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Summary

The Internet of Things (IoT) has been widely deployed in Smart Cities, Health-
care, Agriculture, enabling millions of sensors to exchange information with a cloud
server. There are some cases in which IoT contributes to monitoring diseases such
as diabete which transmission must be error-free with minimum amount of energy
consumption. A multi-application reliable communication framework, deployable
in medical scenarios is Low Power Wide Area Networks (LPWAN). These networks
are rapidly growing, and the future of IoT will mainly rely on long range com-
munication and energy-efficient sensors. The innovative Long Range Wide Area
Network (LoRaWAN) technology, leveraging LoRa modulation, has introduced an
energy-efficient and reliable communication framework with a large number of IoT
sensors. LoRa has been exclusively designed to work in the unlicensed spectra
and provide robust communication against noise and external carriers. LoRaWAN,
the Medium Access Control (MAC) of this infrastructure, has defined initiative
regulations for the nodes to communicate over the same channel. Additionally, it
adapts the quality of the communication such as Data Rate and the Spreading
Factor (SF) to the channel conditions. Adaptive Data Rate (ADR) mechanism,
increases the data rate when the channel condition is good and decreases it to
ensure a sustainable communication. Based on the link budget, ADR decides
whether the DR should be changed. Controlling the SF helps to achieve a better
energy efficiency and longer life cycle in the end-node. However, when the number
of the nodes increases in a certain area, ADR is not efficient anymore. ADR decides
the transmission power based on the Signal-to-Noise (SNR) ratio from the recent
successful transmissions. As this number increases, interference happens for the
neighboring nodes sharing the same Data Rate (DR) and SP. Alternatively, the
power control algorithm can be developed in such a way to also consider Signal-to-
interference-plus-Noise Ratio (SINR). The proposed approach relies mainly on the
principles of ADR but implements a more general solution for the problem that
we call Dynamic Power Control (DPC) in LPWANs and this study focuses on the
LoRaWAN as a flagship of LPWANs.
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Chapter 1

Introduction

In wireless networks, power control is essential to enhance the quality and
efficiency of the system [1]. Control policies are usually defined in the access
protocols and supervised in a centralized controller or locally in the end devices
(EDs). In this thesis we are specifically interested in power control approaches in
energy-constrained devices such as Internet of Things (IoT) sensors. There are
several standards that was defined for these type of devices that are low-powered
and can transmit in wide areas. The networks with these characteristics are
called Low Power Wide Are Networks (LPWAN). They are designed to provide
efficient transmission of low amount of data with long range communication. These
properties allow them having lower Quality of Service (QoS) but longer life cycle.

1.1 Power Control
Transmit Power Control or Power Allocation is a strategy in wireless networks

to dynamically adjust the transmission power in order to minimize the energy
consumption and reduce interference. This strategy is deployed in the Medium
Access Control (MAC) and is implemented in the Network Card Interfaces (NICs).
MAC is an interface between the application layer and the PHY of the device and
defines protocols based on the properties and characteristics of the network. For
example in IEEE 802.1x standard which is known as WiFi, MAC layer implements
the Carrier Sesnse Multiple Access (CSMA) scheme to prevent collisions and
enhance the network efficiency. Power control is also defined in the MAC layer of
the wireless networks to optimize the transmissions in a communication system.

Transmitters must balance their transmit power to minimize the interference
with other nodes. Power Control is an naturally an optimization problem. If
a single node increases its power, other transmissions are also affected by the
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Introduction

interference. Thus, we should look at the whole system when we are solving the
power control for all of the nodes. We will look at some approaches that were
propsed for certain application in wireless networks. Although they are different
solution and algorithms, the objective of the power control is almost similar in all
networks. Based on the history, power control is categorized as centralized and
distributed. In this section We discuss the the general solutions and in the next
chapter we will lool at some specific approaches in the LPWANs.

1.1.1 Solutions

1.1.2 Centralized PC
There are cases in which the lack of a controlling strategy of the TX power doesn’t
necessarily have an impact on the simultaneous transmissions. In Time Division
Multiple Access (TDMA) where each node must transmit on a time slot basis, the
transceivers synchronize their transmissions with the predefined time slots and the
chance of collisions is rare. However, choosing the adequate TX power improves
a better energy efficiency in such devices. In these networks, nodes periodically
inform the base stations of a channel matrix through the channel state information
(CSI). The power is centrally controlled and the impact of interference is minimized
in such networks. The main concern in this approach is the amount of bandwidth
occupied by these channels when the number of nodes are relatively large. Besides,
this strategy is not effective for LPWAN nodes which are designed to work with
minimal bandwidth and power consumption.

