
I

POLITECNICO DI TORINO

Master of Science in
COMMUNICATIONS AND COMPUTER NETWORKS

ENGINEERING

Master’s Degree Thesis

Cloud Resource Allocation: Developing an efficient resource
allocation model to optimize the performance of cloud
computing systems, while minimizing costs and energy

consumption

Supervisors
prof. MATEKOVITS Ladislau

 October_2023

Candidate
Mohsen KHEZLI

https://didattica.polito.it/pls/portal30/sviluppo.offerta_formativa_2019.vis?p_a_acc=2023&p_sdu=37&p_cds=30
https://didattica.polito.it/pls/portal30/sviluppo.offerta_formativa_2019.vis?p_a_acc=2023&p_sdu=37&p_cds=30

II

Table of Contents:

1. INTRODUCTION .. 1

1.1. GENERAL DESCRIPTION OF PROBLEM: .. 1
1.2. SPECIFIC PROBLEM CONSIDERATION: ... 1
1.3. RESOURCE ALLOCATION STRATEGIES: ... 2
1.4. STATE THE PROBLEM: .. 2
1.5. STRUCTURE OF THESIS: .. 3

2. LITERATURE REVIEW: .. 4

2.1. FIREFLY ... 4
2.1.1 Firefly Algorithm: .. 4
2.1.2 Method I ... 5
2.1.3 Prioritize Task: .. 7
2.1.4 Encoding and Initialize Population in Fireflies: ... 7
2.1.5 Luciferin: ... 8
2.1.6 Migration: ... 8
2.1.7 Outcome: .. 8
2.1.8 Performance: .. 10
2.2. RESOURCE ALLOCATION: .. 12
2.2.1. Optimal Joint Resource Allocation: ... 12
2.2.1.5.1. Assumption and Condition: ... 14
2.2.1.5.2. Result: .. 15
2.2.2. Fairness: .. 17
2.2.2.1.1. Proposed Method for Fairness: ... 17
2.2.2.1.2. Extension of fair joint multiple resource allocation method: .. 17
2.2.3. Result ... 19
2.3. FEMTOCELL NETWORKS: .. 21
2.3.1. FEMTOCELL NETWORKS AND FAIRNESS IN RESOURCE ALLOCATION: .. 22
2.4. LINEAR SCHEDULING STRATEGY: .. 23
2.4.1. Fairness: .. 23

3. CONCLUSION: .. 24

3.1. FIREFLY ... 24
3.2. OPTIMAL JOINT RESOURCE ALLOCATION: .. 24
3.3. FEMTOCELL DYNAMIC RESOURCE ALLOCATION: ... 25
3.4. LINEAR SCHEDULING ALGORITHM: .. 25

4. REFERENCES: ... 28

III

Table of tables:

Table.1, Scenario defined for the DSA problem .. 8
TABLE

IV

Table of figures:

Fig.1, Reference, Dynamic Resource Allocation Using improved Firefly Optimization Algorithm in
Cloud Environment written by Simin Abedia, Mostafa Ghobaei-Arani, Ehsan Khoramic, and Musa
Mojarad .. 2
Fig.2, Flowchart of FA steps, Reference, Dynamic Resource Allocation Using Improved Firefly
Optimization Algorithm in Cloud Environment written by Simin Abedia, Mostafa Ghobaei-Arani, Ehsan
Khoramic, and Musa Mojarad .. 5
Fig.3, IFA-DSA flowchart, Reference: Dynamic Resource Allocation Using Improved Firefly
Optimization Algorithm in Cloud Environment written by Simin Abedia, Mostafa Ghobaei-Arani, Ehsan
Khoramic, and Musa Mojarad .. 6
Fig.4, Trapezoidal membership function with three modes to prioritize tasks, Reference: Dynamic
Resource Allocation Using Improved Firefly Optimization Algorithm in Cloud Environment written by
Simin Abedia, Mostafa Ghobaei-Arani, Ehsan Khoramic, and Musa Mojarad .. 7
Fig.5, Encoding structure of fireflies, Reference: Dynamic Resource Allocation Using Improved Firefly
Optimization Algorithm in Cloud Environment written by Simin Abedia, Mostafa Ghobaei-Arani, Ehsan
Khoramic, and Musa Mojarad .. 7
Fig.6, VMs load Balancing at the beginning of the scheduling process, Reference, Dynamic Resource
Allocation Using Improved Firefly Optimization Algorithm in Cloud Environment written by Simin
Abedia, Mostafa Ghobaei-Arani, Ehsan Khoramic, and Musa .. 9
Fig.7, Reference, Dynamic Resource Allocation Using Improved Firefly Optimization Algorithm in
Cloud Environment written by Simin Abedia, Mostafa Ghobaei-Arani, Ehsan Khoramic, and Musa
Mojarad .. 10
Fig 8, Comparison of FA with GA and PSO in the proposed method, Reference: Dynamic Resource
Allocation Using Improved Firefly Optimization Algorithm in Cloud Environment written by Simin
Abedia, Mostafa Ghobaei-Arani, Ehsan Khoramic, and Musa Mojarad .. 10
Fig 9, Reference, Dynamic Resource Allocation Using Improved Firefly Optimization Algorithm in
Cloud Environment .. 11
Fig.10, System model for cloud computing services, Reference Optimal Joint Multiple Resource
Allocation Method for Cloud Computing Environments, written by Shin-ichi Kuribayashi 12
Fig.11.1, Joint multiple resource allocation K=2, Reference Optimal Joint Multiple Resource Allocation
Method for Cloud Computing Environments, written by Shin-ichi ... 13
Fig.11.2, Joint multiple resource allocation K=2, Reference Optimal Joint Multiple Resource Allocation
Method for Cloud Computing Environments, written by Shin-ichi KuribayashiError! Bookmark not
defined.
Fig.12.1, Comparative evolution of Method I and Method II, Reference Optimal Joint Multiple Resource
Allocation Method for Cloud Computing Environments, written by Shin-ichi Kuribayashi 15
Fig.12.2, Comparative evolution of Method I and Method II, Reference Optimal Joint Multiple Resource
Allocation Method for Cloud Computing Environments, written by Shin-ichi Kuribayashi 15
Fig 13, Impact of the size of Cmax and Nmax, Reference Optimal Joint Multiple Resource Allocation
Method for Cloud Computing Environments, written by Shin-ichi Kuribayashi 16
Fig 14, Impact of the number of centers, Reference Optimal Joint Multiple Resource Allocation Method
for Cloud Computing Environments, written by Shin-ichi Kuribayashi .. 16
Fig 15, Impact of the number of centers, Reference Optimal Joint Multiple Resource Allocation Method
for Cloud Computing Environments, written by Shin-ichi Kuribayashi .. 18
Fig.16, Reference Optimal Joint Multiple Resource Allocation Method for Cloud Computing
Environments, written by Shin-ichi Kuribayashi ... 19
Fig.17, Reference Optimal Joint Multiple Resource Allocation Method for Cloud Computing
Environments, written by Shin-ichi Kuribayashi ... 20

