to aggregate the temporal dimension. In the end, the segmentation masks
are computed expoliting a sequence of 1 × 1 × 1 convolutional layer followed by a
sigmoid activation function. In Figure 4.1 it can be seen the a graphical overview
of the implemented model.

Figure 4.1: Overview of the Swin UNETR model implemented.
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Feature Size Number of Blocks Window Size Number of Heads
24 [2,2,2,2] [3,7,7] [3,6,12,24]

Table 4.1: Description of Swin UNETR’s hyperparameters.

4.3 Loss functions
In this section are presented all the loss function employed in thesis’ experiments.

4.3.1 Root Mean Squared Error
In fields like statistics and machine learning, the Root Mean Square Error (RMSE)
is a frequently used metric to assess how well a regression model is performing. It
provides information on the correctness of the model by calculating the average
magnitude of the errors between the actual and projected values.[37]

It is computed as follows:

1. Determine each image pixel’s squared error as follows: square the result after
deducting the anticipated value from the real (ground truth) value.

2. Compute the mean of the squared errors: Sum all the squared errors and
divide by the number of pixels.

3. Calculate the mean squared error’s square root: The RMSE value, which is in
the same units as the target variable, is what this step provides. The typical
amount of the error between the actual and forecasted values is quantified.

Mathematically, the RMSE loss is expressed as:

RMSE =

öõõô 1
N

NØ
i=0

(yi − ŷi)2 (4.2)

• N is the number of pixel.

• yi represents the actual (ground truth) value.

• ŷi represents the predicted value.

• The q symbol denotes summation over pixels.

Large errors are given more weight by RMSE, which makes it more susceptible to
outliers. This indicates that, in comparison to other measures like Mean Absolute
Error (MAE), significant prediction mistakes have a greater influence on the RMSE
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score.[37] This loss is primarily used in regression tasks, where the model aims
to predict a continuous target variable. Although this work does not deal with a
regression task, still there is a need to predict a continuous target for each pixel in
the image, and this is the reason why some experiments involving this loss function.

4.3.2 Mean Absolute Error
In the problems of the same kind that we are addressing in this work, it is often used
the Mean Absolute Error (MAE) [38] metric to calculate the average magnitude
of errors between the predicted and actual values. It offers a simple and natural
understanding of the model’s functionality. The MAE is calculated by taking
the average of the absolute differences between predicted values and true values.
Mathematically, for N data points, that in this specific case corresponds to image’s
pixels:

MAE = 1
N

NØ
i=0

|yi − ŷi| (4.3)

Where:

• yi represents the true value of the target variable for the i-th pixel.

• ŷi represents the predicted value of the target variable for the i-th pixel.

• N represents the total number of pixels.

4.3.3 Structural Similarity Index
A popular metric in computer vision and image processing for determining how
similar two images are to one another is the Structural Similarity Index (SSIM) [39].
It is used to evaluate the perceptual differences between images, accounting for
structural information, brightness, contrast, and differences in pixels. The formula
for the Structural Similarity Index (SSIM) is the follow:

SSIM(x, y) = (2µxµy + C1)(2σxy + C2)
(µ2

x + µ2
y + C1)(σ2

x + σ2
y + C2)

(4.4)

Where:

• x and y are the two images being compared.

• µx and µy are the means of x and y, respectively.

• σx and σy are the standard deviations of x and y, respectively.

• σxy is the covariance between x and y.
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• C1 and C2 are small constants added for numerical stability.

The SSIM value is a number between -1 and 1, where 1 denotes perfect similarity
and 0 denotes no similarity at all between the images. Greater similarity between
the images is indicated by higher SSIM values, which take into account both local
and global image properties. [40]

4.3.4 Focal Frequency Loss
In Chapter 2.4, Focal Frequency Loss [22] has been presented. It aims to measure
the gap related to frequency domain between predictions and ground-truth, by
allowing a model to adaptively focus on frequency components that are hard to
synthesize by down-weighting the easy ones.

The loss function is introduced mainly for reconstruction and synthesis tasks for
generative models in order to mitigate the effects of spectral bias [21], a learning
bias of neural networks towards low-frequency functions. Consequently, generative
models have a tendency to converge to an inferior point by es-chewing hard
frequencies, or frequency components that are difficult to synthesis. Specifically to
this work, we want to analyze the frequency gap between the predictions and the
ground-truth values, and this can be exploited by transforming both labels and
predictions to their frequency representations using the standard discrete Fourier
transform (DFT). The 2D discrete Fourier transform is used to translate an image
into its frequency representation:

F (u, v) =
M−1Ø
x=0

N−1Ø
y=0

f(x, y)ei2π( ux
M

+ vy
N

) (4.5)

Where:

• The image size is M × N

• (x, y) denotes the coordinate of an image pixel in the spatial domain

• f(x, y) is the pixel value

• (u, v) represents the coordinate of a spatial frequency on the frequency spec-
trum

• F (u, v) is the complex frequency value; e and i are Euler’s number and the
imaginary unit, respectively.