1.1.3 Distributed PC
Another proposal was distributed power control by the help of network data.

Goodman et al.[1] proposes a distributed power control algorithm for the cellular
data networks where UMTS was the state-of-the-art standard. The standard was
based on CDMA and the access to the nodes were given by sharing the same
spectrum for the mobile terminals but their signals were spreaded with orthogonal
codes. In spreading spectrum techniques terminals can transmit simultaneously on
a ALOHA basis. Although the spreading codes are orthogonal to each other, there
was some level of correlation among the codes. This correlation creates interference
between the nodes when the transmissions are captured by a stronger signal closer
to the receiver and it is called capture effect [2].

The objective of the distributed power control is to maximize a utility function
for each transmitter. This utility is the number of bits that can be transmitted for
each joule of energy. In other words, the ratio of the throughput and the transmit
power. It can be proved that this utility function can be maximized for all nodes if
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they all struggle to reach the same SINR level at the receiver γopt. Balancing the
SINR of the nodes signals at the receiver, the utility of the whole system can be
maximized if and only if they all choose their transmit power to reach γopt. This is
very similar to Non-cooperative game theory where nodes struggle to maximize
their utility function and the action of one node affects other nodes.

1.2 Low Power Wide Area Networks: LPWAN
LPWAN is a group of IoT standards with the properties such as large coverage,
low transmission data rates with small packet sizes and long battery life devices[3].
The QoS requirements are defined in such a way that there is no obligation for a
low-latency and high bandwidth communication. Therefore, it is possible to design
an IoT standard which enables low power devices that can last for years.

It is possible to define LPWAN as those type of networks that provide low cost
and efficient connectivity in a large area with numerous devices. LPWAN provides
a robust connectivity in a large area of a city or a residential suburb.

1.3 Case Study: LoRaWAN
Long Range Wide Area Network, LoRaWAN, is a wireless communication proto-

col built upon the LoRa (Long Range) technology, designed for enabling efficient
communication among low-power devices over long distances. LoRaWAN operates
in unlicensed radio frequency bands, allowing for cost-effective and long-range
communication, making it suitable for Internet of Things (IoT) applications. It
employs a star-of-stars network topology, where end-devices communicate with
gateways that forward data to a centralized network server. LoRaWAN offers
impressive range capabilities, low power consumption, and supports secure bidirec-
tional communication, making it an ideal solution for various IoT deployments like
smart cities, agriculture, industrial monitoring, and more.

1.3.1 LoRa Modulation
The LoRa (Long Range) physical layer is the foundational element of the LoRa

technology, crucial in facilitating long-range wireless communication for IoT devices.
Operating in the sub-GHz ISM bands, LoRa utilizes a unique modulation technique
called Chirp Spread Spectrum (CSS). This modulation method enables LoRa devices
to achieve exceptional range capabilities while consuming minimal power. LoRa’s
CSS modulation employs chirp signals with varying frequencies over time, allowing it
to be highly resilient to interference and capable of penetrating obstacles and dense
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urban environments. By leveraging different spreading factors and bandwidths,
LoRa devices can adapt to various environmental conditions, enabling flexibility
in trade-offs between data rate, range, and power consumption. This robust
physical layer forms the backbone of LoRa technology, providing the foundation
for long-distance, low-power IoT communication in diverse applications.

Figure 1.1: Chirped Sequence Spectrum (CSS)

The modulation is patented by LoRa Alliance and uses unlicensed ISM bands as
the main radio frequency to transmit signals.

The CDMA approach used in LoRa, to get access to the network, has a probability
of packet loss and interference. Spreading codes are orthogonal to each other though
when two signals overlap, they have a slight impact on each other and if the receiver
is able to compensate the impact can demodulate the signal successfully.