V

Fig.18, Reference Optimal Joint Multiple Resource Allocation Method for Cloud Computing
Environments, written by Shin-ichi Kuribayashi ... 20

1

1. Introduction

In recent years, cloud computing has gained popularity among users as it delivers customized
and reliable computing environments through distributed, parallel, and grid computing. This
paradigm enables companies to rent computing resources on demand without worrying about
location and infrastructure requirements. The users' data is stored in data centers managed by the
provider, who offers computing, storage, network, software, and hardware services.

Cloud computing offers various benefits, including lower resource reprovisioning, cost savings,
improved security and reliability, and satisfactory performance. The most significant advantage
of cloud computing is its cost-saving feature (Chien, Lai, and Chao 2019; Jula et al. 2021).

1.1. General Description of Problem

Efficient allocation of resources is a critical component of cloud computing. This involves
assigning available resources to user requests or applications currently in use. To achieve this,
cloud service providers utilize a variety of Dynamic Resource Allocation (DRA) strategies,
which are depicted in Figure 1. The Resource Allocation Strategy (RAS) problem is significant
because it impacts energy usage, service provider profits, and user costs. Addressing RAS issues
can help to reduce resource usage, balance loads, and integrate resources effectively. In order to
develop an optimal RAS, providers must avoid issues such as shortages, resource contention,
fragmentation, overprovisioning, and under-provisioning. To accomplish this, a dynamic RAS
requires knowledge of the type and number of resources required by each user or application.

1.2. Specific Problem consideration

Optimal RAS could solve the problem of starvation by provisioning resources to individual users
by managing resources. It is crucial to have an open dialogue regarding the obstacles that both
the service provider and the user encounter. It is not uncommon for overprovisioning of
resources to transpire when users overestimate their needs. Conversely, under-provisioning may
arise from the provider's allocation decisions.
It is important for the Resource Allocation Strategy of a system to meet certain parameters such
as response time, latency, throughput, fairness, and economic service. In order to achieve optimal
RAS, it is crucial to have knowledge about the application requirements and user needs.
The management of Dynamic RAS poses a significant challenge for cloud computing services as
it impacts energy consumption, user costs, and service provider profits. Service providers strive
to maximize their return on investment while users look for cloud services that offer quality
service at a reasonable price. Therefore, an optical Dynamic RAS capability can prove to be
highly effective for both cloud service providers and users, offering mutual benefits.

Dynamic RAS is a technique that evaluates the present state of each resource within the cloud
ecosystem and offers an algorithm for the most efficient allocation of physical resources,
resulting in reduced operational costs.

2

Given the scale and complexity of the cloud environment, service providers need a solution that
can handle real-time processing and provide an efficient DRAS (Dynamic Resource Allocation
System).

1.3. Resource Allocation Strategies

Resource allocation strategies (RAS) for cloud computing vary depending on the specific
service, infrastructure, and applications that require resources. Figure 1 illustrates the different
RAS proposed for the cloud paradigm. The next section explores the RAS used in cloud
computing. Our paper aims to investigate some aspects of the Run-Time strategy.

Figure.1, Dynamic Resource Allocation Strategies, [1]

1.4. State the problem

In a cloud environment, each physical server hosts multiple virtual machines with different
resources and configurations. These virtual machines can serve as computers or servers for
applications, or function as virtual monitoring devices. The goal of developing, customizing, and
studying algorithms is to allocate appropriate virtual machines to users and improve resource
utilization. This problem is known as the Dynamic Resource Allocation Strategy (DRAS).

In any cloud environment, the scheduling system plays a critical role in distributing tasks
between physical servers and virtual machines (VMs). The system's main objective is to ensure
that tasks are properly allocated among VMs to achieve maximum resource efficiency and
minimize task duration (also known as makespan). Essentially, the scheduling system needs to
address the DRAS problem, which is a multi-objective problem.

One of the biggest challenges for scheduling algorithms is migration. When a virtual machine
(VM) is overloaded with too many tasks, the system needs to migrate some tasks to less-loaded
VMs. This is important for load balancing, but it also comes with some overhead costs for the
service provider. Cloud computing ensures fairness by giving equal access to resources for all
users and applications, regardless of size or importance. This prevents any one user or
application from monopolizing resources and maintains a level playing field. Fairness promotes
efficient resource utilization in the cloud ecosystem.