Let Fp(u, v) be the spatial frequency value at the spectrum coordinate (u, v) of the
models’ predicted mask, and the corresponding Fgt(u, v) with the similar meaning
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w.r.t. the ground-truth value, the frequency distance between the prediction and
ground truth images can be written as the average value over all image pixels:

d(Fp, Fgt) = 1
MN

M−1Ø
u=0

N−1Ø
v=0

|Fp(u, v) − Fgt(u, v)|2 (4.6)

However, as stated in [22], since each frequency has the same weight, using this
equation directly as a loss function is ineffective for handling hard frequencies. To
overcome this issue, a spectrum weight matrix w(u, v) is created to down-weight
the easier-to-learn frequencies. During training, a non-uniform distribution on the
current loss of each frequency determines the spectrum weight matrix dynamically.
Every image has a unique matrix of spectrum weights. The matrix and the spectrum
share the same shape. By performing the Hadamard product for the spectrum
weight matrix and the frequency distance matrix, it is defined the full form of the
focal frequency loss (FFL):

d(Fp, Fgt) = 1
MN

M−1Ø
u=0

N−1Ø
v=0

w(u, v)|Fp(u, v) − Fgt(u, v)|2 (4.7)
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Chapter 5

Experiments

In this chapter it is provided an overview of the configurations adopted to train
and test the model, with an introduction to the evaluation metric chosen to assess
the goodness of results. The results of all the experiments are then presented and
discussed.

5.1 Implementation details
This section presents all the implementation choices in order to train and test the
models involved in the thesis work. In particular, the selection of hyperparameters
is introduced alongside the split of the dataset in training, validation and test set.

5.1.1 Data preparation
The two models have been trained considering a multi-temporal input by aggregating
the spectral bands of images from Sentinel-1 and Sentinel-2. In fact, the networks
receive an input tensor of size 12 × 15 × 256 × 256 (this is the case of the UNet
model with attention pooling) or 15 × 12 × 256 × 256 (as in the case of the Swin
UNETR [12]), where 12 represents the number of months for which an image is
available, 15 is the total number of spectrum bands (both from Sentinel-1 and
Sentinel-2), and 256x256 is the size of each satellite image.

As mentioned earlier in Chapter 3, the dataset contains about 8,689 patches (or
chips) of forest and was initially divided into training and test sets. The idea is
to perform a K-Fold cross validation using K = 5 folds. This results in training
five different models and the prediction is generated for each of them. The final
prediction, which will be the subject of the chosen evaluation metric, will be
obtained by averaging the results from the five models. For this reason, five folds
were generated from the training set, and for each training four of them represent

28



Experiments

the input data of the networks and the rest are considered as validation sets. In
Table 5.1 a summary of the dataset’s split is presented.

Training Validation Test Total
Number of samples 5560 1391 1738 8689

Table 5.1: Sample distribution for training, validation, and test sets.

5.1.2 Scenarios definition
In performing the experiments in this thesis, different configurations were devised
in order to explore different ways of training the models and also to evaluate which
type of loss function performs best with respect to the objective of the work, trying
to make sure that we have an efficient and fast training process.

In this sense, two different scenarios of experiments are introduced, involving
the two different models, both trained with various types of loss for a number of
epochs to allow for a reasonable training time.

Specifically, Scenario 1 involves experiment regarding UNet with Attention
Pooling model, which is trained by minimizing the RMSE Loss [37] in a first
configuration, and then with the Focal Frequency Loss [22]. In the former, it’s
important to highlight that the loss has been computed only for pixels that have
AGBM values under a certain threshold (400 in this case), in order to make the
training less sensitive to predictions’ outliers. For both experiments, 200 has been
set as number of epochs for training.

In Scenario 2, which comprises Swin UNETR’s training, the first loss function
considered to minimize is a weighted sum of two aforementioned functions presented
in Chapter 4.3.2 and 4.3.3: MAE [38] and SSIM [39]. In particular, the loss is
formulated as follows:

Ls = LMAE + 0.2 · LSSIM (5.1)

Where:

• LMAE represents the MAE loss value

• LSSIM represents the SSIM

Other type of experiment in this scenario takes into account the minimization of
Focal Frequency Loss. In this case the network has been trained for 100 epochs.