The design of a CSS transceiver is such that, transmitters which share the same
SF have a slight chance of interference and overlap of signal on each other (Cite)
(Table) shows how signals using different SFs can impact on each other. Co-SF
interference is the main problem in CSS that decreases the system performance
and efficiency. Overcoming this issue, many algorithms have been proposed based
on the capacity, characteristics of the PHY and .. . In the next section, some of the
most important power control algorithms will be discussed and more importantly,
the ADR approach which is the main PC algorithm in LoRaWAN framework is
analyzed on different scenarios and situations.
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1.3.2 Network Architecture
The architecture is structured to enable efficient communication between low-power
devices and the network infrastructure. It operates on a star-of-stars topology
comprising end-devices, gateways, a network server, and an application server. End-
devices, often sensors or actuators, transmit data to nearby LoRaWAN gateways
known also as concentrators. These gateways receive the signals and forward
the data packets to a centralized network server. The network server manages
the gateways, ensures optimal data routing, and handles security measures like
encryption and authentication. It also manages the MAC layer and handles device
join requests. Finally, the application server connects to the network server,
processing and storing the received data, and provides an interface for applications
and end-users to access and utilize the information. LoRaWAN’s architecture
is designed for scalability, allowing it to efficiently accommodate a wide range
of IoT devices across diverse use cases while maintaining a secure and reliable
communication infrastructure.

LoRaWAN node are connected to a couple of concentrators using star topology.
Concentrators receive signals from end-nods and forward them to a server via a
backhaul network.

Figure 1.2: An example of an IoT Network based on LPWAN

1.3.3 Device Classes
LoRaWAN classifies devices into three main classes: Class A, Class B, and

Class C, each with specific communication characteristics catering to different IoT
application requirements.
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• Class A: are the most common and energy-efficient. They operate on a
"Listen Before Talk" principle, meaning they open receive windows for a short
duration after transmitting data. After sending data, Class A devices have two
short receive windows (RX1 and RX2) scheduled. These windows allow for
potential responses from the network or servers. However, after these windows
close, the devices go into a longer sleep mode to conserve energy until the
next scheduled transmission.

• Class B: have additional periodic receive windows apart from the RX1 and
RX2 windows present in Class A. These devices synchronize with the network
and have scheduled receive slots called ping slots. These slots allow for
improved downlink communication synchronization between the end-device
and the network, enabling more precise timing for receiving data from the
network.

• Class C: offer continuous receive capability, unlike Class A and Class B
devices that have limited receive windows. Class C devices keep their receive
windows open all the time, except when they are transmitting data. This
constant listening ability enables almost immediate downlink messages from
the network, providing higher responsiveness but consuming more power
compared to Class A and Class B devices.

Each class of device serves different IoT use cases, with Class A being the
most energy-efficient but having limited downlink communication timing, Class B
offering improved downlink timing through scheduled slots, and Class C providing
almost continuous receive capability but consuming more power. The choice of
class depends on the specific requirements of the IoT application, balancing factors
like power consumption, latency, and responsiveness.

6
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Figure 1.3: LoRaWAN Protocol Stack

Our focus is on the Class A LoRaWAN nodes which transmit based on ALOHA.
Nodes wake up and transmit whenever they have packets in their queues.

7



Chapter 2

State-of-the-art: PC
Solutions in LPWANs

Power control in Low-Power Wide-Area Networks (LPWANs) involves various ap-
proaches and strategies aimed at managing and optimizing the energy consumption
of devices while maintaining reliable communication. There are several algorithms
that are proposed to mitigate the interference and minimize the power in the
transmitters. We specifically focus on the state-of-the-art PC in LPWANs and a
related research publication that propose the minorities and develop the current
solution.

As it mentioned, PC algorithms can either centralized or distributed. Sicne the
EDs in LPWANs are Microcontroller Units (MCU), their power supply is single-use
basttery. SInce EDs are light weight devices, NS perform PC algorithms that has
more computational and power resources and havea global view of the network.
LoRaWAN also exploits a centralized approach that is implemented at the network
server and is activated optionally by the EDs. It collects the information from the
history of the transmissions and suggest either to maintain or change the SF and
transmit power of the ED. This algorithm is called Adaptive Data Rate( ADR)
and it is capable of controlling the ED resources. ADR is beneficial to create a
balance between the ED’s DR when the channel quality allows higher rates. In this
chapter We look in detail the algorithm and the other proposals to develop ADR.

prec,i[dB] = pi − PL(d0) − 10n log10(
di

d0
) + Xσ (2.1)
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State-of-the-art: PC Solutions in LPWANs

2.1 Adaptive Data Rate (ADR)
ADR works based on the log-distance path loss model in 2.1 and by averaging

the received Signal-to-Noise-Ratio (SNR) over a history of EDs transmissions. If
the margin between the required SNR and the received SNR is large, it dynamically
increase or decrease the DR of the ED. For instance, the gateway receiver received
a signal with BW=125KHz and SNR larger than -126dBm. Based on 2.1, sensivity
of the receiver in 125KHz is -132dBm for an uplink signal with SF=10 ADR can
increase the SF to SF=8 to increase the data rate, or alternatively, it can reduce
the transmit power if the SF should be fixed at SF=10.