3

1.5. Structure of Thesis

Our research is centered around the firefly algorithm, which takes cues from natural processes to
tackle the DRAS problem with a highly effective solution. In Chapter 2.1, we offer notable
contributions: firstly, we employ FA to address the DRA problem as a multi-objective
optimization challenge; secondly, we utilize a pay-as-you-use model and a fuzzy approach to
prioritize requests and improve load balancing; and lastly, we assess our proposed strategy and
compare it with other established strategies.

In our work, we focus on developing an innovative strategy for optimal resource allocation in
cloud computing services. Our goal is to make these services more economical and efficient by
determining the best allocation of processor and bandwidth resources in different scenarios.

In Section 2.2, we evaluate the impact of joint multiple resource allocation and compare three
different strategies (I, II, and III) in terms of loss probability and fairness across various
scenarios. Our analysis aims to identify the most effective approach for achieving optimal
resource allocation.

In Chapter 2.3, we discuss Femtocell Networks which are commonly used in small businesses
for managing Resource Allocation. However, they are now also useful for resource allocation in
cloud computing. The following section, 2.4, covers Linear Strategy. In the last two chapters, we
briefly discuss these two strategies and provide details regarding their fairness, efficiency,
advantages, and disadvantages.

4

2. Literature review

2.1. Firefly

Numerous studies have concentrated on managing energy in cloud environments. This research
was aimed at tackling the problem of energy consumption by examining two types of algorithms:
energy-saving and energy-efficient. The ultimate goal of these algorithms is to decrease energy
usage in data centers. However, certain parameters were overlooked in some of the algorithms,
including the service-level agreement. To address the DRAS issue, most techniques utilize
heuristic approaches that employ evolutionary algorithms.

2.1.1 Firefly Algorithm

Optimizing the algorithm requires utilizing a mathematical methodology to find a solution. The
level of difficulty in optimization is dependent on the mathematical interplay between decision
variables, constraints, and objectives. In this particular research, the focus is on multi-objective
optimization, which involves optimizing more than one objective simultaneously. To address this
challenge, the study employed nature-inspired algorithms and biological processes to develop a
robust solution for the DRAS problem.

In 2009, Yang introduced the Firefly Algorithm, which is inspired by the communication among
fireflies. It is a heuristic algorithm that relies on the cooperation of low-intelligence agents to
create a high-level of swarm intelligence.

It is believed that fireflies are attracted to each other's brightness regardless of their gender. The
level of attraction can vary depending on the distance between them. In cases where multiple
fireflies have the same brightness, they tend to move randomly and operate independently in
parallel. The firefly algorithm has found applications in different fields and various sciences and
is often used in conjunction with other optimization algorithms and techniques.

5

Figure 2, Flowchart of Firefly algorithm steps, [1]

The Firefly algorithm is a cutting-edge method employed by researchers to tackle optimization
problems in dynamic environments. It stands out as a standalone technique that can be utilized
for parallel processing. As shown in Figure 2, the FA steps are outlined in a flowchart. While
there are other algorithms that use random search to generate solutions within a search space, FA
possesses a unique set of advantages that make it a fitting optimization approach for the DRAS
problem. Consequently, in this study, we opted to utilize FA to solve the DRA problem.

2.1.2 Method I

This solution is called IFA-Dynamic RAS and it aims to solve the DRAS problem by combining
a fuzzy approach with an optimization technique based on the Firefly algorithm, which is
referred to as IFA-DRA. The main objective of this method is to determine the best sequence of
tasks on VMs by including different heuristic operations and objectives. This sequence ensures
that the appropriate VM resources are allocated to each task.

The fuzzy approach is a computational technique that deals with uncertainty and imprecision in
data or information. It is based on fuzzy logic, which allows the representation and manipulation
of vague or uncertain concepts. In the IFA-Dynamic RSA solution, the fuzzy approach is used to
tackle the issue of dynamic resource allocation by considering uncertain factors and
incorporating them into the decision-making process. By utilizing fuzzy logic, the solution can
take into account varying levels of resource requirements and adjust the allocation strategy
accordingly.

6

In the Firefly algorithm, each Firefly comes up with a solution to the problem and outlines a
sequence of tasks to be executed on the VMs. These sequences include the allocation of the
necessary resources of the VMs for each task. To achieve this, it is essential to prioritize each
task based on the pay-as-use method. The initial population for the algorithm was generated
based on this task priority, and we used a fuzzy method to distribute the tasks to the VMs.

Figure 3, IFA-DSA flowchart, [1]

The method is a multi-objective algorithm and includes four objectives: load-balancing,
minimizing the task duration time of the last task, minimizing the migration rate, and finally
minimizing the average runtime. The luciferin value (attractiveness) was evaluated for each
firefly to optimize the objective function.
The radius of each neighborhood sensor is determined based on the luciferin value, and the
probability of fireflies moving toward neighbors is calculated according to the luciferin value. To
move each firefly to a neighbor, the evolutionary difference operator is used.
When dealing with an imbalanced workload, the migration technique can be utilized between the
virtual machines to enhance the workload.
When the utilization of certain VMs exceeds a certain threshold, the performance of the entire
system can be improved by utilizing the migration technique to transfer the workload from
overloaded VMs to underutilized ones. To better understand this process, please refer to Figure 3
which illustrates a flowchart of IFA-DSA.

7

2.1.3 Prioritize Task

We've classified requests into Low, Medium, and High-priority levels using a fuzzy logic
algorithm. This algorithm takes into account two crucial factors: the user's payment and the
computational size of the tasks.

Figure 4, Trapezoidal membership function with three modes to prioritize tasks, [1]

Our algorithm utilizes a sophisticated system to prioritize tasks based on two key parameters: the
priority decision parameter (ω) and the trapezoidal membership function (T1, T2, ..., T6). By
taking into account the payment and size of each task, the decision parameter determines the
optimal ratio between the two. Meanwhile, the trapezoidal membership function assigns a
priority level to each task based on these factors, with higher payment and lower size leading to a
higher priority. This cutting-edge approach, which employs a fuzzy logic system, results in
greater flexibility and efficiency when allocating tasks while improving the overall user
experience.