In Table 5.2 is presented a summary of different scenarios devised.
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Name Model Losses Epochs

Scenario 1 UNet with
Attention Pooling

a) RMSE Loss 200b) Focal Frequency Loss

Scenario 2 Swin UNETR a) MAE + SSIM 100b) Focal Frequency Loss

Table 5.2: Summary of experiments’ scenarios.

5.1.3 Multi-GPUs training setup
Training a deep learning model often requires a lot of computational resources and
may take a long time. Indeed, in this case, training the model on a single GPU
makes the problem intractable. To mitigate the problem, a multi-GPU strategy
was adopted to make the training process easier and faster.

Specifically to this work, Distributed Data Parallel (DDP) [41] is implemented.
DDP is a deep learning approach that trains neural networks over several GPUs
or computing devices in a distributed computing environment.By distributing the
effort among several devices, such as individual GPUs inside a single computer
or several machines in a cluster, it permits the concurrent training of a model.
DDP implements data parallelism, allowing each GPU to work with a subset
of the training set. Devices exchange information in order to synchronize the
model’s parameters and share gradients. To update the weights of the model
and aggregate gradients across devices, techniques like AllReduce operations are
frequently employed.[42] This method works especially well for models that deal
with big datasets or demand a lot of processing power. Furthermore, DDP may
improve distributed training setups’ fault tolerance. To minimize interruption in
the event of a single machine or device failure, the training process can be carried
out on additional functional devices.

In the experiments concerning Scenario 1, DDP is implemented via python
leveraging PyTorch framework in order to train the network over 2 GPUs at hand.
This implementation exploits replication of the models on all the devices; each
replica calculates gradients and simultaneously synchronizes with the others using
the ring AllReduce algorithm.

5.1.4 Training process
The process of training a neural network is often computationally heavy and very
time-consuming, which is why it is tried to carefully choose the various components
that are involved in the process to make the training easier in all respects. In fact,
the main players in the process are the loss function optimizer that is sought to
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be minimized, the learning rate and the data augmentation techniques necessary
to make the model more accurate in its prediction. When training deep neural
networks, it is often useful to reduce learning rate as the training progresses. This
can be done by using pre-defined learning rate scheduler, that attempt to regulate
the learning rate during training by lowering the learning rate on a predetermined
schedule.[43] In this work, the Cosine Annealing Learning Rate Scheduler (firstly
introduced in [44]) is employed, that it is a form of learning rate schedule: it starts
with a high learning rate and swiftly decreasing to a low number before rapidly
increasing again. An high value of this hyperparameter keep the learner to getting
stuck in a local cost minima; a low value is then reached to allow it to converge
to a near-true-optimal point within the global minima it finds. In the schedule a
warm restart strategy is exploited, that involves periodically resetting of learning
rate to inital value after a certain number of iterations.[45] The learning rate at
iteration t is calculated according to this formulation:

ηt = ηmin + 1
2(ηmax − ηmin)(1 + cos(Tcur

Ti

π)) (5.2)

Where:

• Tcur is the number of epochs since last restart

• Ti is the number of epochs between two warm restarts

• ηmax represents the maximum value that learning rate can assume (the initial
value)

• ηmin represents the minimum value that learning rate can assume

Figure 5.1: Example of learning rate schedule employed in Scenario 2 experiments.
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It’s important to note that when Tcur = Ti, ηt is equal to ηmin. Instead, when a
restart occurs (Tcur = 0), ηt = ηmax.[45] In Figure 5.1 is highlighted the learning
rate behavior according to the schedule employed.

Architecture definitions, network training method implementation were imple-
mented through the python language using the PyTorch Lightning framework,
while data preprocessing techniques were developed using the numpy, scikit-learn
and pandas libraries. Data augmentation (which will be introduced later), on the
other hand, was done through a package called "volumentations" for 3D Volume
data augmentation. Through the Table 5.3, an overview of the versions of the
corresponding python packages is provided.

Package Version
efficientnet-pytorch 0.7.1
focal-frequency-loss 0.3.0
keras 2.14.1
matplotlib 3.8.0
monai 1.2.0
numpy 1.24.3
pandas 2.0.1
piqa 1.3.1
pytorch-lightning 2.0.8
rasterio 1.3.6
scikit-learn 1.2.2
segmentation-models-pytorch 0.3.2
tensorboard 2.14.1
tifffile 2023.4.12
timm 0.6.12
torch 1.13.1
torchvision 0.14.1
volumentations-3D 1.0.4

Table 5.3: Package list with associated version.