Figure 2.1: Data Rate vs Energy in LoRa [4]

ADR is a centralized algorithm and runs in NS for the static nodes [4]. The
algotithm works only if the nodes are static and if they move, the ADR doesn’t
control the nodes DR. Moreover, it doesn’t consider the effect of interference of
on the transmissions. CSS is a spread spectrum technique and the codes are not
perfectly orthogonal to each other. Since class A devices transmit based on ALOHA,
they might interfer with each other. In some scenarios, there is a strong interfere
transmitter is close to the gateway. When other nodes transmissions interferes
with the interfering node, the distant node may not be heard by the gateway and
Capture Effect [2] happens. A research by [5, Yousef A. Al-Gumaei et al] suggest a
model to balance the SINR of all the nodes that transmit to a single gateway. It
mathematically models the power allocation with a game theory approach were
all the nodes try to increase their utility function which is a function of Packet
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State-of-the-art: PC Solutions in LPWANs

Success Rate and transmit power. In the next section, we discuss the game theory
based approach in more detail and later discuss how it is related to our proposal of
power control.

DR/SF Sensitivity
SF7 -123dBm
SF8 -126dBm
SF9 -129dBm
SF10 -132dBm
SF11 -134.5dBm
SF12 -137dBm

Table 2.1: Receiver Sensitivity at 125KHz [4]

Spreading factor 7 8 9 10 11 12
No of Nodes at Γ 4 7 12 22 39 72

Percentage of Nodes % 2.56 4.49 7.69 14.1 25 46.15

Table 2.2: Percentage of Nodes Assign to Each SF in BE-LoRa

2.2 Game-Theory-Based ADR
Increasing the transmit power increases the PSR and the chance of a successful

transmission in the gateway but it comes at the expense of interference for another
transmission. Therefore, the objective in this scenario is to maintain an SINR
balance for all the nodes communicating with a single gateway. In this kind of
power control, the action of nodes, that is, choosing the optimum SF and transmit
power affect other nodes decisions and can alter other transmission’s qualities. This
behavior is closely related to a certain type of non-cooperative game theory that
agents play with each other to increase their benefit.

fi(γSFk
i ) = 1 − 0.5e−αγ

SFk
i (2.2)

uSFk
i (pi, pSFk

−i ) = RSFk(1 − 0.5e−αγ
SFk
i )

pi

(2.3)

(1 − (γSFk)T (Mk − 1)
GSFk

p

)f ′((γSFk)T )(γSFk)T = f((γSFk)T ) (2.4)
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State-of-the-art: PC Solutions in LPWANs

Algorithm 1 Network Server BE-LoRa algorithm
Input: List of LoRa Nodes M , Processing Gain for each SF, GSFk

p , initial Trans-
mission power=14dBm, initial spreading factors=12
Output: The Optimal target SINR for each SF, updated transmit power, updated
SF assignment for all nodes

1: Sort the LoRa Nodes M in descending order of RSSI
2: for i = 1 to M do
3: Assign node i with an SF based on Table III
4: end for
5: Find the Optimal Target SINR for each SF by solving Equation
6: if (γSFk)opt < Γi then
7: (γSFk)opt = Γi

8: end if
9: for i = 1 to M do

10: γSFk
i = max(SNR of last 20 frames)

11: if γSFk
i > ((γSFk)opt + 1dB) then

12: pi = pi + 1dBm
13: else if γSFk

i < ((γSFk)opt + 1dB) then
14: pi = pi − 1dBm
15: else
16: Break;
17: end if
18: end for

11



State-of-the-art: PC Solutions in LPWANs

Power Allocation in LoRaWAN has similar characteristics as the Non-cooperative
Game. Nodes communicate based on ALOHA and therefore their transmissions
may occur at the same time. Due to the nature of the CSS modulation, nodes
which use the different SF have a strong isolation with respect to each other and a
large number of nodes choosing different SFs can safely transmit simultaneously.
However, if a node transmits while a co-SF node is communicating with the gateway,
they interfere with each other and may collide if they have the SIR less than safety
margin.[6]

SIR [dB] 7 8 9 10 11 12
7 6 -16 -18 -19 -19 -20
8 -24 6 -20 -22 -22 -22
9 -27 -27 6 -23 -25 -25
10 -30 -30 -30 6 -26 -28
11 -33 -33 -33 -33 6 -29
12 -36 -36 -36 -36 -36 6