2.1.4 Encoding and Initialize Population in Fireflies

In the DRAS, each firefly can provide a solution within the search space, and each firefly
represents a vector of length N, where N indicates the total number of tasks. In the vector, a VM
is assigned to each task. Structure of the Firefly in the DRAS problem, which represents VM
allocation to the task.

 Figure 5, Encoding structure of fireflies, [1]

The FA algorithm generates an initial solution population randomly, which may result in an
inadequate distribution of tasks among Virtual Machines (VMs). To address this issue, a
heuristic-based approach is used to create an initial population based on the workload's task
priorities. This ensures that tasks are assigned to the VM based on the workload.
To guarantee performance, the heuristic method assigns tasks to VMs in the following way: for
low-priority tasks, select the VM with the least workload; for medium-priority tasks, assign the
VM with the lowest number of high- and medium-priority tasks; and finally, for high-priority
tasks, assign the VM with the lowest number of high-priority tasks.

8

2.1.5 Luciferin

Fireflies use Luciferin to emit their radiance and attract other Fireflies. The amount of Luciferin
a Firefly has indicated its position in the search space. In the DRAS algorithm, Luciferin is a
multi-objective function that includes factors such as Task Duration, Workload Balancing,
Average runtime of tasks, and Migration Task. These factors are considered when determining
the objective function of the DRAS.

2.1.6 Migration

In system management, an increase in virtual machine (VM) load is commonly known as an
"Overload VM." To ensure optimal workload distribution, a migration technique is applied. This
involves selecting a task at random from the Overload VM and transferring it to the "Less
Overload VM" (LVM) once the difference between the two surpasses a specific threshold.

Table 1, Scenario defined for the DSA problem, [1]
Scenario Number of tasks(N) Number of VMs

Scenario 1 100 5
Scenario 2 50 10
Scenario 3 500 60
Scenario 4 1000 100

2.1.7 Outcome

As you mentioned earlier in the paper, the initial population is created using a heuristic method
based on a fuzzy approach, which ultimately sets the priority of the tasks. Additionally, the
workload is distributed among the virtual machines (VMs) at the start of the scheduling process.
Figure 6 illustrates the workload on each VM, which is evaluated based on the task size assigned
to that VM in relation to the total workload.

9

Figure 6, VMs load Balancing at the beginning of the scheduling process, [1]

According to the simulation, all VMs carry the same workload, which proves that the heuristic
approach brings about the necessary load balancing at the start of the scheduling process. Figure
7 displays the simulation results for various scenarios, indicating that it is equitable to distribute
tasks with different priorities among virtual machines. For instance, in scenario 3, the average
load does not exceed 12.9, while it is around 12.6, indicating that the upper hand and lower hand
show almost similar behavior, with the average load being almost the same.

This simulation suggests that the workload is evenly distributed across all VMs. As a result, the
heuristic approach provides the required load balancing at the start of the scheduling process.
The distribution of tasks on VMs is based on their respective priorities. For this purpose, a
similar number of tasks should be assigned to each VM with different priorities. To ensure that
the number of tasks with varying priorities on VMs is evenly distributed, the IFA-DRAS assigns
sequence tasks to VMs while creating the initial population.

10

Figure 7, Distribution of Tasks with Different Priorities on VMs, [1]

2.1.8 Performance

This study compares the performance of three optimization algorithms – FA, GA, and PSO –
using the makespan metric to evaluate scenarios with varying numbers of tasks (100, 200, 300,
400, and 500), as shown in Figure 8. According to the results, FA performed better than both GA
and PSO due to its heuristic approach for generating the initial population and ensuring proper
task distribution. Consequently, FA achieved better results in comparison to the proposed
method, which started with a population of the best quality. Additionally, faster convergence
during evaluation was facilitated by load balancing on VMs.

Figure 8, Comparison of FA with GA and PSO in the proposed method, [1]

11

In a comprehensive comparative study, FA-DRAS was tested against First-Come, First-Served
(FCFS), Task Scheduling with Dynamic Queue based on Fuzzy Logic and Particle Swarm
Optimization (TSDQ-FLPSO), and the Improved Cuckoo Search Algorithm (ICFA). The
assessment was based on the makespan of a variety of tasks. The findings revealed that FA-
DRAS outperformed the other algorithms in terms of makespan. It is noteworthy to mention that
the experiment maintained a constant number of VMs throughout.

Figure 9, Comparison of IFA-DSA with similar methods in the makespan criteria, [1]

Different parameters related to DRAS in the cloud environment can be considered, such as
workload balance, fairness, efficiency, resource utilization, runtime, and energy consumption.
The table below compares some of these parameters.

Table 2, Parameters used by different methods for DRSA, [1]
Parameters FCFS TSDQ-FLPSO ICFA FA-DRAS

Workload Balance yes yes yes Yes

Being Fair - yes - -

Efficiency yes - - -

Utilization of
Resource

- - Yes -

Run Time - - - yes

Energy
Consumption

- - Yes -

Processing cost Yes - - Yes

Response Time Yes Yes Yes -

Prioritize task - - - Yes

12

2.2. Resource Allocation

In this resource allocation strategy for cloud environments, the assumption is that there is a
common pool of different types of resources that are allocated for a certain amount of time for
each request. The focus is on processing ability (C) and bandwidth (N) resources, which have
varying levels of demand.

The hardware resources for cloud computing are assumed to be distributed across different data
centers, represented by K=1,2, 3, …, K, where each data center has a maximum processing
ability and maximum bandwidth denoted by (Cmaxj) and (Nmaxj).