The learning rate is an hyperparameter that indicates how our network’s weights
are adjusted in relation to the loss gradient descent. It establishes the pace at which
we will approach the ideal weights. The learner shall forgo finding the optimal
solution if the learning rate is really high. Conversely, it will require an excessive
number of iterations to reach the optimal values if learning rate value is too little.
Thus, it is essential to use a good value for it.[46]

The optimizer employed in the experiments is AdamW [47], which is an extension
of Adam [48]. Adam is an optimization algorithm that may be used to update
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network weights iteratively based on training data, in place of the traditional
stochastic gradient descent process. It follows the idea of maintainining and adapt
learning rate for each network parameter, in contrast to what is done with the
more classical stochastic gradient descent, where a single learning rate is manteined
for all weight updates and it doesn’t change during training. Adam uses the
average of the second moments of the gradients (the uncentered variance) instead
of only modifying the parameter learning rates based on the average first moment
(the mean). The procedure computes an exponential moving average of both the
gradient and the squared gradient. The moving averages’ decay rates are regulated
by the constants β1 and β2.[49] AdamW provide a different weight decay handling
in order to not create interference with the adaptive learning rate behavior. Weight
decay is a regularization term that penalizes large weights in the network to prevent
overfitting, and AdamW correctly decouples the weight decay terms update from
the optimization steps.

Data augmentation techinques are crucial in order to help create a more rep-
resentative dataset and increase its diversity: this leads to an increasing of the
generalization and robustness of the model. In this work, a 3D Volume data
augmentation is considered through volumentations-3D [50] python library. The
transofrmation applied to data are horizontal and vertical flip and 90 degree
rotation, each one with probability to apply the transformation p = 0.1.

A summary of hyperparameters’ values employed in the two scenarios is presented
in Table 5.4.

The experiments concerning Scenario 1 were conducted using a workstation
equipped with 2 Nvidia A100 GPUs with 80GB of RAM, with each experiment,
which involves training the network for 200 epochs, taking about 4 days. On the
other hand, for those described in Scenario 2, the Legion Cluster provided by
HPC@POLITO [51], and each experiment, that comprises network training for 100
epochs, takes about 2 days to complete.

Parameter Value

Batch size 8
Optimizer AdamW
Learning rate (LR) 0.001
Weight decay 0.01
LR Scheduler Cosine Annealing

Table 5.4: Summary of hyperparameters’ values.
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5.2 Evaluation metric
The Average Root Mean Square Error (RMSE) [37] is a statistic used to assess
the performance of the model. RMSE is the square root of the mean of squared
differences between estimated and observed values. The Root Mean Square Error
(RMSE) will be computed for each patch pixel by comparing it to its corresponding
pixel in the ground-truth. Every image in the test set will have its RMSE computed
and then averaged. Since this is an error metric, a smaller number is preferable.
Although there are some outliers in data, they are included in the scoring, and also
pixels with value of zero.[2]

AverageRMSE =
qM

i=0

ñ
1
N

qN
i=0(yi − ŷi)2

M
(5.3)

Where:

• M is the number of patches in the dataset.

• N is the number of pixel of the image.

• yi represents the actual (ground truth) value.

• ŷi represents the predicted value.

5.3 Results
Based on the selected evaluation metric that was presented in the previous subsec-
tion, the results for the various experiment scenarios are categorized and examined
in this section. Overall, the examined models produce outcomes that are compara-
ble with the winners of "The BioMassters" competition and significantly outperform
the baseline algorithm supplied by the competition’s organizers, which involved
using a UNet model that reach an evaluation metric of 101.98. The results of the
experiments carried out in this work are summarized in Table 5.5.

What comes to light is that the experiments defined in Scenario 2, specifically
involving the training of the Swin UNETR model, achieve better results than the
UNet model with attention pooling. In fact, analyzing the table, it can be seen
that each fold of the first model returns better performance in terms of evaluation
metrics, which is also highlighted when the model ensemble of the 5 generated
folds is performed. In fact, in this case, Swin UNETR reaches 27.33, compared
to the model in Scenario 1, which reaches a value of 29.95. The reason probably
lies in the fact that the model involved in Scenario 2, besides being more robust
and recent, has a self-attention mechanism based on partitioning the image into
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Scenario Loss Fold 0 Fold 1 Fold 2 Fold 3 Fold 4 Losses
Scenario 1 RMSE 29.05 30.14 29.77 29.84 29.71 29.95
Scenario 1 FFL 31.18 32.60 31.65 31.45 31.79 31.54
Scenario 2 MAE+SSIM 27.40 27.25 27.37 27.35 27.27 27.33
Scenario 2 FFL 30.30 30.18 30.40 30.11 30.25 30.25

Table 5.5: Performance metrics for different experiment scenarios and folds in
terms of RMSE.

non-overlapping windows that is probably more efficient than the aggregative
attention module implemented in UNet with attention pooling.