Table 2.3: SIR Margin Between The Desired Signal and the Interfering Signal

Configuration Bitrate [b/s] Required SNR [dB]
SF12 / 125 KHz 293 -20.0
SF11 / 125 KHz 537 -17.5
SF10 / 125 KHz 976 -15.0
SF9 / 125 KHz 1757 -12.5
SF8 / 125 KHz 3125 -10.0
SF7 / 125 KHz 5469 -7.5

Table 2.4: LoRaWAN Configuration Table

2.3 Deep Reinforcement Learning-based ADR
Game theory approach is acceptable and it gives an effective solution for the

problem. However, it has a few constraints in the long term. In ALOHA, when the
number of nodes near a single gateway increases, the probability of interference
will potentially increase too. A useful approach for the nodes would be to repeat
their transmissions [7]. Repeating the transmission will increase the chance of a
successful communication but it again, wastes power on the communicating nodes.
We would probably like to train the nodes to learn what is the optimum SF and
power level to choose by the Network controller feedback. Moreover, the distributed
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approach is useful when the environment changes rapidly e.g the nodes are not
fixed for a long time and they will move often due to their nature.

13



Chapter 3

Reinforcement Learning

Reinforcement learning (RL) is a branch of machine learning that focuses on how
agents can make sequential decisions in an environment to maximize a cumulative
reward. In RL, an agent learns through trial and error by interacting with its
environment, receiving feedback in the form of rewards or penalties for its actions.
The goal is to discover a policy that allows the agent to take actions that lead
to the most significant cumulative reward Rt over time. RL employs the notion
of an exploration-exploitation trade-off, where the agent must balance between
exploiting its current knowledge to maximize immediate rewards and exploring
new actions that might yield higher long-term rewards. The RL agent starts by
making decisions and evaluates its decisions. After each step, it learns probability
of moving from state st to st+1 by action at. As a result of doing the experiment,
the agent is given a reward. The transition information is stored in a memory
buffer. The key components of RL include:

• State s ∈ S which is a tuple of the environment features that are relevant to
the problem

• Policy π(s, a) that is the probability of taking action a if the current state is
s∑

a∈A π(s, a) = 1

• Action at , the agent take action a and the environment moves from the
current state st to the st+1.

• Transition Probability The probability that the environment moves from
the current state st to the st+1 with taking action a

P a
ss′ = Pr[st+1 = s′ | S(t) = s, a(t) = a]

• Reward As a result of a transition, the agent receive a reward rt+1

14
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Figure 3.1: Reinforcement Learing Scheme

Reinforcement Learning (RL) encompasses various algorithms designed to enable
agents to learn optimal behavior by interacting with an environment. RL algorithms
can be

• Model-based model-based in which a greedy agent tries to maximize its
reward by neglecting the consequence of its actions. In these algorithms,
the agent takes its actions by giving a priority to the preferences over the
consequences.
Or

• Model-free such that the agent carry out an action multiple times to learn a
policy for the optimum rewards.

Some examples of these algorithms are:

• Policy Gradient Methods These methods aim to directly learn the policy
function, which maps states to actions. Algorithms like REINFORCE (Monte
Carlo Policy Gradient) and Proximal Policy Optimization (PPO) optimize
policy parameters by adjusting them in the direction that maximizes expected
cumulative rewards.

• Q-Learning is a model-free RL algorithm used for learning the value of
actions in a given state. It aims to find an optimal action-value function,
Qπ(s, a), known as the Q-function, which determines the expected cumulative
reward for taking a specific action in a particular state. Through exploration

15
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and exploitation, Q-learning updates Q-values based on observed rewards and
transitions.

• Deep Q-Networks (DQN) is an extension of Q-learning that utilizes deep
neural networks to approximate the Q-function. It employs experience replay
and target networks to stabilize learning, allowing for more efficient and stable
training on complex environments.

• SARSA (State-Action-Reward-State-Action) is another model-free RL
algorithm that learns the Q-function by updating action-values based on the
current state, action, reward, and the next action chosen following the current
policy. It is an on-policy algorithm that updates Q-values during the agent’s
interactions with the environment.

• Actor-Critic Methods Actor-Critic algorithms combine policy-based (actor)
and value-based (critic) approaches to learn both the policy and value func-
tion simultaneously. Actor-critic methods leverage the advantages of policy
gradients and value iteration, offering stable learning and improved sample
efficiency. Examples include Advantage Actor-Critic (A2C) and Trust Region
Policy Optimization (TRPO).