Figure 10, System model for cloud computing services, [2]

The objective of the strategy is to choose the best data center to allocate resources for each
request within a specific time frame. If there are insufficient resources in the data centers to
fulfill the request, it will be declined.

2.2.1. Optimal joint Resource Allocation

2.2.1.1.Assumption

We assume that the cloud environment is a non-delayed system with static resource allocation.
The goal is to effectively allocate processing ability and bandwidth resources to the maximum
number of requests.

2.2.1.2. Impact of Joint Multiple Resource Allocation

This passage discusses the limitations of a resource allocation method that only considers one
type of resource, such as processing ability, in selecting a data center. In such cases, the method
may fail to allocate resources efficiently and may result in a deadlock state if the request requires
both processing ability and bandwidth. This method is known as Method I.

13

Figure.11.1, Only processing ability is considered in the selection of a center, Joint multiple resource allocation K=2, [2]

To address this issue, the joint multiple resource allocation method considers both processing
ability and bandwidth in selecting the data center, thus improving the efficiency of resource
allocation and avoiding the deadlock state.

Figure.11.2, Both Processing ability and bandwidth are considered in the selection of centers, Joint multiple resource allocation K=2, [3]

2.2.1.3.Optimal joint multiple resource allocation method

When allocating resources, it is beneficial to refer to multiple resource types. This approach
makes it easier to identify a resource that has a significant impact on allocation. This is called
Method II. When selecting a center using this method, only the recognized resource type is
considered. This method utilizes the best-fit approach to reserve resources for future requests and
reduces the possibility of a deadlock situation.

Comparing Method I and Method II, it is clear that the joint allocation of multiple resources is
more effective. Method I selects the center in a predefined order, whereas Method II considers
both resource types in the selection of a center.

14

2.2.1.4.Resource Allocation Method II

To select a resource type, we compare the required resource size to the maximum resource size
for each type. The type with the largest size proportion is chosen as the "identified resource." We
then select a center with the least capacity of the identified resource from a group of k centers.
Processing ability and bandwidth are measured differently, one in percentage of CPU power and
the other in bits per second (b/s). To compare resource sizes, consider this example: a center has
a maximum bandwidth of 100Mb/s. A request for 20% of CPU power and 30Mb/s requires 20%
of processing ability and 30% of bandwidth. In this example, bandwidth would be the identified
resource because it is more demand than processing ability.

The chosen center must satisfy certain criteria - it should have the minimum available size of the
identified resources and have available the two resource types that are larger than or equal to the
required resource type. If this condition is not met, the request is rejected.

Once a center is chosen, both resource types are allocated to the request and released after a
certain period of time. If resources are not available in the first selected center, the algorithm
selects the second possible center chosen by Round-Robin fashion, which is a pre-defined order
regardless of which center was selected for the last request. If no center with adequate resources
is available, the request is rejected.

Finally, after finding a center with the required resource type, both resource types are allocated
simultaneously to the request and are released after a period of time. This makes the method
highly effective.

2.2.1.5. Simulation

2.2.1.5.1. Assumption and Condition

The simulation is implemented using the C language, with a total of 2 centers (k=2) available.
The maximum processing ability for center 1 and center 2 are Cmax1 and Cmax2, respectively.
The corresponding maximum bandwidths are Nmax1 and Nmax2. The Gaussian distribution is
used to specify the size of the required processing ability and bandwidth, with C and N
representing the distribution for processing ability and bandwidth, respectively.
The requests are generated based on the exponential distribution with the average interval being
q. Once a request is created, it will use both resource types (processing ability and bandwidth)
from the time of creation until the completion time of the service, which is given by H. The
system will repeatedly generate m requests, with each request requiring a specific amount of
processing ability and bandwidth. The pattern for r requests is {C=a1, N=b1; C=a2, N=b2; ...;
C=ar, N=br}.
The goal of the simulator is to compare method II with method I in terms of rejected requests,
resource utilization, and waiting time for requests.

15

2.2.1.5.2. Result

Figure 12.1 compares the probability of losing a request, due to unavailability of processing
ability or bandwidth, when C=N.

Average size of required resource α, Request generation pattern 1 {C=α, N=α}

 Figure 12.1, Comparative evolution of Method I and Method II,[2]

The average size of required resource β, Request generation pattern 2 {C=β, N=1; C=1, N=β} Cmax1=Cmax2=20, Nmax1=Nmax2=20, H=6.

Figure 12.2, Comparative evolution of Method I and Method II, [2]

Figure 12.2 compares the request loss probability when processing ability and bandwidth (C and
N) rise and fall in anti-phase.

Figure 13 examines how the maximum resource size ratio of each center affects request loss
probability, assuming constant processing ability (Cmax1 +Cmax2) and bandwidth size (Nmax1
+Nmax2).

16

Cmax1+Cmax2=40, Nmax1+Nmax2=40, H=6 {C=4, N=1; C=1, N=4}

 Figure 13, Impact of the size of Cmax and Nmax, [2]

Figure 14 assesses the effect of the number of centers on the request loss probability using the
same simulation parameters as those in Figure 12.2.

Figure 14, Impact of the number of centers, [2]

The results indicate that method II can reduce the request loss probability and, as a result, reduce
the total amount of resources when the size of the processing ability and bandwidth rise and fall.
The same applies even when the number of centers increases, with the exception of an odd
number of centers. When there are an odd number of centers and processing capability and
bandwidth sizes increase and decrease, the basic method may lead to a deadlock state. As more
centers are available to process requests, the request loss probability decreases as the number of
centers increases.
In addition, the simulator showed that allocating resources to a single specific center is better
than distributing resource allocation to multiple centers.