The results are also of the same type when the experiments of Scenario 1 and
Scenario 2 involving the same loss function, i.e. Focal Frequency Loss, are compared.
In this regard, in fact, the models have the same behavior both when the inference
is performed for each individual fold and when the model ensemble is run: regarding
the latter aspect, Swin UNETR is able to achieve a value of 30.25 of RMSE, which
is better than that achieved by UNet with attention pooling (31.54).

Analyzing the results obtained in more detail, placing the focus on the exper-
iments involving the FFL, we highlight the fact that these, for both scenarios,
produced results that in general achieved a better RMSE than the baseline model,
but nevertheless are worse than the other configurations of experiments involving
minimization of other loss functions used in this work. If we analyze the numerical
data provided by the Table 5.5, in fact, it can be seen that the training of the Swi-
nUNETR with FFL achieves an evaluation metric of 30.25 with model ensembling
while its counterpart trained with the loss composed of MAE + SSIM achieves
27.33. An outcome that reflects the same behavior is also shown in the experiments
of Scenario 1, where the UNet with attention pooling reaches 31.54 when trained
with FFL, while with RMSE Loss it is able to achieve a better outcome in terms of
evaluation metric, which is 29.95. Although there is a subtle difference in terms
of evaluation metric that indicates that the use of this loss does not improve the
performance of the models employed, the segmentation mask produced is still quite
comparable with that coming from the models trained with other configurations.
In this regard, a comparison between ground-truth and output of the SwinUNETR
trained with and without FFL can be seen in Figure 5.2.

The frequency spectra produced by both ground-truth and prediction made
by the models were qualitatively analyzed to investigate why tranining with this
loss was not so effective for the models that were chosen and implemented for the
experiments. Graphical examples are shown in Figure 5.3 to make a comparison of
the prediction and their corresponding ground truth for some forest patches that
were used as input data, providing also the frequency spectra of both. What is

35



Experiments

highlighted is that the frequency spectra in general are affected by significant noise,
which do not allow all image frequencies to be encoded correctly and perform pixel-
per-pixel distance minimization in the frequency domain. Through this analysis, it
could therefore be found that the main reason why traning with this loss function
in general does not produce strong results would be due to the excessive noise of
the frequency spectra.
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Figure 5.2: Comparison between ground-truth data and Swin UNETR’s outputs.37
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Figure 5.3: Comparison between frequency spectra of ground truth and Swin
UNETR’s outputs.
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Chapter 6

Conclusions

The main purpose of the thesis work focused on exploring deep learning techniques
to provide annual Aboveground Biomass (AGBM) estimation for patches of Finnish
forests. To this end, two models that represent state-of-the-art for semantic
segmentation tasks were implemented and evaluated. Specifically, by processing
satellite imagery from the Sentinel-1 and Sentinel-2 space missions, combined with
ground-truths measured by airborne LiDAR, a segmentation mask was determined
by starting with multi-temporal input and aggregating the information from the
two satellites. The experiments involved different training configurations of the
models, shows that the presented algorithms significantly improved the baseline
that had been provided by the organizers of "The BioMassters" competition, that
aims to solve the same task, achieving results very close and comparable to those
of the winners, and in some cases even outperforming them.

Specifically, the results highlight how the Transformer-based SwinUNETR model
adopted in the work succeeds in achieving robust results in terms of RMSE, resulting
in a validated candidate to provide an alternative remote sensing method to those
already used in forest conservation analysis.

On the other hand, the simpler model such as UNet with Attention Pooling still
offers good results but with certainly room for improvement. For example, one
could experiment whether longer training, in terms of epochs, could lead to an
improvement of the results already obtained in the thesis.

Furthermore, at the time this work is being done, the test set on which the
results of those who proposed a valid solution to the competition participation
were evaluated has not been released. This is why the available data were split
into training, validation and test set in order to properly evaluate proposed models.
However, the work presented could have a continuation in performing training of
the models with a much larger training set to obtain better performance.
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