• Deep Deterministic Policy Gradient (DDPG) is an algorithm suitable
for continuous action spaces. It combines DQN’s experience replay and actor-
critic methods to learn a deterministic policy, which can handle continuous
action spaces effectively.

• Multi-Agent Reinforcement Learning (MARL) deals with multiple
agents interacting in an environment. Examples include independent Q-
learning for decentralized learning and algorithms like MADDPG (Multi-
Agent Deep Deterministic Policy Gradient) for cooperative or competitive
multi-agent scenarios.

Most of the RL algorithms are modeled as Markov Decision Processes (MDP).
An MDP is a process with fixed number of states. It can evolve from state s to
s′ in at each step and the probability of transition is fixed. In many cases the
agent doesn’t have a knowledge of the next transition state or the reward that will
receive as a result of that transition. It neither have enough information about the
reward of its actions. It explore all the possible states and learns how to maximize
its reward by taking actions.
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3.1 Q-Learning
Q-learning is a fundamental RL algorithm that finds an optimal action-selection
strategy in an MDP [8]. On a model-free setting, the Q-learning agent tries to
compute an optimal policy π that maximizes its expected cumulative reward R(t)

without knowing the function of the reward or the transition probabilities. Basically,
it learns the quality of actions in a given state through exploration and exploitation.
The algorithm maintains the tuple (s, a, s′, r′) its experiments in a table which is
called a Q-table.

Qπ(s, a) = Eπ[R(t) | S(t) = s, a(t) = a] (3.1)

Each entry of the table represents the expected cumulative reward 3.2 of taking
a particular action in a specific state. By iteratively updating these Q-values based
on observed rewards and transitions, the algorithm gradually converges towards
an optimal policy that maximizes cumulative rewards over time. This exploration-
exploitation trade-off enables the agent to learn which actions are most rewarding
in various states, allowing it to make informed decisions while interacting with the
environment. Q-learning’s simplicity, along with its ability to handle discrete action
spaces, has made it a foundational algorithm in reinforcement learning, serving as
a basis for more complex and sophisticated methods in the field.

R(t) =
∞∑

τ=0
γr(t+τ+1) (3.2)

The reward can be obtained by taking a couple of experiments. Considering the
case that moving from the action state (s,a) to st+1 archives a reward R through
n experiments. Similarly, the same reward from at (s,a) result can be obtained
through less than n experiments. In the second case, the reward can be achieved
with a lower number of time steps and have a higher discount factor γ. For example,
the anticipated income in one year from now is relative to the income today.

3.2 Deep Q-Learning
Deep Q-Learning (DQL) is an extension of Q-learning that integrates deep neural

networks (DNN) to handle high-dimensional state spaces in RL. By leveraging DNNs,
it overcomes the limitations of traditional tabular Q-learning, enabling the handling
of complex environments. It combines the robustness of Q-learning with the
representational power of DNNs to estimate the Q-function in the environments that
the state-action space is large and having the look-up table storage is impractical.
In our optimization problem which is a wireless environment, the observations
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are large and it is not efficient to use the Classic Q-Learning. Therefore, we use
another algorithm which estimate the Q-values from DNN which is much more
efficient in terms of the storage and convergence.

Deep Q-learning implements two neural networks: The Q-Network which is also
known as t train network with parameter θ

(t)
train and a target network with parameter

θ
(t)
target. The target network is a copy of the train network and is updated periodically

to estimate the Q-values. While the algorithm learns from the environment, the
target network converges to the Q-Network by the help of an optimizer that
minimizes a loss function 3.3. In the single DQN, both networks co-exist in the
same agent and they cooperate with each other, while in the Multi-Agent case,
each agent has a copy of the train network q(s, a, θ) and estimate its own Q-values.
The target network gather local information from its environment and estimate the
Q-value that gives the maximum reward3.1. The train network q(s, a, θ) updates
the Target Network parameter θ

(t)
target every Tu steps. This ensures that the target

Q-values used for calculating the loss during training are not as susceptible to rapid
changes and fluctuations, resulting in a more stable and effective learning process.

L(θ(t)
train) =

∑
(s,a,r′,s′)∈D(t)

(yDQN
(t)(r′, s′) − q(s, a; θ

(t)
train))2 (3.3)

By decoupling the target network’s parameters from the Q-network’s parameters
and updating the target network less frequently, the DQN algorithm becomes more
stable and is better able to learn optimal policies in complex environments. The
use of a target network is one of the key components that contribute to the success
and stability of the DQN algorithm in training deep reinforcement learning models.