17

2.2.2. Fairness

Fairness in cloud resource allocation refers to the equitable distribution of resources among
multiple users, applications, or tenants. This ensures that all users obtain a fair share of resources
without being negatively affected by the resource demands of others. Achieving fairness is
important to prevent resource starvation, maintain the quality of service, and ensure overall user
satisfaction. We attempt to improve the quality of method I in a situation that may involve the
possibility of unfair resource allocation: when resource allocation to a specific user occupies
most of the resources, other users may face starvation, which can be solved by using the
proposed method. The available resources are divided into blocks of resources, and each block is
allocated to each request. This method prevents an application, user, or task form from
occupying most of the resources and providing fair resource allocation.

2.2.2.1.Fairness in joint multiple resource allocation

The proposed method has four objectives for obtaining fairness:

1. Although fairness should be achieved without queuing, it may be necessary to delay
resource allocation.

2. Multiple types of resources should be considered when tracking fairness, as fairness
for one resource type may not be fair for another.

3. As some users may require more bandwidth than others, it may not be fair to balance
the amounts of the two resource types.

4. The allocation of resources to each user is unfair if there are no rejections for all users.

2.2.2.1.1. Proposed Method for Fairness

This study introduces a technique that aims to achieve fairness in resource allocation. The
proposed method distributes resources to each request in each time slot based on their individual
requirements. To determine fairness, the technique identifies the key resource type, and measures
the total amount of all allocated key resource types in each time slot, similar to Method II.

2.2.2.1.2. Extension of fair joint multiple resource allocation method

The paper presents a new approach that extends method II and aims to prevent an imbalance in
resource allocation in the allocation of key resources. The proposed method employs delayed
resource allocation in the following time slot to address issues related to the previous time slot
during the computation time T.

If there is a request and there are insufficient required resources, requests are delayed instead of
being rejected, and resources become available in the next time slot. This way, the required
resources in the previous time slot are filled. Figure 15 illustrates the resource management
diagram that depicts the method used to determine when to start the service time during delayed
resource allocation, which is called method III and is utilized in unfair cases following method
II.

18

Available resource management diagram

Figure 15, Impact of the number of centers, Reference [18]

An example of filling up the imbalance is presented in Figures 15, 16, and 17 for three users. It
shows how imbalanced the required resources are allocated to each user in the next flowing time
slot.
The user which has the largest value of Vj(g) is called ‘user g1’ in the j-th time block, where
Vj(g) is given by {Total amount of key resource allocated to user g in j-th time block} *rg.

19

Example of filling up the imbalance in the previous time block

Figure.16,[2]

2.2.3. Result

The pattern represents the request generation for users and is presented by {C= X, N=X} and
{C= Z.X, N=Z.X}, Z is the ratio of the size of User 2’s request to User 1’s request.

20

Evaluation of fairness (value F) and resource efficiency

Cmax1=Cmax2=20, Nmax1=Nmax2=20, H=6; {C=2, N=1} for user 1, {C=2*z, N=1*z} for user 2, r1=r2=1

Figure.17, [2]

According to Figure 17, the average utilization of processing ability and bandwidth, or resource
utilization, is evaluated. Method III is shown to significantly decrease the F value, resulting in a
fair distribution of resources, when compared to Method II, which does not consider fairness.
This holds true even when the number of centers increases.
As illustrated in Figure 17, the F value for Method II rapidly increases as ratio z grows, due to
the increasing disparity in the number of allocated resources. However, when z exceeds 3.0, the
F value for Method II decreases as z increases because the resources required to fulfill user 2's
demands are too large to obtain. Conversely, the F value for Method III experiences a slight
increase as z magnitudes increase.
Method III allows for a fair distribution of resources in line with the number of resources that
each user is expected to request, as illustrated in Figure 18.

Evaluation of the allocated resource

Cmax1=Cmax2=20, Nmax1=Nmax2=20, H=6; {C=2, N=1} for user 1, {C=2, N=1} for user 1, {C=2*z, N=1*z} for user 2, r1=1/2, r2=1

Figure.18, [2]

It is commonly observed that when we aim for fairness in resource allocation, resource
efficiency tends to suffer. However, it has been found that Method III can achieve almost the

21

same level of resource efficiency as Method II while still striving for fairness, as demonstrated in
Figure 17.

2.3. Femtocell Networks

Femtocell networks are designed for residential and small business settings, providing coverage
for users within a limited area, usually spanning a few hundred meters. However, managing
femtocell networks is challenging due to the limited resources, such as bandwidth and power.
These resources must be efficiently utilized to serve multiple users. In their paper, "Dynamic
Resource Allocation Algorithm for Femtocell Networks," Tsai and Chiang proposed a real-time
resource allocation method that ensures efficient distribution of resources for each user,
preventing congestion or overloading of resources.

This algorithm considers several factors to determine the most efficient resource allocation, as
briefly mentioned below.

1. Signal strength, the algorithm evaluates the strength of users to ensure that resources are
allocated to the user with a weak signal to make a reliable connection.

2. Quality, the algorithm evaluates the quality of the channel between the user and the
femtocell to determine the most efficient resource utilization.

3. Priority, the algorithm evaluates the priority of the user and allocates resources to the user

with a higher priority.

4. Location, the algorithm evaluates the location of each user and allocates more resources to

the user with higher priority to improve resource allocation.

5. Current resource usage, the algorithm evaluates the resources that are currently allocated to
the users to ensure there is no congestion or overload of resources.

6. Cost, the algorithm considers the cost of resources to determine the most cost-effective
allocation of resources.

7. Performance, the algorithm can consider the performance requirement of each user to
ensure that the allocated resources meet the requirement.

The integration of femtocell networks into cloud computing resource allocation presents an
opportunity to leverage unique capabilities in new areas. Originally developed for cellular
communications, femtocells possess characteristics such as small coverage areas and low power
consumption, which make them ideal for cloud computing.