Expience Replay

Experience replay is a critical component of the Deep Q-Network (DQN) algo-
rithm that is designed to enhance learning stability and improve sample efficiency
by storing and reusing experiences during training. In experience replay, the
agent’s experiences (s, a, r′, s′) during its interactions with the environment. Each
transition tuple is stored in a replay buffer. In the classical Q-Learning, the agent
use each experience immediately after it occurs while DQN saves the transitions
into a dataset D, and creates a pool of past experience. While training the Q-
network, the algorithm randomly samples mini-batches D(t) of experiences from
this replay buffer. This random sampling breaks the temporal correlation between
consecutive experiences, which helps to stabilize learning and prevents the model
from overfitting to recent experiences.
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Optimizer

Optimizer is a specific algorithm to update the parameters of the (Q-network)
during training. The optimizer update the weights of the neural network by
minimizing a loss derived from the temporal difference error between predicted
Q-values and target Q-values.

The choice of optimizer plays a crucial role in efficiently updating the network’s
weights to minimize the discrepancy between predicted Q-values and target Q-values.
Commonly used optimizers in DQN include:

• Stochastic Gradient Descent (SGD)used in many neural network appli-
cations. SGD updates the network’s weights in the direction that reduces
the loss, computed as the difference between predicted Q-values and target
Q-values, multiplied by the learning rate.

• Adam an adaptive learning rate optimization algorithm that combines the
benefits of AdaGrad and RMSProp. It dynamically adjusts learning rates for
different parameters, making it suitable for non-stationary objectives, which
can be the case in reinforcement learning.

• RMSProp adjusts the learning rates of each parameter based on the magni-
tudes of recent gradients. It scales the learning rates by dividing the gradient
by the root mean square of past gradients.

• Adamax a variant of Adam, Adamax is computationally efficient and has
shown good performance in various neural network training tasks. It uses
the infinity norm (maximum absolute value) of the gradients in place of the
second moment in Adam.

Figure 3.2 descibes architecture of the DQN algorithm and the interaction
between the Q-network (train) and the target
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Figure 3.2: Deep Q-network Architecture [9]

yDQN
(t)(r′, s′) = r′ + λ max(q(s′, a′; θ

(t)
train) (3.4)

3.2.1 Multi Agent Q-Learning
Multi-agent deep reinforcement learning involves applying deep reinforcement

learning techniques to scenarios where multiple agents interact within a shared
environment. Unlike single-agent environments, multi-agent settings introduce com-
plexity due to agents’ interactions, resulting in non-stationarity and the emergence
of strategic behaviors. These environments encompass diverse applications like
multi-agent games, traffic management, collaborative robotics, and resource alloca-
tion. Algorithms in multi-agent deep reinforcement learning aim to enable agents
to learn decentralized policies that optimize their individual objectives while consid-
ering the impact of their actions on the environment and other agents. Techniques
such as independent learning, centralized training with decentralized execution,
or communication between agents through neural networks facilitate learning in
these environments. Handling complex interactions, coordinating actions, and
discovering emergent strategies are key challenges addressed by multi-agent deep
reinforcement learning, offering promising avenues for solving real-world problems
that involve multiple autonomous decision-making entities.

20



Chapter 4

Conclusion

In this thesis, we propose Deep Reinforcement Learning (DRL) based power
allocation for LPWA networks. We studided the state-of-the-art algorithms for
power allocation and conclueded that distributed algorithms are promising for IoT
standards such as LoRaWAN. We discussed that power control is an optimization
problem and can be modelled by mathematical models such as Game Theory and
other similar algorithms such as RL has shown to be effective in power allocation
in wireless networks.

In the future, we are willing to test the implementation of a Multi-agent Deep
Q-Learning approach in real scenarios for LPWANs. Designing a distributed PC
approach based on the RL need state-of-the-art technologies and platforms to
perform Machine Learning algorithm on the MCU devices.

21



Bibliography

[1] David Goodman and Narayan Mandayam. «Network Assisted Power Control
for Wireless Data». In: 6 (2001), pp. 409–415. doi: 10.1023/A:1011470315099
(cit. on pp. 1, 2).