The aim of cloud computing resource allocation algorithms for femtocell networks is to allocate
computing resources efficiently based on task and application demands and priorities. This

22

process involves resource provisioning, load balancing, and resource optimization. By deploying
effective resource allocation strategies for femtocell networks, cloud computing can achieve
optimal performance while minimizing energy consumption and associated costs.

Dynamic resource provisioning algorithm allocates computing resources to tasks based on
specific requirements. It monitors the workload, making real-time adjustments for optimal
performance and responsiveness.

1. Load-balancing algorithms distribute workloads evenly across resources to prevent
bottlenecks and optimize utilization through consolidation.

2. The Resource Usage Optimization algorithm is designed to maximize resource utilization

while minimizing wastage. It takes into account factors like application requirements, the
availability of resources, and energy efficiency. Advanced optimization techniques, such
as genetic algorithms and machine learning, are used to identify the best resource
allocation strategies.

Cloud computing environments require efficient dynamic resource allocation to improve
resource utilization performance and reliability. An algorithm that considers multiple factors can
be used to allocate resources such as processing ability, bandwidth, and storage in real-time on
demand. This would ensure that resources are allocated efficiently, resulting in an improved
overall performance of cloud environments.

2.3.1. Femtocell Networks and Fairness in Resource Allocation

Ensuring fairness in the allocation of resources for cloud computing intends to offer an equitable
chance to all users and applications to access and use computing resources based on their
individual requirements. Its objective is to prevent the monopolization of resources, promote user
satisfaction, and establish an even playing field for various entities within the cloud ecosystem.
Any spelling, grammar, and punctuation errors have been corrected.

1- proximity-based resource allocation system:This means that users or applications located

closer to a femtocell can get priority access to available resources. By using this method,
resources are distributed more fairly, taking into account the location of users and their
proximity to the femtocell. This approach ensures that all users receive a fair share of
resources.

2- Load Balancing: Femtocell networks are capable of enabling load-balancing strategies to

evenly distribute computing resources among users or applications. By utilizing the small
coverage areas of femtocells, the algorithm can dynamically allocate resources based on
workload demands, ensuring fairness in resource utilization.

23

2.4. Linear Scheduling Strategy

A Linear Scheduling Strategy is a popular method used in the cloud computing environment to
optimize the utilization of shared resources. It is a dynamic resource allocation method that
allocates available resources into time slots and assigns them to users based on a linear schedule.
This linear schedule is computed dynamically based on the current state of the system, taking
into account changes in project scope, activity duration, and resource availability. The
effectiveness of LSS in optimizing resource allocation has been widely acknowledged by project
managers.

LSS works by dividing available resources into time slots and assigning them to users based on
their current demand for resources. The optimal linear schedule is then computed based on the
current demand, and resources are allocated to users based on this schedule. As the demand for
resources changes, the algorithm recalculates the linear schedule and reallocates the resources
accordingly.

This algorithm has been widely studied and applied in cloud computing environments, with
many research studies proposing LSS-based algorithms for dynamic resource allocation in the
cloud. These studies have found that LSS is effective in maximizing resource utilization and
minimizing user waiting time, while also balancing resource utilization and fairness among
users.

Overall, LSS improves project performance by enabling project managers to identify and address
potential bottlenecks and conflicts in resource allocation. By visualizing the project timeline,
managers can optimize resource allocation to ensure that critical activities receive necessary
resources promptly. This leads to reduced project delays, enhanced productivity, and improved
overall project performance measures such as on-time delivery and cost efficiency.

2.4.1. Fairness

In the context of dynamic resource allocation, fairness plays a critical role in ensuring an
equitable distribution of resources among various activities or project teams. The LSS
framework provides transparency in resource allocation, empowering project managers to
allocate resources fairly and avoid any favoritism or bias. The LSS takes into account the
sequence and interdependencies of activities, ensuring that resources are allocated based on
project priorities and the unique requirements of each activity, thereby promoting fairness in
resource distribution.

2.4.2. Resource Utilization

The integration of technology and advanced modeling techniques has improved resource
utilization in the Linear Scheduling Strategy (LSS). By using optimization algorithms, artificial
intelligence, and machine learning, it is possible to optimize resource allocation by considering
factors such as resource skill sets, availability, and project constraints. These technologies enable
more accurate predictions and real-time adjustments, resulting in improved resource utilization
and better project outcomes.

24

When it comes to project management, LSS provides valuable benefits by ensuring performance,
fairness, and resource utilization. It optimizes resource allocation, enhances project performance,
ensures fairness in resource distribution, and maximizes resource utilization, ultimately leading
to a successful project execution.

3. Conclusion

3.1. Firefly

Cloud computing enables the delivery and consumption of IT services over the Internet.
Virtualization plays a crucial role in dynamically allocating resources based on user requests
and providing flexibility in scheduling policies. By using virtualization in cloud computing,
many users can have concurrent access to cloud services. Resource allocation is a complex
task for both consumers and providers. Providers should ensure the availability of adequate
resources for each user or application in a cloud environment, while consumers and providers
need to achieve profitability while balancing factors such as QoS, fairness, processing costs,
and workload.

The proposed algorithm makes use of the advantages of the Firefly algorithm and fuzzy
approaches. It is clear that the algorithm is efficient in terms of load balancing. By using this
proposed approach, maximum resource utilization can be achieved, and SLA violations can
be reduced.

3.2. Optimal Joint Resource Allocation

The paper proposes an optimal joint multiple resource allocation method, method II, which
allocates processing ability and bandwidth simultaneously for each request on an hourly basis,
with a dedicated resource for each service request. Based on the results obtained from the
simulation evaluation, it appears that Method II could be a more viable option when compared to
conventional allocation methods. This may potentially result in a decrease in the probability of
request loss and a reduction in resource consumption. The findings suggest that Method II
presents a promising solution to address the challenges of resource allocation in the current
business environment.

The proposed paper outlines an equitable approach to multiple resource allocation in cloud
computing environments. Method III distributes resources by taking into account the anticipated
resource requirements of each user. Through simulation evaluations, it was determined that
Method III achieves a just distribution of resources among multiple users, while maintaining
resource efficiency comparable to the conventional method.

25

3.3. Femtocell Dynamic Resource allocation

Managing resource allocation, such as power and bandwidth, is crucial in a femtocell network.
The algorithms used for this purpose are both robust and weak. On one hand, they enhance the
efficient utilization of resources, dynamic provisioning, load balancing, and computing resource
optimization, thereby leading to better network performance and user experience. Additionally,
these algorithms aid in increasing the scalability of the network. However, on the other hand, the
implementation of such algorithms can be complex and can result in slower response times,
leading to increased latency.

3.4. Linear scheduling algorithm

This algorithm is commonly used in cloud-computing environments for resource allocation.
However, these algorithms have weaknesses and strengths when allocating resources to the
environment. weaknesses in LSS are that it is inflexible, not scalable, and can be complex to
implement in large-scale cloud environments. They are best suited for a predictable, consistent
workload, but struggle with sudden changes in demand, which results in poor resource
allocation. In terms of robustness, the linear scheduling algorithm is predictable, fair, and
efficient in terms of resource allocation, quickly allocates resources to tasks, and ensures fairness
based on task priority.

26

4. Result

Resource allocation is a crucial factor in determining user experience and the overall efficiency
of cloud computing systems. In this context, the Firefly algorithm, when combined with fuzzy
approaches, emerges as a promising solution for load balancing. By leveraging virtualization,
concurrent access to cloud services for multiple users becomes a feasible option, thereby
enhancing the flexibility of scheduling policies. The proposed algorithm not only draws on the
benefits of the Firefly algorithm but also demonstrates its efficiency in load balancing.
Employing this approach holds the potential to maximize resource utilization while minimizing
SLA violations.

The pursuit of optimal joint resource allocation has prompted the introduction of method II, a
strategy that simultaneously allocates processing ability and bandwidth on an hourly basis. This
method is supported by dedicated resources for each service request and has proven effective in
reducing request loss probability and total resource usage.

Furthermore, the emphasis placed on equitable resource allocation in a cloud computing
environment has led to the development of method III, which strikes a balance between fairness
and resource efficiency. Our findings affirm that method III achieves fairness without
compromising resource efficiency, setting it apart from conventional methods.

These results hold significant implications for organizations seeking to optimize resource
allocation in a cloud computing environment. The implementation of method II and method III
can be expected to yield tangible benefits, including reduced request loss probability and
optimized resource usage.

Within the domain of femtocell networks, the dynamic resource allocation algorithm endeavors
to effectively manage power and bandwidth utilization. Despite its robustness in enhancing
resource utilization, facilitating dynamic provisioning, and improving load balancing, the
algorithm is not without its challenges. Specifically, the complexity and potential latency issues
pose a significant hurdle. Thus, it is crucial to carefully evaluate the trade-off between efficiency
and implementation complexity. Given these considerations, it is imperative to approach the
algorithm with a judicious and meticulous mindset. Within the domain of femtocell networks,
the dynamic resource allocation algorithm endeavors to effectively manage power and
bandwidth utilization. Despite its robustness in enhancing resource utilization, facilitating
dynamic provisioning, and improving load balancing, the algorithm is not without its challenges.
Specifically, the complexity and potential latency issues pose a significant hurdle. Thus, it is
crucial to carefully evaluate the trade-off between efficiency and implementation complexity.
Given these considerations, it is imperative to approach the algorithm with a judicious and
meticulous mindset.

Meanwhile, the linear scheduling algorithm, a common player in cloud-computing environments,
exhibits a mix of strengths and weaknesses. Its predictability, fairness, and efficiency make it
suitable for consistent workloads. However, limitations surface in terms of inflexibility and
scalability, particularly in large-scale cloud environments. Sudden changes in demand pose
challenges for this algorithm, leading to suboptimal resource allocation. Despite its drawbacks,

27

the linear scheduling algorithm stands out for its predictability and efficiency in allocating
resources based on task priority. Resource allocation algorithms in cloud computing present
unique challenges and advantages.

28

5. References

1- Dynamic Resource Allocation Using Improved Firefly Optimization Algorithm in Cloud
Environment, to link to this article: https://doi.org/10.1080/08839514.2022.2055394

2- Optimal Joint Multiple Resource Allocation Method for Cloud Computing Environments,

International Journal of Research and Reviews in Computer Science (IJRRCS),
Department of Computer and Information Science, Seikei University, Japan

3- Dynamic Resource Allocation in Hybrid Access Femtocell Network, to link to this

article: https://www.hindawi.com/journals/tswj/2014/539720/
4- Dynamic Resource Allocation for Distributed Systems and Cloud Computing, May-

June2020 ISSN: 0193-4120 Page No.22417–22426

5- Linear Scheduling Strategy for Resource Allocation in Cloud Environment, International

Journal on Cloud Computing: Services and Architecture (IJCCSA), Vol.2, No.1,
February 2012, link to this article: https://doi.org/10.5121/IJCCSA.2012.2102

6- A game-theoretic approach for dynamic resource allocation in cloud computing with

linear scheduling strategy. Journal of Network and Computer Applications, Chen, Y.,
Huang, X., Li, J., & Liu, X. (2018), 108, 39-48 link to this article:
https://link.springer.com/article/10.1007/s11227-009-0318-1.

https://link.springer.com/article/10.1007/s11227-009-0318-1