[2] Duc-Tuyen Ta, Kinda Khawam, Samer Lahoud, Cédric Adjih, and Steven Mar-
tin. «LoRa-MAB: A Flexible Simulator for Decentralized Learning Resource Al-
location in IoT Networks». In: 2019 12th IFIP Wireless and Mobile Networking
Conference (WMNC). 2019, pp. 55–62. doi: 10.23919/WMNC.2019.8881393
(cit. on pp. 2, 9).

[3] Bharat S. Chaudhari and Marco Zennaro. «1 - Introduction to low-power
wide-area networks». In: LPWAN Technologies for IoT and M2M Applications.
Ed. by Bharat S. Chaudhari and Marco Zennaro. Academic Press, 2020, pp. 1–
13. isbn: 978-0-12-818880-4. doi: https://doi.org/10.1016/B978-0-12-
818880- 4.00001- 6. url: https://www.sciencedirect.com/science/
article/pii/B9780128188804000016 (cit. on p. 3).

[4] What is an Adaptive Data Rate? https://lora-developers.semtech.com/
documentation/tech-papers-and-guides/understanding-adr/ (cit. on
pp. 9, 10).

[5] Yousef A. Al-Gumaei, Nauman Aslam, Xiaomin Chen, Mohsin Raza, and Rafay
Iqbal Ansari. «Optimizing Power Allocation in LoRaWAN IoT Applications».
In: IEEE Internet of Things Journal 9.5 (2022), pp. 3429–3442. doi: 10.1109/
JIOT.2021.3098477 (cit. on p. 9).

[6] Claire Goursaud and Jean-Marie Gorce. «Dedicated networks for IoT : PHY
/ MAC state of the art and challenges». In: EAI endorsed transactions on
Internet of Things (Oct. 2015). doi: 10.4108/eai.26-10-2015.150597. url:
https://hal.science/hal-01231221 (cit. on p. 12).

[7] Martin Heusse, Christelle Caillouet, and Andrzej Duda. «Frame Arrival Timing
in LoRaWAN: Capacity Increase With Repeated Transmissions and More
Channel Attenuation». In: 2022 IEEE 33rd Annual International Symposium on
Personal, Indoor and Mobile Radio Communications (PIMRC). 2022, pp. 1048–
1054. doi: 10.1109/PIMRC54779.2022.9977660 (cit. on p. 12).

22

https://doi.org/10.1023/A:1011470315099
https://doi.org/10.23919/WMNC.2019.8881393
https://doi.org/https://doi.org/10.1016/B978-0-12-818880-4.00001-6
https://doi.org/https://doi.org/10.1016/B978-0-12-818880-4.00001-6
https://www.sciencedirect.com/science/article/pii/B9780128188804000016
https://www.sciencedirect.com/science/article/pii/B9780128188804000016
https://lora-developers.semtech.com/documentation/tech-papers-and-guides/understanding-adr/
https://lora-developers.semtech.com/documentation/tech-papers-and-guides/understanding-adr/
https://doi.org/10.1109/JIOT.2021.3098477
https://doi.org/10.1109/JIOT.2021.3098477
https://doi.org/10.4108/eai.26-10-2015.150597
https://hal.science/hal-01231221
https://doi.org/10.1109/PIMRC54779.2022.9977660


BIBLIOGRAPHY

[8] Model-Based and Model-Free Reinforcement Learning: Pytennis Case Study.
https://neptune.ai/blog/model-based-and-model-free-reinforcemen
t-learning-pytennis-case-study (cit. on p. 17).

[9] Saijuan Xu, Saijuan Xu, and Genggeng Liu. «An Enhanced Deep Reinforcement
Learning-Based Global Router for VLSI Design». In: 6.530-8669 (2023), pp. 409–
415. doi: 10.1155/2023/6593938 (cit. on p. 20).

23

https://neptune.ai/blog/model-based-and-model-free-reinforcement-learning-pytennis-case-study
https://neptune.ai/blog/model-based-and-model-free-reinforcement-learning-pytennis-case-study
https://doi.org/10.1155/2023/6593938

	Abstract
	List of Tables
	List of Figures
	Acronyms
	Introduction
	Power Control
	Solutions
	Centralized PC
	Distributed PC

	LPWAN
	Case Study: LoRaWAN
	LoRa Modulation
	Network Architecture
	Device Classes


	State-of-the-art: PC Solutions in LPWANs
	Adaptive Data Rate (ADR)
	Game-Theory-Based ADR
	Deep Reinforcement Learning-based ADR

	Reinforcement Learning
	Q-Learning 
	Deep Q-Learning
	Multi Agent Q-Learning


	Conclusion
	Bibliography

